WorldWideScience

Sample records for tsunamis main effects

  1. Health Effects of Tsunamis

    Science.gov (United States)

    ... Pet Shelters Protect Your Pets Health Effects of Tsunamis Language: English Español (Spanish) Recommend on Facebook Tweet ... environmental hazards. The majority of deaths associated with tsunamis are related to drownings, but traumatic injuries are ...

  2. Portland, Maine Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Portland, Maine Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  3. The effects of a local moderate tsunami in the Dover Strait on the French and English main harbors of the English Channel

    Science.gov (United States)

    Clément, Cécile; Gailler, Audrey; Heinrich, Philippe; Hélène, Hébert; Loevenbruck, Anne

    2017-04-01

    The Dover Strait is regularly shaken by small to moderate earthquakes which can be felt in the nearby cities Boulogne-Sur-Mer, Calais, Dover and Folkestone. Three destructive events have been documented during the Middle Ages including 1580 Dover Strait earthquake which has been largely felt in London. The isoseimal map of this main event shows a maximum MSK paleointensity of VIII in Calais and VII in Dover [Neilson et al 1984; Melville et al. 1996]. The Dover Strait has been studied using seismic-reflection method [Garcia-Moreno et al. 2014], seafloor sampling, boreholes and gravity anomaly [Everaerts and Mansy 2001], yet the actual tectonic context of the area stays hard to understand because of the lack of recent seafloor deformation and of large recent seismic events. Among other things the occurrence of a tsunamigenic earthquake is not totally impossible [Roger and Gunnell 2011]. We propose several numerical simulations of tsunamis where the seismic scenari are chosen according to the latest fault activity study of the area [Garcia-Moreno et al. 2014]. We used strike-slip and normal mechanisms for magnitudes ranging from 6.0 to 7.0. The propagation of the tsunamis from the source to the French an English coasts is made using a bathymetry with a grid step of 20m realized by the SHOM (Service Hydrographique et Océanographique de la Marine) within the TANDEM project. Using synthetic gauges, we measure the water elevation prediction at the entrance of the main harbours. We push the investigation further for the case of Boulogne-Sur-Mer where the available topography-bathymetry map has a grid step of 10m. This fine bathymetry map enables to modelize the bassins and the embankments inside the harbor and thus to study the resonance of the site. Moreover Boulogne harbor is equipped with a maregraph that we use to compare the synthetic data with real water height registration. Using maregraph recording of rough sea or storm, we are able to evaluate the relevance of

  4. Tsunamis

    Science.gov (United States)

    A tsunami is a series of huge ocean waves created by an underwater disturbance. Causes include earthquakes, landslides, volcanic ... space that strike the surface of Earth. A tsunami can move hundreds of miles per hour in ...

  5. Tsunamis

    Indian Academy of Sciences (India)

    Indian Ocean. Satish R Shetye. Tsunamis are surface gravity waves that are triggered due to perturbation of the ocean floor. The tsunamis that occurred in the Indian Ocean on 26 December 2004 were due to an earthquake off the coast of Sumatra. Sea level variations associated with this event are summarized after a brief.

  6. Real-time correction of tsunami site effect by frequency-dependent tsunami-amplification factor

    Science.gov (United States)

    Tsushima, H.

    2017-12-01

    For tsunami early warning, I developed frequency-dependent tsunami-amplification factor and used it to design a recursive digital filter that can be applicable for real-time correction of tsunami site response. In this study, I assumed that a tsunami waveform at an observing point could be modeled by convolution of source, path and site effects in time domain. Under this assumption, spectral ratio between offshore and the nearby coast can be regarded as site response (i.e. frequency-dependent amplification factor). If the amplification factor can be prepared before tsunamigenic earthquakes, its temporal convolution to offshore tsunami waveform provides tsunami prediction at coast in real time. In this study, tsunami waveforms calculated by tsunami numerical simulations were used to develop frequency-dependent tsunami-amplification factor. Firstly, I performed numerical tsunami simulations based on nonlinear shallow-water theory from many tsuanmigenic earthquake scenarios by varying the seismic magnitudes and locations. The resultant tsunami waveforms at offshore and the nearby coastal observing points were then used in spectral-ratio analysis. An average of the resulted spectral ratios from the tsunamigenic-earthquake scenarios is regarded as frequency-dependent amplification factor. Finally, the estimated amplification factor is used in design of a recursive digital filter that can be applicable in time domain. The above procedure is applied to Miyako bay at the Pacific coast of northeastern Japan. The averaged tsunami-height spectral ratio (i.e. amplification factor) between the location at the center of the bay and the outside show a peak at wave-period of 20 min. A recursive digital filter based on the estimated amplification factor shows good performance in real-time correction of tsunami-height amplification due to the site effect. This study is supported by Japan Society for the Promotion of Science (JSPS) KAKENHI grant 15K16309.

  7. Tsunamis

    Science.gov (United States)

    ... Centers Evacuation Center Play Areas Animals in Public Evacuation Centers Pet Shelters Interim ... are a series of enormous waves created by an underwater disturbance such as an earthquake, landslide, volcanic eruption, or meteorite. A tsunami can ...

  8. Investigation of Tsunami Effects on Harbor Structures with High Resolution Tsunami Modeling: Case study in the Biggest Port of Turkey in Istanbul

    Science.gov (United States)

    Ozer Sozdinler, Ceren; Arikawa, Taro; Meral Ozel, Nurcan; Necmioglu, Ocal; Cevdet Yalciner, Ahmet; Zaytsev, Andrey; Tomita, Takashi

    2015-04-01

    Ports and harbors are critical marine transportation hubs which must survive and continue functions and operability after the disasters. Hence the recovery operations may continue without interruption. Tsunami is one of the important marine hazards and major impact of any tsunamis are observed mainly in the harbors. Therefore a complete assessment of tsunami behavior, tsunami amplification, abnormal agitation and related damage in ports and harbors is highly essential. Tsunami modeling with high resolution would be a proper approach to understand the effects of tsunamis on marine structures and harbor facilities. The tsunami mitigation plans can be developed using the results of high resolution modeling. The large scale industrial facilities of Turkey are located along the coasts of Marmara Sea in Turkey. Ambarli Port in Istanbul is known to be the biggest trade gate of Marmara region with seven different terminals and an offshore platform operated by different companies for container and cargo handling. The port is serving not only the megacity Istanbul but also the whole country. Compiling the earthquake catalogs and historical records, possible earthquake locations in Marmara Sea are used to select the tsunami source scenarios for modeling. The high resolution bathymetric and topographic data for Ambarli Port region is also another necessary data which has been constructed with a resolution of less than 4m grid size. The sensitively digitized coastline and the sea and land structures with their coordinates and heights are also included in bathy/topo data. The tsunami modeling codes NAMIDANCE and STOC-CADMAS are used for the calculations of tsunami hydrodynamic parameters as the distributions of wave amplitude, current velocity, flow depth and inundation distance. The tsunami pressure exerted onto the terminal blocks are determined by tsunami modeling consisting of three-dimensional and non-hydrostatic calculation approaches. The results of each code are

  9. The tsunami phenomenon

    Science.gov (United States)

    Röbke, B. R.; Vött, A.

    2017-12-01

    With human activity increasingly concentrating on coasts, tsunamis (from Japanese tsu = harbour, nami = wave) are a major natural hazard to today's society. Stimulated by disastrous tsunami impacts in recent years, for instance in south-east Asia (2004) or in Japan (2011), tsunami science has significantly flourished, which has brought great advances in hazard assessment and mitigation plans. Based on tsunami research of the last decades, this paper provides a thorough treatise on the tsunami phenomenon from a geoscientific point of view. Starting with the wave features, tsunamis are introduced as long shallow water waves or wave trains crossing entire oceans without major energy loss. At the coast, tsunamis typically show wave shoaling, funnelling and resonance effects as well as a significant run-up and backflow. Tsunami waves are caused by a sudden displacement of the water column due to a number of various trigger mechanisms. Such are earthquakes as the main trigger, submarine and subaerial mass wastings, volcanic activity, atmospheric disturbances (meteotsunamis) and cosmic impacts, as is demonstrated by giving corresponding examples from the past. Tsunamis are known to have a significant sedimentary and geomorphological off- and onshore response. So-called tsunamites form allochthonous high-energy deposits that are left at the coast during tsunami landfall. Tsunami deposits show typical sedimentary features, as basal erosional unconformities, fining-upward and -landward, a high content of marine fossils, rip-up clasts from underlying units and mud caps, all reflecting the hydrodynamic processes during inundation. The on- and offshore behaviour of tsunamis and related sedimentary processes can be simulated using hydro- and morphodynamic numerical models. The paper provides an overview of the basic tsunami modelling techniques, including discretisation, guidelines for appropriate temporal and spatial resolution as well as the nesting method. Furthermore, the

  10. Effect of Variable Manning Coefficients on Tsunami Inundation

    Science.gov (United States)

    Barberopoulou, A.; Rees, D.

    2017-12-01

    Numerical simulations are commonly used to help estimate tsunami hazard, improve evacuation plans, issue or cancel tsunami warnings, inform forecasting and hazard assessments and have therefore become an integral part of hazard mitigation among the tsunami community. Many numerical codes exist for simulating tsunamis, most of which have undergone extensive benchmarking and testing. Tsunami hazard or risk assessments employ these codes following a deterministic or probabilistic approach. Depending on the scope these studies may or may not consider uncertainty in the numerical simulations, the effects of tides, variable friction or estimate financial losses, none of which are necessarily trivial. Distributed manning coefficients, the roughness coefficients used in hydraulic modeling, are commonly used in simulating both riverine and pluvial flood events however, their use in tsunami hazard assessments is primarily part of limited scope studies and for the most part, not a standard practice. For this work, we investigate variations in manning coefficients and their effects on tsunami inundation extent, pattern and financial loss. To assign manning coefficients we use land use maps that come from the New Zealand Land Cover Database (LCDB) and more recent data from the Ministry of the Environment. More than 40 classes covering different types of land use are combined into major classes such as cropland, grassland and wetland representing common types of land use in New Zealand, each of which is assigned a unique manning coefficient. By utilizing different data sources for variable manning coefficients, we examine the impact of data sources and classification methodology on the accuracy of model outputs.

  11. Improving the coastal record of tsunamis in the ESI-07 scale: Tsunami Environmental Effects Scale (TEE-16 scale)

    Energy Technology Data Exchange (ETDEWEB)

    Lario, J.; Bardaji, T.; Silva, P.G.; Zazo, C.; Goy, J.L.

    2016-07-01

    This paper discusses possibilities to improve the Environmental Seismic Intensity Scale (ESI-07 scale), a scale based on the effects of earthquakes in the environment. This scale comprises twelve intensity degrees and considers primary and secondary effects, one of them the occurrence of tsunamis. Terminology and physical tsunami parameters corresponding to different intensity levels are often misleading and confusing. The present work proposes: i) a revised and updated catalogue of environmental and geological effects of tsunamis, gathering all the available information on Tsunami Environmental Effects (TEEs) produced by recent earthquake-tsunamis; ii) a specific intensity scale (TEE-16) for the effects of tsunamis in the natural environment at coastal areas. The proposed scale could be used in future tsunami events and, in historic and paleo-tsunami studies. The new TEE- 16 scale incorporates the size specific parameters already considered in the ESI-07 scale, such as wave height, run-up and inland extension of inundation, and a comprehensive and more accurate terminology that covers all the different intensity levels identifiable in the geological record (intensities VI-XII). The TEE-16 scale integrates the description and quantification of the potential sedimentary and erosional features (beach scours, transported boulders and classical tsunamites) derived from different tsunami events at diverse coastal environments (e.g. beaches, estuaries, rocky cliffs,). This new approach represents an innovative advance in relation to the tsunami descriptions provided by the ESI-07 scale, and allows the full application of the proposed scale in paleoseismological studies. The analysis of the revised and updated tsunami environmental damage suggests that local intensities recorded in coastal areas do not correlate well with the TEE-16 intensity (normally higher), but shows a good correlation with the earthquake magnitude (Mw). Tsunamis generated by earthquakes can then be

  12. Effective Coastal Boundary Conditions for Tsunami Simulations

    NARCIS (Netherlands)

    Kristina, W.

    2014-01-01

    Numerical modeling of tsunami propagation at the coastal zone has been a daunting task since high accuracy is needed to capture aspects of wave propagation in the more shallow areas. For example, there are complicated interactions between incoming and reflected waves due to the bathymetry, the

  13. Vegetation bioshields for tsunami mitigation: review of effectiveness, limitations, construction, and sustainable management

    OpenAIRE

    田中, 規夫

    2009-01-01

    Coastal vegetation has been widely recognized as a natural method to reduce the energy of tsunami waves. However, a vegetation barrier cannot completely stop a tsunami, and its effectiveness depends on the magnitude of the tsunami as well as the structure of the vegetation. For coastal rehabilitation, optimal planning of natural coastal systems, and their maintenance, we need to quantitatively elucidate the capacity of vegetation to reduce the energy of tsunami waves. The limitations of coast...

  14. Effect of earthquake and tsunami. Ground motion and tsunami observed at nuclear power station

    International Nuclear Information System (INIS)

    Hijikata, Katsuichirou

    2012-01-01

    Fukushima Daiichi and Daini Nuclear Power Stations (NPSs) were struck by the earthquake off the pacific coast in the Tohoku District, which occurred at 14:46 on March 11, 2011. Afterwards, tsunamis struck the Tohoku District. In terms of the earthquake observed at the Fukushima NPSs, the acceleration response spectra of the earthquake movement observed on the basic board of reactor buildings exceeded the acceleration response spectra of the response acceleration to the standard seismic ground motion Ss for partial periodic bands at the Fukushima Daiichi NPS. As for the Fukushima Daini NPS, the acceleration response spectra of the earthquake movement observed on the basic board of the reactor buildings was below the acceleration response spectra of the response acceleration to the standard seismic ground motion Ss. Areas inundated by Tsunami at each NPS were investigated and tsunami inversion analysis was made to build tsunami source model to reproduce tide record, tsunami height, crustal movement and inundated area, based on tsunami observation records in the wide areas from Hokkaido to Chiba prefectures. Tsunami heights of Fukushima Daiichi and Daini NPSs were recalculated as O.P. +13m and +9m respectively and tsunami peak height difference was attributed to the extent of superposition of tsunami waves of tsunami earthquake type of wave source in the area along interplane trench off the coast in the Fukushima prefecture and interplane earthquake type of wave source in rather deep interplate area off the coast in the Miyagi prefecture. (T. Tanaka)

  15. The Components of Community Awareness and Preparedness; its Effects on the Reduction of Tsunami Vulnerability and Risk

    Science.gov (United States)

    Tufekci, Duygu; Lutfi Suzen, Mehmet; Cevdet Yalciner, Ahmet

    2017-04-01

    The resilience of coastal communities against tsunamis are dependent on preparedness of the communities. Preparedness covers social and structural components which increases with the awareness in the community against tsunamis. Therefore, proper evaluation of all components of preparedness will help communities to reduce the adverse effects of tsunamis and increase the overall resilience of communities. On the other hand, the complexity of the metropolitan life with its social and structural components necessitates explicit vulnerability assessments for proper determination of tsunami risk, and development of proper mitigation strategies and recovery plans. Assessing the vulnerability and resilience level of a region against tsunamis and efforts for reducing the tsunami risk are the key components of disaster management. Since increasing the awareness of coastal communities against tsunamis is one of the main objectives of disaster management, then it should be considered as one of the parameter in tsunami risk analysis. In the method named MetHuVA (METU - Metropolitan Human Tsunami Vulnerability Assessment) proposed by Cankaya et al., (2016) and Tufekci et al., (2016), the awareness and preparedness level of the community is revealed to be an indispensable parameter with a great effect on tsunami risk. According to the results obtained from those studies, it becomes important that the awareness and preparedness parameter (n) must be analyzed by considering their interaction and all related components. While increasing awareness can be achieved, vulnerability and risk will be reduced. In this study the components of awareness and preparedness parameter (n) is analyzed in different categories by considering administrative, social, educational, economic and structural preparedness of the coastal communities. Hence the proposed awareness and preparedness parameter can properly be analyzed and further improvements can be achieved in vulnerability and risk analysis

  16. Evaluation on the effect of tsunami and seaquake on the floating structure; Tsunami kaishin no futai ni taisuru eikyo hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, K.; Suzuki, H.; Hosomi, I. [The University of Tokyo, Tokyo (Japan); Nahata, H. [The Long-Term Credit Bank of Japan, Ltd., Tokyo (Japan)

    1996-12-31

    The effects of tsunami and seaquake on large floating structures are theoretically studied, where these effects are followed in terms of local strength using the equation proposed by Sells to predict surface shapes changed by seaquake-caused uplift of the seabottom. The equation is combined with the one for tsunami propagation, to better predict the tsunami motion. The simulation results indicate the necessity of considering the effects of tsunami for the design of a large floating structure. The authors discuss that the effect of tsunami is minimized when a floating structure is set at a depth of at least 40 to 50m, chain length should be determined by equalizing the breaking weight with the load at which the structure starts to move, and a structure should be set at a position where it is not attacked by transverse waves. They also discuss that seaquake intensity should be predicted by the equation of motion of compressible fluid, and, noting local strength of a floating structure, it will not be damaged when it is at least 16mm thick under the conditions of 2m as seabottom uplift and 0.5m as draft depth. 15 refs., 9 figs., 2 tabs.

  17. Mass movement-induced tsunamis: main effects during the Patagonian Fjordland seismic crisis in Aisén (45°25'S, Chile Tsunamis inducidos por movimientos en masa: principales efectos durante la crisis sísmica de la Patagonia Archipelágica en Aisén (45°25' S, Chile

    Directory of Open Access Journals (Sweden)

    José Antonio Naranjo

    2009-01-01

    Full Text Available The epicentre of the long-lasting seismic crisis started on the evening of January 22,2007 and it was located 20 km to the west of Puerto Chacabuco in the Patagonian fjordland, Chile (45°25'S. Approximately 7,000 events were recorded up to early May, four of which reached magnitudes greater than 5 (Richter, with local intensities up to VII in Puerto Chacabuco and Puerto Aisén and VI in Coihaique. The seismic swarm was located within the Liquiñe-Ofqui Fault Zone (LOFZ, which controls the emplacement of several monogenetic volcanic cones and larger stratovolcanoes. The January 23 (Ms 5,2 and April 1 (Ms 5,4 events caused minor damages in salmón industry installations near the epicentral zone, however the earthquake that oceurred at 13:54 hours (local time on April 21 (Mw 6,2 triggered various mass movements on the Fiordo Aisén slopes and generated tsunamis. Debris flows and tsunami waves caused the death of three people and the disappearance of seven, in addition to severe damages to the salmón industry installations. A similar phenomenon had oceurred in 1927, but then fewer people inhabited the área. Initially, confusión dominated the scientific coordination of the emergeney management due to seismic data misinterpretation.En la noche del 22 de enero de 2007 comenzó una crisis sísmica, cuyos epicentros se localizaron principalmente en el fiordo Aisén, a unos 20 km al noroeste de Puerto Chacabuco, en la zona archipelágica de Patagonia, en Chile (45°25'S. Hasta comienzos de mayo, los sismógrafos habían registrado cerca de 7.000 sismos, de los cuales cuatro habían sobrepasado la magnitud 5 (Richter, con intensidades locales de hasta VII en Puerto Chacabuco y Puerto Aisén y VI en Coihaique. El enjambre sísmico está asociado a estructuras geológicas de la Zona de Falla Liquiñe-Ofqui (ZFLO la cual, además, controla el emplazamiento de numerosos conos volcánicos, así como estratovolcanes mayores. Aunque los sismos del 23 de enero

  18. On the characteristics of landslide tsunamis.

    Science.gov (United States)

    Løvholt, F; Pedersen, G; Harbitz, C B; Glimsdal, S; Kim, J

    2015-10-28

    This review presents modelling techniques and processes that govern landslide tsunami generation, with emphasis on tsunamis induced by fully submerged landslides. The analysis focuses on a set of representative examples in simplified geometries demonstrating the main kinematic landslide parameters influencing initial tsunami amplitudes and wavelengths. Scaling relations from laboratory experiments for subaerial landslide tsunamis are also briefly reviewed. It is found that the landslide acceleration determines the initial tsunami elevation for translational landslides, while the landslide velocity is more important for impulsive events such as rapid slumps and subaerial landslides. Retrogressive effects stretch the tsunami, and in certain cases produce enlarged amplitudes due to positive interference. In an example involving a deformable landslide, it is found that the landslide deformation has only a weak influence on tsunamigenesis. However, more research is needed to determine how landslide flow processes that involve strong deformation and long run-out determine tsunami generation. © 2015 The Authors.

  19. Probability-Based Design Criteria of the ASCE 7 Tsunami Loads and Effects Provisions (Invited)

    Science.gov (United States)

    Chock, G.

    2013-12-01

    Mitigation of tsunami risk requires a combination of emergency preparedness for evacuation in addition to providing structural resilience of critical facilities, infrastructure, and key resources necessary for immediate response and economic and social recovery. Critical facilities would include emergency response, medical, tsunami refuges and shelters, ports and harbors, lifelines, transportation, telecommunications, power, financial institutions, and major industrial/commercial facilities. The Tsunami Loads and Effects Subcommittee of the ASCE/SEI 7 Standards Committee is developing a proposed new Chapter 6 - Tsunami Loads and Effects for the 2016 edition of the ASCE 7 Standard. ASCE 7 provides the minimum design loads and requirements for structures subject to building codes such as the International Building Code utilized in the USA. In this paper we will provide a review emphasizing the intent of these new code provisions and explain the design methodology. The ASCE 7 provisions for Tsunami Loads and Effects enables a set of analysis and design methodologies that are consistent with performance-based engineering based on probabilistic criteria. . The ASCE 7 Tsunami Loads and Effects chapter will be initially applicable only to the states of Alaska, Washington, Oregon, California, and Hawaii. Ground shaking effects and subsidence from a preceding local offshore Maximum Considered Earthquake will also be considered prior to tsunami arrival for Alaska and states in the Pacific Northwest regions governed by nearby offshore subduction earthquakes. For national tsunami design provisions to achieve a consistent reliability standard of structural performance for community resilience, a new generation of tsunami inundation hazard maps for design is required. The lesson of recent tsunami is that historical records alone do not provide a sufficient measure of the potential heights of future tsunamis. Engineering design must consider the occurrence of events greater than

  20. Effect of continental slope on N-wave type tsunami run-up

    Directory of Open Access Journals (Sweden)

    Moode Siva

    2016-08-01

    Full Text Available Frequent tsunamis across the globe have devastated the coasts and led to significant loss of life and property. This calls for a better understanding and estimation of the tsunami characteristics. Considering the scale of the problem, numerical modelling is the most suitable method for tsunami simulation and understanding. Most tsunamis are long-period wave and governed by shallow water equations. Although tsunami is expected to initiate in the deeper waters with very less height, it may have significant amplification while traversing over the slopes. In this study, an attempt is made to understand the effect of continental slope on the transmission, propagation and run-up of tsunami. This study provides better understanding of the physical process through computation of tsunami run-up height and arrival time. To carry out this investigation and to get a preliminary understanding, a one-dimensional numerical model study is carried out using shallow water equations. These equations are solved using Crank–Nicolson finite difference approximation method on a staggered grid. This study is carried out by considering N-wave-type tsunami profile with leading depression (trough. In this study, various continental slope profiles available along the Indian coast were considered. The amplification or attenuation of the tsunami characteristics over these cross-sections was studied. Significant change in the tsunami run-up is observed for different continental slope and water depth on continental shelf.

  1. Tsunami Hockey

    Science.gov (United States)

    Weinstein, S.; Becker, N. C.; Wang, D.; Fryer, G. J.

    2013-12-01

    An important issue that vexes tsunami warning centers (TWCs) is when to cancel a tsunami warning once it is in effect. Emergency managers often face a variety of pressures to allow the public to resume their normal activities, but allowing coastal populations to return too quickly can put them at risk. A TWC must, therefore, exercise caution when cancelling a warning. Kim and Whitmore (2013) show that in many cases a TWC can use the decay of tsunami oscillations in a harbor to forecast when its amplitudes will fall to safe levels. This technique should prove reasonably robust for local tsunamis (those that are potentially dangerous within only 100 km of their source region) and for regional tsunamis (whose danger is limited to within 1000km of the source region) as well. For ocean-crossing destructive tsunamis such as the 11 March 2011 Tohoku tsunami, however, this technique may be inadequate. When a tsunami propagates across the ocean basin, it will encounter topographic obstacles such as seamount chains or coastlines, resulting in coherent reflections that can propagate great distances. When these reflections reach previously-impacted coastlines, they can recharge decaying tsunami oscillations and make them hazardous again. Warning center scientists should forecast sea-level records for 24 hours beyond the initial tsunami arrival in order to observe any potential reflections that may pose a hazard. Animations are a convenient way to visualize reflections and gain a broad geographic overview of their impacts. The Pacific Tsunami Warning Center has developed tools based on tsunami simulations using the RIFT tsunami forecast model. RIFT is a linear, parallelized numerical tsunami propagation model that runs very efficiently on a multi-CPU system (Wang et al, 2012). It can simulate 30-hours of tsunami wave propagation in the Pacific Ocean at 4 arc minute resolution in approximately 6 minutes of real time on a 12-CPU system. Constructing a 30-hour animation using 1

  2. Tsunami.gov: NOAA's Tsunami Information Portal

    Science.gov (United States)

    Shiro, B.; Carrick, J.; Hellman, S. B.; Bernard, M.; Dildine, W. P.

    2014-12-01

    a single system. We welcome your feedback to help Tsunami.gov become an effective public resource for tsunami information and a medium to enable better global tsunami warning coordination.

  3. Effect of built environment on tsunami related injuries

    Directory of Open Access Journals (Sweden)

    SD Dharmarathne

    2013-10-01

    Full Text Available Background Built environment is a major determinant in injuries and deaths during natural disasters. Purpose of the present paper was to study the effect of built environment on tsunami injuries.Methods A retrospective residential cohort was constructed one month after the tsunami, based on the cross sectional household survey. Household structure was categorised as a binary variable based on the definition used department of census and statistics for the census.Results The constructed cohort consisted of 4178 individuals, 2143 (51.3% males and 2034 (48.7% females from 1047 households. Mean age of the study sample was 25 years with a standard deviation of 17 years. Out of the 4178 study units studied, 43 (1.1% died during the acute incidence and 19(0.5% died later due to complications. Twenty eight (0.7% people were reported missing at the time of data collection. Moderate to severe injuries were reported by 508 individuals (12.5%. To investigate the injury incidence all tsunami related deaths, missing personals and injuries were classified in to a single group as injuries. Reported number of injuries were 302 (14.4%, and 296 (14.9% among males and females respectively. In multivariate analysis, living in a temporary shelter (OR=0.259, 95% CI 0.351-0.797 shown a protective effect on injuries whereas, residing within the 100 meter boundary from sea (OR 1.43, 95% CI 1.1-1.8 and destruction of house (OR 1.53 95% CI 1.14-2.07 were predictors of injuries.Conclusion Policies on building construction in coastal areas should be done considering these findings to mitigate the effect of future disasters.

  4. Predicting natural catastrophes tsunamis

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    1. Tsunamis - Introduction - Definition of phenomenon - basic properties of the waves Propagation and dispersion Interaction with coasts - Geological and societal effects Origin of tsunamis - natural sources Scientific activities in connection with tsunamis. Ideas about simulations 2. Tsunami generation - The earthquake source - conventional theory The earthquake source - normal mode theory The landslide source Near-field observation - The Plafker index Far-field observation - Directivity 3. Tsunami warning - General ideas - History of efforts Mantle magnitudes and TREMOR algorithms The challenge of "tsunami earthquakes" Energy-moment ratios and slow earthquakes Implementation and the components of warning centers 4. Tsunami surveys - Principles and methodologies Fifteen years of field surveys and related milestones. Reconstructing historical tsunamis: eyewitnesses and geological evidence 5. Lessons from the 2004 Indonesian tsunami - Lessons in seismology Lessons in Geology The new technologies Lessons in civ...

  5. Project TANDEM (Tsunamis in the Atlantic and the English ChaNnel: Definition of the Effects through numerical Modeling) (2014-2018): a French initiative to draw lessons from the Tohoku-oki tsunami on French coastal nuclear facilities

    Science.gov (United States)

    Hébert, Hélène; Abadie, Stéphane; Benoit, Michel; Créach, Ronan; Frère, Antoine; Gailler, Audrey; Garzaglia, Sébastien; Hayashi, Yutaka; Loevenbruck, Anne; Macary, Olivier; Marcer, Richard; Morichon, Denis; Pedreros, Rodrigo; Rebour, Vincent; Ricchiuto, Mario; Silva Jacinto, Ricardo; Terrier, Monique; Toucanne, Samuel; Traversa, Paola; Violeau, Damien

    2014-05-01

    benefit from a Japanese cooperation (Meteorological Research Institute, MRI) to study in detail the coastal impact of the 2011 Tohoku tsunami (WP3). In this framework TANDEM will apply the models to the French study area, which includes investigating historical documents, defining the possible tsunamigenic sources able to strike the regions of interest (earthquakes and/or landslides), and modeling the coastal effects at a regional scale and for selected sites. Using high resolution bathymetric and topographic data in the frame of Litto3D (a French project whose main objective is to build a seamless integrated topographic and bathymetric coastal Digital Terrain Model), TANDEM will thoroughly investigate possible sources, through a detailed characterization of the slope stability off the coastlines (for the Celtic and Armorican margins, Bay of Biscay), and estimate the coastal impacts. It will also consider events (Canaries) whose assumed catastrophic impact has been widely discussed these recent years, needing a reappraisal regarding French coastlines. A special attention will also be paid to the estimation of the return periods expected for the tsunami scenarios.

  6. Ironic Effects of the Destructive Tsunami on Public Risk Judgment

    Science.gov (United States)

    Oki, S.; Nakayachi, K.

    2011-12-01

    The 2011 Tohoku earthquake caused more than 20,000 casualties, with most of the dead and missing in an enormous tsunami. Survivors had simply evacuated to higher ground within approximately 30 minutes of its arrival. This reflects the importance of public perception of tsunami risks represented by its heights. Our question is how the devastating tsunami affected people in the western Japan where a great earthquake is anticipated in near future. Existing risk analysis researches show that the experience of natural disasters increases risk perception, even with indirect experiences such as seeing photographs of disaster scenes or thinking about a major natural calamity. No doubt, we can assume that the devastating tsunami would have led people to have a greater sense of associated risks. Our result, however, shows that the destructive tsunami of Tohoku earthquake lowered the risk assessment of tsunami heights. One possible explanation to this paradoxical result is the anchoring heuristic. It defines that laypersons are highly inclined to judge based on the numbers first presented to them. Media's repeating report of record-breaking tsunamis of 30 m or more anchored people to elevate the height to evacuate. The results of our survey pose a significant problem for disaster prevention. The survey area is at high risk of giant earthquake, and according to our results, more than 50% of the people surveyed no longer sensed the danger of a 1-m-high tsunami, whereas about 70% had perceived its peril before the Tohoku earthquake. This is also of great importance in Indonesia or Chile where huge earthquakes had occurred recently. We scientists need to face up to the fact that improvement of quick calculation of tsunami heights is not sufficient at all to mitigate the tsunami disasters, but reorient how we should inform laypersons to evacuate at the emergency situation.

  7. Simulations of moving effect of coastal vegetation on tsunami damping

    Science.gov (United States)

    Tsai, Ching-Piao; Chen, Ying-Chi; Octaviani Sihombing, Tri; Lin, Chang

    2017-05-01

    A coupled wave-vegetation simulation is presented for the moving effect of the coastal vegetation on tsunami wave height damping. The problem is idealized by solitary wave propagation on a group of emergent cylinders. The numerical model is based on general Reynolds-averaged Navier-Stokes equations with renormalization group turbulent closure model by using volume of fluid technique. The general moving object (GMO) model developed in computational fluid dynamics (CFD) code Flow-3D is applied to simulate the coupled motion of vegetation with wave dynamically. The damping of wave height and the turbulent kinetic energy along moving and stationary cylinders are discussed. The simulated results show that the damping of wave height and the turbulent kinetic energy by the moving cylinders are clearly less than by the stationary cylinders. The result implies that the wave decay by the coastal vegetation may be overestimated if the vegetation was represented as stationary state.

  8. Significant Tsunami Events

    Science.gov (United States)

    Dunbar, P. K.; Furtney, M.; McLean, S. J.; Sweeney, A. D.

    2014-12-01

    Tsunamis have inflicted death and destruction on the coastlines of the world throughout history. The occurrence of tsunamis and the resulting effects have been collected and studied as far back as the second millennium B.C. The knowledge gained from cataloging and examining these events has led to significant changes in our understanding of tsunamis, tsunami sources, and methods to mitigate the effects of tsunamis. The most significant, not surprisingly, are often the most devastating, such as the 2011 Tohoku, Japan earthquake and tsunami. The goal of this poster is to give a brief overview of the occurrence of tsunamis and then focus specifically on several significant tsunamis. There are various criteria to determine the most significant tsunamis: the number of deaths, amount of damage, maximum runup height, had a major impact on tsunami science or policy, etc. As a result, descriptions will include some of the most costly (2011 Tohoku, Japan), the most deadly (2004 Sumatra, 1883 Krakatau), and the highest runup ever observed (1958 Lituya Bay, Alaska). The discovery of the Cascadia subduction zone as the source of the 1700 Japanese "Orphan" tsunami and a future tsunami threat to the U.S. northwest coast, contributed to the decision to form the U.S. National Tsunami Hazard Mitigation Program. The great Lisbon earthquake of 1755 marked the beginning of the modern era of seismology. Knowledge gained from the 1964 Alaska earthquake and tsunami helped confirm the theory of plate tectonics. The 1946 Alaska, 1952 Kuril Islands, 1960 Chile, 1964 Alaska, and the 2004 Banda Aceh, tsunamis all resulted in warning centers or systems being established.The data descriptions on this poster were extracted from NOAA's National Geophysical Data Center (NGDC) global historical tsunami database. Additional information about these tsunamis, as well as water level data can be found by accessing the NGDC website www.ngdc.noaa.gov/hazard/

  9. Wave characteristic and morphologic effects on the onshore hydrodynamic response of tsunamis

    Science.gov (United States)

    Apotsos, A.; Jaffe, B.; Gelfenbaum, G.

    2011-01-01

    While the destruction caused by a tsunami can vary significantly owing to near- and onshore controls, we have only a limited quantitative understanding of how different local parameters influence the onshore response of tsunamis. Here, a numerical model based on the non-linear shallow water equations is first shown to agree well with analytical expressions developed for periodic long waves inundating over planar slopes. More than 13,000 simulations are then conducted to examine the effects variations in the wave characteristics, bed slopes, and bottom roughness have on maximum tsunami run-up and water velocity at the still water shoreline. While deviations from periodic waves and planar slopes affect the onshore dynamics, the details of these effects depend on a combination of factors. In general, the effects differ for breaking and non-breaking waves, and are related to the relative shift of the waves along the breaking–non-breaking wave continuum. Variations that shift waves toward increased breaking, such as steeper wave fronts, tend to increase the onshore impact of non-breaking waves, but decrease the impact of already breaking waves. The onshore impact of a tsunami composed of multiple waves can be different from that of a single wave tsunami, with the largest difference occurring on long, shallow onshore topographies. These results demonstrate that the onshore response of a tsunami is complex, and that using analytical expressions derived from simplified conditions may not always be appropriate.

  10. The effects of wind and rainfall on suspended sediment concentration related to the 2004 Indian Ocean tsunami

    International Nuclear Information System (INIS)

    Zhang Xinfeng; Tang Danling; Li Zizhen; Zhang Fengpan

    2009-01-01

    The effects of rainfall and wind speed on the dynamics of suspended sediment concentration (SSC), during the 2004 Indian Ocean tsunami, were analyzed using spatial statistical models. The results showed a positive effect of wind speed on SSC, and inconsistent effects (positive and negative) of rainfall on SSC. The effects of wind speed and rainfall on SSC weakened immediately around the tsunami, indicating tsunami-caused floods and earthquake-induced shaking may have suddenly disturbed the ocean-atmosphere interaction processes, and thus weakened the effects of wind speed and rainfall on SSC. Wind speed and rainfall increased markedly, and reached their maximum values immediately after the tsunami week. Rainfall at this particular week exceeded twice the average for the same period over the previous 4 years. The tsunami-affected air-sea interactions may have increased both wind speed and rainfall immediately after the tsunami week, which directly lead to the variations in SSC.

  11. Tsunamis effects at coastal sites due to offshore faulting

    International Nuclear Information System (INIS)

    Miloh, T.; Striem, H.L.

    1976-07-01

    Unusual waves (tsunamis) triggered by submarine tectonic activity such as a fault displacement in the sea bottom may have considerable effect on a coastal site. The possiblity of such phenomena to occur at the southern coast of Israel due to a series of shore-parallel faults, about twenty kilometers offshore, is examined in this paper. The analysis relates the energy or the momentum imparted to the body of water due to a fault displacement of the sea bottom to the energy or the momentum of he water waves thus created. The faults off the Ashdod coast may cause surface waves with amplitudes of about five metres and periods of about one third of an hour. It is also considered that because of the downward movement of the faulted blocks a recession of the sea level rather than a flooding would be the first and the predominant effect at the shore, and this is in agreement with some historical reports. The analysis here presented might be of interest to those designing coastal power plants. (author)

  12. Tsunami: The Underrated Hazard

    Science.gov (United States)

    Synolakis, Costas; Fryer, Gerard J.

    Tsunami: the Underrated Hazard, by Edward Bryant, would appear to be a welcome addition to the scholarly tsunami literature. No book on tsunamis has the broad perspective of this work. The book looks attractive, with many high-quality photographs. It looks comprehensive, with discussions of tsunami hydrodynamics, tsunami effects on coastal landscapes, and causes of tsunamis (earthquakes, landslides, volcanic eruptions, meteorite impacts). It looks practical, with a section on risk and mitigation. It also looks entertaining, with an opening chapter on tsunami legends and a closing chapter presenting fanciful descriptions of imagined events. Appearances are deceiving, though. Any initial enthusiasm for the work evaporates on even casual reading. The book is so flawed by errors, omissions, confusion, and unsupported conjecture that we cannot recommend it to anyone.

  13. Long-Term Effects of the 2011 Japan Earthquake and Tsunami on Incidence of Fatal and Nonfatal Myocardial Infarction.

    Science.gov (United States)

    Nakamura, Motoyuki; Tanaka, Kentarou; Tanaka, Fumitaka; Matsuura, Yuuki; Komi, Ryousuke; Niiyama, Masanobu; Kawakami, Mikio; Koeda, Yorihiko; Sakai, Toshiaki; Onoda, Toshiyuki; Itoh, Tomonori

    2017-08-01

    This study aimed to examine the long-term effects of the 2011 Japan earthquake and tsunami on the incidence of fatal and nonfatal myocardial infarction (MI). In the present study, the incidence of 2 types of cardiac events was comprehensively recorded. The study area was divided into 2 zones based on the severity of tsunami damage, which was determined by the percentage of the inundated area within the residential area (tsunami (r = 0.77; p tsunami was associated with a continual increase in the incidence of fatal MI among disaster survivors. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Tsunami Generation from Asteroid Airburst and Ocean Impact and Van Dorn Effect

    Science.gov (United States)

    Robertson, Darrel

    2016-01-01

    Airburst - In the simulations explored energy from the airburst couples very weakly with the water making tsunami dangerous over a shorter distance than the blast for asteroid sizes up to the maximum expected size that will still airburst (approx.250MT). Future areas of investigation: - Low entry angle airbursts create more cylindrical blasts and might couple more efficiently - Bursts very close to the ground will increase coupling - Inclusion of thermosphere (>80km altitude) may show some plume collapse effects over a large area although with much less pressure center dot Ocean Impact - Asteroid creates large cavity in ocean. Cavity backfills creating central jet. Oscillation between the cavity and jet sends out tsunami wave packet. - For deep ocean impact waves are deep water waves (Phase speed = 2x Group speed) - If the tsunami propagation and inundation calculations are correct for the small (tsunami is not a significant hazard unless particularly close to vulnerable communities. Future work: - Shallow ocean impact. - Effect of continental shelf and beach profiles - Tsunami vs. blast damage radii for impacts close to populated areas - Larger asteroids below presumed threshold of global effects (Ø200 - 800m).

  15. Effect of Nearshore Islands on Tsunami Inundation in Shadow Zones

    Science.gov (United States)

    Goertz, J.; Kaihatu, J. M.; Kalligeris, N.; Lynett, P. J.; Synolakis, C.

    2017-12-01

    Field surveys performed in the wake of the 2010 Mentawai tsunami event have described the belief of local residents that offshore islands serve as possible tsunami sheltering mechanisms, reducing the corresponding inundation on beaches behind the islands, despite the fact that deduced inundation from debris lines show this to be in fact untrue (Hill et al. 2012). Recent numerical model studies (Stefanakis et al. 2014) have shown that inundation levels on beaches behind conical islands are indeed higher than they are on open coastlines. While work has been done on tsunami amplification on the lee side of islands (Briggs et al. 1995), no work has been done concerning tsunami inundation on beach areas behind the islands. A series of experiments to address this were conducted in the Directional Wave Basin (DWB) at the O.H. Hinsdale Wave Research Laboratory at Oregon State University in summer 2016. A series of four sheet metal islands (two with a full conical section, two truncated at the water line) were placed at varying distances from the toe of a 1/10 sloping beach. Incident wave conditions consisting of solitary waves and full-stroke "dam break" waves were run over the islands. Free surface elevations, velocities, and beach runup were measured, with the intent of determining relationships between the wave condition, the island geometry and distance from the beach, and the tsunami characteristics. A series of runup measurements from a particular set of experiments can be seen in Figure 1. Based on these preliminary analyses, it was determined that: A) inundation was always amplified behind the island relative to areas outside this shadow zone; and B) inundation was generally highest with the island closest to the beach, except in the case where the tsunami wave broke prior to reaching the island. In this latter scenario, the inundation behind the island increased with island distance from the beach. The development of relationships between the inundation levels

  16. Investigation on tsunami effects in the central Adriatic Sea during the last century - a contribution

    Science.gov (United States)

    Maramai, A.; Graziani, L.; Tinti, S.

    2007-01-01

    In this work we present the result of a study aimed at examining the Italian earthquake sequences that occurred in the area of the central Adriatic sea with the purpose of understanding whether some of them were accompanied by tsunami effects. The motivation for this research was the update and enrichment of the Italian Tsunami Catalogue. The result was that evidence was found for two new cases of earthquake-induced tsunamis: these are the August 1916 Rimini and the October 1930 Ancona events. The bulk of the present research consisted in collecting all the available data on the earthquakes that affected the selected area in the past century and in identifying those potentially capable of generating tsunamis. During the study all the available material was gathered, which includes specific monographs and scientific papers, articles available in contemporary chronicles and in local and national newspapers. The final result of this research will improve our knowledge of the tsunamigenic activity of the central Adriatic sea and contribute to the assessment of the tsunami hazard and risk along these coasts, that especially in the peak season form one of the most densely populated areas of the Italian peninsula with flat and large beaches and water front resorts crowded of tourists.

  17. Investigation on tsunami effects in the central Adriatic Sea during the last century – a contribution

    Directory of Open Access Journals (Sweden)

    A. Maramai

    2007-01-01

    Full Text Available In this work we present the result of a study aimed at examining the Italian earthquake sequences that occurred in the area of the central Adriatic sea with the purpose of understanding whether some of them were accompanied by tsunami effects. The motivation for this research was the update and enrichment of the Italian Tsunami Catalogue. The result was that evidence was found for two new cases of earthquake-induced tsunamis: these are the August 1916 Rimini and the October 1930 Ancona events. The bulk of the present research consisted in collecting all the available data on the earthquakes that affected the selected area in the past century and in identifying those potentially capable of generating tsunamis. During the study all the available material was gathered, which includes specific monographs and scientific papers, articles available in contemporary chronicles and in local and national newspapers. The final result of this research will improve our knowledge of the tsunamigenic activity of the central Adriatic sea and contribute to the assessment of the tsunami hazard and risk along these coasts, that especially in the peak season form one of the most densely populated areas of the Italian peninsula with flat and large beaches and water front resorts crowded of tourists.

  18. TIDE-TSUNAMI INTERACTIONS

    Directory of Open Access Journals (Sweden)

    Zygmunt Kowalik

    2006-01-01

    Full Text Available In this paper we investigate important dynamics defining tsunami enhancement in the coastal regions and related to interaction with tides. Observations and computations of the Indian Ocean Tsunami usually show amplifications of the tsunami in the near-shore regions due to water shoaling. Additionally, numerous observations depicted quite long ringing of tsunami oscillations in the coastal regions, suggesting either local resonance or the local trapping of the tsunami energy. In the real ocean, the short-period tsunami wave rides on the longer-period tides. The question is whether these two waves can be superposed linearly for the purpose of determining the resulting sea surface height (SSH or rather in the shallow water they interact nonlinearly, enhancing/reducing the total sea level and currents. Since the near–shore bathymetry is important for the run-up computation, Weisz and Winter (2005 demonstrated that the changes of depth caused by tides should not be neglected in tsunami run-up considerations. On the other hand, we hypothesize that much more significant effect of the tsunami-tide interaction should be observed through the tidal and tsunami currents. In order to test this hypothesis we apply a simple set of 1-D equations of motion and continuity to demonstrate the dynamics of tsunami and tide interaction in the vicinity of the shelf break for two coastal domains: shallow waters of an elongated inlet and narrow shelf typical for deep waters of the Gulf of Alaska.

  19. Tsunami deposits

    International Nuclear Information System (INIS)

    2013-01-01

    The NSC (the Nuclear Safety Commission of Japan) demand to survey on tsunami deposits by use of various technical methods (Dec. 2011), because tsunami deposits have useful information on tsunami activity, tsunami source etc. However, there are no guidelines on tsunami deposit survey in JAPAN. In order to prepare the guideline of tsunami deposits survey and evaluation and to develop the method of tsunami source estimation on the basis of tsunami deposits, JNES carried out the following issues; (1) organizing information of paleoseismological record and tsunami deposit by literature research, (2) field survey on tsunami deposit, and (3) designing the analysis code of sediment transport due to tsunami. As to (1), we organize the information gained about tsunami deposits in the database. As to (2), we consolidate methods for surveying and identifying tsunami deposits in the lake based on results of the field survey in Fukui Pref., carried out by JNES. In addition, as to (3), we design the experimental instrument for hydraulic experiment on sediment transport and sedimentation due to tsunamis. These results are reflected in the guideline on the tsunami deposits survey and evaluation. (author)

  20. Geological effects and implications of the 2010 tsunami along the central coast of Chile

    Science.gov (United States)

    Morton, R.A.; Gelfenbaum, G.; Buckley, M.L.; Richmond, B.M.

    2011-01-01

    Geological effects of the 2010 Chilean tsunami were quantified at five near-field sites along a 200. km segment of coast located between the two zones of predominant fault slip. Field measurements, including topography, flow depths, flow directions, scour depths, and deposit thicknesses, provide insights into the processes and morphological changes associated with tsunami inundation and return flow. The superposition of downed trees recorded multiple strong onshore and alongshore flows that arrived at different times and from different directions. The most likely explanation for the diverse directions and timing of coastal inundation combines (1) variable fault rupture and asymmetrical slip displacement of the seafloor away from the epicenter with (2) resonant amplification of coastal edge waves. Other possible contributing factors include local interaction of incoming flow and return flow and delayed wave reflection by the southern coast of Peru. Coastal embayments amplified the maximum inundation distances at two sites (2.4 and 2.6. km, respectively). Tsunami vertical erosion included scour and planation of the land surface, inundation scour around the bases of trees, and channel incision from return flow. Sheets and wedges of sand and gravel were deposited at all of the sites. Locally derived boulders up to 1. m in diameter were transported as much as 400. m inland and deposited as fields of dispersed clasts. The presence of lobate bedforms at one site indicates that at least some of the late-stage sediment transport was as bed load and not as suspended load. Most of the tsunami deposits were less than 25. cm thick. Exceptions were thick deposits near open-ocean river mouths where sediment supply was abundant. Human alterations of the land surface at most of the sites provided opportunities to examine some tsunami effects that otherwise would not have been possible, including flow histories, boulder dispersion, and vegetation controls on deposit thickness

  1. Great East Japan Earthquake Tsunami

    Science.gov (United States)

    Iijima, Y.; Minoura, K.; Hirano, S.; Yamada, T.

    2011-12-01

    The 11 March 2011, Mw 9.0 Great East Japan Earthquake, already among the most destructive earthquakes in modern history, emanated from a fault rupture that extended an estimated 500 km along the Pacific coast of Honshu. This earthquake is the fourth among five of the strongest temblors since AD 1900 and the largest in Japan since modern instrumental recordings began 130 years ago. The earthquake triggered a huge tsunami, which invaded the seaside areas of the Pacific coast of East Japan, causing devastating damages on the coast. Artificial structures were destroyed and planted forests were thoroughly eroded. Inrush of turbulent flows washed backshore areas and dunes. Coastal materials including beach sand were transported onto inland areas by going-up currents. Just after the occurrence of the tsunami, we started field investigation of measuring thickness and distribution of sediment layers by the tsunami and the inundation depth of water in Sendai plain. Ripple marks showing direction of sediment transport were the important object of observation. We used a soil auger for collecting sediments in the field, and sediment samples were submitted for analyzing grain size and interstitial water chemistry. Satellite images and aerial photographs are very useful for estimating the hydrogeological effects of tsunami inundation. We checked the correspondence of micro-topography, vegetation and sediment covering between before and after the tsunami. The most conspicuous phenomenon is the damage of pine forests planted in the purpose of preventing sand shifting. About ninety-five percent of vegetation coverage was lost during the period of rapid currents changed from first wave. The landward slopes of seawalls were mostly damaged and destroyed. Some aerial photographs leave detailed records of wave destruction just behind seawalls, which shows the occurrence of supercritical flows. The large-scale erosion of backshore behind seawalls is interpreted to have been caused by

  2. TSUNAMI SCENARIO SIMULATOR: A TOOL FOR ENSURING EFFECTIVE DISASTER MANAGEMENT AND COASTAL EVACUATION IN A MULTILANGUAGE SOCIETY

    Directory of Open Access Journals (Sweden)

    Virginia Clerveaux

    2008-01-01

    Full Text Available An emergent paradigm in disaster-risk reduction is the issue of Multilanguage societies within the context of risk information and communication. The primary mitigation measure for tsunamis is the development of effective warning systems and evacuation strategies. The scale of the earthquake, the level of maintenance of prevention structures, such as seawalls, efficiency of the information dissemination system and the residents’ willingness to evacuate, influence the impact of a tsunami disaster. Therefore, the goal of tsunami disaster reduction is concerned not only with the use of prevention infrastructures but also with encouraging residents to evacuate quickly through the provision of disaster education and the relay of disaster information in a manner comprehendible by all groups in society. The simulator combines hydrodynamic simulation of tsunamis with warning and human-response simulations for evacuation. Additionally, because of its visual 3D/GIS presentation the simulator is an effective tool for educating the public.

  3. Tsunami Simulators in Physical Modelling - Concept to Practical Solutions

    Science.gov (United States)

    Chandler, Ian; Allsop, William; Robinson, David; Rossetto, Tiziana; McGovern, David; Todd, David

    2017-04-01

    Whilst many researchers have conducted simple 'tsunami impact' studies, few engineering tools are available to assess the onshore impacts of tsunami, with no agreed methods available to predict loadings on coastal defences, buildings or related infrastructure. Most previous impact studies have relied upon unrealistic waveforms (solitary or dam-break waves and bores) rather than full-duration tsunami waves, or have used simplified models of nearshore and over-land flows. Over the last 10+ years, pneumatic Tsunami Simulators for the hydraulic laboratory have been developed into an exciting and versatile technology, allowing the forces of real-world tsunami to be reproduced and measured in a laboratory environment for the first time. These devices have been used to model generic elevated and N-wave tsunamis up to and over simple shorelines, and at example coastal defences and infrastructure. They have also reproduced full-duration tsunamis including Mercator 2004 and Tohoku 2011, both at 1:50 scale. Engineering scale models of these tsunamis have measured wave run-up on simple slopes, forces on idealised sea defences, pressures / forces on buildings, and scour at idealised buildings. This presentation will describe how these Tsunami Simulators work, demonstrate how they have generated tsunami waves longer than the facilities within which they operate, and will present research results from three generations of Tsunami Simulators. Highlights of direct importance to natural hazard modellers and coastal engineers include measurements of wave run-up levels, forces on single and multiple buildings and comparison with previous theoretical predictions. Multiple buildings have two malign effects. The density of buildings to flow area (blockage ratio) increases water depths and flow velocities in the 'streets'. But the increased building densities themselves also increase the cost of flow per unit area (both personal and monetary). The most recent study with the Tsunami

  4. Performance of coastal sea-defense infrastructure at El Jadida (Morocco against tsunami threat: lessons learned from the Japanese 11 March 2011 tsunami

    Directory of Open Access Journals (Sweden)

    R. Omira

    2013-07-01

    Full Text Available This paper seeks to investigate the effectiveness of sea-defense structures in preventing/reducing the tsunami overtopping as well as evaluating the resulting tsunami impact at El Jadida, Morocco. Different tsunami wave conditions are generated by considering various earthquake scenarios of magnitudes ranging from Mw = 8.0 to Mw = 8.6. These scenarios represent the main active earthquake faults in the SW Iberia margin and are consistent with two past events that generated tsunamis along the Atlantic coast of Morocco. The behaviour of incident tsunami waves when interacting with coastal infrastructures is analysed on the basis of numerical simulations of near-shore tsunami waves' propagation. Tsunami impact at the affected site is assessed through computing inundation and current velocity using a high-resolution digital terrain model that incorporates bathymetric, topographic and coastal structures data. Results, in terms of near-shore tsunami propagation snapshots, waves' interaction with coastal barriers, and spatial distributions of flow depths and speeds, are presented and discussed in light of what was observed during the 2011 Tohoku-oki tsunami. Predicted results show different levels of impact that different tsunami wave conditions could generate in the region. Existing coastal barriers around the El Jadida harbour succeeded in reflecting relatively small waves generated by some scenarios, but failed in preventing the overtopping caused by waves from others. Considering the scenario highly impacting the El Jadida coast, significant inundations are computed at the sandy beach and unprotected areas. The modelled dramatic tsunami impact in the region shows the need for additional tsunami standards not only for sea-defense structures but also for the coastal dwellings and houses to provide potential in-place evacuation.

  5. Tsunami hazard

    International Nuclear Information System (INIS)

    2013-01-01

    Tohoku Earthquake Tsunami on 11 March, 2011 has led the Fukushima Daiichi nuclear power plant to a serious accident, which highlighted a variety of technical issues such as a very low design tsunami height and insufficient preparations in case a tsunami exceeding the design tsunami height. Lessons such as to take measures to be able to maintain the important safety features of the facility for tsunamis exceeding design height and to implement risk management utilizing Probabilistic Safety Assessment are shown. In order to implement the safety assessment on nuclear power plants across Japan accordingly to the back-fit rule, Nuclear Regulatory Commission will promulgate/execute the New Safety Design Criteria in July 2013. JNES has positioned the 'enhancement of probabilistic tsunami hazard assessment' as highest priority issue and implemented in order to support technically the Nuclear Regulatory Authority in formulating the new Safety Design Criteria. Findings of the research had reflected in the 'Technical Review Guidelines for Assessing Design Tsunami Height based on tsunami hazards'. (author)

  6. THE EARTHQUAKE AND TSUNAMI OF 27 FEBRUARY 2010 IN CHILE – Evaluation of Source Mechanism and of Near and Far-field Tsunami Effects

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2010-01-01

    Full Text Available The great earthquake of February 27, 2010 occurred as thrust-faulting along a highly stressed coastal segment of Chile's central seismic zone - extending from about 33oS to 37oS latitude - where active, oblique subduction of the Nazca tectonic plate below South America occurs at the high rate of up to 80 mm per year. It was the 5th most powerful earthquake in recorded history and the largest in the region since the extremely destructive May 22, 1960 magnitude Mw9.5 earthquake near Valdivia. The central segment south of Valparaiso from about 34o South to 36o South had been identified as a moderate seismic gap where no major or great, shallow earthquakes had occurred in the last 120 years, with the exception of a deeper focus, inland event in 1939. The tsunami that was generated by the 2010 earthquake was highest at Robinson Crusoe Island in the Juan Fernández archipelago as well as in Talchuano, Dichato, Pelluhue and elsewhere on the Chilean mainland, causing numerous deaths and destruction. Given the 2010 earthquake’s great moment magnitude of 8.8, shallow focal depth and coastal location, it would have been expected that the resulting tsunami would have had much greater Pacific-wide, far field effects similar to those of 1960, which originated from the same active seismotectonic zone. However, comparison of the characteristics of the two events indicates substantial differences in source mechanisms, energy release, ruptures, spatial clustering and distributions of aftershocks, as well as in geometry of subduction and extent of crustal displacements on land and in the ocean. Also, the San Bautista and the Juan Fernández Islands - ridges rising from the ocean floor – as well as the O’Higgins seamount/guyot may have trapped some of the tsunami energy, thus accounting for the smaller, far field tsunami effects observed elsewhere in the Pacific. Apparently, complex, localized structural anomalies and interactions of the Nazca tectonic plate

  7. The Effects of a Linguistic Tsunami on the Languages of Aceh

    Directory of Open Access Journals (Sweden)

    Zulfadli A. Aziz

    2016-09-01

    Full Text Available The languages throughout the world are in crisis and it is estimated that 50% to 90% will have disappeared by the end of this century (Grenoble, 2012. Colonisation, nationalism, urbanisation and globalisation have resulted in a linguistic tsunami being unleashed, with a few major world languages swamping others. The rate of language loss today is unprecedented as this small number of dominant languages expands rapidly. Small minority languages are mainly in danger, but even large regional languages, such as Acehnese with millions of speakers, are unsafe. Similar to the case of a tsunami triggered by an earthquake, it is generally too late before speakers are aware of what is happening. In most cases language shift will have already progressed and irreversible before people realize it. This paper examines the early warning signs of impending language shift and what can be done for minority languages to have the best chance of survival. We draw on the local situation in Aceh, as well as other parts of the Austronesian speaking world and Australia, where the record of language loss is the worst in the world. Language shift in Australia is well-progressed; in Indonesia it is more recent. Lessons learned from places such as Australia and Taiwan have relevance for Indonesia today.

  8. Tsunami model simulation for 26 December 2004 and its effect on Koodankulam region of Tamil Nadu Coast

    Directory of Open Access Journals (Sweden)

    S Chenthamil Selvan

    2016-08-01

    Full Text Available Tsunami inundation model ‘TUNAMI-N2’ was set up for five different scenarios of earthquake (Sumatra 2004, Car Nicobar 1881, North Andaman 1941, Makran 1945 and Worst-case to assess the potential risk of tsunami along Koodankulam coast. Bathymetry and land topography were extracted from the General Bathymetric Chart of the Oceans, C-MAP and CARTOSAT to set up a four-layered nested model, where the finest grid was set up for 93 m in non-linear mode. The aim of the study was to provide the potential run-up and inundation that could occur in worst situation along the Koodankulam coast. The sensitivity analysis was also carried out to assess the effects of various fault parameters. From sensitivity analysis, it is inferred that the tsunami wave height is directly proportionate to slip amount and inversely proportionate to focal depth. The potential tsunami run-up heights were found between 1.30 and 3.54 m and inundation was between 0 and 90 m at Koodankulam and surrounding regions. But, no horizontal inundation was observed for any scenarios around the Koodankulam plant area as the region. The highest run-up heights of five models were used to evaluate the possible vulnerability of power plant for tsunami hazards.

  9. Persistence of Salinity in Tsunami Effected Coastal Aquifers In Sri Lanka: Conceptual Models and Research Needs

    Science.gov (United States)

    Illangasekare, T. H.; Obeysekera, J.; Perera, L.; Gunatilaka, A.; Dharmagunawardane, H. A.; Liyanage, J.

    2006-12-01

    In addition to widespread destruction of life and property, December 2004 Indian Ocean tsunami also caused extensive contamination of coastal aquifers across southern Asia that may have long term implications on the availability of water to a large number of people in coastal communities who rely on groundwater as the primary source of potable water. Seawater filled domestic open dug wells and also entered the aquifers via direct infiltration during the first flooding waves and later as ponded seawater infiltrated through the permeable sands that are typical of coastal aquifers. In Sri Lanka alone, it is estimated that over 40,000 drinking water wells were either destroyed or contaminated. Data collected in monitoring wells showed drastic rise in the salinity. Immediately after the tsunami, widespread pumping of wells to remove seawater was effective in some areas, but over pumping led to upconning of the saltwater interface and rising salinity. The conceptual model developed based on the initial observations assumed the existence of salinity front at the intruding saltwater from the sea at the bottom of the aquifer and a second front created from the top of the aquifer due to the saltwater infiltration from tsunami floods. Based on this model, the expectation of local and a team of scientists from USA sponsored by NSF who visited the affected areas was that the salinity should decrease with recharge from few seasonal rains associated with monsoons. It was also assumed that the intruded seawater should have vertically mixed with the fresh water in the aquifers because of both forced and free convection, thus reducing the saltwater concentrations. However, groundwater-monitoring data that have been collected during the last two years at a selected set of field sites suggests that high salinity levels are still persisting at some locations. We hypothesize that this long persistence is due to a combination of factors that were not taken into consideration in the

  10. Improving tsunami resiliency: California's Tsunami Policy Working Group

    Science.gov (United States)

    Real, Charles R.; Johnson, Laurie; Jones, Lucile M.; Ross, Stephanie L.; Kontar, Y.A.; Santiago-Fandiño, V.; Takahashi, T.

    2014-01-01

    California has established a Tsunami Policy Working Group to facilitate development of policy recommendations for tsunami hazard mitigation. The Tsunami Policy Working Group brings together government and industry specialists from diverse fields including tsunami, seismic, and flood hazards, local and regional planning, structural engineering, natural hazard policy, and coastal engineering. The group is acting on findings from two parallel efforts: The USGS SAFRR Tsunami Scenario project, a comprehensive impact analysis of a large credible tsunami originating from an M 9.1 earthquake in the Aleutian Islands Subduction Zone striking California’s coastline, and the State’s Tsunami Preparedness and Hazard Mitigation Program. The unique dual-track approach provides a comprehensive assessment of vulnerability and risk within which the policy group can identify gaps and issues in current tsunami hazard mitigation and risk reduction, make recommendations that will help eliminate these impediments, and provide advice that will assist development and implementation of effective tsunami hazard risk communication products to improve community resiliency.

  11. Tsunami risk mapping simulation for Malaysia

    Science.gov (United States)

    Teh, S.Y.; Koh, H. L.; Moh, Y.T.; De Angelis, D. L.; Jiang, J.

    2011-01-01

    The 26 December 2004 Andaman mega tsunami killed about a quarter of a million people worldwide. Since then several significant tsunamis have recurred in this region, including the most recent 25 October 2010 Mentawai tsunami. These tsunamis grimly remind us of the devastating destruction that a tsunami might inflict on the affected coastal communities. There is evidence that tsunamis of similar or higher magnitudes might occur again in the near future in this region. Of particular concern to Malaysia are tsunamigenic earthquakes occurring along the northern part of the Sunda Trench. Further, the Manila Trench in the South China Sea has been identified as another source of potential tsunamigenic earthquakes that might trigger large tsunamis. To protect coastal communities that might be affected by future tsunamis, an effective early warning system must be properly installed and maintained to provide adequate time for residents to be evacuated from risk zones. Affected communities must be prepared and educated in advance regarding tsunami risk zones, evacuation routes as well as an effective evacuation procedure that must be taken during a tsunami occurrence. For these purposes, tsunami risk zones must be identified and classified according to the levels of risk simulated. This paper presents an analysis of tsunami simulations for the South China Sea and the Andaman Sea for the purpose of developing a tsunami risk zone classification map for Malaysia based upon simulated maximum wave heights. ?? 2011 WIT Press.

  12. The effect analysis of 1741 Oshima-Oshima tsunami in the West Coast of Japan to Korea

    International Nuclear Information System (INIS)

    Kim, Minkyu; Rhee, Hyunme; Choi, Inkil

    2013-01-01

    It is very difficult to determine and assessment for tsunami hazard. For determining a tsunami risk for NPP site, a development of tsunami hazard is one of the most important. Through the tsunami hazard analysis, a tsunami return period can be determined. For the performing a tsunami hazard analysis, empirical method and numerical method should be needed. Kim et al, already developed tsunami hazard for east coast of Korea for the calculation of tsunami risk of nuclear power plant. In the case of tsunami hazard analysis, a development of tsunami catalog should be performed. In the previous research of Kim et al, the maximum wave height was assumed by the author's decision based on historical record in the annals of Chosun dynasty for evaluating the tsunami catalog. Therefore, in this study, a literature survey was performed for a quantitative measure of historical tsunami record transform to qualitative tsunami wave height for the evaluation of tsunami catalog. In this study, the 1741 tsunami was determined by using a literature review for the evaluation of tsunami hazard. The 1741 tsunami reveals a same tsunami between the historical records in Korea and Japan. The tsunami source of 1741 tsunami was not an earthquake and volcanic. Using the numerical analysis, the wave height of 1741 tsunami can be determined qualitatively

  13. The effects of the 2004 tsunami on a coastal aquifer in Sri Lanka

    DEFF Research Database (Denmark)

    Vithanage, Meththika Suharshini; Engesgaard, Peter Knudegaard; Villholth, Karen G.

    2012-01-01

    On December 26, 2004, the earthquake off the southern coast of Sumatra in the Indian Ocean generated far-reaching tsunami waves, resulting in severe disruption of the coastal aquifers in many countries of the region. The objective of this study was to examine the impact of the tsunami......) of the groundwater were carried out monthly from October 2005 to August 2007. The aquifer system and tsunami saltwater intrusion were modeled using the variable-density flow and solute transport code HST3D to understand the tsunami plume behavior and estimate the aquifer recovery time. EC values reduced as a result...... of the monsoonal rainfall following the tsunami with a decline in reduction rate during the dry season. The upper part of the saturated zone (down to 2.5 m) returned to freshwater conditions (EC tsunami, according to field observations. On the basis of model simulations...

  14. Tsunamis - General

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tsunami is a Japanese word meaning harbor wave. It is a water wave or a series of waves generated by an impulsive vertical displacement of the surface of the ocean...

  15. Coastal uplift and tsunami effects associated to the 2010 Mw8.8 Maule earthquake in Central Chile Levantamiento cosísmico e impacto del tsunami a lo largo de la costa de Chile central asociado al terremoto del Maule Mw8.8 de 2010

    Directory of Open Access Journals (Sweden)

    Gabriel Vargas

    2011-01-01

    . Destructive tsunami waves arrived also between 2.5 and 4.5 hours after the mainshock, especially along the coast of the Biobío and Arauco regions. The tsunami effects were highly variable along the coast, as a result of geomorphological and bathy-metric local conditions, besides potential complexities induced by the main shock.

  16. The 1887 earthquake and tsunami in the Ligurian Sea: analysis of coastal effects studied by numerical modeling and prototype for real-time computing

    Science.gov (United States)

    Monnier, Angélique; Gailler, Audrey; Loevenbruck, Anne; Heinrich, Philippe; Hébert, Hélène

    2017-04-01

    The February 1887 earthquake in Italy (Imperia) triggered a tsunami well observed on the French and Italian coastlines. Tsunami waves were recorded on a tide gauge in the Genoa harbour with a small, recently reappraised maximum amplitude of about 10-12 cm (crest-to-trough). The magnitude of the earthquake is still debated in the recent literature, and discussed according to available macroseismic, tectonic and tsunami data. While the tsunami waveform observed in the Genoa harbour may be well explained with a magnitude smaller than 6.5 (Hébert et al., EGU 2015), we investigate in this study whether such source models are consistent with the tsunami effects reported elsewhere along the coastline. The idea is to take the opportunity of the fine bathymetric data recently synthetized for the French Tsunami Warning Center (CENALT) to test the 1887 source parameters using refined, nested grid tsunami numerical modeling down to the harbour scale. Several source parameters are investigated to provide a series of models accounting for various magnitudes and mechanisms. This allows us to compute the tsunami effects for several coastal sites in France (Nice, Villefranche, Antibes, Mandelieu, Cannes) and to compare with observations. Meanwhile we also check the computing time of the chosen scenarios to study whether running nested grids simulation in real time can be suitable in operational context in term of computational cost for these Ligurian scenarios. This work is supported by the FP7 ASTARTE project (Assessment Strategy and Risk Reduction for Tsunamis in Europe, grant 603839 FP7) and by the French PIA TANDEM (Tsunamis in the Atlantic and English ChaNnel: Definition of the Effects through Modeling) project (grant ANR-11-RSNR-00023).

  17. Consideration of the effect for enhancing the disaster prevention awareness by visualization of the tsunami lore

    Science.gov (United States)

    Chiharu, M.

    2017-12-01

    One effective measure for enhancing the residents' disaster prevention awareness is to know the natural hazard which has occurred in the past at residence. Mie Disaster Mitigation Center had released the digital archive for promoting an understanding of disaster prevention on April 28, 2015. This archive is recording the past disaster information as digital catalog. An effective contribution to enhancement of the inhabitants' disaster prevention awareness is expected. It includes the following contents (1) The interview with disaster victim (the 1944 Tonankai Earthquake, The Ise Bay Typhoon and so on) (2) The information on "monument of Tsunami" (3) The description of disaster on the local history material (the school history books, municipal history books, and so on). These contents are being dropped on a map and it is being shown clearly geographically. For all age groups, this way makes it easy to understand that the past disaster information relates to their residence address.

  18. The catastrophic final flooding of Doggerland by the Storegga Slide tsunami

    Directory of Open Access Journals (Sweden)

    Bernhard Weninger

    2008-12-01

    Full Text Available Around 8200 calBP, large parts of the now submerged North Sea continental shelf (‘Doggerland’ were catastrophically flooded by the Storegga Slide tsunami, one of the largest tsunamis known for the Holocene, which was generated on the Norwegian coastal margin by a submarine landslide. In the present paper, we derive a precise calendric date for the Storegga Slide tsunami, use this date for reconstruction of contemporary coastlines in the North Sea in relation to rapidly rising sea-levels, and discuss the potential effects of the tsunami on the contemporaneous Mesolithic population. One main result of this study is an unexpectedly high tsunami impact assigned to the western regions of Jutland.

  19. A Sensitivity Study for an Evaluation of Input Parameters Effect on a Preliminary Probabilistic Tsunami Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Hyun-Me; Kim, Min Kyu; Choi, In-Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sheen, Dong-Hoon [Chonnam National University, Gwangju (Korea, Republic of)

    2014-10-15

    The tsunami hazard analysis has been based on the seismic hazard analysis. The seismic hazard analysis has been performed by using the deterministic method and the probabilistic method. To consider the uncertainties in hazard analysis, the probabilistic method has been regarded as attractive approach. The various parameters and their weight are considered by using the logic tree approach in the probabilistic method. The uncertainties of parameters should be suggested by analyzing the sensitivity because the various parameters are used in the hazard analysis. To apply the probabilistic tsunami hazard analysis, the preliminary study for the Ulchin NPP site had been performed. The information on the fault sources which was published by the Atomic Energy Society of Japan (AESJ) had been used in the preliminary study. The tsunami propagation was simulated by using the TSUNAMI{sub 1}.0 which was developed by Japan Nuclear Energy Safety Organization (JNES). The wave parameters have been estimated from the result of tsunami simulation. In this study, the sensitivity analysis for the fault sources which were selected in the previous studies has been performed. To analyze the effect of the parameters, the sensitivity analysis for the E3 fault source which was published by AESJ was performed. The effect of the recurrence interval, the potential maximum magnitude, and the beta were suggested by the sensitivity analysis results. Level of annual exceedance probability has been affected by the recurrence interval.. Wave heights have been influenced by the potential maximum magnitude and the beta. In the future, the sensitivity analysis for the all fault sources in the western part of Japan which were published AESJ would be performed.

  20. TSUNAMI INFORMATION SOURCES - PART 4

    Directory of Open Access Journals (Sweden)

    Robert L. Wiegel

    2006-01-01

    Full Text Available I have expanded substantially my list of information sources on: tsunami generation (sources, impulsive mechanisms, propagation, effects of nearshore bathymetry, and wave run-up on shore - including physical (hydraulic modeling and numerical modeling. This expanded list includes the subjects of field investigations of tsunamis soon after an event; damage effects in harbors on boats, ships, and facilities; tsunami wave-induced forces; damage by tsunami waves to structures on shore; scour/erosion; hazard mitigation; land use planning; zoning; siting, design, construction and maintenance of structures and infrastructure; public awareness and education; distant and local sources; tsunami warning and evacuation programs; tsunami probability and risk criteria. A few references are on "sedimentary signatures" useful in the study of historic and prehistoric tsunamis (paleo-tsunamis. In addition to references specifically on tsunamis, there are references on long water wave and solitary wave theory; wave refraction, diffraction, and reflection; shelf and basin free and forced oscillations (bay and harbor response; seiches; edge waves; Mach- reflection of long water waves ("stem waves"; wave run-up on shore; energy dissipation. All are important in understanding tsunamis, and in hazard mitigation. References are given on subaerial and submarine landslide (and rockfall generated waves in reservoirs, fjords, bays, and ocean; volcano explosive eruptions/collapse; underwater and surface explosions; asteroid impact. This report is in two parts: 1 Bibliographies, books and pamphlets, catalogs, collections, journals and newsletters, maps, organizations, proceedings, videos and photos; 2 Articles, papers, reports listed alphabetically by author.Many papers on the Indian Ocean (Sumatra tsunami of 26 December 2004, were given at the 22nd IUGG International Tsunami Symposium, Chania, Crete, 27-29 June 2005, but had not been published at the date of this report. For

  1. Alternative tsunami models

    Energy Technology Data Exchange (ETDEWEB)

    Tan, A; Lyatskaya, I [Department of Physics, Alabama A and M University, Normal, AL 35762 (United States)], E-mail: arjun.tan@aamu.edu

    2009-01-15

    The interesting papers by Margaritondo (2005 Eur. J. Phys. 26 401) and by Helene and Yamashita (2006 Eur. J. Phys. 27 855) analysed the great Indian Ocean tsunami of 2004 using a simple one-dimensional canal wave model, which was appropriate for undergraduate students in physics and related fields of discipline. In this paper, two additional, easily understandable models, suitable for the same level of readership, are proposed: one, a two-dimensional model in flat space, and two, the same on a spherical surface. The models are used to study the tsunami produced by the central Kuril earthquake of November 2006. It is shown that the two alternative models, especially the latter one, give better representations of the wave amplitude, especially at far-flung locations. The latter model further demonstrates the enhancing effect on the amplitude due to the curvature of the Earth for far-reaching tsunami propagation.

  2. Physical Observations of the Tsunami during the September 8th 2017 Tehuantepec, Mexico Earthquake

    Science.gov (United States)

    Ramirez-Herrera, M. T.; Corona, N.; Ruiz-Angulo, A.; Melgar, D.; Zavala-Hidalgo, J.

    2017-12-01

    The September 8th 2017, Mw8.2 earthquake offshore Chiapas, Mexico, is the largest earthquake recorded history in Chiapas since 1902. It caused damage in the states of Oaxaca, Chiapas and Tabasco; it had more than 100 fatalities, over 1.5 million people were affected, and 41,000 homes were damaged in the state of Chiapas alone. This earthquake, a deep intraplate event on a normal fault on the oceanic subducting plate, generated a tsunami recorded at several tide gauge stations in Mexico and on the Pacific Ocean. Here we report the physical effects of the tsunami on the Chiapas coast and analyze the societal implications of this tsunami on the basis of our field observations. Tide gauge data indicate 11.3 and 8.2 cm of coastal subsidence at Salina Cruz and Puerto Chiapas stations. The associated tsunami waves were recorded first at Salina Cruz tide gauge station at 5:13 (GMT). We covered ground observations along 41 km of the coast of Chiapas, encompassing the sites with the highest projected wave heights based on the preliminary tsunami model (maximum tsunami amplitudes between -94.5 and -93.0 W). Runup and inundation distances were measured with an RTK GPS and using a Sokkia B40 level along 8 sites. We corrected runup data with estimated astronomical tide levels at the time of the tsunami. The tsunami occurred at low tide. The maximum runup was 3 m at Boca del Cielo, and maximum inundation distance was 190 m in Puerto Arista, corresponding to the coast directly opposite the epicenter and in the central sector of the Gulf of Tehuantepec. In general, our field data agree with the predicted results from the preliminary tsunami model. Tsunami scour and erosion was evident on the Chiapas coast. Tsunami deposits, mainly sand, reached up to 32 cm thickness thinning landwards up to 172 m distance. Even though the Mexican tsunami early warning system (CAT) issued several warnings, the tsunami arrival struck the Chiapas coast prior to the arrival of official warnings to the

  3. Effects of transient water mass redistribution associated with a tsunami wave on Earth’s pole path

    Directory of Open Access Journals (Sweden)

    G. Soldati

    2007-06-01

    Full Text Available We have quantified the effects of a water mass redistribution associated with the propagation of a tsunami wave on the Earth’s pole path and on the Length-Of-Day (LOD and applied our modeling results to the tsunami following the 2004 giant Sumatra earthquake. We compared the result of our simulations on the instantaneous rotational axis variations with the preliminary instrumental evidence on the pole path perturbation (which has not been confirmed registered just after the occurrence of the earthquake. The detected perturbation in the pole path showed a step-like discontinuity that cannot be attributed to the effect of a seismic dislocation. Our results show that the tsunami induced instantaneous rotational pole perturbation is indeed characterized by a step-like discontinuity compatible with the observations but its magnitude is almost one hundred times smaller than the detected one. The LOD variation induced by the water mass redistribution turns out to be not significant because the total effect is smaller than current measurements uncertainties.

  4. Effects of heavy elements in the sludge conveyed by the 2011 tsunami on human health and the recovery of the marine ecosystem

    International Nuclear Information System (INIS)

    Sera, K.; Goto, S.; Takahashi, C.; Saitoh, Y.; Yamauchi, K.

    2014-01-01

    The 2011 tsunami not only caused significant damage, but also drew a large amount of sludge from the bottom of the sea. This may have exerted negative effects on human health. In order to evaluate changes in elemental concentrations in the body before and after the tsunami, we collected long hairs from victims of the disaster. Furthermore, sludge and plant samples were collected from three prefectures. The sludge samples on land were found to be still contaminated with heavy elements. The concentrations of heavy elements in the soils and plants gathered from the same tidelands decreased after one year. In hair analyses, no clear changes have been observed in heavy element concentrations measured before and after the tsunami. However, the concentration of some essential elements, such as Cu, Ca and Mg, showed a decreasing tendency after the tsunami

  5. Integrated Historical Tsunami Event and Deposit Database

    Science.gov (United States)

    Dunbar, P. K.; McCullough, H. L.

    2010-12-01

    The National Geophysical Data Center (NGDC) provides integrated access to historical tsunami event, deposit, and proxy data. The NGDC tsunami archive initially listed tsunami sources and locations with observed tsunami effects. Tsunami frequency and intensity are important for understanding tsunami hazards. Unfortunately, tsunami recurrence intervals often exceed the historic record. As a result, NGDC expanded the archive to include the Global Tsunami Deposits Database (GTD_DB). Tsunami deposits are the physical evidence left behind when a tsunami impacts a shoreline or affects submarine sediments. Proxies include co-seismic subsidence, turbidite deposits, changes in biota following an influx of marine water in a freshwater environment, etc. By adding past tsunami data inferred from the geologic record, the GTD_DB extends the record of tsunamis backward in time. Although the best methods for identifying tsunami deposits and proxies in the geologic record remain under discussion, developing an overall picture of where tsunamis have affected coasts, calculating recurrence intervals, and approximating runup height and inundation distance provides a better estimate of a region’s true tsunami hazard. Tsunami deposit and proxy descriptions in the GTD_DB were compiled from published data found in journal articles, conference proceedings, theses, books, conference abstracts, posters, web sites, etc. The database now includes over 1,200 descriptions compiled from over 1,100 citations. Each record in the GTD_DB is linked to its bibliographic citation where more information on the deposit can be found. The GTD_DB includes data for over 50 variables such as: event description (e.g., 2010 Chile Tsunami), geologic time period, year, deposit location name, latitude, longitude, country, associated body of water, setting during the event (e.g., beach, lake, river, deep sea), upper and lower contacts, underlying and overlying material, etc. If known, the tsunami source mechanism

  6. Evolution of tsunami warning systems and products.

    Science.gov (United States)

    Bernard, Eddie; Titov, Vasily

    2015-10-28

    Each year, about 60 000 people and $4 billion (US$) in assets are exposed to the global tsunami hazard. Accurate and reliable tsunami warning systems have been shown to provide a significant defence for this flooding hazard. However, the evolution of warning systems has been influenced by two processes: deadly tsunamis and available technology. In this paper, we explore the evolution of science and technology used in tsunami warning systems, the evolution of their products using warning technologies, and offer suggestions for a new generation of warning products, aimed at the flooding nature of the hazard, to reduce future tsunami impacts on society. We conclude that coastal communities would be well served by receiving three standardized, accurate, real-time tsunami warning products, namely (i) tsunami energy estimate, (ii) flooding maps and (iii) tsunami-induced harbour current maps to minimize the impact of tsunamis. Such information would arm communities with vital flooding guidance for evacuations and port operations. The advantage of global standardized flooding products delivered in a common format is efficiency and accuracy, which leads to effectiveness in promoting tsunami resilience at the community level. © 2015 The Authors.

  7. Evolution of tsunami warning systems and products

    Science.gov (United States)

    Bernard, Eddie; Titov, Vasily

    2015-01-01

    Each year, about 60 000 people and $4 billion (US$) in assets are exposed to the global tsunami hazard. Accurate and reliable tsunami warning systems have been shown to provide a significant defence for this flooding hazard. However, the evolution of warning systems has been influenced by two processes: deadly tsunamis and available technology. In this paper, we explore the evolution of science and technology used in tsunami warning systems, the evolution of their products using warning technologies, and offer suggestions for a new generation of warning products, aimed at the flooding nature of the hazard, to reduce future tsunami impacts on society. We conclude that coastal communities would be well served by receiving three standardized, accurate, real-time tsunami warning products, namely (i) tsunami energy estimate, (ii) flooding maps and (iii) tsunami-induced harbour current maps to minimize the impact of tsunamis. Such information would arm communities with vital flooding guidance for evacuations and port operations. The advantage of global standardized flooding products delivered in a common format is efficiency and accuracy, which leads to effectiveness in promoting tsunami resilience at the community level. PMID:26392620

  8. A tsunami PSA methodology and application for NPP site in Korea

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Choi, In-Kil

    2012-01-01

    Highlights: ► A methodology of tsunami PSA was developed in this study. ► Tsunami return period was evaluated by empirical method using historical tsunami record and tidal gauge record. ► Procedure of tsunami fragility analysis was established and target equipments and structures for investigation of tsunami fragility assessment were selected. ► A sample fragility calculation was performed for the equipment in Nuclear Power Plant. ► Accident sequence of tsunami event is developed by according to the tsunami run-up and draw down, and tsunami induced core damage frequency (CDF) is determined. - Abstract: A methodology of tsunami PSA was developed in this study. A tsunami PSA consists of tsunami hazard analysis, tsunami fragility analysis and system analysis. In the case of tsunami hazard analysis, evaluation of tsunami return period is a major task. For the evaluation of tsunami return period, numerical analysis and empirical method can be applied. In this study, tsunami return period was evaluated by empirical method using historical tsunami record and tidal gauge record. For the performing a tsunami fragility analysis, procedure of tsunami fragility analysis was established and target equipments and structures for investigation of tsunami fragility assessment were selected. A sample fragility calculation was performed for the equipment in Nuclear Power Plant. In the case of system analysis, accident sequence of tsunami event is developed by according to the tsunami run-up and draw down, and tsunami induced core damage frequency (CDF) is determined. For the application to the real Nuclear Power Plant, the Ulchin 56 NPP which located in east coast of Korean peninsula was selected. Through this study, whole tsunami PSA working procedure was established and example calculation was performed for one of real Nuclear Power Plant in Korea. But for more accurate tsunami PSA result, there are many researches needed for evaluation of hydrodynamic force, effect of

  9. Tsunami Data and Scientific Data Diplomacy

    Science.gov (United States)

    Arcos, N. P.; Dunbar, P. K.; Gusiakov, V. K.; Kong, L. S. L.; Aliaga, B.; Yamamoto, M.; Stroker, K. J.

    2016-12-01

    Free and open access to data and information fosters scientific progress and can build bridges between nations even when political relationships are strained. Data and information held by one stakeholder may be vital for promoting research of another. As an emerging field of inquiry, data diplomacy explores how data-sharing helps create and support positive relationships between countries to enable the use of data for societal and humanitarian benefit. Tsunami has arguably been the only natural hazard that has been addressed so effectively at an international scale and illustrates the success of scientific data diplomacy. Tsunami mitigation requires international scientific cooperation in both tsunami science and technology development. This requires not only international agreements, but working-level relationships between scientists from countries that may have different political and economic policies. For example, following the Pacific wide tsunami of 1960 that killed two thousand people in Chile and then, up to a day later, hundreds in Hawaii, Japan, and the Philippines; delegates from twelve countries met to discuss and draft the requirements for an international tsunami warning system. The Pacific Tsunami Warning System led to the development of local, regional, and global tsunami databases and catalogs. For example, scientists at NOAA/NCEI and the Tsunami Laboratory/Russian Academy of Sciences have collaborated on their tsunami catalogs that are now routinely accessed by scientists and the public around the world. These data support decision-making during tsunami events, are used in developing inundation and evacuation maps, and hazard assessments. This presentation will include additional examples of agreements for data-sharing between countries, as well as challenges in standardization and consistency among the tsunami research community. Tsunami data and scientific data diplomacy have ultimately improved understanding of tsunami and associated impacts.

  10. Effective and persistent changes in household energy-saving behaviors: Evidence from post-tsunami Japan

    International Nuclear Information System (INIS)

    Fujimi, Toshio; Kajitani, Yoshio; Chang, Stephanie E.

    2016-01-01

    Highlights: • Some households’ adaptations to electricity shortage can be new efficient habits. • The electricity shortage in Japan was used as a natural experiment. • Some behaviors contributed to 2–4% electricity savings and persisted for two years. • Behaviors requiring frequency and discomfort cannot be effective or persistent. • Lowering the electricity-usage level of appliances might be a promising behavior. - Abstract: This paper focuses on households’ development of new energy-efficient habits as demonstrated in the context of a major electricity shortfall event. Energy conservation policies should encourage households to take measures that are actually effective in reducing energy consumption and that can be sustained over long periods of time. Few studies, however, have empirically examined what types of energy-saving measures are actually effective and persistent. The electricity shortages following the 2011 Great East Japan earthquake, tsunami, and nuclear disaster provided an opportunity to examine this question. A web survey of households in Japan was implemented to obtain data on metered electricity use in the summers of 2010–2013, household behaviors for electricity savings, and household socioeconomic attributes. Regression analysis was conducted to explain the effectiveness and persistence of energy saving behaviors. Results indicate that most households took several electricity-saving measures after the disaster to adapt to the electricity shortage. Certain types of measures led to 2–4% savings in electricity consumption (per measure) and persisted for two years. The effective and persistent electricity-saving measures tended to be those that did not require either frequent efforts or considerable discomfort. Findings suggest that electricity-saving behaviors requiring infrequent effort and little discomfort can become engrained as new habits or lifestyles. In particular, one promising measure may be to lower the electricity

  11. Effect of dynamical phase on the resonant interaction among tsunami edge wave modes

    Science.gov (United States)

    Geist, Eric L.

    2018-01-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ1 + θ2 − θ3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  12. Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes

    Science.gov (United States)

    Geist, Eric L.

    2018-02-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  13. What Causes Tsunamis?

    Science.gov (United States)

    Mogil, H. Michael

    2005-01-01

    On December 26, 2004, a disastrous tsunami struck many parts of South Asia. The scope of this disaster has resulted in an outpouring of aid throughout the world and brought attention to the science of tsunamis. "Tsunami" means "harbor wave" in Japanese, and the Japanese have a long history of tsunamis. The word…

  14. Evaluation of tsunami risk in the Lesser Antilles

    Directory of Open Access Journals (Sweden)

    N. Zahibo

    2001-01-01

    Full Text Available The main goal of this study is to give the preliminary estimates of the tsunami risks for the Lesser Antilles. We investigated the available data of the tsunamis in the French West Indies using the historical data and catalogue of the tsunamis in the Lesser Antilles. In total, twenty-four (24 tsunamis were recorded in this area for last 400 years; sixteen (16 events of the seismic origin, five (5 events of volcanic origin and three (3 events of unknown source. Most of the tsunamigenic earthquakes (13 occurred in the Caribbean, and three tsunamis were generated during far away earthquakes (near the coasts of Portugal and Costa Rica. The estimates of tsunami risk are based on a preliminary analysis of the seismicity of the Caribbean area and the historical data of tsunamis. In particular, we investigate the occurrence of historical extreme runup tsunami data on Guadeloupe, and these data are revised after a survey in Guadeloupe.

  15. Effect of coseismic and postseismic deformation on homogeneous and layered half-space and spherical analysis: Model simulation of the 2006 Java, Indonesia, tsunami earthquake

    Science.gov (United States)

    Gunawan, Endra; Meilano, Irwan; Hanifa, Nuraini Rahma; Widiyantoro, Sri

    2017-12-01

    We simulate surface displacements calculated on homogeneous and layered half-space and spherical models as applied to the coseismic and postseismic (afterslip and viscoelastic relaxation) of the 2006 Java tsunami earthquake. Our analysis of coseismic and afterslip deformation suggests that the homogeneous half-space model generates a much broader displacement effect than the layered half-space and spherical models. Also, though the result for surface displacements is similar for the layered half-space and spherical models, noticeable displacements still occurred on top of the coseismic fault patches. Our displacement result in afterslip modeling suggests that significant displacements occurred on top of the main afterslip fault patches, differing from the viscoelastic relaxation model, which has displacements in the front region of coseismic fault patches. We propose this characteristic as one of the important features differentiating a postseismic deformation signal from afterslip and viscoelastic relaxation detected by geodetic data.

  16. What happened at Fukushima Daiichi Nuclear Power Plants. Verification of effects of earthquake and resulting tsunami

    International Nuclear Information System (INIS)

    Yamazaki, Tatsuhiro

    2012-01-01

    At 14:46 on March 11, 2011, the Tohoku District-off the Pacific Ocean Earthquake occurred. The magnitude of this earthquake was 9.0, the largest in Japan's recorded history, and afterwards enormous tsunami struck the Pacific coast of Tohoku District. This great earthquake and resulting tsunami struck the Fukushima Daiichi Nuclear Power Plants (NPPs) of Tokyo Electric Power Co. (TEPCO), whose cooling function was lost and suffered a severe nuclear accident. This article described the mechanism and safety measure of BWR type NPPs and verified how the great earthquake and resulting tsunami affected NPPs. Progression of the accident at Fukushima Daiichi NPPs was outlined. Damage by the earthquake could not be fully inspected but might not be significant to safety systems. However, the earthquake of longer duration time as much as about 250 sec caused failure of breaker or lightening arrester and also damage on electric facility such as transmission line insulator. Tsunami or inundation height was as high as O.P. (Onahama Pile) +11.5-15.5 m for Unit 1-4 reactor area while designed as O.P. +5.7 m, which caused blackout (power outage) and a reactor core meltdown at Fukushima Daiichi NPPs. (T. Tanaka)

  17. The Tsunami's CSR Effect: MNEs and Philanthropic Responses to the Disaster

    NARCIS (Netherlands)

    Whiteman, G.; Muller, A.R.; van der Voort, J.; van Wijk, J.; Meijs, L.; Pique, C.

    2005-01-01

    'This paper contributes to the literature on CSR and International Business by linking firm internationalization to corporate philanthropy. Considering the 2004 Tsunami disaster as a highly relevant case of an international societal issue, we analyze the characteristics of the corporate response to

  18. Developing fragility functions for aquaculture rafts and eelgrass in the case of the 2011 Great East Japan tsunami

    Directory of Open Access Journals (Sweden)

    A. Suppasri

    2018-01-01

    Full Text Available Since the two devastating tsunamis in 2004 (Indian Ocean and 2011 (Great East Japan, new findings have emerged on the relationship between tsunami characteristics and damage in terms of fragility functions. Human loss and damage to buildings and infrastructures are the primary target of recovery and reconstruction; thus, such relationships for offshore properties and marine ecosystems remain unclear. To overcome this lack of knowledge, this study used the available data from two possible target areas (Mangokuura Lake and Matsushima Bay from the 2011 Japan tsunami. This study has three main components: (1 reproduction of the 2011 tsunami, (2 damage investigation, and (3 fragility function development. First, the source models of the 2011 tsunami were verified and adjusted to reproduce the tsunami characteristics in the target areas. Second, the damage ratio (complete damage of the aquaculture raft and eelgrass was investigated using satellite images taken before and after the 2011 tsunami through visual inspection and binarization. Third, the tsunami fragility functions were developed using the relationship between the simulated tsunami characteristics and the estimated damage ratio. Based on the statistical analysis results, fragility functions were developed for Mangokuura Lake, and the flow velocity was the main contributor to the damage instead of the wave amplitude. For example, the damage ratio above 0.9 was found to be equal to the maximum flow velocities of 1.3 m s−1 (aquaculture raft and 3.0 m s−1 (eelgrass. This finding is consistent with the previously proposed damage criterion of 1 m s−1 for the aquaculture raft. This study is the first step in the development of damage assessment and planning for marine products and environmental factors to mitigate the effects of future tsunamis.

  19. Developing fragility functions for aquaculture rafts and eelgrass in the case of the 2011 Great East Japan tsunami

    Science.gov (United States)

    Suppasri, Anawat; Fukui, Kentaro; Yamashita, Kei; Leelawat, Natt; Ohira, Hiroyuki; Imamura, Fumihiko

    2018-01-01

    Since the two devastating tsunamis in 2004 (Indian Ocean) and 2011 (Great East Japan), new findings have emerged on the relationship between tsunami characteristics and damage in terms of fragility functions. Human loss and damage to buildings and infrastructures are the primary target of recovery and reconstruction; thus, such relationships for offshore properties and marine ecosystems remain unclear. To overcome this lack of knowledge, this study used the available data from two possible target areas (Mangokuura Lake and Matsushima Bay) from the 2011 Japan tsunami. This study has three main components: (1) reproduction of the 2011 tsunami, (2) damage investigation, and (3) fragility function development. First, the source models of the 2011 tsunami were verified and adjusted to reproduce the tsunami characteristics in the target areas. Second, the damage ratio (complete damage) of the aquaculture raft and eelgrass was investigated using satellite images taken before and after the 2011 tsunami through visual inspection and binarization. Third, the tsunami fragility functions were developed using the relationship between the simulated tsunami characteristics and the estimated damage ratio. Based on the statistical analysis results, fragility functions were developed for Mangokuura Lake, and the flow velocity was the main contributor to the damage instead of the wave amplitude. For example, the damage ratio above 0.9 was found to be equal to the maximum flow velocities of 1.3 m s-1 (aquaculture raft) and 3.0 m s-1 (eelgrass). This finding is consistent with the previously proposed damage criterion of 1 m s-1 for the aquaculture raft. This study is the first step in the development of damage assessment and planning for marine products and environmental factors to mitigate the effects of future tsunamis.

  20. Tsunami geology in paleoseismology

    Science.gov (United States)

    Yuichi Nishimura,; Jaffe, Bruce E.

    2015-01-01

    The 2004 Indian Ocean and 2011 Tohoku-oki disasters dramatically demonstrated the destructiveness and deadliness of tsunamis. For the assessment of future risk posed by tsunamis it is necessary to understand past tsunami events. Recent work on tsunami deposits has provided new information on paleotsunami events, including their recurrence interval and the size of the tsunamis (e.g. [187–189]). Tsunamis are observed not only on the margin of oceans but also in lakes. The majority of tsunamis are generated by earthquakes, but other events that displace water such as landslides and volcanic eruptions can also generate tsunamis. These non-earthquake tsunamis occur less frequently than earthquake tsunamis; it is, therefore, very important to find and study geologic evidence for past eruption and submarine landslide triggered tsunami events, as their rare occurrence may lead to risks being underestimated. Geologic investigations of tsunamis have historically relied on earthquake geology. Geophysicists estimate the parameters of vertical coseismic displacement that tsunami modelers use as a tsunami's initial condition. The modelers then let the simulated tsunami run ashore. This approach suffers from the relationship between the earthquake and seafloor displacement, the pertinent parameter in tsunami generation, being equivocal. In recent years, geologic investigations of tsunamis have added sedimentology and micropaleontology, which focus on identifying and interpreting depositional and erosional features of tsunamis. For example, coastal sediment may contain deposits that provide important information on past tsunami events [190, 191]. In some cases, a tsunami is recorded by a single sand layer. Elsewhere, tsunami deposits can consist of complex layers of mud, sand, and boulders, containing abundant stratigraphic evidence for sediment reworking and redeposition. These onshore sediments are geologic evidence for tsunamis and are called ‘tsunami deposits’ (Figs. 26

  1. Stand-alone tsunami alarm equipment

    Science.gov (United States)

    Katsumata, Akio; Hayashi, Yutaka; Miyaoka, Kazuki; Tsushima, Hiroaki; Baba, Toshitaka; Catalán, Patricio A.; Zelaya, Cecilia; Riquelme Vasquez, Felipe; Sanchez-Olavarria, Rodrigo; Barrientos, Sergio

    2017-05-01

    One of the quickest means of tsunami evacuation is transfer to higher ground soon after strong and long ground shaking. Ground shaking itself is a good initiator of the evacuation from disastrous tsunami. Longer period seismic waves are considered to be more correlated with the earthquake magnitude. We investigated the possible application of this to tsunami hazard alarm using single-site ground motion observation. Information from the mass media is sometimes unavailable due to power failure soon after a large earthquake. Even when an official alarm is available, multiple information sources of tsunami alert would help people become aware of the coming risk of a tsunami. Thus, a device that indicates risk of a tsunami without requiring other data would be helpful to those who should evacuate. Since the sensitivity of a low-cost MEMS (microelectromechanical systems) accelerometer is sufficient for this purpose, tsunami alarm equipment for home use may be easily realized. Amplitude of long-period (20 s cutoff) displacement was proposed as the threshold for the alarm based on empirical relationships among magnitude, tsunami height, hypocentral distance, and peak ground displacement of seismic waves. Application of this method to recent major earthquakes indicated that such equipment could effectively alert people to the possibility of tsunami.

  2. Using GPS to Detect Imminent Tsunamis

    Science.gov (United States)

    Song, Y. Tony

    2009-01-01

    A promising method of detecting imminent tsunamis and estimating their destructive potential involves the use of Global Positioning System (GPS) data in addition to seismic data. Application of the method is expected to increase the reliability of global tsunami-warning systems, making it possible to save lives while reducing the incidence of false alarms. Tsunamis kill people every year. The 2004 Indian Ocean tsunami killed about 230,000 people. The magnitude of an earthquake is not always a reliable indication of the destructive potential of a tsunami. The 2004 Indian Ocean quake generated a huge tsunami, while the 2005 Nias (Indonesia) quake did not, even though both were initially estimated to be of the similar magnitude. Between 2005 and 2007, five false tsunami alarms were issued worldwide. Such alarms result in negative societal and economic effects. GPS stations can detect ground motions of earthquakes in real time, as frequently as every few seconds. In the present method, the epicenter of an earthquake is located by use of data from seismometers, then data from coastal GPS stations near the epicenter are used to infer sea-floor displacements that precede a tsunami. The displacement data are used in conjunction with local topographical data and an advanced theory to quantify the destructive potential of a tsunami on a new tsunami scale, based on the GPS-derived tsunami energy, much like the Richter Scale used for earthquakes. An important element of the derivation of the advanced theory was recognition that horizontal sea-floor motions contribute much more to generation of tsunamis than previously believed. The method produces a reliable estimate of the destructive potential of a tsunami within minutes typically, well before the tsunami reaches coastal areas. The viability of the method was demonstrated in computational tests in which the method yielded accurate representations of three historical tsunamis for which well-documented ground

  3. National Geophysical Data Center Tsunami Data Archive

    Science.gov (United States)

    Stroker, K. J.; Dunbar, P. K.; Brocko, R.

    2008-12-01

    NOAA's National Geophysical Data Center (NGDC) and co-located World Data Center for Geophysics and Marine Geology long-term tsunami data archive provides data and derived products essential for tsunami hazard assessment, forecast and warning, inundation modeling, preparedness, mitigation, education, and research. As a result of NOAA's efforts to strengthen its tsunami activities, the long-term tsunami data archive has grown from less than 5 gigabyte in 2004 to more than 2 terabytes in 2008. The types of data archived for tsunami research and operation activities have also expanded in fulfillment of the P.L. 109-424. The archive now consists of: global historical tsunami, significant earthquake and significant volcanic eruptions database; global tsunami deposits and proxies database; reference database; damage photos; coastal water-level data (i.e. digital tide gauge data and marigrams on microfiche); bottom pressure recorder (BPR) data as collected by Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys. The tsunami data archive comes from a wide variety of data providers and sources. These include the NOAA Tsunami Warning Centers, NOAA National Data Buoy Center, NOAA National Ocean Service, IOC/NOAA International Tsunami Information Center, NOAA Pacific Marine Environmental Laboratory, U.S. Geological Survey, tsunami catalogs, reconnaissance reports, journal articles, newspaper articles, internet web pages, and email. NGDC has been active in the management of some of these data for more than 50 years while other data management efforts are more recent. These data are openly available, either directly on-line or by contacting NGDC. All of the NGDC tsunami and related databases are stored in a relational database management system. These data are accessible over the Web as tables, reports, and interactive maps. The maps provide integrated web-based GIS access to individual GIS layers including tsunami sources, tsunami effects, significant earthquakes

  4. The 8 September 2017 Tsunami Triggered by the M w 8.2 Intraplate Earthquake, Chiapas, Mexico

    Science.gov (United States)

    Ramírez-Herrera, María Teresa; Corona, Néstor; Ruiz-Angulo, Angel; Melgar, Diego; Zavala-Hidalgo, Jorge

    2018-01-01

    The 8 September 2017, M w 8.2 earthquake offshore Chiapas, Mexico, is the largest earthquake in recorded history in Chiapas since 1902. It caused damage in the states of Oaxaca, Chiapas and Tabasco, including more than 100 fatalities, over 1.5 million people were affected, and 41,000 homes were damaged in the state of Chiapas alone. This earthquake, an intraplate event on a normal fault on the oceanic subducting plate, generated a tsunami recorded at several tide gauge stations in Mexico and on the Pacific Ocean. Here, we report the physical effects of the tsunami on the Chiapas coast and analyze the societal implications of this tsunami on the basis of our post-tsunami field survey. The associated tsunami waves were recorded first at Huatulco tide gauge station at 5:04 (GMT) 12 min after the earthquake. We covered ground observations along 41 km of the coast of Chiapas, encompassing the sites with the highest projected wave heights based on our preliminary tsunami model (maximum tsunami amplitudes between 94.5° and 93.0°W). Runup and inundation distances were measured along eight sites. The tsunami occurred at low tide. The maximum runup was 3 m at Boca del Cielo, and maximum inundation distance was 190 m in Puerto Arista, corresponding to the coast in front of the epicenter and in the central sector of the Gulf of Tehuantepec. Tsunami scour and erosion was evident along the Chiapas coast. Tsunami deposits, mainly sand, reached up to 32 cm thickness thinning landward up to 172 m distance.

  5. Seismic and tsunami safety margin assessment

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear Regulation Authority is going to establish new seismic and tsunami safety guidelines to increase the safety of NPPs. The main purpose of this research is testing structures/components important to safety and tsunami resistant structures/components, and evaluating the capacity of them against earthquake and tsunami. Those capacity data will be utilized for the seismic and tsunami back-fit review based on the new seismic and tsunami safety guidelines. The summary of the program in 2012 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. PWR emergency diesel generator partial-model seismic capacity tests have been conducted and quantitative seismic capacities have been evaluated. 2. Seismic capacity evaluation of switching-station electric equipment. Existing seismic test data investigation, specification survey and seismic response analyses have been conducted. 3. Tsunami capacity evaluation of anti-inundation measure facilities. Tsunami pressure test have been conducted utilizing a small breakwater model and evaluated basic characteristics of tsunami pressure against seawall structure. (author)

  6. Hydrophysical manifestations of the Indian ocean tsunami

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Murthy, T.V.R.; Rao, B.P.

    CRV Sagar Sukthi during 3-10 January 2005, to study the impact of tsunami on temperature, salinity and currents in the coastal waters off Visakhapatnam coast. The effect of the tsunami waves on internal waves, acoustic losses and propagation are also...

  7. Modeling the 16 September 2015 Chile tsunami source with the inversion of deep-ocean tsunami records by means of the r - solution method

    Science.gov (United States)

    Voronina, Tatyana; Romanenko, Alexey; Loskutov, Artem

    2017-04-01

    The key point in the state-of-the-art in the tsunami forecasting is constructing a reliable tsunami source. In this study, we present an application of the original numerical inversion technique to modeling the tsunami sources of the 16 September 2015 Chile tsunami. The problem of recovering a tsunami source from remote measurements of the incoming wave in the deep-water tsunameters is considered as an inverse problem of mathematical physics in the class of ill-posed problems. This approach is based on the least squares and the truncated singular value decomposition techniques. The tsunami wave propagation is considered within the scope of the linear shallow-water theory. As in inverse seismic problem, the numerical solutions obtained by mathematical methods become unstable due to the presence of noise in real data. A method of r-solutions makes it possible to avoid instability in the solution to the ill-posed problem under study. This method seems to be attractive from the computational point of view since the main efforts are required only once for calculating the matrix whose columns consist of computed waveforms for each harmonic as a source (an unknown tsunami source is represented as a part of a spatial harmonics series in the source area). Furthermore, analyzing the singular spectra of the matrix obtained in the course of numerical calculations one can estimate the future inversion by a certain observational system that will allow offering a more effective disposition for the tsunameters with the help of precomputations. In other words, the results obtained allow finding a way to improve the inversion by selecting the most informative set of available recording stations. The case study of the 6 February 2013 Solomon Islands tsunami highlights a critical role of arranging deep-water tsunameters for obtaining the inversion results. Implementation of the proposed methodology to the 16 September 2015 Chile tsunami has successfully produced tsunami source model

  8. Tsunami Casualty Model

    Science.gov (United States)

    Yeh, H.

    2007-12-01

    More than 4500 deaths by tsunamis were recorded in the decade of 1990. For example, the 1992 Flores Tsunami in Indonesia took away at least 1712 lives, and more than 2182 people were victimized by the 1998 Papua New Guinea Tsunami. Such staggering death toll has been totally overshadowed by the 2004 Indian Ocean Tsunami that claimed more than 220,000 lives. Unlike hurricanes that are often evaluated by economic losses, death count is the primary measure for tsunami hazard. It is partly because tsunamis kill more people owing to its short lead- time for warning. Although exact death tallies are not available for most of the tsunami events, there exist gender and age discriminations in tsunami casualties. Significant gender difference in the victims of the 2004 Indian Ocean Tsunami was attributed to women's social norms and role behavior, as well as cultural bias toward women's inability to swim. Here we develop a rational casualty model based on humans' limit to withstand the tsunami flows. The application to simple tsunami runup cases demonstrates that biological and physiological disadvantages also make a significant difference in casualty rate. It further demonstrates that the gender and age discriminations in casualties become most pronounced when tsunami is marginally strong and the difference tends to diminish as tsunami strength increases.

  9. Vulnerability assessment and protective effects of coastal vegetation during the 2004 Tsunami in Sri Lanka

    Science.gov (United States)

    Kaplan, M.; Renaud, F. G.; Lüchters, G.

    2009-08-01

    The tsunami of December 2004 caused extensive human and economic losses along many parts of the Sri Lankan coastline. Thanks to extensive national and international solidarity and support in the aftermath of the event, most people managed to restore their livelihoods completely but some households did not manage to recover completely from the impacts of the event. The differential in recovery highlighted the various vulnerabilities and coping capacities of communities exposed to the tsunami. Understanding the elements causing different vulnerabilities is crucial to reducing the impact of future events, yet capturing them comprehensively at the local level is a complex task. This research was conducted in a tsunami-affected area in southwestern Sri Lanka to evaluate firstly the role of coastal vegetation in buffering communities against the tsunami and secondly to capture the elements of vulnerability of affected communities. The area was chosen because of its complex landscape, including the presence of an inlet connecting the Maduganga estuary with the sea, and because of the presence of remaining patches of coastal vegetation. The vulnerability assessment was based on a comprehensive vulnerability framework and on the Sustainable Livelihoods Framework in order to detect inherent vulnerabilities of different livelihood groups. Our study resulted in the identification of fishery and labour-led households as the most vulnerable groups. Unsurprisingly, analyses showed that damages to houses and assets decreased quickly with increasing distance from the sea. It could also be shown that the Maduganga inlet channelled the energy of the waves, so that severe damages were observed at relatively large distances from the sea. Some reports after the tsunami stated that mangroves and other coastal vegetation protected the people living behind them. Detailed mapping of the coastal vegetation in the study area and subsequent linear regression revealed significant differences

  10. TWO DECADES OF GLOBAL TSUNAMIS - 1982-2002

    Directory of Open Access Journals (Sweden)

    Patricia A. Lockridge

    2003-01-01

    Full Text Available The principal purpose of this catalog is to extend the cataloging of tsunami occurrences and effects begun in 1988 by Soloviev, Go, and Kim (Catalog of Tsunamis in the Pacific 1969 to 1982 to the period extending from 1982 through 2001, and to provide a convenient source of tsunami data and a reference list for tsunamis in this period. While the earlier catalogs by Soloviev were restricted to the Pacific region including Indonesia, this catalog reports on known tsunamis worldwide. The year 1982 was included in this catalog because the data in the Soloviev and Go catalog for that year was incomplete.The Pacific is by far the most active zone for tsunami generation but tsunamis have been generated in many other bodies of water including the Caribbean and Mediterranean Seas, and Indian and Atlantic Oceans and other bodies of water. There were no known tsunamis generated in the Atlantic Ocean in the period from 1982 to 2001 but they have occurred there historically. North Atlantic tsunamis include the tsunami associated with the 1755 Lisbon earthquake that caused up to 60,000 fatalities in Portugal, Spain, and North Africa. This tsunami generated waves of up to seven meters in height into the Caribbean. Since 1498 the Caribbean has had 37 verified tsunamis (local and remote sourced plus an additional 52 events that may have resulted in tsunamis. The death toll from these events is about 9,500 fatalities. In 1929, the Grand Banks tsunami off the coast of Labrador generated waves of up to 15 meters in Newfoundland, Canada, killing 26 people, and the waves were recorded along the New Jersey coast. Smaller Atlantic coast tsunamis have been generated in the Norwegian fjords, Iceland, and off the coast of the New England states of the United States. Major tsunamis have also occurred in the Marmara Sea in Turkey associated with the Izmit earthquake of August 17, 1999.

  11. Tsunamis detection, monitoring, and early-warning technologies

    CERN Document Server

    Joseph, Antony

    2011-01-01

    The devastating impacts of tsunamis have received increased focus since the Indian Ocean tsunami of 2004, the most devastating tsunami in over 400 years of recorded history. This professional reference is the first of its kind: it provides a globally inclusive review of the current state of tsunami detection technology and will be a much-needed resource for oceanographers and marine engineers working to upgrade and integrate their tsunami warning systems. It focuses on the two main tsunami warning systems (TWS): International and Regional. Featured are comparative assessments of detection, monitoring, and real-time reporting technologies. The challenges of detection through remote measuring stations are also addressed, as well as the historical and scientific aspects of tsunamis.

  12. TSUNAMI LOADING ON BUILDINGS WITH OPENINGS

    Directory of Open Access Journals (Sweden)

    P. Lukkunaprasit

    2009-01-01

    Full Text Available Reinforced concrete (RC buildings with openings in the masonry infill panels have shown superior performance to those without openings in the devastating 2004 Indian Ocean Tsunami. Understanding the effect of openings and the resulting tsunami force is essential for an economical and safe design of vertical evacuation shelters against tsunamis. One-to-one hundred scale building models with square shape in plan were tested in a 40 m long hydraulic flume with 1 m x 1 m cross section. A mild slope of 0.5 degree representing the beach condition at Phuket, Thailand was simulated in the hydraulic laboratory. The model dimensions were 150 mm x 150 mm x 150 mm. Two opening configurations of the front and back walls were investigated, viz., 25% and 50% openings. Pressure sensors were placed on the faces of the model to measure the pressure distribution. A high frequency load cell was mounted at the base of the model to record the tsunami forces. A bi-linear pressure profile is proposed for determining the maximum tsunami force acting on solid square buildings. The influence of openings on the peak pressures on the front face of the model is found to be practically insignificant. For 25% and 50% opening models, the tsunami forces reduce by about 15% and 30% from the model without openings, respectively. The reduction in the tsunami force clearly demonstrates the benefit of openings in reducing the effect of tsunami on such buildings.

  13. ANALYSIS AND SIMULATION OF MAIN MAGNET TRANSMISSION LINE EFFECT

    Energy Technology Data Exchange (ETDEWEB)

    ZHANG,W.; MARNERIS, I.; SANDBERG, J.

    2007-06-25

    A main magnet chain forms a pair of transmission lines. Pulse-reflection-caused voltage and current differentiation throughout the magnet chain can have adverse effect on main magnet field quality. This effect is associated with magnet system configuration, coupling efficiency, and parasitic parameters. A better understanding of this phenomenon will help us in new design and existing system upgrade. In this paper, we exam the transmission line effect due to different input functions as well as configuration, coupling, and other parameters.

  14. Characteristics of the 2011 Tohoku Tsunami and introduction of two level tsunamis for tsunami disaster mitigation.

    Science.gov (United States)

    Sato, Shinji

    2015-01-01

    Characteristics of the 2011 Tohoku Tsunami have been revealed by collaborative tsunami surveys extensively performed under the coordination of the Joint Tsunami Survey Group. The complex behaviors of the mega-tsunami were characterized by the unprecedented scale and the low occurrence frequency. The limitation and the performance of tsunami countermeasures were described on the basis of tsunami surveys, laboratory experiments and numerical analyses. These findings contributed to the introduction of two-level tsunami hazards to establish a new strategy for tsunami disaster mitigation, combining structure-based flood protection designed by the Level-1 tsunami and non-structure-based damage reduction planned by the Level-2 tsunami.

  15. Geoethical issues involved in Tsunami Warning System concepts and operations

    Science.gov (United States)

    Charalampakis, Marinos; Papadopoulos, Gerassimos A.; Tinti, Stefano

    2016-04-01

    The main goal of a Tsunami Warning System (TWS) is to mitigate the effect of an incoming tsunami by alerting coastal population early enough to allow people to evacuate safely from inundation zones. Though this representation might seem oversimplified, nonetheless, achieving successfully this goal requires a positive synergy of geoscience, communication, emergency management, technology, education, social sciences, politics. Geoethical issues arise always when there is an interaction between geoscience and society, and TWS is a paradigmatic case where interaction is very strong and is made critical because a) the formulation of the tsunami alert has to be made in a time as short as possible and therefore on uncertain data, and b) any evaluation error (underestimation or overestimation) can lead to serious (and sometimes catastrophic) consequences involving wide areas and a large amount of population. From the geoethical point of view three issues are critical: how to (i) combine forecasts and uncertainties reasonably and usefully, (ii) cope and possibly solve the dilemma whether it is better over-alerting or under-alerting population and (iii) deal with responsibility and liability of geoscientists, TWS operators, emergency operators and coastal population. The discussion will be based on the experience of the Hellenic National Tsunami Warning Center (HL-NTWC, Greece), which operates on 24/7 basis as a special unit of the Institute of Geodynamics, National Observatory of Athens, and acts also as Candidate Tsunami Service Provider (CTSP) in the framework of the North-Eastern Atlantic, the Mediterranean and connected seas Tsunami Warning System (NEAMTWS) of the IOC/UNESCO. Since August 2012, when HL-NTWC was officially declared as operational, 14 tsunami warning messages have been disseminated to a large number of subscribers after strong submarine earthquakes occurring in Greece and elsewhere in the eastern Mediterranean. It is recognized that the alerting process

  16. EFFECT OF THE INDIAN OCEAN TSUNAMI ON GROUNDWATER QUALITY IN COASTAL AQUIFERS IN EASTERN SRI LANKA

    Directory of Open Access Journals (Sweden)

    Meththika Vithanage

    2009-01-01

    Full Text Available ABSTRACTChanges in water quality of a sand aquifer on the east coast of Sri Lanka due to the December 26, 2004 tsunami and subsequent disturbance due to well pumping and flushing by precipitation were investigated. Two closely spaced tsunami affected transects, spanning the ocean and an interior lagoon across a 2 km wide land strip were monitored from October, 2005 to September, 2006. Water samples were collected from 15 dug wells and 20 piezometers, from the disturbed and undisturbed sites respectively to evaluate the temporal and spatial trends in water quality.The EC values observed from the undisturbed area showed a significant decrease (3000 to 1200 μS/cm with the rain from November 2005 to March 2006, while the values in the disturbed area appeared to have stabilized without further decline through the same period. The concentration range of EC, Ca, K, Na, alkalinity, total hardness and sulphate were higher in the disturbed site than in the undisturbed site. PHREEQC modeling showed that the mixed sea water fraction is higher in the disturbed site than in the undisturbed site, and this is likely due to the movement of the disturbed plume by water extraction through pumping and extensive well cleaning after the tsunami, causing forced diffusion and dispersion. No arsenic contamination was observed as all observed arsenic concentrations were below 10 μg/L. For the sites investigated, there are clear indications of only a slow recovery of the aquifer with time in response to the onset of the monsoon.

  17. Effect of rapid mass accretion onto the main sequence stars

    International Nuclear Information System (INIS)

    Sarna, M.

    1984-01-01

    During the evolution of a close binary system there is a phase of rapid mass exchange between its components. Effect of rapid mass inflow on the internal structure of the main sequence stars is studied. 28 refs., 13 figs. (author)

  18. Mathematics of tsunami: modelling and identification

    Science.gov (United States)

    Krivorotko, Olga; Kabanikhin, Sergey

    2015-04-01

    Tsunami (long waves in the deep water) motion caused by underwater earthquakes is described by shallow water equations ( { ηtt = div (gH (x,y)-gradη), (x,y) ∈ Ω, t ∈ (0,T ); η|t=0 = q(x,y), ηt|t=0 = 0, (x,y) ∈ Ω. ( (1) Bottom relief H(x,y) characteristics and the initial perturbation data (a tsunami source q(x,y)) are required for the direct simulation of tsunamis. The main difficulty problem of tsunami modelling is a very big size of the computational domain (Ω = 500 × 1000 kilometres in space and about one hour computational time T for one meter of initial perturbation amplitude max|q|). The calculation of the function η(x,y,t) of three variables in Ω × (0,T) requires large computing resources. We construct a new algorithm to solve numerically the problem of determining the moving tsunami wave height S(x,y) which is based on kinematic-type approach and analytical representation of fundamental solution. Proposed algorithm of determining the function of two variables S(x,y) reduces the number of operations in 1.5 times than solving problem (1). If all functions does not depend on the variable y (one dimensional case), then the moving tsunami wave height satisfies of the well-known Airy-Green formula: S(x) = S(0)° --- 4H (0)/H (x). The problem of identification parameters of a tsunami source using additional measurements of a passing wave is called inverse tsunami problem. We investigate two different inverse problems of determining a tsunami source q(x,y) using two different additional data: Deep-ocean Assessment and Reporting of Tsunamis (DART) measurements and satellite altimeters wave-form images. These problems are severely ill-posed. The main idea consists of combination of two measured data to reconstruct the source parameters. We apply regularization techniques to control the degree of ill-posedness such as Fourier expansion, truncated singular value decomposition, numerical regularization. The algorithm of selecting the truncated number of

  19. Source of 1629 Banda Mega-Thrust Earthquake and Tsunami: Implications for Tsunami Hazard Evaluation in Eastern Indonesia

    Science.gov (United States)

    Major, J. R.; Liu, Z.; Harris, R. A.; Fisher, T. L.

    2011-12-01

    Using Dutch records of geophysical events in Indonesia over the past 400 years, and tsunami modeling, we identify tsunami sources that have caused severe devastation in the past and are likely to reoccur in the near future. The earthquake history of Western Indonesia has received much attention since the 2004 Sumatra earthquakes and subsequent events. However, strain rates along a variety of plate boundary segments are just as high in eastern Indonesia where the earthquake history has not been investigated. Due to the rapid population growth in this region it is essential and urgent to evaluate its earthquake and tsunami hazards. Arthur Wichmann's 'Earthquakes of the Indian Archipelago' shows that there were 30 significant earthquakes and 29 tsunami between 1629 to 1877. One of the largest and best documented is the great earthquake and tsunami effecting the Banda islands on 1 August, 1629. It caused severe damage from a 15 m tsunami that arrived at the Banda Islands about a half hour after the earthquake. The earthquake was also recorded 230 km away in Ambon, but no tsunami is mentioned. This event was followed by at least 9 years of aftershocks. The combination of these observations indicates that the earthquake was most likely a mega-thrust event. We use a numerical simulation of the tsunami to locate the potential sources of the 1629 mega-thrust event and evaluate the tsunami hazard in Eastern Indonesia. The numerical simulation was tested to establish the tsunami run-up amplification factor for this region by tsunami simulations of the 1992 Flores Island (Hidayat et al., 1995) and 2006 Java (Katoet al., 2007) earthquake events. The results yield a tsunami run-up amplification factor of 1.5 and 3, respectively. However, the Java earthquake is a unique case of slow rupture that was hardly felt. The fault parameters of recent earthquakes in the Banda region are used for the models. The modeling narrows the possibilities of mega-thrust events the size of the one

  20. The 17 July 2006 Tsunami Along the South Coast of Java, Indonesia: Field Survey and Near Field Tsunami Simulation

    Science.gov (United States)

    Lavigne, F.; Gomez, C.; Hebert, H.; Sladen, A.; Schindele, F.; Mardiatno, D.; Priyono, J.; Giffo, M.; Wassmer, P.

    2006-12-01

    The 17th July 2006, a tsunami struck the southern coast of Java, Indonesia. The triggering earthquake at 15:19 WIB was located about 200 km south from Pangandaran (9°24S-117°36E), with a magnitude reaching M_w = 7.7. In order to calibrate numerical models, field surveys were conducted by a team divided into threee groups - from the French CNRS and the Indonesian Research Center for Disasters - from Pangandaran district in West Java to Gunungkidul district in Central Java. The surveys began the day after the tsunami and lasted more than one month. Data collection involved measurements of the wave height and runup, inundation depth, flow direction, and chronology of the tsunami event. Two main waves were reported by eyewitnesses' accounts. The second wave reached locally 8 to 11 m high before its breaking at several sites. Depending on the nearshore topography, this wave broke either nearshore, on the beaches or up to 100 meters inland. Local runups up to 15 m asl were measured on cliffs at Nusa Kambangan Island. Inundation depth usually ranged 2 to 3 m from ground. The tsunami arrival time has been recorded precisely at several locations owing to good recorders: a clock which stopped working when struck by the tsunami, pictures taken by testimonies, or a video movie at the Cilacap power plant construction. The first wave reached the whole coast between Pangandaran and pantai Ayah between 16:15 and 16:20 WIB, one hour after the earthquake. Further East, Baron Beach in Central Java was struck around 16:30 WIB, and the tide gauge at Benoa (Bali) recorded the tsunami at 17:00 WIB. We discuss the source of the tsunami in trying several seismological models used to trigger the waves and compute their impact onland. We particularly stress on the tsunami effect in the Cilacap area where detailed bathymetric and topographic data have been used to refine the modeling. When compared to the high amplitudes measured, the results provide indications on the most realistic source

  1. Numerical modelling and evacuation strategies for tsunami awareness: lessons from the 2012 Haida Gwaii Tsunami

    Directory of Open Access Journals (Sweden)

    Angela Santos

    2016-07-01

    Full Text Available On October 28, 2012, an earthquake occurred offshore Canada, with a magnitude Mw of 7.8, triggering a tsunami that propagated through the Pacific Ocean. The tsunami numerical model results show it would not be expected to generate widespread inundation on Hawaii. Yet, two hours after the earthquake, the Pacific Tsunami Warning Centre (PTWC issued a tsunami warning to the state of Hawaii. Since the state was hit by several tsunamis in the past, regular siren exercises, tsunami hazard maps and other prevention measures are available for public use, revealing that residents are well prepared regarding tsunami evacuation procedures. Nevertheless, residents and tourists evacuated mostly by car, and because of that, heavy traffic was reported, showing that it was a non-viable option for evacuation. The tsunami caused minor damages on the coastline, and several car accidents were reported, with one fatality. In recent years, there has been a remarkable interest in tsunami impacts. However, if risk planners seem to be very knowledgeable about how to avoid or mitigate their potential harmful effects, they seem to disregard its integration with other sectors of human activity and other social factors.

  2. Additive Main Effects and Multiplicative Interaction Analysis of ...

    African Journals Online (AJOL)

    Additive main effects and multiplicative interaction (AMMI) analysis is a recently recommended effective method to study the genotype by environment (GxE) interaction pattern of multi-environment varietal trials. This work deals with modeling and examining the GxE interaction pattern of the multi-environment trials of 43 ...

  3. Field survey of the 16 September 2015 Chile tsunami

    Science.gov (United States)

    Lagos, Marcelo; Fritz, Hermann M.

    2016-04-01

    On the evening of 16 September, 2015 a magnitude Mw 8.3 earthquake occurred off the coast of central Chile's Coquimbo region. The ensuing tsunami caused significant inundation and damage in the Coquimbo or 4th region and mostly minor effects in neighbouring 3rd and 5th regions. Fortunately, ancestral knowledge from the past 1922 and 1943 tsunamis in the region along with the catastrophic 2010 Maule and recent 2014 tsunamis, as well as tsunami education and evacuation exercises prompted most coastal residents to spontaneously evacuate to high ground after the earthquake. There were a few tsunami victims; while a handful of fatalities were associated to earthquake induced building collapses and the physical stress of tsunami evacuation. The international scientist joined the local effort from September 20 to 26, 2015. The international tsunami survey team (ITST) interviewed numerous eyewitnesses and documented flow depths, runup heights, inundation distances, sediment deposition, damage patterns, performance of the navigation infrastructure and impact on the natural environment. The ITST covered a 500 km stretch of coastline from Caleta Chañaral de Aceituno (28.8° S) south of Huasco down to Llolleo near San Antonio (33.6° S). We surveyed more than 40 locations and recorded more than 100 tsunami and runup heights with differential GPS and integrated laser range finders. The tsunami impact peaked at Caleta Totoral near Punta Aldea with both tsunami and runup heights exceeding 10 m as surveyed on September 22 and broadcasted nationwide that evening. Runup exceeded 10 m at a second uninhabited location some 15 km south of Caleta Totoral. A significant variation in tsunami impact was observed along the coastlines of central Chile at local and regional scales. The tsunami occurred in the evening hours limiting the availability of eyewitness video footages. Observations from the 2015 Chile tsunami are compared against the 1922, 1943, 2010 and 2014 Chile tsunamis. The

  4. Tsunami of 26 December 2004

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    In the absence of earlier studies, an attempt is made to identify the vulnerable areas of the Indian coast for the damages due to Tsunami based on an earlier study reported in the context of sea level rise due to greenhouse effect. It is inferred...

  5. To enhance effectiveness of response to emergency situations following earthquakes, tsunamis, and nuclear disasters

    International Nuclear Information System (INIS)

    Shimada, Jiro; Tase, Choichiro; Tsukada, Yasuhiko; Hasegawa, Arifumi; Ikegami, Yukihiro; Iida, Hiroshi

    2013-01-01

    From the immediate aftermath of the 2011 Tohoku earthquake and tsunami and the ensuing Fukushima Daiichi nuclear disaster. Fukushima Medical University Hospital urgently needed to operate as both a core disaster hospital and a secondary radiation emergency hospital. The disaster drills and emergency simulation training that had been undertaken to prepare for such a scenario proved to be immensely helpful. However, due to the fact that the disaster caused much more damage than expected putting that preparation perfectly into practice was impossible. In any disaster, it is important to collect human intelligence. Therefore, simulating the collection of human intelligence is necessary in order to supplement drills and training and improve rapid response following a disaster. (author)

  6. Main and interaction effects of extrusion temperature and usage ...

    African Journals Online (AJOL)

    The extruded full fat soybean (EFFSB) may be used in diet to satisfy the energy and protein requirements of fast growing broiler chickens. The main and interaction effects of three extrusion temperatures and two dietary levels of FFSB were studied on the performance, physiological enzymes and blood metabolites of broiler ...

  7. Role of Compressibility on Tsunami Propagation

    Science.gov (United States)

    Abdolali, Ali; Kirby, James T.

    2017-12-01

    In the present paper, we aim to reduce the discrepancies between tsunami arrival times evaluated from tsunami models and real measurements considering the role of ocean compressibility. We perform qualitative studies to reveal the phase speed reduction rate via a modified version of the Mild Slope Equation for Weakly Compressible fluid (MSEWC) proposed by Sammarco et al. (2013). The model is validated against a 3-D computational model. Physical properties of surface gravity waves are studied and compared with those for waves evaluated from an incompressible flow solver over realistic geometry for 2011 Tohoku-oki event, revealing reduction in phase speed.Plain Language SummarySubmarine earthquakes and submarine mass failures (SMFs), can generate long gravitational waves (or tsunamis) that propagate at the free surface. Tsunami waves can travel long distances and are known for their dramatic effects on coastal areas. Nowadays, numerical models are used to reconstruct the tsunamigenic events for many scientific and socioeconomic aspects i.e. Tsunami Early Warning Systems, inundation mapping, risk and hazard analysis, etc. A number of typically neglected parameters in these models cause discrepancies between model outputs and observations. Most of the tsunami models predict tsunami arrival times at distant stations slightly early in comparison to observations. In this study, we show how ocean compressibility would affect the tsunami wave propagation speed. In this framework, an efficient two-dimensional model equation for the weakly compressible ocean has been developed, validated and tested for simplified and real cases against three dimensional and incompressible solvers. Taking the effect of compressibility, the phase speed of surface gravity waves is reduced compared to that of an incompressible fluid. Then, we used the model for the case of devastating Tohoku-Oki 2011 tsunami event, improving the model accuracy. This study sheds light for future model development

  8. Tsunamis in Cuba?; Tsunamis en Cuba?

    Energy Technology Data Exchange (ETDEWEB)

    Cotilla Rodriguez, M. O.

    2011-07-01

    Cuba as neo tectonics structure in the southern of the North American plate had three tsunamis. One of them [local] occurred in the Central-Northern region [1931.10.01, Nortecubana fault], the other was a tele tsunami [1755.11.01, in the SW of the Iberian Peninsula] that hit the Bay of Santiago de Cuba, and the third took place at 1867.11.18, by the regional source of Virgin Islands, which produced waves in the Eastern Cuban region. This tsunami originated to the NE of Puerto Rico in 1918.10.11, with another earthquake of equal magnitude and at similar coordinates, produced a tsunami that did not affect Cuba. Information on the influence of regional tsunami in 1946.08.08 of the NE of the Dominican Republic [Matanzas] in Northwestern Cuba [beaches Guanabo-Baracoa] is contrary to expectations with the waves propagation. The local event of 1939.08.15 attributed to Central- Northern Cuba [Cayo Frances with M = 8.1] does not correspond at all with the maximum magnitude of earthquakes in this region and the potential of the Nortecubana fault. Tsunamis attributed to events such as 1766.06.11 and 1932.02.03 in the Santiago de Cuba Bay are not reflected in the original documents from experts and eyewitnesses. Tsunamis from Jamaica have not affected the coasts of Cuba, despite its proximity. There is no influence in Cuba of tsunamigenic sources of the southern and western parts of the Caribbean, or the Gulf of Mexico. Set out the doubts as to the influence of tsunamis from Haiti and Dominican Republic at Guantanamo Bay which is closer to and on the same latitude, and spatial orientation than the counterpart of Santiago de Cuba, that had impact. The number of fatalities by authors in the Caribbean is different and contradictory. (Author) 76 refs.

  9. Seismically generated tsunamis.

    Science.gov (United States)

    Arcas, Diego; Segur, Harvey

    2012-04-13

    People around the world know more about tsunamis than they did 10 years ago, primarily because of two events: a tsunami on 26 December 2004 that killed more than 200,000 people around the shores of the Indian Ocean; and an earthquake and tsunami off the coast of Japan on 11 March 2011 that killed nearly 15,000 more and triggered a nuclear accident, with consequences that are still unfolding. This paper has three objectives: (i) to summarize our current knowledge of the dynamics of tsunamis; (ii) to describe how that knowledge is now being used to forecast tsunamis; and (iii) to suggest some policy changes that might protect people better from the dangers of future tsunamis.

  10. Test operation of a real-time tsunami inundation forecast system using actual data observed by S-net

    Science.gov (United States)

    Suzuki, W.; Yamamoto, N.; Miyoshi, T.; Aoi, S.

    2017-12-01

    If the tsunami inundation information can be rapidly and stably forecast before the large tsunami attacks, the information would have effectively people realize the impeding danger and necessity of evacuation. Toward that goal, we have developed a prototype system to perform the real-time tsunami inundation forecast for Chiba prefecture, eastern Japan, using off-shore ocean bottom pressure data observed by the seafloor observation network for earthquakes and tsunamis along the Japan Trench (S-net) (Aoi et al., 2015, AGU). Because tsunami inundation simulation requires a large computation cost, we employ a database approach searching the pre-calculated tsunami scenarios that reasonably explain the observed S-net pressure data based on the multi-index method (Yamamoto et al., 2016, EPS). The scenario search is regularly repeated, not triggered by the occurrence of the tsunami event, and the forecast information is generated from the selected scenarios that meet the criterion. Test operation of the prototype system using the actual observation data started in April, 2017 and the performance and behavior of the system during non-tsunami event periods have been examined. It is found that the treatment of the noises affecting the observed data is the main issue to be solved toward the improvement of the system. Even if the observed pressure data are filtered to extract the tsunami signals, the noises in ordinary times or unusually large noises like high ocean waves due to storm affect the comparison between the observed and scenario data. Due to the noises, the tsunami scenarios are selected and the tsunami is forecast although any tsunami event does not actually occur. In most cases, the selected scenarios due to the noises have the fault models in the region along the Kurile or Izu-Bonin Trenches, far from the S-net region, or the fault models below the land. Based on the parallel operation of the forecast system with a different scenario search condition and

  11. Tsunami Hazard in La Réunion Island (SW Indian Ocean): Scenario-Based Numerical Modelling on Vulnerable Coastal Sites

    Science.gov (United States)

    Allgeyer, S.; Quentel, É.; Hébert, H.; Gailler, A.; Loevenbruck, A.

    2017-08-01

    Several major tsunamis have affected the southwest Indian Ocean area since the 2004 Sumatra event, and some of them (2005, 2006, 2007 and 2010) have hit La Réunion Island in the southwest Indian Ocean. However, tsunami hazard is not well defined for La Réunion Island where vulnerable coastlines can be exposed. This study offers a first tsunami hazard assesment for La Réunion Island. We first review the historical tsunami observations made on the coastlines, where high tsunami waves (2-3 m) have been reported on the western coast, especially during the 2004 Indian Ocean tsunami. Numerical models of historical scenarios yield results consistent with available observations on the coastal sites (the harbours of La Pointe des Galets and Saint-Paul). The 1833 Pagai earthquake and tsunami can be considered as the worst-case historical scenario for this area. In a second step, we assess the tsunami exposure by covering the major subduction zones with syntethic events of constant magnitude (8.7, 9.0 and 9.3). The aggregation of magnitude 8.7 scenarios all generate strong currents in the harbours (3-7 m s^{-1}) and about 2 m of tsunami maximum height without significant inundation. The analysis of the magnitude 9.0 events confirms that the main commercial harbour (Port Est) is more vulnerable than Port Ouest and that flooding in Saint-Paul is limited to the beach area and the river mouth. Finally, the magnitude 9.3 scenarios show limited inundations close to the beach and in the riverbed in Saint-Paul. More generally, the results confirm that for La Runion, the Sumatra subduction zone is the most threatening non-local source area for tsunami generation. This study also shows that far-field coastal sites should be prepared for tsunami hazard and that further work is needed to improve operational warning procedures. Forecast methods should be developed to provide tools to enable the authorities to anticipate the local effects of tsunamis and to evacuate the harbours in

  12. English Tsunami in Indonesian

    Directory of Open Access Journals (Sweden)

    E. Sadtono

    2013-11-01

    Full Text Available English has successfully overwhelmed Indonesian like tsunami as an imperialistic language. The meaning of imperialism here, however, differs from the conventional meaning as it is invited imperialism, not coerced imperialism.The influence of English in Indonesian is discussed in terms of modernization, globalization, economy, and history. The linguistic tsunami effects are overwhelming, staggering, and unstoppable. The data for this article were collected from various sources, and it was found that the number of English words (pure and modified is indeed confounding. Virtually English words have penetrated all walks of life. Unfortunately, there is no way we can prevent English influence on Indonesian, it is simply inevitable and we cannot do anything about it. Seen from linguistic purism, we have lost the battle in fighting off English influence; but seen from the eye of a descriptive linguist, it is an unpreventable historical phenomenon. It is a lingusitic dynamism in which language is altered and enriched by a continuous input from other languages, the most influential language being the major donor of loanwords of the receiving language. If it is considered a problem, the solution is to change our attitude to realize that any living language continues undergoing modifications and we should be willing to accommodate them. It is the dialectics of world history.

  13. TIDE TOOL: Open-Source Sea-Level Monitoring Software for Tsunami Warning Systems

    Science.gov (United States)

    Weinstein, S. A.; Kong, L. S.; Becker, N. C.; Wang, D.

    2012-12-01

    A tsunami warning center (TWC) typically decides to issue a tsunami warning bulletin when initial estimates of earthquake source parameters suggest it may be capable of generating a tsunami. A TWC, however, relies on sea-level data to provide prima facie evidence for the existence or non-existence of destructive tsunami waves and to constrain tsunami wave height forecast models. In the aftermath of the 2004 Sumatra disaster, the International Tsunami Information Center asked the Pacific Tsunami Warning Center (PTWC) to develop a platform-independent, easy-to-use software package to give nascent TWCs the ability to process WMO Global Telecommunications System (GTS) sea-level messages and to analyze the resulting sea-level curves (marigrams). In response PTWC developed TIDE TOOL that has since steadily grown in sophistication to become PTWC's operational sea-level processing system. TIDE TOOL has two main parts: a decoder that reads GTS sea-level message logs, and a graphical user interface (GUI) written in the open-source platform-independent graphical toolkit scripting language Tcl/Tk. This GUI consists of dynamic map-based clients that allow the user to select and analyze a single station or groups of stations by displaying their marigams in strip-chart or screen-tiled forms. TIDE TOOL also includes detail maps of each station to show each station's geographical context and reverse tsunami travel time contours to each station. TIDE TOOL can also be coupled to the GEOWARE™ TTT program to plot tsunami travel times and to indicate the expected tsunami arrival time on the marigrams. Because sea-level messages are structured in a rich variety of formats TIDE TOOL includes a metadata file, COMP_META, that contains all of the information needed by TIDE TOOL to decode sea-level data as well as basic information such as the geographical coordinates of each station. TIDE TOOL can therefore continuously decode theses sea-level messages in real-time and display the time

  14. Overview of collective effects in the NLC main damping rings

    International Nuclear Information System (INIS)

    Wolski, A.; Santis, S. de

    2002-01-01

    The present design for the NLC Main Damping Rings (MDRs) meets the specifications for acceptance and extracted emittance, in the limit of zero current. However, the relatively large bunch charge and moderate energy mean that a variety of collective effects can impact the beam dynamics, leading to loss of stability or increase of equilibrium emittance. These effects include intrabeam scattering, impedance from numerous sources, fast ion instability, and (in the positron ring) electron cloud. In this note, we survey the expected impact on damping ring performance from each of a number of collective effects, and discuss the priorities for future studies in this area

  15. Effect of submarine canyons on tsunami heights, currents and run-up off the southeast coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    JayaKumar, S.; ManiMurali, R.; Baldock, T.E.

    , including source parameters, proximity to the coast, topo- graphy of the seabed, etc.1,2. Submarine canyons and ridges are one such topographic feature of the seabed that could affect tsunami propagation. As submarine canyons have steep slopes... far at these loca- tions. Study area The southeast coast of India has been one on the worst affected regions during December 2004 tsunami event (Figure 1). The present study region comprises the most affected area on the mainland Indian...

  16. Re-thinking the Distant Tsunami Hazard to Alaska

    Science.gov (United States)

    Preller, C. C.; Petty, E. A.; Knight, W. R.; Curtis, J. C.; Albanese, S. P.

    2012-12-01

    The science of tsunami has created as many questions as it has answers for vulnerable areas like those in Alaska's coastal communities. How a tsunami might inundate is determined by a variety of event-unique factors that are difficult to accurately prepare for; near shore dynamics and local bathymetry guarantee a distinctive experience at every locality. The island of St. Paul, located in the middle of the Bering Sea, measured a significant tsunami during the Japanese event in 2011. Believing that the Aleutian Chain would minimize tsunami energy into the Bering Sea, this was an eye-opening observation. Real science gives us real answers. The only way to accurately understand the effect of a tsunami is to have a tsunami; a completely unpredictable event without a season. Over the last few years, there have been several large events. Assessing impacts from the Chilean tsunami of 2010 and the Japanese tsunami of 2011, as well as other events such as Samoa and Haiti, has offered a fine-tuning to tsunami understanding and modeling. Using observed amplitudes, tsunami history, oral stories, and improved static modeling techniques, the ability to access threat by community is becoming possible. Communities previously ranked on broad generalizations are now assessed more specifically with data and modeling, providing new insights to their threat ranking. The critical though complex task of preparedness for Alaska, the state with the most coast-line and the least road system, is expensive and difficult. Translating the potential effects to emergency managers is a vague undertaking depending on the possible scenarios considered. Our understanding, with fine tuning, is proving to be essential in our approach. The reanalysis of the distance tsunami threat determined by updated tsunami science gives local officials the opportunity to improve community preparedness and allow communities to allocate scarce resources wisely.; Japanese Tsunami measured at Saint Paul Island showing

  17. Assessment of the tsunami hazard on Moroccan coasts using numerical modeling

    Directory of Open Access Journals (Sweden)

    Amine Meriem

    2018-01-01

    This work can be considered as a first approach to the study and understanding tsunamis. Although Morocco has known since historical times, earthquakes and tsunamis along its coasts. This preliminary study is mainly intended to show the contribution of the numerical simulation of tsunamis, with a concrete application of the 1755 Tsunami of Lisbon based on the four source zones involving the five potentially tsunamigenic faults that are generally mentioned in the literature for this major event.

  18. Evaluation of the effect of the 2011 Tsunami on coastal forests by means of multiple isotopic analyses on tree-rings

    Science.gov (United States)

    Lopez Caceres, Maximo Larry; Nakano, Sayako; Ferrio Diaz, Juan Pedro; Hayashi, Mika; Nakatsuka, Takeshi; Sano, Masaki; Yamanaka, Toshiro; Nobori, Yoshihiro

    2017-04-01

    The 2011 Mega-Tsunami destroyed at different degrees the coastal forests in eastern Japan, which for decades have protected inland agriculture and livelihood of the inhabitants in this region. This study investigates the effect of the tsunami on coastal forests and the physiological processes involved by means of stable isotope (13C, 15N and 18O) analysis for the period 2002-2014. Based on the results, annual tree-ring width from 2011 to 2014 decreased approximately 80% compared to the period previous to the Tsunami (2002-2010). Considering that soil salt concentration drastically decreased in September 2011 after a typhoon that dumped 350 mm of rain, the impact appeared to be limited in time. Nevertheless soil electric conductivity showed that spatial variability was strongly correlated with tree mortality in the study plot. The multiple isotope analysis showed that the reduction in growth was associated with a reduction in 13C discrimination following stomatal closure caused by soil salinity in 2011. Two years after the tsunami photosynthetic recovery, implied from decreasing values of 13C in tree-rings, did not translate in tree-growth, indicating a shift in carbon allocation strategy as trees recovered from the strong disturbance caused by the Tsunami. Tree-ring 18O did not show the abrupt increase observed for 13C and could not be used as an indicator of soil salinity. No changes in tree-ring 18O compared to 13C should indicate an increase in assimilation rates but that was not supported by the limited tree-ring growth or by the subsequent recovery of 13C. Nitrogen availability did not change before and after the Tsunami as suggested by values of tree-ring 15N which agree with values found in previous studies. The lack of the effect of salinity on tree-ring 15N could be related to the lack of changes in soil layers where inorganic nitrogen is found and/or because of the salt resistant mycorrhizal fungi typical of Japanese forests.

  19. Power and Scour: Laboratory simulations of tsunami-induced scour

    Science.gov (United States)

    Todd, David; McGovern, David; Whitehouse, Richard; Harris, John; Rossetto, Tiziana

    2017-04-01

    The world's coastal regions are becoming increasingly urbanised and densely populated. Recent major tsunami events in regions such as Samoa (2007), Indonesia (2004, 2006, 2010), and Japan (2011) have starkly highlighted this effect, resulting in catastrophic loss of both life and property, with much of the damage to buildings being reported in EEFIT mission reports following each of these events. The URBANWAVES project, led by UCL in collaboration with HR Wallingford, brings the power of the tsunami to the laboratory for the first time. The Pneumatic Tsunami Simulator is capable of tsimulating both idealised and real-world tsunami traces at a scale of 1:50. Experiments undertaken in the Fast Flow Facility at HR Wallingford using square and rectangular buildings placed on a sediment bed have allow us to measure, for the first time under laboratory conditions, the variations in the flow field around buildings produced by tsunami waves as a result of the scour process. The results of these tests are presented, providing insight into the process of scour development under different types of tsunami, giving a glimpse into the power of tsunamis that have already occurred, and helping us to inform the designs of future buildings so that we can be better prepared to analyse and design against these failure modes in the future. Additional supporting abstracts include Foster et al., on tsunami induced building loads; Chandler et al., on the tsunami simulation concept and McGovern et al., on the simulation of tsunami-driven scour and flow fields.

  20. Real-time Tsunami Inundation Prediction Using High Performance Computers

    Science.gov (United States)

    Oishi, Y.; Imamura, F.; Sugawara, D.

    2014-12-01

    Recently off-shore tsunami observation stations based on cabled ocean bottom pressure gauges are actively being deployed especially in Japan. These cabled systems are designed to provide real-time tsunami data before tsunamis reach coastlines for disaster mitigation purposes. To receive real benefits of these observations, real-time analysis techniques to make an effective use of these data are necessary. A representative study was made by Tsushima et al. (2009) that proposed a method to provide instant tsunami source prediction based on achieving tsunami waveform data. As time passes, the prediction is improved by using updated waveform data. After a tsunami source is predicted, tsunami waveforms are synthesized from pre-computed tsunami Green functions of linear long wave equations. Tsushima et al. (2014) updated the method by combining the tsunami waveform inversion with an instant inversion of coseismic crustal deformation and improved the prediction accuracy and speed in the early stages. For disaster mitigation purposes, real-time predictions of tsunami inundation are also important. In this study, we discuss the possibility of real-time tsunami inundation predictions, which require faster-than-real-time tsunami inundation simulation in addition to instant tsunami source analysis. Although the computational amount is large to solve non-linear shallow water equations for inundation predictions, it has become executable through the recent developments of high performance computing technologies. We conducted parallel computations of tsunami inundation and achieved 6.0 TFLOPS by using 19,000 CPU cores. We employed a leap-frog finite difference method with nested staggered grids of which resolution range from 405 m to 5 m. The resolution ratio of each nested domain was 1/3. Total number of grid points were 13 million, and the time step was 0.1 seconds. Tsunami sources of 2011 Tohoku-oki earthquake were tested. The inundation prediction up to 2 hours after the

  1. Item 141 Radiotherapy. Radiobiological notions; main secondary effects

    International Nuclear Information System (INIS)

    Azria, David; Dubois, Jean-Bernard

    2006-11-01

    This document first gives definitions of ionizing radiations, photons, electrons and Gray (as a dose unit). It describes the mechanisms of action of ionizing radiations: physical, chemical, cellular actions, actions on tissues. It analyses and discusses the factors influencing the effects of radiations: intrinsic radio-sensitivity, cellular cycle, oxygen, time (session fractioning and organisation in time), and dose. The different types of radiotherapy are then presented: external radiotherapy, brachytherapy, radio-immunotherapy of internal radiotherapy. It discusses tissues tolerance doses and doses required to sterilize tumours, and discusses the various and main secondary effects: stochastic secondary effects and deterministic secondary effects. A table indicates possible early and late reactions for different organs (skin, lung, brain, medulla, nerves, oesophagus, heart, pancreas, stomach, liver, intestine, kidney, bladder, rectum, ENT, or eye's lens)

  2. Tsunami mitigation - redistribution of energy

    Science.gov (United States)

    Kadri, Usama

    2017-04-01

    Tsunamis are water waves caused by the displacement of a large volume of water, in the deep ocean or a large lake, following an earthquake, landslide, underwater explosion, meteorite impacts, or other violent geological events. On the coastline, the resulting waves evolve from unnoticeable to devastating, reaching heights of tens of meters and causing destruction of property and loss of life. Over 225,000 people were killed in the 2004 Indian Ocean tsunami alone. For many decades, scientists have been studying tsunami, and progress has been widely reported in connection with the causes (1), forecasting (2), and recovery (3). However, none of the studies ratifies the approach of a direct mitigation of tsunamis, with the exception of mitigation using submarine barriers (e.g. see Ref. (4)). In an attempt to open a discussion on direct mitigation, I examine the feasibility of redistributing the total energy of a very long surface ocean (gravity) wave over a larger space through nonlinear resonant interaction with two finely tuned acoustic-gravity waves (see Refs. (5-8)). Theoretically, while the energy input in the acoustic-gravity waves required for an effective interaction is comparable to that in a tsunami (i.e. impractically large), employing the proposed mitigation technique the initial tsunami amplitude could be reduced substantially resulting in a much milder impact at the coastline. Moreover, such a technique would allow for the harnessing of the tsunami's own energy. Practically, this mitigation technique requires the design of highly accurate acoustic-gravity wave frequency transmitters or modulators, which is a rather challenging ongoing engineering problem. References 1. E. Bryant, 2014. Tsunami: the underrated hazard. Springer, doi:10.1007/978-3-319- 06133-7. 2. V. V. Titov, F. I. Gonza`lez, E. N. Bernard, M. C. Eble, H. O. Mofjeld, J. C. Newman, A. J. Venturato, 2005. Real-Time Tsunami Forecasting: Challenges and Solutions. Nat. Hazards 35:41-58, doi:10

  3. A BRIEF HISTORY OF TSUNAMIS IN THE CARIBBEAN SEA

    Directory of Open Access Journals (Sweden)

    Patricia A. Lockridge

    2002-01-01

    Full Text Available The area of the Caribbean Sea is geologically active. Earthquakes and volcanoes are common occurrences. These geologic events can generate powerful tsunamis some of which are more devastating than the earthquake or volcanic eruption itself. This document lists brief descriptions of 91 reported waves that might have been tsunamis within the Caribbean region. Of these, 27 are judged by the authors to be true, verified tsunamis and an additional nine are considered to be very likely true tsunamis. The additional 53 events either are not described with sufficient detail in the literature to verify their tsunami nature or are judged to be reports of other phenomenasuch as sea quakes or hurricane storm surges which may have been reported as tsunamis. Included in these 91 reports are teletsunamis, tectonic tsunamis, landslide tsunamis, and volcanic tsunamis that have caused major damage and deaths. Nevertheless, in recent history these events have been relatively rare. In the interim since the last major tsunami event in the Caribbean Sea the coastal regions have greatly increased in population. Coastal development has also increased. Today tourism is a major industry that exposes thousands of non-residents to the disastrous effects of a tsunami. These factors make the islands in this region much more vulnerable today than they were when the last major tsunami occurred in this area. This paper gives an overview of the tsunami history in the area. This history illustrates what can be expected in the future from this geologic hazard and provides information that will be useful for mitigation purposes.

  4. Characteristics of Recent Tsunamis

    Science.gov (United States)

    Sweeney, A. D.; Eble, M. C.; Mungov, G.

    2017-12-01

    How long do tsunamis impact a coast? How often is the largest tsunami wave the first to arrive? How do measurements in the far field differ from those made close to the source? Extending the study of Eblé et al. (2015) who showed the prevalence of a leading negative phase, we assimilate and summarize characteristics of known tsunami events recorded on bottom pressure and coastal water level stations throughout the world oceans to answer these and other questions. An extensive repository of data from the National Centers for Environmental Information (NCEI) archive for tsunami-ready U.S. tide gauge stations, housing more than 200 sites going back 10 years are utilized as are some of the more 3000 marigrams (analog or paper tide gauge records) for tsunami events. The focus of our study is on five tsunamis generated by earthquakes: 2010 Chile (Maule), 2011 East Japan (Tohoku), 2012 Haida Gwaii, 2014 Chile (Iquique), and 2015 Central Chile and one meteorologically generated tsunami on June 2013 along the U.S. East Coast and Caribbean. Reference: Eblé, M., Mungov, G. & Rabinovich, A. On the Leading Negative Phase of Major 2010-2014 Tsunamis. Pure Appl. Geophys. (2015) 172: 3493. https://doi.org/10.1007/s00024-015-1127-5

  5. Satellite Images: Tsunami 2004

    Indian Academy of Sciences (India)

    -tsunami picture as on 26-Dec-2004. IRS-P6: AWiFS. 3. Post-tsunami picture as on 4-Jan-2005. IRS-P6: LlSS-1I1. Table shows the affected area in some of the. Nicobar Islands. Island Name. Area affected (ha). Trinkat. 360. Camorta. 665.

  6. A Hamiltonian Formulation On Tsunami Over Swell

    Science.gov (United States)

    TIAN, M.; Sheremet, A.; Kaihatu, J. M.

    2012-12-01

    Tsunami induced by earthquakes typically evolves shore-ward with a significant amplification of amplitude during the last stages of shoaling. This study focuses on tsunami evolution in shallow water under the effects of the oceanographic environment such as breaking and tsunami- swell interaction. One generally describes wave breaking directly with a discontinuity in the solution to the classical nonlinear shallow water equations (NLSW) (e.g., Stoker 1985). This wave-front steepness calculation, however, has the potential problem that for the case of the single wave defined by solitary wave, breaking occurs much closer to the wave crest so that the method is formally invalid (Madsen et. al. 2008). Li and Raichlen (2002) applied a weighted essentially non-oscillatory (WENO) shock-capturing scheme in the numerical NSWE model to capture the wave breaking process. The problem arises that a convenient hamiltonian formalism is lacking to describe wave breaking. One wants to evaluate breaking by deducing the decay of the tsunami energy in a straightforward manner. The linear effect of the tsunami background circulation on swell is well known (e.g., Madsen et. al. 2008). However, Kaihatu and El Safty(2011) hypothesized that this is only one "half" of the mutual interaction between the tsunami and the overlying swell field, which might have subtle effects on the tsunami front-face steepness and breaking process. These effects were observed in a laboratory experiments (Kaihatu and El Safty 2011). It was observed that the presence of swell affects the maximum surface amplitude of overall wave field and produces significant energy shifts to high frequencies, thus promoting tsunami breaking. The theoretical study for tsunami-swell interaction requires a phase-resolving wave-wave interaction model. In this study, we derive a Hamiltonian formulation for the tsunami-swell interaction using the quasi stream-function formulation. This formalism is better able to handle uneven

  7. On the solitary wave paradigm for tsunamis

    DEFF Research Database (Denmark)

    Madsen, Per A.; Fuhrman, David R.; Schäffer, Hemming Andreas

    2008-01-01

    Since the 1970s, solitary waves have commonly been used to model tsunamis especially in experimental and mathematical studies. Unfortunately, the link to geophysical scales is not well established, and in this work we question the geophysical relevance of this paradigm. In part 1, we simulate...... of finite amplitude solitary wave theory in laboratory studies of tsunamis. We conclude that order-of-magnitude errors in effective temporal and spatial duration occur when this theory is used as an approximation for long waves on a sloping bottom. In part 3, we investigate the phenomenon of disintegration...... of long waves into shorter waves, which has been observed e.g. in connection with the Indian Ocean tsunami in 2004. This happens if the front of the tsunami becomes sufficently steep, and as a result the front turns into an undular bore. We discuss the importance of these very short waves in connection...

  8. Estimates of dispersive effects in a bent NLC Main Linac

    Energy Technology Data Exchange (ETDEWEB)

    Michael Syphers and Leo Michelotti

    2000-10-31

    An alternative being considered for the Next Linear Collider (NLC) is not to tunnel in a straight line but to bend the Main Linac into an arc so as to follow a gravitational equipotential. The authors begin here an examination of the effects that this would have on vertical dispersion, with its attendant consequences on synchrotron radiation and emittance growth by looking at two scenarios: a gentle continuous bending of the beam to follow an equipotential surface, and an introduction of sharp bends at a few sites in the linac so as to reduce the maximum sagitta produced.

  9. NOAA/West coast and Alaska Tsunami warning center Atlantic Ocean response criteria

    Science.gov (United States)

    Whitmore, P.; Refidaff, C.; Caropolo, M.; Huerfano-Moreno, V.; Knight, W.; Sammler, W.; Sandrik, A.

    2009-01-01

    West Coast/Alaska Tsunami Warning Center (WCATWC) response criteria for earthquakesoccurring in the Atlantic and Caribbean basins are presented. Initial warning center decisions are based on an earthquake's location, magnitude, depth, distance from coastal locations, and precomputed threat estimates based on tsunami models computed from similar events. The new criteria will help limit the geographical extent of warnings and advisories to threatened regions, and complement the new operational tsunami product suite. Criteria are set for tsunamis generated by earthquakes, which are by far the main cause of tsunami generation (either directly through sea floor displacement or indirectly by triggering of sub-sea landslides).The new criteria require development of a threat data base which sets warning or advisory zones based on location, magnitude, and pre-computed tsunami models. The models determine coastal tsunami amplitudes based on likely tsunami source parameters for a given event. Based on the computed amplitude, warning and advisory zones are pre-set.

  10. Streamlining Tsunami Messages (e.g., Warnings) of the US National Tsunami Warning Center, Palmer, Alaska

    Science.gov (United States)

    Gregg, C. E.; Sorensen, J. H.; Vogt Sorensen, B.; Whitmore, P.; Johnston, D. M.

    2016-12-01

    Spurred in part by world-wide interest in improving warning messaging for and response to tsunamis in the wake of several catastrophic tsunamis since 2004 and growing interest at the US National Weather Service (NWS) to integrate social science into their Tsunami Program, the NWS Tsunami Warning Centers in Alaska and Hawaii have made great progress toward enhancing tsunami messages. These include numerous products, among them being Tsunami Warnings, Tsunami Advisories and Tsunami Watches. Beginning in 2010 we have worked with US National Tsunami Hazard Mitigation Program (NTHMP) Warning Coordination and Mitigation and Education Subcommittee members; Tsunami Program administrators; and NWS Weather Forecast Officers to conduct a series of focus group meetings with stakeholders in coastal areas of Alaska, American Samoa, California, Hawaii, North Carolina, Oregon, US Virgin Islands and Washington to understand end-user perceptions of existing messages and their existing needs in message products. We also reviewed research literature on behavioral response to warnings to develop a Tsunami Warning Message Metric that could be used to guide revisions to tsunami warning messages of both warning centers. The message metric is divided into categories of Message Content, Style, Order, Formatting, and Receiver Characteristics. A sample message is evaluated by cross-referencing the message with the operational definitions of metric factors. Findings are then used to guide revisions of the message until the characteristics of each factor are met, whether the message is a full length or short message. Incrementally, this work contributed to revisions in the format, content and style of message products issued by the National Tsunami Warning Center (NTWC). Since that time, interest in short warning messages has continued to increase and in May 2016 the NTWC began efforts to revise message products to take advantage of recent NWS policy changes allowing use of mixed-case text

  11. Tsunami Run-up Heights at Imwon Port, Korea

    Science.gov (United States)

    Cho, Yong-Sik; Cho, Jeong-Seon

    2015-04-01

    Tsunami Run-up Heights at Imwon Port, Korea Yong-Sik Cho and Jeong-Seon Cho Department of Civil and Environmental Engineering, Hanyang University 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea. The Eastern Coast of the Korean Peninsula has been attacked frequently by a number of tsunamis causing severe damages during this century. Among them, 1983 Central East Sea and 1993 Hokkaido Tsunami events were recorded as the most devastating events in Korea. More recently, the Great East Japan Tsunami had also attacked the Korean Peninsula. The Eastern Coast of the Korean Peninsula is the terminal place where tsunamis climb up inland after it generated along the western coast of Japan. The central part of the coast, in special, is worried as a tsunami danger zone because much tsunami energy is concentrated on by a topographic condition of this region. Recently, several coastal facilities including harbors and breakwaters are built and operated along the Eastern Coast of the Korean Peninsula. Furthermore, several nuclear power plants are already operating and several more units are now under construction. Residents who lived alongside the coast want free from unexpected danger, so the tsunami hazard mitigation becomes an important issue of coastal problems in Korea. Through the historical tsunami events, the Imwon Port is known as the place where most severe damage occurred, especially in 1983. An effective and economic way for the tsunami hazard mitigation planning is to construct inundation maps along the coast vulnerable to tsunami flooding. These maps should be built based on the historical tsunami events and the projected scenarios. For this purpose, an accurate estimation of tsunami run-up height and inundation process through the numerical model is needed. As a first step to tsunami mitigation program, the maximum run-up heights at the Imwon Port are computed and compared with field observed data. For this, tsunami run-up heights in this region were filed

  12. EFFECTS OF MEDU AND COASTAL TOPOGRAPHY ON THE DAMAGE PATTERN DURING THE RECENT INDIAN OCEAN TSUNAMI ALONG THE COAST OF TAMILNADU

    Directory of Open Access Journals (Sweden)

    J.P. Narayan

    2005-01-01

    Full Text Available Effects of Medu (naturally elevated landmass very close to the seashore and elongated parallel to the coast and coastal topography on the damage pattern during the deadliest Indian Ocean tsunami of December 26, 2004 is reported. The tsunami caused severe damage and claimed many victims in the coastal areas of eleven countries bordering the Indian Ocean. The damage survey revealed large variation in damage along the coastal region of Tamilnadu (India.The most severe damage was observed in the Nagapattinam district on the east coast and the west coast of Kanyakumari district. Decrease of damage from Nagapattinam to Kanchipuram district was observed. Intense damage again appeared to the north of Adyar River (from Srinivaspuri to Anna Samadhi Park. Almost, no damage was observed along the coast of Thanjavur, Puddukkotai and Ramnathpuram districts in Palk Strait, situated in the shadow zone of Sri Lanka.It was concluded that the width of continental shelf has played a major role in the pattern of tsunami damage. It was inferred that the width of the continental shelf and the interference of reflected waves from Sri Lanka and Maldives Islands with direct waves and receding waves was responsible for intense damage in Nagapattinam and Kanyakumari districts, respectively. During the damage survey authors also noted that there was almost no damage or much lesser damage to houses situated on or behind the Medu. Many people observed the first arrival. The largest tsunami amplitude occurred as the first arrival on the eastern coast and in the second arrival on the western coast.

  13. Identification of tsunami deposits considering the tsunami waveform: An example of subaqueous tsunami deposits in Holocene shallow bay on southern Boso Peninsula, Central Japan

    Science.gov (United States)

    Fujiwara, Osamu; Kamataki, Takanobu

    2007-08-01

    This study proposes a tsunami depositional model based on observations of emerged Holocene tsunami deposits in outcrops located in eastern Japan. The model is also applicable to the identification of other deposits, such as those laid down by storms. The tsunami deposits described were formed in a small bay of 10-20-m water depth, and are mainly composed of sand and gravel. They show various sedimentary structures, including hummocky cross-stratification (HCS) and inverse and normal grading. Although, individually, the sedimentary structures are similar to those commonly found in storm deposits, the combination of vertical stacking in the tsunami deposits makes a unique pattern. This vertical stacking of internal structures is due to the waveform of the source tsunamis, reflecting: 1) extremely long wavelengths and wave period, and 2) temporal changes of wave sizes from the beginning to end of the tsunamis. The tsunami deposits display many sub-layers with scoured and graded structures. Each sub-layer, especially in sandy facies, is characterized by HCS and inverse and normal grading that are the result of deposition from prolonged high-energy sediment flows. The vertical stack of sub-layers shows incremental deposition from the repeated sediment flows. Mud drapes cover the sub-layers and indicate the existence of flow-velocity stagnant stages between each sediment flow. Current reversals within the sub-layers indicate the repeated occurrence of the up- and return-flows. The tsunami deposits are vertically divided into four depositional units, Tna to Tnd in ascending order, reflecting the temporal change of wave sizes in the tsunami wave trains. Unit Tna is relatively fine-grained and indicative of small tsunami waves during the early stage of the tsunami. Unit Tnb is a protruding coarse-grained and thickest-stratified division and is the result of a relatively large wave group during the middle stage of the tsunami. Unit Tnc is a fine alternation of thin sand

  14. The Three Tsunamis

    Science.gov (United States)

    Antcliff, Richard R.

    2007-01-01

    We often talk about how different our world is from our parent's world. We then extrapolate this thinking to our children and try to imagine the world they will face. This is hard enough. However, change is changing! The rate at which change is occurring is accelerating. These new ideas, technologies and ecologies appear to be coming at us like tsunamis. Our approach to responding to these oncoming tsunamis will frame the future our children will live in. There are many of these tsunamis; I am just going to focus on three really big ones heading our way.

  15. Statistical Analysis of the Effectiveness of Seawalls and Coastal Forests in Mitigating Tsunami Impacts in Iwate and Miyagi Prefectures.

    Directory of Open Access Journals (Sweden)

    Roshanak Nateghi

    Full Text Available The Pacific coast of the Tohoku region of Japan experiences repeated tsunamis, with the most recent events having occurred in 1896, 1933, 1960, and 2011. These events have caused large loss of life and damage throughout the coastal region. There is uncertainty about the degree to which seawalls reduce deaths and building damage during tsunamis in Japan. On the one hand they provide physical protection against tsunamis as long as they are not overtopped and do not fail. On the other hand, the presence of a seawall may induce a false sense of security, encouraging additional development behind the seawall and reducing evacuation rates during an event. We analyze municipality-level and sub-municipality-level data on the impacts of the 1896, 1933, 1960, and 2011 tsunamis, finding that seawalls larger than 5 m in height generally have served a protective role in these past events, reducing both death rates and the damage rates of residential buildings. However, seawalls smaller than 5 m in height appear to have encouraged development in vulnerable areas and exacerbated damage. We also find that the extent of flooding is a critical factor in estimating both death rates and building damage rates, suggesting that additional measures, such as multiple lines of defense and elevating topography, may have significant benefits in reducing the impacts of tsunamis. Moreover, the area of coastal forests was found to be inversely related to death and destruction rates, indicating that forests either mitigated the impacts of these tsunamis, or displaced development that would otherwise have been damaged.

  16. Statistical Analysis of the Effectiveness of Seawalls and Coastal Forests in Mitigating Tsunami Impacts in Iwate and Miyagi Prefectures.

    Science.gov (United States)

    Nateghi, Roshanak; Bricker, Jeremy D; Guikema, Seth D; Bessho, Akane

    2016-01-01

    The Pacific coast of the Tohoku region of Japan experiences repeated tsunamis, with the most recent events having occurred in 1896, 1933, 1960, and 2011. These events have caused large loss of life and damage throughout the coastal region. There is uncertainty about the degree to which seawalls reduce deaths and building damage during tsunamis in Japan. On the one hand they provide physical protection against tsunamis as long as they are not overtopped and do not fail. On the other hand, the presence of a seawall may induce a false sense of security, encouraging additional development behind the seawall and reducing evacuation rates during an event. We analyze municipality-level and sub-municipality-level data on the impacts of the 1896, 1933, 1960, and 2011 tsunamis, finding that seawalls larger than 5 m in height generally have served a protective role in these past events, reducing both death rates and the damage rates of residential buildings. However, seawalls smaller than 5 m in height appear to have encouraged development in vulnerable areas and exacerbated damage. We also find that the extent of flooding is a critical factor in estimating both death rates and building damage rates, suggesting that additional measures, such as multiple lines of defense and elevating topography, may have significant benefits in reducing the impacts of tsunamis. Moreover, the area of coastal forests was found to be inversely related to death and destruction rates, indicating that forests either mitigated the impacts of these tsunamis, or displaced development that would otherwise have been damaged.

  17. SIMULATION OF SCOURING AROUND A VERTICAL CYLINDER DUE TO TSUNAMI

    Directory of Open Access Journals (Sweden)

    Kuswandi

    2017-06-01

    Full Text Available Local scour due to tsunami is damaging especially on shallow foundation. Although relatively in a short duration, tsunami attack may scour material around buildings that led to destruction. A number of formulae on local scouring due to flood and tsunami have been available. The local scouring pattern and depth produced by tsunami may be affected by tsunami duration and tsunami surge Froude number and hence different to that resulted by flood which normally have much longer duration and lower Froude number. The research used a relatively short flume to create short duration tsunami surge that run-up on 1:20 beach slope and hit a vertical cylinder on land. Both the pattern and the depth of local scouring around the cylinder were observed and the results were compared with similar research but with different tsunami surge characteristic. It was shown that the maximum scour depth was significantly deeper than the final scour depth. When compared with other experimental study of local scour due to tsunami, the present local scour maximum depth seemed to be slightly less. This could have been caused by the relatively short duration of the present experiment. It was also found that the sidewall effect was insignificant when the ratio of cylinder diameter to the flume width was less then approximately 0.15.

  18. Introduction to “Global tsunami science: Past and future, Volume III”

    Science.gov (United States)

    Rabinovich, Alexander B.; Fritz, Hermann M.; Tanioka, Yuichiro; Geist, Eric L.

    2018-01-01

    Twenty papers on the study of tsunamis are included in Volume III of the PAGEOPH topical issue “Global Tsunami Science: Past and Future”. Volume I of this topical issue was published as PAGEOPH, vol. 173, No. 12, 2016 and Volume II as PAGEOPH, vol. 174, No. 8, 2017. Two papers in Volume III focus on specific details of the 2009 Samoa and the 1923 northern Kamchatka tsunamis; they are followed by three papers related to tsunami hazard assessment for three different regions of the world oceans: South Africa, Pacific coast of Mexico and the northwestern part of the Indian Ocean. The next six papers are on various aspects of tsunami hydrodynamics and numerical modelling, including tsunami edge waves, resonant behaviour of compressible water layer during tsunamigenic earthquakes, dispersive properties of seismic and volcanically generated tsunami waves, tsunami runup on a vertical wall and influence of earthquake rupture velocity on maximum tsunami runup. Four papers discuss problems of tsunami warning and real-time forecasting for Central America, the Mediterranean coast of France, the coast of Peru, and some general problems regarding the optimum use of the DART buoy network for effective real-time tsunami warning in the Pacific Ocean. Two papers describe historical and paleotsunami studies in the Russian Far East. The final set of three papers importantly investigates tsunamis generated by non-seismic sources: asteroid airburst and meteorological disturbances. Collectively, this volume highlights contemporary trends in global tsunami research, both fundamental and applied toward hazard assessment and mitigation.

  19. Development of tsunami hazard analysis

    International Nuclear Information System (INIS)

    2012-01-01

    The NSC (the Nuclear Safety Commission of Japan) demand to survey on tsunami deposits by use of various technical methods (Dec. 2011), because tsunami deposits have useful information on tsunami activity, tsunami source etc. However, there are no guidebooks on tsunami deposit survey in JAPAN. In order to prepare the guidebook of tsunami deposits survey and to develop the method of tsunami source estimation on the basis of tsunami deposits, JNES carried out the following issues; (1) organizing information of paleoseismological record and tsunami deposit by literature research, and (2) field survey on tsunami deposit to prepare the guidebook. As to (1), we especially gear to tsunami deposits distributed in the Pacific coast of Tohoku region, and organize the information gained about tsunami deposits in the database. In addition, as to (2), we consolidate methods for surveying and identifying tsunami deposits in the lake based on results of the field survey in Fukui Pref., carried out by JNES. These results are reflected in the guidebook on the tsunami deposits in the lake as needed. (author)

  20. Tsunamis: Water Quality

    Science.gov (United States)

    ... Transmission in Pet Shelters Protect Your Pets Tsunamis: Water Quality Language: English Español (Spanish) Recommend on Facebook ... about testing should be directed to local authorities. Water for Drinking, Cooking, and Personal Hygiene Safe water ...

  1. Tsunamis: Sanitation and Hygiene

    Science.gov (United States)

    ... Transmission in Pet Shelters Protect Your Pets Tsunamis: Sanitation and Hygiene Language: English Español (Spanish) Recommend on ... your family by following these steps Hygiene and Sanitation From the CDC Water-Related Emergencies and Outbreaks ...

  2. Tsunamis and marine life

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.V.S.; Ingole, B.S.; Tang, D.; Satyanarayan, B.; Zhao, H.

    , 2005), India, augmented by observations made by agencies in Sri Lanka and Indonesia. The tsunami impacted both the oceanic waters and the near-shore waters. The massive dislocation of sub-surface deep waters was similar to an upwelling...

  3. Floods and tsunamis.

    Science.gov (United States)

    Llewellyn, Mark

    2006-06-01

    Floods and tsunamis cause few severe injuries, but those injuries can overwhelm local areas, depending on the magnitude of the disaster. Most injuries are extremity fractures, lacerations, and sprains. Because of the mechanism of soft tissue and bone injuries, infection is a significant risk. Aspiration pneumonias are also associated with tsunamis. Appropriate precautionary interventions prevent communicable dis-ease outbreaks. Psychosocial health issues must be considered.

  4. Tsunamis in Cuba?

    International Nuclear Information System (INIS)

    Cotilla Rodriguez, M. O.

    2011-01-01

    Cuba as neo tectonics structure in the southern of the North American plate had three tsunamis. One of them [local] occurred in the Central-Northern region [1931.10.01, Nortecubana fault], the other was a tele tsunami [1755.11.01, in the SW of the Iberian Peninsula] that hit the Bay of Santiago de Cuba, and the third took place at 1867.11.18, by the regional source of Virgin Islands, which produced waves in the Eastern Cuban region. This tsunami originated to the NE of Puerto Rico in 1918.10.11, with another earthquake of equal magnitude and at similar coordinates, produced a tsunami that did not affect Cuba. Information on the influence of regional tsunami in 1946.08.08 of the NE of the Dominican Republic [Matanzas] in Northwestern Cuba [beaches Guanabo-Baracoa] is contrary to expectations with the waves propagation. The local event of 1939.08.15 attributed to Central- Northern Cuba [Cayo Frances with M = 8.1] does not correspond at all with the maximum magnitude of earthquakes in this region and the potential of the Nortecubana fault. Tsunamis attributed to events such as 1766.06.11 and 1932.02.03 in the Santiago de Cuba Bay are not reflected in the original documents from experts and eyewitnesses. Tsunamis from Jamaica have not affected the coasts of Cuba, despite its proximity. There is no influence in Cuba of tsunamigenic sources of the southern and western parts of the Caribbean, or the Gulf of Mexico. Set out the doubts as to the influence of tsunamis from Haiti and Dominican Republic at Guantanamo Bay which is closer to and on the same latitude, and spatial orientation than the counterpart of Santiago de Cuba, that had impact. The number of fatalities by authors in the Caribbean is different and contradictory. (Author) 76 refs.

  5. New approaches in geological studies of tsunami deposits

    Science.gov (United States)

    Szczucinski, Witold

    2017-04-01

    During the last dozen of years tsunamis have appeared to be the most disastrous natural process worldwide. The dramatic, large tsunamis on Boxing Day, 2004 in the Indian Ocean and on March 11, 2011 offshore Japan caused catastrophes listed as the worst in terms of the number of victims and the economic losses, respectively. In the aftermath, they have become a topic of high public and scientific interest. The record of past tsunamis, mainly in form of tsunami deposits, is often the only way to identify tsunami risk at a particular coast due to relatively low frequency of their occurrence. The identification of paleotsunami deposits is often difficult mainly because the tsunami deposits are represented by various sediment types, may be similar to storm deposits or altered by post-depositional processes. There is no simple universal diagnostic set of criteria that can be applied to interpret tsunami deposits with certainty. Thus, there is a need to develop new methods, which would enhance 'classical', mainly sedimentological and stratigraphic approach. The objective of the present contribution is to show recent progress and application of new approaches including geochemistry (Chagué-Goff et al. 2017) and paleogenetics (Szczuciński et al. 2016) in studies of geological impacts of recent tsunamis from various geographical regions, namely in monsoonal-tropical, temperate and polar zones. It is mainly based on own studies of coastal zones affected by 2004 Indian Ocean Tsunami in Thailand, 2011 Tohoku-oki tsunami and older paleotsunamis in Japan, catastrophic saltwater inundations at the coasts of Baltic Sea and 2000 landslide-generated tsunami in Vaigat Strait (west Greenland). The study was partly funded by Polish National Science Centre grant No. 2011/01/B/ST10/01553. Chagué-Goff C., Szczuciński W., Shinozaki T., 2017. Applications of geochemistry in tsunami research: A review. Earth-Science Reviews 165: 203-244. Szczuciński W., Pawłowska J., Lejzerowicz F

  6. Empirical Fragility Analysis of Buildings and Boats Damaged By the 2011 Great East Japan Tsunami and Their Practical Application

    Science.gov (United States)

    Suppasri, A.; Charvet, I.; Leelawat, N.; Fukutani, Y.; Muhari, A.; Futami, T.; Imamura, F.

    2014-12-01

    This study focused in turn on detailed data of buildings and boats damage caused by the 2011 tsunami in order to understand its main causes and provide damage probability estimates. Tsunami-induced building damage data was collected from field surveys, and includes inundation depth, building material, number of stories and occupancy type for more than 80,000 buildings. Numerical simulations with high resolution bathymetry and topography data were conducted to obtain characteristic tsunami measures such as flow velocity. These data were analyzed using advanced statistical methods, ordinal regression analysis to create not only empirical 2D tsunami fragility curves, but also 3D tsunami fragility surfaces for the first time. The effect of floating debris was also considered, by using a binary indicator of debris impact based on the proximity of a structure from a debris source (i.e. washed away building). Both the 2D and 3D fragility analyses provided results for each different building damage level, and different topography. While 2D fragility curves provide easily interpretable results relating tsunami flow depth to damage probability for different damage levels, 3D fragility surfaces allow for several influential tsunami parameters to be taken into account thus reduce uncertainty in the probability estimations. More than 20,000 damaged boats were used in the analysis similar to the one carried out on the buildings. Detailed data for each boat comprises information on the damage ratio (paid value over insured value), tonnage, engine type, material type and damage classification. The 2D and 3D fragility analyses were developed using representative tsunami heights for each port obtained from field surveys and flow velocities obtained from the aforementioned simulations. The results are currently being adapted for practical disaster mitigation. They are being integrated with the probabilistic tsunami hazard analysis, in order to create offshore and onshore

  7. Lessons for tsunami risk mitigation from recent events occured in Chile: research findings for alerting and evacuation from interdisciplinary perspectives

    Science.gov (United States)

    Cienfuegos, R.; Catalan, P. A.; Leon, J.; Gonzalez, G.; Repetto, P.; Urrutia, A.; Tomita, T.; Orellana, V.

    2016-12-01

    In the wake of the 2010 tsunami that hit Chile, a major public effort to promote interdisciplinary disaster reseach was undertaken by the Comisión Nacional de Investigación Científica y Tecnológica (Conicyt) allocating funds to create the Center for Integrated Research on Natural Risks Management (CIGIDEN). This effort has been key in promoting associativity between national and international research teams in order to transform the frequent occurrence of extreme events that affect Chile into an opportunity for interdisciplinary research. In this presentation we will summarize some of the fundamental research findings regarding tsunami forecasting, alerting, and evacuation processes based on interdisciplinary field work campaigns and modeling efforts conducted in the wake of the three most recent destructive events that hit Chile in 2010, 2014, and 2015. One of the main results that we shall emphatize from these findings, is that while research and operational efforts to model and forecast tsunamis are important, technological positivisms should not undermine educational efforts that have proved to be effective in reducing casualties due to tsunamis in the near field. Indeed, in recent events that hit Chile, first tsunami waves reached the adjacent generation zones in time scales comparable with the required time for data gathering and modeling even for the most sophisticated early warning tsunami algorithms currently available. The latter emphasizes self-evacuation from coastal areas, while forecasting and monitoring tsunami hazards remain very important for alerting more distant areas, and are essential for alert cancelling especially when shelf and embayment resonance, and edge wave propagation may produce destructive late tsunami arrivals several hours after the nucleation of the earthquake. By combining some of the recent evidence we have gathered in Chile on seismic source uncertainities (both epistemic and aleatoric), tsunami hydrodynamics, the response

  8. 2004 Sumatra Tsunami

    Directory of Open Access Journals (Sweden)

    Vongvisessomjai, S.

    2005-09-01

    Full Text Available A catastrophic tsunami on December 26, 2004 caused devastation in the coastal region of six southern provinces of Thailand on the Andaman Sea coast. This paper summaries the characteristics of tsunami with the aim of informing and warning the public and reducing future casualties and damage.The first part is a review of the records of past catastrophic tsunamis, namely those in Chile in 1960, Alaska in 1964, and Flores, Java, Indonesia, in 1992, and the lessons drawn from these tsunamis. An analysis and the impact of the 2004 Sumatra tsunami is then presented and remedial measures recommended.Results of this study are as follows:Firstly, the 2004 Sumatra tsunami ranked fourth in terms of earthquake magnitude (9.0 M after those in 1960 in Chile (9.5 M, 1899 in Alaska (9.2 M and 1964 in Alaska (9.1 M and ranked first in terms of damage and casualties. It was most destructive when breaking in shallow water nearshore.Secondly, the best alleviation measures are 1 to set up a reliable system for providing warning at the time of an earthquake in order to save lives and reduce damage and 2 to establish a hazard map and implement land-use zoning in the devastated areas, according to the following principles:- Large hotels located at an elevation of not less than 10 m above mean sea level (MSL- Medium hotels located at an elevation of not less than 6 m above MSL- Small hotel located at elevation below 6 m MSL, but with the first floor elevated on poles to allow passage of a tsunami wave- Set-back distances from shoreline established for various developments- Provision of shelters and evacuation directionsFinally, public education is an essential part of preparedness.

  9. The New Zealand probabilistic tsunami hazard model

    Science.gov (United States)

    Power, W. L.; Mueller, C.; Barberopoulou, A.; Wallace, L. M.; Wang, X.; Fraser, S. A.

    2012-12-01

    Effective mitigation of the risks posed by tsunami is an urgent priority for New Zealand, a country straddling the Pacific 'Ring of Fire' and its associated subduction zones. Methods of mitigation, which are in various stages of development, include evacuation mapping, land use planning, and engineering of tsunami resilient buildings and infrastructure. But for this mitigation to be effective an accurate estimate of the hazard posed by tsunamis is needed. This is the motivation behind the New Zealand probabilistic tsunami hazard model. The model considers all types of seismic tsunami sources, whether local, regional or distant to New Zealand. The potential for including other source types, such as landslide and volcanic sources, will be briefly discussed. A critical issue when defining tsunami sources for New Zealand is that the magnitude-frequency distributions of many key seismic sources are not accurately known. For the subduction interfaces and other offshore faults close to New Zealand the historical record of tsunamis is too short to derive magnitude frequency distributions empirically, while the paleotsunami record is incomplete. Fortunately some of the parameters that determine and constrain the magnitude frequency distributions can be estimated, albeit with uncertainty. We present a Monte-Carlo method in which those controlling parameters are randomly sampled, which leads to a process for sampling from the range of different possible magnitude-frequency distributions. Our Monte Carlo method requires the generation of many synthetic catalogues, which require rapid methods for estimating of tsunami heights in each scenario: the methods used for this purpose will be presented. The outputs from our probabilistic model can be presented as hazard curves, describing tsunami height as a function of return period for each section of the coast; these hazard curves include 'error bars' as determined by the uncertainties incorporated in our Monte-Carlo model. Most

  10. Building Damage and Business Continuity Management in the Event of Natural Hazards: Case Study of the 2004 Tsunami in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Masami Sugiura

    2013-01-01

    Full Text Available The Sumatra Earthquake and Indian Ocean Tsunami event on the 26 December 2004 has provided a unique and valuable opportunity to evaluate the performance of various structures, facilities and lifeline systems during the tsunami wave attacks. There are especially meaningful observations concerning the structural changes due to the tsunami forces, which open up a wide area of research to develop the mitigation procedure. The business restoration process of business companies in terms of buildings, facilities and lifelines have shown greater research interest. In this study, we investigated the restoration process of business sectors in East and South coastal region in Sri Lanka after the 2004 Indian Ocean Tsunami. A field survey was conducted in East and South coast of Sri Lanka, in order to study the affecting parameters to damage assessment in the restoration process of the business companies. The results of the questionnaire-based field survey are then compared with the statistical analysis results. Finally, the factors affecting the restoration process after the tsunami are identified. As a main conclusion, financial support could be the most important reason for delays in restoration. Moreover, it has been observed that the tsunami inundation level of higher than one meter may have had more effect concerning the damage to the structures and requires additional time for restoration than other areas.

  11. The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    Science.gov (United States)

    Ross, Stephanie L.; Jones, Lucile M.

    2013-01-01

    The Science Application for Risk Reduction (SAFRR) tsunami scenario depicts a hypothetical but plausible tsunami created by an earthquake offshore from the Alaska Peninsula and its impacts on the California coast. The tsunami scenario is a collaboration between the U.S. Geological Survey (USGS), the California Geological Survey (CGS), the California Governor’s Office of Emergency Services (Cal OES), the National Oceanic and Atmospheric Administration (NOAA), other Federal, State, County, and local agencies, private companies, and academic and other institutions. This document presents evidence for past tsunamis, the scientific basis for the source, likely inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental and ecological impacts, social vulnerability, emergency management and evacuation challenges, and policy implications for California associated with this hypothetical tsunami. We also discuss ongoing mitigation efforts by the State of California and new communication products. The intended users are those who need to make mitigation decisions before future tsunamis, and those who will need to make rapid decisions during tsunami events. The results of the tsunami scenario will help managers understand the context and consequences of their decisions and how they may improve preparedness and response. An evaluation component will assess the effectiveness of the scenario process for target stakeholders in a separate report to improve similar efforts in the future.

  12. Effectiveness of Ninth-Grade Physics in Maine: Conceptual Understanding

    OpenAIRE

    O'Brien, Michael; Thompson, John

    2009-01-01

    The Physics First movement - teaching a true physics course to ninth grade students - is gaining popularity in high schools. There are several different rhetorical arguments for and against this movement, and it is quite controversial in physics education. However, there is no actual evidence to assess the success, or failure, of this substantial shift in the science teaching sequence. We have undertaken a comparison study of physics classes taught in ninth- and 12th grade classes in Maine. C...

  13. Tsunami simulations of mega-thrust earthquakes in the Nankai–Tonankai Trough (Japan) based on stochastic rupture scenarios

    KAUST Repository

    Goda, Katsuichiro

    2017-02-23

    In this study, earthquake rupture models for future mega-thrust earthquakes in the Nankai–Tonankai subduction zone are developed by incorporating the main characteristics of inverted source models of the 2011 Tohoku earthquake. These scenario ruptures also account for key features of the national tsunami source model for the Nankai–Tonankai earthquake by the Central Disaster Management Council of the Japanese Government. The source models capture a wide range of realistic slip distributions and kinematic rupture processes, reflecting the current best understanding of what may happen due to a future mega-earthquake in the Nankai–Tonankai Trough, and therefore are useful for conducting probabilistic tsunami hazard and risk analysis. A large suite of scenario rupture models is then used to investigate the variability of tsunami effects in coastal areas, such as offshore tsunami wave heights and onshore inundation depths, due to realistic variations in source characteristics. Such investigations are particularly valuable for tsunami hazard mapping and evacuation planning in municipalities along the Nankai–Tonankai coast.

  14. Effect of weatherization on radon levels in Maine dwellings

    International Nuclear Information System (INIS)

    Hess, C.T.; Hill, R.C.

    1984-01-01

    A study of radon concentration in the air of 30 Maine dwellings was performed before and after weatherization during November 1982-May 1983. The average radon (.75 pCi/1) was lower than a group of houses in a previous study in October 1980-May 1981 (3.1 pCi/1). The after-weatherization levels show an increase over the before-weatherization levels. Trailers were found to have lower radon concentrations than houses. The maximum value measured was 3.2 pCi/1 before and 6.2 pCi/1 after correction for season of exposure. 13 references, 5 figures, 3 tables

  15. Tsunami scattering provinces in the Pacific Ocean

    Science.gov (United States)

    Mofjeld, H. O.; Titov, V. V.; González, F. I.; Newman, J. C.

    We use a scattering index to identify the regions in the Pacific Ocean where topographic features scatter significant tsunami energy. Based on linear wave theory, the index is computed from the Smith/Sandwell topography. Consistent with numerical simulations, it shows that there is a narrow band of strong scatterers running across the ocean from the northwest (Emperor Seamount Chain) to the southeast (Easter Island Fracture Zone). The eastern Pacific is nearly devoid of scatterers, except for this band and isolated features along the eastern margin. To the west of the band lies a region with moderate scattering; the strongest scattering occurs in the southwestern Pacific. The Pacific is rimmed by island arcs and shallow continental shelves that also trap and scatter tsunamis. These results show that numerical models of trans-Pacific tsunamis must resolve the effects of the small-scale topography in order to accurately simulate their wave patterns and amplitudes.

  16. The 1867 Virgin Island Tsunami

    Directory of Open Access Journals (Sweden)

    N. Zahibo

    2003-01-01

    Full Text Available The 1867 Virgin Island Tsunami reached large magnitude on the coasts of the Caribbean Islands. A maximum tsunami height of 10 m was reported for two coastal locations (Deshaies and Sainte-Rose in Guadeloupe. Modelling of the 1867 tsunami is performed in the framework of the nonlinear shallow-water theory. The directivity of the tsunami wave source in the Caribbean Sea according to the assumed initial waveform is investigated. The tsunami records at the several coastal regions in the Lesser Antilles, Virgin Islands, Puerto Rico and South America are simulated. The comparison between the computed and observed data is in reasonable agreement.

  17. Scientific Animations for Tsunami Hazard Mitigation: The Pacific Tsunami Warning Center's YouTube Channel

    Science.gov (United States)

    Becker, N. C.; Wang, D.; Shiro, B.; Ward, B.

    2013-12-01

    Outreach and education save lives, and the Pacific Tsunami Warning Center (PTWC) has a new tool--a YouTube Channel--to advance its mission to protect lives and property from dangerous tsunamis. Such outreach and education is critical for coastal populations nearest an earthquake since they may not get an official warning before a tsunami reaches them and will need to know what to do when they feel strong shaking. Those who live far enough away to receive useful official warnings and react to them, however, can also benefit from PTWC's education and outreach efforts. They can better understand a tsunami warning message when they receive one, can better understand the danger facing them, and can better anticipate how events will unfold while the warning is in effect. The same holds true for emergency managers, who have the authority to evacuate the public they serve, and for the news media, critical partners in disseminating tsunami hazard information. PTWC's YouTube channel supplements its formal outreach and education efforts by making its computer animations available 24/7 to anyone with an Internet connection. Though the YouTube channel is only a month old (as of August 2013), it should rapidly develop a large global audience since similar videos on PTWC's Facebook page have reached over 70,000 viewers during organized media events, while PTWC's official web page has received tens of millions of hits during damaging tsunamis. These animations are not mere cartoons but use scientific data and calculations to render graphical depictions of real-world phenomena as accurately as possible. This practice holds true whether the animation is a simple comparison of historic earthquake magnitudes or a complex simulation cycling through thousands of high-resolution data grids to render tsunami waves propagating across an entire ocean basin. PTWC's animations fall into two broad categories. The first group illustrates concepts about seismology and how it is critical to

  18. Tides and tsunamis

    Science.gov (United States)

    Zetler, B. D.

    1972-01-01

    Although tides and tsunamis are both shallow water waves, it does not follow that they are equally amenable to an observational program using an orbiting altimeter on a satellite. A numerical feasibility investigation using a hypothetical satellite orbit, real tide observations, and sequentially increased levels of white noise has been conducted to study the degradation of the tidal harmonic constants caused by adding noise to the tide data. Tsunami waves, possibly a foot high and one hundred miles long, must be measured in individual orbits, thus requiring high relative resolution.

  19. Additive main effects and multiplicative interactions analysis of ...

    African Journals Online (AJOL)

    Eight cassava genotypes were evaluated for harvest index performance across four environments. Data analysis was performed using MATMODEL and GGEbiplot. AMMI analysis of variance showed that 10.02% of the total sum of squares was attributable to environmental effects, 3.99% to genotypic effects and 50.13% to ...

  20. On the moroccan tsunami catalogue

    Directory of Open Access Journals (Sweden)

    F. Kaabouben

    2009-07-01

    Full Text Available A primary tool for regional tsunami hazard assessment is a reliable historical and instrumental catalogue of events. Morocco by its geographical situation, with two marine sides, stretching along the Atlantic coast to the west and along the Mediterranean coast to the north, is the country of Western Africa most exposed to the risk of tsunamis. Previous information on tsunami events affecting Morocco are included in the Iberian and/or the Mediterranean lists of tsunami events, as it is the case of the European GITEC Tsunami Catalogue, but there is a need to organize this information in a dataset and to assess the likelihood of claimed historical tsunamis in Morocco. Due to the fact that Moroccan sources are scarce, this compilation rely on historical documentation from neighbouring countries (Portugal and Spain and so the compatibility between the new tsunami catalogue presented here and those that correspond to the same source areas is also discussed.

  1. Safety evaluation of nuclear power plant against the virtual tsunami

    International Nuclear Information System (INIS)

    Chin, S. B.; Imamura, Fumihiko

    2004-01-01

    The main scope of this study is the numerical analysis of virtual tsunami event near the Ulchin Nuclear Power Plants. In the numerical analysis, the maximum run-up height and draw-down are estimated at the Ulchin Nuclear Power Plants. The computer program developed in this study describes the propagation and associated run-up process of tsunamis by solving linear and nonlinear shallow-water equations with finite difference methods. It can be used to check the safety of a nuclear power plant against tsunami attacks. The program can also be used to calculate run-up height of wave and provide proper design criteria for coastal facilities and structures. A maximum inundation zone along the coastline can be developed by using the moving boundary condition. As a result, it is predicted that the Ulchin Nuclear Power Plants might be safe against the virtual tsunami event. Although the Ulchin Nuclear Power Plants are safe against the virtual tsunami event, the occurrence of a huge tsunami in the seismic gap should be investigated in detail. Furthermore, the possibility of nearshore tsunamis around the Korean Peninsula should also be studied and monitored continuously

  2. Recovery of coastal ecosystems after large tsunamis in various climatic zones - review of cases from tropical, temperate and polar zones (Invited)

    Science.gov (United States)

    Szczucinski, W.

    2013-12-01

    Large tsunamis cause significant changes in coastal ecosystems. They include modifications in shoreline position, sediment erosion and deposition, new initial soil formation, salination of soils and waters, removal of vegetation, as well as direct impact on humans and infrastructure. The processes and rate of coastal zone recovery from large tsunamis has been little studied but during the last decade a noteworthy progress has been made. This study focus on comparison of recovery processes in various climatic zones, namely in monsoonal-tropical, temperate and polar zone. It is based on own observation and monitoring in areas affected by 2004 Indian Ocean Tsunami in Thailand, 2011 Tohoku-oki tsunami in Japan and 2000 Paatuut landslide-generated tsunami in Vaigat Strait (west Greenland), as well as on review of published studies from those areas. The particular focus is on physical and biological recoveries of beaches, recovery of coastal vegetation, new soil formation in eroded areas and those covered by tsunami deposits, marine salt removal from soils, surface- and groundwater, as well as landscape adjustment after the tsunamis. The beach zone - typically the most tsunami-eroded zone, has been recovered already within weeks to months and has been observed to be in the pre-tsunami equilibrium stage within one year in all the climate zones, except for sediment-starved environments. The existing data on beach ecosystems point also to relatively fast recovery of meio- and macrofauna (within weeks to several months). The recovery of coastal vegetation depends on the rate of salt removal from soils or on the rate of soil formation in case of its erosion or burial by tsunami deposits. The salt removal have been observed to depend mainly on precipitation and effective water drainage. In tropical climate with seasonal rainfall of more 3000 mm the salt removal was fast, however, in temperate climate with lower precipitation and flat topography the salinities still exceeded

  3. Tsunami in the Arctic

    Science.gov (United States)

    Kulikov, Evgueni; Medvedev, Igor; Ivaschenko, Alexey

    2017-04-01

    The severity of the climate and sparsely populated coastal regions are the reason why the Russian part of the Arctic Ocean belongs to the least studied areas of the World Ocean. In the same time intensive economic development of the Arctic region, specifically oil and gas industry, require studies of potential thread natural disasters that can cause environmental and technical damage of the coastal and maritime infrastructure of energy industry complex (FEC). Despite the fact that the seismic activity in the Arctic can be attributed to a moderate level, we cannot exclude the occurrence of destructive tsunami waves, directly threatening the FEC. According to the IAEA requirements, in the construction of nuclear power plants it is necessary to take into account the impact of all natural disasters with frequency more than 10-5 per year. Planned accommodation in the polar regions of the Russian floating nuclear power plants certainly requires an adequate risk assessment of the tsunami hazard in the areas of their location. Develop the concept of tsunami hazard assessment would be based on the numerical simulation of different scenarios in which reproduced the hypothetical seismic sources and generated tsunamis. The analysis of available geological, geophysical and seismological data for the period of instrumental observations (1918-2015) shows that the highest earthquake potential within the Arctic region is associated with the underwater Mid-Arctic zone of ocean bottom spreading (interplate boundary between Eurasia and North American plates) as well as with some areas of continental slope within the marginal seas. For the Arctic coast of Russia and the adjacent shelf area, the greatest tsunami danger of seismotectonic origin comes from the earthquakes occurring in the underwater Gakkel Ridge zone, the north-eastern part of the Mid-Arctic zone. In this area, one may expect earthquakes of magnitude Mw ˜ 6.5-7.0 at a rate of 10-2 per year and of magnitude Mw ˜ 7.5 at a

  4. Variations in sea surface roughness induced by the 2004 Sumatra-Andaman tsunami

    Directory of Open Access Journals (Sweden)

    O. A. Godin

    2009-07-01

    Full Text Available Observations of tsunamis away from shore are critically important for improving early warning systems and understanding of tsunami generation and propagation. Tsunamis are difficult to detect and measure in the open ocean because the wave amplitude there is much smaller than it is close to shore. Currently, tsunami observations in deep water rely on measurements of variations in the sea surface height or bottom pressure. Here we demonstrate that there exists a different observable, specifically, ocean surface roughness, which can be used to reveal tsunamis away from shore. The first detailed measurements of the tsunami effect on sea surface height and radar backscattering strength in the open ocean were obtained from satellite altimeters during passage of the 2004 Sumatra-Andaman tsunami. Through statistical analyses of satellite altimeter observations, we show that the Sumatra-Andaman tsunami effected distinct, detectable changes in sea surface roughness. The magnitude and spatial structure of the observed variations in radar backscattering strength are consistent with hydrodynamic models predicting variations in the near-surface wind across the tsunami wave front. Tsunami-induced changes in sea surface roughness can be potentially used for early tsunami detection by orbiting microwave radars and radiometers, which have broad surface coverage across the satellite ground track.

  5. Far field tsunami simulations of the 1755 Lisbon earthquake: Implications for tsunami hazard to the U.S. East Coast and the Caribbean

    Science.gov (United States)

    Barkan, R.; ten Brink, Uri S.; Lin, J.

    2009-01-01

    The great Lisbon earthquake of November 1st, 1755 with an estimated moment magnitude of 8.5-9.0 was the most destructive earthquake in European history. The associated tsunami run-up was reported to have reached 5-15??m along the Portuguese and Moroccan coasts and the run-up was significant at the Azores and Madeira Island. Run-up reports from a trans-oceanic tsunami were documented in the Caribbean, Brazil and Newfoundland (Canada). No reports were documented along the U.S. East Coast. Many attempts have been made to characterize the 1755 Lisbon earthquake source using geophysical surveys and modeling the near-field earthquake intensity and tsunami effects. Studying far field effects, as presented in this paper, is advantageous in establishing constraints on source location and strike orientation because trans-oceanic tsunamis are less influenced by near source bathymetry and are unaffected by triggered submarine landslides at the source. Source location, fault orientation and bathymetry are the main elements governing transatlantic tsunami propagation to sites along the U.S. East Coast, much more than distance from the source and continental shelf width. Results of our far and near-field tsunami simulations based on relative amplitude comparison limit the earthquake source area to a region located south of the Gorringe Bank in the center of the Horseshoe Plain. This is in contrast with previously suggested sources such as Marqu??s de Pombal Fault, and Gulf of C??diz Fault, which are farther east of the Horseshoe Plain. The earthquake was likely to be a thrust event on a fault striking ~ 345?? and dipping to the ENE as opposed to the suggested earthquake source of the Gorringe Bank Fault, which trends NE-SW. Gorringe Bank, the Madeira-Tore Rise (MTR), and the Azores appear to have acted as topographic scatterers for tsunami energy, shielding most of the U.S. East Coast from the 1755 Lisbon tsunami. Additional simulations to assess tsunami hazard to the U.S. East

  6. Alternative Tsunami Models

    Science.gov (United States)

    Tan, A.; Lyatskaya, I.

    2009-01-01

    The interesting papers by Margaritondo (2005 "Eur. J. Phys." 26 401) and by Helene and Yamashita (2006 "Eur. J. Phys." 27 855) analysed the great Indian Ocean tsunami of 2004 using a simple one-dimensional canal wave model, which was appropriate for undergraduate students in physics and related fields of discipline. In this paper, two additional,…

  7. ALGERIA’S VULNERABILITY TO TSUNAMIS FROM NEAR-FIELD SEISMIC SOURCES

    Directory of Open Access Journals (Sweden)

    ALGERIA’S VULNERABILITY TO TSUNAMIS FROM NEAR-FIELD SEISMIC SOURCES

    2012-01-01

    Full Text Available Evaluation of the effects of tsunami damage relative to earthquake damage may help to identify critical coastal zone structures and exposed populations for near field tsunami risk. In this work, we propose to define the ratio between tsunami intensity and earthquake intensity as a measure of near field tsunami vulnerability for coastal communities. This parameter is estimated for 13 tsunami events reported in North Algeria from the 14th century to present. Although the results show that there are no tsunamis that are unusually large for the size of the earthquake that generated them, coastal communities remain at risk from these periodic hazards.We also use tsunami modelling and published information to estimate maximum inundation in Northern Algeria. Then, we generate a flooding map, which reveals the communities, buildings and infrastructure that are exposed to the tsunami hazard. This map shows that the majority of the people in Algiers and Oran live above 5 meters in elevation, and are hence not exposed to the hazard. Despite this, the coastline remains vulnerable to tsunami as earthquakes can damage poorly constructed buildings and other infrastructure, weakening it prior to the arrival of the tsunami. To increase resilience in the coastal zone, tsunami and earthquake awareness, education and preparedness must become a priority in the context of regional early warning programs.

  8. Microbial ecology of Thailand tsunami and non-tsunami affected terrestrials.

    Directory of Open Access Journals (Sweden)

    Naraporn Somboonna

    Full Text Available The effects of tsunamis on microbial ecologies have been ill-defined, especially in Phang Nga province, Thailand. This ecosystem was catastrophically impacted by the 2004 Indian Ocean tsunami as well as the 600 year-old tsunami in Phra Thong island, Phang Nga province. No study has been conducted to elucidate their effects on microbial ecology. This study represents the first to elucidate their effects on microbial ecology. We utilized metagenomics with 16S and 18S rDNA-barcoded pyrosequencing to obtain prokaryotic and eukaryotic profiles for this terrestrial site, tsunami affected (S1, as well as a parallel unaffected terrestrial site, non-tsunami affected (S2. S1 demonstrated unique microbial community patterns than S2. The dendrogram constructed using the prokaryotic profiles supported the unique S1 microbial communities. S1 contained more proportions of archaea and bacteria domains, specifically species belonging to Bacteroidetes became more frequent, in replacing of the other typical floras like Proteobacteria, Acidobacteria and Basidiomycota. Pathogenic microbes, including Acinetobacter haemolyticus, Flavobacterium spp. and Photobacterium spp., were also found frequently in S1. Furthermore, different metabolic potentials highlighted this microbial community change could impact the functional ecology of the site. Moreover, the habitat prediction based on percent of species indicators for marine, brackish, freshwater and terrestrial niches pointed the S1 to largely comprise marine habitat indicating-species.

  9. Tsunami Forecasting in the Atlantic Basin

    Science.gov (United States)

    Knight, W. R.; Whitmore, P.; Sterling, K.; Hale, D. A.; Bahng, B.

    2012-12-01

    -computation - starting with those sources that carry the highest risk. Model computation zones are confined to regions at risk to save computation time. For example, Atlantic sources have been shown to not propagate into the Gulf of Mexico. Therefore, fine grid computations are not performed in the Gulf for Atlantic sources. Outputs from the Atlantic model include forecast marigrams at selected sites, maximum amplitudes, drawdowns, and currents for all coastal points. The maximum amplitude maps will be supplemented with contoured energy flux maps which show more clearly the effects of bathymetric features on tsunami wave propagation. During an event, forecast marigrams will be compared to observations to adjust the model results. The modified forecasts will then be used to set alert levels between coastal breakpoints, and provided to emergency management.

  10. Three-dimensional tsunami analysis for the plot plan of a sodium-cooled fast reactor plant

    International Nuclear Information System (INIS)

    Hayakawa, Satoshi; Watanabe, Osamu; Itoh, Kei; Yamamoto, Tomohiko

    2013-01-01

    As the practical evaluation method of the effect of tsunami on buildings, the formula of tsunami force has been used. However, it cannot be applied to complex geometry of buildings. In this study, to analyze the effect of tsunami on the buildings of sodium-cooled fast reactor plant more accurately, three-dimensional tsunami analysis was performed. In the analysis, VOF (Volume of Fluid) method was used to capture free surface of tsunami. At the beginning, it was confirmed that the tsunami experiment results was reproduced by VOF method accurately. Next, the three-dimensional tsunami analysis was performed with VOF method to evaluate the flow field around the buildings of the plant from the beginning of the tsunami until the backwash of that. (author)

  11. The Redwood Coast Tsunami Work Group: a unique organization promoting earthquake and tsunami resilience on California's North Coast

    Science.gov (United States)

    Dengler, L.; Henderson, C.; Larkin, D.; Nicolini, T.; Ozaki, V.

    2012-12-01

    The Northern California counties of Del Norte, Humboldt, and Mendocino account for over 30% of California's coastline and is one of the most seismically active areas of the contiguous 48 states. The region is at risk from earthquakes located on- and offshore and from tsunamis generated locally from faults associated with the Cascadia subduction zone (CSZ) and from distant sources elsewhere in the Pacific. In 1995 the California Geological Survey (CGS) published a scenario for a CSZ earthquake that included both strong ground shaking effects and a tsunami. As a result of the scenario, the Redwood Coast Tsunami Work Group (RCTWG), an organization of government agencies, tribes, service groups, academia and the private sector, was formed to coordinate and promote earthquake and tsunami hazard awareness and mitigation in the three-county region. The RCTWG and its member agencies projects include education/outreach products and programs, tsunami hazard mapping, signage and siren planning. Since 2008, RCTWG has worked with the California Emergency Management Agency (Cal EMA) in conducting tsunami warning communications tests on the North Coast. In 2007, RCTWG members helped develop and carry out the first tsunami training exercise at FEMA's Emergency Management Institute in Emmitsburg, MD. The RCTWG has facilitated numerous multi-agency, multi-discipline coordinated exercises, and RCTWG county tsunami response plans have been a model for other regions of the state and country. Eight North Coast communities have been recognized as TsunamiReady by the National Weather Service, including the first National Park the first State Park and only tribe in California to be so recognized. Over 500 tsunami hazard zone signs have been posted in the RCTWG region since 2008. Eight assessment surveys from 1993 to 2010 have tracked preparedness actions and personal awareness of earthquake and tsunami hazards in the county and additional surveys have tracked public awareness and tourist

  12. NOAA/WDC Global Tsunami Deposits Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Discover where, when and how severely tsunamis affected Earth in geologic history. Information regarding Tsunami Deposits and Proxies for Tsunami Events complements...

  13. When is a Tsunami a Mega-Tsunami?

    Science.gov (United States)

    Chague-Goff, C.; Goff, J. R.; Terry, J. P.; Goto, K.

    2014-12-01

    The 2004 Indian Ocean Tsunami is commonly called a mega-tsunami, and this attribute has also been linked to the 2011 Tohoku-oki tsunami. However, since this term was first coined in the early 1990's there have been very few attempts to define it. As such it has been applied in a rather arbitrary fashion to a number of tsunami characteristics, such as wave height or amplitude at both the source and at distant locations, run-up height, geographical extent and impact. The first use of the term is related to a tsunami generated by a large bolide impact and indeed it seems entirely appropriate that the term should be used for such rare events on geological timescales. However, probably as a result of media-driven hyperbole, scientists have used this term at least twice in the last decade, which is hardly a significant portion of the geological timescale. It therefore seems reasonable to suggest that these recent unexpectedly large events do not fall in the category of mega-tsunami but into a category of exceptional events within historical experience and local perspective. The use of the term mega-tsunami over the past 14 years is discussed and a definition is provided that marks the relative uniqueness of these events and a new term, appropriately Japanese in origin, namely that of souteigai-tsunami, is proposed. Examples of these tsunamis will be provided.

  14. A Collaborative Effort Between Caribbean States for Tsunami Numerical Modeling: Case Study CaribeWave15

    Science.gov (United States)

    Chacón-Barrantes, Silvia; López-Venegas, Alberto; Sánchez-Escobar, Rónald; Luque-Vergara, Néstor

    2017-10-01

    Historical records have shown that tsunami have affected the Caribbean region in the past. However infrequent, recent studies have demonstrated that they pose a latent hazard for countries within this basin. The Hazard Assessment Working Group of the ICG/CARIBE-EWS (Intergovernmental Coordination Group of the Early Warning System for Tsunamis and Other Coastal Threats for the Caribbean Sea and Adjacent Regions) of IOC/UNESCO has a modeling subgroup, which seeks to develop a modeling platform to assess the effects of possible tsunami sources within the basin. The CaribeWave tsunami exercise is carried out annually in the Caribbean region to increase awareness and test tsunami preparedness of countries within the basin. In this study we present results of tsunami inundation using the CaribeWave15 exercise scenario for four selected locations within the Caribbean basin (Colombia, Costa Rica, Panamá and Puerto Rico), performed by tsunami modeling researchers from those selected countries. The purpose of this study was to provide the states with additional results for the exercise. The results obtained here were compared to co-seismic deformation and tsunami heights within the basin (energy plots) provided for the exercise to assess the performance of the decision support tools distributed by PTWC (Pacific Tsunami Warning Center), the tsunami service provider for the Caribbean basin. However, comparison of coastal tsunami heights was not possible, due to inconsistencies between the provided fault parameters and the modeling results within the provided exercise products. Still, the modeling performed here allowed to analyze tsunami characteristics at the mentioned states from sources within the North Panamá Deformed Belt. The occurrence of a tsunami in the Caribbean may affect several countries because a great variety of them share coastal zones in this basin. Therefore, collaborative efforts similar to the one presented in this study, particularly between neighboring

  15. Mexican Earthquakes and Tsunamis Catalog Reviewed

    Science.gov (United States)

    Ramirez-Herrera, M. T.; Castillo-Aja, R.

    2015-12-01

    Today the availability of information on the internet makes online catalogs very easy to access by both scholars and the public in general. The catalog in the "Significant Earthquake Database", managed by the National Center for Environmental Information (NCEI formerly NCDC), NOAA, allows access by deploying tabular and cartographic data related to earthquakes and tsunamis contained in the database. The NCEI catalog is the product of compiling previously existing catalogs, historical sources, newspapers, and scientific articles. Because NCEI catalog has a global coverage the information is not homogeneous. Existence of historical information depends on the presence of people in places where the disaster occurred, and that the permanence of the description is preserved in documents and oral tradition. In the case of instrumental data, their availability depends on the distribution and quality of seismic stations. Therefore, the availability of information for the first half of 20th century can be improved by careful analysis of the available information and by searching and resolving inconsistencies. This study shows the advances we made in upgrading and refining data for the earthquake and tsunami catalog of Mexico since 1500 CE until today, presented in the format of table and map. Data analysis allowed us to identify the following sources of error in the location of the epicenters in existing catalogs: • Incorrect coordinate entry • Place name erroneous or mistaken • Too general data that makes difficult to locate the epicenter, mainly for older earthquakes • Inconsistency of earthquakes and the tsunami occurrence: earthquake's epicenter located too far inland reported as tsunamigenic. The process of completing the catalogs directly depends on the availability of information; as new archives are opened for inspection, there are more opportunities to complete the history of large earthquakes and tsunamis in Mexico. Here, we also present new earthquake and

  16. Source of 1755 Lisbon earthquake and tsunami investigated

    Science.gov (United States)

    Zitellini, Nevio; Mendes, L. A.; Cordoba, D.; Danobeitia, J.; Nicolich, R.; Pellis, G.; Ribeiro, A.; Sartori, R.; Torelli, L.; Bartolome, R.; Bortoluzzi, G.; Calafato, A.; Carrilho, F.; Casoni, L.; Chierici, F.; Corela, C.; Correggiari, A.; Della Vedova, B.; Gracia, E.; Jornet, P.; Landuzzi, M.; Ligi, M.; Magagnoli, A.; Marozzi, G.; Matias, L.; Penitenti, D.; Rodriguez, P.; Rovere, M.; Terrinha, P.; Vigliotti, L.; Ruiz, A. Zahinos

    On November 1, 1755, the city of Lisbon was completely devastated by the combined effect of a tremendous earthquake, tsunami waves, and fire. The 1755 Lisbon earthquake was the most destructive cataclysm recorded in western Europe since the Roman Republic, with an estimated earthquake magnitude Mw ˜8.5 [Martins and Mendes Victor, 1990] and estimated tsunami magnitude of Mt= Mw= 8.5. The earthquake was felt as far away as Great Britain and Finland. The tsunami hit many coastal cities along southwest Iberia and North Africa, causing heavy destruction in Tanger and Casablanca.

  17. Changes of Probability Distributions in Tsunami Heights with Fault Parameters

    Science.gov (United States)

    Kim, Kwan-Hyuck; Kwon, Hyun-Han; Park, Yong Sung; Cho, Yong-Sik

    2017-04-01

    This study explored the changes of the probability distribution in tsunami heights along the eastern coastline of the Korea for virtual earthquakes. The results confirmed that the changes of the probability distribution in tsunami heights depending on tsunami fault parameters was found. A statistical model was developed in order to jointly analyse tsunami heights on a variety of events by regarding the functional relationships; the parameters in a Weibull distribution with earthquake characteristics could be estimated, all within a Bayesian regression framework. The proposed model could be effective and informative for the estimation of tsunami risk from an earthquake of a given magnitude at a particular location. Definitely, the coefficient of determination between the true and estimated values for Weibull distribution parameters were over 90% for both virtual and historical tsunami. Keywords: Tsunami heights, Bayesian model, Regression analysis, Risk analysis Acknowledgements This research was supported by a grant from Study on Solitary Wave Run-up for Hazard Mitigation of Coastal Communities against Sea Level Rise Project[No. 20140437] funded by Korea Institute of Marine Science and Technology promotion.

  18. 2004 INDIAN OCEAN TSUNAMI ON THE MALDIVES ISLANDS: INITIAL OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    Barbara H. Keating

    2005-01-01

    Full Text Available Post-tsunami field surveys of the Maldives Islands where carried out to document the effects of the tsunami inundation. The study area was situated in the islands of South Male Atoll that were some of the most heavily damaged islands of the Maldive Islands. The tsunami damaged the natural environment, vegetation, man-made structures, and residents. The maximum tsunami wave height was 3-4 m. This level of inundation exceeded the height of most residents. The wave height was greatest on the eastern rim of the South Male Atoll (closest to the tsunami source and these islands were completely flooded. The islands within the interior of the atoll saw the lowest wave heights, and these were only marginally flooded.Surveys of flood lines left on the exterior and interior of structures were measured but proved to be substantially less than that reported by survivors. It appears that the highest inundation was not preserved as flood lines. We suggest that the turbulence associated with the tsunami inundation erased the highest lines or that they did not form due to an absence of debris and organic compounds that acted as adhesion during the initial flooding.Significant erosion was documented. Deposition took place in the form of sand sheets while only desultory deposition of coral clasts in marginal areas was found. Seasonal erosion, and storms are likely to remove most or all of the traces of the tsunami within these islands.

  19. Scenario Based Approach for Multiple Source Tsunami Hazard Assessment for Sines, Portugal

    Science.gov (United States)

    Wronna, Martin; Omira, Rachid; Baptista, Maria Ana

    2015-04-01

    In this paper, we present a scenario-based approach for tsunami hazard assessment for the city and harbour of Sines, Portugal one the test-sites of project ASTARTE. Sines holds one of the most important deep-water ports which contains oil-bearing, petrochemical, liquid bulk, coal and container terminals. The port and its industrial infrastructures are facing the ocean to the southwest facing the main seismogenic sources. This work considers two different seismic zones: the Southwest Iberian Margin and the Gloria Fault. Within these two regions, a total of five scenarios were selected to assess tsunami impact at the test site. These scenarios correspond to the worst-case credible scenario approach based upon the largest events of the historical and paleo tsunami catalogues. The tsunami simulations from the source area towards the coast is carried out using NSWING a Non-linear Shallow Water Model With Nested Grids. The code solves the non-linear shallow water equations using the discretization and explicit leap-frog finite difference scheme, in a Cartesian or Spherical frame. The initial sea surface displacement is assumed to be equal to the sea bottom deformation that is computed by Okada equations. Both uniform and non-uniform slip conditions are used. The presented results correspond to the models using non-uniform slip conditions. In this study, the static effect of tides is analysed for three different tidal stages MLLW (mean lower low water) MSL (mean sea level) and MHHW (mean higher high water). For each scenario, inundation is described by maximum values of wave height, flow depth, drawdown, run-up and inundation distance. Synthetic waveforms are computed at virtual tide gages at specific locations outside and inside the harbour. The final results consist of Aggregate Scenario Maps presented for the different inundation parameters. This work is funded by ASTARTE - Assessment, Strategy And Risk Reduction for Tsunamis in Europe - FP7-ENV2013 6.4-3, Grant 603839

  20. The 30 December 2002 landslide-induced tsunamis in Stromboli: sequence of the events reconstructed from the eyewitness accounts

    Science.gov (United States)

    Tinti, S.; Manucci, A.; Pagnoni, G.; Armigliato, A.; Zaniboni, F.

    2005-10-01

    On 30 December 2002 the coast of the volcanic island of Stromboli, in the Tyrrhenian sea, Italy, was attacked by two tsunamis generated by landslides that took place on the north-west flank of the volcano. The landslides and the tsunamis represented the most impressive and threatening episodes of a strong effusive eruption, started on 28 December from a new vent which opened close to the north-east crater of the volcano. In spite of the intensified monitoring carried out in response to the eruption, the landslides and the ensuing tsunamis were not foreseen, and the available instrumental data are insufficient to allow a precise reconstruction of the sequence of the events. The seismic network recorded two main landslides along the steep slope of Sciara del Fuoco, with onset around 13:15 and 13:23 local time (GMT+1). The tsunamis were the direct consequence of the mass movements. Three main post-event surveys helped make assessment on the wave impact on the coast. In this paper the attention is focussed on the accounts of the eye-witnesses, that help us clarify and understand what happened. People in the source area (Sciara del Fuoco) reported a small-volume subaerial slide taking place first, then a sharp cut forming in the sea water down to the sea floor (about 10-20 m deep) and propagating almost parallel to the coastline, be concomitantly associated with a sea retreat and a subsequent sea advance. It is suggested here that the cut was the effect of a large submarine landslide that detached from very close to the coast and produced the 13:15 signal in the recorded seismograms. The second, mostly subaerial, slump was observed to slide down 7-8 min later and to excite a train of waves some distance offshore. Not all the witnesses realised that two distinct tsunamis occurred. The tsunami period was probably in the order of 100 s, but shorter period crests were seen to travel on the top of the long-period waves by several persons. The duration of each tsunami was

  1. The 30 December 2002 landslide-induced tsunamis in Stromboli: sequence of the events reconstructed from the eyewitness accounts

    Directory of Open Access Journals (Sweden)

    S. Tinti

    2005-01-01

    Full Text Available On 30 December 2002 the coast of the volcanic island of Stromboli, in the Tyrrhenian sea, Italy, was attacked by two tsunamis generated by landslides that took place on the north-west flank of the volcano. The landslides and the tsunamis represented the most impressive and threatening episodes of a strong effusive eruption, started on 28 December from a new vent which opened close to the north-east crater of the volcano. In spite of the intensified monitoring carried out in response to the eruption, the landslides and the ensuing tsunamis were not foreseen, and the available instrumental data are insufficient to allow a precise reconstruction of the sequence of the events. The seismic network recorded two main landslides along the steep slope of Sciara del Fuoco, with onset around 13:15 and 13:23 local time (GMT+1. The tsunamis were the direct consequence of the mass movements. Three main post-event surveys helped make assessment on the wave impact on the coast. In this paper the attention is focussed on the accounts of the eye-witnesses, that help us clarify and understand what happened. People in the source area (Sciara del Fuoco reported a small-volume subaerial slide taking place first, then a sharp cut forming in the sea water down to the sea floor (about 10–20 m deep and propagating almost parallel to the coastline, be concomitantly associated with a sea retreat and a subsequent sea advance. It is suggested here that the cut was the effect of a large submarine landslide that detached from very close to the coast and produced the 13:15 signal in the recorded seismograms. The second, mostly subaerial, slump was observed to slide down 7–8 min later and to excite a train of waves some distance offshore. Not all the witnesses realised that two distinct tsunamis occurred. The tsunami period was probably in the order of 100 s, but shorter period crests were seen to travel on the top of the long-period waves by several persons. The duration of

  2. Design and challenges for a tsunami early warning system in the Marmara Sea

    Science.gov (United States)

    Necmioğlu, Öcal

    2016-01-01

    Since 1900, around 90,000 people have lost their lives in 76 earthquakes in Turkey, with a total affected population of around 7 million and direct losses of around 25 billion USD. Based on a time-dependent model that includes coseismic and post-seismic effects of the 1999 Kocaeli earthquake with moment magnitude Mw = 7.4, Parsons (J Geophys Res. 109, 2004) concluded that the probability of an earthquake with Mw > 7 in the Sea of Marmara near Istanbul is 35 to 70 % in the next 30 years. According to a 2011 study, an earthquake with Mw = 7.25 on the Main Marmara Fault is expected to heavily damage or destroy 2 to 4 % of around 1,000,000 buildings in Istanbul with a population around 13 million, with 9 to 15 % of the buildings receiving medium damage and 20 to 34 % of the buildings damaged lightly (Erdik, Science 341:72, 2013). In the absence of adequate post-earthquake assembly areas especially in the heavily urbanized Istanbul, it is evident that after a major earthquake, especially in the coastal parts of the city, citizens would be storming to landfill assembly and recreational areas. Besides earthquakes, around 30 tsunamis have been reported by Altınok et al. (Natural Hazards Earth System Science 11:273-293, 2011) in the Marmara Sea. Among those, catastrophic earthquakes such as 1509, 1766, and 1894 resulted in considerable tsunamis and some damage. The latest tsunami observed in Marmara was due to a triggered submarine landslide of the 1999 Mw = 7.4 Kocaeli earthquake which led to reported run-up heights of 1-3 m in most places (Tinti et al., Marine Geology 225:311-330, 2006). In this study, I propose a design for a tsunami warning system specific for the Marmara region that is strongly coupled with the earthquake early warning system (due to the short arrival times of tsunami) and stakeholders of the tsunami mitigation activities, such as local and regional components of disaster and emergency management and civil protection units, to ensure that the citizens

  3. Assessment of Nearshore Hazard due to Tsunami-Induced Currents

    Science.gov (United States)

    Lynett, P. J.; Ayca, A.; Borrero, J. C.; Eskijian, M.; Miller, K.; Wilson, R. I.

    2014-12-01

    The California Tsunami Program in cooperation with NOAA and FEMA has begun implementing a plan to increase tsunami hazard preparedness and mitigation in maritime communities (both ships and harbor infrastructure) through the development of in-harbor hazard maps, offshore safety zones for boater evacuation, and associated guidance for harbors and marinas before, during and following tsunamis. The hope is that the maritime guidance and associated education program will help save lives and reduce exposure of damage to boats and harbor infrastructure. Findings will be used to develop maps, guidance documents, and consistent policy recommendations for emergency managers and port authorities and provide information critical to real-time decisions required when responding to tsunami alert notifications. The initial goals of the study are to (1) evaluate the effectiveness and sensitivity of existing numerical models for assessing maritime tsunami hazards, (2) find a relationship between current speeds and expected damage levels, (3) evaluate California ports and harbors in terms of tsunami induced hazards by identifying regions that are prone to higher current speeds and damage and to identify regions of relatively lower impact that may be used for evacuation of maritime assets, and (4) determine 'safe depths' for evacuation of vessels from ports and harbors during a tsunami event. We will present details of a new initiative to evaluate the future likelihood of failure for different structural components of a harbor, leading to the identification of high priority areas for mitigation. This presentation will focus on the results from California ports and harbors across the State, and will include feedback we have received from discussions with local harbor masters and port authorities. To help promote accurate and consistent products, the authors are also working through the National Tsunami Hazard Mitigation Program to organize a tsunami current model benchmark workshop.

  4. Bodrum-Kos (Turkey-Greece) Mw 6.6 earthquake and tsunami of 20 July 2017: a test for the Mediterranean tsunami warning system

    Science.gov (United States)

    Heidarzadeh, Mohammad; Necmioglu, Ocal; Ishibe, Takeo; Yalciner, Ahmet C.

    2017-12-01

    Various Tsunami Service Providers (TSPs) within the Mediterranean Basin supply tsunami warnings including CAT-INGV (Italy), KOERI-RETMC (Turkey), and NOA/HL-NTWC (Greece). The 20 July 2017 Bodrum-Kos (Turkey-Greece) earthquake (Mw 6.6) and tsunami provided an opportunity to assess the response from these TSPs. Although the Bodrum-Kos tsunami was moderate (e.g., runup of 1.9 m) with little damage to properties, it was the first noticeable tsunami in the Mediterranean Basin since the 21 May 2003 western Mediterranean tsunami. Tsunami waveform analysis revealed that the trough-to-crest height was 34.1 cm at the near-field tide gauge station of Bodrum (Turkey). Tsunami period band was 2-30 min with peak periods at 7-13 min. We proposed a source fault model for this tsunami with the length and width of 25 and 15 km and uniform slip of 0.4 m. Tsunami simulations using both nodal planes produced almost same results in terms of agreement between tsunami observations and simulations. Different TSPs provided tsunami warnings at 10 min (CAT-INGV), 19 min (KOERI-RETMC), and 18 min (NOA/HL-NTWC) after the earthquake origin time. Apart from CAT-INGV, whose initial Mw estimation differed 0.2 units with respect to the final value, the response from the other two TSPs came relatively late compared to the desired warning time of 10 min, given the difficulties for timely and accurate calculation of earthquake magnitude and tsunami impact assessment. It is argued that even if a warning time of 10 min was achieved, it might not have been sufficient for addressing near-field tsunami hazards. Despite considerable progress and achievements made within the upstream components of NEAMTWS (North East Atlantic, Mediterranean and Connected seas Tsunami Warning System), the experience from this moderate tsunami may highlight the need for improving operational capabilities of TSPs, but more importantly for effectively integrating civil protection authorities into NEAMTWS and strengthening

  5. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Maine

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Maine. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Maine.

  6. May Gravity detect Tsunami ?

    OpenAIRE

    Fargion, D.

    2004-01-01

    The present gravitational wave detectors are reaching lowest metric deviation fields able to detect galactic and extra-galactic gravitational waves, related to Supernova explosions up to Virgo cluster. The same gravitational wave detector are nevertheless almost able to reveal, in principle, near field Newtonian gravitational perturbations due to fast huge mass displacements as the ones occurring during largest Earth-Quake or Tsunami as the last on 26nd December 2004 in Asiatic area. Virgo an...

  7. The Tsunami challenge

    Directory of Open Access Journals (Sweden)

    Greco Pietro

    2005-03-01

    Full Text Available Many lives could have been saved on 26 December 2004, when the tsunami unleashed by an earthquake of magnitude 9.0 off the coast of the Indonesian island Sumatra struck a dozen coastal villages along the Indian Ocean. Those lives could have been saved if, on that day, science communication had not resulted in a complete failure to communicate scientific information adequately in many cases, in different places and at different levels.

  8. A review of tsunami simulation activities for NPPs safety

    International Nuclear Information System (INIS)

    Sharma, Pavan K.

    2011-01-01

    The tsunami generated on December 26, 2004 due to Sumatra earthquake of magnitude 9.3 resulted in inundation at the various coastal sites of India. The site selection and design of Indian nuclear power plants demand the evaluation of run up and the structural barriers for the coastal plants: Besides it is also desirable to evaluate the early warning system for tsunamigenic earthquakes. The tsunamis originate from submarine faults, underwater volcanic activities, sub-aerial landslides impinging on the sea and submarine landslides. In case of a submarine earthquake-induced tsunami the wave is generated in the fluid domain due to displacement of the seabed. There are three phases of tsunami: generation, propagation, and run-up. Reactor Safety Division (RSD) of Bhabha Atomic Research Centre (BARC), Trombay has initiated computational simulation for all the three phases of tsunami source generation, its propagation and finally run up evaluation for the protection of public life, property and various industrial infrastructures located on the coastal regions of India. These studies could be effectively utilized for design and implementation of early warning system for coastal region of the country apart from catering to the needs of Indian nuclear installations. This paper presents some results of tsunami waves based on finite difference numerical approaches with shallow water wave theory. The present paper evaluate the results of various simulation i.e. Single fault Sumatra model, four and five fault Sumatra Model, Nias insignificant tsunami and also some parametric studies results for tsunami waring system scenario generation. A study is carried for the tsunami due to Sumatra earthquake in 2004 with TUNAMI-N2 software. Bathymetry data available from the National Geophysical Data Center was used for this study. The single fault and detailed four and five fault data were used to calculate sea surface deformations which were subsequently used as initial conditions for

  9. Post Fukushima tsunami simulations for Malaysian coasts

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Hock Lye, E-mail: kohhl@ucsiuniversity.edu.my [Office of Deputy Vice Chancellor for Research and Post Graduate Studies, UCSI University, Jalan Menara Gading, 56000 Kuala Lumpur (Malaysia); Teh, Su Yean, E-mail: syteh@usm.my [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Abas, Mohd Rosaidi Che [Malaysian Meteorological Department, MOSTI, Kuala Lumpur (Malaysia)

    2014-10-24

    The recent recurrences of mega tsunamis in the Asian region have rekindled concern regarding potential tsunamis that could inflict severe damage to affected coastal facilities and communities. The 11 March 2011 Fukushima tsunami that crippled nuclear power plants in Northern Japan has further raised the level of caution. The recent discovery of petroleum reserves in the coastal water surrounding Malaysia further ignites the concern regarding tsunami hazards to petroleum facilities located along affected coasts. Working in a group, federal government agencies seek to understand the dynamics of tsunami and their impacts under the coordination of the Malaysian National Centre for Tsunami Research, Malaysian Meteorological Department. Knowledge regarding the generation, propagation and runup of tsunami would provide the scientific basis to address safety issues. An in-house tsunami simulation models known as TUNA has been developed by the authors to assess tsunami hazards along affected beaches so that mitigation measures could be put in place. Capacity building on tsunami simulation plays a critical role in the development of tsunami resilience. This paper aims to first provide a simple introduction to tsunami simulation towards the achievement of tsunami simulation capacity building. The paper will also present several scenarios of tsunami dangers along affected Malaysia coastal regions via TUNA simulations to highlight tsunami threats. The choice of tsunami generation parameters reflects the concern following the Fukushima tsunami.

  10. The Holocene Storegga Slide tsunami in the United Kingdom

    Science.gov (United States)

    Smith, D. E.; Shi, S.; Cullingford, R. A.; Dawson, A. G.; Dawson, S.; Firth, C. R.; Foster, I. D. L.; Fretwell, P. T.; Haggart, B. A.; Holloway, L. K.; Long, D.

    2004-12-01

    All currently known sites in the United Kingdom with evidence for the Holocene Storegga Slide tsunami are described. Information on the altitude, distribution, stratigraphical context, age, particle size profile and microfossil characteristics of the deposits is presented. The tsunami involved a greater area than previously described, reaching a coastline over 600 km long. The ubiquitous sand layer which forms the main deposit associated with the event is shown to exhibit a consistent morphology and a particle size profile marked by fining-upwards sequences. An analysis of new and previously published radiocarbon dates indicates that from evidence in the United Kingdom, the event took place sometime around 7100 radiocarbon years BP (7900 calibrated years BP). A new isobase model for mainland Scotland and adjacent areas, providing a preliminary estimate of land uplift since the tsunami, is presented. The model estimates contemporary sea surface level offshore at 14 m below the present day mean high water spring tides. Tsunami sediment run-up is greatest in inlets, where it reaches at least 25 m on Shetland and at least 5 m along the mainland coastline to the south, and run-up of the tsunami would have exceeded these values. The tsunami sediments identified here are considered particularly valuable as a synchronous marker horizon.

  11. Impact of Hellenic Arc Tsunamis on Corsica (France)

    Science.gov (United States)

    Gailler, Audrey; Schindelé, F.; Hébert, H.

    2016-12-01

    In the historical period, the Eastern Mediterranean has been devastated by several tsunamis, the two most damaging were those of AD 365 and AD 1303, generated by great earthquakes of magnitude >8 at the Hellenic plate boundary. Recently, events of 6-7 magnitude have occurred in this region. As the French tsunami warning center has to ensure the warning for the French coastlines, the question has raised the possibility for a major tsunami triggered along the Hellenic arc to impact the French coasts. The focus is on the Corsica coasts especially, to estimate what would be the expected wave heights, and from which threshold of magnitude it would be necessary to put the population under cover. This study shows that a magnitude 8.0 earthquake nucleated along the Hellenic arc could induce in some cases a tsunami that would be observed along the Corsica coasts, and for events of 8.5 magnitude amplitudes exceeding 50 cm can be expected, which would be dangerous in harbors and beach areas especially. The main contribution of these results is the establishment of specific thresholds of magnitude for the tsunami warning along the French coasts, 7.8 for the advisory level (coastal marine threat with harbors and beaches evacuation), and 8.3 for the watch level (inland inundation threat) for tsunamis generated along the Hellenic arc.

  12. Tsunami prevention and mitigation necessities and options derived from tsunami risk assessment in Indonesia

    Science.gov (United States)

    Post, J.; Zosseder, K.; Wegscheider, S.; Steinmetz, T.; Mück, M.; Strunz, G.; Riedlinger, T.; Anwar, H. Z.; Birkmann, J.; Gebert, N.

    2009-04-01

    Risk and vulnerability assessment is an important component of an effective End-to-End Tsunami Early Warning System and therefore contributes significantly to disaster risk reduction. Risk assessment is a key strategy to implement and design adequate disaster prevention and mitigation measures. The knowledge about expected tsunami hazard impacts, exposed elements, their susceptibility, coping and adaptation mechanisms is a precondition for the development of people-centred warning structures, local specific response and recovery policy planning. The developed risk assessment and its components reflect the disaster management cycle (disaster time line) and cover the early warning as well as the emergency response phase. Consequently the components hazard assessment, exposure (e.g. how many people/ critical facilities are affected?), susceptibility (e.g. are the people able to receive a tsunami warning?), coping capacity (are the people able to evacuate in time?) and recovery (are the people able to restore their livelihoods?) are addressed and quantified. Thereby the risk assessment encompasses three steps: (i) identifying the nature, location, intensity and probability of potential tsunami threats (hazard assessment); (ii) determining the existence and degree of exposure and susceptibility to those threats; and (iii) identifying the coping capacities and resources available to address or manage these threats. The paper presents results of the research work, which is conducted in the framework of the GITEWS project and the Joint Indonesian-German Working Group on Risk Modelling and Vulnerability Assessment. The assessment methodology applied follows a people-centred approach to deliver relevant risk and vulnerability information for the purposes of early warning and disaster management. The analyses are considering the entire coastal areas of Sumatra, Java and Bali facing the Sunda trench. Selected results and products like risk maps, guidelines, decision support

  13. Tsunami Source Modeling of the 2015 Volcanic Tsunami Earthquake near Torishima, South of Japan

    Science.gov (United States)

    Sandanbata, O.; Watada, S.; Satake, K.; Fukao, Y.; Sugioka, H.; Ito, A.; Shiobara, H.

    2017-12-01

    An abnormal earthquake occurred at a submarine volcano named Smith Caldera, near Torishima Island on the Izu-Bonin arc, on May 2, 2015. The earthquake, which hereafter we call "the 2015 Torishima earthquake," has a CLVD-type focal mechanism with a moderate seismic magnitude (M5.7) but generated larger tsunami waves with an observed maximum height of 50 cm at Hachijo Island [JMA, 2015], so that the earthquake can be regarded as a "tsunami earthquake." In the region, similar tsunami earthquakes were observed in 1984, 1996 and 2006, but their physical mechanisms are still not well understood. Tsunami waves generated by the 2015 earthquake were recorded by an array of ocean bottom pressure (OBP) gauges, 100 km northeastern away from the epicenter. The waves initiated with a small downward signal of 0.1 cm and reached peak amplitude (1.5-2.0 cm) of leading upward signals followed by continuous oscillations [Fukao et al., 2016]. For modeling its tsunami source, or sea-surface displacement, we perform tsunami waveform simulations, and compare synthetic and observed waveforms at the OBP gauges. The linear Boussinesq equations are adapted with the tsunami simulation code, JAGURS [Baba et al., 2015]. We first assume a Gaussian-shaped sea-surface uplift of 1.0 m with a source size comparable to Smith Caldera, 6-7 km in diameter. By shifting source location around the caldera, we found the uplift is probably located within the caldera rim, as suggested by Sandanbata et al. [2016]. However, synthetic waves show no initial downward signal that was observed at the OBP gauges. Hence, we add a ring of subsidence surrounding the main uplift, and examine sizes and amplitudes of the main uplift and the subsidence ring. As a result, the model of a main uplift of around 1.0 m with a radius of 4 km surrounded by a ring of small subsidence shows good agreement of synthetic and observed waveforms. The results yield two implications for the deformation process that help us to understanding

  14. Stochastic evaluation of tsunami inundation and quantitative estimating tsunami risk

    International Nuclear Information System (INIS)

    Fukutani, Yo; Anawat, Suppasri; Abe, Yoshi; Imamura, Fumihiko

    2014-01-01

    We performed a stochastic evaluation of tsunami inundation by using results of stochastic tsunami hazard assessment at the Soma port in the Tohoku coastal area. Eleven fault zones along the Japan trench were selected as earthquake faults generating tsunamis. The results show that estimated inundation area of return period about 1200 years had good agreement with that in the 2011 Tohoku earthquake. In addition, we evaluated quantitatively tsunami risk for four types of building; a reinforced concrete, a steel, a brick and a wood at the Soma port by combining the results of inundation assessment and tsunami fragility assessment. The results of quantitative estimating risk would reflect properly vulnerability of the buildings, that the wood building has high risk and the reinforced concrete building has low risk. (author)

  15. Catalogue of tsunamis generated in Italy and in Côte d'Azur, France: a step towards a unified catalogue of tsunamis in Europe

    Directory of Open Access Journals (Sweden)

    A. Maramai

    1996-06-01

    Full Text Available This work presents a catalogue of the tsunamis generated in the seas watering the Italian coasts, including the neighbouring area of Côte d'Azur (France. Events generated far from Italy and affecting the Italian coasts are not taken into account here. The catalogue, that we will also call the Quick-Look Catalog (QLC, is organised in three main sections that are named the Quick-Look Table, the Quick-Look Accounts File and the References File, having the respective abbreviations of QLT, QLAF and RF. The QLT is a synoptic table containing the relevant information available for each event, one table row corresponding to one event. More details are provided in the QLAF, where each event is dedicated a specific subsection: here the description of the tsunami includes all essential aspects that are suitably referenced and is preceded by a concise report concerning the tsunami cause. Lastly, the RF is the list of all the papers and publications quoted in the QLT and QLAF. Notice that efforts have been made to qualify each event by means of contemporaneous sources, although later sources and indirect sources, such as existing catalogues, have not been disregarded. Besides, specific recent studies on the events have been given special mention. In this work some general review of the past catalogues of tsunamis and of recent trends in the subject are expressed. Particularly, great attention is given to analysing the CFB of the Italian tsunamis due to Caputo and his collaborators (Caputo and Faita, 1984; Bedosti and Caputo, 1986, the acronym being formed by the ordered initials of the authors. Motivations clarifying the need for a new catalogue of the Italian tsunamis are illustrated circumstantially. The very different philosophies that are at the basis of the CFB and of the present QLC lead to quite diverse products and results, that are summarised by a table where the events included in the CFB and in the QLC are compared: the net effect of the rigorous

  16. Impacts of the June 23, 2001 Peru Tsunami

    Science.gov (United States)

    Dengler, L.

    2001-12-01

    The tsunami generated by the June 23, 2001 Peru earthquake caused significant damage to a 20-km long stretch of coastline in the Municipality of Camana, southern Peru. Over 3000 structures were damaged or destroyed and 2000 hectares of farmland flooded and covered with sand. 22 people were killed in the Municipality and 62 were reported missing. All of the casualties were attributed to the tsunami; in Camana the earthquake produced Modified Mercalli Intensities only of VI or VII. The International Tsunami Survey Team (ITST) were in Peru July 5 - 15 and measured inundation, spoke with City, Red Cross, and Health Department officials, and interviewed survivors. The preliminary ITST findings: All eyewitnesses described an initial draw-down that lasted a substantial amount of time (15 minutes or more). The initial positive wave was small, followed by two destructive waves of near similar impact. Observing the water recede was the key to self-evacuation. No one responded to the ground shaking even though all felt the earthquake strongly. Damage was concentrated along a flat coastal beach no higher than 5 m above sea level. The largest waves (5 to 8 meters) produced by this tsunami coincided with the most developed beach area along the southern Peruvian coast. Tsunami waves penetrated 1.2-km inland and damaged or destroyed nearly all of the structures in this zone. Poorly built adobe and infilled wall structures performed very poorly in the tsunami impacted area. The few structures that survived appeared to have deeper foundations and more reinforcing. The most tsunami-vulnerable populations were newcomers to the coast. Most victims were farm workers and domestic summerhouse sitters who had not grown up along the coast and were unaware of tsunami hazards. Economic impacts are likely to last a long time. The main industries in Camana are tourism and agriculture and the tsunami damaged both. While the extent of inundation and the number of structures damaged or destroyed

  17. TSUNAMI WAVE LOADING ON A BRIDGE DECK WITH PERFORATIONS

    Directory of Open Access Journals (Sweden)

    P. Lukkunaprasit

    2011-01-01

    Full Text Available Tsunamis have damaged bridges to various extents in the 2004 Indian Ocean Tsunami. This paper reports an experimental investigation of the effect of perforations in the girders and parapets on the horizontal tsunami loads. The results reveal that the maximum pressures impinging on the front face of the pier and deck are 4.5 and 3 times the hydrostatic pressure at 80mm nominal wave heights. The percentage of force reduction of the bridge deck with 10% perforated girders and 60% perforated parapets is found to be close to the percentage of perforation area in the deck. However, it is also noted that perforations in the bridge deck can substantially reduce the tsunami forces acting on it throughout the force time history. Thus, less damage to the bridge is anticipated for the bridge deck with perforations in girders and parapets.

  18. How Do Tides and Tsunamis Interact in a Highly Energetic Channel? The Case of Canal Chacao, Chile

    Science.gov (United States)

    Winckler, Patricio; Sepúlveda, Ignacio; Aron, Felipe; Contreras-López, Manuel

    2017-12-01

    This study aims at understanding the role of tidal level, speed, and direction in tsunami propagation in highly energetic tidal channels. The main goal is to comprehend whether tide-tsunami interactions enhance/reduce elevation, currents speeds, and arrival times, when compared to pure tsunami models and to simulations in which tides and tsunamis are linearly superimposed. We designed various numerical experiments to compute the tsunami propagation along Canal Chacao, a highly energetic channel in the Chilean Patagonia lying on a subduction margin prone to megathrust earthquakes. Three modeling approaches were implemented under the same seismic scenario: a tsunami model with a constant tide level, a series of six composite models in which independent tide and tsunami simulations are linearly superimposed, and a series of six tide-tsunami nonlinear interaction models (full models). We found that hydrodynamic patterns differ significantly among approaches, being the composite and full models sensitive to both the tidal phase at which the tsunami is triggered and the local depth of the channel. When compared to full models, composite models adequately predicted the maximum surface elevation, but largely overestimated currents. The amplitude and arrival time of the tsunami-leading wave computed with the full model was found to be strongly dependent on the direction of the tidal current and less responsive to the tide level and the tidal current speed. These outcomes emphasize the importance of addressing more carefully the interactions of tides and tsunamis on hazard assessment studies.

  19. Probabilistic Earthquake-Tsunami Multi-Hazard Analysis: Application to the Tohoku Region, Japan.

    Directory of Open Access Journals (Sweden)

    Raffaele De Risi

    2016-10-01

    Full Text Available This study develops a novel simulation-based procedure for the estimation of the likelihood that seismic intensity (in terms of spectral acceleration and tsunami inundation (in terms of wave height, at a particular location, will exceed given hazard levels. The procedure accounts for a common physical rupture process for shaking and tsunami. Numerous realizations of stochastic slip distributions of earthquakes having different magnitudes are generated using scaling relationships of source parameters for subduction zones and then using a stochastic synthesis method of earthquake slip distribution. Probabilistic characterization of earthquake and tsunami intensity parameters is carried out by evaluating spatially correlated strong motion intensity through the adoption of ground motion prediction equations as a function of magnitude and shortest distance from the rupture plane and by solving nonlinear shallow water equations for tsunami wave propagation and inundation. The minimum number of simulations required to obtain stable estimates of seismic and tsunami intensity measures is investigated through a statistical bootstrap analysis. The main output of the proposed procedure is the earthquake-tsunami hazard curves representing, for each mean annual rate of occurrence, the corresponding seismic and inundation tsunami intensity measures. This simulation-based procedure facilitates the earthquake-tsunami hazard deaggregation with respect to magnitude and distance. Results are particularly useful for multi-hazard mapping purposes and the developed framework can be further extended to probabilistic earthquake-tsunami risk assessment.

  20. Tsunami Warning Criteria for Cascadia events based on Tsunami models

    Science.gov (United States)

    Huang, P. Y.; Nyland, D. L.; Knight, W.; Gately, K.; Hale, D.; Urban, G.; Waddell, J.; Carrick, J.; Popham, C.; Bahng, B.; Kim, Y.; Burgy, M.; Langley, S.; Preller, C. C.; Whitmore, P.

    2013-12-01

    Initial tsunami warning, advisory, and watch zones for potential Cascadia earthquakes have been revised based on maximum expected threat for tsunamis generated by earthquakes in this region. Presently, alert zones are initially based on travel time for earthquakes greater than magnitude 7.8 with all areas less than three hours away from the source being put into a tsunami warning. The impact of this change is to reduce the length of coastline which is immediately put it into a warning status. Tsunami Warning Centers often delineate initial tsunami alert zones based on pre-set criteria dependent on earthquake magnitude, location, depth, and tsunami travel time. In many cases, this approach can lead to over-warning. Over the last several years, the West Coast/Alaska Tsunami Warning Center (WCATWC) has attempted to refine the amount of coastline immediately placed in a warning status based on maximum expected threat instead of travel time. Tsunami forecast models used to predict impacts during events (for example, Alaska Tsunami Forecast Model (ATFM), Short-term Inundation Forecasting for Tsunamis (SIFT), and Rapid Inundation Forecasting of Tsunamis (RIFT)) can also be used a-priori to delineate zones at-risk for specified source zones. forecast models have proven reasonably accurate during recent events. For the Cascadia Subduction zone, several rupture scenarios ranging from magnitude 7.9 to 9.2, were computed. Forecasted wave heights at various points are then used to set the initial Warning/Watch/Advisory regions. This procedure is more efficient than a blanket warning - or a refined warning based on travel times - as appropriate threat levels are assigned based on expected impact. For example, after a magnitude 8.7 earthquake in the southern Cascadia Subduction zone, southern and most of central California can be left out of the warning zone and placed in an advisory, as none of this region contains expected impacts in the warning threshold (tsunami amplitude

  1. A communication model for interlinking national tsunami early warning systems

    Science.gov (United States)

    Lendholt, M.; Hammitzsch, M.; Esbri Palomares, M. A.

    2012-04-01

    The integration of national Tsunami Early Earning Systems (TEWS) to ocean-wide networks is a main objective of the UNESCO Intergovernmental Oceanic Commission (IOC) tsunami programme. The intention is to interlink national TEWSs leveraging warning communication during hazards. For this purpose a communication model has been developed enabling an efficient message exchange within a centre-to-centre (C2C) communication in a system-of-systems environment. The model, designed to be robust and simple, is based on existing interoperability standards from the Open Geospatial Consortium (OGC) and the Organization of the Advancement of Structured Information Standards (OASIS). For the exchange of tsunami warning bulletins the Common Alerting Protocol (CAP) is used. It supports geospatial referencing by addressing geocoded Points of Interests (POIs), Areas of Interest (AOIs) and Coastal Forecast Zones (CFZs). Moreover it supports hazard classification by standardized criticality parameters and the transmission of attachments, e.g. situation maps. The communication model also supports the exchange of sensor observations and measurements such as sea level data or earthquake parameters. For this purpose markup languages of the Sensor Web Enablement (SWE) suite are used. Both communication products, warning bulletins and sensor observations, are embedded in an envelope providing addressing and routing information using the Emergency Data Exchange Language Distribution Element (EDXL-DE). The communication model has been implemented in a first pilot based on Message Oriented Middleware (MOM). Implementation, test and validation was started in the European research project Distant Early Warning System (DEWS) and is continued successively in the project Collaborative, Complex, and Critical Decision Processes in Evolving Crises (TRIDEC). Stimulated by the concepts and results of the German Indonesian Tsunami Early Warning System (GITEWS) and based on its sensor integration platform

  2. The Global Tsunami Model (GTM)

    Science.gov (United States)

    Lorito, S.; Basili, R.; Harbitz, C. B.; Løvholt, F.; Polet, J.; Thio, H. K.

    2017-12-01

    The tsunamis occurred worldwide in the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but often disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.

  3. Modelling of Charles Darwin's tsunami reports

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    Darwin landed at Valdivia and Concepcion, Chile, just before, during, and after a great 1835 earthquake. He described his impressions and results of the earthquake-induced natural catastrophe in The Voyage of the Beagle. His description of the tsunami could easily be read as a report from Indonesia or Sri Lanka, after the catastrophic tsunami of 26 December 2004. In particular, Darwin emphasised the dependence of earthquake-induced waves on a form of the coast and the coastal depth: ‘… Talcuhano and Callao are situated at the head of great shoaling bays, and they have always suffered from this phenomenon; whereas, the town of Valparaiso, which is seated close on the border of a profound ocean... has never been overwhelmed by one of these terrific deluges…' . He reports also, that ‘… the whole body of the sea retires from the coast, and then returns in great waves of overwhelming force ...' (we cite the Darwin's sentences following researchspace. auckland. ac. nz/handle/2292/4474). The coastal evolution of a tsunami was analytically studied in many publications (see, for example, Synolakis, C.E., Bernard, E.N., 2006. Philos. Trans. R. Soc., Ser. A, 364, 2231-2265; Tinti, S., Tonini, R. 205. J.Fluid Mech., 535, 11-21). However, the Darwin's reports and the influence of the coastal depth on the formation and the evolution of the steep front and the profile of tsunami did not practically discuss. Recently, a mathematical theory of these phenomena was presented in researchspace. auckland. ac. nz/handle/2292/4474. The theory describes the waves which are excited due to nonlinear effects within a shallow coastal zone. The tsunami elevation is described by two components: . Here is the linear (prime) component. It describes the wave coming from the deep ocean. is the nonlinear component. This component may become very important near the coastal line. After that the theory of the shallow waves is used. This theory yields the linear equation for and the weakly

  4. Experimental reproduction of tsunami deposit

    Science.gov (United States)

    Yoshii, T.; Matsuyama, M.; Tanaka, S.

    2015-12-01

    Understanding the process of sediment transport and deposition under a tsunami inundation is essential to provide the credible information about potential tsunamis from tsunami deposits. Detections of tsunami deposit has contributed to reveal centuries-old record of tsunami incursions. However, our knowledge is still not enough for evaluating the scale of past tsunamis using deposits. In this study, a laboratory experiment was conducted to investigate the relationship between the hydraulic condition and sedimentological features of tsunami deposit. The large wave flume in CRIEPI, one of the largest wave flume in the world, which has 205 m length, 3.4 m width and 6 m depth was used. The sandy beach with uniform slope (1/50) were made in the flume. Sand dune of 0.2 high was placed near the shoreline. The tsunami was made by the wave generator which has 2.2 m stroke. The wave at the shore line has 0.6 m depth and the horizontal velocity reached up to 3.5 m/s. The incursion of the wave and its return flow completely washed out the dune and resulted in the deposition especially near the dune. The thickness of deposit shows landward thinning and fining, which has been widely confirmed by field observations. In addition, sedimentary structures of the deposit was investigated using the method similar to that used in geological survey such as core sampling and relief peel sampling. The obtained samples were investigated using a X-ray computed tomography. The obtained CT-images shows that most part of deposition consists two or more subsections divided by horizontal lamination although the deposition near the dune has drastic and complex change thickness and grain size. The subsections shows upward-fining and upward-coarsening which are been reported as common sedimentary structures of tsunami deposit from field surveys. Considering the similarity of sedimentary structures in the deposit reconstructed in this experiment and actual tsunami deposits, this experiment succeeded

  5. Tsunami Propagation Models Based on First Principles

    Science.gov (United States)

    2012-11-21

    tsunami which was recorded at 76 tide gauge stations in Alaska, California, Hawaii, Japan, Galapagos Islands , Peru and Chile. The tsunami caused $1.5...ease. Third, there are no landmasses or large islands to block or interfere with the propagation of tsunamis formed in the ocean. Fourth, the ocean...itself is dotted with small islands which pose little interference with tsunami propagation, but provide valuable platforms for recording tsunami

  6. Assessment of Tsunami-related Geohazard Assessment for Coasts of Hersek Peninsula and Gulf of İzmit

    Directory of Open Access Journals (Sweden)

    Cem Gazioğlu

    2017-05-01

    Full Text Available Tsunamis are one of the most dreadful natural disasters; they could cause abysmal damage to all kind of lives in the hinterland within instantly. It is a major right-lateral moving fault that runs along the tectonic boundary between the Eurasian Plate to the north and the Anatolian Plate to the south. The western segment of the North Anatolian Fault splits into three main branches. The northern one of NAF is generally subdivided in several subsegments that have been the source of frequent large historical earthquakes. The Sea of Marmara coasts is located on the western extension of the NAFZ which is one of the most important active faults with strike-slip characteristics, which are not likely to generate tsunami. However, in the light of tsunami catalogs based on historical documents, it is possible to say that Sea of Marmara has tsunamigenic potential. The İstanbul shorelines, Gemlik Bay, Kapıdağ N-NE shores, Gelibolu, Hersek Peinsula and Gulf of İzmit are one of the most significant geohazards in Sea of Marmara due to the tsunami effect.

  7. TSUNAMI RISK ASSESSMENT MODELLING IN CHABAHAR PORT, IRAN

    Directory of Open Access Journals (Sweden)

    M. R. Delavar

    2017-09-01

    Full Text Available The well-known historical tsunami in the Makran Subduction Zone (MSZ region was generated by the earthquake of November 28, 1945 in Makran Coast in the North of Oman Sea. This destructive tsunami killed over 4,000 people in Southern Pakistan and India, caused great loss of life and devastation along the coasts of Western India, Iran and Oman. According to the report of "Remembering the 1945 Makran Tsunami", compiled by the Intergovernmental Oceanographic Commission (UNESCO/IOC, the maximum inundation of Chabahar port was 367 m toward the dry land, which had a height of 3.6 meters from the sea level. In addition, the maximum amount of inundation at Pasni (Pakistan reached to 3 km from the coastline. For the two beaches of Gujarat (India and Oman the maximum run-up height was 3 m from the sea level. In this paper, we first use Makran 1945 seismic parameters to simulate the tsunami in generation, propagation and inundation phases. The effect of tsunami on Chabahar port is simulated using the ComMIT model which is based on the Method of Splitting Tsunami (MOST. In this process the results are compared with the documented eyewitnesses and some reports from researchers for calibration and validation of the result. Next we have used the model to perform risk assessment for Chabahar port in the south of Iran with the worst case scenario of the tsunami. The simulated results showed that the tsunami waves will reach Chabahar coastline 11 minutes after generation and 9 minutes later, over 9.4 Km2 of the dry land will be flooded with maximum wave amplitude reaching up to 30 meters.

  8. Tsunami Risk Assessment Modelling in Chabahar Port, Iran

    Science.gov (United States)

    Delavar, M. R.; Mohammadi, H.; Sharifi, M. A.; Pirooz, M. D.

    2017-09-01

    The well-known historical tsunami in the Makran Subduction Zone (MSZ) region was generated by the earthquake of November 28, 1945 in Makran Coast in the North of Oman Sea. This destructive tsunami killed over 4,000 people in Southern Pakistan and India, caused great loss of life and devastation along the coasts of Western India, Iran and Oman. According to the report of "Remembering the 1945 Makran Tsunami", compiled by the Intergovernmental Oceanographic Commission (UNESCO/IOC), the maximum inundation of Chabahar port was 367 m toward the dry land, which had a height of 3.6 meters from the sea level. In addition, the maximum amount of inundation at Pasni (Pakistan) reached to 3 km from the coastline. For the two beaches of Gujarat (India) and Oman the maximum run-up height was 3 m from the sea level. In this paper, we first use Makran 1945 seismic parameters to simulate the tsunami in generation, propagation and inundation phases. The effect of tsunami on Chabahar port is simulated using the ComMIT model which is based on the Method of Splitting Tsunami (MOST). In this process the results are compared with the documented eyewitnesses and some reports from researchers for calibration and validation of the result. Next we have used the model to perform risk assessment for Chabahar port in the south of Iran with the worst case scenario of the tsunami. The simulated results showed that the tsunami waves will reach Chabahar coastline 11 minutes after generation and 9 minutes later, over 9.4 Km2 of the dry land will be flooded with maximum wave amplitude reaching up to 30 meters.

  9. Community participation in tsunami early warning system in Pangandaran town

    Science.gov (United States)

    Hadian, Sapari D.; Khadijah, Ute Lies Siti; Saepudin, Encang; Budiono, Agung; Yuliawati, Ayu Krishna

    2017-07-01

    Disaster-resilient communities are communities capable of anticipating and minimizing destructive forces through adaptation. Disaster is an event very close to the people of Indonesia, especially in the small tourism town of Pangadaran located at West Java, Indonesia. On July 17, 2006, the town was hit by a Mw 7.8 earthquake and tsunami that effected over 300 km of the coastline, where the community suffered losses in which more than 600 people were killed, with run up heights exceeding 20 m. The devastation of the tsunami have made the community more alert and together with the local government and other stakeholder develop an Early Warning System for Tsunami. The study is intended to discover issues on tsunami Early Warning System (EWS), disaster risk reduction measures taken and community participation. The research method used is descriptive and explanatory research. The study describe the Tsunami EWS and community based Disaster Risk Reduction in Pangandaran, the implementation of Tsunami alert/EWS in disaster preparedness and observation of community participation in EWS. Data were gathered by secondary data collection, also primary data through interviews, focus group discussions and field observations. Research resulted in a description of EWS implementation, community participation and recommendation to reduce disaster risk in Pangandaran.

  10. Landslide Tsunami Hazard in Madeira Island, NE Atlantic - Numerical Simulation of the 4 March 1930 Tsunami

    Science.gov (United States)

    Omira, R.; Baptista, M. A.; Quartau, R.; Ramalho, M. I.

    2017-12-01

    Madeira, the main Island of the Madeira Archipelago with an area of 728 km2, is a North East Atlantic volcanic Island highly susceptible to cliff instability. Historical records contain accounts of a number of mass-wasting events along the Island, namely in 1969, 1804, 1929 and 1930. Collapses of cliffs are major hazards in oceanic Islands as they involve relatively large volumes of material, generating fast running debris avalanches, and even cause destructive tsunamis when entering the sea. On March 4th, 1930, a sector of the Cape Girão cliff, located in the southern shore of Madeira Island, collapsed into the sea and generated an 8 m tsunami wave height. The landslide-induced tsunami propagated along Madeirás south coast and flooded the Vigário beach, 200-300 m of inundation extent, causing 20 casualties. In this study, we investigate the 1930 subaerial landslide-induced tsunami and its impact on the nearest coasts using numerical modelling. We first reconstruct the pre-event morphology of the area, and then simulate the initial movement of the sliding mass, the propagation of the tsunami wave and the inundation of the coast. We use a multi-layer numerical model, in which the lower layer represents the deformable slide, assumed to be a visco-plastic fluid, and bounded above by air, in the subaerial motion phase, and by seawater governed by shallow water equations. The results of the simulation are compared with the historical descriptions of the event to calibrate the numerical model and evaluate the coastal impact of a similar event in present-day coastline configuration of the Island. This work is supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz and by TROYO project.

  11. Damage assessment of the Sicily and Calabria coasts evaluated on the 1783 Scilla landslide-tsunami scenario

    Science.gov (United States)

    Tinti, Stefano; Zaniboni, Filippo; Armigliato, Alberto; Pagnoni, Gianluca

    2017-04-01

    In 1783 a series of destructive waves generated by the collapse of a coastal cliff close to the town of Scilla (Calabria, southern Italy), hit the main beach of the city and caused about 1500 casualties. The slide was triggered during the night by an earthquake, which was only of medium size and less than the five strongest shocks of the three-month long sequence affecting the Calabria region in that period. The local devastating effects are very well described in the coeval reports, surprisingly detailed in the reconstruction of the sliding mass and of the effects of the tsunami. Apart from Scilla itself, tens of kilometers of the Tyrrhenian Calabria and northern Sicily coasts were reported to suffer the effects of the tsunami. In the northernmost point of Sicily, named Capo Peloro, the inundation involved hundreds of meters inland, causing severe damage to properties and fatalities. Also in the harbor of Messina, about 15 km SW of the source, evidence of tsunami was reported. We have simulated the 1783 landslide by means of the code UBO-BLOCK1 and tsunami on a 10-m resolution grid by means of the tsunami simulation code UBO-TSUFD allowing to compute coastal inundation. In the area where the numerical inundation resulted to be most severe, which fits with historical accounts, we have evaluated damage and losses considering the today's level of population and built environment. This exercise shows that if an episode like the 1783 Scilla landslide would occur today the effects could be even more dramatic since the vulnerability of the coast has increased very much in terms of population and of buildings, and this even if the Scilla tsunami is known to be among the ones causing the highest number of fatalities in the Italian tsunami history. Though the repetition of the Scilla tsunamigenic landslide with same volume and same position can be considered unlikely, the occurrence of a similar slide detaching from the nearby mountainous coast triggered by an earthquake

  12. Three-Dimensional Time Domain Simulation of Tsunami-Generated Electromagnetic Fields: Application to the 2011 Tohoku Earthquake Tsunami

    Science.gov (United States)

    Minami, Takuto; Toh, Hiroaki; Ichihara, Hiroshi; Kawashima, Issei

    2017-12-01

    We present a new finite element simulation approach in time domain for electromagnetic (EM) fields associated with motional induction by tsunamis. Our simulation method allows us to conduct three-dimensional simulation with realistic smooth bathymetry and to readily obtain broad structures of tsunami-generated EM fields and their time evolution, benefitting from time domain implementation with efficient unstructured mesh. Highly resolved mesh near observation sites enables us to compare simulation results with observed data and to investigate tsunami properties in terms of EM variations. Furthermore, it makes source separations available for EM data during tsunami events. We applied our simulation approach to the 2011 Tohoku tsunami event with seawater velocity from linear-long and linear-Boussinesq approximations. We revealed that inclusion of dispersion effect is necessary to explain magnetic variations at a northwest Pacific seafloor site, 1,500 km away from the epicenter, while linear-long approximation is enough at a seafloor site 200 km east-northeast of the epicenter. Our simulations provided, for the first time, comprehensive views of spatiotemporal structures of tsunami-generated EM fields for the 2011 Tohoku tsunami, including large-scale electric current circuits in the ocean. Finally, subtraction of the simulated magnetic fields from the observed data revealed symmetric magnetic variations on the western and eastern sides of the epicenter for 30 min since the earthquake origin time. These imply a pair of southward and northward electric currents in the ionosphere that exist on the western and eastern sides of the source region, respectively, which was likely to be caused by tsunami-generated atmospheric acoustic/gravity waves reaching the ionosphere.

  13. 77 FR 40032 - Maine Public Service Company; Notice of Initiation of Proceeding and Refund Effective Date

    Science.gov (United States)

    2012-07-06

    ... Energy Regulatory Commission Maine Public Service Company; Notice of Initiation of Proceeding and Refund... determine the justness and reasonableness of the proposed formula rate by Maine Public Service Company. Maine Public Service Company, 139 FERC ] 61,262 (2012). The refund effective date in Docket No. EL12-76...

  14. Extreme-wave deposits in the Caribbean - towards an improved tsunami hazard assessment

    Science.gov (United States)

    Engel, Max; Oetjen, Jan; May, S. Matthias; Brückner, Helmut

    2016-04-01

    Coastal zones worldwide experience considerable population pressure and demand for a management of hazards such as tsunamis. Tsunami hazard assessment is the initial step of the management process and requires reliable information on frequency and magnitude. In areas with short historical documentation, these long-term frequency-magnitude patterns, which are best explained by inverse power-law functions, mainly rely on geological traces. According to the historical record covering the last 520 years, Caribbean tsunami hazard is demonstrated by more than 80 mostly regional or local seismically induced events. However, based on two numerical hydrodynamic models of tsunamis spawning at the Muertos Trough and the South Caribbean Deformed Belt (SCBD), two trigger scenarios only marginally considered so far, we show that pan-Caribbean tsunamis can be taken into account as well. We furthermore review more than 50 studies for possible geological evidence of tsunamis in the Caribbean including fine-grained subsurface deposits and subaerial coarse clasts, and re-evaluate their implications for tsunami hazard assessment against state-of-the-art models of tsunami deposition. Only a limited number of reliable palaeotsunami records with consistent and robust age control were identified, hampering inter-island or interregional correlation of deposits. Separating between storm and tsunami transport of solitary boulders is very difficult in most cases. Those arranged in ridges or incorporated into polymodal ridge complexes or ramparts, respectively, which line many windward coasts of the Caribbean, can mainly be attributed to long-term formation during strong storms implying the overprinting of potential tsunami signatures. The quantification of parameters of tsunami flooding based on tsunami deposits, such as flow depth, inundation distance or flow velocity, by applying inverse and forward numerical models of sediment transport is still underdeveloped in the Caribbean and needs to

  15. Impact of the 11 March, 2011, Tohoku earthquake and tsunami on the chemical industry

    Science.gov (United States)

    Krausmann, E.; Cruz, A. M.

    2012-04-01

    An earthquake of magnitude 9.0 occurred off the Pacific coast of Tohoku, Japan, on March 11, 2011, at 14:46:23 Japan Standard Time (5:46:23 UTC). It generated a tsunami 130 km off the coast of Miyagi Prefecture in northeast Japan, which inundated over 400 km2 of land. The death toll has reached >15,800 according to the Japan National Policy Agency with over 3,700 still missing as of 26 October 2011. Significant damage to or complete collapse of houses also resulted. The earthquake generated strong ground motion; nevertheless most damage was caused by the tsunami, which is a tribute to the effectiveness of Japan's earthquake damage reduction measures in saving lives and property. Nonetheless, the direct losses amount to more than 200 billion US dollars (not counting the costs of the accident at the Fukushima nuclear power plant). The earthquake and tsunami had a significant impact on all types of industry, and in particular on the petrochemical and chemical industry in the affected areas, resulting in hazardous-materials releases, fires and explosions and forcing businesses to interrupt production. These so-called Natech accidents pose an immediate or even long-term threat to the population and the environment, and can also interrupt the supply chain. Overall, the earthquake and tsunami took over 30% of Japan's oil production offline, and two refineries are still not or only partially in operation to repair the damage caused by the fires and explosions. The fire-fighting efforts could only be started 4 days after the disaster due to the absence of personnel that had been evacuated and because of the continuing tsunami alerts. In one of the affected refineries the fires could only be extinguished 10 days after the disasters. Many petrochemical and chemical companies reported problems either due to damage to facilities or because of power outages. In fact, in facilities that suffered no or only minor damage the resuming of operations was hampered by continuous

  16. Applicability of the Decision Matrix of North Eastern Atlantic, Mediterranean and connected seas Tsunami Warning System to the Italian tsunamis

    Directory of Open Access Journals (Sweden)

    S. Tinti

    2012-03-01

    Full Text Available After the 2004 Indian Ocean tsunami catastrophe, UNESCO through the IOC (Intergovernmental Oceanographic Commission sponsored the establishment of Intergovernmental Coordination Groups (ICG with the aim to devise and implement Tsunami Warning Systems (TWSs in all the oceans exposed to tsunamis, in addition to the one already in operation in the Pacific (PTWS. In this context, since 2005, efforts have begun for the establishment of TWSs in the Indian Ocean (IOTWS, in the Caribbean area (CARIBE EWS and in the North Eastern Atlantic, the Mediterranean and Connected Seas (NEAMTWS.

    In this paper, we focus on a specific tool that was first introduced in the PTWS routine operations, i.e., the Decision Matrix (DM. This is an easy-to-use table establishing a link between the main parameters of an earthquake and the possible ensuing tsunami in order to make quick decision on the type of alert bulletins that a Tsunami Warning Center launches to its recipients. In the process of implementation of a regional TWS for the NEAM area, two distinct DMs were recently proposed by the ICG/NEAMTWS, one for the Atlantic and the other for the entire Mediterranean area.

    This work applies the Mediterranean NEAMTWS DM to the earthquakes recorded in Italy and compares the action predicted by the DM vs. the action that should be appropriate in view of the observed tsunami characteristics with the aim to establish how good the performance of the Italian TWS will be when it uses the DM for future events. To this purpose, we make use of the parametric catalogue of the Italian earthquakes (CPTI04 compiled in 2004 and the most recent compilation of the Italian tsunami, based on the Italian Tsunami Catalogue of 2004 and the subsequent revisions. In order to better compare the TWS actions, we have identified four different kinds of action coding them from 0 to 3 according to the tsunami severity and have further considered three different distance ranges where

  17. Reconstruction of far-field tsunami amplitude distributions from earthquake sources

    Science.gov (United States)

    Geist, Eric L.; Parsons, Thomas E.

    2016-01-01

    The probability distribution of far-field tsunami amplitudes is explained in relation to the distribution of seismic moment at subduction zones. Tsunami amplitude distributions at tide gauge stations follow a similar functional form, well described by a tapered Pareto distribution that is parameterized by a power-law exponent and a corner amplitude. Distribution parameters are first established for eight tide gauge stations in the Pacific, using maximum likelihood estimation. A procedure is then developed to reconstruct the tsunami amplitude distribution that consists of four steps: (1) define the distribution of seismic moment at subduction zones; (2) establish a source-station scaling relation from regression analysis; (3) transform the seismic moment distribution to a tsunami amplitude distribution for each subduction zone; and (4) mix the transformed distribution for all subduction zones to an aggregate tsunami amplitude distribution specific to the tide gauge station. The tsunami amplitude distribution is adequately reconstructed for four tide gauge stations using globally constant seismic moment distribution parameters established in previous studies. In comparisons to empirical tsunami amplitude distributions from maximum likelihood estimation, the reconstructed distributions consistently exhibit higher corner amplitude values, implying that in most cases, the empirical catalogs are too short to include the largest amplitudes. Because the reconstructed distribution is based on a catalog of earthquakes that is much larger than the tsunami catalog, it is less susceptible to the effects of record-breaking events and more indicative of the actual distribution of tsunami amplitudes.

  18. A Preliminary Tsunami Vulnerability Analysis for Yenikapi Region in Istanbul

    Science.gov (United States)

    Ceren Cankaya, Zeynep; Suzen, Lutfi; Cevdet Yalciner, Ahmet; Kolat, Cagil; Aytore, Betul; Zaytsev, Andrey

    2015-04-01

    One of the main requirements during post disaster recovery operations is to maintain proper transportation and fluent communication at the disaster areas. Ports and harbors are the main transportation hubs which must work with proper performance at all times especially after the disasters. Resilience of coastal utilities after earthquakes and tsunamis have major importance for efficient and proper rescue and recovery operations soon after the disasters. Istanbul is a mega city with its various coastal utilities located at the north coast of the Sea of Marmara. At Yenikapi region of Istanbul, there are critical coastal utilities and vulnerable coastal structures and critical activities occur daily. Fishery ports, commercial ports, small craft harbors, passenger terminals of intercity maritime transportation, water front commercial and/or recreational structures are some of the examples of coastal utilization which are vulnerable against marine disasters. Therefore their vulnerability under tsunami or any other marine hazard to Yenikapi region of Istanbul is an important issue. In this study, a methodology of vulnerability analysis under tsunami attack is proposed with the applications to Yenikapi region. In the study, high resolution (1m) GIS database of Istanbul Metropolitan Municipality (IMM) is used and analyzed by using GIS implementation. The bathymetry and topography database and the vector dataset containing all buildings/structures/infrastructures in the study area are obtained for tsunami numerical modeling for the study area. GIS based tsunami vulnerability assessment is conducted by applying the Multi-criteria Decision Making Analysis (MCDA). The tsunami parameters from deterministically defined worst case scenarios are computed from the simulations using tsunami numerical model NAMI DANCE. The vulnerability parameters in the region due to two different classifications i) vulnerability of buildings/structures and ii) vulnerability of (human) evacuation

  19. Rapid estimate of earthquake source duration: application to tsunami warning.

    Science.gov (United States)

    Reymond, Dominique; Jamelot, Anthony; Hyvernaud, Olivier

    2016-04-01

    We present a method for estimating the source duration of the fault rupture, based on the high-frequency envelop of teleseismic P-Waves, inspired from the original work of (Ni et al., 2005). The main interest of the knowledge of this seismic parameter is to detect abnormal low velocity ruptures that are the characteristic of the so called 'tsunami-earthquake' (Kanamori, 1972). The validation of the results of source duration estimated by this method are compared with two other independent methods : the estimated duration obtained by the Wphase inversion (Kanamori and Rivera, 2008, Duputel et al., 2012) and the duration calculated by the SCARDEC process that determines the source time function (M. Vallée et al., 2011). The estimated source duration is also confronted to the slowness discriminant defined by Newman and Okal, 1998), that is calculated routinely for all earthquakes detected by our tsunami warning process (named PDFM2, Preliminary Determination of Focal Mechanism, (Clément and Reymond, 2014)). Concerning the point of view of operational tsunami warning, the numerical simulations of tsunami are deeply dependent on the source estimation: better is the source estimation, better will be the tsunami forecast. The source duration is not directly injected in the numerical simulations of tsunami, because the cinematic of the source is presently totally ignored (Jamelot and Reymond, 2015). But in the case of a tsunami-earthquake that occurs in the shallower part of the subduction zone, we have to consider a source in a medium of low rigidity modulus; consequently, for a given seismic moment, the source dimensions will be decreased while the slip distribution increased, like a 'compact' source (Okal, Hébert, 2007). Inversely, a rapid 'snappy' earthquake that has a poor tsunami excitation power, will be characterized by higher rigidity modulus, and will produce weaker displacement and lesser source dimensions than 'normal' earthquake. References: CLément, J

  20. Ray Tracing for Dispersive Tsunamis and Source Amplitude Estimation Based on Green's Law: Application to the 2015 Volcanic Tsunami Earthquake Near Torishima, South of Japan

    Science.gov (United States)

    Sandanbata, Osamu; Watada, Shingo; Satake, Kenji; Fukao, Yoshio; Sugioka, Hiroko; Ito, Aki; Shiobara, Hajime

    2017-12-01

    Ray tracing, which has been widely used for seismic waves, was also applied to tsunamis to examine the bathymetry effects during propagation, but it was limited to linear shallow-water waves. Green's law, which is based on the conservation of energy flux, has been used to estimate tsunami amplitude on ray paths. In this study, we first propose a new ray tracing method extended to dispersive tsunamis. By using an iterative algorithm to map two-dimensional tsunami velocity fields at different frequencies, ray paths at each frequency can be traced. We then show that Green's law is valid only outside the source region and that extension of Green's law is needed for source amplitude estimation. As an application example, we analyzed tsunami waves generated by an earthquake that occurred at a submarine volcano, Smith Caldera, near Torishima, Japan, in 2015. The ray-tracing results reveal that the ray paths are very dependent on its frequency, particularly at deep oceans. The validity of our frequency-dependent ray tracing is confirmed by the comparison of arrival angles and travel times with those of observed tsunami waveforms at an array of ocean bottom pressure gauges. The tsunami amplitude at the source is nearly twice or more of that just outside the source estimated from the array tsunami data by Green's law.

  1. SAFRR (Science Application for Risk Reduction) Tsunami Scenario--Executive Summary and Introduction: Chapter A in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    Science.gov (United States)

    Ross, Stephanie L.; Jones, Lucile M.; Miller, Kevin H.; Porter, Keith A.; Wein, Anne; Wilson, Rick I.; Bahng, Bohyun; Barberopoulou, Aggeliki; Borrero, Jose C.; Brosnan, Deborah M.; Bwarie, John T.; Geist, Eric L.; Johnson, Laurie A.; Kirby, Stephen H.; Knight, William R.; Long, Kate; Lynett, Patrick; Mortensen, Carl E.; Nicolsky, Dmitry J.; Perry, Suzanne C.; Plumlee, Geoffrey S.; Real, Charles R.; Ryan, Kenneth; Suleimani, Elena; Thio, Hong Kie; Titov, Vasily V.; Whitmore, Paul M.; Wood, Nathan J.

    2013-01-01

    The Science Application for Risk Reduction (SAFRR) tsunami scenario depicts a hypothetical but plausible tsunami created by an earthquake offshore from the Alaska Peninsula and its impacts on the California coast. The tsunami scenario is a collaboration between the U.S. Geological Survey (USGS), the California Geological Survey, the California Governor’s Office of Emergency Services (Cal OES), the National Oceanic and Atmospheric Administration (NOAA), other Federal, State, County, and local agencies, private companies, and academic and other institutions. This document presents evidence for past tsunamis, the scientific basis for the source, likely inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental and ecological impacts, social vulnerability, emergency management and evacuation challenges, and policy implications for California associated with this hypothetical tsunami. We also discuss ongoing mitigation efforts by the State of California and new communication products. The intended users are those who need to make mitigation decisions before future tsunamis, and those who will need to make rapid decisions during tsunami events. The results of the tsunami scenario will help managers understand the context and consequences of their decisions and how they may improve preparedness and response. An evaluation component will assess the effectiveness of the scenario process for target stakeholders in a separate report to improve similar efforts in the future.

  2. Reducing the age range of tsunami deposits by 14C dating of rip-up clasts

    Science.gov (United States)

    Ishizawa, Takashi; Goto, Kazuhisa; Yokoyama, Yusuke; Miyairi, Yosuke; Sawada, Chikako; Takada, Keita

    2018-02-01

    Erosion by tsunami waves represents an important issue when determining the age of a tsunami deposit, because the age is usually estimated using dating of sediments above and below the deposit. Dating of material within the tsunami deposit, if suitable material is obtainable, can be used to further constrain its age. Eroded sediments are sometimes incorporated within the tsunami deposits as rip-up clasts, which might therefore be used as minimum age dating material. However, the single calibrated 14C age often shows a wide age range because of fluctuations in the calibration curve. Therefore, it remains uncertain whether rip-up clast measurements are useful to constrain the depositional age of tsunami deposits, or not. In this study, we carried out high-resolution 14C dating of tsunami deposits, including rip-up clasts of peat, in Rikuzentakata, northeastern Japan, where numerous rip-up clasts were observed within a tsunami deposit. Sediments above and below the tsunami deposit and a 5 cm large rip-up clast were dated sequentially. Comparison of these dating results with the calibration curve revealed that the clast was inverted. Its age was better constrained based on the stratigraphic order, and we infer that the clast corresponds to approximately 100 years of sedimentation. The oldest age of the clast was consistent with the age of the peat immediately below the tsunami deposit, suggesting that surface sediments probably formed the rip-up clast at the time of the tsunami. Thus, the dating of the rip-up clast was useful to further constrain the depositional age of the tsunami deposit, as we narrowed the tsunami deposit age range by approximately 100 years. Results show that ignoring tsunami-related erosion might lead to overestimation of the tsunami deposit age. For this reason, an appropriate dating site, which is less affected by minor tsunami-related erosion with regards to the paleo-topography, should be explored. We therefore propose a more effective

  3. Hydro- and morphodynamic tsunami simulations for the Ambrakian Gulf (Greece) and comparison with geoscientific field traces

    Science.gov (United States)

    Röbke, B. R.; Schüttrumpf, H.; Vött, A.

    2018-04-01

    In order to derive local tsunami risks for a particular coast, hydro- and morphodynamic numerical models that are calibrated and compared with sedimentary field data of past tsunami impacts have proven very effective. While this approach has widely been used with regard to recent tsunami events, comparable investigations into pre-/historical tsunami impacts hardly exist, which is the objective of this study focusing on the Ambrakian Gulf in northwestern Greece. The Ambrakian Gulf is located in the most active seismotectonic and by this most tsunamigenic area of the Mediterranean. Accordingly, palaeotsunami field studies have revealed repeated tsunami impacts on the gulf during the past 8000 yr. The current study analyses 151 vibracores of the Ambrakian Gulf coast in order to evaluate tsunami signals in the sedimentary record. Based on a hydro- and morphodynamic numerical model of the study area, various tsunami waves are simulated with the aim of finding scenarios that compare favourably with tsunami deposits detected in the field. Both, field data and simulation results suggest a decreasing tsunami influence from the western to the eastern Ambrakian Gulf. Various scenarios are needed to explain tsunami deposits in different parts of the gulf. Whereas shorter period tsunami waves (T = 30 min) from the south and west compare favourably with field data in the western gulf, longer period waves (T = 80 min) from a western direction show the best agreement with tsunami sediments detected in southwestern Aktio Headland and in the more central parts of the Ambrakian Gulf including Lake Voulkaria. Tsunamis from the southwest generally do not accord with field traces. Besides the spatial sediment distribution, the numerical model accurately reflects the sedimentary composition of the detected event deposits and reproduces a number of essential features typical of tsunamites, which were also observed in the field. Such include fining- and thinning-landward and the marine

  4. TSUNAMI HAZARD IN NORTHERN VENEZUELA

    Directory of Open Access Journals (Sweden)

    B. Theilen-Willige

    2006-01-01

    Full Text Available Based on LANDSAT ETM and Digital Elevation Model (DEM data derived by the Shuttle Radar Topography Mission (SRTM, 2000 of the coastal areas of Northern Venezuela were investigated in order to detect traces of earlier tsunami events. Digital image processing methods used to enhance LANDSAT ETM imageries and to produce morphometric maps (such as hillshade, slope, minimum and maximum curvature maps based on the SRTM DEM data contribute to the detection of morphologic traces that might be related to catastrophic tsunami events. These maps combined with various geodata such as seismotectonic data in a GIS environment allow the delineation of coastal regions with potential tsunami risk. The LANDSAT ETM imageries merged with digitally processed and enhanced SRTM data clearly indicate areas that might be prone by flooding in case of catastrophic tsunami events.

  5. Source mechanisms of volcanic tsunamis.

    Science.gov (United States)

    Paris, Raphaël

    2015-10-28

    Volcanic tsunamis are generated by a variety of mechanisms, including volcano-tectonic earthquakes, slope instabilities, pyroclastic flows, underwater explosions, shock waves and caldera collapse. In this review, we focus on the lessons that can be learnt from past events and address the influence of parameters such as volume flux of mass flows, explosion energy or duration of caldera collapse on tsunami generation. The diversity of waves in terms of amplitude, period, form, dispersion, etc. poses difficulties for integration and harmonization of sources to be used for numerical models and probabilistic tsunami hazard maps. In many cases, monitoring and warning of volcanic tsunamis remain challenging (further technical and scientific developments being necessary) and must be coupled with policies of population preparedness. © 2015 The Author(s).

  6. Food Safety After a Tsunami

    Science.gov (United States)

    ... Disease Transmission in Pet Shelters Protect Your Pets Food Safety After a Tsunami Language: English Español (Spanish) ... baby formula that requires no added water. Keeping Foods Cold If available, dry ice can be used ...

  7. New Approaches to Tsunami Hazard Mitigation Demonstrated in Oregon

    Science.gov (United States)

    Priest, G. R.; Rizzo, A.; Madin, I.; Lyles Smith, R.; Stimely, L.

    2012-12-01

    Oregon Department of Geology and Mineral Industries and Oregon Emergency Management collaborated over the last four years to increase tsunami preparedness for residents and visitors to the Oregon coast. Utilizing support from the National Tsunami Hazards Mitigation Program (NTHMP), new approaches to outreach and tsunami hazard assessment were developed and then applied. Hazard assessment was approached by first doing two pilot studies aimed at calibrating theoretical models to direct observations of tsunami inundation gleaned from the historical and prehistoric (paleoseismic/paleotsunami) data. The results of these studies were then submitted to peer-reviewed journals and translated into 1:10,000-12,000-scale inundation maps. The inundation maps utilize a powerful new tsunami model, SELFE, developed by Joseph Zhang at the Oregon Health & Science University. SELFE uses unstructured computational grids and parallel processing technique to achieve fast accurate simulation of tsunami interactions with fine-scale coastal morphology. The inundation maps were simplified into tsunami evacuation zones accessed as map brochures and an interactive mapping portal at http://www.oregongeology.org/tsuclearinghouse/. Unique in the world are new evacuation maps that show separate evacuation zones for distant versus locally generated tsunamis. The brochure maps explain that evacuation time is four hours or more for distant tsunamis but 15-20 minutes for local tsunamis that are invariably accompanied by strong ground shaking. Since distant tsunamis occur much more frequently than local tsunamis, the two-zone maps avoid needless over evacuation (and expense) caused by one-zone maps. Inundation mapping for the entire Oregon coast will be complete by ~2014. Educational outreach was accomplished first by doing a pilot study to measure effectiveness of various approaches using before and after polling and then applying the most effective methods. In descending order, the most effective

  8. Dynamic Tsunami Data Assimilation (DTDA) Based on Green's Function: Theory and Application

    Science.gov (United States)

    Wang, Y.; Satake, K.; Gusman, A. R.; Maeda, T.

    2017-12-01

    Tsunami data assimilation estimates the tsunami arrival time and height at Points of Interest (PoIs) by assimilating tsunami data observed offshore into a numerical simulation, without the need of calculating initial sea surface height at the source (Maeda et al., 2015). The previous tsunami data assimilation has two main problems: one is that it requires quite large calculating time because the tsunami wavefield of the whole interested region is computed continuously; another is that it relies on dense observation network such as Dense Oceanfloor Network system for Earthquakes and Tsunamis (DONET) in Japan or Cascadia Initiative (CI) in North America (Gusman et al., 2016), which is not practical for some area. Here we propose a new approach based on Green's function to speed up the tsunami data assimilation process and to solve the problem of sparse observation: Dynamic Tsunami Data Assimilation (DTDA). If the residual between the observed and calculated tsunami height is not zero, there will be an assimilation response around the station, usually a Gaussian-distributed sea surface displacement. The Green's function Gi,j is defined as the tsunami waveform at j-th grid caused by the propagation of assimilation response at i-th station. Hence, the forecasted waveforms at PoIs are calculated as the superposition of the Green's functions. In case of sparse observation, we could use the aircraft and satellite observations. The previous assimilation approach is not practical because it costs much time to assimilate moving observation, and to compute the tsunami wavefield of the interested region. In contrast, DTDA synthesizes the waveforms quickly as long as the Green's functions are calculated in advance. We apply our method to a hypothetic earthquake off the west coast of Sumatra Island similar to the 2004 Indian Ocean earthquake. Currently there is no dense observation network in that area, making it difficult for the previous assimilation approach. We used DTDA with

  9. Source parameters controlling the generation and propagation of potential local tsunamis along the cascadia margin

    Science.gov (United States)

    Geist, E.; Yoshioka, S.

    1996-01-01

    The largest uncertainty in assessing hazards from local tsunamis along the Cascadia margin is estimating the possible earthquake source parameters. We investigate which source parameters exert the largest influence on tsunami generation and determine how each parameter affects the amplitude of the local tsunami. The following source parameters were analyzed: (1) type of faulting characteristic of the Cascadia subduction zone, (2) amount of slip during rupture, (3) slip orientation, (4) duration of rupture, (5) physical properties of the accretionary wedge, and (6) influence of secondary faulting. The effect of each of these source parameters on the quasi-static displacement of the ocean floor is determined by using elastic three-dimensional, finite-element models. The propagation of the resulting tsunami is modeled both near the coastline using the two-dimensional (x-t) Peregrine equations that includes the effects of dispersion and near the source using the three-dimensional (x-y-t) linear long-wave equations. The source parameters that have the largest influence on local tsunami excitation are the shallowness of rupture and the amount of slip. In addition, the orientation of slip has a large effect on the directivity of the tsunami, especially for shallow dipping faults, which consequently has a direct influence on the length of coastline inundated by the tsunami. Duration of rupture, physical properties of the accretionary wedge, and secondary faulting all affect the excitation of tsunamis but to a lesser extent than the shallowness of rupture and the amount and orientation of slip. Assessment of the severity of the local tsunami hazard should take into account that relatively large tsunamis can be generated from anomalous 'tsunami earthquakes' that rupture within the accretionary wedge in comparison to interplate thrust earthquakes of similar magnitude. ?? 1996 Kluwer Academic Publishers.

  10. Tsunami-hazard assessment based on subaquatic slope-failure susceptibility and tsunami-inundation modeling

    Science.gov (United States)

    Anselmetti, Flavio; Hilbe, Michael; Strupler, Michael; Baumgartner, Christoph; Bolz, Markus; Braschler, Urs; Eberli, Josef; Liniger, Markus; Scheiwiller, Peter; Strasser, Michael

    2015-04-01

    Due to their smaller dimensions and confined bathymetry, lakes act as model oceans that may be used as analogues for the much larger oceans and their margins. Numerous studies in the perialpine lakes of Central Europe have shown that their shores were repeatedly struck by several-meters-high tsunami waves, which were caused by subaquatic slides usually triggered by earthquake shaking. A profound knowledge of these hazards, their intensities and recurrence rates is needed in order to perform thorough tsunami-hazard assessment for the usually densely populated lake shores. In this context, we present results of a study combining i) basinwide slope-stability analysis of subaquatic sediment-charged slopes with ii) identification of scenarios for subaquatic slides triggered by seismic shaking, iii) forward modeling of resulting tsunami waves and iv) mapping of intensity of onshore inundation in populated areas. Sedimentological, stratigraphical and geotechnical knowledge of the potentially unstable sediment drape on the slopes is required for slope-stability assessment. Together with critical ground accelerations calculated from already failed slopes and paleoseismic recurrence rates, scenarios for subaquatic sediment slides are established. Following a previously used approach, the slides are modeled as a Bingham plastic on a 2D grid. The effect on the water column and wave propagation are simulated using the shallow-water equations (GeoClaw code), which also provide data for tsunami inundation, including flow depth, flow velocity and momentum as key variables. Combining these parameters leads to so called «intensity maps» for flooding that provide a link to the established hazard mapping framework, which so far does not include these phenomena. The current versions of these maps consider a 'worst case' deterministic earthquake scenario, however, similar maps can be calculated using probabilistic earthquake recurrence rates, which are expressed in variable amounts of

  11. NOAA/WEST COAST AND ALASKA TSUNAMI WARNING CENTER PACIFIC OCEAN RESPONSE CRITERIA

    Directory of Open Access Journals (Sweden)

    Garry Rogers

    2008-01-01

    Full Text Available New West Coast/Alaska Tsunami Warning Center (WCATWC response criteria for earthquakes occurring in the Pacific basin are presented. Initial warning decisions are based on earthquake location, magnitude, depth, and - dependent on magnitude - either distance from source or pre- computed threat estimates generated from tsunami models. The new criteria will help limit the geographical extent of warnings and advisories to threatened regions, and complement the new operational tsunami product suite.Changes to the previous criteria include: adding hypocentral depth dependence, reducing geographical warning extent for the lower magnitude ranges, setting special criteria for areas not well-connected to the open ocean, basing warning extent on pre-computed threat levels versus tsunami travel time for very large events, including the new advisory product, using the advisory product for far-offshore events in the lower magnitude ranges, and specifying distances from the coast for on-shore events which may be tsunamigenic.This report sets a baseline for response criteria used by the WCATWC considering its processing and observational data capabilities as well as its organizational requirements. Criteria are set for tsunamis generated by earthquakes, which are by far the main cause of tsunami generation (either directly through sea floor displacement or indirectly by triggering of slumps. As further research and development provides better tsunami source definition, observational data streams, and improved analysis tools, the criteria will continue to adjust. Future lines of research and development capable of providing operational tsunami warning centers with better tools are discussed.

  12. SAFRR tsunami scenario: Impacts on California ecosystems, species, marine natural resources, and fisheries: Chapter G in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    Science.gov (United States)

    Brosnan, Deborah; Wein, Anne; Wilson, Rick; Ross, Stephanie L.; Jones, Lucile

    2014-01-01

    We evaluate the effects of the SAFRR Tsunami Scenario on California’s ecosystems, species, natural resources, and fisheries. We discuss mitigation and preparedness approaches that can be useful in Tsunami planning. The chapter provides an introduction to the role of ecosystems and natural resources in tsunami events (Section 1). A separate section focuses on specific impacts of the SAFRR Tsunami Scenario on California’s ecosystems and endangered species (Section 2). A section on commercial fisheries and the fishing fleet (Section 3) documents the plausible effects on California’s commercial fishery resources, fishing fleets, and communities. Sections 2 and 3 each include practical preparedness options for communities and suggestions on information needs or research.Our evaluation indicates that many low-lying coastal habitats, including beaches, marshes and sloughs, rivers and waterways connected to the sea, as well as nearshore submarine habitats will be damaged by the SAFRR Tsunami Scenario. Beach erosion and complex or high volumes of tsunami-generated debris would pose major challenges for ecological communities. Several endangered species and protected areas are at risk. Commercial fisheries and fishing fleets will be affected directly by the tsunami and indirectly by dependencies on infrastructure that is damaged. There is evidence that in some areas intact ecosystems, notably sand dunes, will act as natural defenses against the tsunami waves. However, ecosystems do not provide blanket protection against tsunami surge. The consequences of ecological and natural resource damage are estimated in the millions of dollars. These costs are driven partly by the loss of ecosystem services, as well as cumulative and follow-on impacts where, for example, increased erosion during the tsunami can in turn lead to subsequent damage and loss to coastal properties. Recovery of ecosystems, natural resources and fisheries is likely to be lengthy and expensive

  13. Tsunami hazard assessment for the Azores archipelago: a historical review

    Science.gov (United States)

    Cabral, Nuno; Ferreira, Teresa; Queiroz, Maria Gabriela

    2010-05-01

    The Azores islands due to its complex geographical and geodynamic setting are exposed to tsunamigenic events associated to different triggering mechanisms, local or distant. Since the settlement of the Azores, in the fifteenth century, there are several documents that relate coastal areas flooding episodes with unusually high waves which caused death and destruction. This work had as main objective the characterization of the different events that can be associated with tsunamigenic phenomena, registered in the archipelago. With this aim, it was collected diverse documentation like chronics, manuscripts, newspaper articles and magazines, scientific publications, and international databases available online. From all the studied tsunami events it was identified the occurrence of some teletsunamis, among which the most relevant was triggered by the 1st November 1755 Lisbon earthquake, with an epicenter SW of Portugal, which killed 6 people in Terceira island. It is also noted the teletsunami generated by the 1761 earthquake, located in the same region as the latest, and the one generated in 1929 by an earthquake-triggered submarine landslide in the Grand Banks of Newfoundland. From the local events, originated in the Azores, the most significant were the tsunamis triggered by 1757 and 1980 earthquakes, both associated with the Terceira Rift dynamics. In the first case the waves may also be due to earthquake-triggered. With respect to tsunamis triggered by sea cliffs landslides it is important to mention the 1847 Quebrada Nova and the 1980 Rocha Alta events, both located in the Flores Island. The 1847 event is the deadliest tsunami recorded in Azores since 10 people died in Flores and Corvo islands in result of the propagated wave. The developed studies improve knowledge of the tsunami sources that affected the Azores during its history, also revealing the importance of awareness about this natural phenomenon. The obtained results showed that the tsunami hazard in the

  14. Fault Slip Distribution of the 2016 Fukushima Earthquake Estimated from Tsunami Waveforms

    Science.gov (United States)

    Gusman, Aditya Riadi; Satake, Kenji; Shinohara, Masanao; Sakai, Shin'ichi; Tanioka, Yuichiro

    2017-08-01

    The 2016 Fukushima normal-faulting earthquake (Mjma 7.4) occurred 40 km off the coast of Fukushima within the upper crust. The earthquake generated a moderate tsunami which was recorded by coastal tide gauges and offshore pressure gauges. First, the sensitivity of tsunami waveforms to fault dimensions and depths was examined and the best size and depth were determined. Tsunami waveforms computed based on four available focal mechanisms showed that a simple fault striking northeast-southwest and dipping southeast (strike = 45°, dip = 41°, rake = -95°) yielded the best fit to the observed waveforms. This fault geometry was then used in a tsunami waveform inversion to estimate the fault slip distribution. A large slip of 3.5 m was located near the surface and the major slip region covered an area of 20 km × 20 km. The seismic moment, calculated assuming a rigidity of 2.7 × 1010 N/m2 was 3.70 × 1019 Nm, equivalent to Mw = 7.0. This is slightly larger than the moments from the moment tensor solutions (Mw 6.9). Large secondary tsunami peaks arrived approximately an hour after clear initial peaks were recorded by the offshore pressure gauges and the Sendai and Ofunato tide gauges. Our tsunami propagation model suggests that the large secondary tsunami signals were from tsunami waves reflected off the Fukushima coast. A rather large tsunami amplitude of 75 cm at Kuji, about 300 km north of the source, was comparable to those recorded at stations located much closer to the epicenter, such as Soma and Onahama. Tsunami simulations and ray tracing for both real and artificial bathymetry indicate that a significant portion of the tsunami wave was refracted to the coast located around Kuji and Miyako due to bathymetry effects.

  15. Tsunami Source Inversion Using Tide Gauge and DART Tsunami Waveforms of the 2017 Mw8.2 Mexico Earthquake

    Science.gov (United States)

    Adriano, Bruno; Fujii, Yushiro; Koshimura, Shunichi; Mas, Erick; Ruiz-Angulo, Angel; Estrada, Miguel

    2018-01-01

    On September 8, 2017 (UTC), a normal-fault earthquake occurred 87 km off the southeast coast of Mexico. This earthquake generated a tsunami that was recorded at coastal tide gauge and offshore buoy stations. First, we conducted a numerical tsunami simulation using a single-fault model to understand the tsunami characteristics near the rupture area, focusing on the nearby tide gauge stations. Second, the tsunami source of this event was estimated from inversion of tsunami waveforms recorded at six coastal stations and three buoys located in the deep ocean. Using the aftershock distribution within 1 day following the main shock, the fault plane orientation had a northeast dip direction (strike = 320°, dip = 77°, and rake =-92°). The results of the tsunami waveform inversion revealed that the fault area was 240 km × 90 km in size with most of the largest slip occurring on the middle and deepest segments of the fault. The maximum slip was 6.03 m from a 30 × 30 km2 segment that was 64.82 km deep at the center of the fault area. The estimated slip distribution showed that the main asperity was at the center of the fault area. The second asperity with an average slip of 5.5 m was found on the northwest-most segments. The estimated slip distribution yielded a seismic moment of 2.9 × 10^{21} Nm (Mw = 8.24), which was calculated assuming an average rigidity of 7× 10^{10} N/m2.

  16. Historical Tsunami Event Locations with Runups

    Data.gov (United States)

    Department of Homeland Security — The Global Historical Tsunami Database provides information on over 2,400 tsunamis from 2100 BC to the present in the the Atlantic, Indian, and Pacific Oceans; and...

  17. Midway Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midway Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a suite...

  18. Sensitivity study of the Storegga Slide tsunami using retrogressive and visco-plastic rheology models

    Science.gov (United States)

    Kim, Jihwan; Løvholt, Finn

    2016-04-01

    Enormous submarine landslides having volumes up to thousands of km3 and long run-out may cause tsunamis with widespread effects. Clay-rich landslides, such as Trænadjupet and Storegga offshore Norway commonly involve retrogressive mass and momentum release mechanisms that affect the tsunami generation. As a consequence, the failure mechanisms, soil parameters, and release rate of the retrogression are of importance for the tsunami generation. Previous attempts to model the tsunami generation due to retrogressive landslides are few, and limited to idealized conditions. Here, a visco-plastic model including additional effects such as remolding, time dependent mass release, and hydrodynamic resistance, is employed for simulating the Storegga Slide. As landslide strength parameters and their evolution in time are uncertain, it is necessary to conduct a sensitivity study to shed light on the tsunamigenic processes. The induced tsunami is simulated using Geoclaw. We also compare our tsunami simulations with recent analysis conducted using a pure retrogressive model for the landslide, as well as previously published results using a block model. The availability of paleotsunami run-up data and detailed slide deposits provides a suitable background for improved understanding of the slide mechanics and tsunami generation. The research leading to these results has received funding from the Research Council of Norway under grant number 231252 (Project TsunamiLand) and the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 603839 (Project ASTARTE).

  19. Numerical modelling and evacuation strategies for tsunami awareness: lessons from the 2012 Haida Gwaii Tsunami

    OpenAIRE

    Santos, Angela; Tavares, Alexandre Oliveira; Queirós, Margarida

    2016-01-01

    On October 28, 2012, an earthquake occurred offshore Canada, with a magnitude Mw of 7.8, triggering a tsunami that propagated through the Pacific Ocean. The tsunami numerical model results show it would not be expected to generate widespread inundation on Hawaii. Yet, two hours after the earthquake, the Pacific Tsunami Warning Centre (PTWC) issued a tsunami warning to the state of Hawaii. Since the state was hit by several tsunamis in the past, regular siren exercises, tsuna...

  20. Inundation mapping – a study based on December 2004 Tsunami Hazard along Chennai coast, Southeast India

    Directory of Open Access Journals (Sweden)

    C. Satheesh Kumar

    2008-07-01

    Full Text Available Tsunami impact study has been undertaken along Chennai coast starting from Pulicat to Kovalam. The study area Chennai coast is mainly devoted to prepare large scale action plan maps on tsunami inundation incorporating land use details derived from satellite data along with cadastral data using a GIS tool. Under tsunami inundation mapping along Chennai coast an integrated approach was adopted to prepare thematic maps on land use/land cover and coastal geomorphology using multispectral remote sensing data. The RTK dGPS instruments are used to collect elevation contour data at 0.5 m intervals for the Chennai coast. The GIS tool has been used to incorporate the elevation data, tsunami inundation markings obtained immediately after tsunami and thematic maps derived from remote sensing data. The outcome of this study provides an important clue on variations in tsunami inundation along Chennai coast, which is mainly controlled by local geomorphologic set-up, coastal zone elevation including coastal erosion protection measures and near shore bathymetry. This study highlights the information regarding most vulnerable areas of tsunami and also provides indication to demarcate suitable sites for rehabilitation.

  1. Synthetic tsunamis along the Israeli coast.

    Science.gov (United States)

    Tobias, Joshua; Stiassnie, Michael

    2012-04-13

    The new mathematical model for tsunami evolution by Tobias & Stiassnie (Tobias & Stiassnie 2011 J. Geophys. Res. Oceans 116, C06026) is used to derive a synthetic tsunami database for the southern part of the Eastern Mediterranean coast. Information about coastal tsunami amplitudes, half-periods, currents and inundation levels is presented.

  2. Near-field tsunami edge waves and complex earthquake rupture

    Science.gov (United States)

    Geist, Eric L.

    2013-01-01

    The effect of distributed coseismic slip on progressive, near-field edge waves is examined for continental shelf tsunamis. Detailed observations of edge waves are difficult to separate from the other tsunami phases that are observed on tide gauge records. In this study, analytic methods are used to compute tsunami edge waves distributed over a finite number of modes and for uniformly sloping bathymetry. Coseismic displacements from static elastic theory are introduced as initial conditions in calculating the evolution of progressive edge-waves. Both simple crack representations (constant stress drop) and stochastic slip models (heterogeneous stress drop) are tested on a fault with geometry similar to that of the M w = 8.8 2010 Chile earthquake. Crack-like ruptures that are beneath or that span the shoreline result in similar longshore patterns of maximum edge-wave amplitude. Ruptures located farther offshore result in reduced edge-wave excitation, consistent with previous studies. Introduction of stress-drop heterogeneity by way of stochastic slip models results in significantly more variability in longshore edge-wave patterns compared to crack-like ruptures for the same offshore source position. In some cases, regions of high slip that are spatially distinct will yield sub-events, in terms of tsunami generation. Constructive interference of both non-trapped and trapped waves can yield significantly larger tsunamis than those that produced by simple earthquake characterizations.

  3. Lessons from the Tōhoku tsunami: A model for island avifauna conservation prioritization.

    Science.gov (United States)

    Reynolds, Michelle H; Berkowitz, Paul; Klavitter, John L; Courtot, Karen N

    2017-08-01

    Earthquake-generated tsunamis threaten coastal areas and low-lying islands with sudden flooding. Although human hazards and infrastructure damage have been well documented for tsunamis in recent decades, the effects on wildlife communities rarely have been quantified. We describe a tsunami that hit the world's largest remaining tropical seabird rookery and estimate the effects of sudden flooding on 23 bird species nesting on Pacific islands more than 3,800 km from the epicenter. We used global positioning systems, tide gauge data, and satellite imagery to quantify characteristics of the Tōhoku earthquake-generated tsunami (11 March 2011) and its inundation extent across four Hawaiian Islands. We estimated short-term effects of sudden flooding to bird communities using spatially explicit data from Midway Atoll and Laysan Island, Hawai'i. We describe variation in species vulnerability based on breeding phenology, nesting habitat, and life history traits. The tsunami inundated 21%-100% of each island's area at Midway Atoll and Laysan Island. Procellariformes (albatrosses and petrels) chick and egg losses exceeded 258,500 at Midway Atoll while albatross chick losses at Laysan Island exceeded 21,400. The tsunami struck at night and during the peak of nesting for 14 colonial seabird species. Strongly philopatric Procellariformes were vulnerable to the tsunami. Nonmigratory, endemic, endangered Laysan Teal ( Anas laysanensis ) were sensitive to ecosystem effects such as habitat changes and carcass-initiated epizootics of avian botulism, and its populations declined approximately 40% on both atolls post-tsunami. Catastrophic flooding of Pacific islands occurs periodically not only from tsunamis, but also from storm surge and rainfall; with sea-level rise, the frequency of sudden flooding events will likely increase. As invasive predators occupy habitat on higher elevation Hawaiian Islands and globally important avian populations are concentrated on low-lying islands

  4. The Nankai Trough earthquake tsunamis in Korea: Numerical studies of the 1707 Hoei earthquake and physics-based scenarios

    Science.gov (United States)

    Kim, S.; Saito, T.; Fukuyama, E.; Kang, T. S.

    2016-12-01

    Historical documents in Korea and China report abnormal waves in the sea and rivers close to the date of the 1707 Hoei earthquake, which occurred in the Nankai Trough, off southwestern Japan. This indicates that the tsunami caused by the Hoei earthquake might have reached Korea and China, which suggests a potential hazard in Korea from large earthquakes in the Nankai Trough. We conducted tsunami simulations to study the details of tsunamis in Korea caused by large earthquakes. We employed the 1707 Hoei earthquake source model and physics-based scenarios of anticipated earthquake in the Nankai subduction zone. We also considered the effect of horizontal displacement on tsunami generation. Our simulation results from the Hoei earthquake model and the anticipated earthquake models showed that the maximum tsunami height along the Korean coast was less than 0.5 m. Even though the tsunami is not life-threatening, the effect of larger earthquakes should be still considered.

  5. Signals in the ionosphere generated by tsunami earthquakes: observations and modeling suppor

    Science.gov (United States)

    Rolland, L.; Sladen, A.; Mikesell, D.; Larmat, C. S.; Rakoto, V.; Remillieux, M.; Lee, R.; Khelfi, K.; Lognonne, P. H.; Astafyeva, E.

    2017-12-01

    Forecasting systems failed to predict the magnitude of the 2011 great tsunami in Japan due to the difficulty and cost of instrumenting the ocean with high-quality and dense networks. Melgar et al. (2013) show that using all of the conventional data (inland seismic, geodetic, and tsunami gauges) with the best inversion method still fails to predict the correct height of the tsunami before it breaks onto a coast near the epicenter (warning systems. We anticipate that the method could be decisive for mitigating "tsunami earthquakes" which trigger tsunamis larger than expected from their short-period magnitude. These events are challenging to characterize as they rupture the near-trench subduction interface, in a distant region less constrained by onshore data. As a couple of devastating tsunami earthquakes happens per decade, they represent a real threat for onshore populations and a challenge for tsunami early-warning systems. We will present the TEC observations of the recent Java 2006 and Mentawaii 2010 tsunami earthquakes and base our analysis on acoustic ray tracing, normal modes summation and the simulation code SPECFEM, which solves the wave equation in coupled acoustic (ocean, atmosphere) and elastic (solid earth) domains. Rupture histories are entered as finite source models, which will allow us to evaluate the effect of a relatively slow rupture on the surrounding ocean and atmosphere.

  6. Simulated tsunami run-up amplification factors around Penang Island for preliminary risk assessment

    Science.gov (United States)

    Lim, Yong Hui; Kh'ng, Xin Yi; Teh, Su Yean; Koh, Hock Lye; Tan, Wai Kiat

    2017-08-01

    The mega-tsunami Andaman that struck Malaysia on 26 December 2004 affected 200 kilometers of northwest Peninsular Malaysia coastline from Perlis to Selangor. It is anticipated by the tsunami scientific community that the next mega-tsunami is due to occur any time soon. This rare catastrophic event has awakened the attention of Malaysian government to take appropriate risk reduction measures, including timely and orderly evacuation. To effectively evacuate ordinary citizens to a safe ground or a nearest designated emergency shelter, a well prepared evacuation route is essential with the estimated tsunami run-up heights and inundation distances on land clearly indicated on the evacuation map. The run-up heights and inundation distances are simulated by an in-house model 2-D TUNA-RP based upon credible scientific tsunami source scenarios derived from tectonic activity around the region. To provide a useful tool for estimating the run-up heights along the entire coast of Penang Island, we computed tsunami amplification factors based upon 2-D TUNA-RP model simulations in this paper. The inundation map and run-up amplification factors in six domains along the entire coastline of Penang Island are provided. The comparison between measured tsunami wave heights for the 2004 Andaman tsunami and TUNA-RP model simulated values demonstrates good agreement.

  7. TSUNAMI HAZARD MITIGATION AND THE NOAA NATIONAL WATER LEVEL OBSERVATION NETWORK

    Directory of Open Access Journals (Sweden)

    James R. Hubbard

    2002-01-01

    Full Text Available With the renewed interest in regional Tsunami Warning Systems and the potential tsunami threats throughout the Caribbean and West coast of the United States, the National Ocean Service (NOS, National Water Level Observation Network (NWLON consisting of 175 primary stations, is well situated to play a role in the National Hazard Mitigation effort. In addition, information regarding local mean sea level trends and GPS derived geodetic datum relationships at numerous coastal locations is readily available for tsunami hazard assessment and mapping applications.Tsunami inundation maps and modeling are just two of the more important products which may be derived from NWLON data. In addition to the seven water level gauges that are hardwired into the West Coast and Alaska Tsunami Warning Center (WClATWC, NOS has a significant number of gauges with real-time satellite telemetry capabilities located along the Pacific Northwest coastline, the Gulf of Mexico and the Caribbean. These gauges, in concert with near shore buoy systems, have the potential for increasing the effectiveness of the existing tsunami warning system.The recent expansion of the Caribbean Sea Level Gauge Network through the NOS regional partnerships with Central American and Caribbean countries have opened an opportunity for a basin-wide tsunami warning network in a region which is ill prepared for a major tsunami event.

  8. Effectiveness of cognitive-behavioural therapy for post-disaster distress in post-traumatic stress symptoms after Chilean earthquake and tsunami.

    Science.gov (United States)

    Leiva-Bianchi, Marcelo; Cornejo, Felipe; Fresno, Andrés; Rojas, Carolina; Serrano, Camila

    2017-10-05

    This is the first time that the effectiveness of cognitive-behavioural therapy for post-disaster stress (CBT-PD) in symptoms of posttraumatic stress disorder (PTSD) has been tested outside the United States of America. Quasi-experiment with three groups. In the quasi-control group, complete CBT-PD was applied even though its members did not have PTSD; in quasi-experimental conditions, participants received complete treatment because they had this diagnosis; and in the third group, participants with PTSD received an abbreviated treatment (double sessions) due to organisational requirements. Primary health care workers in Constitución (Chile), city exposed to earthquake and tsunami; public department workers in Talca (city exposed only to earthquake) and teachers from a school (Constitución). A total of 13 of the 91 people diagnosed with PTSD participated. In addition, 16 people without diagnosis voluntarily participated. The treatment was completed by 29 participants. There were no dropouts. Only 1 of the 9 participants in the quasi-experimental group did not respond to treatment. CBT-PD is a group therapy (10-12 sessions) that includes psychoeducation, breathing retraining, behavioural activation and cognitive restructuring. CBT-PD (complete and abbreviated) was applied between September and December 2010. Short Posttraumatic Stress Disorder Rating Interview (SPRINT-E) was used to measure PTSD symptoms before and after treatment. The group that received the complete treatment and was diagnosed with PTSD showed a significant decrease in the total symptoms to below dangerous levels (IGA AB : 31.556; p<0.01; 95%CI: 0.21-2.01]; η 2 =0.709). The effectiveness and benefits of incorporating CBT-PD in the health network after events like disasters were discussed. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. A Probabilistic Tsunami Hazard Study of the Auckland Region, Part I: Propagation Modelling and Tsunami Hazard Assessment at the Shoreline

    Science.gov (United States)

    Power, William; Wang, Xiaoming; Lane, Emily; Gillibrand, Philip

    2013-09-01

    Regional source tsunamis represent a potentially devastating threat to coastal communities in New Zealand, yet are infrequent events for which little historical information is available. It is therefore essential to develop robust methods for quantitatively estimating the hazards posed, so that effective mitigation measures can be implemented. We develop a probabilistic model for the tsunami hazard posed to the Auckland region of New Zealand from the Kermadec Trench and the southern New Hebrides Trench subduction zones. An innovative feature of our model is the systematic analysis of uncertainty regarding the magnitude-frequency distribution of earthquakes in the source regions. The methodology is first used to estimate the tsunami hazard at the coastline, and then used to produce a set of scenarios that can be applied to produce probabilistic maps of tsunami inundation for the study region; the production of these maps is described in part II. We find that the 2,500 year return period regional source tsunami hazard for the densely populated east coast of Auckland is dominated by events originating in the Kermadec Trench, while the equivalent hazard to the sparsely populated west coast is approximately equally due to events on the Kermadec Trench and the southern New Hebrides Trench.

  10. Worst-Case Scenario Tsunami Hazard Assessment in Two Historically and Economically Important Districts in Eastern Sicily (Italy)

    Science.gov (United States)

    Armigliato, A.; Tinti, S.; Pagnoni, G.; Zaniboni, F.; Paparo, M. A.

    2015-12-01

    The portion of the eastern Sicily coastline (southern Italy), ranging from the southern part of the Catania Gulf (to the north) down to the southern-eastern end of the island, represents a very important geographical domain from the industrial, commercial, military, historical and cultural points of view. Here the two major cities of Augusta and Siracusa are found. In particular, the Augusta bay hosts one of the largest petrochemical poles in the Mediterranean, and Siracusa is listed among the UNESCO World Heritage Sites since 2005. This area was hit by at least seven tsunamis in the approximate time interval from 1600 BC to present, the most famous being the 365, 1169, 1693 and 1908 tsunamis. The choice of this area as one of the sites for the testing of innovative methods for tsunami hazard, vulnerability and risk assessment and reduction is then fully justified. This is being developed in the frame of the EU Project called ASTARTE - Assessment, STrategy And Risk Reduction for Tsunamis in Europe (Grant 603839, 7th FP, ENV.2013.6.4-3). We assess the tsunami hazard for the Augusta-Siracusa area through the worst-case credible scenario technique, which can be schematically divided into the following steps: 1) Selection of five main source areas, both in the near- and in the far-field (Hyblaean-Malta escarpment, Messina Straits, Ionian subduction zone, Calabria offshore, western Hellenic Trench); 2) Choice of potential and credible tsunamigenic faults in each area: 38 faults were selected, with properly assigned magnitude, geometry and focal mechanism; 3) Computation of the maximum tsunami wave elevations along the eastern Sicily coast on a coarse grid (by means of the in-house code UBO-TSUFD) and extraction of the 9 scenarios that produce the largest effects in the target areas of Augusta and Siracusa; 4) For each of the 9 scenarios we run numerical UBO-TSUFD simulations over a set of five nested grids, with grid cells size decreasing from 3 km in the open Ionian

  11. Tsunami Forecast for Galapagos Islands

    Science.gov (United States)

    Renteria, W.

    2012-04-01

    The objective of this study is to present a model for the short-term and long-term tsunami forecast for Galapagos Islands. For both cases the ComMIT/MOST(Titov,et al 2011) numerical model and methodology have been used. The results for the short-term model has been compared with the data from Lynett et al, 2011 surveyed from the impacts of the March/11 in the Galapagos Islands. For the case of long-term forecast, several scenarios have run along the Pacific, an extreme flooding map is obtained, the method is considered suitable for places with poor or without tsunami impact information, but under tsunami risk geographic location.

  12. Effect of systemic administration of essential oils and main components on honeybee survival

    OpenAIRE

    Porrini, M.P.; Pires, Sância; Rossini, C.; Garrido, P.M.; Hermida, L.; Gende, L.B.; Eguaras, M.J.

    2012-01-01

    Controlling bee diseases with non contaminant products is a challenge in apicultural research. Essential oils and their main components have been widely studied as alternative treatments for honeybee pathologies [1, 2, 3]. However, there is little information about prolonged systemic administration. The aim of this study was to evaluate, in laboratory assays, the effect of long term consumption of essential oils and main components. Oils were obtained by hydrodistillation from Lau...

  13. Affect, risk perception and future optimism after the tsunami disaster

    Directory of Open Access Journals (Sweden)

    Daniel Vastfjall

    2008-01-01

    Full Text Available Environmental events such as natural disasters may influence the public's affective reactions and decisions. Shortly after the 2004 Tsunami disaster we assessed how affect elicited by thinking about this disaster influenced risk perceptions and future time perspective in Swedish undergraduates not directly affected by the disaster. An experimental manipulation was used to increase the salience of affect associated with the disaster. In Study 1 we found that participants reminded about the tsunami had a sense that their life was more finite and included fewer opportunities than participants in the control condition (not reminded about the tsunami. In Study 2 we found similar effects for risk perceptions. In addition, we showed that manipulations of ease-of-thought influenced the extent to which affect influenced these risk perceptions, with greater ease of thoughts being associated with greater perceived risks.

  14. The public health impact of tsunami disasters.

    Science.gov (United States)

    Keim, Mark E

    2011-01-01

    Tsunamis have the potential to cause an enormous impact on the health of millions of people. During the last half of the twentieth century, more people were killed by tsunamis than by earthquakes. Most recently, a major emergency response operation has been underway in northeast Japan following a devastating tsunami triggered by the biggest earthquake on record in Japan. This natural disaster has been described as the most expensive in world history. There are few resources in the public health literature that describe the characteristics and epidemiology of tsunami-related disasters, as a whole. This article reviews the phenomenology and impact of tsunamis as a significant public health hazard.

  15. A Preliminary Tsunami vulnerability analysis for Bakirkoy district in Istanbul

    Science.gov (United States)

    Tufekci, Duygu; Lutfi Suzen, M.; Cevdet Yalciner, Ahmet; Zaytsev, Andrey

    2016-04-01

    Resilience of coastal utilities after earthquakes and tsunamis has major importance for efficient and proper rescue and recovery operations soon after the disasters. Vulnerability assessment of coastal areas under extreme events has major importance for preparedness and development of mitigation strategies. The Sea of Marmara has experienced numerous earthquakes as well as associated tsunamis. There are variety of coastal facilities such as ports, small craft harbors, and terminals for maritime transportation, water front roads and business centers mainly at North Coast of Marmara Sea in megacity Istanbul. A detailed vulnerability analysis for Yenikapi region and a detailed resilience analysis for Haydarpasa port in Istanbul have been studied in previously by Cankaya et al., (2015) and Aytore et al., (2015) in SATREPS project. In this study, the methodology of vulnerability analysis under tsunami attack given in Cankaya et al., (2015) is modified and applied to Bakirkoy district of Istanbul. Bakirkoy district is located at western part of Istanbul and faces to the North Coast of Marmara Sea from 28.77oE to 28.89oE. High resolution spatial dataset of Istanbul Metropolitan Municipality (IMM) is used and analyzed. The bathymetry and topography database and the spatial dataset containing all buildings/structures/infrastructures in the district are collated and utilized for tsunami numerical modeling and following vulnerability analysis. The tsunami parameters from deterministically defined worst case scenarios are computed from the simulations using tsunami numerical model NAMI DANCE. The vulnerability assessment parameters in the district according to vulnerability and resilience are defined; and scored by implementation of a GIS based TVA with appropriate MCDA methods. The risk level is computed using tsunami intensity (level of flow depth from simulations) and TVA results at every location in Bakirkoy district. The preliminary results are presented and discussed

  16. New Science Applications Within the U.S. National Tsunami Hazard Mitigation Program

    Science.gov (United States)

    Wilson, R. I.; Eble, M. C.; Forson, C. K.; Horrillo, J. J.; Nicolsky, D.

    2017-12-01

    The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is a collaborative State and Federal program which supports consistent and cost effective tsunami preparedness and mitigation activities at a community level. The NTHMP is developing a new five-year Strategic Plan based on the 2017 Tsunami Warning, Education, and Research Act as well as recommendations the 2017 NTHMP External Review Panel. Many NTHMP activities are based on the best available scientific methods through the NTHMP Mapping and Modeling Subcommittee (MMS). The primary activities for the MMS member States are to characterize significant tsunami sources, numerically model those sources, and create tsunami inundation maps for evacuation planning. This work remains a focus for many unmapped coastlines. With the lessons learned from the 2004 Indian Ocean and 2011 Tohoku Japan tsunamis, where both immediate risks and long-term recovery issues where recognized, the NTHMP MMS is expanding efforts into other areas that address community resilience. Tsunami evacuation modeling based on both pedestrian and vehicular modes of transportation are being developed by NTHMP States. Products include tools for the public to create personal evacuation maps. New tsunami response planning tools are being developed for both maritime and coastal communities. Maritime planning includes tsunami current-hazard maps for in-harbor and offshore response activities. Multi-tiered tsunami evacuation plans are being developed in some states to address local- versus distant-source tsunamis, as well as real-time evacuation plans, or "playbooks," for distant-source tsunamis forecasted to be less than the worst-case flood event. Products to assist community mitigation and recovery are being developed at a State level. Harbor Improvement Reports, which evaluate the impacts of currents, sediment, and debris on harbor infrastructure, include direct mitigation activities for Local Hazard Mitigation Plans. Building code updates in the

  17. Inversion of Flow Depth and Speed from Tsunami Deposits using TsuSedMod

    Science.gov (United States)

    Spiske, M.; Weiss, R.; Roskosch, J.; Bahlburg, H.

    2008-12-01

    The global evolution of a tsunami wave train can be expressed by the sum of local effects along a tsunami- wave beam. The near-shore evolution of tsunami is very complex as the waves interact with the sea-bottom sediments. Filtered through offshore and onshore erosion and deposition, this evolution is recorded in the coastal area by topographical changes, local erosion and tsunami deposits. Recordable sedimentary on-site features include grain-size distributions and horizontal thickness trends. Immediately after an event, indicators of flow depth and run up extent, such as water marks on buildings and vegetation, debris and plastic bags caught in trees and swash lines, can be measured in the field. A direct measurement of the overland flow velocity is usually not possible. However, regarding recent tsunami events, videos of surveillance cameras or witness accounts helped to estimate the characteristics of overland flow. For historical and paleotsunami events such information is not directly available. Jaffe & Gelfenbaum (2007) developed an inversion model (TsuSedMod) to estimate flow depth and speed based upon the grain-size distribution and the thickness of onshore tsunami sediments. This model assumes a steady distribution of sediment in the water column, for which the appication of the Rouse equation is possible. Further simplifications, especially concerning the turbulence structure, are based on the mixing- length theory by Prandtl, the standard approximation in physical sedimentology. We calculated flow depths for sediments left behind by the 2004 Sumatra-Tsunami in India and Kenya (Weiss & Bahlburg, 2006; Bahlburg & Weiss, 2007) and by the 2006 Java-Tsunami on Java (Piepenbreier et al., 2007), using the model of Jaffe and Gelfenbaum (2007). Estimated flow depth were compared with measured data to extend the validation procedure. This extension is needed to gain confidence and understanding before the next step is taken to compute the near

  18. A new approach for tsunami early warning using tsunami observations in a source region

    Science.gov (United States)

    Tanioka, Y.

    2015-12-01

    After the 2011 devastating Tohoku tsunami, improvement of tsunami early warning system is one of key issues in Japan. Japanese government was decided to install 125 ocean bottom pressure sensors and seismometers with a cable system along the Japan and Kurile trench. Each sensor is separated by 30km. We should develop a new approach for real-time tsunami forecast using those newly available data combined with GNSS data or seismic data. A well-recognized problem to use tsunami data at pressure sensors on the top of tsunami source area is a fact that a large vertical coseismic deformation due to a large earthquake cannot be observed at those sensors. The sensors observe a tsunami wave when it starts to propagate. Because of that problem, GSNN data or seismic data are typically used to estimate the coseismic deformation for the tsunami numerical simulation. In this paper, we develop a new technique, which solve the problem. Our technique uses the observations at pressure sensors on the tsunami source area as an input to compute the tsunami directly. Actual tsunami heights at the sensors on the source area is unknown because the cosismic vertical deformation is unknown. However, we can observe directly the time derivative of tsunami heights at those sensors. Time derivatives of tsunami heights at each point are used as inputs to compute the tsunami height distribution in the calculated area. Then we can numerically compute a tsunami using a traditional finite difference technique from the tsunami height distribution computed. For numerical test, first, we compute the synthetic tsunamis using the fault model with 1 minute grid system. The computed tsunami waveforms at 15 minutes x 15 minutes grid points are used as the observed data for this new technique. Each observed point is separated by 15 minutes, about 30km. The result show that the accuracy of tsunami computation is good enough for tsunami forecast. Tsunami generation with a long duration, such as tsunami

  19. The Indian Ocean disaster: Tsunami physics and early warning dilemmas

    Science.gov (United States)

    Lomnitz, Cinna; Nilsen-Hofseth, Sara

    Understanding the physics of tsunamis may save lives, especially near the epicenter of a large earthquake where the danger is highest and early warning is least likely to be effective.Normal modes of Earth are standing waves of the Love (toroidal) or the Rayleigh (spheroidal) variety. The Indian Ocean tsunami may have been partly or wholly caused by low-order spheroidal modes of the Earth such as 0S2, 0S3, and 0S4, that may have excited a waveguide—a layer that confines and guides a propagating wave—in the ocean.

  20. Lessons learnt from the Indian Ocean Tsunami 2004: the role of surface and subsurface topography in deep water tsunami propagation

    Science.gov (United States)

    Pattiaratchi, C. B.

    2014-12-01

    The Indian Ocean experienced its most devastating natural disaster through the action of a Tsunami, resulting from of an earthquake off the coast of Sumatra on 26th of December 2004. This resulted in widespread damage both to property and human lives with over 250,000 deaths in the region and many millions homeless. Our understanding of tsunami generation and propagation has increased significantly over the past decade. In this presentation, results obtained from detailed analysis of sea level data from Western Australia and Sri Lanka together with numerical modelling are presented to highlight the effects of topography both at the surface and subsurface. The major effects are due to wave reflection and refraction. Examples of wave reflection include: impacts on Malaysia/Thailand, Sri Lanka and Western Australia due to wave reflection from Sri Lanka, Maldives and Mascarene Ridge, respectively. In the case of Sri Lanka, the maximum wave height recorded along the west coast during the 2004 tsunami was due to the reflected wave from Maldives impacting 3 hours after the arrival of the initial waves. Similarly, along the West coast of Australia highest waves occurred 15 hours after the arrival of the first wave. Here, based on travel times, we postulate that the waves were reflected from the Mascarene Ridge and/or the island of Madagascar (Figure 1b). The conclusions based on observations were verified using numerical model simulations using the MOST and ComMIT models. Numerical modelling using the MOST model indicated the role of offshore susurface topography on tsunami propagation through wave wave refraction. Examples of wave refraction included the effects of deep water seamounts (Venin Meinesz) and plateaus (Wallaby, Cuvier and Exmouth) on tsunami propagation along the West Australian coast. The tsunami waves are first scattered by the Venin Meinesz seamounts and were then refracted by the Wallaby and Cuvier plateaus resulting in waves being deflected onto the

  1. Modeling of Tsunami Currents in Harbors

    Science.gov (United States)

    Lynett, P. J.

    2010-12-01

    Extreme events, such as large wind waves and tsunamis, are well recognized as a damaging hazard to port and harbor facilities. Wind wave events, particularly those with long period spectral components or infragravity wave generation, can excite resonance inside harbors leading to both large vertical motions and strong currents. Tsunamis can cause great damage as well. The geometric amplification of these very long waves can create large vertical motions in the interior of a harbor. Additionally, if the tsunami is composed of a train of long waves, which it often is, resonance can be easily excited. These long wave motions create strong currents near the node locations of resonant motions, and when interacting with harbor structures such as breakwaters, can create intense turbulent rotational structures, typical in the form of large eddies or gyres. These gyres have tremendous transport potential, and have been observed to break mooring lines, and even cause ships to be trapped inside the rotation, moving helplessly with the flow until collision, grounding, or dissipation of the eddy (e.g. Okal et al., 2006). This presentation will introduce the traditional theory used to predict wave impacts on harbors, discussing both how these models are practically useful and in what types of situations require a more accurate tool. State-of-the-art numerical models will be introduced, with a focus on recent developments in Boussinesq-type modeling. The Boussinesq equations model can account the dispersive, turbulent and rotational flow properties frequently observed in nature. Also they have the ability to coupling currents and waves and can predict nonlinear wave propagation over uneven bottom from deep (or intermediate) water area to shallow water area. However, during the derivation of a 2D-horizontal equation set, some 3D flow features, such those driven by as the dispersive stresses and the effects of the unresolved small scale 3D turbulence, are excluded. Consequently

  2. Reconnaissance Survey of the 29 September 2009 Tsunami on Tutuila Island, American Samoa

    Science.gov (United States)

    Fritz, H. M.; Borrero, J. C.; Okal, E.; Synolakis, C.; Weiss, R.; Jaffe, B. E.; Lynett, P. J.; Titov, V. V.; Foteinis, S.; Chan, I.; Liu, P.

    2009-12-01

    On 29 September, 2009 a magnitude Mw 8.1 earthquake occurred 200 km southwest of American Samoa’s Capital of Pago Pago and triggered a tsunami which caused substantial damage and loss of life in Samoa, American Samoa and Tonga. The most recent estimate is that the tsunami caused 189 fatalities, including 34 in American Samoa. This is the highest tsunami death toll on US territory since the 1964 great Alaskan earthquake and tsunami. PTWC responded and issued warnings soon after the earthquake but, because the tsunami arrived within 15 minutes at many locations, was too late to trigger evacuations. Fortunately, the people of Samoa knew to go to high ground after an earthquake because of education and tsunami evacuation exercises initiated throughout the South Pacific after a similar magnitude earthquake and tsunami struck the nearby Solomon Islands in 2007. A multi-disciplinary reconnaissance survey team was deployed within days of the event to document flow depths, runup heights, inundation distances, sediment deposition, damage patterns at various scales, and performance of the man-made infrastructure and impact on the natural environment. The 4 to 11 October 2009 ITST circled American Samoa’s main island Tutuila and the small nearby island of Aunu’u. The American Samoa survey data includes nearly 200 runup and flow depth measurements on Tutuila Island. The tsunami impact peaked with maximum runup exceeding 17 m at Poloa located 1.5 km northeast of Cape Taputapu marking Tutuila’s west tip. A significant variation in tsunami impact was observed on Tutuila. The tsunami runup reached 12 m at Fagasa near the center of the Tutuila’s north coast and 9 m at Tula near Cape Matatula at the east end. Pago Pago, which is near the center of the south coast, represents an unfortunate example of a village and harbor that was located for protection from storm waves but is vulnerable to tsunami waves. The flow patterns inside Pago Pago harbor were characterized based on

  3. Analysis of Tsunami Culture in Countries Affected by Recent Tsunamis

    NARCIS (Netherlands)

    Esteban, M.; Tsimopoulou, V.; Shibayama, T.; Mikami, T.; Ohira, K.

    2012-01-01

    Since 2004 there is a growing global awareness of the risks that tsunamis pose to coastal communities. Despite the fact that these events were already an intrinsic part of the culture of some countries (such as Chile and Japan), in many other places they had been virtually unheard of before 2004.

  4. Revision of the tsunami catalogue affecting Turkish coasts and surrounding regions

    Directory of Open Access Journals (Sweden)

    Y. Altinok

    2011-02-01

    Full Text Available The coasts of Turkey have been hit by tsunamis in the past. The first national earthquake-tsunami catalogues were compiled in the early 1980s while the most up-to-date tsunami catalogues are mainly the products of recent European projects. The EU projects GITEC and GITEC-TWO (Genesis and Impact of Tsunamis on the European Coasts and TRANSFER (Tsunami Risk ANd Strategies For the European Region have added important contributions in establishing and developing unified criteria for tsunami parameterisation, standards for the quality of the data, the data format and the database general architecture. On the basis of these new aspects and based on recent marine geophysical data, tsunamigenic earthquakes, tsunami intensities and their reliability have been revised. The current version of the database contains 134 events, most of which have affected the Turkish coasts seriously during the last 3500 years. The reliability index of 76 events was "probable" and "definite", so that they could be used for assessment of the risk along the Turkish coastal region and for implementation of prevention policies.

  5. Emergency management response to a warning-level Alaska-source tsunami impacting California: Chapter J in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    Science.gov (United States)

    Miller, Kevin M.; Long, Kate

    2013-01-01

    This chapter is directed towards two audiences: Firstly, it targets nonemergency management readers, providing them with insight on the process and challenges facing emergency managers in responding to tsunami Warning, particularly given this “short fuse” scenario. It is called “short fuse” because there is only a 5.5-hour window following the earthquake before arrival of the tsunami within which to evaluate the threat, disseminate alert and warning messages, and respond. This action initiates a period when crisis communication is of paramount importance. An additional dynamic that is important to note is that within 15 minutes of the earthquake, the National Oceanic and Atmospheric Administration (NOAA) and the National Weather Service (NWS) will issue alert bulletins for the entire Pacific Coast. This is one-half the time actually presented by recent tsunamis from Japan, Chile, and Samoa. Second, the chapter provides emergency managers at all levels with insights into key considerations they may need to address in order to augment their existing plans and effectively respond to tsunami events. We look at emergency management response to the tsunami threat from three perspectives:“Top Down” (Threat analysis and Alert/Warning information from the Federal agency charged with Alert and Warning) “Bottom Up” (Emergency management’s Incident Command approach to responding to emergencies and disasters based on the needs of impacted local jurisdictions) “Across Time” (From the initiating earthquake event through emergency response) We focus on these questions: What are the government roles, relationships, and products that support Tsunami Alert and Warning dissemination? (Emergency Planning and Preparedness.) What roles, relationships, and products support emergency management response to Tsunami Warning and impact? (Engendering prudent public safety response.) What are the key emergency management activities, considerations, and challenges brought

  6. Relationship between the Prediction Accuracy of Tsunami Inundation and Relative Distribution of Tsunami Source and Observation Arrays: A Case Study in Tokyo Bay

    Science.gov (United States)

    Takagawa, T.

    2017-12-01

    A rapid and precise tsunami forecast based on offshore monitoring is getting attention to reduce human losses due to devastating tsunami inundation. We developed a forecast method based on the combination of hierarchical Bayesian inversion with pre-computed database and rapid post-computing of tsunami inundation. The method was applied to Tokyo bay to evaluate the efficiency of observation arrays against three tsunamigenic earthquakes. One is a scenario earthquake at Nankai trough and the other two are historic ones of Genroku in 1703 and Enpo in 1677. In general, rich observation array near the tsunami source has an advantage in both accuracy and rapidness of tsunami forecast. To examine the effect of observation time length we used four types of data with the lengths of 5, 10, 20 and 45 minutes after the earthquake occurrences. Prediction accuracy of tsunami inundation was evaluated by the simulated tsunami inundation areas around Tokyo bay due to target earthquakes. The shortest time length of accurate prediction varied with target earthquakes. Here, accurate prediction means the simulated values fall within the 95% credible intervals of prediction. In Enpo earthquake case, 5-minutes observation is enough for accurate prediction for Tokyo bay, but 10-minutes and 45-minutes are needed in the case of Nankai trough and Genroku, respectively. The difference of the shortest time length for accurate prediction shows the strong relationship with the relative distance from the tsunami source and observation arrays. In the Enpo case, offshore tsunami observation points are densely distributed even in the source region. So, accurate prediction can be rapidly achieved within 5 minutes. This precise prediction is useful for early warnings. Even in the worst case of Genroku, where less observation points are available near the source, accurate prediction can be obtained within 45 minutes. This information can be useful to figure out the outline of the hazard in an early

  7. Ocean bottom seismometer pressure gauge observations of the 15 July 2009 Mw 7.8 Dusky Sound, New Zealand tsunami and simulations

    Science.gov (United States)

    Heidarzadeh, M.; Takagawa, T.; Satake, K.; Gusman, A. R.; Watada, S.; Sheehan, A. F.

    2016-12-01

    Tsunami observations made by pressure gauges installed on Ocean Bottom Seismometers (OBSPG) have provided new opportunities in tsunami research. OBSPG observations have two main advantages over Deep-Ocean Assessment and Reporting of Tsunami (DART) records namely: 1) they come with large numbers (several tens) and dense distribution with spacing of 10-50 km versus 200-4000 km of DARTs, 2) they have high frequency with sampling rates of 40-100 Hz versus that of 0.016 Hz for DARTs. Here, we analyzed the OBSPG records of the 15 July 2009 Mw 7.8 Dusky Sound (New Zealand) tsunami. At the time of the tsunami, 30 OBSPGs equipped with differential pressure gauges (DPG) were deployed at offshore New Zealand. The tsunami also was recorded on two DARTs and four tide gauge stations. While tsunami signals were fully hidden in high-frequency recordings of the OBSPGs, we were able to clearly extract the tsunami signals by applying re-sampling, filtering, and de-convolving the DPG instrument response. In our processed OBSPG tsunami data, the tsunami arrival times were clear and the signals had periods in the range of 10-20 min which is the expected period range for a tsunami from Mw 7.8 earthquake. Numerical modeling of tsunami was conducted by using the tsunami source proposed by Beavan et al. (2010) [Geophys. J. Int. 183]. Simulations were able to fairly reproduce the observations from OBSPG, DART and tide gauge stations. However, the match for DART and tide gauge records was better than that for OBSPGs. While the observed arrival times of the first peak matched well with those of simulations for the OBSPG waveforms, the match for amplitude was not good enough. The OBS tsunami records used in this study are freely available at http://www.iris.edu.

  8. Coral reefs as buffers during the 2009 South Pacific tsunami, Upolu Island, Samoa

    Science.gov (United States)

    McAdoo, Brian G.; Ah-Leong, Joyce Samuelu; Bell, Lui; Ifopo, Pulea; Ward, Juney; Lovell, Edward; Skelton, Posa

    2011-07-01

    The coral reef bordering the coastline of Samoa affected by the 29 September 2009 tsunami provides a variety of ecosystem services — from nurseries for fisheries and inshore source of food for local communities, to aesthetics for tourists, and the width of the lagoon may have been a factor in reducing the onshore wave height. To understand the complex interactions between the onshore human population and the offshore coral, we formed an interdisciplinary survey team to document the effects the tsunami had on the nearshore coral reef, and how these changes might affect local inhabitants. The scale of reef damage varied from severe, where piles of freshly-killed coral fragments and mortality were present, to areas that exhibited little impact, despite being overrun by the tsunami. We found that many coral colonies were impacted by tsunami-entrained coral debris, which had been ripped up and deposited on the fore reef by repeated cyclones and storm waves. In other places, large surface area tabular coral sustained damage as the tsunami velocity increased as it was funneled through channels. Areas that lacked debris entrained by the waves as well as areas in the lee of islands came through relatively unscathed, with the exception of the delicate corals that lived on a sandy substrate. In the lagoon on the south coast with its steep topography, coral colonies were damaged by tsunami-generated debris from onshore entrained in the backwash. Despite the potential for severe tsunami-related damage, there were no noticeable decreases in live coral cover between successive surveys at two locations, although algal cover was higher with the increased nutrients mobilized by the tsunami. While there was an immediate decrease in fish takes in the month following the tsunami, when supporting services were likely impacted, both volume and income have rapidly increased to pre-tsunami levels. Long-term monitoring should be implemented to determine if nursery services were affected.

  9. Modeling the Influence of Coseismic Horizontal Seafloor Displacement on Tsunami Generation and Propagation

    Science.gov (United States)

    Lotto, G. C.; Dunham, E. M.

    2014-12-01

    Conventional tsunami generation theory assumes that vertical uplift at the seafloor is entirely responsible for sea surface uplift after an earthquake. This vertical uplift, which includes direct vertical displacement as well as contributions from horizontal displacement of the sloped seabed, is low-pass filtered to account for nonhydrostatic ocean response at short wavelengths and used as an initial condition in tsunami models. However, Song et al. [2008] suggest that for geometries and horizontal displacements associated with realistic tsunamis, horizontal momentum transfer plays a key role in determining tsunami height. To gain insight into this problem, we use a provably stable and accurate finite difference method that can model the full seismic, ocean acoustic, and tsunami wavefield generated by megathrust earthquakes in two dimensions. This is done using summation-by-parts (SBP) finite difference operators and weak enforcement of boundary conditions via the simultaneous approximation term (SAT) method. Our numerical method rigorously couples the elastodynamic response of the solid Earth with that of a compressible ocean, in the presence of gravity. We model surface gravity waves using a linearized traction-free boundary condition on the perturbed free surface of an ocean initially in hydrostatic balance. We have applied our method to study the seismic, ocean acoustic, and tsunami waves generated by rupture on a thrust fault extending to the bottom of an ocean of constant depth. The results of our model disagree somewhat with the tsunami predicted by the standard approach; the amplitude of the landward traveling tsunami is smaller than predicted, while the amplitude of the seaward traveling tsunami is larger than predicted. We are presently studying if this difference is a directivity effect associated with up-dip rupture propagation or is related to horizontal momentum transfer to the ocean. Using our method, we have the potential to investigate tsunamis

  10. An approximate method of short-term tsunami forecast and the hindcasting of some recent events

    Directory of Open Access Journals (Sweden)

    Yu. P. Korolev

    2011-11-01

    Full Text Available The paper presents a method for a short-term tsunami forecast based on sea level data from remote sites. This method is based on Green's function for the wave equation possessing the fundamental property of symmetry. This property is well known in acoustics and seismology as the reciprocity principle. Some applications of this principle on tsunami research are considered in the current study. Simple relationships and estimated transfer functions enabled us to simulate tsunami waveforms for any selected oceanic point based only on the source location and sea level data from a remote reference site. The important advantage of this method is that it is irrespective of the actual source mechanism (seismic, submarine landslide or other phenomena. The method was successfully applied to hindcast several recent tsunamis observed in the Northwest Pacific. The locations of the earthquake epicenters and the tsunami records from one of the NOAA DART sites were used as inputs for the modelling, while tsunami observations at other DART sites were used to verify the model. Tsunami waveforms for the 2006, 2007 and 2009 earthquake events near Simushir Island were simulated and found to be in good agreement with the observations. The correlation coefficients between the predicted and observed tsunami waveforms were from 0.50 to 0.85. Thus, the proposed method can be effectively used to simulate tsunami waveforms for the entire ocean and also for both regional and local tsunami warning services, assuming that they have access to the real-time sea level data from DART stations.

  11. Characteristics and damage investigation of the 1998 Papua New Guinea earthquake tsunami

    International Nuclear Information System (INIS)

    Matsuyama, Masashi

    1998-01-01

    On 17 July, 1998, an earthquake with moment magnitude Mw 7.1 (estimated by Harvard Univ.) occurred at 18:49 (local time) on the north west part of Papua New Guinea. Several minutes after the main shock, huge tsunami attacked the north coast of Sissano and Malol, where the coast is composed of straight beach with white sand, and about 7,000 people had lived in high floor wooden houses. Due to the tsunami, more than 2,000 people were killed. To investigate damage by the tsunami, a survey team of seven members was organized in Japan. The author took part in the survey team, which was headed by Prof. Kawata, of Kyoto University. We stayed in the Papua New Guinea from 30th July through 10th August 1998 to investigate the maximum water level, to interview the people about the phenomena caused by the earthquake and the tsunami, and to set three seismographs. These results imply that: (1) By main shock, an earthquake intensity of 6 on the Richter scale was felt in Sissano and Malol. In the coast area near Sissano and Malol, liquefaction took place. (2) More than 2,000 people were killed mainly due to the tsunami. (3) The maximum water level of the tsunami was about 15 m. (4) It seems that the tsunami caused not only by crustal movement, but also by other factors. This is suggested by the fact that the measured maximum water level was beyond 10 times larger than the estimated one, which was calculated by numerical simulation based on known fault parameters. It is highly probable that a submarine landslide was one of main factors which amplified the tsunami. (author)

  12. Organic-geochemical investigations on soil layers affected by theTohoku-oki tsunami (March 2011)

    Science.gov (United States)

    Reicherter, Klaus; Schwarzbauer, Jan; Jaffe, Bruce; Szczucinski, Witold

    2014-05-01

    Geochemical investigations on tsunami deposits, in particular palaeotsunamites, have mainly focused on inorganic indicators that have been used to distinguish between terrestrial and marine matter in sedimentary archives. Observable tsunami deposits may also be characterised by organic-geochemical parameters reflecting the mixture and unexpected transport of marine and terrestrial matter. The application of organic substances with indicative properties has so far not been used, although the approach of using specific indicators to determine prehistoric, historic and recent processes and impacts (so-called biomarker and anthropogenic marker approach) already exists. In particular, for recent tsunami deposit the analysis of anthropogenic or even xenobiotic compounds as indicators for assessing the impact of tsunamis has been neglected so far. The Tohoku-oki tsunami in March 2011 showed the huge threat that tsunamis, and subsequent flooding of coastal lowlands, pose to society. The mainly sandy deposits of this mega-tsunami reach more than 4.5 km inland as there were run-up heights of ca. 10 m (wave height). The destruction of infrastructure by wave action and flooding is accompanied by the release of environmental pollutants (e.g. fuels, fats, tarmac, plastics, heavy metals, etc.) contaminating the coastal areas and ocean. To characterize this event in the sedimentary deposits, we analyzed several soil archives from the Bay of Sendai area. Soil layers representing the tsunami deposits have been contrasted with unaffected pre-tsunami samples by means of organic-geochemical analyses based on GC/MS. Natural compounds and their diagenetic transformation products have been tested as marker compounds for monitoring this recent tsunami. The relative composition of fatty acids, n-alkanes, sesquiterpenes and further substances pointed to significant variations before and after the tsunami event. Additionally, anthropogenic marker compounds (such as soil derived pesticides

  13. The Pacific tsunami warning system

    Science.gov (United States)

    Pararas-Carayannis, G.

    1986-01-01

    Of all natural disasters, tsunamis are among the most terrifying and complex phenomena, responsible for great loss of lives and vast destruction of property. Enormous destruction of coastal communities has taken place throughout the world by such great waves since the beginning of recorded history.

  14. Population vulnerability and evacuation challenges in California for the SAFRR tsunami scenario: Chapter I in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    Science.gov (United States)

    Wood, Nathan; Ratliff, Jamie; Peters, Jeff; Shoaf, Kimberley

    2013-01-01

    The SAFRR tsunami scenario models the impacts of a hypothetical yet plausible tsunami associated with a magnitude 9.1 megathrust earthquake east of the Alaska Peninsula. This report summarizes community variations in population vulnerability and potential evacuation challenges to the tsunami. The most significant public-health concern for California coastal communities during a distant-source tsunami is the ability to evacuate people out of potential inundation zones. Fatalities from the SAFRR tsunami scenario could be low if emergency managers can implement an effective evacuation in the time between tsunami generation and arrival, as well as keep people from entering tsunami-prone areas until all-clear messages can be delivered. This will be challenging given the estimated 91,956 residents, 81,277 employees, as well as numerous public venues, dependent-population facilities, community-support businesses, and high-volume beaches that are in the 79 incorporated communities and 17 counties that have land in the scenario tsunami-inundation zone. Although all coastal communities face some level of threat from this scenario, the highest concentrations of people in the scenario tsunami-inundation zone are in Long Beach, San Diego, Newport Beach, Huntington Beach, and San Francisco. Communities also vary in the prevalent categories of populations that are in scenario tsunami-inundation zones, such as residents in Long Beach, employees in San Francisco, tourists at public venues in Santa Cruz, and beach or park visitors in unincorporated Los Angeles County. Certain communities have higher percentages of groups that may need targeted outreach and preparedness training, such as renters, the very young and very old, and individuals with limited English-language skills or no English-language skills at all. Sustained education and targeted evacuation messaging is also important at several high-occupancy public venues in the scenario tsunami-inundation zone (for example, city

  15. The impact of parental death on child well-being: evidence from the Indian Ocean tsunami.

    Science.gov (United States)

    Cas, Ava Gail; Frankenberg, Elizabeth; Suriastini, Wayan; Thomas, Duncan

    2014-04-01

    Identifying the impact of parental death on the well-being of children is complicated because parental death is likely to be correlated with other, unobserved factors that affect child well-being. Population-representative longitudinal data collected in Aceh, Indonesia, before and after the December 2004 Indian Ocean tsunami are used to identify the impact of parental deaths on the well-being of children aged 9-17 at the time of the tsunami. Exploiting the unanticipated nature of parental death resulting from the tsunami in combination with measuring well-being of the same children before and after the tsunami, models that include child fixed effects are estimated to isolate the causal effect of parental death. Comparisons are drawn between children who lost one or both parents and children whose parents survived. Shorter-term impacts on school attendance and time allocation one year after the tsunami are examined, as well as longer-term impacts on education trajectories and marriage. Shorter- and longer-term impacts are not the same. Five years after the tsunami, there are substantial deleterious impacts of the tsunami on older boys and girls, whereas the effects on younger children are more muted.

  16. Seismic and tsunami hazard investigation in Valparaiso in the framework of the project "MAR VASTO"

    Science.gov (United States)

    Romanelli, F.; Razafindrakoto, H.

    2009-04-01

    In the framework of the MAR VASTO Project ("Risk Management in Valparaíso/Manejo de Riesgos en Valparaíso"), completed in 2008 and funded by BID/IDB (Banco InterAmericano de Desarrollo/ InterAmerican Development Bank), managed by ENEA (Italian Agency for New Technologies, Energy and Environment), with the participation of Italian and Chilean partners and the support of local stakeholders, the most important hazards have been investigated carried out. Valparaíso represents a distinctive case of growth, inside a remarkable landscape, of an important Pacific Ocean seaport (over the 19th and 20th centuries), up to reaching a strategic importance in shipping trade, declined after the Panama Canal opening (1914). Thus, Valparaíso tells the never-ending story of a tight interaction between society and environment, stratifying different urban and architectonic layers, sometimes struck by disasters and always in danger. Certainly, the city has been subjected to various natural hazards (seismic events, but also tsunamis, landslides, etc.) and anthropic calamities (mainly wild and human-induced fires). These features make Valparaíso a paradigmatic study case about hazard mitigation, and risk factors must be very well evaluated during the restoration phases to be planned in the future. Seismic Hazrad. The major goal is to provide a dataset of synthetic time series representative of the potential ground motion at the bedrock of Valparaiso, especially at selected sites (e.g. the three important churches located in the Valparaiso urban area: La Matriz, San Francisco, Las Hermanitas de la Providencia), for different scenarios; the characteristics of the calculated signals (e.g. amplitude, frequency content and duration of shaking) are determined by the earthquake source process and the wave propagation effects of the path between the source and the site. The synthetic signals, to be used as seismic input in a subsequent engineering analysis, have been produced at a very low

  17. Integrating Caribbean Seismic and Tsunami Hazard into Public Policy and Action

    Science.gov (United States)

    von Hillebrandt-Andrade, C.

    2012-12-01

    The Caribbean has a long history of tsunamis and earthquakes. Over the past 500 years, more than 80 tsunamis have been documented in the region by the NOAA National Geophysical Data Center. Almost 90% of all these historical tsunamis have been associated with earthquakes. Just since 1842, 3510 lives have been lost to tsunamis; this is more than in the Northeastern Pacific for the same time period. With a population of almost 160 million and a heavy concentration of residents, tourists, businesses and critical infrastructure along the Caribbean shores (especially in the northern and eastern Caribbean), the risk to lives and livelihoods is greater than ever before. Most of the countries also have a very high exposure to earthquakes. Given the elevated vulnerability, it is imperative that government officials take steps to mitigate the potentially devastating effects of these events. Nevertheless, given the low frequency of high impact earthquakes and tsunamis, in comparison to hurricanes, combined with social and economic considerations, the needed investments are not made and disasters like the 2010 Haiti earthquake occur. In the absence of frequent significant events, an important driving force for public officials to take action, is the dissemination of scientific studies. When papers of this nature have been published and media advisories issued, public officials demonstrate heightened interest in the topic which in turn can lead to increased legislation and funding efforts. This is especially the case if the material can be easily understood by the stakeholders and there is a local contact. In addition, given the close link between earthquakes and tsunamis, in Puerto Rico alone, 50% of the high impact earthquakes have also generated destructive tsunamis, it is very important that earthquake and tsunami hazards studies demonstrate consistency. Traditionally in the region, earthquake and tsunami impacts have been considered independently in the emergency planning

  18. Space-charge effects in the Fermilab Main Ring at 8 GeV

    International Nuclear Information System (INIS)

    Mane, S.R.

    1989-03-01

    I use computer tracking to investigate the effects of space-charge on particle motion in the Fermilab Main Ring at p = 8 GeV/c. The results are found to agree with the Laslett tuneshift formula. Simple model cases are also studied to speed up the tracking. The effects of synchrotron oscillations, via tune modulation and dispersion, are included. 2 refs., 5 figs

  19. Tsunami Research and Monitoring Enabled through Ocean Network Canada's NEPTUNE Cabled Observatory

    Science.gov (United States)

    Heesemann, M.; Insua, T. L.; Mihaly, S. F.; Thomson, R.; Rabinovich, A.; Fine, I.; Scherwath, M.; Moran, K.

    2014-12-01

    -ocean observations were uncontaminated by coastal effects, demonstrating that NEPTUNE records from future tsunami events can be effectively used as real-time input to regional numerical tsunami forecast models. In fact, real-time data from NEPTUNE seismometers and BPRs already feed into the NOAA operated tsunami early warning systems.

  20. Coastal Tsunami and Risk Assessment for Eastern Mediterranean Countries

    Science.gov (United States)

    Kentel, E.; Yavuz, C.

    2017-12-01

    Tsunamis are rarely experienced events that have enormous potential to cause large economic destruction on the critical infrastructures and facilities, social devastation due to mass casualty, and environmental adverse effects like erosion, accumulation and inundation. Especially for the past two decades, nations have encountered devastating tsunami events. The aim of this study is to investigate risks along the Mediterranean coastline due to probable tsunamis based on simulations using reliable historical data. In order to do this, 50 Critical Regions, CRs, (i.e. city centers, agricultural areas and summer villages) and 43 Critical Infrastructures, CIs, (i.e. airports, ports & marinas and industrial structures) are determined to perform people-centered risk assessment along Eastern Mediterranean region covering 7 countries. These countries include Turkey, Syria, Lebanon, Israel, Egypt, Cyprus, and Libya. Bathymetry of the region is given in Figure 1. In this study, NAMI-DANCE is used to carry out tsunami simulations. Source of a sample tsunami simulation and maximum wave propagation in the study area for this sample tsunami are given in Figures 2 and 3, respectively.Richter magnitude,, focal depth, time of occurrence in a day and season are considered as the independent parameters of the earthquake. Historical earthquakes are used to generate reliable probability distributions for these parameters. Monte Carlo (MC) Simulations are carried out to evaluate overall risks at the coastline. Inundation level, population density, number of passenger or employee, literacy rate, annually income level and existence of human are used in risk estimations. Within each MC simulation and for each grid in the study area, people-centered tsunami risk for each of the following elements at risk is calculated: i. City centers ii. Agricultural areas iii. Summer villages iv. Ports and marinas v. Airports vi. Industrial structures Risk levels at each grid along the shoreline are

  1. Effects of mass loss on the evolution of massive stars. I. Main-sequence evolution

    International Nuclear Information System (INIS)

    Dearborn, D.S.P.; Blake, J.B.; Hainebach, K.L.; Schramm, D.N.

    1978-01-01

    The effect of mass loss on the evolution and surface composition of massive stars during main-sequence evolution are examined. While some details of the evolutionary track depend on the formula used for the mass loss, the results appear most sensitive to the total mass removed during the main-sequence lifetime. It was found that low mass-loss rates have very little effect on the evolution of a star; the track is slightly subluminous, but the lifetime is almost unaffected. High rates of mass loss lead to a hot, high-luminosity stellar model with a helium core surrounded by a hydrogen-deficient (Xapprox.0.1) envelope. The main-sequence lifetime is extended by a factor of 2--3. These models may be identified with Wolf-Rayet stars. Between these mass-loss extremes are intermediate models which appear as OBN stars on the main sequence. The mass-loss rates required for significant observable effects range from 8 x 10 -7 to 10 -5 M/sub sun/ yr -1 , depending on the initial stellar mass. It is found that observationally consistent mass-loss rates for stars with M> or =30 M/sub sun/ may be sufficiently high that these stars lose mass on a time scale more rapidly than their main-sequence core evolution time. This result implies that the helium cores resulting from the main-sequence evolution of these massive stars may all be very similar to that of a star of Mapprox.30 M/sub sun/ regardless of the zero-age mass

  2. Nowcasting Earthquakes and Tsunamis

    Science.gov (United States)

    Rundle, J. B.; Turcotte, D. L.

    2017-12-01

    . As another application, we can define large rectangular regions of subduction zones and shallow depths to compute the progress of the fault zone towards the next major tsunami-genic earthquake. We can then rank the relative progress of the major subduction zones of the world through their cycles of large earthquakes using this method to determine which zones are most at risk.

  3. Retrospective analysis of main and interaction effects in genetic association studies of human complex traits

    Directory of Open Access Journals (Sweden)

    Brasch-Andersen Charlotte

    2007-10-01

    Full Text Available Abstract Background The etiology of multifactorial human diseases involves complex interactions between numerous environmental factors and alleles of many genes. Efficient statistical tools are demanded in identifying the genetic and environmental variants that affect the risk of disease development. This paper introduces a retrospective polytomous logistic regression model to measure both the main and interaction effects in genetic association studies of human discrete and continuous complex traits. In this model, combinations of genotypes at two interacting loci or of environmental exposure and genotypes at one locus are treated as nominal outcomes of which the proportions are modeled as a function of the disease trait assigning both main and interaction effects and with no assumption of normality in the trait distribution. Performance of our method in detecting interaction effect is compared with that of the case-only model. Results Results from our simulation study indicate that our retrospective model exhibits high power in capturing even relatively small effect with reasonable sample sizes. Application of our method to data from an association study on the catalase -262C/T promoter polymorphism and aging phenotypes detected significant main and interaction effects for age-group and allele T on individual's cognitive functioning and produced consistent results in estimating the interaction effect as compared with the popular case-only model. Conclusion The retrospective polytomous logistic regression model can be used as a convenient tool for assessing both main and interaction effects in genetic association studies of human multifactorial diseases involving genetic and non-genetic factors as well as categorical or continuous traits.

  4. Defining Tsunami Magnitude as Measure of Potential Impact

    Science.gov (United States)

    Titov, V. V.; Tang, L.

    2016-12-01

    The goal of tsunami forecast, as a system for predicting potential impact of a tsunami at coastlines, requires quick estimate of a tsunami magnitude. This goal has been recognized since the beginning of tsunami research. The work of Kajiura, Soloviev, Abe, Murty, and many others discussed several scales for tsunami magnitude based on estimates of tsunami energy. However, difficulties of estimating tsunami energy based on available tsunami measurements at coastal sea-level stations has carried significant uncertainties and has been virtually impossible in real time, before tsunami impacts coastlines. The slow process of tsunami magnitude estimates, including collection of vast amount of available coastal sea-level data from affected coastlines, made it impractical to use any tsunami magnitude scales in tsunami warning operations. Uncertainties of estimates made tsunami magnitudes difficult to use as universal scale for tsunami analysis. Historically, the earthquake magnitude has been used as a proxy of tsunami impact estimates, since real-time seismic data is available of real-time processing and ample amount of seismic data is available for an elaborate post event analysis. This measure of tsunami impact carries significant uncertainties in quantitative tsunami impact estimates, since the relation between the earthquake and generated tsunami energy varies from case to case. In this work, we argue that current tsunami measurement capabilities and real-time modeling tools allow for establishing robust tsunami magnitude that will be useful for tsunami warning as a quick estimate for tsunami impact and for post-event analysis as a universal scale for tsunamis inter-comparison. We present a method for estimating the tsunami magnitude based on tsunami energy and present application of the magnitude analysis for several historical events for inter-comparison with existing methods.

  5. Tsunami early warning and decision support

    Directory of Open Access Journals (Sweden)

    T. Steinmetz

    2010-09-01

    Full Text Available An innovative newly developed modular and standards based Decision Support System (DSS is presented which forms part of the German Indonesian Tsunami Early Warning System (GITEWS. The GITEWS project stems from the effort to implement an effective and efficient Tsunami Early Warning and Mitigation System for the coast of Indonesia facing the Sunda Arc along the islands of Sumatra, Java and Bali. The geological setting along an active continental margin which is very close to densely populated areas is a particularly difficult one to cope with, because potential tsunamis' travel times are thus inherently short. National policies require an initial warning to be issued within the first five minutes after an earthquake has occurred. There is an urgent requirement for an end-to-end solution where the decision support takes the entire warning chain into account. The system of choice is based on pre-computed scenario simulations and rule-based decision support which is delivered to the decision maker through a sophisticated graphical user interface (GUI using information fusion and fast information aggregation to create situational awareness in the shortest time possible. The system also contains risk and vulnerability information which was designed with the far end of the warning chain in mind – it enables the decision maker to base his acceptance (or refusal of the supported decision also on regionally differentiated risk and vulnerability information (see Strunz et al., 2010. While the system strives to provide a warning as quickly as possible, it is not in its proper responsibility to send and disseminate the warning to the recipients. The DSS only broadcasts its messages to a dissemination system (and possibly any other dissemination system which is operated under the responsibility of BMKG – the meteorological, climatological and geophysical service of Indonesia – which also hosts the tsunami early warning center. The system is to be seen

  6. Lasting Impact of a Tsunami Event on Sediment-Organism Interactions in the Ocean

    Science.gov (United States)

    Seike, Koji; Sassa, Shinji; Shirai, Kotaro; Kubota, Kaoru

    2018-02-01

    Although tsunami sedimentation is a short-term phenomenon, it may control the long-term benthic environment by altering seafloor surface characteristics such as topography and grain-size composition. By analyzing sediment cores, we investigated the long-term effect of the 2011 tsunami generated by the Tohoku Earthquake off the Pacific coast of Japan on sediment mixing (bioturbation) by an important ecosystem engineer, the heart urchin Echinocardium cordatum. Recent tsunami deposits allow accurate estimation of the depth of current bioturbation by E. cordatum, because there are no preexisting burrows in the sediments. The in situ hardness of the substrate decreased significantly with increasing abundance of E. cordatum, suggesting that echinoid bioturbation softens the seafloor sediment. Sediment-core analysis revealed that this echinoid rarely burrows into the coarser-grained (medium-grained to coarse-grained) sandy layer deposited by the 2011 tsunami; thus, the vertical grain-size distribution resulting from tsunami sedimentation controls the depth of E. cordatum bioturbation. As sandy tsunami layers are preserved in the seafloor substrate, their restriction on bioturbation continues for an extended period. The results demonstrate that understanding the effects on seafloor processes of extreme natural events that occur on geological timescales, including tsunami events, is important in revealing continuing interactions between seafloor sediments and marine benthic invertebrates.

  7. Main and combined effects of musculoskeletal pain frequency and avoidant coping on sickness absence

    DEFF Research Database (Denmark)

    Christensen, Ulla; Schmidt, Lone; Hougaard, Charlotte Orsted

    2013-01-01

    Objective: Musculoskeletal pain and avoidant coping predicts sickness absence, but how these 2 predictors relate to each other is unknown. We examined the main and combined effects of musculoskeletal pain and avoidant, behavioural coping on incidence of sickness absence. Design and subjects......: Prospective cohort study of a sample of middle-aged Danes, economically active in 2006, reporting functional limitations due to musculoskeletal pain, n = 3115. Methods: Data included surveys from 2000 and 2006 and register data from 2007. Outcome was sickness absence exceeding 2 consecutive weeks in 2007....... The main effect of self-reported pain frequency and avoidant coping on sickness absence was analysed by multivariate logistic regression. The combined effect was calculated as departure from multiplicativity and by the inclusion of a product term. Results: Daily pain and use of avoidant coping were both...

  8. Worst-case scenario approach to the tsunami hazard assessment for the Apulian coasts (southern Italy)

    Science.gov (United States)

    Armigliato, Alberto; Pagnoni, Gianluca; Zaniboni, Filippo; Tinti, Stefano

    2014-05-01

    In the framework of the Mediterranean basin, Apulia cannot be counted among the most active areas in terms of earthquake and tsunami activity. Nonetheless, in its northern part, which includes the Gargano peninsula, several earthquakes with magnitudes up to 6.7 occurred historically, some of which were also tsunamigenic. The most famous one is the 30 July 1627 event, which produced extensive inundation in the northern part of Gargano and relevant effects also in some portions of its southern side. Its parent fault is still a matter of debate, since both the inland epicentral location determined by macroseismic studies and the strike-slip dominant focal mechanism inferred from local geology are incompatible with a tsunami excitation capable of producing the effects reported by the coeval sources. Moreover, Apulia is bounded by much more tectonically active and tsunamigenic regions, such as the Dalmatia-Montenegro-Albania coastal belt to the East, the western Hellenic Arc to the South-East and the Calabrian arc to the South-West. Finally, Apulia is located in a strategic position in between eastern and western Europe, involving the installation of crucial international infrastructures, such as the Trans-Adriatic gas pipeline. For all the reasons mentioned above, performing an accurate assessment of the hazard related (at least) to earthquakes and tsunami impact in Apulia represents a need. The OTRIONS project developed a multi-parametric network for this purpose, and in its framework we studied the tsunami hazard along the Apulian coasts by means of a worst-case credible scenario approach. This involved the selection and characterisation of all possible tsunamigenic sources both at local and remote distances: this task was carried out as a shared effort with the Italian national RITMARE project. The recognised sources, mainly retrieved from the published literature and from databases available online, include tectonic faults as well as submarine landslides. The

  9. Conjugate ionospheric signatures of tsunami-generated gravity waves

    Science.gov (United States)

    Makela, J. J.; Grawe, M.; Coisson, P.; Lognonne, P. H.

    2015-12-01

    Over the past decade, it has been shown that gravity waves generated by earthquakes and tsunamis can reach the upper atmosphere, where they can have a measureable effect on the ionosphere. Observations made with networks of Global Positioning System (GPS) receivers as well as airglow imaging systems have been used to study the properties of these waves through the signatures they leave in the electron density and airglow layers, respectively. Using the Naval Research Laboratory first-principles model, SAMI3, coupled to a model of the tsunami-generated gravity waves, it has been suggested that in addition to generating perturbations in the ionospheric electron density, the neutral winds associated with the gravity waves should produce perturbations in the electric field. These electric field perturbations would map along the Earth's magnetic field where they would drive disturbances in the ionosphere, generating a signature in the conjugate hemisphere. We present GPS-derived total electron content data from several tsunami events demonstrating that this effect is, indeed, measurable. Being able to observe the effects of tsunami-generated gravity waves in the conjugate hemisphere increases the number of observations that can be used to study this ion-neutral coupling phenomenon.

  10. High Resolution Tsunami Modelling for the Evaluation of Potential Risk Areas in Setubal

    Science.gov (United States)

    Ribeiro, João.; Silva, Adélio; Leitão, Paulo

    2010-05-01

    Modeling has a relevant role in today's natural hazards mitigation planning as it can cover a wide range of natural phenomena. This is also the case for an event like a tsunami. In order to support the urban planning or prepare emergency response plans it is of major importance to be able to properly evaluate the vulnerability associated with different areas and/or equipments. The use of high resolution models can provide relevant information about the most probable inundation areas which complemented with other data such as the type of buildings, location of prioritary equipments, etc., may effectively contribute to better identify the most vulnerable zones, define rescue and escape routes and adequate the emergency plans to the constraints associated to these type of events. In the framework of FP6 SCHEMA project these concepts are being applied to different test sites and a detailed evaluation of the vulnerability of buildings and people to a tsunami event is being evaluated. One of the sites selected it is located in Portugal, in the Atlantic coast, and it refers to Setúbal area which is located about 40 km south of Lisbon. Within this site two specific locations are being evaluated: one is the city of Setúbal (in the Sado estuary right margin) and the other is the Tróia peninsula (in the Sado estuary left margin). Setúbal city is a medium size town with about 114,000 inhabitants while Tróia is a touristic resort located in a shallow area with a high seasonal occupation and has the river Sado as one of the main sources of income to the city. Setúbal was one of the Portuguese villages that was seriously damaged by the of 1755 earthquake event. The 1755 earthquake, also known as the Great Lisbon Earthquake, took place on 1 November 1755, the catholic holiday of All Saints, around 09:30 AM. The earthquake was followed by a tsunami and fires which caused a huge destruction of Lisboa and Setúbal In the framework of the present study, a detailed evaluation of

  11. Gastroprotective effect of the Mapuche crude drug Araucaria araucana resin and its main constituents.

    Science.gov (United States)

    Schmeda-Hirschmann, Guillermo; Astudillo, Luis; Rodríguez, Jaime; Theoduloz, Cristina; Yáñez, Tania

    2005-10-03

    The resin from the tree Araucaria araucana (Araucariaceae) has been used since pre-columbian times by the Mapuche amerindians to treat ulcers. The gastroprotective effect of the resin was assessed in the ethanol-HCl-induced gastric ulcer in mice showing a dose-dependent gastroprotective activity at 100, 200 and 300 mg/kg per os. The main three diterpene constituents of the resin, namely imbricatolic acid, 15-hydroxyimbricatolal and 15-acetoxyimbricatolic acid were isolated and evaluated for gastroprotective effect at doses of 50, 100 and 200 mg/kg. A dose-related gastroprotective effect with highly significant activity (PMapuche culture.

  12. Quantifying Main Trends in Lysozyme Nucleation: The Effect of Precipitant Concentration and Impurities

    Science.gov (United States)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Full factorial experiment design incorporating multi-linear regression analysis of the experimental data allows the main trends and effects to be quickly identified while using only a limited number of experiments. These techniques were used to identify the effect of precipitant concentration and the presence of an impurity, the physiological lysozyme dimer, on the nucleation rate and crystal dimensions of the tetragonal form of chicken egg white lysozyme. Increasing precipitant concentration was found to decrease crystal numbers, the magnitude of this effect also depending on the supersaturation. The presence of the dimer generally increased nucleation. The crystal axial ratio decreased with increasing precipitant concentration independent of impurity.

  13. Issues of tsunami hazard maps revealed by the 2011 Tohoku tsunami

    Science.gov (United States)

    Sugimoto, M.

    2013-12-01

    Tsunami scientists are imposed responsibilities of selection for people's tsunami evacuation place after the 2011 Tohoku Tsunami in Japan. A lot of matured people died out of tsunami hazard zone based on tsunami hazard map though students made a miracle by evacuation on their own judgment in Kamaishi city. Tsunami hazard maps were based on numerical model smaller than actual magnitude 9. How can we bridge the gap between hazard map and future disasters? We have to discuss about using tsunami numerical model better enough to contribute tsunami hazard map. How do we have to improve tsunami hazard map? Tsunami hazard map should be revised included possibility of upthrust or downthrust after earthquakes and social information. Ground sank 1.14m below sea level in Ayukawa town, Tohoku. Ministry of Land, Infrastructure, Transport and Tourism's research shows around 10% people know about tsunami hazard map in Japan. However, people know about their evacuation places (buildings) through experienced drills once a year even though most people did not know about tsunami hazard map. We need wider spread of tsunami hazard with contingency of science (See the botom disaster handbook material's URL). California Emergency Management Agency (CEMA) team practically shows one good practice and solution to me. I followed their field trip in Catalina Island, California in Sep 2011. A team members are multidisciplinary specialists: A geologist, a GIS specialist, oceanographers in USC (tsunami numerical modeler) and a private company, a local policeman, a disaster manager, a local authority and so on. They check field based on their own specialties. They conduct an on-the-spot inspection of ambiguous locations between tsunami numerical model and real field conditions today. The data always become older. They pay attention not only to topographical conditions but also to social conditions: vulnerable people, elementary schools and so on. It takes a long time to check such field

  14. Main Effect QTL with Dominance Determines Heterosis for Dynamic Plant Height in Upland Cotton.

    Science.gov (United States)

    Shang, Lianguang; Ma, Lingling; Wang, Yumei; Su, Ying; Wang, Xiaocui; Li, Yuhua; Abduweli, Abdugheni; Cai, Shihu; Liu, Fang; Wang, Kunbo; Hua, Jinping

    2016-10-13

    Plant height, which shows dynamic development and heterosis, is a major trait affecting plant architecture and has an indirect influence on economic yield related to biological yield in cotton. In the present study, we carried out dynamic analysis for plant height and its heterosis by quantitative trait loci (QTL) mapping at multiple developmental stages using two recombinant inbred lines (RILs) and their backcross progeny. At the single-locus level, 47 QTL were identified at five developmental stages in two hybrids. In backcross populations, QTL identified at an early stage mainly showed partial effects and QTL detected at a later stage mostly displayed overdominance effects. At the two-locus level, we found that main effect QTL played a more important role than epistatic QTL in the expression of heterosis in backcross populations. Therefore, this study implies that the genetic basis of plant height heterosis shows dynamic character and main effect QTL with dominance determines heterosis for plant height in Upland cotton. Copyright © 2016 Shang et al.

  15. Main Effect QTL with Dominance Determines Heterosis for Dynamic Plant Height in Upland Cotton

    Directory of Open Access Journals (Sweden)

    Lianguang Shang

    2016-10-01

    Full Text Available Plant height, which shows dynamic development and heterosis, is a major trait affecting plant architecture and has an indirect influence on economic yield related to biological yield in cotton. In the present study, we carried out dynamic analysis for plant height and its heterosis by quantitative trait loci (QTL mapping at multiple developmental stages using two recombinant inbred lines (RILs and their backcross progeny. At the single-locus level, 47 QTL were identified at five developmental stages in two hybrids. In backcross populations, QTL identified at an early stage mainly showed partial effects and QTL detected at a later stage mostly displayed overdominance effects. At the two-locus level, we found that main effect QTL played a more important role than epistatic QTL in the expression of heterosis in backcross populations. Therefore, this study implies that the genetic basis of plant height heterosis shows dynamic character and main effect QTL with dominance determines heterosis for plant height in Upland cotton.

  16. Tsunami Research driven by Survivor Observations: Sumatra 2004, Tohoku 2011 and the Lituya Bay Landslide (Plinius Medal Lecture)

    Science.gov (United States)

    Fritz, Hermann M.

    2014-05-01

    The 10th anniversary of the 2004 Indian Ocean tsunami recalls the advent of tsunami video recordings by eyewitnesses. The tsunami of December 26, 2004 severely affected Banda Aceh along the North tip of Sumatra (Indonesia) at a distance of 250 km from the epicenter of the Magnitude 9.0 earthquake. The tsunami flow velocity analysis focused on two survivor videos recorded within Banda Aceh more than 3km from the open ocean. The exact locations of the tsunami eyewitness video recordings were revisited to record camera calibration ground control points. The motion of the camera during the recordings was determined. The individual video images were rectified with a direct linear transformation (DLT). Finally a cross-correlation based particle image velocimetry (PIV) analysis was applied to the rectified video images to determine instantaneous tsunami flow velocity fields. The measured overland tsunami flow velocities were within the range of 2 to 5 m/s in downtown Banda Aceh, Indonesia. The March 11, 2011, magnitude Mw 9.0 earthquake off the coast of Japan caused catastrophic damage and loss of life. Fortunately many survivors at evacuation sites recorded countless tsunami videos with unprecedented spatial and temporal coverage. Numerous tsunami reconnaissance trips were conducted in Japan. This report focuses on the surveys at selected tsunami eyewitness video recording locations along Japan's Sanriku coast and the subsequent tsunami video image analysis. Locations with high quality survivor videos were visited, eyewitnesses interviewed and detailed site topography scanned with a terrestrial laser scanner (TLS). The analysis of the tsunami videos followed the four step procedure developed for the analysis of 2004 Indian Ocean tsunami videos at Banda Aceh. Tsunami currents up to 11 m/s were measured in Kesennuma Bay making navigation impossible. Further tsunami height and runup hydrographs are derived from the videos to discuss the complex effects of coastal structures

  17. Assessment of tsunami hazard for the American Pacific coast from southern Mexico to northern Peru

    Science.gov (United States)

    Brizuela, B.; Armigliato, A.; Tinti, S.

    2013-06-01

    Central America has been struck by at least 49 tsunamis between 1539 and 1996. As many as 37 of these events occurred at the Pacific Coast, and 31 were generated by earthquakes. Some of the events have been destructive, but despite this, tsunamis are an underrated hazard in Central America: people are not aware that they are at risk and even recent tsunami events have been forgotten. Recent studies, following the destructive tsunami occurred in Nicaragua in 1992, have revealed that Central America is a moderately tsunamigenic zone that is mainly affected by tsunamis triggered by earthquakes, especially at the Pacific coast where the Middle American Trench runs parallel to the coast. In this study, a statistical first and then a deterministic analysis for the Pacific coast of Central America has been carried out. The statistical approach aims to estimate the Gutenberg-Richter coefficients of the main seismic tsunamigenic regions of the area in order to assess the annual rate of occurrence of tsunamigenic earthquakes and their corresponding return period. A deterministic approach is then used to compute the tsunami run-up distribution along the coast corresponding to a given annual rate of occurrence of tsunamigenic earthquakes.

  18. Far-field tsunami of 2017 Mw 8.1 Tehuantepec, Mexico earthquake recorded by Chilean tide gauge network: Implications for tsunami warning systems

    Science.gov (United States)

    González-Carrasco, J. F.; Benavente, R. F.; Zelaya, C.; Núñez, C.; Gonzalez, G.

    2017-12-01

    The 2017 Mw 8.1, Tehuantepec earthquake generated a moderated tsunami, which was registered in near-field tide gauges network activating a tsunami threat state for Mexico issued by PTWC. In the case of Chile, the forecast of tsunami waves indicate amplitudes less than 0.3 meters above the tide level, advising an informative state of threat, without activation of evacuation procedures. Nevertheless, during sea level monitoring of network we detect wave amplitudes (> 0.3 m) indicating a possible change of threat state. Finally, NTWS maintains informative level of threat based on mathematical filtering analysis of sea level records. After 2010 Mw 8.8, Maule earthquake, the Chilean National Tsunami Warning System (NTWS) has increased its observational capabilities to improve early response. Most important operational efforts have focused on strengthening tide gauge network for national area of responsibility. Furthermore, technological initiatives as Integrated Tsunami Prediction and Warning System (SIPAT) has segmented the area of responsibility in blocks to focus early warning and evacuation procedures on most affected coastal areas, while maintaining an informative state for distant areas of near-field earthquake. In the case of far-field events, NTWS follow the recommendations proposed by Pacific Tsunami Warning Center (PTWC), including a comprehensive monitoring of sea level records, such as tide gauges and DART (Deep-Ocean Assessment and Reporting of Tsunami) buoys, to evaluate the state of tsunami threat in the area of responsibility. The main objective of this work is to analyze the first-order physical processes involved in the far-field propagation and coastal impact of tsunami, including implications for decision-making of NTWS. To explore our main question, we construct a finite-fault model of the 2017, Mw 8.1 Tehuantepec earthquake. We employ the rupture model to simulate a transoceanic tsunami modeled by Neowave2D. We generate synthetic time series at

  19. Pronóstico de tsunamis para las Islas Galápagos

    OpenAIRE

    Rentería, W.

    2013-01-01

    This study present the implementation of a Tsunami Forecast System for Galapagos Islands. This system is formed by the development of short and long term forecast models. The first is used in real time, with the information of the occurrence of a tsunami event in the pacific ocean, in order to predict the physical effects of the impact on islands. While, the long term forecast, is used to identify tsunami generation zones with potential threat to damage the islands and also is used to have a ...

  20. Evaluation and Numerical Simulation of Tsunami for Coastal Nuclear Power Plants of India

    International Nuclear Information System (INIS)

    Sharma, Pavan K.; Singh, R.K.; Ghosh, A.K.; Kushwaha, H.S.

    2006-01-01

    Recent tsunami generated on December 26, 2004 due to Sumatra earthquake of magnitude 9.3 resulted in inundation at the various coastal sites of India. The site selection and design of Indian nuclear power plants demand the evaluation of run up and the structural barriers for the coastal plants: Besides it is also desirable to evaluate the early warning system for tsunami-genic earthquakes. The tsunamis originate from submarine faults, underwater volcanic activities, sub-aerial landslides impinging on the sea and submarine landslides. In case of a submarine earthquake-induced tsunami the wave is generated in the fluid domain due to displacement of the seabed. There are three phases of tsunami: generation, propagation, and run-up. Reactor Safety Division (RSD) of Bhabha Atomic Research Centre (BARC), Trombay has initiated computational simulation for all the three phases of tsunami source generation, its propagation and finally run up evaluation for the protection of public life, property and various industrial infrastructures located on the coastal regions of India. These studies could be effectively utilized for design and implementation of early warning system for coastal region of the country apart from catering to the needs of Indian nuclear installations. This paper presents some results of tsunami waves based on different analytical/numerical approaches with shallow water wave theory. (authors)

  1. Evaluation of Seismic Rupture Models for the 2011 Tohoku-Oki Earthquake Using Tsunami Simulation

    Directory of Open Access Journals (Sweden)

    Ming-Da Chiou

    2013-01-01

    Full Text Available Developing a realistic, three-dimensional rupture model of the large offshore earthquake is difficult to accomplish directly through band-limited ground-motion observations. A potential indirect method is using a tsunami simulation to verify the rupture model in reverse because the initial conditions of the associated tsunamis are caused by a coseismic seafloor displacement correlating to the rupture pattern along the main faulting. In this study, five well-developed rupture models for the 2011 Tohoku-Oki earthquake were adopted to evaluate differences in simulated tsunamis and various rupture asperities. The leading wave of the simulated tsunamis triggered by the seafloor displacement in Yamazaki et al. (2011 model resulted in the smallest root-mean-squared difference (~0.082 m on average from the records of the eight DART (Deep-ocean Assessment and Reporting of Tsunamis stations. This indicates that the main seismic rupture during the 2011 Tohoku earthquake should occur in a large shallow slip in a narrow range adjacent to the Japan trench. This study also quantified the influences of ocean stratification and tides which are normally overlooked in tsunami simulations. The discrepancy between the simulations with and without stratification was less than 5% of the first peak wave height at the eight DART stations. The simulations, run with and without the presence of tides, resulted in a ~1% discrepancy in the height of the leading wave. Because simulations accounting for tides and stratification are time-consuming and their influences are negligible, particularly in the first tsunami wave, the two factors can be ignored in a tsunami prediction for practical purposes.

  2. Potential of remote sensing techniques for tsunami hazard and vulnerability analysis – a case study from Phang-Nga province, Thailand

    Directory of Open Access Journals (Sweden)

    H. Römer

    2012-06-01

    Full Text Available Recent tsunami disasters, such as the 2004 Indian Ocean tsunami or the 2011 Japan earthquake and tsunami, have highlighted the need for effective risk management. Remote sensing is a relatively new method for risk analysis, which shows significant potential in conducting spatially explicit risk and vulnerability assessments. In order to explore and discuss the potential and limitations of remote sensing techniques, this paper presents a case study from the tsunami-affected Andaman Sea coast of Thailand. It focuses on a local assessment of tsunami hazard and vulnerability, including the socio-economic and ecological components. High resolution optical data, including IKONOS data and aerial imagery (MFC-3 camera as well as different digital elevation models, were employed to create basic geo-data including land use and land cover (LULC, building polygons and topographic data sets and to provide input data for the hazard and vulnerability assessment. Results show that the main potential of applying remote sensing techniques and data derives from a synergistic combination with other types of data. In the case of hazard analysis, detailed LULC information and the correction of digital surface models (DSMs significantly improved the results of inundation modeling. The vulnerability assessment showed that remote sensing can be used to spatially extrapolate field data on socio-economic or ecological vulnerability collected in the field, to regionalize exposure elements and assets and to predict vulnerable areas. Limitations and inaccuracies became evident regarding the assessment of ecological resilience and the statistical prediction of vulnerability components, based on variables derived from remote sensing data.

  3. The effect of roasting, irradiation and storage on the main nutrients of three varieties of almonds

    OpenAIRE

    Rooholamini, Shaheen-Dokht

    1984-01-01

    The effects of processing (irradiation and heat treatment) and storage on the main nutrients (carbohydrates, proteins and lipids) of almonds (Prunus amyqdalus Batsch) have been investigated. Two varieties of Iranian almonds: P. amygdalus var. hard shelled, and P. amygdalus var. fragile, and one American variety, P. amygdalus var. semi-hard have been used in the present study. Variations between the nutrient composition of the different varieties were observed, and the range was between 93 and...

  4. Main effects of the Earth's rotation on the stationary states of ultra-cold neutrons

    International Nuclear Information System (INIS)

    Arminjon, Mayeul

    2008-01-01

    The relativistic corrections in the Hamiltonian for a particle in a uniformly rotating frame are discussed. They are shown to be negligible in the case of ultra-cold neutrons (UCN) in the Earth's gravity. The effect, on the energy levels of UCN, of the main term due to the Earth's rotation, i.e. the angular-momentum term, is calculated. The energy shift is found proportional to the energy level itself

  5. Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model

    Science.gov (United States)

    Watts, P.; Grilli, S. T.; Kirby, J. T.; Fryer, G. J.; Tappin, D. R.

    Case studies of landslide tsunamis require integration of marine geology data and interpretations into numerical simulations of tsunami attack. Many landslide tsunami generation and propagation models have been proposed in recent time, further motivated by the 1998 Papua New Guinea event. However, few of these models have proven capable of integrating the best available marine geology data and interpretations into successful case studies that reproduce all available tsunami observations and records. We show that nonlinear and dispersive tsunami propagation models may be necessary for many landslide tsunami case studies. GEOWAVE is a comprehensive tsunami simulation model formed in part by combining the Tsunami Open and Progressive Initial Conditions System (TOPICS) with the fully non-linear Boussinesq water wave model FUNWAVE. TOPICS uses curve fits of numerical results from a fully nonlinear potential flow model to provide approximate landslide tsunami sources for tsunami propagation models, based on marine geology data and interpretations. In this work, we validate GEOWAVE with successful case studies of the 1946 Unimak, Alaska, the 1994 Skagway, Alaska, and the 1998 Papua New Guinea events. GEOWAVE simulates accurate runup and inundation at the same time, with no additional user interference or effort, using a slot technique. Wave breaking, if it occurs during shoaling or runup, is also accounted for with a dissipative breaking model acting on the wave front. The success of our case studies depends on the combination of accurate tsunami sources and an advanced tsunami propagation and inundation model.

  6. Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model

    Directory of Open Access Journals (Sweden)

    P. Watts

    2003-01-01

    Full Text Available Case studies of landslide tsunamis require integration of marine geology data and interpretations into numerical simulations of tsunami attack. Many landslide tsunami generation and propagation models have been proposed in recent time, further motivated by the 1998 Papua New Guinea event. However, few of these models have proven capable of integrating the best available marine geology data and interpretations into successful case studies that reproduce all available tsunami observations and records. We show that nonlinear and dispersive tsunami propagation models may be necessary for many landslide tsunami case studies. GEOWAVE is a comprehensive tsunami simulation model formed in part by combining the Tsunami Open and Progressive Initial Conditions System (TOPICS with the fully non-linear Boussinesq water wave model FUNWAVE. TOPICS uses curve fits of numerical results from a fully nonlinear potential flow model to provide approximate landslide tsunami sources for tsunami propagation models, based on marine geology data and interpretations. In this work, we validate GEOWAVE with successful case studies of the 1946 Unimak, Alaska, the 1994 Skagway, Alaska, and the 1998 Papua New Guinea events. GEOWAVE simulates accurate runup and inundation at the same time, with no additional user interference or effort, using a slot technique. Wave breaking, if it occurs during shoaling or runup, is also accounted for with a dissipative breaking model acting on the wave front. The success of our case studies depends on the combination of accurate tsunami sources and an advanced tsunami propagation and inundation model.

  7. Challenges in Defining Tsunami Wave Height

    Science.gov (United States)

    Stroker, K. J.; Dunbar, P. K.; Mungov, G.; Sweeney, A.; Arcos, N. P.

    2017-12-01

    The NOAA National Centers for Environmental Information (NCEI) and co-located World Data Service for Geophysics maintain the global tsunami archive consisting of the historical tsunami database, imagery, and raw and processed water level data. The historical tsunami database incorporates, where available, maximum wave heights for each coastal tide gauge and deep-ocean buoy that recorded a tsunami signal. These data are important because they are used for tsunami hazard assessment, model calibration, validation, and forecast and warning. There have been ongoing discussions in the tsunami community about the correct way to measure and report these wave heights. It is important to understand how these measurements might vary depending on how the data were processed and the definition of maximum wave height. On September 16, 2015, an 8.3 Mw earthquake located 48 km west of Illapel, Chile generated a tsunami that was observed all over the Pacific region. We processed the time-series water level data for 57 tide gauges that recorded this tsunami and compared the maximum wave heights determined from different definitions. We also compared the maximum wave heights from the NCEI-processed data with the heights reported by the NOAA Tsunami Warning Centers. We found that in the near field different methods of determining the maximum tsunami wave heights could result in large differences due to possible instrumental clipping. We also found that the maximum peak is usually larger than the maximum amplitude (½ peak-to-trough), but the differences for the majority of the stations were Warning Centers. Since there is currently only one field in the NCEI historical tsunami database to store the maximum tsunami wave height, NCEI will consider adding an additional field for the maximum peak measurement.

  8. Development of Tsunami PSA method for Korean NPP site

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Choi, In Kil; Park, Jin Hee

    2010-01-01

    A methodology of tsunami PSA was developed in this study. A tsunami PSA consists of tsunami hazard analysis, tsunami fragility analysis and system analysis. In the case of tsunami hazard analysis, evaluation of tsunami return period is major task. For the evaluation of tsunami return period, numerical analysis and empirical method can be applied. The application of this method was applied to a nuclear power plant, Ulchin 56 NPP, which is located in the east coast of Korean peninsula. Through this study, whole tsunami PSA working procedure was established and example calculation was performed for one of real nuclear power plant in Korea

  9. Tunnelling effect enhanced by lattice screening as main cold fusion mechanism: An brief theoretical overview

    International Nuclear Information System (INIS)

    Frisone, F.

    2007-01-01

    In this paper are illustrated the main features of tunneling traveling between two deuterons within a lattice. Considering the screening effect due lattice electrons we compare the d-d fusion rate evaluated from different authors assuming different screening efficiency and different d-d potentials. Then, we propose a effective potential which describe very well the attractive contribute due to plasmon exchange between two deuterons and by means of it we will compute the d-d fusion rates for different energy values. Finally the good agreement between theoretical and experimental results proves the reality of cold fusion phenomena and the reliability of our model

  10. Progress on electron cloud effects calculations for the FNAL main injector

    International Nuclear Information System (INIS)

    Furman, Miguel A; Sonnad, Kiran G.; Furman, Miguel A.; Vay, Jean-Luc

    2008-01-01

    We have studied the response of the beam to an electron cloud for the Fermilab Main Injector using the Quasistatic Model [1] implemented into the particle-in-cell code Warp [2]. Specifically, we have addressed the effects due to varying the beam intensity, electron cloud density and chromaticity. In addition, we have estimated the contribution to emittance evolution due to beam space-charge effects. We have carried out a comparison between how the beam responds at injection energy and at top energy. We also present some results on the validation of the computational model, and report on progress towards improving the computational model

  11. Quantifying Main Trends in Lysozyme Nucleation: The Effects of Precipitant Concentration, Supersaturation and Impurities

    Science.gov (United States)

    Burke, Michael W.; Leardi, Riccardo; Judge, Russell A.; Pusey, Marc L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Full factorial experimental design incorporating multi-linear regression analysis of the experimental data allows quick identification of main trends and effects using a limited number of experiments. In this study these techniques were employed to identify the effect of precipitant concentration, supersaturation, and the presence of an impurity, the physiological lysozyme dimer, on the nucleation rate and crystal dimensions of the tetragonal forin of chicken egg white lysozyme. Decreasing precipitant concentration, increasing supers aturation, and increasing impurity, were found to increase crystal numbers. The crystal axial ratio decreased with increasing precipitant concentration, independent of impurity.

  12. THE EXISTENCE OF COASTAL FOREST, ITS IMPLICATION FOR TSUNAMI HAZARD PROTECTION, A CASE STUDY: IN CILACAP-CENTRAL JAVA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Yudhicara Yudhicara

    2017-07-01

    Full Text Available The southern coast of Java which is facing to the Indian Ocean has many of natural hazard potential come from the sea. Since 2006 tsunami impacted the southern coast of Java, and caused severely damage especially along the coast of Cilacap (1-7,7 m run up height. People commit to do greening the beach by planting suitable plants such as a Casuarina equisetifolia, Terminalia catappa, and Cocos nucifera. This paper discusses the existence of coastal forests in Cilacap coastal area, their potential ability as a coastal protection from the tsunami wave which cover the density, diameter, height, age, and other parameters that affects the coastal defence against tsunami waves. Some experiences of tsunamis that have occurred, indicating that the above parameters linked to the ability of vegetation to act as a natural barrier against tsunamis. In the case of sandy beaches, such as in Cilacap, Pandanus odorarissimus has more effectiveness than other trees due to its hanging roots that can withstand the tsunami height less than 5 m, able to withstand debris and can withstand the scouring effects of tsunami waves, while Casuarina equisetifolia along Cilacap beaches more dominant than other trees, so it is recommended to increase the diversity of plants as well as increase the density and tree placement setting. By field measurement in order to get parameter applied to some graphs, Cilacap coastal forest does not enough capability for tsunami barrier reflected to the tsunami height experience in this region. Ages could be the important parameter in order to have bigger diameter trunk, higher trees height, and high resistance capacity againts tsunami hazard potential. Compare to Kupang, East Nusa Tenggara, Cilacap coastal forest still young and need some more years to make trees ready act as tsunami reduction.

  13. Rapid inundation estimates at harbor scale using tsunami wave heights offshore simulation and coastal amplification laws

    Science.gov (United States)

    Gailler, A.; Loevenbruck, A.; Hebert, H.

    2013-12-01

    Numerical tsunami propagation and inundation models are well developed and have now reached an impressive level of accuracy, especially in locations such as harbors where the tsunami waves are mostly amplified. In the framework of tsunami warning under real-time operational conditions, the main obstacle for the routine use of such numerical simulations remains the slowness of the numerical computation, which is strengthened when detailed grids are required for the precise modeling of the coastline response of an individual harbor. Thus only tsunami offshore propagation modeling tools using a single sparse bathymetric computation grid are presently included within the French Tsunami Warning Center (CENALT), providing rapid estimation of tsunami warning at western Mediterranean and NE Atlantic basins scale. We present here a preliminary work that performs quick estimates of the inundation at individual harbors from these high sea forecasting tsunami simulations. The method involves an empirical correction based on theoretical amplification laws (either Green's or Synolakis laws). The main limitation is that its application to a given coastal area would require a large database of previous observations, in order to define the empirical parameters of the correction equation. As no such data (i.e., historical tide gage records of significant tsunamis) are available for the western Mediterranean and NE Atlantic basins, we use a set of synthetic mareograms, calculated for both fake and well-known historical tsunamigenic earthquakes in the area. This synthetic dataset is obtained through accurate numerical tsunami propagation and inundation modeling by using several nested bathymetric grids of increasingly fine resolution close to the shores (down to a grid cell size of 3m in some Mediterranean harbors). Non linear shallow water tsunami modeling performed on a single 2' coarse bathymetric grid are compared to the values given by time-consuming nested grids simulations (and

  14. Perceived local enforcement, personal beliefs,and underage drinking: an assessment of moderating and main effects.

    Science.gov (United States)

    Lipperman-Kreda, Sharon; Paschall, Mallie J; Grube, Joel W

    2009-01-01

    Strategies to enforce underage drinking laws are aimed at reducing youth access to alcohol from commercial and social sources and deterring its possession and use. However, the processes through which enforcement strategies may affect underage drinking are not well understood. This study examined three possible processes by which perceived enforcement of underage drinking laws and personal beliefs (perceived alcohol availability, perceived harm, and personal disapproval of alcohol use) may influence alcohol use among adolescents. Survey data were obtained from 20,747 adolescents (48.3% males) in 115 school districts who participated in the 2006 Oregon Healthy Teens survey. Linear regression analyses were conducted to examine possible interactive and main effects of perceived enforcement and personal beliefs on past-30-day alcohol use. Analyses were adjusted for clustering of observations within school districts and included student demographics and age of alcohol use initiation as covariates. Statistically significant interaction effects on past-30-day alcohol use were found for perceived police enforcement and the three personal beliefs variables, indicating weaker associations between personal beliefs and past-30-day alcohol use at higher levels of perceived enforcement. Main effects of perceived enforcement and personal beliefs variables were also observed in the presence of interaction effects. Evidence for a moderating effect of perceived local enforcement on the relationships between personal beliefs and drinking behaviors suggests that the combination of individually focused prevention programs and local enforcement of underage drinking laws may have the greatest impact on underage drinking.

  15. Numerical reconstruction of tsunami source using combined seismic, satellite and DART data

    Science.gov (United States)

    Krivorotko, Olga; Kabanikhin, Sergey; Marinin, Igor

    2014-05-01

    Recent tsunamis, for instance, in Japan (2011), in Sumatra (2004), and at the Indian coast (2004) showed that a system of producing exact and timely information about tsunamis is of a vital importance. Numerical simulation is an effective instrument for providing such information. Bottom relief characteristics and the initial perturbation data (a tsunami source) are required for the direct simulation of tsunamis. The seismic data about the source are usually obtained in a few tens of minutes after an event has occurred (the seismic waves velocity being about five hundred kilometres per minute, while the velocity of tsunami waves is less than twelve kilometres per minute). A difference in the arrival times of seismic and tsunami waves can be used when operationally refining the tsunami source parameters and modelling expected tsunami wave height on the shore. The most suitable physical models related to the tsunamis simulation are based on the shallow water equations. The problem of identification parameters of a tsunami source using additional measurements of a passing wave is called inverse tsunami problem. We investigate three different inverse problems of determining a tsunami source using three different additional data: Deep-ocean Assessment and Reporting of Tsunamis (DART) measurements, satellite wave-form images and seismic data. These problems are severely ill-posed. We apply regularization techniques to control the degree of ill-posedness such as Fourier expansion, truncated singular value decomposition, numerical regularization. The algorithm of selecting the truncated number of singular values of an inverse problem operator which is agreed with the error level in measured data is described and analyzed. In numerical experiment we used gradient methods (Landweber iteration and conjugate gradient method) for solving inverse tsunami problems. Gradient methods are based on minimizing the corresponding misfit function. To calculate the gradient of the misfit

  16. Holocene Tsunamis in Avachinsky Bay, Kamchatka, Russia

    Science.gov (United States)

    Pinegina, Tatiana K.; Bazanova, Lilya I.; Zelenin, Egor A.; Bourgeois, Joanne; Kozhurin, Andrey I.; Medvedev, Igor P.; Vydrin, Danil S.

    2018-03-01

    This article presents results of the study of tsunami deposits on the Avachinsky Bay coast, Kurile-Kamchatka island arc, NW Pacific. We used tephrochronology to assign ages to the tsunami deposits, to correlate them between excavations, and to restore paleo-shoreline positions. In addition to using established regional marker tephra, we establish a detailed tephrochronology for more local tephra from Avachinsky volcano. For the first time in this area, proximal to Kamchatka's primary population, we reconstruct the vertical runup and horizontal inundation for 33 tsunamis recorded over the past 4200 years, 5 of which are historical events - 1737, 1792, 1841, 1923 (Feb) and 1952. The runup heights for all 33 tsunamis range from 1.9 to 5.7 m, and inundation distances from 40 to 460 m. The average recurrence for historical events is 56 years and for the entire study period 133 years. The obtained data makes it possible to calculate frequencies of tsunamis by size, using reconstructed runup and inundation, which is crucial for tsunami hazard assessment and long-term tsunami forecasting. Considering all available data on the distribution of historical and paleo-tsunami heights along eastern Kamchatka, we conclude that the southern part of the Kamchatka subduction zone generates stronger tsunamis than its northern part. The observed differences could be associated with variations in the relative velocity and/or coupling between the downgoing Pacific Plate and Kamchatka.

  17. Tsunami hazard map in eastern Bali

    Energy Technology Data Exchange (ETDEWEB)

    Afif, Haunan, E-mail: afif@vsi.esdm.go.id [Geological Agency, Bandung (Indonesia); Cipta, Athanasius [Geological Agency, Bandung (Indonesia); Australian National University, Canberra (Australia)

    2015-04-24

    Bali is a popular tourist destination both for Indonesian and foreign visitors. However, Bali is located close to the collision zone between the Indo-Australian Plate and Eurasian Plate in the south and back-arc thrust off the northern coast of Bali resulted Bali prone to earthquake and tsunami. Tsunami hazard map is needed for better understanding of hazard level in a particular area and tsunami modeling is one of the most reliable techniques to produce hazard map. Tsunami modeling conducted using TUNAMI N2 and set for two tsunami sources scenarios which are subduction zone in the south of Bali and back thrust in the north of Bali. Tsunami hazard zone is divided into 3 zones, the first is a high hazard zones with inundation height of more than 3m. The second is a moderate hazard zone with inundation height 1 to 3m and the third is a low tsunami hazard zones with tsunami inundation heights less than 1m. Those 2 scenarios showed southern region has a greater potential of tsunami impact than the northern areas. This is obviously shown in the distribution of the inundated area in the south of Bali including the island of Nusa Penida, Nusa Lembongan and Nusa Ceningan is wider than in the northern coast of Bali although the northern region of the Nusa Penida Island more inundated due to the coastal topography.

  18. Assessment of Nearshore Hazard due to Tsunami-Induced Currents (Invited)

    Science.gov (United States)

    Lynett, P. J.; Borrero, J. C.; Son, S.; Wilson, R. I.; Miller, K.

    2013-12-01

    The California Tsunami Program coordinated by CalOES and CGS in cooperation with NOAA and FEMA has begun implementing a plan to increase awareness of tsunami generated hazards to the maritime community (both ships and harbor infrastructure) through the development of in-harbor hazard maps, offshore safety zones for boater evacuation, and associated guidance for harbors and marinas before, during and following tsunamis. The hope is that the maritime guidance and associated education and outreach program will help save lives and reduce exposure of damage to boats and harbor infrastructure. An important step in this process is to understand the causative mechanism for damage in ports and harbors, and then ensure that the models used to generate hazard maps are able to accurately simulate these processes. Findings will be used to develop maps, guidance documents, and consistent policy recommendations for emergency managers and port authorities and provide information critical to real-time decisions required when responding to tsunami alert notifications. The goals of the study are to (1) evaluate the effectiveness and sensitivity of existing numerical models for assessing maritime tsunami hazards, (2) find a relationship between current speeds and expected damage levels, (3) evaluate California ports and harbors in terms of tsunami induced hazards by identifying regions that are prone to higher current speeds and damage and to identify regions of relatively lower impact that may be used for evacuation of maritime assets, and (4) determine ';safe depths' for evacuation of vessels from ports and harbors during a tsunami event. This presentation will focus on the results from five California ports and harbors, and will include feedback we have received from initial discussion with local harbor masters and port authorities. This work in California will form the basis for tsunami hazard reduction for all U.S. maritime communities through the National Tsunami Hazard

  19. Variations in population vulnerability to tectonic and landslide-related tsunami hazards in Alaska

    Science.gov (United States)

    Wood, Nathan J.; Peters, Jeff

    2015-01-01

    Effective tsunami risk reduction requires an understanding of how at-risk populations are specifically vulnerable to tsunami threats. Vulnerability assessments primarily have been based on single hazard zones, even though a coastal community may be threatened by multiple tsunami sources that vary locally in terms of inundation extents and wave arrival times. We use the Alaskan coastal communities of Cordova, Kodiak, Seward, Valdez, and Whittier (USA), as a case study to explore population vulnerability to multiple tsunami threats. We use anisotropic pedestrian evacuation models to assess variations in population exposure as a function of travel time out of hazard zones associated with tectonic and landslide-related tsunamis (based on scenarios similar to the 1964 M w9.2 Good Friday earthquake and tsunami disaster). Results demonstrate that there are thousands of residents, employees, and business customers in tsunami hazard zones associated with tectonically generated waves, but that at-risk individuals will likely have sufficient time to evacuate to high ground before waves are estimated to arrive 30–60 min after generation. Tsunami hazard zones associated with submarine landslides initiated by a subduction zone earthquake are smaller and contain fewer people, but many at-risk individuals may not have enough time to evacuate as waves are estimated to arrive in 1–2 min and evacuations may need to occur during earthquake ground shaking. For all hazard zones, employees and customers at businesses far outnumber residents at their homes and evacuation travel times are highest on docks and along waterfronts. Results suggest that population vulnerability studies related to tsunami hazards should recognize non-residential populations and differences in wave arrival times if emergency managers are to develop realistic preparedness and outreach efforts.

  20. Global mapping of nonseismic sea level oscillations at tsunami timescales.

    Science.gov (United States)

    Vilibić, Ivica; Šepić, Jadranka

    2017-01-18

    Present investigations of sea level extremes are based on hourly data measured at coastal tide gauges. The use of hourly data restricts existing global and regional analyses to periods larger than 2 h. However, a number of processes occur at minute timescales, of which the most ruinous are tsunamis. Meteotsunamis, hazardous nonseismic waves that occur at tsunami timescales over limited regions, may also locally dominate sea level extremes. Here, we show that nonseismic sea level oscillations at tsunami timescales (sea level extremes, up to 50% in low-tidal basins. The intensity of these oscillations is zonally correlated with mid-tropospheric winds at the 99% significance level, with the variance doubling from the tropics and subtropics to the mid-latitudes. Specific atmospheric patterns are found during strong events at selected locations in the World Ocean, indicating a globally predominant generation mechanism. Our analysis suggests that these oscillations should be considered in sea level hazard assessment studies. Establishing a strong correlation between nonseismic sea level oscillations at tsunami timescales and atmospheric synoptic patterns would allow for forecasting of nonseismic sea level oscillations for operational use, as well as hindcasting and projection of their effects under past, present and future climates.

  1. MODELING THE 1958 LITUYA BAY MEGA-TSUNAMI, II

    Directory of Open Access Journals (Sweden)

    Charles L. Mader

    2002-01-01

    Full Text Available Lituya Bay, Alaska is a T-Shaped bay, 7 miles long and up to 2 miles wide. The two arms at the head of the bay, Gilbert and Crillon Inlets, are part of a trench along the Fairweather Fault. On July 8, 1958, an 7.5 Magnitude earthquake occurred along the Fairweather fault with an epicenter near Lituya Bay.A mega-tsunami wave was generated that washed out trees to a maximum altitude of 520 meters at the entrance of Gilbert Inlet. Much of the rest of the shoreline of the Bay was denuded by the tsunami from 30 to 200 meters altitude.In the previous study it was determined that if the 520 meter high run-up was 50 to 100 meters thick, the observed inundation in the rest of Lituya Bay could be numerically reproduced. It was also concluded that further studies would require full Navier-Stokes modeling similar to those required for asteroid generated tsunami waves.During the Summer of 2000, Hermann Fritz conducted experiments that reproduced the Lituya Bay 1958 event. The laboratory experiments indicated that the 1958 Lituya Bay 524 meter run-up on the spur ridge of Gilbert Inlet could be caused by a landslide impact.The Lituya Bay impact landslide generated tsunami was modeled with the full Navier- Stokes AMR Eulerian compressible hydrodynamic code called SAGE with includes the effect of gravity.

  2. The 2004 tsunami in Penang, Malaysia: early mental health intervention.

    Science.gov (United States)

    Krishnaswamy, Saroja; Subramaniam, Kavitha; Indran, Tishya; Low, Wah-Yun

    2012-07-01

    Disasters, natural or man-made, bring numerous health care challenges. In any crisis, mental health programs are a requirement during both the acute and postemergency phases. In the Asian tsunami on December 26, 2004, some of the northwestern coastal areas of Malaysia, particularly the island of Penang, were affected with devastating effects on the residents. Such disasters can predispose to mental health problems among the affected people. An early mental health intervention program was carried out in Balik Pulau, Penang, an area badly affected by the tsunami. The objective of the intervention program was to identify the victims, counsel them, make referrals if necessary, and provide help and resources to prevent the development of mental health problems. Penang residents identified as tsunami victims by the local health authorities were recruited. A group of health care workers, school teachers, village authorities, and volunteers were trained to carry out the crisis intervention program by health care workers experienced in crisis interventions. A total of 299 adults participated in the crisis intervention program, with follow-up assessments being made 4 to 6 weeks later. At the follow-up assessment, 1% of the victims had a problem and they were then referred for further medical assessment. This indicates that the intervention program in the first 2 weeks after the tsunami disaster with referrals to medical services may have helped stabilize the victims.

  3. Book review: Physics of tsunamis

    Science.gov (United States)

    Geist, Eric L.

    2017-01-01

    “Physics of Tsunamis”, second edition, provides a comprehensive analytical treatment of the hydrodynamics associated with the tsunami generation process. The book consists of seven chapters covering 388 pages. Because the subject matter within each chapter is distinct, an abstract appears at the beginning and references appear at the end of each chapter, rather than at the end of the book. Various topics of tsunami physics are examined largely from a theoretical perspective, although there is little information on how the physical descriptions are applied in numerical models.“Physics of Tsunamis”, by B. W. Levin and M. A. Nosov, Second Edition, Springer, 2016; ISBN-10: 33-1933106X, ISBN-13: 978-331933-1065

  4. Study of an effective structural system with rational parameters based on main energy principles

    Directory of Open Access Journals (Sweden)

    Toporkova Katerina

    2017-01-01

    Full Text Available The effective architectural and construction system with rational parameters based on main energy principles applied to construction of buildings and constructions with a small-step and large-step frames, representing the metal frame of full factory production collected in spatial system on high-strength bolts and previously strained combined prestressed concrete slabs which formed without timbering is proposed in this paper. The main constructive and technological features of the proposed frame, which allows reducing construction period, increasing working efficiency, and reducing labor intensity by using factory-made materials, quick erection of all process elements through the use of highstrength bolts is considered. The advantages of this constructive system in comparison with alternative systems are shown. The basic concepts of "rational decisions" to the design, namely, the objective of the optimal management of the structure parameters, which can not only improve its basic performance indicators, but also, and most importantly, improve operational reliability, is presented.

  5. Meteotsunamis, destructive tsunami-like waves: from observations and simulations towards a warning system (MESSI)

    Science.gov (United States)

    Sepic, Jadranka; Vilibic, Ivica

    2016-04-01

    Atmospherically-generated tsunami-like waves, also known as meteotsunamis, pose a severe threat for exposed coastlines. Although not as destructive as ordinary tsunamis, several meters high meteotsunami waves can bring destruction, cause loss of human lives and raise panic. For that reason, MESSI, an integrative meteotsunami research & warning project, has been developed and will be presented herein. The project has a threefold base: (1) research of atmosphere-ocean interaction with focus on (i) source processes in the atmosphere, (ii) energy transfer to the ocean and (iii) along-propagation growth of meteotsunami waves; (2) estimation of meteotsunami occurrence rates in past, present and future climate, and mapping of meteotsunami hazard; (3) construction of a meteotsunami warning system prototype, with the latter being the main objective of the project. Due to a great frequency of meteotsunamis and its complex bathymetry which varies from the shallow shelf in the north towards deep pits in the south, with a number of funnel-shaped bays and harbours substantially amplifying incoming tsunami-like waves, the Adriatic, northernmost of the Mediterranean seas, has been chosen as an ideal area for realization of the MESSI project and implementation of the warning system. This warning system will however be designed to allow for a wider applicability and easy-to-accomplish transfer to other endangered locations. The architecture of the warning system will integrate several components: (1) real-time measurements of key oceanographic and atmospheric parameters, (2) coupled atmospheric-ocean models run in real time (warning) mode, and (3) semi-automatic procedures and protocols for warning of civil protection, local authorities and public. The effectiveness of the warning system will be tested over the historic events.

  6. Tsunami Magnitude and Source Area of the Aleutian-Alaska Tsunamis

    OpenAIRE

    Hatori, Tokutaro

    1981-01-01

    Based on tide-gauge records of the USCGS and Japanese data, the magnitude and source area of the Aleutian-Alaska tsunamis during the past 42 years are investigated. According to the author's method based on the attenuation of wave-height with distance, the tsunami magnitude (Imamura-Iida scale) of the 1946 Aleutian and 1964 Alaska tsunamis are estimated to be m=3 and 4 respectively. The magnitudes of the 1957 and 1965 Aleutian tsunamis are m=3. According to the empirical formula, the tsunami ...

  7. Main alkaloids of Peganum harmala L. and their different effects on dicot and monocot crops.

    Science.gov (United States)

    Shao, Hua; Huang, Xiaoli; Zhang, Yuanming; Zhang, Chi

    2013-02-27

    Alkaloids with allelopathic activity are not as well-known as other allelochemicals. Our study revealed that total alkaloids from seeds of the medicinal plant Peganum harmala L. possessed significant growth inhibitory effect on four treated plants, with dicot plants (lettuce and amaranth) being more sensitive than the tested monocot plants (wheat and ryegrass). Further investigation led to the isolation of harmaline and harmine as the main active ingredients in the total alkaloids of P. harmala seeds. Harmaline exerted potent inhibitory effects on seedling growth of treated plants, especially dicots, inhibiting root elongation of lettuce and amaranth by 31% and 47% at a very low concentration (5 µg/mL), whereas harmine exhibited much weaker non-selective inhibitory effect on the plants. Considering the high yield and poor utilization of P. harmala in China, we anticipate that this plant could be exploited as an alternative weed management tool in the future.

  8. Organic Geochemistry of the Tohoku Tsunami Deposits of 2011 (Japan)

    Science.gov (United States)

    Reicherter, K. R.; Schwarzbauer, J.; Szczucinski, W.; Jaffe, B. E.

    2014-12-01

    Geochemical investigations on paleotsunami deposits have mainly focused on inorganic proxies. Organic geochemistry has been used to distinguish between terrestrial and marine matter within the sediments, reflecting the mixture and transport of marine and terrestrial matter. The approach using organic substances with indicative properties (anthropogenic and xenobiotic compounds) for recent tsunami deposits is novel, but the approach of using specific bio- and anthropogenic markers indicators to determine (pre)historic and recent processes and impacts already exists. The Tohoku-oki tsunami in March 2011 showed the huge threat that tsunamis pose to society and landscape, including flooding of coastal lowlands and erosion/deposition of sediments. The mainly sandy tsunamites reach more than 4.5 km inland as there were run-up heights of ca. 10 m in the Sendai plain near the Sendai airport. The destruction of infrastructure by wave action and flooding was accompanied by the release of environmental pollutants (e.g. fuels, fats, tarmac, plastics, heavy metals, etc.) contaminating the coastal areas and ocean over large areas. To detect and characterize this process, we analyzed several sedimentary archives from the Bay of Sendai area (by using the same sample material as Szczucinski et al., 2012 from rice paddies of the Sendai Plain, Japan). The layers representing the tsunami deposits have been compared with pre-tsunami samples (supposedly to be unaffected) by means of organic-geochemical analyses based on GC/MS. Natural compounds and their diagenetic transformation products have been tested as marker compounds and proxies. The relative composition of fatty acids, n-alkanes, sesquiterpenes and further substances pointed to significant variations before and after the tsunami event. Additionally, anthropogenic marker compounds (such as soil derived pesticides, source specific PAHs, halogenated aromatics from industrial sources) have been detected and quantified

  9. New Tsunami Response, Mitigation, and Recovery Planning "Playbooks" for California (USA) Maritime Communities

    Science.gov (United States)

    Wilson, R. I.; Lynett, P. J.; Miller, K.; Eskijian, M.; Dengler, L. A.; Ayca, A.; Keen, A.; Admire, A. R.; Siegel, J.; Johnson, L. A.; Curtis, E.; Hornick, M.

    2015-12-01

    through the NTHMP to help other U.S. states/territories/commonwealths develop their own tsunami planning tools. This will lead to more accurate, consistent, and cost-effective tsunami planning strategies within the U.S.

  10. Numerical Simulations of the 1991 Limón Tsunami, Costa Rica Caribbean Coast

    Science.gov (United States)

    Chacón-Barrantes, Silvia; Zamora, Natalia

    2017-08-01

    The second largest recorded tsunami along the Caribbean margin of Central America occurred 25 years ago. On April 22nd, 1991, an earthquake with magnitude Mw 7.6 ruptured along the thrust faults that form the North Panamá Deformed Belt (NPDB). The earthquake triggered a tsunami that affected the Caribbean coast of Costa Rica and Panamá within few minutes, generating two casualties. These are the only deaths caused by a tsunami in Costa Rica. Coseismic uplift up to 1.6 m and runup values larger than 2 m were measured along some coastal sites. Here, we consider three solutions for the seismic source as initial conditions to model the tsunami, each considering a single rupture plane. We performed numerical modeling of the tsunami propagation and runup using NEOWAVE numerical model (Yamazaki et al. in Int J Numer Methods Fluids 67:2081-2107, 2010, doi: 10.1002/fld.2485 ) on a system of nested grids from the entire Caribbean Sea to Limón city. The modeled surface deformation and tsunami runup agreed with the measured data along most of the coastal sites with one preferred model that fits the field data. The model results are useful to determine how the 1991 tsunami could have affected regions where tsunami records were not preserved and to simulate the effects of the coastal surface deformations as buffer to tsunami. We also performed tsunami modeling to simulate the consequences if a similar event with larger magnitude Mw 7.9 occurs offshore the southern Costa Rican Caribbean coast. Such event would generate maximum wave heights of more than 5 m showing that Limón and northwestern Panamá coastal areas are exposed to moderate-to-large tsunamis. These simulations considering historical events and maximum credible scenarios can be useful for hazard assessment and also as part of studies leading to tsunami evacuation maps and mitigation plans, even when that is not the scope of this paper.

  11. Geoinformatics in mangrove monitoring: damage and recovery after the 2004 Indian Ocean tsunami in Phang Nga, Thailand

    Directory of Open Access Journals (Sweden)

    D. Kamthonkiat

    2011-07-01

    Full Text Available In the aftermath of the 2004 Indian Ocean Tsunami, it has been proven that mangrove ecosystems provide protection against coastal disasters by acting as bioshields. Satellite data have been effectively used to detect, assess, and monitor the changes in mangroves during the pre- and post- tsunami periods. However, not much information regarding mangrove restoration or reforestation is available. Rather than undertaking time-consuming fieldwork, this study proposed using geoinformatic technologies such as Remote Sensing (RS, Geographic Information System (GIS, and Global Positioning System (GPS to monitor the mangrove recovery. The analysis focused only on the tsunami-impacted mangrove areas along the western coast of the Tai Muang, Takuapa and Khuraburi Districts of Phang Nga Province, southern region of Thailand. The results consisted of 2 parts, first: the supervised classification of main land uses, namely forest, mangrove, agricultural land, built-up area, bare soil, water body, and miscellaneous covers in ASTER images, was conducted using the maximum likelihood method with higher than 75 % for overall accuracy. Once the confusion between classes was improved in post-processing, the accuracy of mangrove class was greater than 85 % for all dates. The results showed that the mangrove area in 2005 was reduced by approximately 5 % (1054.5 ha from 2003 due to the impact of the 2004 Indian Ocean Tsunami. Although the recovery program (replacing the same species of dead mangrove trees, mainly the Rhizophora apiculata Bl and Rhizophora mucronata Poir, in situ had started by mid-2005, the areas gradually decreased to approximately 7–8 % in 2006 and 2010 compared with the reference year of 2003. Second, the recovery trend was observed in the Normalized Difference Vegetation Index (NDVI fluctuation curve and the supporting field survey data. The recovery patterns were summarized into 2 categories: (i gradually recovery, and (ii

  12. Functional identity is the main driver of diversity effects in young tree communities.

    Science.gov (United States)

    Tobner, Cornelia M; Paquette, Alain; Gravel, Dominique; Reich, Peter B; Williams, Laura J; Messier, Christian

    2016-06-01

    Two main effects are proposed to explain biodiversity-ecosystem functioning relationships: niche complementarity and selection effects. Both can be functionally defined using the functional diversity (FD) and functional identity (FI) of the community respectively. Herein, we present results from the first tree diversity experiment that separated the effect of selection from that of complementarity by varying community composition in high-density plots along a gradient of FD, independent of species richness and testing for the effects of FD and community weighted means of traits (a proxy for FI) on stem biomass increment (a proxy for productivity). After 4 years of growth, most mixtures did not differ in productivity from the averages of their respective monocultures, but some did overyield significantly. Those positive diversity effects resulted mostly from selection effects, primarily driven by fast-growing deciduous species and associated traits. Net diversity effect did not increase with time over 4 years. © 2016 John Wiley & Sons Ltd/CNRS.

  13. Tsunami disaster risk management capabilities in Greece

    Science.gov (United States)

    Marios Karagiannis, Georgios; Synolakis, Costas

    2015-04-01

    Greece is vulnerable to tsunamis, due to the length of the coastline, its islands and its geographical proximity to the Hellenic Arc, an active subduction zone. Historically, about 10% of all world tsunamis occur in the Mediterranean region. Here we review existing tsunami disaster risk management capabilities in Greece. We analyze capabilities across the disaster management continuum, including prevention, preparedness, response and recovery. Specifically, we focus on issues like legal requirements, stakeholders, hazard mitigation practices, emergency operations plans, public awareness and education, community-based approaches and early-warning systems. Our research is based on a review of existing literature and official documentation, on previous projects, as well as on interviews with civil protection officials in Greece. In terms of tsunami disaster prevention and hazard mitigation, the lack of tsunami inundation maps, except for some areas in Crete, makes it quite difficult to get public support for hazard mitigation practices. Urban and spatial planning tools in Greece allow the planner to take into account hazards and establish buffer zones near hazard areas. However, the application of such ordinances at the local and regional levels is often difficult. Eminent domain is not supported by law and there are no regulatory provisions regarding tax abatement as a disaster prevention tool. Building codes require buildings and other structures to withstand lateral dynamic earthquake loads, but there are no provisions for resistance to impact loading from water born debris Public education about tsunamis has increased during the last half-decade but remains sporadic. In terms of disaster preparedness, Greece does have a National Tsunami Warning Center (NTWC) and is a Member of UNESCO's Tsunami Program for North-eastern Atlantic, the Mediterranean and connected seas (NEAM) region. Several exercises have been organized in the framework of the NEAM Tsunami Warning

  14. Tsunami sediments in the Penghu islands and their implications to the surrounding areas

    Science.gov (United States)

    Lu, Cheng-Hao; Chyi, Shyh-Jeng; Yen, Jiun-Yee; Yu, Neng-Ti; Lin, Li-Hung; Lee, Chi-Yu; Chen, Jia-Hong; Yen, I.-Chin

    2017-04-01

    Several research groups has focused on the possible tsunami that would be induced by the slip of the Manila trench, western Pacific. To understand whether tsunami from South China Sea had reached Taiwan Strait, it is essential to investigate tsunami sediments in Taiwan, especially southwest Taiwan where many historical records and folklores indicated possible tsunamis. Located in the Taiwan Strait, Penghu islands are an archipelago made up mainly of Miocene basaltic rocks. The low-lying, low-relief islands have complex shorelines and are relatively low in anthropological disturbance, and these factors improve the preservation probability of the geological records. Because of the high preservation probability, we searched the islands for possible tsunami sediments in the hope of understanding the tsunami history in this region. Based on the field investigation, marine deposit are interbedded within the soil on the outcrop of sea terrace. These sites, such as Fongguei, and other coasts of Penghu islands, can be found at least one marine depoists which are interbedded within the paleosol in thickness of 1-3 meters. The result of AMS C-14 dating show the depoists are 6000,3000 and 500 year before present. According to the inference of Holocene sea-level change in Penghu islands, these depoist events shall indicate the extreme events rather than high sea-level stand.

  15. Source properties of the 1998 July 17 Papua New Guinea tsunami based on tide gauge records

    Science.gov (United States)

    Heidarzadeh, Mohammad; Satake, Kenji

    2015-07-01

    We analysed four newly retrieved tide gauge records of the 1998 July 17 Papua New Guinea (PNG) tsunami to study statistical and spectral properties of this tsunami. The four tide gauge records were from Lombrum (PNG), Rabaul (PNG), Malakal Island (Palau) and Yap Island (State of Yap) stations located 600-1450 km from the source. The tsunami registered a maximum trough-to-crest wave height of 3-9 cm at these gauges. Spectral analysis showed two dominant peaks at period bands of 2-4 and 6-20 min with a clear separation at the period of ˜5 min. We interpreted these peak periods as belonging to the landslide and earthquake sources of the PNG tsunami, respectively. Analysis of the tsunami waveforms revealed 12-17 min delay in landslide generation compared to the origin time of the main shock. Numerical simulations including this delay fairly reproduced the observed tide gauge records. This is the first direct evidence of the delayed landslide source of the 1998 PNG tsunami which was previously indirectly estimated from acoustic T-phase records.

  16. Observations and Impacts from the 2010 Chilean and 2011 Japanese Tsunamis in California (USA)

    Science.gov (United States)

    Wilson, Rick I.; Admire, Amanda R.; Borrero, Jose C.; Dengler, Lori A.; Legg, Mark R.; Lynett, Patrick; McCrink, Timothy P.; Miller, Kevin M.; Ritchie, Andy; Sterling, Kara; Whitmore, Paul M.

    2013-06-01

    The coast of California was significantly impacted by two recent teletsunami events, one originating off the coast of Chile on February 27, 2010 and the other off Japan on March 11, 2011. These tsunamis caused extensive inundation and damage along the coast of their respective source regions. For the 2010 tsunami, the NOAA West Coast/Alaska Tsunami Warning Center issued a state-wide Tsunami Advisory based on forecasted tsunami amplitudes ranging from 0.18 to 1.43 m with the highest amplitudes predicted for central and southern California. For the 2011 tsunami, a Tsunami Warning was issued north of Point Conception and a Tsunami Advisory south of that location, with forecasted amplitudes ranging from 0.3 to 2.5 m, the highest expected for Crescent City. Because both teletsunamis arrived during low tide, the potential for significant inundation of dry land was greatly reduced during both events. However, both events created rapid water-level fluctuations and strong currents within harbors and along beaches, causing extensive damage in a number of harbors and challenging emergency managers in coastal jurisdictions. Field personnel were deployed prior to each tsunami to observe and measure physical effects at the coast. Post-event survey teams and questionnaires were used to gather information from both a physical effects and emergency response perspective. During the 2010 tsunami, a maximum tsunami amplitude of 1.2 m was observed at Pismo Beach, and over 3-million worth of damage to boats and docks occurred in nearly a dozen harbors, most significantly in Santa Cruz, Ventura, Mission Bay, and northern Shelter Island in San Diego Bay. During the 2011 tsunami, the maximum amplitude was measured at 2.47 m in Crescent City Harbor with over 50-million in damage to two dozen harbors. Those most significantly affected were Crescent City, Noyo River, Santa Cruz, Moss Landing, and southern Shelter Island. During both events, people on docks and near the ocean became at risk to

  17. Tsunami vulnerability assessment in the western coastal belt in Sri Lanka

    Science.gov (United States)

    Ranagalage, M. M.

    2017-12-01

    26th December 2004 tsunami disaster has caused massive loss of life, damage to coastal infrastructures and disruption to economic activities in the coastal belt of Sri Lanka. Tsunami vulnerability assessment is a requirement for disaster risk and vulnerability reduction. It plays a major role in identifying the extent and level of vulnerabilities to disasters within the communities. There is a need for a clearer understanding of the disaster risk patterns and factors contributing to it in different parts of the coastal belt. The main objective of this study is to investigate tsunami vulnerability assessment of Moratuwa Municipal council area in Sri Lanka. We have selected Moratuwa area due to considering urbanization pattern and Tsunami hazards of the country. Different data sets such as one-meter resolution LiDAR data, orthophoto, population, housing data and road layer were employed in this study. We employed tsunami vulnerability model for 1796 housing units located there, for a tsunami scenario with a maximum run-up 8 meters. 86% of the total land area affected by the tsunami in 8 meters scenarios. Additionally, building population has been used to estimate population in different vulnerability levels. The result shows that 32% of the buildings have extremely critical vulnerability level, 46% have critical vulnerability level, 22% have high vulnerability level, and 1% have a moderate vulnerability. According to the population estimation model results, 18% reside building with extremely critical vulnerability, 43% with critical vulnerability, 36% with high vulnerability and 3% belong to moderate vulnerability level. The results of the study provide a clear picture of tsunami vulnerability. Outcomes of this analysis can use as a valuable tool for urban planners to assess the risk and extent of disaster risk reduction which could be achieved via suitable mitigation measures to manage the coastal belt in Sri Lanka.

  18. Effect of rapid mass accretion onto the low-mass main sequence stars

    International Nuclear Information System (INIS)

    Sarna, M.J.; Ziolkowski, J.

    1988-01-01

    We investigated the effects of rapid mass accretion on low-mass main sequence stars with deep convective envelopes (0.3 and 0.5 M sun ), taking into account the heating of their photospheres by the kinetic energy of the infalling matter. We found that these stars develop highly inhomogeneous structure consisting of an interior formed by an almost unperturbed original star and the radiative envelope composed of the accreted matter. These two regions are separated by a very stable temperature inversion layer. Due to such structure accreting convective star may substantially increase its radius (contrary to earlier suggestions). 7 refs., 10 figs., 1 tab. (author)

  19. New method to determine initial surface water displacement at tsunami source

    Science.gov (United States)

    Lavrentyev, Mikhail; Romanenko, Alexey; Tatarintsev, Pavel

    2013-04-01

    earthquake. However, today it is not yet possible. Ground-based sea radars. This is an effective tool for direct measurement of tsunami wave. At the same time, the wave is measured at a rather narrow area in front of the radar and does not include information about neighboring parts of the wave. Direct measurement of tsunami wave at deep water [2]. Today, this technology is certainly among the most useful and promising. The DART II® system consists of a seafloor bottom pressure recording (BPR) system, capable of detecting tsunamis as small as 1 cm, and a moored surface buoy for real-time communications. We focus our research on improving the later method, direct measurement of tsunami wave at deep water. We suggest the new way to analyze DART data, modifying the methodology originally proposed by V. Titov. Smaller system of unit sources [3] should be considered to approximate all typical shapes of initial disturbance by several suitable basis functions. To successfully implement it, performance of data analysis should be dramatically improved. This could be done by using a signal orthogonalization procedure for considered system of unit sources and calculation of Fourier coefficients of the measured time series with respect to orthogonal basis. The approach suggested was used as a part of computerized workstation for tsunami hazard monitoring [5-6]. National Oceanic and Atmospheric Administration Center for Tsunami Research. URL: http://nctr.pmel.noaa.gov/honshu20110311/ National Data Buoy Center. URL: http://www.ndbc.noaa.gov/dart.shtml National Oceanic and Atmospheric Administration Center for Tsunami Research. URL: http://sift.pmel.noaa.gov/thredds/dodsC/uncompressed/ National Oceanic and Atmospheric Administration Center for Tsunami Research. URL: http://nctr.pmel.noaa.gov/model.html Alexey Romanenko, Mikhail Lavrentiev-jr, Vasily Titov, "Modern Architecture for Tsunami Hazard Mitigation" // Asia Oceania Geosciences Society (AOGS-2012), ISBN 978-981-07-2049-0 Mikhail

  20. Effect of the main physic-chemical parameters on the somatic embryogenesis at bioreactors scale

    Directory of Open Access Journals (Sweden)

    Manuel de Feria

    2003-10-01

    Full Text Available The bioreactors has been mainly developed for the production of biomass, for that that the glasses for the culture of the different vegetable species with propagation ends, they have had to be adapted in function of the specific requirements of each process and cultivation. This way and because a universal team doesn’t exist for all the applications, the bioreactors has been object of modifications in their components in dependence of the requirements of each species. He has also been proven that the internal configuration of the culture glass influences in a decisive way on the production and later development of the somatic embryos. Therefore, it is necessary to solve the current technological limitations and to study the effect of the main culture parameters to be able to use this technology type like an alternative for the mass propagation of plants. Different systems have been evaluated of agitation-aeration and designs have been proven that generate drops hydrodynamic forces inside the culture glass, guaranteeing the quality and viability of the culture in suspension, as well as the formation and multiplication of the somatic embryos. They have been studied for several cultures the effects that cause the main physical-chemical parameters in the propagation via somatic embryogenesis to bioreactors scale. They have been defined methodologies and work strategies that combine this culture parameters and they allow to control and to obtain in way stable productions of somatic embryos able to germinate and to transform into plants and these results definitively will allow to take to commercial scale the employment of this technology for the propagation in vitro of many species of economic interest. configuration, pH Keywords: agitation, aeration, dissolved oxygen, internal

  1. Suppressive effects of ethanolic extracts from propolis and its main botanical origin on dioxin toxicity.

    Science.gov (United States)

    Park, Yong K; Fukuda, Itsuko; Ashida, Hitoshi; Nishiumi, Shin; Yoshida, Ken-Ichi; Daugsch, Andreas; Sato, Helia H; Pastore, Glaucia M

    2005-12-28

    Suppressive effects of ethanolic extracts prepared from propolis group 12 and its main botanical origin (leaf bud of Baccharis dracunculifolia) on transformation of the aryl hydrocarbon receptor (AhR), the initial action of dioxin toxicity, were investigated. It was found that suppressive effects of propolis on AhR transformation were relatively higher than those of resins of its botanical origin in cell-free system and in Hepa-1c1c7 cells. When the composition of chemical ingredients was measured, propolis contained slightly higher amounts of flavonoid aglycones as compared with its botanical origin with the same characteristics. Moreover, antiradical activity, one of the typical biological activities of flavonoids, in propolis was also slightly higher than that in its botanical origin. These results indicate that not only propolis but also its botanical origin contains high amounts of flavonoid aglycones and that both of them are useful dietary sources for flavonoids with a potency to prevent dioxin toxicity.

  2. Tsunami Risk for the Caribbean Coast

    Science.gov (United States)

    Kozelkov, A. S.; Kurkin, A. A.; Pelinovsky, E. N.; Zahibo, N.

    2004-12-01

    The tsunami problem for the coast of the Caribbean basin is discussed. Briefly the historical data of tsunami in the Caribbean Sea are presented. Numerical simulation of potential tsunamis in the Caribbean Sea is performed in the framework of the nonlinear-shallow theory. The tsunami wave height distribution along the Caribbean Coast is computed. These results are used to estimate the far-field tsunami potential of various coastal locations in the Caribbean Sea. In fact, five zones with tsunami low risk are selected basing on prognostic computations, they are: the bay "Golfo de Batabano" and the coast of province "Ciego de Avila" in Cuba, the Nicaraguan Coast (between Bluefields and Puerto Cabezas), the border between Mexico and Belize, the bay "Golfo de Venezuela" in Venezuela. The analysis of historical data confirms that there was no tsunami in the selected zones. Also, the wave attenuation in the Caribbean Sea is investigated; in fact, wave amplitude decreases in an order if the tsunami source is located on the distance up to 1000 km from the coastal location. Both factors wave attenuation and wave height distribution should be taken into account in the planned warning system for the Caribbean Sea.

  3. Pharmacological and therapeutic effects of Mentha Longifolia L. and its main constituent, menthol.

    Science.gov (United States)

    Mikaili, Peyman; Mojaverrostami, Sina; Moloudizargari, Milad; Aghajanshakeri, Shahin

    2013-10-01

    Mentha longifolia (wild mint) is a popular folk remedy. Some parts of this plant have been used in traditional medicine of Iran and other countries. Many studies have shown various pharmacological and therapeutic effects of the plant. Our aim in preparing this study was to review the traditional uses of M. longifolia together with the pharmacological and therapeutic effects of its entire extract and major compounds. Mentha longifolia is an herb with a wide range of pharmacological properties such as antimicrobial, gastrointestinal, and nervous system effects. Pulegone is the main compound of the plant responsible for most of its pharmacological effects followed by menthone, isomenthone, menthol, 1, 8-cineole, borneol, and piperitenone. Moreover, the plant may dose-dependently exert toxic effects in different systems of the body. Based on the review of various studies, it can be concluded that M. longifolia is a potential natural source for the development of new drugs. However, further studies are required to determine the precise quality and safety of the plant to be used by clinicians.

  4. Pharmacological and therapeutic effects of Mentha Longifolia L. and its main constituent, menthol

    Directory of Open Access Journals (Sweden)

    Peyman Mikaili

    2013-01-01

    Full Text Available Mentha longifolia (wild mint is a popular folk remedy. Some parts of this plant have been used in traditional medicine of Iran and other countries. Many studies have shown various pharmacological and therapeutic effects of the plant. Our aim in preparing this study was to review the traditional uses of M. longifolia together with the pharmacological and therapeutic effects of its entire extract and major compounds. Mentha longifolia is an herb with a wide range of pharmacological properties such as antimicrobial, gastrointestinal, and nervous system effects. Pulegone is the main compound of the plant responsible for most of its pharmacological effects followed by menthone, isomenthone, menthol, 1, 8-cineole, borneol, and piperitenone. Moreover, the plant may dose-dependently exert toxic effects in different systems of the body. Based on the review of various studies, it can be concluded that M. longifolia is a potential natural source for the development of new drugs. However, further studies are required to determine the precise quality and safety of the plant to be used by clinicians.

  5. NCACO-score: An effective main-chain dependent scoring function for structure modeling

    Directory of Open Access Journals (Sweden)

    Dong Xiaoxi

    2011-05-01

    Full Text Available Abstract Background Development of effective scoring functions is a critical component to the success of protein structure modeling. Previously, many efforts have been dedicated to the development of scoring functions. Despite these efforts, development of an effective scoring function that can achieve both good accuracy and fast speed still presents a grand challenge. Results Based on a coarse-grained representation of a protein structure by using only four main-chain atoms: N, Cα, C and O, we develop a knowledge-based scoring function, called NCACO-score, that integrates different structural information to rapidly model protein structure from sequence. In testing on the Decoys'R'Us sets, we found that NCACO-score can effectively recognize native conformers from their decoys. Furthermore, we demonstrate that NCACO-score can effectively guide fragment assembly for protein structure prediction, which has achieved a good performance in building the structure models for hard targets from CASP8 in terms of both accuracy and speed. Conclusions Although NCACO-score is developed based on a coarse-grained model, it is able to discriminate native conformers from decoy conformers with high accuracy. NCACO is a very effective scoring function for structure modeling.

  6. Effect of the tank main gun on the radiation pattern of the monopole antenna

    Directory of Open Access Journals (Sweden)

    Miroslav Lj. Đorđević

    2011-01-01

    Full Text Available For telecommunication purposes, a monopole antenna is usually positioned on the tank turret. At low frequencies the whole tank has to be treated as a part of the antenna system. In this paper a method for electromagnetic modeling of metallic structures is presented and applied to the analysis of radiation of a tank monopole antenna. Radiation simulations are performed at the frequency range from 1MHz to 30MHz. A special attention is given to the analysis of the effects of increased elevation of the tank main gun to the radiation pattern of the antenna. The analysis of the radiation of the tank monopole is performed with and without the presence of conducting ground. It is shown that the increase in the main gun elevation at certain frequencies can lead to degradation of uniformity of radiation in the horizontal plane. Introduction Informational technologies and reliable and secure communications are an important part of a modern military doctrine. Regarding telecommunications, armored vehicles and tanks in particular present a specific problem. In this paper, a theoretical basis of the electromagnetic analysis of metallic structures and a modeling technique will be presented. The effect of the tank on the radiation pattern will be investigated both for a tank in free space and above the conducting ground. Method of moments The method of moments (MoM is a method for an approximate solution of integral equations. This section presents the fundamentals of the MoM and the higher-order quadrilaterals as the basic elements used for geometry modeling. The currents in our method are approximated using high-order two-dimensional polynomials. Modeling of the tank geometry The tank is modeled using only 28 elements, out of which 10 bilinear quadrilaterals and 18 second-order surfaces. The monopole antenna is modeled using one straight wire segment. Results The use of the polynomial current approximation yields a reduction in the number of unknowns required

  7. The 2004 Sumatra tsunami as recorded on the Atlantic coast of South America

    Directory of Open Access Journals (Sweden)

    R. N. Candella

    2008-01-01

    Full Text Available The 2004 Sumatra tsunami propagated throughout the World Ocean and was clearly recorded by tide gauges on the Atlantic coast of South America. A total of 17 tsunami records were found and subsequently examined for this region. Tsunami wave heights and arrival times are generally consistent with numerical modeling results. Maximum wave heights of more than 1.2 m were observed on the coasts of Uruguay and southeastern Brazil. Marked differences in tsunami height from pairs of closely located tide gauge sites on the coast of Argentina illustrate the importance that local topographic resonance effects can have on the observed wave response. Findings reveal that, outside the Indian Ocean, the highest waves were recorded in the South Atlantic and not in the Pacific as has been previously suggested.

  8. Household evacuation characteristics in American Samoa during the 2009 Samoa Islands tsunami

    Science.gov (United States)

    Apatu, Emma J. I.; Gregg, Chris E.; Wood, Nathan J.; Wang, Liang

    2016-01-01

    Tsunamis represent significant threats to human life and development in coastal communities. This quantitative study examines the influence of household characteristics on evacuation actions taken by 211 respondents in American Samoa who were at their homes during the 29 September 2009 Mw 8.1 Samoa Islands earthquake and tsunami disaster. Multiple logistic regression analysis of survey data was used to examine the association between evacuation and various household factors. Findings show that increases in distance to shoreline were associated with a slightly decreased likelihood of evacuation, whereas households reporting higher income had an increased probability of evacuation. The response in American Samoa was an effective one, with only 34 fatalities in a tsunami that reached shore in as little as 15 minutes. Consequently, future research should implement more qualitative study designs to identify event and cultural specific determinants of household evacuation behaviour to local tsunamis.

  9. Tsunami sediments and their grain size characteristics

    Science.gov (United States)

    Sulastya Putra, Purna

    2018-02-01

    Characteristics of tsunami deposits are very complex as the deposition by tsunami is very complex processes. The grain size characteristics of tsunami deposits are simply generalized no matter the local condition in which the deposition took place. The general characteristics are fining upward and landward, poor sorting, and the grain size distribution is not unimodal. Here I review the grain size characteristics of tsunami deposit in various environments: swale, coastal marsh and lagoon/lake. Review results show that although there are similar characters in some environments and cases, but in detail the characteristics in each environment can be distinguished; therefore, the tsunami deposit in each environment has its own characteristic. The local geological and geomorphological condition of the environment may greatly affect the grain size characteristics.

  10. -Advanced Models for Tsunami and Rogue Waves

    Directory of Open Access Journals (Sweden)

    D. W. Pravica

    2012-01-01

    Full Text Available A wavelet , that satisfies the q-advanced differential equation for , is used to model N-wave oscillations observed in tsunamis. Although q-advanced ODEs may seem nonphysical, we present an application that model tsunamis, in particular the Japanese tsunami of March 11, 2011, by utilizing a one-dimensional wave equation that is forced by . The profile is similar to tsunami models in present use. The function is a wavelet that satisfies a q-advanced harmonic oscillator equation. It is also shown that another wavelet, , matches a rogue-wave profile. This is explained in terms of a resonance wherein two small amplitude forcing waves eventually lead to a large amplitude rogue. Since wavelets are used in the detection of tsunamis and rogues, the signal-analysis performance of and is examined on actual data.

  11. Percutaneous Coronary Intervention of Left Main Disease: Pre- and Post-EXCEL (Evaluation of XIENCE Everolimus Eluting Stent Versus Coronary Artery Bypass Surgery for Effectiveness of Left Main Revascularization) and NOBLE (Nordic-Baltic-British Left Main Revascularization Study) Era.

    Science.gov (United States)

    Park, Duk-Woo; Park, Seung-Jung

    2017-06-01

    For nearly half a century, coronary artery bypass grafting has been the standard treatment for patients with obstructive left main coronary artery (LMCA) disease. However, there has been considerable evolution in the field of percutaneous coronary intervention, and especially, percutaneous coronary intervention for LMCA disease has been rapidly expanded with adoption of drug-eluting stents. Some, but not all randomized trials, have shown that percutaneous coronary intervention with drug-eluting stents might be a suitable alternative for selected patients with LMCA disease instead of bypass surgery. However, none of previous trials involving early-generation drug-eluting stents was sufficiently powered and comparative trials using contemporary drug-eluting stents were limited. Recently, primary results of 2 new trials of EXCEL (Evaluation of XIENCE Everolimus Eluting Stent Versus Coronary Artery Bypass Surgery for Effectiveness of Left Main Revascularization) and NOBLE (Nordic-Baltic-British Left Main Revascularization Study) were reported. However, these trials showed conflicting results, which might pose uncertainty on the optimal revascularization strategy for LMCA disease. In this article, with the incorporation of a key review on evolution of LMCA treatment, we summarize the similarity or disparity of the EXCEL and NOBLE trials, focus on how they relate to previous trials in the field, and finally speculate on how the treatment strategy may be changed or recommended for LMCA treatment. © 2017 American Heart Association, Inc.

  12. Tsunami Risk Management in the Context of the Pacific Islands

    OpenAIRE

    Dale Dominey-Howes; James Goff

    2011-01-01

    Tsunamis can be devastating. The 2004 Indian Ocean and 2011 Tohoku disasters provide frightening examples of the power of tsunamis. The Pacific has long been recognized as a place where tsunamis occur - the 'Pacific Ring of Fire' (PRF) contains regions of volcanoes and large earthquakes associated with tectonic plate motions that are ideal breeding grounds for tsunamis. The Pacific Ocean c...

  13. The effective teacher: definition and main aspects in the educational research

    Directory of Open Access Journals (Sweden)

    Eleonora Concina

    2016-07-01

    Full Text Available For fostering a significant learning process, the teacher has a relevant role, as a co-protagonist with the student in the educational process. For this reason, many studies in the educational field have tried to examine the main characteristics of the effective teacher. They have searched for a more general dimension of efficacy, which can summarize effective teacher’s aspects that are common in different disciplines. With the knowledge of disciplinary contents, elements connected to teacher’s personal and professional dimensions have emerged. The aim of the present paper is to consider the main international research contributions on effective teacher and to suggest a summary model, which can offer a representation of the relationships between the different elements.L’insegnante efficace: definizione e caratteristiche nella ricerca educativaLa figura del docente assume un ruolo rilevante nella promozione di un apprendimento significativo, come co-protagonista, insieme con lo studente, del processo educativo. Per questo motivo numerosi studi in ambito educativo hanno cercato di esaminare le caratteristiche dell’insegnante efficace. Si è cercato di delineare una dimensione di efficacia più generale, che riassuma aspetti comuni degli insegnanti considerati efficaci in varie discipline. Accanto alla conoscenza dei contenuti disciplinari, sono emersi elementi legati alla dimensione personale e a quella professionale del docente. L’obiettivo del presente articolo è di considerare i principali contributi internazionali di ricerca relativi alla tematica dell’insegnante efficace e di proporre un modello, che possa fornire indicazioni sulle possibili relazioni tra i diversi elementi.

  14. Gastrointestinal effects of Nigella sativa and its main constituent, thymoquinone: a review

    Directory of Open Access Journals (Sweden)

    Farzaneh Shakeri

    2016-01-01

    Full Text Available Gastrointestinal (GI diseases affect a large number of people all over the world. Uncontrolled acid secretion and occurrence of gastric ulcers are common disorders of GI tract which pose serious problems to human health. Many synthetic drugs have been used to treat GI disorders but a definite cure has not been discovered so far and the available medications cause several side effects. Nigella sativa (N. sativa (Ranunculacea has several therapeutic effects which are attributed to its constituents like nigellicine, nigellidine, thymoquinone, dithymoquinone, thymol and carvacrol. Several beneficial pharmacological properties of this plant such as anti-oxidant, anti-bacterial, anti-histaminic, anti-hypertensive, hypoglycemic, anti-fungal, anti-inflammatory, anti-cancer and immunomodulatory effects were reported and different therapeutic properties such as reliving bronchial asthma, jaundice, hydrophobia, paralysis, conjunctivitis, piles, skin diseases, anorexia, headache, dysentery, infections, obesity, back pain, hypertension and gastrointestinal problems, have been described for the seeds of N. sativa and its oil. The present review provides a detailed summery of scientific researches regarding gastrointestinal effect of N. sativa and its main constituent, thymoquinone.

  15. The effects of breathing with mainly inspiration or expiration on pulmonary function and chest expansion.

    Science.gov (United States)

    Woo, Seong-Dae; Kim, Tae-Ho; Lim, Jin-Yong

    2016-03-01

    [Purpose] This study aimed to determine the effects of inspiration- and expiration-oriented breathing on pulmonary function and chest expansion. [Subjects and Methods] Twenty healthy male university students were divided randomly into inspiration-oriented and expiration-oriented breathing groups. Their pulmonary function and chest size during inspiration or expiration were evaluated and then re-evaluated after 15 minutes of breathing exercise five times a week for four weeks. [Results] The breathing with mainly inspiration group (BMIG) showed significant differences in chest size during inspiration (CSI), chest expansion values (CEVs), forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and peak expiratory flow (PEF) after four weeks. The breathing with mainly expiration group (BMEG) showed significant differences in all measured variables except CSI. Comparison of the groups after exercise showed that the BMEG demonstrated differences from the BMIG in chest size during expiration (CSE), CEV, and PEF. Comparison of the changes in variables after exercise showed that the BMEG demonstrated significantly different changes in CSE, CEV, FEV1/FVC, and PEF. The BMIG showed a significantly different change in FVC. [Conclusion] Although both groups demonstrated improvements in pulmonary function and chest expansion, inter-group differences were observed. Therefore, inspiration- or expiration-oriented breathing may be recommended differently according to the desired outcome.

  16. Effect of Catnip Charcoal on the In Vivo Pharmacokinetics of the Main Alkaloids of Rhizoma Coptidis

    Directory of Open Access Journals (Sweden)

    Yanfei He

    2016-01-01

    Full Text Available This study aims to explore the effect of catnip Nepeta cataria (CNC charcoal on the pharmacokinetics of the main alkaloids of Rhizoma Coptidis in vivo. Twenty-four rabbits were randomly divided into four groups and given oral administration of an aqueous extract of Rhizoma Coptidis (RCAE, RCAE plus CNC, RCAE plus activated carbon (AC, or distilled water, respectively. Plasma samples were collected after administration. The concentrations of berberine, coptisine, palmatine, and epiberberine in plasma were measured by high-performance liquid chromatography (HPLC. The pharmacokinetics data were calculated using pharmacokinetic DAS 2.0 software. The results showed that the area under the concentration-time curve (AUC of berberine increased, while the AUC of coptisine, palmatine, and epiberberine decreased in the rabbits that received RCAE plus CNC. Meanwhile, the AUC of berberine, coptisine, palmatine, and epiberberine decreased in the group given RCAE plus AC. The difference of main pharmacokinetics parameters among the four groups was significant (P<0.05. This study showed that CNC improved the bioavailability of berberine in comparison to AC and prolonged its release in comparison to RCAE alone. However, it decreased the bioavailability of coptisine, palmatine, and epiberberine. In comparison, AC uniformly declined the bioavailability of berberine, coptisine, palmatine, and epiberberine.

  17. Effect of Catnip Charcoal on the In Vivo Pharmacokinetics of the Main Alkaloids of Rhizoma Coptidis.

    Science.gov (United States)

    He, Yanfei; Chen, Siyu; Yu, Hai; Zhu, Long; Liu, Yayun; Han, Chunyang; Liu, Cuiyan

    2016-01-01

    This study aims to explore the effect of catnip Nepeta cataria (CNC) charcoal on the pharmacokinetics of the main alkaloids of Rhizoma Coptidis in vivo. Twenty-four rabbits were randomly divided into four groups and given oral administration of an aqueous extract of Rhizoma Coptidis (RCAE), RCAE plus CNC, RCAE plus activated carbon (AC), or distilled water, respectively. Plasma samples were collected after administration. The concentrations of berberine, coptisine, palmatine, and epiberberine in plasma were measured by high-performance liquid chromatography (HPLC). The pharmacokinetics data were calculated using pharmacokinetic DAS 2.0 software. The results showed that the area under the concentration-time curve (AUC) of berberine increased, while the AUC of coptisine, palmatine, and epiberberine decreased in the rabbits that received RCAE plus CNC. Meanwhile, the AUC of berberine, coptisine, palmatine, and epiberberine decreased in the group given RCAE plus AC. The difference of main pharmacokinetics parameters among the four groups was significant (P < 0.05). This study showed that CNC improved the bioavailability of berberine in comparison to AC and prolonged its release in comparison to RCAE alone. However, it decreased the bioavailability of coptisine, palmatine, and epiberberine. In comparison, AC uniformly declined the bioavailability of berberine, coptisine, palmatine, and epiberberine.

  18. GWAS analysis of suicide attempt in schizophrenia: Main genetic effect and interaction with early life trauma.

    Science.gov (United States)

    Bani-Fatemi, Ali; Graff, Ariel; Zai, Clement; Strauss, John; De Luca, Vincenzo

    2016-05-27

    Suicide attempt in schizophrenia is an important clinical issue. We performed a genome-wide association study to identify genetic markers, which increase the risk for suicide attempt in schizophrenia. Suicide attempt lifetime was assessed in 121 schizophrenia patients and defined by the means of the Columbia Suicide Severity Rating Scale and the Beck Scale for Suicidal Ideation. Genotype distribution of 1,205,383 single nucleotide polymorphisms (SNPs) in patients with suicide attempt lifetime (n=53) was compared to that in patients without any suicide attempt lifetime (n=68). The same SNPs were analyzed in interaction with childhood trauma. None of the variants reached genome-wide significance after multiple test correction. However, the most nominally significant SNP in the in the main genetic model was rs12895203 (p=0.00001) and the top SNP interacting with Childhood Trauma Questionnaire was the marker rs7897059 (p=0.00005). The odds-ratio of the top SNP in the main-genetic effect model was 3.91 and in the gene-early trauma interaction model was 1.13. Although our data need to be interpreted carefully owing to the small numbers in this cohort and because the results reached just the nominal significance, they suggest that a combination of genetic markers and early life stress might indeed be used to identify patients at risk for suicide attempt. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Effects of Chlorophenoxy Herbicides and Their Main Transformation Products on DNA Damage and Acetylcholinesterase Activity

    Science.gov (United States)

    Benfeito, Sofia; Silva, Tiago; Garrido, Jorge; Andrade, Paula B.; Sottomayor, M. J.; Borges, Fernanda; Garrido, E. Manuela

    2014-01-01

    Persistent pesticide transformation products (TPs) are increasingly being detected among different environmental compartments, including groundwater and surface water. However, there is no sufficient experimental data on their toxicological potential to assess the risk associated with TPs, even if their occurrence is known. In this study, the interaction of chlorophenoxy herbicides (MCPA, mecoprop, 2,4-D and dichlorprop) and their main transformation products with calf thymus DNA by UV-visible absorption spectroscopy has been assessed. Additionally, the toxicity of the chlorophenoxy herbicides and TPs was also assessed evaluating the inhibition of acetylcholinesterase activity. On the basis of the results found, it seems that AChE is not the main target of chlorophenoxy herbicides and their TPs. However, the results found showed that the transformation products displayed a higher inhibitory activity when compared with the parent herbicides. The results obtained in the DNA interaction studies showed, in general, a slight effect on the stability of the double helix. However, the data found for 4-chloro-2-methyl-6-nitrophenol suggest that this transformation product can interact with DNA through a noncovalent mode. PMID:24795892

  20. On the importance of risk knowledge for an end-to-end tsunami early warning system

    Science.gov (United States)

    Post, Joachim; Strunz, Günter; Riedlinger, Torsten; Mück, Matthias; Wegscheider, Stephanie; Zosseder, Kai; Steinmetz, Tilmann; Gebert, Niklas; Anwar, Herryal

    2010-05-01

    Warning systems commonly use information provided by networks of sensors able to monitor and detect impending disasters, aggregate and condense these information to provide reliable information to a decision maker whether to warn or not, disseminates the warning message and provide this information to people at risk. Ultimate aim is to enable those in danger to make decisions (e.g. initiate protective actions for buildings) and to take action to safe their lives. This involves very complex issues when considering all four elements of early warning systems (UNISDR-PPEW), namely (1) risk knowledge, (2) monitoring and warning service, (3) dissemination and communication, (4) response capability with the ultimate aim to gain as much time as possible to empower individuals and communities to act in an appropriate manner to reduce injury, loss of life, damage to property and the environment and loss of livelihoods. Commonly most warning systems feature strengths and main attention on the technical/structural dimension (monitoring & warning service, dissemination tools) with weaknesses and less attention on social/cultural dimension (e.g. human response capabilities, defined warning chain to and knowing what to do by the people). Also, the use of risk knowledge in early warning most often is treated in a theoretical manner (knowing that it is somehow important), yet less in an operational, practical sense. Risk assessments and risk maps help to motivate people, prioritise early warning system needs and guide preparations for response and disaster prevention activities. Beyond this risk knowledge can be seen as a tie between national level early warning and community level reaction schemes. This presentation focuses on results, key findings and lessons-learnt related to tsunami risk assessment in the context of early warning within the GITEWS (German-Indonesian Tsunami Early Warning) project. Here a novel methodology reflecting risk information needs in the early warning

  1. EXPERIMENTAL AND COMPUTATIONAL ACTIVITIES AT THE OREGON STATE UNIVERSITY NEES TSUNAMI RESEARCH FACILITY

    Directory of Open Access Journals (Sweden)

    S.C. Yim

    2009-01-01

    Full Text Available A diverse series of research projects have taken place or are underway at the NEES Tsunami Research Facility at Oregon State University. Projects range from the simulation of the processes and effects of tsunamis generated by sub-aerial and submarine landslides (NEESR, Georgia Tech., model comparisons of tsunami wave effects on bottom profiles and scouring (NEESR, Princeton University, model comparisons of wave induced motions on rigid and free bodies (Shared-Use, Cornell, numerical model simulations and testing of breaking waves and inundation over topography (NEESR, TAMU, structural testing and development of standards for tsunami engineering and design (NEESR, University of Hawaii, and wave loads on coastal bridge structures (non-NEES, to upgrading the two-dimensional wave generator of the Large Wave Flume. A NEESR payload project (Colorado State University was undertaken that seeks to improve the understanding of the stresses from wave loading and run-up on residential structures. Advanced computational tools for coupling fluid-structure interaction including turbulence, contact and impact are being developed to assist with the design of experiments and complement parametric studies. These projects will contribute towards understanding the physical processes that occur during earthquake generated tsunamis including structural stress, debris flow and scour, inundation and overland flow, and landslide generated tsunamis. Analytical and numerical model development and comparisons with the experimental results give engineers additional predictive tools to assist in the development of robust structures as well as identification of hazard zones and formulation of hazard plans.

  2. TSUNAMIS AND TSUNAMI-LIKE WAVES OF THE EASTERN UNITED STATES

    Directory of Open Access Journals (Sweden)

    James F. Lander

    2002-01-01

    Full Text Available The threat of tsunamis and tsunami-like waves hitting the eastern United States is very real despite a general impression to the contrary. We have cataloged 40 tsunamis and tsunami-like waves that have occurred in the eastern United States since 1600. Tsunamis were generated from such events as the 1755 Queen Anne’s earthquake, the Grand Banks event of 1929, the Charleston earthquake of 1886, and the New Madrid earthquakes of 1811-1812. The Queen Anne tsunami was observed as far away as St. Martin in the West Indies and is the only known teletsunami generated in this source region.Since subduction zones are absent around most of the Atlantic basin, tsunamis and tsunami-like waves along the United States East Coast are not generated from this traditional source, but appear, in most cases to be the result of slumping or landsliding associated with local earthquakes or with wave action associated with strong storms. Other sources of tsunamis and tsunami-like waves along the eastern seaboard have recently come to light including volcanic debris falls or catastrophic failure of volcanic slopes; explosive decompression of underwater methane deposits or oceanic meteor splashdowns. These sources are considered as well.

  3. Effect of Generalized Uncertainty Principle on Main-Sequence Stars and White Dwarfs

    Directory of Open Access Journals (Sweden)

    Mohamed Moussa

    2015-01-01

    Full Text Available This paper addresses the effect of generalized uncertainty principle, emerged from different approaches of quantum gravity within Planck scale, on thermodynamic properties of photon, nonrelativistic ideal gases, and degenerate fermions. A modification in pressure, particle number, and energy density are calculated. Astrophysical objects such as main-sequence stars and white dwarfs are examined and discussed as an application. A modification in Lane-Emden equation due to a change in a polytropic relation caused by the presence of quantum gravity is investigated. The applicable range of quantum gravity parameters is estimated. The bounds in the perturbed parameters are relatively large but they may be considered reasonable values in the astrophysical regime.

  4. Effects of main actor, outcome and affect on biased braking speed judgments

    Directory of Open Access Journals (Sweden)

    Ola Svenson

    2012-05-01

    Full Text Available Subjects who judged speed in a driving scenario overestimated how fast they could decelerate when speeding compared to when keeping within the speed limit (Svenson, 2009. The purpose of the present studies were to replicate studies conducted in Europe with subjects in the U.S., to study the influence of speed unit (kph vs. mph, affective reactions to outcome (collision and identity of main actor (driver on braking speed judgments. The results replicated the European findings and the outcome affective factor (passing a line/killing a child and the actor factor (subject/driver in general had significant effects on judgments of braking speed. The results were related to psychological theory and applied implications were discussed.

  5. Ocean-bottom pressure changes above a fault area for tsunami excitation and propagation observed by a submarine dense network

    Science.gov (United States)

    Yomogida, K.; Saito, T.

    2017-12-01

    Conventional tsunami excitation and propagation have been formulated by incompressible fluid with velocity components. This approach is valid in most cases because we usually analyze tunamis as "long gravity waves" excited by submarine earthquakes. Newly developed ocean-bottom tsunami networks such as S-net and DONET have dramatically changed the above situation for the following two reasons: (1) tsunami propagations are now directly observed in a 2-D array manner without being suffered by complex "site effects" of sea shore, and (2) initial tsunami features can be directly detected just above a fault area. Removing the incompressibility assumption of sea water, we have formulated a new representation of tsunami excitation based on not velocity but displacement components. As a result, not only dynamics but static term (i.e., the component of zero frequency) can be naturally introduced, which is important for the pressure observed on the ocean floor, which ocean-bottom tsunami stations are going to record. The acceleration on the ocean floor should be combined with the conventional tsunami height (that is, the deformation of the sea level above a given station) in the measurement of ocean-bottom pressure although the acceleration exists only during fault motions in time. The M7.2 Off Fukushima earthquake on 22 November 2016 was the first event that excited large tsunamis within the territory of S-net stations. The propagation of tsunamis is found to be highly non-uniform, because of the strong velocity (i.e., sea depth) gradient perpendicular to the axis of Japan Trench. The earthquake was located in a shallow sea close to the coast, so that all the tsunami energy is reflected by the trench region of high velocity. Tsunami records (pressure gauges) within its fault area recorded clear slow motions of tsunamis (i.e., sea level changes) but also large high-frequency signals, as predicted by our theoretical result. That is, it may be difficult to extract tsunami

  6. Issues regarding Risk Effect Analysis of Digitalized Safety Systems and Main Risk Contributors

    International Nuclear Information System (INIS)

    Kang, Hyun Gook; Jang, Seung-Cheol

    2008-01-01

    Risk factors of safety-critical digital systems affect overall plant risk. In order to assess this risk effect, a risk model of a digitalized safety system is required. This article aims to provide an overview of the issues when developing a risk model and demonstrate their effect on plant risk quantitatively. Research activities in Korea for addressing these various issues, such as the software failure probability and the fault coverage of self monitoring mechanism are also described. The main risk contributors related to the digitalized safety system were determined in a quantitative manner. Reactor protection system and engineered safety feature component control system designed as part of the Korean Nuclear I and C System project are used as example systems. Fault-tree models were developed to assess the failure probability of a system function which is designed to generate an automated signal for actuating both of the reactor trip and the complicated accident-mitigation actions. The developed fault trees were combined with a plant risk model to evaluate the effect of a digitalized system's failure on the plant risk. (authors)

  7. A review of Neuropharmacology Effects of Nigella sativa and Its Main Component, Thymoquinone.

    Science.gov (United States)

    Javidi, Soheila; Razavi, Bibi Marjan; Hosseinzadeh, Hossein

    2016-08-01

    Neuropharmacology is the scientific study of drug effect on nervous system. In the last few years, different natural plants and their active constituents have been used in neurological therapy. The availability, lower price, and less toxic effects of herbal medicines compared with synthetic agents make them as simple and excellent choice in the treatment of nervous diseases. Nigella sativa, which belongs to the botanical family of Ranunculaceae, is a widely used medicinal plant all over the world. In traditional and modern medicines several beneficial properties have been attributed to N. sativa and its main component, thymoquinone (TQ). In this review, various studies in scientific databases regarding the neuropharmacological aspects of N. sativa and TQ have been introduced. Results of these studies showed that N. sativa and TQ have several properties including anticonvulsant, antidepressant, anxiolytic, anti-ischemic, analgesic, antipsychotic, and memory enhancer. Furthermore, its protective effects against neurodegenerative diseases such as Alzheimer, Parkinson and multiple sclerosis have been discussed. Although there are many studies indicating the beneficial actions of this plant in nervous system, the number of research projects relating to the human reports is rare. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Effectiveness of experimental system in children’s mastering of main manual motor skills

    Directory of Open Access Journals (Sweden)

    L. L. Galamandjuk

    2015-07-01

    Full Text Available Purpose: determine effectiveness of simulated system of pre-school age children motor functioning’s preventive development for mastering of main movements for manual skills. Material: in the research five years’ children (control group n=150 and experimental group n=120 participated. Results: it was determined that transition from uncomfortable to comfortable for a child conditions of exercises’ fulfillment facilitates quicker formation of required motor program. It is connected with the fact that, independent on orientation of manual motor asymmetry progressing of semi-spheres’ interaction takes place. This interaction is an important condition of increasing of child functioning’s effectiveness in different aspects. Achievement of such result was also facilitated by physical exercises, which children practiced at home. Functioning of physical culture instructor and kindergarten teachers was also important: they formed parents’ conscious position concerning importance of such trainings; recommended effective means and methods. Conclusions: application of the offered system ensures much better result than traditional approach to this problem. It is one of keys to prevention of negative tendencies in development of pre-school age children.

  9. Preliminary Report Summarizes Tsunami Impacts and Lessons Learned from the September 7, 2017, M8.1 Tehuantepec Earthquake

    Science.gov (United States)

    Wilson, R. I.; Ramirez-Herrera, M. T.; Dengler, L. A.; Miller, K.; LaDuke, Y.

    2017-12-01

    The preliminary tsunami impacts from the September 7, 2017, M8.1 Tehuantepec Earthquake have been summarized in the following report: https://www.eeri.org/wp-content/uploads/EERI-Recon-Rpt-090717-Mexico-tsunami_fn.pdf. Although the tsunami impacts were not as significant as those from the earthquake itself (98 fatalities and 41,000 homes damaged), the following are highlights and lessons learned: The Tehuantepec earthquake was one of the largest down-slab normal faulting events ever recorded. This situation complicated the tsunami forecast since forecast methods and pre-event modeling are primarily associated with megathrust earthquakes where the most significant tsunamis are generated. Adding non-megathrust source modeling to the tsunami forecast databases of conventional warning systems should be considered. Offshore seismic and tsunami hazard analyses using past events should incorporate the potential for large earthquakes occurring along sources other than the megathrust boundary. From an engineering perspective, initial reports indicate there was only minor tsunami damage along the Mexico coast. There was damage to Marina Chiapas where floating docks overtopped their piles. Increasing pile heights could reduce the potential for damage to floating docks. Tsunami warning notifications did not get to the public in time to assist with evacuation. Streamlining the messaging in Mexico from the warning system directly to the public should be considered. And, for local events, preparedness efforts should place emphasis on responding to feeling the earthquake and not waiting to be notified. Although the U.S. tsunami warning centers were timely with their international and domestic messaging, there were some issues with how those messages were presented and interpreted. The use of a "Tsunami Threat" banner on the new main warning center website created confusion with emergency managers in the U.S. where no tsunami threat was expected to exist. Also, some U.S. states and

  10. Vulnerability of the Built Environment to Tsunamis - an Overview of Where We Are in 2012

    Science.gov (United States)

    Petroff, C. M.

    2012-12-01

    The last twenty years have seen great strides in the understanding and prediction of tsunami behavior. Though study of these disasters has always been motivated by the need to reduce casualties and damage, early work focused primarily on predicting magnitude, propagation and inundation from tsunami waves. Investigations have expanded to include a burgeoning field concentrated on the landward effects of tsunamis on communities: examining building and infrastructure vulnerability, assessing the probabilities of varying levels of damage and applying these findings to planning of land-use, development, evacuation and response. Catastrophic events of the last decade in the Indian Ocean and Japan have brought these issues to the fore and raise the question: Where are we in our understanding of vulnerability to tsunamis? What have we learned? What are the lessons that the most recent events teach us? This overview summarizes recent investigations of the vulnerability of engineered structures to damage from tsunamis - from individual buildings of various uses to larger facilities and structural systems. Examples are provided of both successes and failures in design for tsunami resistance. Vulnerability of critical infrastructure and lifelines is discussed in the context of tsunamis in Sumatra, Chile and Japan. This includes the ability of critical systems to function during and immediately after a disaster as well as the short and long term resilience of utilities, services and coastal facilities after tsunamis. Recent work on probabilistic prediction of damage and development of fragility functions is summarized for the Chile 2010 and Japan 2011 tsunamis. Finally, a commentary is presented on building vulnerability issues as they relate to land use planning, building design and codes and vertical evacuation planning.; Three views of the Oya Train Station in Miyagi Prefecture: Prior to (top), two months after (middle), and one year after (bottom) the March 11, 2011 Tohoku

  11. Real-time Inversion of Tsunami Source from GNSS Ground Deformation Observations and Tide Gauges.

    Science.gov (United States)

    Arcas, D.; Wei, Y.

    2017-12-01

    Over the last decade, the NOAA Center for Tsunami Research (NCTR) has developed an inversion technique to constrain tsunami sources based on the use of Green's functions in combination with data reported by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART®) systems. The system has consistently proven effective in providing highly accurate tsunami forecasts of wave amplitude throughout an entire basin. However, improvement is necessary in two critical areas: reduction of data latency for near-field tsunami predictions and reduction of maintenance cost of the network. Two types of sensors have been proposed as supplementary to the existing network of DART®systems: Global Navigation Satellite System (GNSS) stations and coastal tide gauges. The use GNSS stations to provide autonomous geo-spatial positioning at specific sites during an earthquake has been proposed in recent years to supplement the DART® array in tsunami source inversion. GNSS technology has the potential to provide substantial contributions in the two critical areas of DART® technology where improvement is most necessary. The present study uses GNSS ground displacement observations of the 2011 Tohoku-Oki earthquake in combination with NCTR operational database of Green's functions, to produce a rapid estimate of tsunami source based on GNSS observations alone. The solution is then compared with that obtained via DART® data inversion and the difficulties in obtaining an accurate GNSS-based solution are underlined. The study also identifies the set of conditions required for source inversion from coastal tide-gauges using the degree of nonlinearity of the signal as a primary criteria. We then proceed to identify the conditions and scenarios under which a particular gage could be used to invert a tsunami source.

  12. USING FOURIER TRANSFORM INFRARED (FTIR TO CHARACTERIZE TSUNAMI DEPOSITS IN NEAR-SHORE AND COASTAL WATERS OF THAILAND

    Directory of Open Access Journals (Sweden)

    S. Pongpiachan

    2013-01-01

    Full Text Available Understanding the tsunami cycle requires a simple method for identification of tsunami backwash deposits. This study investigates Fourier transform infrared (FTIR spectroscopy followed by careful analysis of variance (ANOVA, Gaussian distribution, hierarchical cluster analysis (HCA and principal component analysis (PCA for the discrimination of typical marine sediments and tsunami backwash deposits. In order to test the suitability of FTIR spectra as innovative methods for classifications of tsunami deposits, typical marine sediments and terrestrial soils were classified into three zones, namely zone-1 (i.e. typical marine sediments, zone-2 (i.e. including tsunami backwash deposits and zone-3 (i.e. coastal terrestrial soils. HCA was performed to group the spectra according to their spectral similarity in a dendrogram and successfully separate FTIR spectra of all three sampling zones into two main clusters with five sub-clusters. The simplicifolious (i.e. single-leafed type of dendrogram was observed with the strong dissimilarity of terrestrial components in subcluster- 5. Graphical displays of PC1 vs PC2 highlight the prominent features of zone-1, which is explicitly different from those of zone-2 and zone-3. The acceptable discrimination of typical marine sediments and tsunami backwash deposits, even six years after the tsunami on Boxing Day 2004, dramatically demonstrates the potential of the method for the identification of paleotsunami.

  13. High resolution tsunami inversion for 2010 Chile earthquake

    Directory of Open Access Journals (Sweden)

    T.-R. Wu

    2011-12-01

    Full Text Available We investigate the feasibility of inverting high-resolution vertical seafloor displacement from tsunami waveforms. An inversion method named "SUTIM" (small unit tsunami inversion method is developed to meet this goal. In addition to utilizing the conventional least-square inversion, this paper also enhances the inversion resolution by Grid-Shifting method. A smooth constraint is adopted to gain stability. After a series of validation and performance tests, SUTIM is used to study the 2010 Chile earthquake. Based upon data quality and azimuthal distribution, we select tsunami waveforms from 6 GLOSS stations and 1 DART buoy record. In total, 157 sub-faults are utilized for the high-resolution inversion. The resolution reaches 10 sub-faults per wavelength. The result is compared with the distribution of the aftershocks and waveforms at each gauge location with very good agreement. The inversion result shows that the source profile features a non-uniform distribution of the seafloor displacement. The highly elevated vertical seafloor is mainly concentrated in two areas: one is located in the northern part of the epicentre, between 34° S and 36° S; the other is in the southern part, between 37° S and 38° S.

  14. Correlation Equation of Fault Size, Moment Magnitude, and Height of Tsunami Case Study: Historical Tsunami Database in Sulawesi

    Science.gov (United States)

    Julius, Musa, Admiral; Pribadi, Sugeng; Muzli, Muzli

    2018-03-01

    Sulawesi, one of the biggest island in Indonesia, located on the convergence of two macro plate that is Eurasia and Pacific. NOAA and Novosibirsk Tsunami Laboratory show more than 20 tsunami data recorded in Sulawesi since 1820. Based on this data, determination of correlation between tsunami and earthquake parameter need to be done to proved all event in the past. Complete data of magnitudes, fault sizes and tsunami heights on this study sourced from NOAA and Novosibirsk Tsunami database, completed with Pacific Tsunami Warning Center (PTWC) catalog. This study aims to find correlation between moment magnitude, fault size and tsunami height by simple regression. The step of this research are data collecting, processing, and regression analysis. Result shows moment magnitude, fault size and tsunami heights strongly correlated. This analysis is enough to proved the accuracy of historical tsunami database in Sulawesi on NOAA, Novosibirsk Tsunami Laboratory and PTWC.

  15. Tsunami Simulations in the Western Makran Using Hypothetical Heterogeneous Source Models from World's Great Earthquakes

    Science.gov (United States)

    Rashidi, Amin; Shomali, Zaher Hossein; Keshavarz Farajkhah, Nasser

    2018-03-01

    The western segment of Makran subduction zone is characterized with almost no major seismicity and no large earthquake for several centuries. A possible episode for this behavior is that this segment is currently locked accumulating energy to generate possible great future earthquakes. Taking into account this assumption, a hypothetical rupture area is considered in the western Makran to set different tsunamigenic scenarios. Slip distribution models of four recent tsunamigenic earthquakes, i.e. 2015 Chile M w 8.3, 2011 Tohoku-Oki M w 9.0 (using two different scenarios) and 2006 Kuril Islands M w 8.3, are scaled into the rupture area in the western Makran zone. The numerical modeling is performed to evaluate near-field and far-field tsunami hazards. Heterogeneity in slip distribution results in higher tsunami amplitudes. However, its effect reduces from local tsunamis to regional and distant tsunamis. Among all considered scenarios for the western Makran, only a similar tsunamigenic earthquake to the 2011 Tohoku-Oki event can re-produce a significant far-field tsunami and is considered as the worst case scenario. The potential of a tsunamigenic source is dominated by the degree of slip heterogeneity and the location of greatest slip on the rupture area. For the scenarios with similar slip patterns, the mean slip controls their relative power. Our conclusions also indicate that along the entire Makran coasts, the southeastern coast of Iran is the most vulnerable area subjected to tsunami hazard.

  16. Design of a Sea-level Tsunami Detection Network for the Gulf of Cadiz

    Directory of Open Access Journals (Sweden)

    R. Omira

    2009-07-01

    Full Text Available The devastating impact of the Sumatra tsunami of 26 December 2004, raised the question for scientists of how to forecast a tsunami threat. In 2005, the IOC-UNESCO XXIII assembly decided to implement a global tsunami warning system to cover the regions that were not yet protected, namely the Indian Ocean, the Caribbean and the North East Atlantic, the Mediterranean and connected seas (the NEAM region. Within NEAM, the Gulf of Cadiz is the more sensitive area, with an important record of devastating historical events. The objective of this paper is to present a preliminary design for a reliable tsunami detection network for the Gulf of Cadiz, based on a network of sea-level observatories. The tsunamigenic potential of this region has been revised in order to define the active tectonic structures. Tsunami hydrodynamic modeling and GIS technology have been used to identify the appropriate locations for the minimum number of sea-level stations. Results show that 3 tsunameters are required as the minimum number of stations necessary to assure an acceptable protection to the large coastal population in the Gulf of Cadiz. In addition, 29 tide gauge stations could be necessary to fully assess the effects of a tsunami along the affected coasts of Portugal, Spain and Morocco.

  17. 2004 Indian Ocean Tsunami on the Madras Nuclear Power Plant, India

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Sobeom [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Hong, Sungjin [SKK University, Suwon (Korea, Republic of); Imamura, Fumihiko [Tohoku Univ., Sendai (Japan)

    2006-07-01

    In On December 26 00:58(UTC), 06:28 (Local time, India), a great earthquake occurred off the coast of north Sumatra, Indonesia. The magnitude of this earthquake was 9.0 and it was the fourth largest earthquake in the world since 1900. The tsunami, 2004 Indian Ocean tsunami, accompanied with this earthquake propagated in the entire Indian Ocean, and caused significant damage. The tsunami attacked not only the coast of Indonesia and Thailand, close to the source of earthquake, but also the coast of India, Sri Lanka, and the Maldives and even the east coast of Africa, thousands of kilo meters away from the epicenter. In India, Tamil Nadu State is the most damaged area by this tsunami. Unfortunately, there are many nuclear facilities in Kalpakkam City, Tamil Nadu State. In the present study, the tsunami effects on the Madras nuclear power plant (MAPS), one of the nuclear facilities located in Kalpakkam City, are reviewed, and preliminary numerical simulation results of 2004 Indian Ocean tsunami are discussed.

  18. Risk factors and perceived restoration in a town destroyed by the 2010 Chile tsunami

    Science.gov (United States)

    Martínez, Carolina; Rojas, Octavio; Villagra, Paula; Aránguiz, Rafael; Sáez-Carrillo, Katia

    2017-05-01

    A large earthquake and tsunami took place in February 2010, affecting a significant part of the Chilean coast (Maule earthquake, Mw of 8.8). Dichato (37° S), a small town located on Coliumo Bay, was one of the most devastated coastal areas and is currently under reconstruction. Therefore, the objective of this research is to analyze the risk factors that explain the disaster in 2010, as well as perceived restoration 6 years after the event. Numerical modeling of the 2010 Chile tsunami with four nested grids was applied to estimate the hazard. Physical, socioeconomic and educational dimensions of vulnerability were analyzed for pre- and post-disaster conditions. A perceived restoration study was performed to assess the effects of reconstruction on the community. It was focused on exploring the capacity of newly reconstructed neighborhoods to provide restorative experiences in case of disaster. The study was undertaken using the perceived restorativeness scale. The vulnerability variables that best explained the extent of the disaster were housing conditions, low household incomes and limited knowledge about tsunami events, which conditioned inadequate reactions to the emergency. These variables still constitute the same risks as a result of the reconstruction process, establishing that the occurrence of a similar event would result in a similar degree of devastation. For post-earthquake conditions, it was determined that all neighborhoods have the potential to be restorative environments soon after a tsunami. However, some neighborhoods are still located in areas devastated by the 2010 tsunami and again present high vulnerability to future tsunamis.

  19. Cost Effectiveness of ASHRAE Standard 90.1-2013 for the State of Maine

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Halverson, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richman, Eric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Moving to the ASHRAE Standard 90.1-2013 (ASHRAE 2013) edition from Standard 90.1-2010 (ASHRAE 2010) is cost-effective for the State of Maine. The table below shows the state-wide economic impact of upgrading to Standard 90.1-2013 in terms of the annual energy cost savings in dollars per square foot, additional construction cost per square foot required by the upgrade, and life-cycle cost (LCC) per square foot. These results are weighted averages for all building types in all climate zones in the state, based on weightings shown in Table 4. The methodology used for this analysis is consistent with the methodology used in the national cost-effectiveness analysis. Additional results and details on the methodology are presented in the following sections. The report provides analysis of two LCC scenarios: Scenario 1, representing publicly-owned buildings, considers initial costs, energy costs, maintenance costs, and replacement costs—without borrowing or taxes. Scenario 2, representing privately-owned buildings, adds borrowing costs and tax impacts.

  20. Overview of the Main Theories on the Economic Effects of Public Indebtedness

    Directory of Open Access Journals (Sweden)

    Irina Bilan

    2016-05-01

    Full Text Available The paper briefly reviews the main theories formulated over time on the economic effects of public indebtedness, with the aim to highlight their common and divergent points, the arguments they rely upon, as well as their relevance, given the current economic environment. Three major views are considered, namely the classical one, the Keynesian one and the view of neoliberal economists (monetarist economists and representatives of the school of rational expectations. The comparative approach of the different views allowed us to shape some criteria of decision which may prove useful for public policymakers in formulating public debt policies conducive to economic growth: public indebtedness should not become common practice but be reserved for those situations in which the economy is confronted with unusual phenomena, such as economic downturns; borrowed resources should be used especially on those destinations which create added value in the economy, such as public investment; public debt should not accumulate at a fast pace and should be kept within reasonable limits, to avoid possible side effects on economic growth.

  1. Ionospheric detection of tsunami earthquakes: observation, modeling and ideas for future early warning

    Science.gov (United States)

    Occhipinti, G.; Manta, F.; Rolland, L.; Watada, S.; Makela, J. J.; Hill, E.; Astafieva, E.; Lognonne, P. H.

    2017-12-01

    Detection of ionospheric anomalies following the Sumatra and Tohoku earthquakes (e.g., Occhipinti 2015) demonstrated that ionosphere is sensitive to earthquake and tsunami propagation: ground and oceanic vertical displacement induces acoustic-gravity waves propagating within the neutral atmosphere and detectable in the ionosphere. Observations supported by modelling proved that ionospheric anomalies related to tsunamis are deterministic and reproducible by numerical modeling via the ocean/neutral-atmosphere/ionosphere coupling mechanism (Occhipinti et al., 2008). To prove that the tsunami signature in the ionosphere is routinely detected we show here perturbations of total electron content (TEC) measured by GPS and following tsunamigenic earthquakes from 2004 to 2011 (Rolland et al. 2010, Occhipinti et al., 2013), nominally, Sumatra (26 December, 2004 and 12 September, 2007), Chile (14 November, 2007), Samoa (29 September, 2009) and the recent Tohoku-Oki (11 Mars, 2011). Based on the observations close to the epicenter, mainly performed by GPS networks located in Sumatra, Chile and Japan, we highlight the TEC perturbation observed within the first 8 min after the seismic rupture. This perturbation contains information about the ground displacement, as well as the consequent sea surface displacement resulting in the tsunami. In addition to GNSS-TEC observations close to the epicenter, new exciting measurements in the far-field were performed by airglow measurement in Hawaii show the propagation of the internal gravity waves induced by the Tohoku tsunami (Occhipinti et al., 2011). This revolutionary imaging technique is today supported by two new observations of moderate tsunamis: Queen Charlotte (M: 7.7, 27 October, 2013) and Chile (M: 8.2, 16 September 2015). We finally detail here our recent work (Manta et al., 2017) on the case of tsunami alert failure following the Mw7.8 Mentawai event (25 October, 2010), and its twin tsunami alert response following the Mw7

  2. Plasmon tsunamis on metallic nanoclusters.

    Science.gov (United States)

    Lucas, A A; Sunjic, M

    2012-03-14

    A model is constructed to describe inelastic scattering events accompanying electron capture by a highly charged ion flying by a metallic nanosphere. The electronic energy liberated by an electron leaving the Fermi level of the metal and dropping into a deep Rydberg state of the ion is used to increase the ion kinetic energy and, simultaneously, to excite multiple surface plasmons around the positively charged hole left behind on the metal sphere. This tsunami-like phenomenon manifests itself as periodic oscillations in the kinetic energy gain spectrum of the ion. The theory developed here extends our previous treatment (Lucas et al 2011 New J. Phys. 13 013034) of the Ar(q+)/C(60) charge exchange system. We provide an analysis of how the individual multipolar surface plasmons of the metallic sphere contribute to the formation of the oscillatory gain spectrum. Gain spectra showing characteristic, tsunami-like oscillations are simulated for Ar(15+) ions capturing one electron in distant collisions with Al and Na nanoclusters.

  3. Earthquake related tsunami hazard along the western coast of Thailand

    Directory of Open Access Journals (Sweden)

    F. Løvholt

    2006-01-01

    Full Text Available The primary background for the present study was a project to assist the authorities in Thailand with development of plans for how to deal with the future tsunami risk in both short and long term perspectives, in the wake of the devastating 26 December 2004 Sumatra-Andaman earthquake and tsunami. The study is focussed on defining and analyzing a number of possible future earthquake scenarios (magnitudes 8.5, 8.0 and 7.5 with associated return periods, each one accompanied by specific tsunami modelling. Along the most affected part of the western coast of Thailand, the 2004 tsunami wave caused a maximum water level ranging from 5 to 15 m above mean sea level. These levels and their spatial distributions have been confirmed by detailed numerical simulations. The applied earthquake source is developed based on available seismological and geodetic inversions, and the simulation using the source as initial condition agree well with sea level records and run-up observations. A conclusion from the study is that another megathrust earthquake generating a tsunami affecting the coastline of western Thailand is not likely to occur again for several hundred years. This is in part based on the assumption that the Southern Andaman Microplate Boundary near the Simeulue Islands constitutes a geologic barrier that will prohibit significant rupture across it, and in part on the decreasing subduction rates north of the Banda Ache region. It is also concluded that the largest credible earthquake to be prepared for along the part of the Sunda-Andaman arc that could affect Thailand, is within the next 50–100 years an earthquake of magnitude 8.5, which is expected to occur with more spatial and temporal irregularity than the megathrust events. Numerical simulations have shown such earthquakes to cause tsunamis with maximum water levels up to 1.5–2.0 m along the western coast of Thailand, possibly 2.5–3.0 m on a high tide. However, in a longer time perspective

  4. Analysis of coastal sea-level station records and implications for tsunami monitoring in the Adriatic Apulia region, southern Italy

    Science.gov (United States)

    Bressan, Lidia; Tinti, Stefano; Tallarico, Andrea

    2015-04-01

    The region of Apulia, southern Italy, was theater of one of the largest tsunami disaster in Italian history (the 30 July 1627 event) and is considered to be exposed to tsunami hazard coming from local Italian sources as well as from sources on the eastern side of the Adriatic and from the Ionian sea, including the Hellenic Arc earthquakes. Scientific interest for tsunami studies and monitoring in the region is only recent and this theme was specifically addressed by the international project OTRIONS, coordinated by the University of Bari. In the frame of this project the University of Bologna contributed to the analysis of the tsunami hazard and to the evaluation of the regional tide-gauge network with the scope of assessing its adequacy for tsunami monitoring. This latter is the main topic of the present work. In eastern Apulia, facing the Adriatic sea, the sea-level data network is sufficiently dense being formed of stations of the Italian tide-gauge network (Rete Mareografica Nazionale, RMN), of four additional stations operated by the Apulia Port Authority (in Brindisi, Ischitella, Manfredonia and Porto Cesareo) and of two more stations that were installed in the harbours of Barletta and Monopoli in the frame of the project OTRIONS with real-time data transmission and 1-sec sampling period. Pre-processing of the sea-level data of these stations included quality check and spectral analysis. Where the sampling rate was adequate, the records were also examined by means of the specific tools provided by the TEDA package. This is a Tsunami Early Detection Algorithm, developed by the Tsunami Research Team of the University of Bologna, that allows one to characterize the sea-level background signal in the typical tsunami frequency window (from 1 to several minutes) and consequently to optimize TEDA parameters for an efficient tsunami detection. The results of the analysis show stability of the spectral content and seasonal variations.

  5. Study of characteristic of tsunami base on the coastal morphology in north Donggala, Central Sulawesi

    Science.gov (United States)

    Rahmadaningsi, W. S. N.; Assegaf, A. H.; Setyonegoro, W.; Paharuddin

    2018-03-01

    The northern arm of Sulawesi potentials to generate earthquake and Tsunami due to the existence of subduction zone in sulawesi sea. It makes the North Donggala as an area with active seismicity. One of the earthquake and Tsunami events occurred is the earthquake and tsunami of Toli-Toli 1996 (M 7.9) causing 9 people are killed and severe damage in Tonggolobibi, Siboang, and Balukang. This earthquake induced tsunami runup of 3.4 m and inundated as far as 400 meters. The aims of this study is to predict runup and inundation area using numerical model and to find out the characteristics of Tsunami wave on straight, bay and cape shape coastal morphology and slopes of coastal. The data in this research consist of are the Etopo2 bathymetry data in data obtained from NOAA (National Oceanic and Atmospheric Administration), Toli-toli’s main earthquakes focal mechanism data 1st January1996 from GCMT (Global Centroid Moment Tensor), the data gained from the SRTM (Shuttle Radar Topography Mission) data 30 m and land cover data in 1996 from Ministry of environment and forestry . Single fault model is used to predict the high of tsunami run-up and to inundation area along Donggala coastal area. Its reviewed by morphology of coastal area that higher run up shows occurs at coastline type like bay have higher run up compare to area with cape and straight coastline. The result shows that the slopes have negative or contras correlation with Tsunami runup and its inundation area.

  6. Effect of Physical Parameters on the Main Phase Transition of Supported Lipid Bilayers

    Science.gov (United States)

    Seeger, H.M.; Marino, G.; Alessandrini, A.; Facci, P.

    2009-01-01

    Abstract Supported lipid bilayers composed of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) were assembled by the vesicle fusion technique on mica and studied by temperature-controlled atomic force microscopy. The role of different physical parameters on the main phase transition was elucidated. Both mixed (POPE/POPG 3:1) and pure POPE bilayers were studied. By increasing the ionic strength of the solution and the incubation temperature, a shift from a decoupled phase transition of the two leaflets, to a coupled transition, with domains in register, was obtained. The observed behavior points to a modulation of the substrate/bilayer and interleaflet coupling induced by the environment and preparation conditions of supported lipid bilayers. The results are discussed in view of the role of different interactions in the system. The influence of the substrate on the lipid bilayers, in terms of interleaflet coupling, can also help us in understanding the possible effect that submembrane elements like the cytoskeleton might have on the structure and dynamics of biomembranes. PMID:19686654

  7. Polymer Main-Chain Substitution Effects on the Efficiency of Nonfullerene BHJ Solar Cells

    KAUST Repository

    Firdaus, Yuliar

    2017-07-21

    “Nonfullerene” acceptors are proving effective in bulk heterojunction (BHJ) solar cells when paired with selected polymer donors. However, the principles that guide the selection of adequate polymer donors for high-efficiency BHJ solar cells with nonfullerene acceptors remain a matter of some debate and, while polymer main-chain substitutions may have a direct influence on the donor–acceptor interplay, those effects should be examined and correlated with BHJ device performance patterns. This report examines a set of wide-bandgap polymer donor analogues composed of benzo[1,2-b:4,5-b′]dithiophene (BDT), and thienyl ([2H]T) or 3,4-difluorothiophene ([2F]T) motifs, and their BHJ device performance pattern with the nonfullerene acceptor “ITIC”. Studies show that the fluorine- and ring-substituted derivative PBDT(T)[2F]T largely outperforms its other two polymer donor counterparts, reaching power conversion efficiencies as high as 9.8%. Combining several characterization techniques, the gradual device performance improvements observed on swapping PBDT[2H]T for PBDT[2F]T, and then for PBDT(T)[2F]T, are found to result from (i) notably improved charge generation and collection efficiencies (estimated as ≈60%, 80%, and 90%, respectively), and (ii) reduced geminate recombination (being suppressed from ≈30%, 25% to 10%) and bimolecular recombination (inferred from recombination rate constant comparisons). These examinations will have broader implications for further studies on the optimization of BHJ solar cell efficiencies with polymer donors and a wider range of nonfullerene acceptors.

  8. Threats to the safety of navigation resulting from the tsunami

    Directory of Open Access Journals (Sweden)

    Bernard WIŚNIEWSKI

    2008-01-01

    Full Text Available The tsunami traveling times were examined in connection to the earthquake that took place on 26 December 2004 in the Indian Ocean, changing the sea level as far as the Atlantic. For 17 ports located on the coasts of the two oceans theoretical times of wave arrival at the ports were calculated and compared with the real data recorded bymareographs. It has been found that the theoretical and real times differed, which can be explained by the effect of shallow water. Furthermore, as regards to the earthquake itself, instead of a single point epicenter as it was reported, it should have been considered as a zone of continental plates subduction extending 1200 km. The tsunami speed averaged for 17 ports amounted to 682 km/h, which necessitates an alteration of the coefficient in the formula (2 from the existing 5.0 to 4.38.

  9. Wavelet analysis of the seismograms for tsunami warning

    Directory of Open Access Journals (Sweden)

    A. Chamoli

    2010-10-01

    Full Text Available The complexity in the tsunami phenomenon makes the available warning systems not much effective in the practical situations. The problem arises due to the time lapsed in the data transfer, processing and modeling. The modeling and simulation needs the input fault geometry and mechanism of the earthquake. The estimation of these parameters and other aprior information increases the utilized time for making any warning. Here, the wavelet analysis is used to identify the tsunamigenesis of an earthquake. The frequency content of the seismogram in time scale domain is examined using wavelet transform. The energy content in high frequencies is calculated and gives a threshold for tsunami warnings. Only first few minutes of the seismograms of the earthquake events are used for quick estimation. The results for the earthquake events of Andaman Sumatra region and other historic events are promising.

  10. Source fault model of the 2011 off the pacific coast of Tohoku Earthquake, estimated from the detailed distribution of tsunami run-up heights

    International Nuclear Information System (INIS)

    Matsuta, Nobuhisa; Suzuki, Yasuhiro; Sugito, Nobuhiko; Nakata, Takashi; Watanabe, Mitsuhisa

    2015-01-01

    The distribution of tsunami run-up heights generally has spatial variations, because run-up heights are controlled by coastal topography including local-scale landforms such as natural levees, in addition to land use. Focusing on relationships among coastal topography, land conditions, and tsunami run-up heights of historical tsunamis—Meiji Sanriku (1896 A.D.), Syowa Sanriku (1933 A.D.), and Chilean Sanriku (1960 A.D.) tsunamis—along the Sanriku coast, it is found that the wavelength of a tsunami determines inundation areas as well as run-up heights. Small bays facing the Pacific Ocean are sensitive to short wavelength tsunamis, and large bays are sensitive to long wavelength tsunamis. The tsunami observed off Kamaishi during the 2011 off the Pacific coast of Tohoku Earthquake was composed of both short and long wavelength components. We examined run-up heights of the Tohoku tsunami, and found that: (1) coastal areas north of Kamaishi and south of Yamamoto were mainly attacked by short wavelength tsunamis; and (2) no evidence of short wavelength tsunamis was observed from Ofunato to the Oshika Peninsula. This observation coincides with the geomorphologically proposed source fault model, and indicates that the extraordinary large slip along the shallow part of the plate boundary off Sendai, proposed by seismological and geodesic analyses, is not needed to explain the run-up heights of the Tohoku tsunami. To better understand spatial variations of tsunami run-up heights, submarine crustal movements, and source faults, a detailed analysis is required of coastal topography, land conditions, and submarine tectonic landforms from the perspective of geomorphology. (author)

  11. Numerical modelling of tsunami propagation with implications for sedimentation in ancient epicontinental seas: The Lower Jurassic Laurasian Seaway

    Science.gov (United States)

    Mitchell, Andrew J.; Allison, Peter A.; Piggott, Matthew D.; Gorman, Gerard J.; Pain, Christopher C.; Hampson, Gary J.

    2010-07-01

    Tsunamis are frequent events in modern marine environments but evidence of their passing in subtidal ancient epicontinental sea deposits is elusive. It has been suggested that this is due to mis-identification or poor preservation potential. Herein a numerical modelling approach is used to show that tsunami propagation in one large ancient epicontinental sea was hindered by the damping effect of shallow bathymetries and reflection, refraction and diffraction from emergent landmasses. The Imperial College Ocean Model (ICOM) is used for this study and is first validated against data from the Sumatra-Andaman Tsunami of December 2004. A palaeobathymetric dataset is then presented for the Hettangian (Lower Jurassic) Laurasian Seaway with idealised tsunami sources situated on the continental shelf and within the adjacent oceanic basin. Results show that tsunamis forced from within ocean basins adjacent to the epicontinental sea are rapidly attenuated over the continental slope and fail to propagate great distances onto the shelf. Similarly, the sedimentological effect of tsunamis forced from within the epicontinental sea is also restricted. It is concluded that tsunami deposits in ancient epicontinental seas are most likely to occur in relative proximity to the source region and this must contribute to their scarcity in the geological record.

  12. Factors affecting household adoption of an evacuation plan in American Samoa after the 2009 earthquake and tsunami.

    Science.gov (United States)

    Apatu, Emma J I; Gregg, Chris E; Richards, Kasie; Sorensen, Barbara Vogt; Wang, Liang

    2013-08-01

    American Samoa is still recovering from the debilitating consequences of the September 29, 2009 tsunami. Little is known about current household preparedness in American Samoa for future earthquakes and tsunamis. Thus, this study sought to enumerate the number of households with an earthquake and tsunami evacuation plan and to identify predictors of having a household evacuation plan through a post-tsunami survey conducted in July 2011. Members of 300 households were interviewed in twelve villages spread across regions of the principle island of Tutuila. Multiple logistic regression showed that being male, having lived in one's home for tsunami event increased the likelihood of having a household evacuation plan. The prevalence of tsunami evacuation planning was 35% indicating that survivors might feel that preparation is not necessary given effective adaptive responses during the 2009 event. Results suggest that emergency planners and public health officials should continue with educational outreach to families to spread awareness around the importance of developing plans for future earthquakes and tsunamis to help mitigate human and structural loss from such natural disasters. Additional research is needed to better understand the linkages between pre-event planning and effective evacuation responses as were observed in the 2009 events.

  13. Investigations on the Tsunami hazard on the French Atlantic Coastline.

    Science.gov (United States)

    Frere, Antoine; Gailler, Audrey; Roger, Jean; Toucanne, Samuel; courgeon, Simon; Silva Jacinto, Ricardo

    2014-05-01

    Tsunami Hazard in metropolitan France is poorly known. This, added to the high vulnerability and low preparation of the coastline, could lead to a high risk. In the course of the TANDEM project, we investigate three potential kinds of scenarios that could pose a threat to the French coasts, i.e., long wave related to atmospheric disturbances, landsliding sources and distant earthquakes. Meteotsunamis are not well known to strike the French Atlantic Coast. The 26 and 27 of June 2011 however, a small tidal disturbance was observed along the coasts of the Bay of Biscay and English Channel. Using tide gauge data from 4 countries (Portugal, Spain, France and United Kingdom) processed in the temporal and spectral domains, we are able to extend the observations made in previous studies and propose additional conclusions about the sources' timing. For the 1843 earthquake in the Lesser Antilles (offshore Guadeloupe), we define three different scenarios, each of them characterized by a different strike for the rupture zone. Using numerical simulation, we compare the effect of the resulting tsunamis on the La Rochelle (France) approaches. This illustrates the behaviour of French coastline to long wave arrival from different sources and the protection given by natural obstacles (e.g., Azores archipelago, continental slope of the Bay of Biscay). The continental slope of the Bay of Biscay presents scars left by large scale landslides. We investigate several scenarios of landslides in order to perform numerical simulation. With a coupled landslide-tsunami simulation code we simulate the effect of these scenarios on the ocean surface, and the resulting tsunami to selected coastlines. All in all, this preliminary study gives an overview on the various possible coastal impacts the various impacts for the chosen scenarios.

  14. Aqueous photochemical degradation of hydroxylated PAHs: Kinetics, pathways, and multivariate effects of main water constituents

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Linke; Na, Guangshui [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Chen, Chang-Er [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Li, Jun [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); College of Marine Science, Shanghai Ocean University, Shanghai 201306 (China); Ju, Maowei; Wang, Ying; Li, Kai [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Zhang, Peng, E-mail: pzhang@nmemc.org.cn [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Yao, Ziwei [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China)

    2016-03-15

    PAHs. • Hydroxylated PAHs intrinsically photodegrade fast in sunlit surface waters. • Reaction types and transformation pathways of 9-Hydroxyfluorene were clarified. • Photolysis kinetics was affected by multivariate effects of main water constituents. • The photomodified toxicity of 9-Hydroxyfluorene was examined using Vibrio fischeri.

  15. Development of a Probabilistic Tsunami Hazard Analysis in Japan

    International Nuclear Information System (INIS)

    Toshiaki Sakai; Tomoyoshi Takeda; Hiroshi Soraoka; Ken Yanagisawa; Tadashi Annaka

    2006-01-01

    It is meaningful for tsunami assessment to evaluate phenomena beyond the design basis as well as seismic design. Because once we set the design basis tsunami height, we still have possibilities tsunami height may exceeds the determined design tsunami height due to uncertainties regarding the tsunami phenomena. Probabilistic tsunami risk assessment consists of estimating for tsunami hazard and fragility of structures and executing system analysis. In this report, we apply a method for probabilistic tsunami hazard analysis (PTHA). We introduce a logic tree approach to estimate tsunami hazard curves (relationships between tsunami height and probability of excess) and present an example for Japan. Examples of tsunami hazard curves are illustrated, and uncertainty in the tsunami hazard is displayed by 5-, 16-, 50-, 84- and 95-percentile and mean hazard curves. The result of PTHA will be used for quantitative assessment of the tsunami risk for important facilities located on coastal area. Tsunami hazard curves are the reasonable input data for structures and system analysis. However the evaluation method for estimating fragility of structures and the procedure of system analysis is now being developed. (authors)

  16. Benchmarking the UAF Tsunami Code

    Science.gov (United States)

    Nicolsky, D.; Suleimani, E.; West, D.; Hansen, R.

    2008-12-01

    We have developed a robust numerical model to simulate propagation and run-up of tsunami waves in the framework of non-linear shallow water theory. A temporal position of the shoreline is calculated using the free-surface moving boundary condition. The numerical code adopts a staggered leapfrog finite-difference scheme to solve the shallow water equations formulated for depth-averaged water fluxes in spherical coordinates. To increase spatial resolution, we construct a series of telescoping embedded grids that focus on areas of interest. For large scale problems, a parallel version of the algorithm is developed by employing a domain decomposition technique. The developed numerical model is benchmarked in an exhaustive series of tests suggested by NOAA. We conducted analytical and laboratory benchmarking for the cases of solitary wave runup on simple and composite beaches, run-up of a solitary wave on a conical island, and the extreme runup in the Monai Valley, Okushiri Island, Japan, during the 1993 Hokkaido-Nansei-Oki tsunami. Additionally, we field-tested the developed model to simulate the November 15, 2006 Kuril Islands tsunami, and compared the simulated water height to observations at several DART buoys. In all conducted tests we calculated a numerical solution with an accuracy recommended by NOAA standards. In this work we summarize results of numerical benchmarking of the code, its strengths and limits with regards to reproduction of fundamental features of coastal inundation, and also illustrate some possible improvements. We applied the developed model to simulate potential inundation of the city of Seward located in Resurrection Bay, Alaska. To calculate an aerial extent of potential inundation, we take into account available near-shore bathymetry and inland topography on a grid of 15 meter resolution. By choosing several scenarios of potential earthquakes, we calculated the maximal aerial extent of Seward inundation. As a test to validate our model, we

  17. GPS-controlled tide gauges in Indonesia – a German contribution to Indonesia's Tsunami Early Warning System

    Directory of Open Access Journals (Sweden)

    T. Schöne

    2011-03-01

    Full Text Available Coastal tide gauges do not only play a central role in the study of climate-related sea level changes but also in tsunami warning systems. Over the past five years, ten GPS-controlled tide gauge systems have been installed by the German Research Centre for Geosciences (GFZ in Indonesia to assist the development of the Indonesian Tsunami Early Warning System (InaTEWS. These stations are mainly installed at the Indonesian coastline facing the Indian Ocean. The tide gauge systems deliver information about the instantaneous sea level, vertical control information through GPS, and meteorological observations. A tidal analysis at the station's computer allows the detection of rapid changes in the local sea level ("sea level events"/SLE, thus indicating, for example, the arrival time of tsunamis. The technical implementation, communication issues, the operation and the sea level event detection algorithm, and some results from recent earthquakes and tsunamis are described in this paper.

  18. Meselect – A rapid and effective method for the separation of the main leaf tissue types

    Directory of Open Access Journals (Sweden)

    Julia Svozil

    2016-11-01

    Full Text Available Individual tissues of complex eukaryotic organisms have specific gene expression programs that control their functions. Therefore, tissue-specific molecular information is required to increase our understanding of tissue-specific processes. Established methods in plants to obtain specific tissues or cell types from their organ or tissue context typically require the enzymatic degradation of cell walls followed by fluorescence-activated cell sorting (FACS using plants engineered for localized expression of green fluorescent protein (GFP. This has facilitated the acquisition of valuable data, mainly on root cell type-specific transcript and protein expression. However, FACS of different leaf cell types is difficult because of chlorophyll autofluorescence that interferes with the sorting process. Furthermore, the cell wall composition is different in each cell type. This results in long incubation times for refractory cell types, and cell sorting itself can take several hours. To overcome these limitations, we developed Meselect (mechanical separation of leaf compound tissues, a rapid and effective method for the separation of leaf epidermal, vascular and mesophyll tissues. Meselect is a novel combination of mechanical separation and rapid protoplasting, which benefits from the unique cell wall composition of the different tissue types. Meselect has several advantages over cell sorting: it does not require expensive equipment such as a cell sorter and does not depend on specific fluorescent reporter lines, the use of blenders as well as the inherent mixing of different cell types and of intact and damaged cells can be avoided, and the time between wounding of the leaf and freezing of the sample is short. The efficacy and specificity of the method to enrich the different leaf tissue types has been confirmed using Arabidopsis leaves, but it has also been successfully used for leaves of other plants such as tomato or cassava. The method is therefore

  19. Stent implantation of left main coronary artery stenosis in an infant: Effective long-term treatment?

    Directory of Open Access Journals (Sweden)

    Christian Paech

    2015-01-01

    Full Text Available Coronary artery stenosis is a rare phenomenon in children. Coronary stent implantation is generally not considered a standard treatment option due to technical difficulties and potential complications in this group of patients. Nevertheless, several pediatric cases reporting successful implantation with acceptable short-term experiences have been described. The following case presents a successful stent implantation for left main coronary artery (LMCA stenosis early after surgery for anomalous left coronary artery from pulmonary artery (ALCAPA at the age of 6 months. The excellent mid-term results and notably the procedure′s potential as a long-term treatment in small children are highlighted. A 6-month-old infant underwent surgery for ALCAPA. Due to sudden postoperative deterioration, cardiac catheterization was performed. Coronary angiography revealed severe (90% ostial LMCA stenosis. A PROMUS drug-eluting stent (Promus Element AL3.0 Χ 8 mm, Boston Scientific, Natick, Massachusetts, USA was implanted. The procedure was performed without complications. Antiplatelet therapy with acetylsalicylic acid and clopidogrel was initiated. Subsequently, cardiac function improved slowly. Cardiac catheterization 3 years 8 months after stent implantation showed no restenosis with a proximal LMCA diameter still at the 50 th percentile for age. Neither were signs of heart failure reported at the last follow-up at 7 years of age. Presupposing normal growth, the implanted stent would thus provide sufficient myocardial perfusion with a LMCA lumen at the 40 th percentile at the age of 16 years. In selected cases, coronary stent implantation may be an effective mid- to long-term treatment of coronary artery stenosis even in very young children.

  20. Tsunamis and Hurricanes A Mathematical Approach

    CERN Document Server

    Cap, Ferdinand

    2006-01-01

    Tsunamis and hurricanes have had a devastating impact on the population living near the coast during the year 2005. The calculation of the power and intensity of tsunamis and hurricanes are of great importance not only for engineers and meteorologists but also for governments and insurance companies. This book presents new research on the mathematical description of tsunamis and hurricanes. A combination of old and new approaches allows to derive a nonlinear partial differential equation of fifth order describing the steepening up and the propagation of tsunamis. The description includes dissipative terms and does not contain singularities or two valued functions. The equivalence principle of solutions of nonlinear large gas dynamics waves and of solutions of water wave equations will be used. An extension of the continuity equation by a source term due to evaporation rates of salt seawater will help to understand hurricanes. Detailed formula, tables and results of the calculations are given.

  1. Standardized procedure for tsunami PRA by AESJ

    International Nuclear Information System (INIS)

    Kirimoto, Yukihiro; Yamaguchi, Akira; Ebisawa, Katsumi

    2013-01-01

    After Fukushima Accident (March 11, 2011), the Atomic Energy Society of Japan (AESJ) started to develop the standard of Tsunami Probabilistic Risk Assessment (PRA) for nuclear power plants in May 2011. As Japan is one of the countries with frequent earthquakes, a great deal of efforts has been made in the field of seismic research since the early stage. To our regret, the PRA procedures guide for tsunami has not yet been developed although the importance is held in mind of the PRA community. Accordingly, AESJ established a standard to specify the standardized procedure for tsunami PRA considering the results of investigation into the concept, the requirements that should have and the concrete methods regarding tsunami PRA referring the opinions of experts in the associated fields in December 2011 (AESJ-SC-RK004:2011). (author)

  2. Tsunami Induced Scour Around Monopile Foundations

    DEFF Research Database (Denmark)

    Eltard-Larsen, Bjarke; Fuhrman, David R.; Baykal, Cüneyt

    2017-01-01

    A fully-coupled (hydrodynamic and morphologic) numerical model is presented, and utilized for the simulation of tsunami-induced scour around a monopile structure, representative of those commonly utilized as offshore wind turbine foundations at moderate depths i.e. for depths less than 30 m...... a steady current, where a generally excellent match with experimentally-based results is found. A methodology for maintaining and assessing hydrodynamic and morphologic similarity between field and (laboratory) model-scale tsunami events is then presented, combining diameter-based Froude number similarity...... with that based on the dimensionless wave boundary layer thickness-to-monopile diameter ratio. This methodology is utilized directly in the selection of governing tsunami wave parameters (i.e. velocity magnitude and period) used for subsequent simulation within the numerical model, with the tsunami-induced flow...

  3. Tsunami Induced Scour Around Monopile Foundations

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Eltard-Larsen, Bjarke; Baykal, Cüneyt

    While the run-up, inundation, and destructive potential of tsunami events has received considerable attention in the literature, the associated interaction with the sea bed i.e. boundary layer dynamics, induced sediment transport, and resultant sea bed morphology, has received relatively little...... specific attention. The present paper aims to further the understanding of tsunami-induced scour, by numerically investigating tsunami-induced flow and scour processes around a monopile structure, representative of those commonly utilized as offshore wind turbine foundations. The simulations are based...... a monopile at model (laboratory) spatial and temporal scales. Therefore, prior to conducting such numerical simulations involving tsunami-induced scour, it is necessary to first establish a methodology for maintaining similarity of model and full field scales. To achieve hydrodynamic similarity we...

  4. Annotated Tsunami bibliography: 1962-1976

    International Nuclear Information System (INIS)

    Pararas-Carayannis, G.; Dong, B.; Farmer, R.

    1982-08-01

    This compilation contains annotated citations to nearly 3000 tsunami-related publications from 1962 to 1976 in English and several other languages. The foreign-language citations have English titles and abstracts

  5. Our fingerprint in tsunami deposits - anthropogenic markers as a new tsunami identification tool

    Science.gov (United States)

    Bellanova, P.; Schwarzbauer, J.; Reicherter, K. R.; Jaffe, B. E.; Szczucinski, W.

    2016-12-01

    Several recent geochemical studies have focused on the use of inorganic indicators to evaluate a tsunami origin of sediment in the geologic record. However, tsunami transport not only particulate sedimentary material from marine to terrestrial areas (and vice versa), but also associated organic material. Thus, tsunami deposits may be characterized by organic-geochemical parameters. Recently increased attention has been given to the use of natural organic substances (biomarkers) to identify tsunami deposits. To date no studies have been made investigating anthropogenic organic indicators in recent tsunami deposits. Anthropogenic organic markers are more sensitive and reliable markers compared to other tracers due to their specific molecular structural properties and higher source specificity. In this study we evaluate whether anthropogenic substances are useful indicators for determining whether an area has been inundated by a tsunami. We chose the Sendai Plain and Sanemoura and Oppa Bays, Japan, as study sites because the destruction of infrastructure by flooding released environmental pollutants (e.g., fuels, fats, tarmac, plastics, heavy metals, etc.) contaminating large areas of the coastal zone during the 2011 Tohoku-oki tsunami. Organic compounds from the tsunami deposits are extracted from tsunami sediment and compared with the organic signature of unaffected pre-tsunami samples using gas chromatography-mass spectrometry (GS/MS) based analyses. For the anthropogenic markers, compounds such as soil derived pesticides (DDT), source specific PAHs, halogenated aromatics from industrial sources were detected and used to observe the inland extent and the impact of the Tohoku-oki tsunami on the coastal region around Sendai.

  6. Effective radium concentration across the Main Central Thrust in the Nepal Himalayas

    International Nuclear Information System (INIS)

    Girault, Frederic; Perrier, Frederic; Gajurel, Ananta Prasad; Bhattarai, Mukunda; Koirala, Bharat Prasad; Bollinger, Laurent; Fort, Monique; France-Lanord, Christian

    2012-01-01

    Effective radium concentration (EC(Ra)) of 622 rock samples from 6 different sites in the Nepal Himalayas was measured in the laboratory using radon accumulation experiments. These sites, located from Lower Dolpo in Western Nepal to Eastern Nepal, are divided into 9 transects which cut across the Main Central Thrust zone (MCT zone) separating low-grade metamorphic Lesser Himalayan Sequence (LHS) units to the south and higher-grade metamorphic Greater Himalayan Sequence (GHS) units to the north. This boundary remains difficult to define and is the subject of numerous debates. EC(Ra) values range from 0.03 ± 0.03 to 251.6 ± 4.0 Bq kg -1 , and appear to be representative of the formation and clearly related to the local lithology. For example, for the Upper Trisuli and Langtang Valleys site in Central Nepal, the most studied place with 350 available EC(Ra) values, LHS rocks are characterized by a mean value of 5.3 ± 1.3 Bq kg -1 while GHS rocks of Formations I and II show significantly lower values with a mean value of 0.69 ± 0.11 Bq kg -1 , thus leading to a LHS/GHS EC(Ra) ratio of 7.8 ± 2.2. This behavior was systematically confirmed by other transects (ratio of 7.9 ± 2.2 in all other sites), with a threshold ECRa value, separating LHS from GHS, of 0.8 Bq kg -1 , thus bringing forward a novel method to characterize, within the MCT shear zone, which rocks belong to the GHS and LHS units. In addition, Ulleri augen gneiss, belonging to LHS rocks, occurred in several transects and were characterized by high EC(Ra) values (17.9 ± 4.3 Bq kg -1 ), easy to distinguish from the GHS gneisses, characterized by low EC(Ra) values at the bottom of the GHS, thus providing a further argument to locate the MCT. The measurement of EC(Ra) data, thus, provides a cost-effective method which can be compared with neodymium isotopic anomalies or estimates of the peak metamorphic temperature. This study, therefore, shows that the measurements of EC(Ra) provides additional information

  7. Earthquakes and tsunami in November 1755 in Morocco: a different reading of contemporaneous documentary sources

    Directory of Open Access Journals (Sweden)

    P.-L. Blanc

    2009-05-01

    Full Text Available Tsunami seldom strike the European Atlantic shores. The great Lisbon Earthquake of 1 November 1755 is the main destructive tsunamigenic event recorded. Since the mid-1990's, many simulations of propagation of tsunami waves from variants of the possible seismic source have been conducted. Estimates of run-up in Morocco are seldom included in publications, maybe for want of reliable historical data to control the simulations. This paper revisits some early accounts, transmitted as translations to European Chanceries, Scientific Societies and Newspapers. A critical analysis of the documents leads us to conclude that the Lisbon earthquake was overestimated because of amalgamation with a later Rifian earthquake. Then, the overestimation of the tsunami through worst interpretation of the scant data available appeared only reasonable, while the moderate measurements or interpretations were not given their due attention. In Morocco the amplitude of the tsunami (i.e. height at shoreline minus expected tide level may not have exceed the measurement given by Godin (1755 for Cadiz, 2.5 m above the calculated astronomical tide, a crest-to-trough amplitude of 5 m at most. This age-old overestimation of both the earthquake and tsunami is detrimental to the evaluation of the risk for coastal people and activities.

  8. Probabilistic Tsunami Hazard in the Northeast Atlantic from Near- and Far-Field Tectonic Sources

    Science.gov (United States)

    Omira, R.; Baptista, M. A.; Matias, L.

    2015-03-01

    In this article, we present the first study on probabilistic tsunami hazard assessment for the Northeast (NE) Atlantic region related to earthquake sources. The methodology combines the probabilistic seismic hazard assessment, tsunami numerical modeling, and statistical approaches. We consider three main tsunamigenic areas, namely the Southwest Iberian Margin, the Gloria, and the Caribbean. For each tsunamigenic zone, we derive the annual recurrence rate for each magnitude range, from Mw 8.0 up to Mw 9.0, with a regular interval, using the Bayesian method, which incorporates seismic information from historical and instrumental catalogs. A numerical code, solving the shallow water equations, is employed to simulate the tsunami propagation and compute near shore wave heights. The probability of exceeding a specific tsunami hazard level during a given time period is calculated using the Poisson distribution. The results are presented in terms of the probability of exceedance of a given tsunami amplitude for 100- and 500-year return periods. The hazard level varies along the NE Atlantic coast, being maximum along the northern segment of the Morocco Atlantic coast, the southern Portuguese coast, and the Spanish coast of the Gulf of Cadiz. We find that the probability that a maximum wave height exceeds 1 m somewhere in the NE Atlantic region reaches 60 and 100 % for 100- and 500-year return periods, respectively. These probability values decrease, respectively, to about 15 and 50 % when considering the exceedance threshold of 5 m for the same return periods of 100 and 500 years.

  9. Correlation of Fault Size, Moment Magnitude, and Tsunami Height to Proved Paleo-tsunami Data in Sulawesi Indonesia

    Science.gov (United States)

    Julius, A. M.; Pribadi, S.

    2016-02-01

    Sulawesi (Indonesia) island is located in the meeting of three large plates i.e. Indo-Australia, Pacific, and Eurasia. This configuration surely make high risk on tsunami by earthquake and by sea floor landslide. NOAA and Russia Tsunami Laboratory show more than 20 tsunami data recorded in Sulawesi since 1820. Based on this data, determine of correlation between all tsunami parameter need to be done to proved all event in the past. Complete data of magnitudes, fault sizes and tsunami heights in this study sourced from NOAA and Russia Tsunami database and completed with Pacific Tsunami Warning Center (PTWC) catalog. This study aims to find correlation between fault area, moment magnitude, and tsunami height by simple regression in Sulawesi. The step of this research are data collect, processing, and regression analysis. Result shows very good correlation, each moment magnitude, tsunami heights, and fault parameter i.e. long, wide, and slip are correlate linier. In increasing of fault area, the tsunami height and moment magnitude value also increase. In increasing of moment magnitude, tsunami height also increase. This analysis is enough to proved all Sulawesi tsunami parameter catalog in NOAA, Russia Tsunami Laboratory and PTWC are correct. Keyword: tsunami, magnitude, height, fault

  10. Attributes of Tsunami Earthquakes and the July 17, 2006 Java Event

    Science.gov (United States)

    Kanamori, H.

    2006-12-01

    the relatively large long-period spectral amplitude both of which can be rapidly identified from seismic data can be used for an effective threshold tsunami warning.

  11. Tsunami Source Estimate for the 1960 Chilean Earthquake from Near- and Far-Field Observations

    Science.gov (United States)

    Ho, T.; Satake, K.; Watada, S.; Fujii, Y.

    2017-12-01

    The tsunami source of the 1960 Chilean earthquake was estimated from the near- and far-field tsunami data. The 1960 Chilean earthquake is known as the greatest earthquake instrumentally ever recorded. This earthquake caused a large tsunami which was recorded by 13 near-field tidal gauges in South America, and 84 far-field stations around the Pacific Ocean at the coasts of North America, Asia, and Oceania. The near-field stations had been used for estimating the tsunami source [Fujii and Satake, Pageoph, 2013]. However, far-field tsunami waveforms have not been utilized because of the discrepancy between observed and simulated waveforms. The observed waveforms at the far-field stations are found systematically arrived later than the simulated waveforms. This phenomenon has been also observed in the tsunami of the 2004 Sumatra earthquake, the 2010 Chilean earthquake, and the 2011 Tohoku earthquake. Recently, the factors for the travel time delay have been explained [Watada et al., JGR, 2014; Allgeyer and Cummins, GRL, 2014], so the far-field data are usable for tsunami source estimation. The phase correction method [Watada et al., JGR, 2014] converts the tsunami waveforms computed by the linear long wave into the dispersive waveform which accounts for the effects of elasticity of the Earth and ocean, ocean density stratification, and gravitational potential change associated with tsunami propagation. We apply the method to correct the computed waveforms. For the preliminary initial sea surface height inversion, we use 12 near-field stations and 63 far-field stations, located in the South and North America, islands in the Pacific Ocean, and the Oceania. The estimated tsunami source from near-field stations is compared with the result from both near- and far-field stations. Two estimated sources show a similar pattern: a large sea surface displacement concentrated at the south of the epicenter close to the coast and extended to south. However, the source estimated from

  12. Tsunami-Induced Nearshore Hydrodynamic Modeling using a 3D VOF Method: A Gulf of Mexico Case Study

    Science.gov (United States)

    Kian, R.; Horrillo, J. J.; Fang, N. Z.

    2017-12-01

    Long-term morphology changes can be interrupted by extreme events such as hurricanes and tsunamis. In particular, the impact of tsunamis on coastal erosion and accretion patterns is presently not well understood. In order to understand the sediment movement during coastal tsunami impact a numerical sediment transport model is added to a 3D VOF model. This model allows for spatially varying bottom sediment characteristics and entails functions for entrainment, bedload, and suspended load transport. As a case study, a Gulf of Mexico (GOM) coastal study site is selected to investigate the effect of a landslide-tsunami on the coastal morphology. The GOM is recognized as a vast and productive body of water with great ecologic and economic value. The morphodynamic response of the nearshore environment to the tsunami hydrodynamic forcing is influenced by many factors including bathymetry, topography, tsunami wave and current magnitude, and the characteristics of the local bottom substrate. The 3D model addition can account for all these factors. Finally, necessary strategies for reduction of the potential tsunami impact and management of the morphological changes are discussed.

  13. Road infrastructure resilience to tsunami in Cilegon

    Science.gov (United States)

    Arini, Srikandi Wahyu; Sumabrata, Jachrizal

    2017-11-01

    Indonesia is vulnerable to natural disasters. The highest number of natural disaster occurs on the west side of Java Island with the tsunami as the most deadly. Cilegon, a densely populated city with high industrial activity is located on the west coast of Java Island with a gently sloping topography, hence it is vulnerable to tsunami. Simulations conducted by the National Disaster Management Authority indicates that earthquakes with epicenters in the Sunda strait will cause tsunamis which can sweep away the whole industrial area in one hour. The availability of evacuation routes which can accommodate the evacuation of large numbers of people within a short time is required. Road infrastructure resilience is essential to support the performance of the evacuation routes. Poor network resilience will reduce mobility and accessibility during the evacuation. The objectives of this paper are to analyze the impact of the earthquake-generated tsunami on the evacuation routes and to simulate and analyze the performance of existing evacuation routes in Cilegon. The limitations of the modeling approaches including the current and future challenges in evacuation transport research and its applications are also discussed. The conclusion from this study is accurate data source are needed to build a more representative model and predict the areas susceptible to tsunamis vulnerable areas and to construct cogent tsunami mitigation plans and actions for the most vulnerable areas.

  14. Tsunamis obey Snell's Law: Simulations and Real Data

    Science.gov (United States)

    Okal, Emile; Synolakis, Costas

    2017-04-01

    We study the effect of a wide continental shelf at the receiver end of a far-field tsunami, by using conventional seismic beaming techniques across arrays of receivers, in order to define a two-dimensional slowness vector expressing the phase velocity of the tsunami and its azimuth of passage over the array. In the Pacific Ocean, we first target two wide shelves fronting the Alaska Panhandle and Central America, and simulate tsunamis based on recent events in Chile and Japan, across arrays of several hundred virtual gauges located both on the shelves and in the nearby abyssal plains. In all cases, we recover phase velocities compatible with their values expected under the SWA (160-185 m/s in deep water and 30-40 m/s on the shelf), while the azimuths of arrival show severe refraction (of up to 55 degrees) between the two environments. The resulting ray parameters (p = sin i / v) are found to vary by less than 20%, and thus to verify Snell's law, despite the grossly simplified model of a linear continental shelf break separating two homogeneous media. We also apply this approach to real data recorded by ad hoc arrays of hydrophones operated as part of temporary OBS/OBH deployments during the past ten years in various coastal and abyssal areas of the Pacific Basin.

  15. Development of computer program for safety of nuclear power plant against tsunami

    International Nuclear Information System (INIS)

    Jin, S. B.; Choi, K. R.; Lee, S. K.; Cho, Y. S.

    2001-01-01

    The main objective of this study is the development of a computer program to check the safety of nuclear power plants along the coastline of the Korean Peninsula. The computer program describes the propagation and associated run-up process of tsunamis by solving linear and nonlinear shallow-water equations with finite difference methods. The computer program has been applied to several ideal and simplified problems. Obtained numerical solutions are compared to existing and available solutions and measurements. A very good agreement between numerical solutions and existing measurement is observed. The computer program developed in this study can be to check the safety analysis of nuclear power plants against tsunamis. The program can also be used to study the propagation of tsunamis for a long distance, and associated run-up and run-down process along a shoreline. Furthermore, the computer program can be used to provide the proper design criteria of coastal facilities and structures

  16. THE INTEGRATION MODEL ASEAN+1: THE MAIN NORMS OF AGREEMENTS AND EFFECT ON FOREIGN ECONOMIC TIES

    Directory of Open Access Journals (Sweden)

    Г М Костюнина

    2017-12-01

    trade in goods and services, investment, distinguishing almost all agreements, as well as intellectual property rights, mobility of individuals and economic cooperation in the framework of some agreements. The article examines the state of trade and investment cooperation between partners in the free trade areas, and comes to the main conclusion about the effect of trade crea-tion, which is expressed in a faster rate of growth in mutual trade and a growth of its share. The greatest economic benefit for ASEAN is the free trade area with China due to such factors as the population size and GDP volume, geographical proximity, the volume of trade at the time of formation of the free trade area, the complementarity of economic structures, and the size of duty rates at the time of signing the agreement. Experience of the functioning of free trade zones within the framework of the ASEAN + 1 shows the importance of wider coverage of economic relations in the liberalization.

  17. Tsunamis

    Indian Academy of Sciences (India)

    On 26 December 2004, at about 9 am, many parts of the east coast of India experienced sudden changes in water level. As the waters rose, they moved inland with a ferocity unusual to the region to flatten structures that stood in their way. Fifteen to twenty minutes later, the waters receded, only to rise again some time later.

  18. Post-eruptive flooding of Santorini caldera and implications for tsunami generation

    Science.gov (United States)

    Nomikou, Paraskevi; Druitt, Tim; Hübscher, Christian; Mather, Tamsin; Paulatto, Michele; Kalnins, Lara; Kelfoun, Karim; Papanikolaou, Dimitris; Bejelou, Konstantina; Lampridou, Danai; Pyle, David; Carey, Steven; Watts, Anthony; Weiß, Benedikt; Parks, Michelle

    2017-04-01

    Caldera-forming eruptions of island volcanoes generate tsunamis by the interaction of different eruptive phenomena with the sea. Such tsunamis are a major hazard, but forward models of their impacts are limited by poor understanding of source mechanisms. The eruption of Santorini 3600 years ago was one of the largest of eruptions known worldwide from the past 10,000 years - and was at least 3 times larger than the catastrophic eruption of Krakatoa. This huge eruption evacuated large volumes of magma, causing collapse of the large caldera, which is now filled with seawater. Tsunamis from this eruption have been proposed to have played a role in the demise of the Minoan culture across the southern Aegean, through damage to coastal towns, harbors, shipping and maritime trade. Before the eruption, there was an older caldera in the northern part of Santorini, partly filled with a shallow lagoon. In our study, we present bathymetric and seismic evidence showing that the caldera was not open to the sea during the main phase of the eruption, but was flooded once the eruption had finished. Following subsidence of the caldera floor, rapid inflow of seawater and landslides cut a deep 2.0-2.5 km3 submarine channel into the northern flank of the caldera wall. Hydrodynamic modelling indicates that the caldera was flooded through this breach in less than a couple of days. It was previously proposed that collapse of the caldera could have led to the formation of a major tsunami; but this is ruled out by our new evidence. Any tsunami's generated were most likely caused by entry of pyroclastic flows into the sea, combined with slumping of submarine pyroclastic accumulations. This idea is consistent with previous assertions that pyroclastic flows were the main cause of tsunamis at Krakatau.

  19. Population Recovery of Nicobar Long-Tailed Macaque Macaca fascicularis umbrosus following a Tsunami in the Nicobar Islands, India.

    Science.gov (United States)

    Velankar, Avadhoot D; Kumara, Honnavalli N; Pal, Arijit; Mishra, Partha Sarathi; Singh, Mewa

    2016-01-01

    Natural disasters pose a threat to isolated populations of species with restricted distributions, especially those inhabiting islands. The Nicobar long tailed macaque.Macaca fascicularis umbrosus, is one such species found in the three southernmost islands (viz. Great Nicobar, Little Nicobar and Katchal) of the Andaman and Nicobar archipelago, India. These islands were hit by a massive tsunami (Indian Ocean tsunami, 26 December 2004) after a 9.2 magnitude earthquake. Earlier studies [Umapathy et al. 2003; Sivakumar, 2004] reported a sharp decline in the population of M. f. umbrosus after thetsunami. We studied the distribution and population status of M. f. umbrosus on thethree Nicobar Islands and compared our results with those of the previous studies. We carried out trail surveys on existing paths and trails on three islands to get encounter rate as measure of abundance. We also checked the degree of inundation due to tsunami by using Normalized Difference Water Index (NDWI) on landsat imageries of the study area before and after tsunami. Theencounter rate of groups per kilometre of M. f. umbrosus in Great Nicobar, Little Nicobar and Katchal was 0.30, 0.35 and 0.48 respectively with the mean group size of 39 in Great Nicobar and 43 in Katchal following the tsunami. This was higher than that reported in the two earlier studies conducted before and after the tsunami. Post tsunami, there was a significant change in the proportion of adult males, adult females and immatures, but mean group size did not differ as compared to pre tsunami. The results show that population has recovered from a drastic decline caused by tsunami, but it cannot be ascertained whether it has reached stability because of the altered group structure. This study demonstrates the effect of natural disasters on island occurring species.

  20. Population Recovery of Nicobar Long-Tailed Macaque Macaca fascicularis umbrosus following a Tsunami in the Nicobar Islands, India

    Science.gov (United States)

    Velankar, Avadhoot D.; Kumara, Honnavalli N.

    2016-01-01

    Natural disasters pose a threat to isolated populations of species with restricted distributions, especially those inhabiting islands. The Nicobar long tailed macaque.Macaca fascicularis umbrosus, is one such species found in the three southernmost islands (viz. Great Nicobar, Little Nicobar and Katchal) of the Andaman and Nicobar archipelago, India. These islands were hit by a massive tsunami (Indian Ocean tsunami, 26 December 2004) after a 9.2 magnitude earthquake. Earlier studies [Umapathy et al. 2003; Sivakumar, 2004] reported a sharp decline in the population of M. f. umbrosus after thetsunami. We studied the distribution and population status of M. f. umbrosus on thethree Nicobar Islands and compared our results with those of the previous studies. We carried out trail surveys on existing paths and trails on three islands to get encounter rate as measure of abundance. We also checked the degree of inundation due to tsunami by using Normalized Difference Water Index (NDWI) on landsat imageries of the study area before and after tsunami. Theencounter rate of groups per kilometre of M. f. umbrosus in Great Nicobar, Little Nicobar and Katchal was 0.30, 0.35 and 0.48 respectively with the mean group size of 39 in Great Nicobar and 43 in Katchal following the tsunami. This was higher than that reported in the two earlier studies conducted before and after the tsunami. Post tsunami, there was a significant change in the proportion of adult males, adult females and immatures, but mean group size did not differ as compared to pre tsunami. The results show that population has recovered from a drastic decline caused by tsunami, but it cannot be ascertained whether it has reached stability because of the altered group structure. This study demonstrates the effect of natural disasters on island occurring species. PMID:26886197

  1. Population Recovery of Nicobar Long-Tailed Macaque Macaca fascicularis umbrosus following a Tsunami in the Nicobar Islands, India.

    Directory of Open Access Journals (Sweden)

    Avadhoot D Velankar

    Full Text Available Natural disasters pose a threat to isolated populations of species with restricted distributions, especially those inhabiting islands. The Nicobar long tailed macaque.Macaca fascicularis umbrosus, is one such species found in the three southernmost islands (viz. Great Nicobar, Little Nicobar and Katchal of the Andaman and Nicobar archipelago, India. These islands were hit by a massive tsunami (Indian Ocean tsunami, 26 December 2004 after a 9.2 magnitude earthquake. Earlier studies [Umapathy et al. 2003; Sivakumar, 2004] reported a sharp decline in the population of M. f. umbrosus after thetsunami. We studied the distribution and population status of M. f. umbrosus on thethree Nicobar Islands and compared our results with those of the previous studies. We carried out trail surveys on existing paths and trails on three islands to get encounter rate as measure of abundance. We also checked the degree of inundation due to tsunami by using Normalized Difference Water Index (NDWI on landsat imageries of the study area before and after tsunami. Theencounter rate of groups per kilometre of M. f. umbrosus in Great Nicobar, Little Nicobar and Katchal was 0.30, 0.35 and 0.48 respectively with the mean group size of 39 in Great Nicobar and 43 in Katchal following the tsunami. This was higher than that reported in the two earlier studies conducted before and after the tsunami. Post tsunami, there was a significant change in the proportion of adult males, adult females and immatures, but mean group size did not differ as compared to pre tsunami. The results show that population has recovered from a drastic decline caused by tsunami, but it cannot be ascertained whether it has reached stability because of the altered group structure. This study demonstrates the effect of natural disasters on island occurring species.

  2. Evidence-Based Support for the Characteristics of Tsunami Warning Messages for Local, Regional and Distant Sources

    Science.gov (United States)

    Gregg, C. E.; Johnston, D. M.; Sorensen, J. H.; Vogt Sorensen, B.; Whitmore, P.

    2014-12-01

    Many studies since 2004 have documented the dissemination and receipt of risk information for local to distant tsunamis and factors influencing people's responses. A few earlier tsunami studies and numerous studies of other hazards provide additional support for developing effective tsunami messages. This study explores evidence-based approaches to developing such messages for the Pacific and National Tsunami Warning Centers in the US. It extends a message metric developed for the NWS Tsunami Program. People at risk to tsunamis receive information from multiple sources through multiple channels. Sources are official and informal and environmental and social cues. Traditionally, official tsunami messages followed a linear dissemination path through relatively few channels from warning center to emergency management to public and media. However, the digital age has brought about a fundamental change in the dissemination and receipt of official and informal communications. Information is now disseminated in very non-linear paths and all end-user groups may receive the same message simultaneously. Research has demonstrated a range of factors that influence rapid respond to an initial real or perceived threat. Immediate response is less common than one involving delayed protective actions where people first engage in "milling behavior" to exchange information and confirm the warning before taking protective action. The most important message factors to achieve rapid response focus on the content and style of the message and the frequency of dissemination. Previously we developed a tsunami message metric consisting of 21 factors divided into message content and style and receiver characteristics. Initially, each factor was equally weighted to identify gaps, but here we extend the work by weighting specific factors. This utilizes recent research that identifies the most important determinants of protective action. We then discuss the prioritization of message information

  3. Effects of low-density thinning in a declining white pine stand in Maine

    Science.gov (United States)

    William B. Leak; Mariko. Yamasaki

    2013-01-01

    Low-density (32 ft2/acre residual basal area) and medium-low density (60 ft2/acre residual basal area) thinnings were studied over a 4-year period in a declining white pine stand on the Massabesic Experimental Forest in southern Maine. Gross basal area growth at 60 ft2 was about three-fourths the rate...

  4. The tsunami probabilistic risk assessment of nuclear power plant (3). Outline of tsunami fragility analysis

    International Nuclear Information System (INIS)

    Mihara, Yoshinori

    2012-01-01

    Tsunami Probabilistic Risk Assessment (PRA) standard was issued in February 2012 by Standard Committee of Atomic Energy Society of Japan (AESJ). This article detailed tsunami fragility analysis, which calculated building and structure damage probability contributing core damage and consisted of five evaluation steps: (1) selection of evaluated element and damage mode, (2) selection of evaluation procedure, (3) evaluation of actual stiffness, (4) evaluation of actual response and (5) evaluation of fragility (damage probability and others). As an application example of the standard, calculation results of tsunami fragility analysis investigation by tsunami PRA subcommittee of AESJ were shown reflecting latest knowledge of damage state caused by wave force and others acted by tsunami from the 'off the Pacific Coast of Tohoku Earthquake'. (T. Tanaka)

  5. Identification of tsunami deposits using organic markers

    Science.gov (United States)

    Bellanova, Piero; Schwarzbauer, Jan; Reicherter, Klaus; Jaffe, Bruce; Szczucinski, Witold

    2017-04-01

    Geochemical analyses of tsunami deposits are becoming standard and are used in almost every study. However, only inorganic proxies are typically studied. Recent studies that developed and broaden geochemical methods to investigate tsunami deposits (e.g., Szczucinski et al., 2016) and illustrate the importance of information from biomarker analyses (e.g., Shinozaki et al., 2015). These studies indicated that organic geochemistry can be used for the differentiation between marine and terrestrial matter, indicating a potential source of a deposit. Organic proxies also have the advantage of remaining longer in the sediment than inorganic proxies, which can be leached out by groundwater or rain. The 2011 Tohoku-oki tsunami inundated as much as 4.5 km inland and had run up heights of up to 40 m. Samples of sandy tsunami deposits from Sendai Plain, Samenoura Bay, and Oppa Bay (Japan) were collected and analyzed using gas chromatography-mass spectrometry (GC-MS) to search for natural compounds (biomarkers) and anthropogenic pollutants (anthropogenic markers). Natural compounds substances, such as fatty acids and n-alkanes, and anthropogenic compounds (e.g., polycyclic aromatic hydrocarbons and pesticides) were identified and quantified. Further, the two different compound types (natural vs. anthropogenic) were evaluated for their usefulness in identification of deposits from extreme flooding events. The analyzed chemical compounds and their diagenetic transformation products were distinctly different for the pre-tsunami, the tsunami and the thin post-tsunami eolian deposits. The preliminary results of this study point out the utility of organic indicators for the identification of extreme flooding events (like tsunamis), particularly for historic events. References Shinozaki, T., Fujino, S., Ikehara, M., Sawai, Y., Tamura, T., Goto, K., Sugawara, D., Abe, T., 2015. Marine biomarkers deposited on coastal land by the 2011Tohoku-oki tsunami. Natural Hazards 77

  6. TRIDEC Natural Crisis Management Demonstrator for Tsunamis

    Science.gov (United States)

    Hammitzsch, M.; Necmioglu, O.; Reißland, S.; Lendholt, M.; Comoglu, M.; Ozel, N. M.; Wächter, J.

    2012-04-01

    The management of natural crises is an important application field of the technology developed in the project Collaborative, Complex, and Critical Decision-Support in Evolving Crises (TRIDEC), co-funded by the European Commission in its Seventh Framework Programme. TRIDEC is based on the development of the German Indonesian Tsunami Early Warning System (GITEWS) and the Distant Early Warning System (DEWS) providing a service platform for both sensor integration and warning dissemination. In TRIDEC new developments in Information and Communication Technology (ICT) are used to extend the existing platform realising a component-based technology framework for building distributed tsunami warning systems for deployment, e.g. in the North-eastern Atlantic, the Mediterranean and Connected Seas (NEAM) region. The Kandilli Observatory and Earthquake Research Institute (KOERI), representing the Tsunami National Contact (TNC) and Tsunami Warning Focal Point (TWFP) for Turkey, is one of the key partners in TRIDEC. KOERI is responsible for the operation of a National Tsunami Warning Centre (NTWC) for Turkey and establishes Candidate Tsunami Watch Provider (CTWP) responsibilities for the NEAM region. Based on this profound experience, KOERI is contributing valuable requirements to the overall TRIDEC system and is responsible for the definition and development of feasible tsunami-related scenarios. However, KOERI's most important input focuses on testing and evaluating the TRIDEC system according to specified evaluation and validation criteria. The TRIDEC system will be implemented in three phases, each with a demonstrator. Successively, the demonstrators are addressing challenges, such as the design and implementation of a robust and scalable service infrastructure supporting the integration and utilisation of existing resources with accelerated generation of large volumes of data. These include sensor systems, geo-information repositories, simulation tools and data fusion tools

  7. Pemetaan Risiko Tsunami terhadap Bangunan secara Kuantitatif

    Directory of Open Access Journals (Sweden)

    Totok Wahyu Wibowo

    2017-12-01

    Full Text Available ABSTRAK Tsunami merupakan bencana alam yang sebagian besar kejadiannya dipicu oleh gempabumi dasar laut. Dampak kerugian tsunami terhadap lingkungan pesisir antara lain rusaknya properti, struktur bangunan, infrastruktur dan dapat mengakibatkan gangguan ekonomi. Bencana tsunami memiliki keunikan dibandingkan bencana lainnya, karena memiliki kemungkinan sangat kecil tetapi dengan ancaman yang tinggi. Paradigma Pengurangan Risiko Bencana (PRB yang berkembang dalam beberapa tahun terakhir yang menekankan bahwa risiko merupakan hal utama dalam penentuan strategi terhadap bencana. Kelurahan Ploso, merupakan salah satu lokasi di Kabupaten Pacitan yang berpotensi terkena bencana tsunami. Pemetaan risiko bangunan dilakukan dengan metode kuantitatif, yang mana disusun atas peta kerentanan dan peta harga bangunan. Papathoma Tsunami Vulnerability 3 (PTVA-3 diadopsi untuk pemetaan kerentanan. Data harga bangunan diperoleh dari kombinasi kerja lapangan dan analisis Sistem Informasi Geografis (SIG. Hasil pemetaan risiko menunjukkan bahwa Lingkungan Barehan memiliki risiko kerugian paling tinggi diantara semua lingkungan di Kelurahan Ploso. Hasil ini dapat dijadikan sebagai acuan untuk penentuan strategi pengurangan risiko bencana di Kelurahan Ploso. ABSTRACT Tsunami is a natural disaster whose occurrences are mostly triggered by submarine earthquakes. The impact of tsunami on coastal environment includes damages to properties, building structures, and infrastructures as well as economic disruptions. Compared to other disasters, tsunamis are deemed unique because they have a very small occurrence probability but with a very high threat. The paradigm of Disaster Risk Reduction (DRR that has developed in the last few years stresses risk as the primary factor to determine disaster strategies. Ploso Sub-district, an area in Pacitan Regency, is potentially affected by tsunamis. The risk mapping of the buildings in this sub-district was created using a quantitative

  8. Monitoring Coastal Change after the Tsunami in Thailand

    International Nuclear Information System (INIS)

    Pantanahiran, W

    2014-01-01

    The tsunami on December 26, 2004 caused widespread devastation along the coast of Thailand, especially in Ban Nam Khem, Phang Nga province. This disaster claimed more than 941 lives, with 502 other people missing when the storm surge caught the residents of this area. The coastal geomorphology was impacted by this disaster. The objectives of the research were to study the effect of the tsunami on coastal change and the recovery of coastal areas. Six time-series datasets of aerial photographs and satellite images from 2002, 2004, 2005, 2006, 2009, and 2010 were compared using the Geographic Information System (GIS). The results showed the effect of the tsunami on the buildings in the area. Fifty-eight point sixty-three percent of the buildings in the urban area were destroyed by the tsunami and constructions was raised to 103.60% and 197.12% between 2004 and 2010, thus indicating the recovery of the local community. Geomorphological change in Ko Kho Khao (the island) was found after the tsunami disaster, including coastal erosion and coastal deposition. The balance of nature played a major role in controlling the erosion and deposition. The coastal deposits were the highest in 2005; however, deposition was not found in 2004. The erosion rate from 2002-2003 was the highest (48.10 meter per year) and higher than 2003-2004 (39.03 meters per year), 2004-2009 (15.64 meters per year) and 2009-2010 (29.49 meters per year). The coastal area was more severe eroded than the estuary area, and severe coastal erosion caused the loss of coastal area, approximately 0.28 ha. Severe coastal erosion has been repeatedly found since 2005 in the lower part of the area, and hard structures such as concrete seawalls might have been affected by coastal erosion. In addition, extrapolation of coastal erosion at the rate of 30 meters per year showed that the lower part of Ko Kho Khao should disappear in 2015

  9. Main findings

    International Nuclear Information System (INIS)

    2014-01-01

    Licensing regimes vary from country to country. When the license regime involves several regulators and several licenses, this may lead to complex situations. Identifying a leading organisation in charge of overall coordination including preparation of the licensing decision is a useful practice. Also, if a stepwise licensing process is implemented, it is important to fix in legislation decisions and/or time points and to identify the relevant actors. There is considerable experience in civil and mining engineering that can be applied when constructing a deep geological disposal facility. Specific challenges are, however, the minimization of disturbances to the host rock and the understanding of its long-term behavior. Construction activities may affect the geo-hydraulic and geochemical properties of the various system components which are important safety features of the repository system. Clearly defined technical specifications and an effective quality management plan are important in ensuring successful repository implementation which is consistent with safety requirements. Monitoring plan should also be defined in advance. The regulatory organization should prepare itself to the licensing review before construction by allocating sufficient resources. It should increase its competence, e.g., by interacting early with the implementer and through its own R and D. This will allow the regulator to define appropriate technical conditions associated to the construction license and to elaborate a relevant inspection plan of the construction work. After construction, obtaining the operational license is the most important and crucial step. Main challenges include (a) establishing sufficient confidence so that the methods for closing the individual disposal units comply with the safety objectives and (b) addressing the issue of ageing of materials during a 50-100 years operational period. This latter challenge is amplified when reversibility/retrievability is required

  10. Assessment of tsunami resilience of Haydarpaşa Port in the Sea of Marmara by high-resolution numerical modeling

    Science.gov (United States)

    Aytore, Betul; Yalciner, Ahmet Cevdet; Zaytsev, Andrey; Cankaya, Zeynep Ceren; Suzen, Mehmet Lütfi

    2016-08-01

    Turkey is highly prone to earthquakes because of active fault zones in the region. The Marmara region located at the western extension of the North Anatolian Fault Zone (NAFZ) is one of the most tectonically active zones in Turkey. Numerous catastrophic events such as earthquakes or earthquake/landslide-induced tsunamis have occurred in the Marmara Sea basin. According to studies on the past tsunami records, the Marmara coasts have been hit by 35 different tsunami events in the last 2000 years. The recent occurrences of catastrophic tsunamis in the world's oceans have also raised awareness about tsunamis that might take place around the Marmara coasts. Similarly, comprehensive studies on tsunamis, such as preparation of tsunami databases, tsunami hazard analysis and assessments, risk evaluations for the potential tsunami-prone regions, and establishing warning systems have accelerated. However, a complete tsunami inundation analysis in high resolution will provide a better understanding of the effects of tsunamis on a specific critical structure located in the Marmara Sea. Ports are one of those critical structures that are susceptible to marine disasters. Resilience of ports and harbors against tsunamis are essential for proper, efficient, and successful rescue operations to reduce loss of life and property. Considering this, high-resolution simulations have been carried out in the Marmara Sea by focusing on Haydarpaşa Port of the megacity Istanbul. In the first stage of simulations, the most critical tsunami sources possibly effective for Haydarpaşa Port were inputted, and the computed tsunami parameters at the port were compared to determine the most critical tsunami scenario. In the second stage of simulations, the nested domains from 90 m gird size to 10 m grid size (in the port region) were used, and the most critical tsunami scenario was modeled. In the third stage of simulations, the topography of the port and its regions were used in the two nested

  11. Effects of main traits of sweet sorghum irradiated by carbon ions

    International Nuclear Information System (INIS)

    Li Wenjian; He Jingyu; Liu Qingfang; Yu Lixia; Dong Xicun

    2009-01-01

    To investigate the influence of carbon ion irradiation on important agronomic characters of sweet sorghum, dry seeds of Sweet Sorghum BJ0601 and BJ0602 were irradiated by 100 MeV/u 12 C +6 ion beam to different doses at Heavy Ion Accelerator National Laboratory in Lanzhou (HIANLL). When matured, the main traits of sweet sorghum were measured. The correlation coefficient of five main agronomic characters, i.e. number of node, plant height, stalk diameter, sugar content and stem weight per plant, were analyzed using the SPSS 13.0 software. The results indicated that the obvious influence of sweet sorghum irradiated by carbon ion beam was observed. In addition, the correlation of main traits was studied. This study may provide rudimental data to select novel variety of sweet sorghum suited for fuel ethanol production. In addition, the average of sugar content of early mutant BJ0601-1 is higher than BJ0601 in M2, and the sugar content of sweet sorghum may be improved by carbon ion beam irradiation. (authors)

  12. Honolulu, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Honolulu, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  13. Unalaska, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Unalaska, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  14. King Cove, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The King Cove, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  15. Hilo, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hilo, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  16. Myrtle Beach, South Carolina Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Myrtle Beach, South Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  17. Haleiwa, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Haleiwa, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  18. Kailua-Kona, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kailua-Kona, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  19. Port Angeles, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Angeles, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  20. Keauhou, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Keauhou, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  1. Port San Luis, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port San Luis, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  2. Seward, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seward, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  3. Savannah, Georgia Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Savannah, Georgia Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  4. Introduction to "Global Tsunami Science: Past and Future, Volume II"

    Science.gov (United States)

    Rabinovich, Alexander B.; Fritz, Hermann M.; Tanioka, Yuichiro; Geist, Eric L.

    2017-08-01

    Twenty-two papers on the study of tsunamis are included in Volume II of the PAGEOPH topical issue "Global Tsunami Science: Past and Future". Volume I of this topical issue was published as PAGEOPH, vol. 173, No. 12, 2016 (Eds., E. L. Geist, H. M. Fritz, A. B. Rabinovich, and Y. Tanioka). Three papers in Volume II focus on details of the 2011 and 2016 tsunami-generating earthquakes offshore of Tohoku, Japan. The next six papers describe important case studies and observations of recent and historical events. Four papers related to tsunami hazard assessment are followed by three papers on tsunami hydrodynamics and numerical modelling. Three papers discuss problems of tsunami warning and real-time forecasting. The final set of three papers importantly investigates tsunamis generated by non-seismic sources: volcanic explosions, landslides, and meteorological disturbances. Collectively, this volume highlights contemporary trends in global tsunami research, both fundamental and applied toward hazard assessment and mitigation.

  5. CO-OPS 1-minute Raw Tsunami Water Level Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CO-OPS has been involved with tsunami warning and mitigation since the Coast and Geodetic Survey started the Tsunami Warning System in 1948 to provide warnings to...

  6. Deep-ocean Assessment and Reporting of Tsunamis (DART) Stations

    Data.gov (United States)

    Department of Homeland Security — As part of the U.S. National Tsunami Hazard Mitigation Program (NTHMP), the Deep Ocean Assessment and Reporting of Tsunamis (DART(R)) Project is an ongoing effort to...

  7. Montauk, New York Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Montauk, New York Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  8. Craig, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Craig, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  9. Kodiak, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kodiak, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  10. Palm Beach, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Palm Beach, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  11. Elfin Cove, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Elfin Cove, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  12. Kihei, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kihei, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  13. Port Alexander, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Alexander, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  14. Shemya, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Shemya, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  15. Key West, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Key West, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  16. San Francisco, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The San Francisco, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  17. Mayaguez, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Mayaguez, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  18. Apra Harbor, Guam Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Apra Harbor, Guam Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  19. Ponce, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ponce, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  20. British Columbia, Canada Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The British Columbia, Canada Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  1. Wake Island Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Wake Island Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  2. Florence, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Florence, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  3. Atka, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atka, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a suite...

  4. Sitka, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  5. Nantucket, Massachusetts Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nantucket, Massachusetts Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  6. San Juan, Puerto Rico