WorldWideScience

Sample records for tsunami bore forces

  1. Estimation of Tsunami Bore Forces on a Coastal Bridge Using an Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Iman Mazinani

    2016-04-01

    Full Text Available This paper proposes a procedure to estimate tsunami wave forces on coastal bridges through a novel method based on Extreme Learning Machine (ELM and laboratory experiments. This research included three water depths, ten wave heights, and four bridge models with a variety of girders providing a total of 120 cases. The research was designed and adapted to estimate tsunami bore forces including horizontal force, vertical uplift and overturning moment on a coastal bridge. The experiments were carried out on 1:40 scaled concrete bridge models in a wave flume with dimensions of 24 m × 1.5 m × 2 m. Two six-axis load cells and four pressure sensors were installed to the base plate to measure forces. In the numerical procedure, estimation and prediction results of the ELM model were compared with Genetic Programming (GP and Artificial Neural Networks (ANNs models. The experimental results showed an improvement in predictive accuracy, and capability of generalization could be achieved by the ELM approach in comparison with GP and ANN. Moreover, results indicated that the ELM models developed could be used with confidence for further work on formulating novel model predictive strategy for tsunami bore forces on a coastal bridge. The experimental results indicated that the new algorithm could produce good generalization performance in most cases and could learn thousands of times faster than conventional popular learning algorithms. Therefore, it can be conclusively obtained that utilization of ELM is certainly developing as an alternative approach to estimate the tsunami bore forces on a coastal bridge.

  2. Study on tsunami damage mechanism in Fukushima Prefecture focusing on the generation of bores

    International Nuclear Information System (INIS)

    Okuma, Shohei; Sato, Shinji; Yamanaka, Yusuke; Sanuki, Hiroshi

    2015-01-01

    Destruction mechanisms of coastal structures due to the 2011 Tohoku Tsunami were investigated on the basis of field surveys in Fukushima Prefecture. Severe destruction appeared to be developed by the action of breaking bores. Laboratory experiments demonstrated that the angle of the tsunami front was an essential parameter for the generation of breaking bores. Larger wave force was observed as the angle of the tsunami front became steeper. Numerical simulation revealed that such a steep tsunami was developed in the central part of Fukushima Prefecture, where the reflection of the preceding tsunami by coastal cliff enhanced the steepness of the largest tsunami. (author)

  3. Analytical and Numerical Modeling of Tsunami Wave Propagation for double layer state in Bore

    Science.gov (United States)

    Yuvaraj, V.; Rajasekaran, S.; Nagarajan, D.

    2018-04-01

    Tsunami wave enters into the river bore in the landslide. Tsunami wave propagation are described in two-layer states. The velocity and amplitude of the tsunami wave propagation are calculated using the double layer. The numerical and analytical solutions are given for the nonlinear equation of motion of the wave propagation in a bore.

  4. Impact Forces from Tsunami-Driven Debris

    Science.gov (United States)

    Ko, H.; Cox, D. T.; Riggs, H.; Naito, C. J.; Kobayashi, M. H.; Piran Aghl, P.

    2012-12-01

    Debris driven by tsunami inundation flow has been known to be a significant threat to structures, yet we lack the constitutive equations necessary to predict debris impact force. The objective of this research project is to improve our understanding of, and predictive capabilities for, tsunami-driven debris impact forces on structures. Of special interest are shipping containers, which are virtually everywhere and which will float even when fully loaded. The forces from such debris hitting structures, for example evacuation shelters and critical port facilities such as fuel storage tanks, are currently not known. This research project focuses on the impact by flexible shipping containers on rigid columns and investigated using large-scale laboratory testing. Full-scale in-air collision experiments were conducted at Lehigh University with 20 ft shipping containers to experimentally quantify the nonlinear behavior of full scale shipping containers as they collide into structural elements. The results from the full scale experiments were used to calibrate computer models and used to design a series of simpler, 1:5 scale wave flume experiments at Oregon State University. Scaled in-air collision tests were conducted using 1:5 scale idealized containers to mimic the container behavior observed in the full scale tests and to provide a direct comparison to the hydraulic model tests. Two specimens were constructed using different materials (aluminum, acrylic) to vary the stiffness. The collision tests showed that at higher speeds, the collision became inelastic as the slope of maximum impact force/velocity decreased with increasing velocity. Hydraulic model tests were conducted using the 1:5 scaled shipping containers to measure the impact load by the containers on a rigid column. The column was instrumented with a load cell to measure impact forces, strain gages to measure the column deflection, and a video camera was used to provide the debris orientation and speed. The

  5. Tsunamis

    Science.gov (United States)

    ... busy after a disaster. Use text messages or social media to communicate with family and friends. Shareables Tsunami ... Power Plants Pandemic Power Outages Radiological Dispersion Device Severe ...

  6. Tubular bending and pull-out forces in high-curvature well bores

    International Nuclear Information System (INIS)

    Dareing, D.W.; Ahlers, C.A.

    1991-01-01

    This paper is concerned with drag forces developed on tubulars in high-curvature well bores typically found in drainhole and horizontal drilling. The dog-leg severity of these types of boreholes are considerably higher than those typically found in conventional directional drilling. The objective of the study was to determine the significance of bending stiffness on drag forces in the pull-out mode. The method of analysis treats the tubular as a multi-spanned curved beam under tension and solves for radial displacements, slope, shear and bending moment over each span. Calculations show that bending stiffness is a minor factor provided there are no locally severe dog legs superimposed in the high-curvature well bore

  7. Tsunamis

    Science.gov (United States)

    ... created by an underwater disturbance. Causes include earthquakes, landslides, volcanic eruptions, or meteorites--chunks of rock from space that strike the surface of Earth. A tsunami can move hundreds of miles per ...

  8. Measurements of cutter forces and cutter temperature of boring machine in Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.X.; Kou, S.Q.; Lindqvist, P.-A. [Luleaa Univ. of Technology (Sweden)

    2001-04-01

    This report presents both the testing methods used and the testing results obtained for cutter forces and cutter temperature during field boring in Aespoe Hard Rock Laboratory. In order to estimate the strains induced by cutter forces in the cutter shaft and choose proper transducers, first a numerical simulation was performed. The simulation results indicated that the cutter forces should be measurable by ordinary strain gauges. Furthermore, an independent three-direction loading system for laboratory calibration was set up to solve force-coupling problems appearing in field measurements. By means of the established measuring system, which was proved successfully in the laboratory, the normal forces, tangential forces, and side forces of two button cutters in the boring machine were measured in the field. In addition, the temperature in the shaft of the front cutter was measured. After the measurements of the cutter forces and cutter temperature, rock core samples were taken from the bottom and the wall of the testing borehole. Then the samples were cut, polished, and examined by means of the Scanning Electron Microscope (SEM). After that, the lengths of major cracks induced by the cutters in the rock samples were measured, and an approximate relationship between the length of the medium cracks and the relevant cutter forces was obtained. This relationship was compared with the theoretical relationship established before. Finally, according to the measured results, the cracked zones around the borehole were described. The results show that: (1) there are two kinds of cracked zones: one in the borehole wall and the other in the bottom of the borehole. The depth of the cracked zone in the borehole bottom is much larger than that in the borehole wall because the maximum normal force of the front cutter is always much larger than that of the gauge cutter. (2) Each cracked zone includes a densely cracked zone and all the longest medium cracks caused by mechanical

  9. Development of Physics and Control of Multiple Forcing Mechanisms for the Alaska Tsunami Forecast Model

    Science.gov (United States)

    Bahng, B.; Whitmore, P.; Macpherson, K. A.; Knight, W. R.

    2016-12-01

    The Alaska Tsunami Forecast Model (ATFM) is a numerical model used to forecast propagation and inundation of tsunamis generated by earthquakes or other mechanisms in either the Pacific Ocean, Atlantic Ocean or Gulf of Mexico. At the U.S. National Tsunami Warning Center (NTWC), the use of the model has been mainly for tsunami pre-computation due to earthquakes. That is, results for hundreds of hypothetical events are computed before alerts, and are accessed and calibrated with observations during tsunamis to immediately produce forecasts. The model has also been used for tsunami hindcasting due to submarine landslides and due to atmospheric pressure jumps, but in a very case-specific and somewhat limited manner. ATFM uses the non-linear, depth-averaged, shallow-water equations of motion with multiply nested grids in two-way communications between domains of each parent-child pair as waves approach coastal waters. The shallow-water wave physics is readily applicable to all of the above tsunamis as well as to tides. Recently, the model has been expanded to include multiple forcing mechanisms in a systematic fashion, and to enhance the model physics for non-earthquake events.ATFM is now able to handle multiple source mechanisms, either individually or jointly, which include earthquake, submarine landslide, meteo-tsunami and tidal forcing. As for earthquakes, the source can be a single unit source or multiple, interacting source blocks. Horizontal slip contribution can be added to the sea-floor displacement. The model now includes submarine landslide physics, modeling the source either as a rigid slump, or as a viscous fluid. Additional shallow-water physics have been implemented for the viscous submarine landslides. With rigid slumping, any trajectory can be followed. As for meteo-tsunami, the forcing mechanism is capable of following any trajectory shape. Wind stress physics has also been implemented for the meteo-tsunami case, if required. As an example of multiple

  10. Tsunami Simulators in Physical Modelling - Concept to Practical Solutions

    Science.gov (United States)

    Chandler, Ian; Allsop, William; Robinson, David; Rossetto, Tiziana; McGovern, David; Todd, David

    2017-04-01

    Whilst many researchers have conducted simple 'tsunami impact' studies, few engineering tools are available to assess the onshore impacts of tsunami, with no agreed methods available to predict loadings on coastal defences, buildings or related infrastructure. Most previous impact studies have relied upon unrealistic waveforms (solitary or dam-break waves and bores) rather than full-duration tsunami waves, or have used simplified models of nearshore and over-land flows. Over the last 10+ years, pneumatic Tsunami Simulators for the hydraulic laboratory have been developed into an exciting and versatile technology, allowing the forces of real-world tsunami to be reproduced and measured in a laboratory environment for the first time. These devices have been used to model generic elevated and N-wave tsunamis up to and over simple shorelines, and at example coastal defences and infrastructure. They have also reproduced full-duration tsunamis including Mercator 2004 and Tohoku 2011, both at 1:50 scale. Engineering scale models of these tsunamis have measured wave run-up on simple slopes, forces on idealised sea defences, pressures / forces on buildings, and scour at idealised buildings. This presentation will describe how these Tsunami Simulators work, demonstrate how they have generated tsunami waves longer than the facilities within which they operate, and will present research results from three generations of Tsunami Simulators. Highlights of direct importance to natural hazard modellers and coastal engineers include measurements of wave run-up levels, forces on single and multiple buildings and comparison with previous theoretical predictions. Multiple buildings have two malign effects. The density of buildings to flow area (blockage ratio) increases water depths and flow velocities in the 'streets'. But the increased building densities themselves also increase the cost of flow per unit area (both personal and monetary). The most recent study with the Tsunami

  11. Development of tsunami fragility evaluation methods by large scale experiments. Part 2. Validation of the applicability of evaluation methods of impact force due to tsunami floating debris

    International Nuclear Information System (INIS)

    Takabatake, Daisuke; Kihara, Naoto; Kaida, Hideki; Miyagawa, Yoshinori; Ikeno, Masaaki; Shibayama, Atsushi

    2015-01-01

    In order to examine the applicability of the existing estimation equations of the impact force due to tsunami floating debris, the collision tests are carried out. In the experiments, logs and full-scale light car are used. In this report, two types of existing equations, one is based on the Young's module of the debris (Eq.A) and the other one is based on the stiffness of the debris (Eq.B), are focused on. The estimated impact forces using Eq.A with log's Young module obtained by the material test agree with measured forces obtained by the collision test. But Eq.A does not applicate to a car because it is not easy to determine the Young's module of a car. On the other hand, the estimated impact forces using Eq.B with car's stiffness obtained by the static loading test agree with measured forces obtained by the collision test. This indicates that Eq.B unable us to estimate impact force of the floating debris such as car if the stiffness of the debris is determined. (author)

  12. Tsunami damping by mangrove forest: a laboratory study using parameterized trees

    Directory of Open Access Journals (Sweden)

    A. Strusińska-Correia

    2013-02-01

    Full Text Available Tsunami attenuation by coastal vegetation was examined under laboratory conditions for mature mangroves Rhizophora sp. The developed novel tree parameterization concept, accounting for both bio-mechanical and structural tree properties, allowed to substitute the complex tree structure by a simplified tree model of identical hydraulic resistance. The most representative parameterized mangrove model was selected among the tested models with different frontal area and root density, based on hydraulic test results. The selected parameterized tree models were arranged in a forest model of different width and further tested systematically under varying incident tsunami conditions (solitary waves and tsunami bores. The damping performance of the forest models under these two flow regimes was compared in terms of wave height and force envelopes, wave transmission coefficient as well as drag and inertia coefficients. Unlike the previous studies, the results indicate a significant contribution of the foreshore topography to solitary wave energy reduction through wave breaking in comparison to that attributed to the forest itself. A similar rate of tsunami transmission (ca. 20% was achieved for both flow conditions (solitary waves and tsunami bores and the widest forest (75 m in prototype investigated. Drag coefficient CD attributed to the solitary waves tends to be constant (CD = 1.5 over the investigated range of the Reynolds number.

  13. A short history of tsunami research and countermeasures in Japan.

    Science.gov (United States)

    Shuto, Nobuo; Fujima, Koji

    2009-01-01

    The tsunami science and engineering began in Japan, the country the most frequently hit by local and distant tsunamis. The gate to the tsunami science was opened in 1896 by a giant local tsunami of the highest run-up height of 38 m that claimed 22,000 lives. The crucial key was a tide record to conclude that this tsunami was generated by a "tsunami earthquake". In 1933, the same area was hit again by another giant tsunami. A total system of tsunami disaster mitigation including 10 "hard" and "soft" countermeasures was proposed. Relocation of dwelling houses to high ground was the major countermeasures. The tsunami forecasting began in 1941. In 1960, the Chilean Tsunami damaged the whole Japanese Pacific coast. The height of this tsunami was 5-6 m at most. The countermeasures were the construction of structures including the tsunami breakwater which was the first one in the world. Since the late 1970s, tsunami numerical simulation was developed in Japan and refined to become the UNESCO standard scheme that was transformed to 22 different countries. In 1983, photos and videos of a tsunami in the Japan Sea revealed many faces of tsunami such as soliton fission and edge bores. The 1993 tsunami devastated a town protected by seawalls 4.5 m high. This experience introduced again the idea of comprehensive countermeasures, consisted of defense structure, tsunami-resistant town development and evacuation based on warning.

  14. Tsunami deposits

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The NSC (the Nuclear Safety Commission of Japan) demand to survey on tsunami deposits by use of various technical methods (Dec. 2011), because tsunami deposits have useful information on tsunami activity, tsunami source etc. However, there are no guidelines on tsunami deposit survey in JAPAN. In order to prepare the guideline of tsunami deposits survey and evaluation and to develop the method of tsunami source estimation on the basis of tsunami deposits, JNES carried out the following issues; (1) organizing information of paleoseismological record and tsunami deposit by literature research, (2) field survey on tsunami deposit, and (3) designing the analysis code of sediment transport due to tsunami. As to (1), we organize the information gained about tsunami deposits in the database. As to (2), we consolidate methods for surveying and identifying tsunami deposits in the lake based on results of the field survey in Fukui Pref., carried out by JNES. In addition, as to (3), we design the experimental instrument for hydraulic experiment on sediment transport and sedimentation due to tsunamis. These results are reflected in the guideline on the tsunami deposits survey and evaluation. (author)

  15. Tsunami deposits

    International Nuclear Information System (INIS)

    2013-01-01

    The NSC (the Nuclear Safety Commission of Japan) demand to survey on tsunami deposits by use of various technical methods (Dec. 2011), because tsunami deposits have useful information on tsunami activity, tsunami source etc. However, there are no guidelines on tsunami deposit survey in JAPAN. In order to prepare the guideline of tsunami deposits survey and evaluation and to develop the method of tsunami source estimation on the basis of tsunami deposits, JNES carried out the following issues; (1) organizing information of paleoseismological record and tsunami deposit by literature research, (2) field survey on tsunami deposit, and (3) designing the analysis code of sediment transport due to tsunami. As to (1), we organize the information gained about tsunami deposits in the database. As to (2), we consolidate methods for surveying and identifying tsunami deposits in the lake based on results of the field survey in Fukui Pref., carried out by JNES. In addition, as to (3), we design the experimental instrument for hydraulic experiment on sediment transport and sedimentation due to tsunamis. These results are reflected in the guideline on the tsunami deposits survey and evaluation. (author)

  16. Mind where you bore!

    CERN Document Server

    Anaïs Schaeffer

    2012-01-01

    With renewable energies on the up and up, geothermal heating is becoming increasingly popular. An ardent supporter of sustainable development, CERN welcomes this trend, even though it has certain risks for the Laboratory.   More and more people in Switzerland and France are switching to geothermal heating, with the result that more and more bore holes are being sunk for geothermal probes. Since, on average, such bore holes go down to depths of 100 m they can have an impact on CERN’s underground facilities, which are also located at approximately that depth. In the Canton of Geneva, all bore holes, whatever their depth, are subject to planning permission. Applications for planning permission are granted – or refused – only after consultation with the Ground survey department (GESDEC). In France, only bore holes below a depth of 100 m require planning permission. In theory, bore holes to lesser depths simply need to be declared to the DREAL (Dire...

  17. Tsunami Hockey

    Science.gov (United States)

    Weinstein, S.; Becker, N. C.; Wang, D.; Fryer, G. J.

    2013-12-01

    An important issue that vexes tsunami warning centers (TWCs) is when to cancel a tsunami warning once it is in effect. Emergency managers often face a variety of pressures to allow the public to resume their normal activities, but allowing coastal populations to return too quickly can put them at risk. A TWC must, therefore, exercise caution when cancelling a warning. Kim and Whitmore (2013) show that in many cases a TWC can use the decay of tsunami oscillations in a harbor to forecast when its amplitudes will fall to safe levels. This technique should prove reasonably robust for local tsunamis (those that are potentially dangerous within only 100 km of their source region) and for regional tsunamis (whose danger is limited to within 1000km of the source region) as well. For ocean-crossing destructive tsunamis such as the 11 March 2011 Tohoku tsunami, however, this technique may be inadequate. When a tsunami propagates across the ocean basin, it will encounter topographic obstacles such as seamount chains or coastlines, resulting in coherent reflections that can propagate great distances. When these reflections reach previously-impacted coastlines, they can recharge decaying tsunami oscillations and make them hazardous again. Warning center scientists should forecast sea-level records for 24 hours beyond the initial tsunami arrival in order to observe any potential reflections that may pose a hazard. Animations are a convenient way to visualize reflections and gain a broad geographic overview of their impacts. The Pacific Tsunami Warning Center has developed tools based on tsunami simulations using the RIFT tsunami forecast model. RIFT is a linear, parallelized numerical tsunami propagation model that runs very efficiently on a multi-CPU system (Wang et al, 2012). It can simulate 30-hours of tsunami wave propagation in the Pacific Ocean at 4 arc minute resolution in approximately 6 minutes of real time on a 12-CPU system. Constructing a 30-hour animation using 1

  18. Tsunami hazard

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Tohoku Earthquake Tsunami on 11 March, 2011 has led the Fukushima Daiichi nuclear power plant to a serious accident, which highlighted a variety of technical issues such as a very low design tsunami height and insufficient preparations in case a tsunami exceeding the design tsunami height. Lessons such as to take measures to be able to maintain the important safety features of the facility for tsunamis exceeding design height and to implement risk management utilizing Probabilistic Safety Assessment are shown. In order to implement the safety assessment on nuclear power plants across Japan accordingly to the back-fit rule, Nuclear Regulatory Commission will promulgate/execute the New Safety Design Criteria in July 2013. JNES has positioned the 'enhancement of probabilistic tsunami hazard assessment' as highest priority issue and implemented in order to support technically the Nuclear Regulatory Authority in formulating the new Safety Design Criteria. Findings of the research had reflected in the 'Technical Review Guidelines for Assessing Design Tsunami Height based on tsunami hazards'. (author)

  19. Tsunami hazard

    International Nuclear Information System (INIS)

    2013-01-01

    Tohoku Earthquake Tsunami on 11 March, 2011 has led the Fukushima Daiichi nuclear power plant to a serious accident, which highlighted a variety of technical issues such as a very low design tsunami height and insufficient preparations in case a tsunami exceeding the design tsunami height. Lessons such as to take measures to be able to maintain the important safety features of the facility for tsunamis exceeding design height and to implement risk management utilizing Probabilistic Safety Assessment are shown. In order to implement the safety assessment on nuclear power plants across Japan accordingly to the back-fit rule, Nuclear Regulatory Commission will promulgate/execute the New Safety Design Criteria in July 2013. JNES has positioned the 'enhancement of probabilistic tsunami hazard assessment' as highest priority issue and implemented in order to support technically the Nuclear Regulatory Authority in formulating the new Safety Design Criteria. Findings of the research had reflected in the 'Technical Review Guidelines for Assessing Design Tsunami Height based on tsunami hazards'. (author)

  20. Tsunamis - General

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tsunami is a Japanese word meaning harbor wave. It is a water wave or a series of waves generated by an impulsive vertical displacement of the surface of the ocean...

  1. A boring solution

    Energy Technology Data Exchange (ETDEWEB)

    Radiuk, M I; Iushkova, N E; Kozubovskii, A I

    1979-10-25

    A boring solution is being patented for boring for oil and gas, which can be used in wells, where the temperature of the circulating liquid reaches 100/sup 0/. Polyvinyl acetate emulsion (PVE) is added for the purpose of decreasing viscosity of the solution at a temperature of agression into the boring solution containing clay, water, carboxymethylcellulose (CBC), a chloride from the number of sodium, potassium, or magnesium chlorides. The solution has the following composition in %: clay, 10 to 20; CBC, 1.5 to 2.0; chloride, 5 to 20; PVE, 0.5 to 2; water, up to 100. In accordance to GOST 1000-62 for the accepted PVE, the compound has the following composition, in %: monomer, 0.8; dry residue, greater than or equal to 50; plasticizer (tributyl phthalate), 5 to 15. The boring solution is processed according to the following method. The original solution, containing clay, water, salts, receives 1.5 to 2% CBC and afterwards it is processed with 0.5 to 2% PVE.

  2. TSUNAMI LOADING ON BUILDINGS WITH OPENINGS

    Directory of Open Access Journals (Sweden)

    P. Lukkunaprasit

    2009-01-01

    Full Text Available Reinforced concrete (RC buildings with openings in the masonry infill panels have shown superior performance to those without openings in the devastating 2004 Indian Ocean Tsunami. Understanding the effect of openings and the resulting tsunami force is essential for an economical and safe design of vertical evacuation shelters against tsunamis. One-to-one hundred scale building models with square shape in plan were tested in a 40 m long hydraulic flume with 1 m x 1 m cross section. A mild slope of 0.5 degree representing the beach condition at Phuket, Thailand was simulated in the hydraulic laboratory. The model dimensions were 150 mm x 150 mm x 150 mm. Two opening configurations of the front and back walls were investigated, viz., 25% and 50% openings. Pressure sensors were placed on the faces of the model to measure the pressure distribution. A high frequency load cell was mounted at the base of the model to record the tsunami forces. A bi-linear pressure profile is proposed for determining the maximum tsunami force acting on solid square buildings. The influence of openings on the peak pressures on the front face of the model is found to be practically insignificant. For 25% and 50% opening models, the tsunami forces reduce by about 15% and 30% from the model without openings, respectively. The reduction in the tsunami force clearly demonstrates the benefit of openings in reducing the effect of tsunami on such buildings.

  3. Widespread tsunami-like waves of 23-27 June in the Mediterranean and Black Seas generated by high-altitude atmospheric forcing

    Science.gov (United States)

    Šepić, Jadranka; Vilibić, Ivica; Rabinovich, Alexander B.; Monserrat, Sebastian

    2015-01-01

    A series of tsunami-like waves of non-seismic origin struck several southern European countries during the period of 23 to 27 June 2014. The event caused considerable damage from Spain to Ukraine. Here, we show that these waves were long-period ocean oscillations known as meteorological tsunamis which are generated by intense small-scale air pressure disturbances. An unique atmospheric synoptic pattern was tracked propagating eastward over the Mediterranean and the Black seas in synchrony with onset times of observed tsunami waves. This pattern favoured generation and propagation of atmospheric gravity waves that induced pronounced tsunami-like waves through the Proudman resonance mechanism. This is the first documented case of a chain of destructive meteorological tsunamis occurring over a distance of thousands of kilometres. Our findings further demonstrate that these events represent potentially dangerous regional phenomena and should be included in tsunami warning systems. PMID:26119833

  4. A tsunami PSA methodology and application for NPP site in Korea

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Choi, In-Kil

    2012-01-01

    Highlights: ► A methodology of tsunami PSA was developed in this study. ► Tsunami return period was evaluated by empirical method using historical tsunami record and tidal gauge record. ► Procedure of tsunami fragility analysis was established and target equipments and structures for investigation of tsunami fragility assessment were selected. ► A sample fragility calculation was performed for the equipment in Nuclear Power Plant. ► Accident sequence of tsunami event is developed by according to the tsunami run-up and draw down, and tsunami induced core damage frequency (CDF) is determined. - Abstract: A methodology of tsunami PSA was developed in this study. A tsunami PSA consists of tsunami hazard analysis, tsunami fragility analysis and system analysis. In the case of tsunami hazard analysis, evaluation of tsunami return period is a major task. For the evaluation of tsunami return period, numerical analysis and empirical method can be applied. In this study, tsunami return period was evaluated by empirical method using historical tsunami record and tidal gauge record. For the performing a tsunami fragility analysis, procedure of tsunami fragility analysis was established and target equipments and structures for investigation of tsunami fragility assessment were selected. A sample fragility calculation was performed for the equipment in Nuclear Power Plant. In the case of system analysis, accident sequence of tsunami event is developed by according to the tsunami run-up and draw down, and tsunami induced core damage frequency (CDF) is determined. For the application to the real Nuclear Power Plant, the Ulchin 56 NPP which located in east coast of Korean peninsula was selected. Through this study, whole tsunami PSA working procedure was established and example calculation was performed for one of real Nuclear Power Plant in Korea. But for more accurate tsunami PSA result, there are many researches needed for evaluation of hydrodynamic force, effect of

  5. Numerical experiment on tsunami deposit distribution process by using tsunami sediment transport model in historical tsunami event of megathrust Nankai trough earthquake

    Science.gov (United States)

    Imai, K.; Sugawara, D.; Takahashi, T.

    2017-12-01

    A large flow caused by tsunami transports sediments from beach and forms tsunami deposits in land and coastal lakes. A tsunami deposit has been found in their undisturbed on coastal lakes especially. Okamura & Matsuoka (2012) found some tsunami deposits in the field survey of coastal lakes facing to the Nankai trough, and tsunami deposits due to the past eight Nankai Trough megathrust earthquakes they identified. The environment in coastal lakes is stably calm and suitable for tsunami deposits preservation compared to other topographical conditions such as plains. Therefore, there is a possibility that the recurrence interval of megathrust earthquakes and tsunamis will be discussed with high resolution. In addition, it has been pointed out that small events that cannot be detected in plains could be separated finely (Sawai, 2012). Various aspects of past tsunami is expected to be elucidated, in consideration of topographical conditions of coastal lakes by using the relationship between the erosion-and-sedimentation process of the lake bottom and the external force of tsunami. In this research, numerical examination based on tsunami sediment transport model (Takahashi et al., 1999) was carried out on the site Ryujin-ike pond of Ohita, Japan where tsunami deposit was identified, and deposit migration analysis was conducted on the tsunami deposit distribution process of historical Nankai Trough earthquakes. Furthermore, examination of tsunami source conditions is possibly investigated by comparison studies of the observed data and the computation of tsunami deposit distribution. It is difficult to clarify details of tsunami source from indistinct information of paleogeographical conditions. However, this result shows that it can be used as a constraint condition of the tsunami source scale by combining tsunami deposit distribution in lakes with computation data.

  6. -Advanced Models for Tsunami and Rogue Waves

    Directory of Open Access Journals (Sweden)

    D. W. Pravica

    2012-01-01

    Full Text Available A wavelet , that satisfies the q-advanced differential equation for , is used to model N-wave oscillations observed in tsunamis. Although q-advanced ODEs may seem nonphysical, we present an application that model tsunamis, in particular the Japanese tsunami of March 11, 2011, by utilizing a one-dimensional wave equation that is forced by . The profile is similar to tsunami models in present use. The function is a wavelet that satisfies a q-advanced harmonic oscillator equation. It is also shown that another wavelet, , matches a rogue-wave profile. This is explained in terms of a resonance wherein two small amplitude forcing waves eventually lead to a large amplitude rogue. Since wavelets are used in the detection of tsunamis and rogues, the signal-analysis performance of and is examined on actual data.

  7. Tsunami.gov: NOAA's Tsunami Information Portal

    Science.gov (United States)

    Shiro, B.; Carrick, J.; Hellman, S. B.; Bernard, M.; Dildine, W. P.

    2014-12-01

    We present the new Tsunami.gov website, which delivers a single authoritative source of tsunami information for the public and emergency management communities. The site efficiently merges information from NOAA's Tsunami Warning Centers (TWC's) by way of a comprehensive XML feed called Tsunami Event XML (TEX). The resulting unified view allows users to quickly see the latest tsunami alert status in geographic context without having to understand complex TWC areas of responsibility. The new site provides for the creation of a wide range of products beyond the traditional ASCII-based tsunami messages. The publication of modern formats such as Common Alerting Protocol (CAP) can drive geographically aware emergency alert systems like FEMA's Integrated Public Alert and Warning System (IPAWS). Supported are other popular information delivery systems, including email, text messaging, and social media updates. The Tsunami.gov portal allows NOAA staff to easily edit content and provides the facility for users to customize their viewing experience. In addition to access by the public, emergency managers and government officials may be offered the capability to log into the portal for special access rights to decision-making and administrative resources relevant to their respective tsunami warning systems. The site follows modern HTML5 responsive design practices for optimized use on mobile as well as non-mobile platforms. It meets all federal security and accessibility standards. Moving forward, we hope to expand Tsunami.gov to encompass tsunami-related content currently offered on separate websites, including the NOAA Tsunami Website, National Tsunami Hazard Mitigation Program, NOAA Center for Tsunami Research, National Geophysical Data Center's Tsunami Database, and National Data Buoy Center's DART Program. This project is part of the larger Tsunami Information Technology Modernization Project, which is consolidating the software architectures of NOAA's existing TWC's into

  8. On the evolution and run-up of tsunamis

    DEFF Research Database (Denmark)

    Madsen, Per A.

    2010-01-01

    bottom from the ocean to the beach. We monitor the development of time- and space-scales and compare with solitary wave theory. Next, we simulate the disintegration of long waves into a train of undular bores and discuss the relevance of this phenomenon for tsunami runup. We conclude that solitary wave...

  9. Research for developing precise tsunami evaluation methods. Probabilistic tsunami hazard analysis/numerical simulation method with dispersion and wave breaking

    International Nuclear Information System (INIS)

    2007-01-01

    The present report introduces main results of investigations on precise tsunami evaluation methods, which were carried out from the viewpoint of safety evaluation for nuclear power facilities and deliberated by the Tsunami Evaluation Subcommittee. A framework for the probabilistic tsunami hazard analysis (PTHA) based on logic tree is proposed and calculation on the Pacific side of northeastern Japan is performed as a case study. Tsunami motions with dispersion and wave breaking were investigated both experimentally and numerically. The numerical simulation method is verified for its practicability by applying to a historical tsunami. Tsunami force is also investigated and formulae of tsunami pressure acting on breakwaters and on building due to inundating tsunami are proposed. (author)

  10. Investigation on vibrational evaluation criteria for small-bore pipe

    International Nuclear Information System (INIS)

    Tsuji, Takashi; Maekawa, Akira; Takahashi, Tsuneo; Kato, Minoru; Torigoe, Yuichi

    2013-01-01

    The well-known organization such as API and SwRI in USA developed criteria for piping vibrational evaluation. These criteria are targeted for main pipes, but not branch pipes with small bore. In this study, applicability of criteria of API and SwRI to branch pipes was investigated. Vibration test using piping system with small bore branch pipe was conducted and amplitudes of vibrational stress and displacement were measured for various exciting force. In comparison of the measurements with the two criteria, though the criteria of API and SwRI were applicable to small bore branch pipe, they made too conservative evaluation. (author)

  11. Hydraulic experiment on formation mechanism of tsunami deposit and verification of sediment transport model for tsunamis

    Science.gov (United States)

    Yamamoto, A.; Takahashi, T.; Harada, K.; Sakuraba, M.; Nojima, K.

    2017-12-01

    An underestimation of the 2011 Tohoku tsunami caused serious damage in coastal area. Reconsideration for tsunami estimation needs knowledge of paleo tsunamis. The historical records of giant tsunamis are limited, because they had occurred infrequently. Tsunami deposits may include many of tsunami records and are expected to analyze paleo tsunamis. However, present research on tsunami deposits are not able to estimate the tsunami source and its magnitude. Furthermore, numerical models of tsunami and its sediment transport are also important. Takahashi et al. (1999) proposed a model of movable bed condition due to tsunamis, although it has some issues. Improvement of the model needs basic data on sediment transport and deposition. This study investigated the formation mechanism of tsunami deposit by hydraulic experiment using a two-dimensional water channel with slope. In a fixed bed condition experiment, velocity, water level and suspended load concentration were measured at many points. In a movable bed condition, effects of sand grains and bore wave on the deposit were examined. Yamamoto et al. (2016) showed deposition range varied with sand grain sizes. In addition, it is revealed that the range fluctuated by number of waves and wave period. The measurements of velocity and water level showed that flow was clearly different near shoreline and in run-up area. Large velocity by return flow was affected the amount of sand deposit near shoreline. When a cutoff wall was installed on the slope, the amount of sand deposit repeatedly increased and decreased. Especially, sand deposit increased where velocity decreased. Takahashi et al. (1999) adapted the proposed model into Kesennuma bay when the 1960 Chilean tsunami arrived, although the amount of sand transportation was underestimated. The cause of the underestimation is inferred that the velocity of this model was underestimated. A relationship between velocity and sediment transport has to be studied in detail, but

  12. What Causes Tsunamis?

    Science.gov (United States)

    Mogil, H. Michael

    2005-01-01

    On December 26, 2004, a disastrous tsunami struck many parts of South Asia. The scope of this disaster has resulted in an outpouring of aid throughout the world and brought attention to the science of tsunamis. "Tsunami" means "harbor wave" in Japanese, and the Japanese have a long history of tsunamis. The word…

  13. Tunnel boring machine applications

    International Nuclear Information System (INIS)

    Bhattacharyya, K.K.; McDonald, R.; Saunders, R.S.

    1992-01-01

    This paper reports that characterization of Yucca Mountain for a potential repository requires construction of an underground Exploratory Studies Facility (ESF). Mechanical excavating methods have been proposed for construction of the ESF as they offer a number of advantages over drilling and blasting at the Yucca Mountain site, including; less ground disturbance and therefore a potential for less adverse effects on the integrity of the site, creation of a more stable excavation cross section requiring less ground support, and an inherently safer and cleaner working environment. The tunnel boring machine (TBM) provides a proven technology for excavating the welded and unwelded Yucca Mountain tuffs. The access ramps and main underground tunnels form the largest part of the ESF underground construction work, and have been designed for excavation by TBM

  14. Tsunami geology in paleoseismology

    Science.gov (United States)

    Yuichi Nishimura,; Jaffe, Bruce E.

    2015-01-01

    The 2004 Indian Ocean and 2011 Tohoku-oki disasters dramatically demonstrated the destructiveness and deadliness of tsunamis. For the assessment of future risk posed by tsunamis it is necessary to understand past tsunami events. Recent work on tsunami deposits has provided new information on paleotsunami events, including their recurrence interval and the size of the tsunamis (e.g. [187–189]). Tsunamis are observed not only on the margin of oceans but also in lakes. The majority of tsunamis are generated by earthquakes, but other events that displace water such as landslides and volcanic eruptions can also generate tsunamis. These non-earthquake tsunamis occur less frequently than earthquake tsunamis; it is, therefore, very important to find and study geologic evidence for past eruption and submarine landslide triggered tsunami events, as their rare occurrence may lead to risks being underestimated. Geologic investigations of tsunamis have historically relied on earthquake geology. Geophysicists estimate the parameters of vertical coseismic displacement that tsunami modelers use as a tsunami's initial condition. The modelers then let the simulated tsunami run ashore. This approach suffers from the relationship between the earthquake and seafloor displacement, the pertinent parameter in tsunami generation, being equivocal. In recent years, geologic investigations of tsunamis have added sedimentology and micropaleontology, which focus on identifying and interpreting depositional and erosional features of tsunamis. For example, coastal sediment may contain deposits that provide important information on past tsunami events [190, 191]. In some cases, a tsunami is recorded by a single sand layer. Elsewhere, tsunami deposits can consist of complex layers of mud, sand, and boulders, containing abundant stratigraphic evidence for sediment reworking and redeposition. These onshore sediments are geologic evidence for tsunamis and are called ‘tsunami deposits’ (Figs. 26

  15. Predicting natural catastrophes tsunamis

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    1. Tsunamis - Introduction - Definition of phenomenon - basic properties of the waves Propagation and dispersion Interaction with coasts - Geological and societal effects Origin of tsunamis - natural sources Scientific activities in connection with tsunamis. Ideas about simulations 2. Tsunami generation - The earthquake source - conventional theory The earthquake source - normal mode theory The landslide source Near-field observation - The Plafker index Far-field observation - Directivity 3. Tsunami warning - General ideas - History of efforts Mantle magnitudes and TREMOR algorithms The challenge of "tsunami earthquakes" Energy-moment ratios and slow earthquakes Implementation and the components of warning centers 4. Tsunami surveys - Principles and methodologies Fifteen years of field surveys and related milestones. Reconstructing historical tsunamis: eyewitnesses and geological evidence 5. Lessons from the 2004 Indonesian tsunami - Lessons in seismology Lessons in Geology The new technologies Lessons in civ...

  16. Transient Tsunamis in Lakes

    Science.gov (United States)

    Couston, L.; Mei, C.; Alam, M.

    2013-12-01

    A large number of lakes are surrounded by steep and unstable mountains with slopes prone to failure. As a result, landslides are likely to occur and impact water sitting in closed reservoirs. These rare geological phenomena pose serious threats to dam reservoirs and nearshore facilities because they can generate unexpectedly large tsunami waves. In fact, the tallest wave experienced by contemporary humans occurred because of a landslide in the narrow bay of Lituya in 1958, and five years later, a deadly landslide tsunami overtopped Lake Vajont's dam, flooding and damaging villages along the lakefront and in the Piave valley. If unstable slopes and potential slides are detected ahead of time, inundation maps can be drawn to help people know the risks, and mitigate the destructive power of the ensuing waves. These maps give the maximum wave runup height along the lake's vertical and sloping boundaries, and can be obtained by numerical simulations. Keeping track of the moving shorelines along beaches is challenging in classical Eulerian formulations because the horizontal extent of the fluid domain can change over time. As a result, assuming a solid slide and nonbreaking waves, here we develop a nonlinear shallow-water model equation in the Lagrangian framework to address the problem of transient landslide-tsunamis. In this manner, the shorelines' three-dimensional motion is part of the solution. The model equation is hyperbolic and can be solved numerically by finite differences. Here, a 4th order Runge-Kutta method and a compact finite-difference scheme are implemented to integrate in time and spatially discretize the forced shallow-water equation in Lagrangian coordinates. The formulation is applied to different lake and slide geometries to better understand the effects of the lake's finite lengths and slide's forcing mechanism on the generated wavefield. Specifically, for a slide moving down a plane beach, we show that edge-waves trapped by the shoreline and free

  17. Significant Tsunami Events

    Science.gov (United States)

    Dunbar, P. K.; Furtney, M.; McLean, S. J.; Sweeney, A. D.

    2014-12-01

    Tsunamis have inflicted death and destruction on the coastlines of the world throughout history. The occurrence of tsunamis and the resulting effects have been collected and studied as far back as the second millennium B.C. The knowledge gained from cataloging and examining these events has led to significant changes in our understanding of tsunamis, tsunami sources, and methods to mitigate the effects of tsunamis. The most significant, not surprisingly, are often the most devastating, such as the 2011 Tohoku, Japan earthquake and tsunami. The goal of this poster is to give a brief overview of the occurrence of tsunamis and then focus specifically on several significant tsunamis. There are various criteria to determine the most significant tsunamis: the number of deaths, amount of damage, maximum runup height, had a major impact on tsunami science or policy, etc. As a result, descriptions will include some of the most costly (2011 Tohoku, Japan), the most deadly (2004 Sumatra, 1883 Krakatau), and the highest runup ever observed (1958 Lituya Bay, Alaska). The discovery of the Cascadia subduction zone as the source of the 1700 Japanese "Orphan" tsunami and a future tsunami threat to the U.S. northwest coast, contributed to the decision to form the U.S. National Tsunami Hazard Mitigation Program. The great Lisbon earthquake of 1755 marked the beginning of the modern era of seismology. Knowledge gained from the 1964 Alaska earthquake and tsunami helped confirm the theory of plate tectonics. The 1946 Alaska, 1952 Kuril Islands, 1960 Chile, 1964 Alaska, and the 2004 Banda Aceh, tsunamis all resulted in warning centers or systems being established.The data descriptions on this poster were extracted from NOAA's National Geophysical Data Center (NGDC) global historical tsunami database. Additional information about these tsunamis, as well as water level data can be found by accessing the NGDC website www.ngdc.noaa.gov/hazard/

  18. Tsunami Casualty Model

    Science.gov (United States)

    Yeh, H.

    2007-12-01

    More than 4500 deaths by tsunamis were recorded in the decade of 1990. For example, the 1992 Flores Tsunami in Indonesia took away at least 1712 lives, and more than 2182 people were victimized by the 1998 Papua New Guinea Tsunami. Such staggering death toll has been totally overshadowed by the 2004 Indian Ocean Tsunami that claimed more than 220,000 lives. Unlike hurricanes that are often evaluated by economic losses, death count is the primary measure for tsunami hazard. It is partly because tsunamis kill more people owing to its short lead- time for warning. Although exact death tallies are not available for most of the tsunami events, there exist gender and age discriminations in tsunami casualties. Significant gender difference in the victims of the 2004 Indian Ocean Tsunami was attributed to women's social norms and role behavior, as well as cultural bias toward women's inability to swim. Here we develop a rational casualty model based on humans' limit to withstand the tsunami flows. The application to simple tsunami runup cases demonstrates that biological and physiological disadvantages also make a significant difference in casualty rate. It further demonstrates that the gender and age discriminations in casualties become most pronounced when tsunami is marginally strong and the difference tends to diminish as tsunami strength increases.

  19. The tsunami probabilistic risk assessment of nuclear power plant (3). Outline of tsunami fragility analysis

    International Nuclear Information System (INIS)

    Mihara, Yoshinori

    2012-01-01

    Tsunami Probabilistic Risk Assessment (PRA) standard was issued in February 2012 by Standard Committee of Atomic Energy Society of Japan (AESJ). This article detailed tsunami fragility analysis, which calculated building and structure damage probability contributing core damage and consisted of five evaluation steps: (1) selection of evaluated element and damage mode, (2) selection of evaluation procedure, (3) evaluation of actual stiffness, (4) evaluation of actual response and (5) evaluation of fragility (damage probability and others). As an application example of the standard, calculation results of tsunami fragility analysis investigation by tsunami PRA subcommittee of AESJ were shown reflecting latest knowledge of damage state caused by wave force and others acted by tsunami from the 'off the Pacific Coast of Tohoku Earthquake'. (T. Tanaka)

  20. Characteristics of the 2011 Tohoku Tsunami and introduction of two level tsunamis for tsunami disaster mitigation.

    Science.gov (United States)

    Sato, Shinji

    2015-01-01

    Characteristics of the 2011 Tohoku Tsunami have been revealed by collaborative tsunami surveys extensively performed under the coordination of the Joint Tsunami Survey Group. The complex behaviors of the mega-tsunami were characterized by the unprecedented scale and the low occurrence frequency. The limitation and the performance of tsunami countermeasures were described on the basis of tsunami surveys, laboratory experiments and numerical analyses. These findings contributed to the introduction of two-level tsunami hazards to establish a new strategy for tsunami disaster mitigation, combining structure-based flood protection designed by the Level-1 tsunami and non-structure-based damage reduction planned by the Level-2 tsunami.

  1. The tsunami phenomenon

    Science.gov (United States)

    Röbke, B. R.; Vött, A.

    2017-12-01

    With human activity increasingly concentrating on coasts, tsunamis (from Japanese tsu = harbour, nami = wave) are a major natural hazard to today's society. Stimulated by disastrous tsunami impacts in recent years, for instance in south-east Asia (2004) or in Japan (2011), tsunami science has significantly flourished, which has brought great advances in hazard assessment and mitigation plans. Based on tsunami research of the last decades, this paper provides a thorough treatise on the tsunami phenomenon from a geoscientific point of view. Starting with the wave features, tsunamis are introduced as long shallow water waves or wave trains crossing entire oceans without major energy loss. At the coast, tsunamis typically show wave shoaling, funnelling and resonance effects as well as a significant run-up and backflow. Tsunami waves are caused by a sudden displacement of the water column due to a number of various trigger mechanisms. Such are earthquakes as the main trigger, submarine and subaerial mass wastings, volcanic activity, atmospheric disturbances (meteotsunamis) and cosmic impacts, as is demonstrated by giving corresponding examples from the past. Tsunamis are known to have a significant sedimentary and geomorphological off- and onshore response. So-called tsunamites form allochthonous high-energy deposits that are left at the coast during tsunami landfall. Tsunami deposits show typical sedimentary features, as basal erosional unconformities, fining-upward and -landward, a high content of marine fossils, rip-up clasts from underlying units and mud caps, all reflecting the hydrodynamic processes during inundation. The on- and offshore behaviour of tsunamis and related sedimentary processes can be simulated using hydro- and morphodynamic numerical models. The paper provides an overview of the basic tsunami modelling techniques, including discretisation, guidelines for appropriate temporal and spatial resolution as well as the nesting method. Furthermore, the

  2. Hydrodynamic modeling of tsunamis from the Currituck landslide

    Science.gov (United States)

    Geist, E.L.; Lynett, P.J.; Chaytor, J.D.

    2009-01-01

    Tsunami generation from the Currituck landslide offshore North Carolina and propagation of waves toward the U.S. coastline are modeled based on recent geotechnical analysis of slide movement. A long and intermediate wave modeling package (COULWAVE) based on the non-linear Boussinesq equations are used to simulate the tsunami. This model includes procedures to incorporate bottom friction, wave breaking, and overland flow during runup. Potential tsunamis generated from the Currituck landslide are analyzed using four approaches: (1) tsunami wave history is calculated from several different scenarios indicated by geotechnical stability and mobility analyses; (2) a sensitivity analysis is conducted to determine the effects of both landslide failure duration during generation and bottom friction along the continental shelf during propagation; (3) wave history is calculated over a regional area to determine the propagation of energy oblique to the slide axis; and (4) a high-resolution 1D model is developed to accurately model wave breaking and the combined influence of nonlinearity and dispersion during nearshore propagation and runup. The primary source parameter that affects tsunami severity for this case study is landslide volume, with failure duration having a secondary influence. Bottom friction during propagation across the continental shelf has a strong influence on the attenuation of the tsunami during propagation. The high-resolution 1D model also indicates that the tsunami undergoes nonlinear fission prior to wave breaking, generating independent, short-period waves. Wave breaking occurs approximately 40-50??km offshore where a tsunami bore is formed that persists during runup. These analyses illustrate the complex nature of landslide tsunamis, necessitating the use of detailed landslide stability/mobility models and higher-order hydrodynamic models to determine their hazard.

  3. Bore pile foundation tall buildings closed in the heritage building

    Science.gov (United States)

    Triastuti, Nusa Setiani

    2017-11-01

    Bore pile foundation for high building surroundings heritage building should be not damage. Construction proses must good, no necking, no mixed deep water, no sliding soil, nonporous concrete. Objective the execution of bore pile so that heritage buildings and neighboring buildings that are old do not experience cracks, damage and tilting. The survey methodology was observe the process of the implementation of the dominant silt, clay soil, in addition a limited space and to analyze the results of loading tests, investigations of soil and daily reports. Construction process determines the success of the structure bore pile in high building structure bearing, without damaging a heritage building. Attainment the hard soil depth, density concrete, observable clean reinforcement in the implementation. Monitoring the implementation of, among others, the face of the ground water little reduce in the area and outside the footprint of the building, no impact of vibration drilling equipment, watching the mud content on the water coming out at the time of drilling, concrete volume was monitored each 2 m bore depth of pile, The result researched heritage building was not damage. The test results bore pile axial, lateral analyzed the results have the appropriate force design required.

  4. Seismically generated tsunamis.

    Science.gov (United States)

    Arcas, Diego; Segur, Harvey

    2012-04-13

    People around the world know more about tsunamis than they did 10 years ago, primarily because of two events: a tsunami on 26 December 2004 that killed more than 200,000 people around the shores of the Indian Ocean; and an earthquake and tsunami off the coast of Japan on 11 March 2011 that killed nearly 15,000 more and triggered a nuclear accident, with consequences that are still unfolding. This paper has three objectives: (i) to summarize our current knowledge of the dynamics of tsunamis; (ii) to describe how that knowledge is now being used to forecast tsunamis; and (iii) to suggest some policy changes that might protect people better from the dangers of future tsunamis.

  5. Influence of Flow Velocity on Tsunami Loss Estimation

    Directory of Open Access Journals (Sweden)

    Jie Song

    2017-11-01

    Full Text Available Inundation depth is commonly used as an intensity measure in tsunami fragility analysis. However, inundation depth cannot be taken as the sole representation of tsunami impact on structures, especially when structural damage is caused by hydrodynamic and debris impact forces that are mainly determined by flow velocity. To reflect the influence of flow velocity in addition to inundation depth in tsunami risk assessment, a tsunami loss estimation method that adopts both inundation depth and flow velocity (i.e., bivariate intensity measures in evaluating tsunami damage is developed. To consider a wide range of possible tsunami inundation scenarios, Monte Carlo-based tsunami simulations are performed using stochastic earthquake slip distributions derived from a spectral synthesis method and probabilistic scaling relationships of earthquake source parameters. By focusing on Sendai (plain coast and Onagawa (ria coast in the Miyagi Prefecture of Japan in a case study, the stochastic tsunami loss is evaluated by total economic loss and its spatial distribution at different scales. The results indicate that tsunami loss prediction is highly sensitive to modelling resolution and inclusion of flow velocity for buildings located less than 1 km from the sea for Sendai and Onagawa of Miyagi Prefecture.

  6. Probabilistic Tsunami Hazard Analysis

    Science.gov (United States)

    Thio, H. K.; Ichinose, G. A.; Somerville, P. G.; Polet, J.

    2006-12-01

    The recent tsunami disaster caused by the 2004 Sumatra-Andaman earthquake has focused our attention to the hazard posed by large earthquakes that occur under water, in particular subduction zone earthquakes, and the tsunamis that they generate. Even though these kinds of events are rare, the very large loss of life and material destruction caused by this earthquake warrant a significant effort towards the mitigation of the tsunami hazard. For ground motion hazard, Probabilistic Seismic Hazard Analysis (PSHA) has become a standard practice in the evaluation and mitigation of seismic hazard to populations in particular with respect to structures, infrastructure and lifelines. Its ability to condense the complexities and variability of seismic activity into a manageable set of parameters greatly facilitates the design of effective seismic resistant buildings but also the planning of infrastructure projects. Probabilistic Tsunami Hazard Analysis (PTHA) achieves the same goal for hazards posed by tsunami. There are great advantages of implementing such a method to evaluate the total risk (seismic and tsunami) to coastal communities. The method that we have developed is based on the traditional PSHA and therefore completely consistent with standard seismic practice. Because of the strong dependence of tsunami wave heights on bathymetry, we use a full waveform tsunami waveform computation in lieu of attenuation relations that are common in PSHA. By pre-computing and storing the tsunami waveforms at points along the coast generated for sets of subfaults that comprise larger earthquake faults, we can efficiently synthesize tsunami waveforms for any slip distribution on those faults by summing the individual subfault tsunami waveforms (weighted by their slip). This efficiency make it feasible to use Green's function summation in lieu of attenuation relations to provide very accurate estimates of tsunami height for probabilistic calculations, where one typically computes

  7. Hydraulic experimental investigation on spatial distribution and formation process of tsunami deposit on a slope

    Science.gov (United States)

    Harada, K.; Takahashi, T.; Yamamoto, A.; Sakuraba, M.; Nojima, K.

    2017-12-01

    An important aim of the study of tsunami deposits is to estimate the characteristics of past tsunamis from the tsunami deposits found locally. Based on the tsunami characteristics estimated from tsunami deposit, it is possible to examine tsunami risk assessment in coastal areas. It is considered that tsunami deposits are formed based on the dynamic correlation between tsunami's hydraulic values, sediment particle size, topography, etc. However, it is currently not enough to evaluate the characteristics of tsunamis from tsunami deposits. This is considered to be one of the reasons that the understanding of the formation process of tsunami deposits is not sufficiently understood. In this study, we analyze the measurement results of hydraulic experiment (Yamamoto et al., 2016) and focus on the formation process and distribution of tsunami deposits. Hydraulic experiment was conducted with two-dimensional water channel with a slope. Tsunami was inputted as a bore wave flow. The moving floor section was installed as a seabed slope connecting to shoreline and grain size distribution was set some cases. The water level was measured using ultrasonic displacement gauges, and the flow velocity was measured using propeller current meters and an electromagnetic current meter. The water level and flow velocity was measured at some points. The distribution of tsunami deposit was measured from shoreline to run-up limit on the slope. Yamamoto et al. (2016) reported the measurement results on the distribution of tsunami deposit with wave height and sand grain size. Therefore, in this study, hydraulic analysis of tsunami sediment formation process was examined based on the measurement data. Time series fluctuation of hydraulic parameters such as Froude number, Shields number, Rouse number etc. was calculated to understand on the formation process of tsunami deposit. In the front part of the tsunami, the flow velocity take strong flow from shoreline to around the middle of slope. From

  8. NUMERICAL MODELING OF THE GLOBAL TSUNAMI: Indonesian Tsunami of 26 December 2004

    Directory of Open Access Journals (Sweden)

    Zygmunt Kowalik

    2005-01-01

    Full Text Available A new model for the global tsunami computation is constructed. It includes a high order of approximation for the spatial derivatives. The boundary condition at the shore line is controlled by the total depth and can be set either to runup or to the zero normal velocity. This model, with spatial resolution of one minute, is applied to the tsunami of 26 December 2004 in the World Ocean from 80◦S to 69◦N. Because the computational domain includes close to 200 million grid points, a parallel version of the code was developed and run on a supercomputer. The high spatial resolution of one minute produces very small numerical dispersion even when tsunamis wave travel over large distances. Model results for the Indonesian tsunami show that the tsunami traveled to every location of the World Ocean. In the Indian Ocean the tsunami properties are related to the source function, i.e., to the magnitude of the bottom displacement and directional properties of the source. In the Southern Ocean surrounding Antarctica, in the Pacific, and especially in the Atlantic, tsunami waves propagate over large distances by energy ducting over oceanic ridges. Tsunami energy is concentrated by long wave trapping over the oceanic ridges. Our computations show the Coriolis force plays a noticeable but secondary role in the trapping. Travel times obtained from computations as arrival of the first significant wave show a clear and consistent pattern only in the region of the high amplitude and in the simply connected domains. The tsunami traveled from Indonesia, around New Zealand, and into the Pacific Ocean. The path through the deep ocean to North America carried miniscule energy, while the stronger signal traveled a much longer distance via South Pacific ridges. The time difference between first signal and later signals strong enough to be recorded at North Pacific locations was several hours.

  9. Atmospheric noise of a breaking tidal bore.

    Science.gov (United States)

    Chanson, Hubert

    2016-01-01

    A tidal bore is a surge of waters propagating upstream in an estuary as the tidal flow turns to rising and the flood tide propagates into a funnel-shaped system. Large tidal bores have a marked breaking roller. The sounds generated by breaking tidal bores were herein investigated in the field (Qiantang River) and in laboratory. The sound pressure record showed two dominant periods, with some similarity with an earlier study [Chanson (2009). J. Acoust. Soc. Am. 125(6), 3561-3568]. The two distinct phases were the incoming tidal bore when the sound amplitude increased with the approaching bore, and the passage of the tidal bore in front of the microphone when loud and powerful noises were heard. The dominant frequency ranged from 57 to 131 Hz in the Qiantang River bore. A comparison between laboratory and prototype tidal bores illustrated both common features and differences. The low pitch sound of the breaking bore had a dominant frequency close to the collective oscillations of bubble clouds, which could be modeled with a bubble cloud model using a transverse dimension of the bore roller. The findings suggest that this model might be over simplistic in the case of a powerful breaking bore, like that of the Qiantang River.

  10. Tsunami on Sanriku Coast in 1586: Orphan or Ghost Tsunami ?

    Science.gov (United States)

    Satake, K.

    2017-12-01

    The Peruvian earthquake on July 9, 1586 was the oldest earthquake that damaged Lima. The tsunami height was assigned as 24 m in Callao and 1-2 m in Miyagi prefecture in Japan by Soloviev and Go (1975). Dorbath et al. (1990) studied historical earthquakes in Peru and estimated that the 1586 earthquake was similar to the 1974 event (Mw 8.1) with source length of 175 km. They referred two different tsunami heights, 3. 7m and 24 m, in Callao, and judged that the latter was exaggerated. Okal et al. (2006) could not make a source model to explain both tsunami heights in Callao and Japan. More recently, Butler et al. (2017) estimated the age of coral boulders in Hawaii as AD 1572 +/- 21, speculated the tsunami source in Aleutians, and attributed it to the source of the 1586 tsunami in Japan. Historical tsunamis, both near-field and far-field, have been documented along the Sanriku coast since 1586 (e.g., Watanabe, 1998). However, there is no written document for the 1586 tsunami (Tsuji et al., 2013). Ninomiya (1960) compiled the historical tsunami records on the Sanriku coast soon after the 1960 Chilean tsunami, and correlated the legend of tsunami in Tokura with the 1586 Peruvian earthquake, although he noted that the dates were different. About the legend, he referred to Kunitomi(1933) who compiled historical tsunami data after the 1933 Showa Sanriku tsunami. Kunitomi referred to "Tsunami history of Miyagi prefecture" published after the 1896 Meiji Sanriku tsunami. "Tsunami history" described the earthquake and tsunami damage of Tensho earthquake on January 18 (Gregorian),1586 in central Japan, and correlated the tsunami legend in Tokura on June 30, 1586 (G). Following the 2011 Tohoku tsunami, tsunami legend in Tokura was studied again (Ebina, 2015). A local person published a story he heard from his grandfather that many small valleys were named following the 1611 tsunami, which inundated further inland than the 2011 tsunami. Ebina (2015), based on historical documents

  11. Characteristics of Recent Tsunamis

    Science.gov (United States)

    Sweeney, A. D.; Eble, M. C.; Mungov, G.

    2017-12-01

    How long do tsunamis impact a coast? How often is the largest tsunami wave the first to arrive? How do measurements in the far field differ from those made close to the source? Extending the study of Eblé et al. (2015) who showed the prevalence of a leading negative phase, we assimilate and summarize characteristics of known tsunami events recorded on bottom pressure and coastal water level stations throughout the world oceans to answer these and other questions. An extensive repository of data from the National Centers for Environmental Information (NCEI) archive for tsunami-ready U.S. tide gauge stations, housing more than 200 sites going back 10 years are utilized as are some of the more 3000 marigrams (analog or paper tide gauge records) for tsunami events. The focus of our study is on five tsunamis generated by earthquakes: 2010 Chile (Maule), 2011 East Japan (Tohoku), 2012 Haida Gwaii, 2014 Chile (Iquique), and 2015 Central Chile and one meteorologically generated tsunami on June 2013 along the U.S. East Coast and Caribbean. Reference: Eblé, M., Mungov, G. & Rabinovich, A. On the Leading Negative Phase of Major 2010-2014 Tsunamis. Pure Appl. Geophys. (2015) 172: 3493. https://doi.org/10.1007/s00024-015-1127-5

  12. Airburst-Generated Tsunamis

    Science.gov (United States)

    Berger, Marsha; Goodman, Jonathan

    2018-04-01

    This paper examines the questions of whether smaller asteroids that burst in the air over water can generate tsunamis that could pose a threat to distant locations. Such airburst-generated tsunamis are qualitatively different than the more frequently studied earthquake-generated tsunamis, and differ as well from tsunamis generated by asteroids that strike the ocean. Numerical simulations are presented using the shallow water equations in several settings, demonstrating very little tsunami threat from this scenario. A model problem with an explicit solution that demonstrates and explains the same phenomena found in the computations is analyzed. We discuss the question of whether compressibility and dispersion are important effects that should be included, and show results from a more sophisticated model problem using the linearized Euler equations that begins to addresses this.

  13. Will oscillating wave surge converters survive tsunamis?

    Directory of Open Access Journals (Sweden)

    L. O’Brien

    2015-07-01

    Full Text Available With an increasing emphasis on renewable energy resources, wave power technology is becoming one of the realistic solutions. However, the 2011 tsunami in Japan was a harsh reminder of the ferocity of the ocean. It is known that tsunamis are nearly undetectable in the open ocean but as the wave approaches the shore its energy is compressed, creating large destructive waves. The question posed here is whether an oscillating wave surge converter (OWSC could withstand the force of an incoming tsunami. Several tools are used to provide an answer: an analytical 3D model developed within the framework of linear theory, a numerical model based on the non-linear shallow water equations and empirical formulas. Numerical results show that run-up and draw-down can be amplified under some circumstances, leading to an OWSC lying on dry ground!

  14. TMI-2 core bore acquisition summary report

    International Nuclear Information System (INIS)

    Tolman, E.L.; Smith, R.P.; Martin, M.R.; McCardell, R.K.; Broughton, J.M.

    1986-09-01

    Core bore samples were obtained from the severely damaged TMI-2 core during July and August, 1986. A description of the TMI-2 core bore drilling unit used to obtain samples; a summary and discussion of the data from the ten core bore segments which were obtained; and the initial results of analysis and evaluation of these data are presented in this report. The impact of the major findings relative to our understanding of the accident scenario is also discussed

  15. Energy Efficiency of Tunnel Boring Machines.

    OpenAIRE

    Grishenko, Vitaly

    2014-01-01

    Herrenknecht AG is a German world-leading Tunnel Boring Machines manufacturer showing strong awareness and concern regarding environmental issues. The company supports research on the Energy Efficiency (EE) of their products, aimed at the development of intelligent design for a green Tunnel Boring Machine. The aim of this project is to produce a ’status quo’ report on EE of three types of Tunnel Boring Machines (Hardrock, EPB and Mixshield TBM). In the framework of this research 39 projects a...

  16. Railgun bore material test results

    International Nuclear Information System (INIS)

    Wang, S.Y.; Burton, R.L.; Witherspoon, F.D.; Bloomberg, H.W.; Goldstein, S.A.; Tidman, D.A.; Winsor, N.K.

    1987-01-01

    GT-Devices, Inc. has constructed a material test facility (MTF) to study the fundamental heat transfer problem of both railgun and electrothermal guns, and to test candidate gun materials under real plasma conditions. The MTF electrothermally produces gigawatt-level plasmas with pulse lengths of 10-30 microseconds. Circular bore and non-circular bore test barrels have been successfully operated under a wide range of simulated heating environments for EM launchers. Diagnostics include piezoelectric MHz pressure probes, time-of-flight probes, and current and voltage probes. Ablation measurements are accomplished by weighing and optical inspection, including borescope, optical microscope, and scanning electron microscope (SEM). From these measurements the ablation threshold for both the rail and insulator materials can be determined as a function of plasma heating. The MTF diagnostics are supported by an unsteady 1-D model of MTF which uses the flux-corrected transport (FCT) algorithm to calculate the fluid equations in conservative form. A major advantage of the FCT algorithm is that it can model gas dynamic shock behaviour without the requirement of numerical diffusion. The principle use of the code is to predict the material surface temperature ΔT/α from the unsteady heat transfer q(t)

  17. The Three Tsunamis

    Science.gov (United States)

    Antcliff, Richard R.

    2007-01-01

    We often talk about how different our world is from our parent's world. We then extrapolate this thinking to our children and try to imagine the world they will face. This is hard enough. However, change is changing! The rate at which change is occurring is accelerating. These new ideas, technologies and ecologies appear to be coming at us like tsunamis. Our approach to responding to these oncoming tsunamis will frame the future our children will live in. There are many of these tsunamis; I am just going to focus on three really big ones heading our way.

  18. Development of tsunami hazard analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    The NSC (the Nuclear Safety Commission of Japan) demand to survey on tsunami deposits by use of various technical methods (Dec. 2011), because tsunami deposits have useful information on tsunami activity, tsunami source etc. However, there are no guidebooks on tsunami deposit survey in JAPAN. In order to prepare the guidebook of tsunami deposits survey and to develop the method of tsunami source estimation on the basis of tsunami deposits, JNES carried out the following issues; (1) organizing information of paleoseismological record and tsunami deposit by literature research, and (2) field survey on tsunami deposit to prepare the guidebook. As to (1), we especially gear to tsunami deposits distributed in the Pacific coast of Tohoku region, and organize the information gained about tsunami deposits in the database. In addition, as to (2), we consolidate methods for surveying and identifying tsunami deposits in the lake based on results of the field survey in Fukui Pref., carried out by JNES. These results are reflected in the guidebook on the tsunami deposits in the lake as needed. (author)

  19. Development of tsunami hazard analysis

    International Nuclear Information System (INIS)

    2012-01-01

    The NSC (the Nuclear Safety Commission of Japan) demand to survey on tsunami deposits by use of various technical methods (Dec. 2011), because tsunami deposits have useful information on tsunami activity, tsunami source etc. However, there are no guidebooks on tsunami deposit survey in JAPAN. In order to prepare the guidebook of tsunami deposits survey and to develop the method of tsunami source estimation on the basis of tsunami deposits, JNES carried out the following issues; (1) organizing information of paleoseismological record and tsunami deposit by literature research, and (2) field survey on tsunami deposit to prepare the guidebook. As to (1), we especially gear to tsunami deposits distributed in the Pacific coast of Tohoku region, and organize the information gained about tsunami deposits in the database. In addition, as to (2), we consolidate methods for surveying and identifying tsunami deposits in the lake based on results of the field survey in Fukui Pref., carried out by JNES. These results are reflected in the guidebook on the tsunami deposits in the lake as needed. (author)

  20. Tsunamis and marine life

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.V.S.; Ingole, B.S.; Tang, D.; Satyanarayan, B.; Zhao, H.

    The 26 December 2004 tsunami in the Indian Ocean exerted far reaching temporal and spatial impacts on marine biota. Our synthesis was based on satellite data acquired by the Laboratory for Tropical Marine Environmental Dynamics (LED) of the South...

  1. Community exposure to tsunami hazards in California

    Science.gov (United States)

    Wood, Nathan J.; Ratliff, Jamie; Peters, Jeff

    2013-01-01

    data from Infogroup (2011), including 168,565 employees (2 percent of the 20-county labor force) at 15,335 businesses that generate approximately $30 billion in annual sales. Although the regional percentage of at-risk employees is low, certain communities, such as Belvedere, Alameda, and Crescent City, have high percentages of their local workforce in the tsunami-inundation zone. Employees in the tsunami-inundation zone are primarily in businesses associated with tourism (for example, accommodations, food services, and retail trade) and shipping (for example, transportation and warehousing, manufacturing, and wholesale trade), although the dominance of these sectors varies substantially among the 94 cities. Although the number of occupants is not known for each site, the tsunami-inundation zone contains numerous dependent-population facilities, such as schools and child daycare centers, which may have individuals with limited mobility. The tsunami-inundation zone includes a substantial number of facilities that provide community services, such as banks, religious organizations, and grocery stores, where local residents may be unaware of evacuation procedures if previous awareness efforts focused on home preparedness. There are also numerous recreational areas in the tsunami-inundation zone, such as amusement parks, marinas, city and county beaches, and State and national parks, which attract visitors who may not be aware of tsunami hazards or evacuation procedures. During peak summer months, estimated daily attendance at city and county beaches can be approximately six times larger than the total number of residents in the tsunami-inundation zone. Community exposure to tsunamis in California varies considerably—some communities may experience great losses that reflect only a small part of their community and others may experience relatively small losses that devastate them. Among 94 incorporated communities and the remaining unincorporated areas of the 20 coastal

  2. Floods and tsunamis.

    Science.gov (United States)

    Llewellyn, Mark

    2006-06-01

    Floods and tsunamis cause few severe injuries, but those injuries can overwhelm local areas, depending on the magnitude of the disaster. Most injuries are extremity fractures, lacerations, and sprains. Because of the mechanism of soft tissue and bone injuries, infection is a significant risk. Aspiration pneumonias are also associated with tsunamis. Appropriate precautionary interventions prevent communicable dis-ease outbreaks. Psychosocial health issues must be considered.

  3. After The Tsunami: Human Rights of Vulnerable Populations

    OpenAIRE

    Fletcher, Laurel; Stover, Eric; Weinstein, Harvey

    2005-01-01

    The tsunami of December 26, 2004 devastated thousands of communities along the coastline of the Indian Ocean. More than 240,000 people were killed, with tens of thousands missing and presumed dead, and more than a million people displaced. Immediately following the tsunami, international aid agencies feared that human traffickers might seize the opportunity to compel those most vulnerable (women, children, and migrant workers) into situations of forced labor. Fortunately, few incidents of tra...

  4. Large-bore pipe decontamination

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system

  5. Three-dimensional tsunami analysis for the plot plan of a sodium-cooled fast reactor plant

    International Nuclear Information System (INIS)

    Hayakawa, Satoshi; Watanabe, Osamu; Itoh, Kei; Yamamoto, Tomohiko

    2013-01-01

    As the practical evaluation method of the effect of tsunami on buildings, the formula of tsunami force has been used. However, it cannot be applied to complex geometry of buildings. In this study, to analyze the effect of tsunami on the buildings of sodium-cooled fast reactor plant more accurately, three-dimensional tsunami analysis was performed. In the analysis, VOF (Volume of Fluid) method was used to capture free surface of tsunami. At the beginning, it was confirmed that the tsunami experiment results was reproduced by VOF method accurately. Next, the three-dimensional tsunami analysis was performed with VOF method to evaluate the flow field around the buildings of the plant from the beginning of the tsunami until the backwash of that. (author)

  6. Tsunami Simulators in Physical Modelling Laboratories - From Concept to Proven Technique

    Science.gov (United States)

    Allsop, W.; Chandler, I.; Rossetto, T.; McGovern, D.; Petrone, C.; Robinson, D.

    2016-12-01

    Before 2004, there was little public awareness around Indian Ocean coasts of the potential size and effects of tsunami. Even in 2011, the scale and extent of devastation by the Japan East Coast Tsunami was unexpected. There were very few engineering tools to assess onshore impacts of tsunami, so no agreement on robust methods to predict forces on coastal defences, buildings or related infrastructure. Modelling generally used substantial simplifications of either solitary waves (far too short durations) or dam break (unrealistic and/or uncontrolled wave forms).This presentation will describe research from EPI-centre, HYDRALAB IV, URBANWAVES and CRUST projects over the last 10 years that have developed and refined pneumatic Tsunami Simulators for the hydraulic laboratory. These unique devices have been used to model generic elevated and N-wave tsunamis up to and over simple shorelines, and at example defences. They have reproduced full-duration tsunamis including the Mercator trace from 2004 at 1:50 scale. Engineering scale models subjected to those tsunamis have measured wave run-up on simple slopes, forces on idealised sea defences and pressures / forces on buildings. This presentation will describe how these pneumatic Tsunami Simulators work, demonstrate how they have generated tsunami waves longer than the facility within which they operate, and will highlight research results from the three generations of Tsunami Simulator. Of direct relevance to engineers and modellers will be measurements of wave run-up levels and comparison with theoretical predictions. Recent measurements of forces on individual buildings have been generalized by separate experiments on buildings (up to 4 rows) which show that the greatest forces can act on the landward (not seaward) buildings. Continuing research in the 70m long 4m wide Fast Flow Facility on tsunami defence structures have also measured forces on buildings in the lee of a failed defence wall.

  7. 2004 Sumatra Tsunami

    Directory of Open Access Journals (Sweden)

    Vongvisessomjai, S.

    2005-09-01

    Full Text Available A catastrophic tsunami on December 26, 2004 caused devastation in the coastal region of six southern provinces of Thailand on the Andaman Sea coast. This paper summaries the characteristics of tsunami with the aim of informing and warning the public and reducing future casualties and damage.The first part is a review of the records of past catastrophic tsunamis, namely those in Chile in 1960, Alaska in 1964, and Flores, Java, Indonesia, in 1992, and the lessons drawn from these tsunamis. An analysis and the impact of the 2004 Sumatra tsunami is then presented and remedial measures recommended.Results of this study are as follows:Firstly, the 2004 Sumatra tsunami ranked fourth in terms of earthquake magnitude (9.0 M after those in 1960 in Chile (9.5 M, 1899 in Alaska (9.2 M and 1964 in Alaska (9.1 M and ranked first in terms of damage and casualties. It was most destructive when breaking in shallow water nearshore.Secondly, the best alleviation measures are 1 to set up a reliable system for providing warning at the time of an earthquake in order to save lives and reduce damage and 2 to establish a hazard map and implement land-use zoning in the devastated areas, according to the following principles:- Large hotels located at an elevation of not less than 10 m above mean sea level (MSL- Medium hotels located at an elevation of not less than 6 m above MSL- Small hotel located at elevation below 6 m MSL, but with the first floor elevated on poles to allow passage of a tsunami wave- Set-back distances from shoreline established for various developments- Provision of shelters and evacuation directionsFinally, public education is an essential part of preparedness.

  8. TMI-2 core boring machine

    International Nuclear Information System (INIS)

    Croft, K.M.; Helbert, H.J.; Laney, W.M.

    1986-01-01

    An important and essential aspect of the TMI-2 defueling effort is to determine what occurred in the core region during the accident. Remote cameras and probes only portray a portion of the overall picture. What lies beneath the rubble bed and solidified sublayer is, as yet, unknown. This paper discusses the TMI-2 Core Boring Machine, which has been developed to drill into the damaged core of the TMI-2 reactor and extract stratified samples of the core. This machine, its unique support structure, positioning and leveling systems, and specially designed drill bits, combine to provide a unique mechanical system. In addition, the machine is controlled by a microprocessor; which actually controls the drilling operation, allowing relatively inexperienced operators to drill the core samples. A data acquisition system is data integral with the controlling system and collects data relative to system conditions and monitored parameters during drilling. Data obtained during the actual drilling operations are collected in a data base which will be used for actual mapping of the core region, identifying materials and stratification levels that are present

  9. Tunnel boring waste test plan

    International Nuclear Information System (INIS)

    Patricio, J.G.

    1984-03-01

    The test plan has been prepared in anticipation of the need to excavate certain repository openings by relying upon mechanical excavation techniques. The test plan proposes that specific technical issues can be resolved and key design parameters defined by excavating openings in basalt near the surface, utilizing a full face tunnel boring machine (TBM). The purpose and objective of this type of testing will define the overall feasibility and attributes of mechanical excavation in basalt. The test plan recognizes that although this technology is generally available for underground construction for some geologic settings, the current state of technology for excavation in basalt is limited and the potential for improvement is considerable. The test plan recommends that it is economically advantageous to conduct additional testing in the laboratory to allow refinement of this plan based on the laboratory results. Thus, this test plan is considered preliminary in nature, with respect to detailed testing recommendations. However, the gross design attributes and resource requirements of a near-surface TBM demonstration are considered to be valid. 15 refs., 7 figs., 3 tabs

  10. Tsunami engineering study in India

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    ronmental Laboratory at NOAA, USA has the tsunami - research program ( http://www.pmel.noaa.gov/tsunami/). Th e t sunami research group is part of the Civi l Engineering Department at the Universit y of Southern California where undergra - duate... the engineering point of view. The Tsunami Engineering Labor a tory at the graduate School of Engineering, Tohoku Unive r sit y (http://www.tsunami.civil.tohoku.a c.jp/ hokusai2/main/eng/index.html) offers r e- se arch programmes on tsunami. The Uni - versity...

  11. Ethylene glycol as bore fluid for hollow fiber membrane preparation

    KAUST Repository

    Le, Ngoc Lieu

    2017-03-31

    We proposed the use of ethylene glycol and its mixture with water as bore fluid for the preparation of poly(ether imide) (PEI) hollow fiber membranes and compared their performance and morphology with membranes obtained with conventional coagulants (water and its mixture with the solvent N-methylpyrrolidone (NMP)). Thermodynamics and kinetics of the systems were investigated. Water and 1:1 water:EG mixtures lead to fast precipitation rates. Slow precipitation is observed for both pure EG and 9:1 NMP:water mixture, but the reasons for that are different. While low osmotic driving force leads to slow NMP and water transport when NMP:water is used, the high EG viscosity is the reason for the slow phase separation when EG is the bore fluid. The NMP:water mixture produces fibers with mixed sponge-like and finger-like structure with large pores in the inner and outer layers; and hence leading to a high water permeance and a high MWCO suitable for separation of large-sized proteins. As compared to NMP:water, using EG as bore fluid provides fibers with a finger-like bilayered structure and sponge-like layers near the surfaces, and hence contributing to the higher water permeance. It also induces small pores for better protein rejection.

  12. Ethylene glycol as bore fluid for hollow fiber membrane preparation

    KAUST Repository

    Le, Ngoc Lieu; Nunes, Suzana Pereira

    2017-01-01

    We proposed the use of ethylene glycol and its mixture with water as bore fluid for the preparation of poly(ether imide) (PEI) hollow fiber membranes and compared their performance and morphology with membranes obtained with conventional coagulants (water and its mixture with the solvent N-methylpyrrolidone (NMP)). Thermodynamics and kinetics of the systems were investigated. Water and 1:1 water:EG mixtures lead to fast precipitation rates. Slow precipitation is observed for both pure EG and 9:1 NMP:water mixture, but the reasons for that are different. While low osmotic driving force leads to slow NMP and water transport when NMP:water is used, the high EG viscosity is the reason for the slow phase separation when EG is the bore fluid. The NMP:water mixture produces fibers with mixed sponge-like and finger-like structure with large pores in the inner and outer layers; and hence leading to a high water permeance and a high MWCO suitable for separation of large-sized proteins. As compared to NMP:water, using EG as bore fluid provides fibers with a finger-like bilayered structure and sponge-like layers near the surfaces, and hence contributing to the higher water permeance. It also induces small pores for better protein rejection.

  13. Tides and tsunamis

    Science.gov (United States)

    Zetler, B. D.

    1972-01-01

    Although tides and tsunamis are both shallow water waves, it does not follow that they are equally amenable to an observational program using an orbiting altimeter on a satellite. A numerical feasibility investigation using a hypothetical satellite orbit, real tide observations, and sequentially increased levels of white noise has been conducted to study the degradation of the tidal harmonic constants caused by adding noise to the tide data. Tsunami waves, possibly a foot high and one hundred miles long, must be measured in individual orbits, thus requiring high relative resolution.

  14. Tunnel Boring Machine Performance Study. Final Report

    Science.gov (United States)

    1984-06-01

    Full face tunnel boring machine "TBM" performance during the excavation of 6 tunnels in sedimentary rock is considered in terms of utilization, penetration rates and cutter wear. The construction records are analyzed and the results are used to inves...

  15. On the moroccan tsunami catalogue

    Directory of Open Access Journals (Sweden)

    F. Kaabouben

    2009-07-01

    Full Text Available A primary tool for regional tsunami hazard assessment is a reliable historical and instrumental catalogue of events. Morocco by its geographical situation, with two marine sides, stretching along the Atlantic coast to the west and along the Mediterranean coast to the north, is the country of Western Africa most exposed to the risk of tsunamis. Previous information on tsunami events affecting Morocco are included in the Iberian and/or the Mediterranean lists of tsunami events, as it is the case of the European GITEC Tsunami Catalogue, but there is a need to organize this information in a dataset and to assess the likelihood of claimed historical tsunamis in Morocco. Due to the fact that Moroccan sources are scarce, this compilation rely on historical documentation from neighbouring countries (Portugal and Spain and so the compatibility between the new tsunami catalogue presented here and those that correspond to the same source areas is also discussed.

  16. Tsunami mitigation by resonant triad interaction with acoustic-gravity waves.

    Science.gov (United States)

    Kadri, Usama

    2017-01-01

    Tsunamis have been responsible for the loss of almost a half million lives, widespread long lasting destruction, profound environmental effects, and global financial crisis, within the last two decades. The main tsunami properties that determine the size of impact at the shoreline are its wavelength and amplitude in the ocean. Here, we show that it is in principle possible to reduce the amplitude of a tsunami, and redistribute its energy over a larger space, through forcing it to interact with resonating acoustic-gravity waves. In practice, generating the appropriate acoustic-gravity modes introduces serious challenges due to the high energy required for an effective interaction. However, if the findings are extended to realistic tsunami properties and geometries, we might be able to mitigate tsunamis and so save lives and properties. Moreover, such a mitigation technique would allow for the harnessing of the tsunami's energy.

  17. Proposal of evaluation method of tsunami wave pressure using 2D depth-integrated flow simulation

    International Nuclear Information System (INIS)

    Arimitsu, Tsuyoshi; Ooe, Kazuya; Kawasaki, Koji

    2012-01-01

    To design and construct land structures resistive to tsunami force, it is most essential to evaluate tsunami pressure quantitatively. The existing hydrostatic formula, in general, tended to underestimate tsunami wave pressure under the condition of inundation flow with large Froude number. Estimation method of tsunami pressure acting on a land structure was proposed using inundation depth and horizontal velocity at the front of the structure, which were calculated employing a 2D depth-integrated flow model based on the unstructured grid system. The comparison between the numerical and experimental results revealed that the proposed method could reasonably reproduce the vertical distribution of the maximum tsunami pressure as well as the time variation of the tsunami pressure exerting on the structure. (author)

  18. Tsunami in the Arctic

    Science.gov (United States)

    Kulikov, Evgueni; Medvedev, Igor; Ivaschenko, Alexey

    2017-04-01

    The severity of the climate and sparsely populated coastal regions are the reason why the Russian part of the Arctic Ocean belongs to the least studied areas of the World Ocean. In the same time intensive economic development of the Arctic region, specifically oil and gas industry, require studies of potential thread natural disasters that can cause environmental and technical damage of the coastal and maritime infrastructure of energy industry complex (FEC). Despite the fact that the seismic activity in the Arctic can be attributed to a moderate level, we cannot exclude the occurrence of destructive tsunami waves, directly threatening the FEC. According to the IAEA requirements, in the construction of nuclear power plants it is necessary to take into account the impact of all natural disasters with frequency more than 10-5 per year. Planned accommodation in the polar regions of the Russian floating nuclear power plants certainly requires an adequate risk assessment of the tsunami hazard in the areas of their location. Develop the concept of tsunami hazard assessment would be based on the numerical simulation of different scenarios in which reproduced the hypothetical seismic sources and generated tsunamis. The analysis of available geological, geophysical and seismological data for the period of instrumental observations (1918-2015) shows that the highest earthquake potential within the Arctic region is associated with the underwater Mid-Arctic zone of ocean bottom spreading (interplate boundary between Eurasia and North American plates) as well as with some areas of continental slope within the marginal seas. For the Arctic coast of Russia and the adjacent shelf area, the greatest tsunami danger of seismotectonic origin comes from the earthquakes occurring in the underwater Gakkel Ridge zone, the north-eastern part of the Mid-Arctic zone. In this area, one may expect earthquakes of magnitude Mw ˜ 6.5-7.0 at a rate of 10-2 per year and of magnitude Mw ˜ 7.5 at a

  19. Boring of full scale deposition holes using a novel dry blind boring method

    International Nuclear Information System (INIS)

    Autio, J.; Kirkkomaeki, T.

    1996-11-01

    As a part of the Finnish radioactive waste disposal research three holes (the size of deposition holes) were bored in the research tunnel at Olkiluoto in Finland. A novel full-face boring technique was used based on rotary crushing of rock and removal of crushed rock by vacuum flushing through the drill string an the purpose of the work was to demonstrate the feasibility of the technique. During the boring test procedures were carried out in order to determine the effect of charges in operating parameters on the performance of the boring machine and the quality of the hole. (refs.)

  20. Boring of full scale deposition holes using a novel dry blind boring method

    Energy Technology Data Exchange (ETDEWEB)

    Autio, J.; Kirkkomaeki, T. [Saanio and Riekkola Consulting Engineers, Helsinki (Finland)

    1996-11-01

    As a part of the Finnish radioactive waste disposal research three holes (the size of deposition holes) were bored in the research tunnel at Olkiluoto in Finland. A novel full-face boring technique was used based on rotary crushing of rock and removal of crushed rock by vacuum flushing through the drill string an the purpose of the work was to demonstrate the feasibility of the technique. During the boring test procedures were carried out in order to determine the effect of charges in operating parameters on the performance of the boring machine and the quality of the hole. (refs.).

  1. Tsunami Forecasting: The 10 August 2009 Andaman tsunami Demonstrates Progress

    Science.gov (United States)

    Titov, Vasily; Moore, Christopher; Uslu, Burak; Kanoglu, Utku

    2010-05-01

    The 10 August 2009 Andaman non-destructive tsunami in the Indian Ocean demonstrated advances in creating a tsunami-resilient global society. Following the Indian Ocean tsunami on 26 December 2004, scientists at the National Oceanic and Atmospheric Administration Center for Tsunami Research (NCTR) at the Pacific Marine Environmental Laboratory (PMEL) developed an interface for its validated and verified tsunami numerical model Method of Splitting Tsunamis (MOST). MOST has been benchmarked substantially through analytical solutions, experimental results and field measurements (Synolakis et al., 2008). MOST and its interface the Community Model Interface for Tsunami (ComMIT) are distributed through extensive capacity-building sessions for the Indian Ocean nations using UNESCO/Intergovernmental Oceanographic Commission (IOC), AusAID, and USAID funding. Over one hundred-sixty scientists have been trained in tsunami inundation mapping, leading to the first generation of inundation models for many Indian Ocean shorelines. During the 10 August 2009 Andaman tsunami event, NCTR scientists exercised the forecast system in research mode using the first generation inundation models developed during ComMIT trainings. Assimilating key data from a Kingdom of Thailand tsunameter, coastal tsunami amplitudes were predicted in Indonesia, Thailand, and India coastlines, before the first tsunami arrival, using models developed by ComMIT trainees. Since its first test in 2003, one more time, NCTR's forecasting methodology proved the effectiveness of operational tsunami forecasting using real-time deep-ocean data assimilated into forecast models (Wei et al., 2008 and Titov, 2009). The 2009 Andaman tsunami demonstrated that operational tsunami forecasting tools are now available and coupled with inundation mapping tools can be effective and can reduce false alarms. International collaboration is required to fully utilize this technology's potential. Enhanced educational efforts both at

  2. Tsunami vs Infragravity Surge: Statistics and Physical Character of Extreme Runup

    Science.gov (United States)

    Lynett, P. J.; Montoya, L. H.

    2017-12-01

    Motivated by recent observations of energetic and impulsive infragravity (IG) flooding events - also known as sneaker waves - we will present recent work on the relative probabilities and dynamics of extreme flooding events from tsunamis and long period wind wave events. The discussion will be founded on videos and records of coastal flooding by both recent tsunamis and IG, such as those in the Philippines during Typhoon Haiyan. From these observations, it is evident that IG surges may approach the coast as breaking bores with periods of minutes; a very tsunami-like character. Numerical simulations will be used to estimate flow elevations and speeds from potential IG surges, and these will be compared with similar values from tsunamis, over a range of different beach profiles. We will examine the relative rareness of each type of flooding event, which for large values of IG runup is a particularly challenging topic. For example, for a given runup elevation or flooding speed, the related tsunami return period may be longer than that associated with IG, implying that deposit information associated with such elevations or speeds are more likely to be caused by IG. Our purpose is to provide a statistical and physical discriminant between tsunami and IG, such that in areas exposed to both, a proper interpretation of overland transport, deposition, and damage is possible.

  3. Alternative Tsunami Models

    Science.gov (United States)

    Tan, A.; Lyatskaya, I.

    2009-01-01

    The interesting papers by Margaritondo (2005 "Eur. J. Phys." 26 401) and by Helene and Yamashita (2006 "Eur. J. Phys." 27 855) analysed the great Indian Ocean tsunami of 2004 using a simple one-dimensional canal wave model, which was appropriate for undergraduate students in physics and related fields of discipline. In this paper, two additional,…

  4. Has the tsunami arrived? Part II.

    Science.gov (United States)

    Halverson, Dean; Glowac, Wayne

    2009-01-01

    Healthcare is an industry in the midst of significant change. After years of double-digit cost increases, the system has reached a tipping point. Where once only employers were heard crying out for change, the call is now coming from all levels of American society. The voice that is most important to effect change is the newest--that of the consumer. In part two of our overview of the healthcare tsunami, we hope to offer you some insights and practical ideas on how to improve the return on investment of your marketing. We believe those who work to understand the new market forces and react with insight will not just survive during the tsunami, they will thrive.

  5. NOAA/WDC Global Tsunami Deposits Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Discover where, when and how severely tsunamis affected Earth in geologic history. Information regarding Tsunami Deposits and Proxies for Tsunami Events complements...

  6. Modelling of Charles Darwin's tsunami reports

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    Darwin landed at Valdivia and Concepcion, Chile, just before, during, and after a great 1835 earthquake. He described his impressions and results of the earthquake-induced natural catastrophe in The Voyage of the Beagle. His description of the tsunami could easily be read as a report from Indonesia or Sri Lanka, after the catastrophic tsunami of 26 December 2004. In particular, Darwin emphasised the dependence of earthquake-induced waves on a form of the coast and the coastal depth: ‘… Talcuhano and Callao are situated at the head of great shoaling bays, and they have always suffered from this phenomenon; whereas, the town of Valparaiso, which is seated close on the border of a profound ocean... has never been overwhelmed by one of these terrific deluges…' . He reports also, that ‘… the whole body of the sea retires from the coast, and then returns in great waves of overwhelming force ...' (we cite the Darwin's sentences following researchspace. auckland. ac. nz/handle/2292/4474). The coastal evolution of a tsunami was analytically studied in many publications (see, for example, Synolakis, C.E., Bernard, E.N., 2006. Philos. Trans. R. Soc., Ser. A, 364, 2231-2265; Tinti, S., Tonini, R. 205. J.Fluid Mech., 535, 11-21). However, the Darwin's reports and the influence of the coastal depth on the formation and the evolution of the steep front and the profile of tsunami did not practically discuss. Recently, a mathematical theory of these phenomena was presented in researchspace. auckland. ac. nz/handle/2292/4474. The theory describes the waves which are excited due to nonlinear effects within a shallow coastal zone. The tsunami elevation is described by two components: . Here is the linear (prime) component. It describes the wave coming from the deep ocean. is the nonlinear component. This component may become very important near the coastal line. After that the theory of the shallow waves is used. This theory yields the linear equation for and the weakly

  7. Mechanisms for closing bores and releasably securing articles within the bores under longitudinal load

    International Nuclear Information System (INIS)

    Klahn, F.C.; Nolan, J.H.; Wills, C.

    1979-01-01

    This invention relates to mechanisms for closing bores of tubular passages and for releasably securing articles within the bores under longitudinal load. The system includes an axially movable latch, an actuator and locking devices. Embodiments of the invention can be used as closure mechanisms for tubular irradiation surveillance specimen assembly holders used in nuclear reactors. (UK)

  8. Mechanisms for closing bores and releasably securing articles within the bores under longitudinal load

    International Nuclear Information System (INIS)

    Kalen, D.D.; Mitchem, J.W.

    1979-01-01

    This invention relates to mechanisms for closing bores of tubular passages and for releasably securing articles within the bores under longitudinal load. The system includes an axially movable actuator and a latch which engages the tubular opening. Embodiments of the invention can be used as closure mechanisms for tubular irradiation surveillance specimen assembly holders used in nuclear reactors. (UK)

  9. When is a Tsunami a Mega-Tsunami?

    Science.gov (United States)

    Chague-Goff, C.; Goff, J. R.; Terry, J. P.; Goto, K.

    2014-12-01

    The 2004 Indian Ocean Tsunami is commonly called a mega-tsunami, and this attribute has also been linked to the 2011 Tohoku-oki tsunami. However, since this term was first coined in the early 1990's there have been very few attempts to define it. As such it has been applied in a rather arbitrary fashion to a number of tsunami characteristics, such as wave height or amplitude at both the source and at distant locations, run-up height, geographical extent and impact. The first use of the term is related to a tsunami generated by a large bolide impact and indeed it seems entirely appropriate that the term should be used for such rare events on geological timescales. However, probably as a result of media-driven hyperbole, scientists have used this term at least twice in the last decade, which is hardly a significant portion of the geological timescale. It therefore seems reasonable to suggest that these recent unexpectedly large events do not fall in the category of mega-tsunami but into a category of exceptional events within historical experience and local perspective. The use of the term mega-tsunami over the past 14 years is discussed and a definition is provided that marks the relative uniqueness of these events and a new term, appropriately Japanese in origin, namely that of souteigai-tsunami, is proposed. Examples of these tsunamis will be provided.

  10. Improving tsunami resiliency: California's Tsunami Policy Working Group

    Science.gov (United States)

    Real, Charles R.; Johnson, Laurie; Jones, Lucile M.; Ross, Stephanie L.; Kontar, Y.A.; Santiago-Fandiño, V.; Takahashi, T.

    2014-01-01

    California has established a Tsunami Policy Working Group to facilitate development of policy recommendations for tsunami hazard mitigation. The Tsunami Policy Working Group brings together government and industry specialists from diverse fields including tsunami, seismic, and flood hazards, local and regional planning, structural engineering, natural hazard policy, and coastal engineering. The group is acting on findings from two parallel efforts: The USGS SAFRR Tsunami Scenario project, a comprehensive impact analysis of a large credible tsunami originating from an M 9.1 earthquake in the Aleutian Islands Subduction Zone striking California’s coastline, and the State’s Tsunami Preparedness and Hazard Mitigation Program. The unique dual-track approach provides a comprehensive assessment of vulnerability and risk within which the policy group can identify gaps and issues in current tsunami hazard mitigation and risk reduction, make recommendations that will help eliminate these impediments, and provide advice that will assist development and implementation of effective tsunami hazard risk communication products to improve community resiliency.

  11. TSUNAMI INFORMATION SOURCES PART 3

    Directory of Open Access Journals (Sweden)

    Robert L. Wiegel

    2009-01-01

    Full Text Available This is Part 3 of Tsunami Information Sources published by Robert L. Wiegel, as Technical Report UCB/HEL 2006-3 of the Hydraulic Engineering Laboratory of the Department of Civil & Environmental Engineering of the University of California at Berkeley. Part 3 is published in "SCIENCE OF TSUNAMI HAZARDS" -with the author's permission -so that it can receive wider distribution and use by the Tsunami Scientific Community.

  12. The SAFRR Tsunami Scenario

    Science.gov (United States)

    Porter, K.; Jones, Lucile M.; Ross, Stephanie L.; Borrero, J.; Bwarie, J.; Dykstra, D.; Geist, Eric L.; Johnson, L.; Kirby, Stephen H.; Long, K.; Lynett, P.; Miller, K.; Mortensen, Carl E.; Perry, S.; Plumlee, G.; Real, C.; Ritchie, L.; Scawthorn, C.; Thio, H.K.; Wein, Anne; Whitmore, P.; Wilson, R.; Wood, Nathan J.; Ostbo, Bruce I.; Oates, Don

    2013-01-01

    The U.S. Geological Survey and several partners operate a program called Science Application for Risk Reduction (SAFRR) that produces (among other things) emergency planning scenarios for natural disasters. The scenarios show how science can be used to enhance community resiliency. The SAFRR Tsunami Scenario describes potential impacts of a hypothetical, but realistic, tsunami affecting California (as well as the west coast of the United States, Alaska, and Hawaii) for the purpose of informing planning and mitigation decisions by a variety of stakeholders. The scenario begins with an Mw 9.1 earthquake off the Alaska Peninsula. With Pacific basin-wide modeling, we estimate up to 5m waves and 10 m/sec currents would strike California 5 hours later. In marinas and harbors, 13,000 small boats are damaged or sunk (1 in 3) at a cost of $350 million, causing navigation and environmental problems. Damage in the Ports of Los Angeles and Long Beach amount to $110 million, half of it water damage to vehicles and containerized cargo. Flooding of coastal communities affects 1800 city blocks, resulting in $640 million in damage. The tsunami damages 12 bridge abutments and 16 lane-miles of coastal roadway, costing $85 million to repair. Fire and business interruption losses will substantially add to direct losses. Flooding affects 170,000 residents and workers. A wide range of environmental impacts could occur. An extensive public education and outreach program is underway, as well as an evaluation of the overall effort.

  13. Post Fukushima tsunami simulations for Malaysian coasts

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Hock Lye, E-mail: kohhl@ucsiuniversity.edu.my [Office of Deputy Vice Chancellor for Research and Post Graduate Studies, UCSI University, Jalan Menara Gading, 56000 Kuala Lumpur (Malaysia); Teh, Su Yean, E-mail: syteh@usm.my [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Abas, Mohd Rosaidi Che [Malaysian Meteorological Department, MOSTI, Kuala Lumpur (Malaysia)

    2014-10-24

    The recent recurrences of mega tsunamis in the Asian region have rekindled concern regarding potential tsunamis that could inflict severe damage to affected coastal facilities and communities. The 11 March 2011 Fukushima tsunami that crippled nuclear power plants in Northern Japan has further raised the level of caution. The recent discovery of petroleum reserves in the coastal water surrounding Malaysia further ignites the concern regarding tsunami hazards to petroleum facilities located along affected coasts. Working in a group, federal government agencies seek to understand the dynamics of tsunami and their impacts under the coordination of the Malaysian National Centre for Tsunami Research, Malaysian Meteorological Department. Knowledge regarding the generation, propagation and runup of tsunami would provide the scientific basis to address safety issues. An in-house tsunami simulation models known as TUNA has been developed by the authors to assess tsunami hazards along affected beaches so that mitigation measures could be put in place. Capacity building on tsunami simulation plays a critical role in the development of tsunami resilience. This paper aims to first provide a simple introduction to tsunami simulation towards the achievement of tsunami simulation capacity building. The paper will also present several scenarios of tsunami dangers along affected Malaysia coastal regions via TUNA simulations to highlight tsunami threats. The choice of tsunami generation parameters reflects the concern following the Fukushima tsunami.

  14. Stochastic evaluation of tsunami inundation and quantitative estimating tsunami risk

    International Nuclear Information System (INIS)

    Fukutani, Yo; Anawat, Suppasri; Abe, Yoshi; Imamura, Fumihiko

    2014-01-01

    We performed a stochastic evaluation of tsunami inundation by using results of stochastic tsunami hazard assessment at the Soma port in the Tohoku coastal area. Eleven fault zones along the Japan trench were selected as earthquake faults generating tsunamis. The results show that estimated inundation area of return period about 1200 years had good agreement with that in the 2011 Tohoku earthquake. In addition, we evaluated quantitatively tsunami risk for four types of building; a reinforced concrete, a steel, a brick and a wood at the Soma port by combining the results of inundation assessment and tsunami fragility assessment. The results of quantitative estimating risk would reflect properly vulnerability of the buildings, that the wood building has high risk and the reinforced concrete building has low risk. (author)

  15. Malaria - Africa's silent tsunami | CRDI - Centre de recherches pour ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... help those in distress was justifiably roused following the Indian Ocean tsunami. ... Now there is a rapid movement to a “culture” or norm of net use. ... At the time, however, virtually all mosquito nets were imported from Asia, ... L'union fait la force : des universités africaines se regroupent pour avoir plus de bande passante.

  16. Tsunami hazard assessment in the Hudson River Estuary based on dynamic tsunami-tide simulations

    Science.gov (United States)

    Shelby, Michael; Grilli, Stéphan T.; Grilli, Annette R.

    2016-12-01

    This work is part of a tsunami inundation mapping activity carried out along the US East Coast since 2010, under the auspice of the National Tsunami Hazard Mitigation program (NTHMP). The US East Coast features two main estuaries with significant tidal forcing, which are bordered by numerous critical facilities (power plants, major harbors,...) as well as densely built low-level areas: Chesapeake Bay and the Hudson River Estuary (HRE). HRE is the object of this work, with specific focus on assessing tsunami hazard in Manhattan, the Hudson and East River areas. In the NTHMP work, inundation maps are computed as envelopes of maximum surface elevation along the coast and inland, by simulating the impact of selected probable maximum tsunamis (PMT) in the Atlantic ocean margin and basin. At present, such simulations assume a static reference level near shore equal to the local mean high water (MHW) level. Here, instead we simulate maximum inundation in the HRE resulting from dynamic interactions between the incident PMTs and a tide, which is calibrated to achieve MHW at its maximum level. To identify conditions leading to maximum tsunami inundation, each PMT is simulated for four different phases of the tide and results are compared to those obtained for a static reference level. We first separately simulate the tide and the three PMTs that were found to be most significant for the HRE. These are caused by: (1) a flank collapse of the Cumbre Vieja Volcano (CVV) in the Canary Islands (with a 80 km3 volume representing the most likely extreme scenario); (2) an M9 coseismic source in the Puerto Rico Trench (PRT); and (3) a large submarine mass failure (SMF) in the Hudson River canyon of parameters similar to the 165 km3 historical Currituck slide, which is used as a local proxy for the maximum possible SMF. Simulations are performed with the nonlinear and dispersive long wave model FUNWAVE-TVD, in a series of nested grids of increasing resolution towards the coast, by one

  17. In-bore instrumentation/diagnostics for large-bore EMLs

    International Nuclear Information System (INIS)

    Fernandez, M.J.; Ager, S.A.; Hudson, R.D.

    1991-01-01

    This paper reports on a flying laboratory technique of in-bore diagnostics for large-bore electromagnetic launchers (EMLs). The high pressure, heat, and magnetic flux environment of the EML and its containment structures do not allow easy implementation of conventional diagnostic techniques. Researchers have relied on remote sensing methods, such as B probes (isolated from the bore), for data. The accuracy and relevance of such discrete, remote measurement is somewhat questionable. An in-house program has been initiated to determine the feasibility of making measurement of EML parameters on board a projectile. This technique utilizes off-the-shelf components in a configuration that has been proven effective in measuring projectile acceleration in the bore of propellant driven guns

  18. The Global Tsunami Model (GTM)

    Science.gov (United States)

    Lorito, S.; Basili, R.; Harbitz, C. B.; Løvholt, F.; Polet, J.; Thio, H. K.

    2017-12-01

    The tsunamis occurred worldwide in the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but often disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.

  19. An Evaluation of Infrastructure for Tsunami Evacuation in Padang, West Sumatra, Indonesia (Invited)

    Science.gov (United States)

    Cedillos, V.; Canney, N.; Deierlein, G.; Diposaptono, S.; Geist, E. L.; Henderson, S.; Ismail, F.; Jachowski, N.; McAdoo, B. G.; Muhari, A.; Natawidjaja, D. H.; Sieh, K. E.; Toth, J.; Tucker, B. E.; Wood, K.

    2009-12-01

    Padang has one of the world’s highest tsunami risks due to its high hazard, vulnerable terrain and population density. The current strategy to prepare for tsunamis in Padang is focused on developing early warning systems, planning evacuation routes, conducting evacuation drills, and raising local awareness. Although these are all necessary, they are insufficient. Padang’s proximity to the Sunda Trench and flat terrain make reaching safe ground impossible for much of the population. The natural warning in Padang - a strong earthquake that lasts over a minute - will be the first indicator of a potential tsunami. People will have about 30 minutes after the earthquake to reach safe ground. It is estimated that roughly 50,000 people in Padang will be unable to evacuate in that time. Given these conditions, other means to prepare for the expected tsunami must be developed. With this motivation, GeoHazards International and Stanford University’s Chapter of Engineers for a Sustainable World partnered with Indonesian organizations - Andalas University and Tsunami Alert Community in Padang, Laboratory for Earth Hazards, and the Ministry of Marine Affairs and Fisheries - in an effort to evaluate the need for and feasibility of tsunami evacuation infrastructure in Padang. Tsunami evacuation infrastructure can include earthquake-resistant bridges and evacuation structures that rise above the maximum tsunami water level, and can withstand the expected earthquake and tsunami forces. The choices for evacuation structures vary widely - new and existing buildings, evacuation towers, soil berms, elevated highways and pedestrian overpasses. This interdisciplinary project conducted a course at Stanford University, undertook several field investigations, and concluded that: (1) tsunami evacuation structures and bridges are essential to protect the people in Padang, (2) there is a need for a more thorough engineering-based evaluation than conducted to-date of the suitability of

  20. Great Earthquakes, Gigantic Landslides, and the Continuing Enigma of the April Fool's Tsunami of 1946

    Science.gov (United States)

    Fryer, G. J.; Tryon, M. D.

    2005-12-01

    Paleotsunami studies can extend the record of great earthquakes back into prehistory, but what if the historical record itself is ambiguous? There is growing controversy about whether great earthquakes really occur along the Shumagin and Unimak segments of the Alaska-Aleutian system. The last great tsunami there was April 1, 1946, initiated by an earthquake whose magnitude has variously been reported from 7.1 to 8.5. Okal et al (BSSA, 2003) surveyed the near-field runup and concluded there were two sources: a magnitude 8.5 earthquake, which generated a Pacific-wide tsunami but which produced near-field runups no more than 18 m, and an earthquake-triggered slump whose tsunami reached 42 m at Scotch Cap Light near the western end of Unimak Island, but with runup rapidly decaying eastwards. An M8.5 earthquake, however, is incompatible with GPS strain measurements, which indicate that the maximum earthquake size off Unimak is M7.5. We have long contended that near- and far-field tsunamis were the result of a single earthquake-triggered debris avalanche down the Aleutian slope. In 2004 we were part of an expedition to map and explore the landslide, whose location seemed to be very tightly constrained by the known tsunami travel time to Scotch Cap Light. We found that neither our giant landslide nor Okal et al's smaller slump exist within 100 km of the presumed location. The explanation is obvious in retrospect: the tsunami was so large that it crossed the shallow Aleutian shelf as a bore travelling faster than the theoretical long-wave speed (which we had used to fix the location). Any landslide could only have occurred in an unsurveyed area farther east, off Unimak Bight, the central coast of Unimak Island. That location, however, conflicts with Okal et al's measurements of smaller runup along the Bight. We are now convinced that Okal et al confused the 1946 debris line with the lower line left by the 1957 tsunami. They were apparently unaware that the 1946 tsunami

  1. Tension Tests On Bored Piles In Sand

    DEFF Research Database (Denmark)

    Krabbenhøft, Sven; Clausen, Johan; Damkilde, Lars

    2006-01-01

    The lengths of the bored piles varied from 2 m to 6 m and all were of a diameter of 140 mm. The piles were tested to failure in tension and the load-displacement relations were recorded. The investigation has shown pronounced differences between the load bearing capacities obtained by different...... design methods. The methods proposed by Fleming et al. and Reese & O’Neill seem to produce the best match with the test results....

  2. Integrated test plan for directional boring

    International Nuclear Information System (INIS)

    Volk, B.W.

    1993-01-01

    This integrated test plan describes the field testing of the DITCH WITCH Directional Boring System. DITCH WITCH is a registered trademark of The Charles Machine Works, Inc., Perry, Oklahoma. The test is being conducted as a coordinated effort between Charles Machine Works (CMW), Sandia National Laboratories (SNL), and the Westinghouse Hanford Company (WHC). Funding for the WHC portion of the project is through the Volatile Organic Compound-Arid Integrated Demonstration (VOC-Arid ID). The purpose of the test is to evaluate the performance of the directional boring system for possible future use on environmental restoration projects at Hanford and other Department of Energy (DOE) sites. The test will be conducted near the 200 Areas Fire Station located between the 200 East and 200 West Area of the Hanford Site. The directional boring system will be used to drill and complete (with fiberglass casing) two horizontal boreholes. A third borehole will be drilled to test sampling equipment but will not be completed with casing

  3. Community exposure to tsunami hazards in Hawai‘i

    Science.gov (United States)

    Jones, Jamie L.; Jamieson, Matthew R.; Wood, Nathan J.

    2016-06-17

    Hawai‘i has experienced numerous destructive tsunamis and the potential for future inundation has been described over the years using various historical events and scenarios. To support tsunami preparedness and risk-reduction planning in Hawai‘i, this study documents the variations among 91 coastal communities and 4 counties in the amounts, types, and percentages of developed land, residents, employees, community-support businesses, dependent-care facilities, public venues, and critical facilities in a composite extreme tsunami-inundation zone associated with two great Aleutian moment magnitude (Mw) 9.3 and 9.6 earthquake scenarios. These earthquake scenarios are considered to provide the maximum tsunami scenario for the Hawaiian Islands. According to 2010 U.S. Census Bureau data, the Hawai‘i extreme tsunami-inundation zone contains approximately 248,749 residents and 91,528 households (18 and 20 percent, respectively, of State totals). The residential population in tsunami-prone areas is racially diverse, with most residents identifying themselves as White (47 percent of the total exposed population), Asian (48 percent), or Native Hawaiian and Other Pacific Islander (29 percent), either alone or in combination with one or more other races (note that race categories do not sum to 100 percent because individuals were able to report multiple races in the 2010 U.S. Census). A total of 50,016 households are renter-occupied, making up 55 percent of total households in the extreme inundation zone. The extreme tsunami-inundation zone contains 18,693 businesses (37 percent of State totals) and 245,827 employees (42 percent of the State labor force). The employee population in the extreme tsunami-inundation zone is largely in the accommodation and food services and retail-trade sectors. Although occupancy values are not known for each facility, the extreme tsunami-inundation zone also contains numerous community-support businesses (for example, religious organizations

  4. Boring of full scale deposition holes using a novel dry blind boring method

    Energy Technology Data Exchange (ETDEWEB)

    Autio, J.; Kirkkomaeki, T. [Saanio and Riekkola Oy, Helsinki (Finland)

    1996-10-01

    Three holes the size of deposition holes (depth 7.5 m and diameter 1.5 m) were bored in the Research Tunnel at Olkiluoto, Finland. A novel full-face boring technique was used based on rotary crushing of rock and removal of crushed rock by vacuum flushing through the drill string. The purpose of the work was to demonstrate the feasibility of the technique. During the boring test procedures were carried out in order to determine the effect of changes in operating parameters on the performance of the boring machine and the quality of the hole. The boring method was found to be technically feasible and efficient. Evaluation of the quality of the hole included studies of the geometry of the hole, measurements of the surface roughness using a laser profilometer and study of excavation disturbances in the zone adjacent to the surface of the holes using two novel methods, He-gas diffusion and the {sup 14}C-polymethylmethacrylate methods. 43 refs.

  5. Source mechanisms of volcanic tsunamis.

    Science.gov (United States)

    Paris, Raphaël

    2015-10-28

    Volcanic tsunamis are generated by a variety of mechanisms, including volcano-tectonic earthquakes, slope instabilities, pyroclastic flows, underwater explosions, shock waves and caldera collapse. In this review, we focus on the lessons that can be learnt from past events and address the influence of parameters such as volume flux of mass flows, explosion energy or duration of caldera collapse on tsunami generation. The diversity of waves in terms of amplitude, period, form, dispersion, etc. poses difficulties for integration and harmonization of sources to be used for numerical models and probabilistic tsunami hazard maps. In many cases, monitoring and warning of volcanic tsunamis remain challenging (further technical and scientific developments being necessary) and must be coupled with policies of population preparedness. © 2015 The Author(s).

  6. TSUNAMI HAZARD IN NORTHERN VENEZUELA

    Directory of Open Access Journals (Sweden)

    B. Theilen-Willige

    2006-01-01

    Full Text Available Based on LANDSAT ETM and Digital Elevation Model (DEM data derived by the Shuttle Radar Topography Mission (SRTM, 2000 of the coastal areas of Northern Venezuela were investigated in order to detect traces of earlier tsunami events. Digital image processing methods used to enhance LANDSAT ETM imageries and to produce morphometric maps (such as hillshade, slope, minimum and maximum curvature maps based on the SRTM DEM data contribute to the detection of morphologic traces that might be related to catastrophic tsunami events. These maps combined with various geodata such as seismotectonic data in a GIS environment allow the delineation of coastal regions with potential tsunami risk. The LANDSAT ETM imageries merged with digitally processed and enhanced SRTM data clearly indicate areas that might be prone by flooding in case of catastrophic tsunami events.

  7. The Tsunami Project: Integrating engineering, natural and social sciences into post-tsunami surveys

    Science.gov (United States)

    McAdoo, B. G.; Goff, J. R.; Fritz, H. M.; Cochard, R.; Kong, L. S.

    2009-12-01

    Complexities resulting from recent tsunamis in the Solomon Islands (2007), Java (2006) and Sumatra (2004, 2005) have demonstrated the need for an integrated, interdisciplinary team of engineers, natural and social scientists to better understand the nature of the disaster. Documenting the complex interactions in the coupled human-environment system necessitate a coordinated, interdisciplinary approach that combines the strengths of engineering, geoscience, ecology and social science. Engineers, modelers and geoscientists untangle the forces required to leave an imprint of a tsunami in the geologic record. These same forces affect ecosystems that provide services from buffers to food security; therefore coastal ecologists play a vital role. It is also crucial to understand the social structures that contribute to disasters, so local or regional policy experts, planners, economists, etc. should be included. When these experts arrive in a disaster area as part of an Interdisciplinary Tsunami Survey Team, the interactions between the systems can be discussed in the field, and site-specific data can be collected. A diverse team in the field following a tsunami shares critical resources and discoveries in real-time, making the survey more efficient. Following the 2006 Central Java earthquake and tsunami, civil engineers covered broad areas quickly, collecting ephemeral water level data and communicating areas of interest to the geologists, who would follow to do the slower sediment data collection. The 2007 Solomon Islands earthquake and tsunami caused extensive damage to the coral reef, which highlighting the need to have an ecologist on the team who was able to identify species and their energy tolerance. Rather than diluting the quality of post-tsunami data collection, this approach in fact strengthens it- engineers and geoscientists no longer have to indentify coral or mangrove species, nor do ecologists evaluate the velocity of a wave as it impacted a forested

  8. Generation of deterministic tsunami hazard maps in the Bay of Cadiz, south-west Spain

    Science.gov (United States)

    Álvarez-Gómez, J. A.; Otero, L.; Olabarrieta, M.; González, M.; Carreño, E.; Baptista, M. A.; Miranda, J. M.; Medina, R.; Lima, V.

    2009-04-01

    The bay of Cádiz is a densely populated and industrialized area, and an important centre of tourism which multiplies its population in the summer months. This bay is situated in the Gulf of Cádiz, the south-west Atlantic margin of the Iberian Peninsula. From a tectonic point of view this area can be defined as a diffuse plate boundary, comprising the eastern edge of the Gloria and Tydeman transforms (where the deformation is mainly concentrated in these shear corridors), the Gorringe Bank, the Horseshoe Abyssal plain, the Portimao and Guadalquivir banks, and the western termination of the arcuated Gibraltar Arc. This deformation zone is the eastern edge of the Azores - Gibraltar seismic zone, being the present day boundary between the Eurasian and African plates. The motion between the plates is mainly convergent in the Gulf of Cádiz, but gradually changes to almost pure transcurrent along the Gloria Fault. The relative motion between the two plates is of the order of 4-5 mm/yr. In order to define the different tsunamigenic zones and to characterize its worst tsunamigenic source we have used seismic, structural and geological data. The numerical model used to simulate the wave propagation and coastal inundation is the C3 (Cantabria, COMCOT and Tsunami-Claw) model. C3 is a hybrid finite difference-finite volume method which balances between efficiency and accuracy. For offshore domain in deep waters the model applies an explicit finite difference scheme (FD), which is computationally fast and accurate in large grids. For near coast domains in coastal areas, it applies a finite volume scheme (VOF). It solves correctly the bore formation and the bore propagation. It is very effective solving the run-up and the run down. A set of five worst case tsunamigenic sources has been used with four different sea levels (minimum tide, most probable low tide, most probable high tide and maximum tide), in order to produce the following thematic maps with the C3 model: maximum

  9. TSUNAMI INFORMATION SOURCES PART 2

    Directory of Open Access Journals (Sweden)

    Robert L. Wiegel

    2006-01-01

    Full Text Available Tsunami Information Sources (Robert L. Wiegel, University of California, Berkeley, CA, UCB/HEL 2005-1, 14 December 2005, 115 pages, is available in printed format, and on a diskette. It is also available in electronic format at the Water Resources Center Archives, University of California, Berkeley, CA http:www.lib.berkeley.edu/WRCA/tsunamis.htmland in the International Journal of The Tsunami Society, Science of Tsunami Hazards (Vol. 24, No. 2, 2006, pp 58-171 at http://www.sthjournal.org/sth6.htm.This is Part 2 of the report. It has two components. They are: 1.(Sections A and B. Sources added since the first report, and corrections to a few listed in the first report. 2.(Sections C and D. References from both the first report and this report, listed in two categories:Section C. Planning and engineering design for tsunami mitigation/protection; adjustments to the hazard; damage to structures and infrastructureSection D. Tsunami propagation nearshore; induced oscillations; runup/inundation (flooding and drawdown.

  10. Tsunami risk mapping simulation for Malaysia

    Science.gov (United States)

    Teh, S.Y.; Koh, H. L.; Moh, Y.T.; De Angelis, D. L.; Jiang, J.

    2011-01-01

    The 26 December 2004 Andaman mega tsunami killed about a quarter of a million people worldwide. Since then several significant tsunamis have recurred in this region, including the most recent 25 October 2010 Mentawai tsunami. These tsunamis grimly remind us of the devastating destruction that a tsunami might inflict on the affected coastal communities. There is evidence that tsunamis of similar or higher magnitudes might occur again in the near future in this region. Of particular concern to Malaysia are tsunamigenic earthquakes occurring along the northern part of the Sunda Trench. Further, the Manila Trench in the South China Sea has been identified as another source of potential tsunamigenic earthquakes that might trigger large tsunamis. To protect coastal communities that might be affected by future tsunamis, an effective early warning system must be properly installed and maintained to provide adequate time for residents to be evacuated from risk zones. Affected communities must be prepared and educated in advance regarding tsunami risk zones, evacuation routes as well as an effective evacuation procedure that must be taken during a tsunami occurrence. For these purposes, tsunami risk zones must be identified and classified according to the levels of risk simulated. This paper presents an analysis of tsunami simulations for the South China Sea and the Andaman Sea for the purpose of developing a tsunami risk zone classification map for Malaysia based upon simulated maximum wave heights. ?? 2011 WIT Press.

  11. Pulverization of boron element and proportions of boron carbide in boron; Broyage de bore element et dosage de carbure de bore dans le bore

    Energy Technology Data Exchange (ETDEWEB)

    Lang, F M; Finck, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    It is possible to reduce boron element into fine powder by means of a mortar and pestle made of sintered boron carbide, the ratio of boron carbide introduced being less than one per cent. Boron element at our disposal is made of sharp edged, dark brown, little grains of average size greater than 5 {mu}. Grain sizes smaller than 1{mu} are required for applying thin layers of such boron. (author) [French] Il est possible de pulveriser finement du bore element au moyen de mortier et pilon en carbure de bore fritte, le taux de carbure de bore introduit etant inferieur a 1 pour cent. Le bore element dont nous disposons est constitue de petits grains brun fonce, a aretes vives, de dimension moyenne superieure a 5 {mu}. L'application de ce bore en couches minces demande des grains de dimensions inferieures a 1 {mu}. (aute0008.

  12. Simulation of bearing capacity of bored piles

    Directory of Open Access Journals (Sweden)

    Majeed Ahmed

    2018-01-01

    Full Text Available This study focuses on how one can possibly predict the ultimate load for the piles that did not reach failure. This challenge was acquired through Chin- Konder method by which, the estimated settlement that correspond to failure load is well defined. Hence, this research aims to make a comparative study between the results of pile load tests carried out in Al-Basrah sewage treatment plant project, and those results induced from the numerical analysis in term of ultimate pile capacity. Consequently, it may give a clear idea on the ability of numerical simulation in getting close to the actual behavior of piles. In the current study, a numerical study using Plaxis 3D Foundation program has been performed on bored piles by the assistance of site investigations of soil. Mohr- Coulomb and linear elastic models were adopted in the simulation for soil and pile respectively. Ten bored piles were used in this analysis under different values of loading. The diameter and length of pile are 0.6m and 24m respectively. The test results indicate that, an excellent agreement has been found as a response of pile capacity between the field and numerical studies. Also, ideal load- settlement curves were created using Chin- Konder method to predict the failure load of bored piles. Also, the results have demonstrated that, the pile capacity obtained from the simulation process is larger about 51% than that design load estimated before the design of piles. This may present a priority to use the finite element method to be accounted as an effective approach in the primary analysis.

  13. A Computer-Controlled Laser Bore Scanner

    Science.gov (United States)

    Cheng, Charles C.

    1980-08-01

    This paper describes the design and engineering of a laser scanning system for production applications. The laser scanning techniques, the timing control, the logic design of the pattern recognition subsystem, the digital computer servo control for the loading and un-loading of parts, and the laser probe rotation and its synchronization will be discussed. The laser inspection machine is designed to automatically inspect the surface of precision-bored holes, such as those in automobile master cylinders, without contacting the machined surface. Although the controls are relatively sophisticated, operation of the laser inspection machine is simple. A laser light beam from a commercially available gas laser, directed through a probe, scans the entire surface of the bore. Reflected light, picked up through optics by photoelectric sensors, generates signals that are fed to a mini-computer for processing. A pattern recognition techniques program in the computer determines acceptance or rejection of the part being inspected. The system's acceptance specifications are adjustable and are set to the user's established tolerances. However, the computer-controlled laser system is capable of defining from 10 to 75 rms surface finish, and voids or flaws from 0.0005 to 0.020 inch. Following the successful demonstration with an engineering prototype, the described laser machine has proved its capability to consistently ensure high-quality master brake cylinders. It thus provides a safety improvement for the automotive braking system. Flawless, smooth cylinder bores eliminate premature wearing of the rubber seals, resulting in a longer-lasting master brake cylinder and a safer and more reliable automobile. The results obtained from use of this system, which has been in operation about a year for replacement of a tedious, manual operation on one of the high-volume lines at the Bendix Hydraulics Division, have been very satisfactory.

  14. Large Bore Powder Gun Qualification (U)

    Energy Technology Data Exchange (ETDEWEB)

    Rabern, Donald A. [Los Alamos National Laboratory; Valdiviez, Robert [Los Alamos National Laboratory

    2012-04-02

    A Large Bore Powder Gun (LBPG) is being designed to enable experimentalists to characterize material behavior outside the capabilities of the NNSS JASPER and LANL TA-55 PF-4 guns. The combination of these three guns will create a capability to conduct impact experiments over a wide range of pressures and shock profiles. The Large Bore Powder Gun will be fielded at the Nevada National Security Site (NNSS) U1a Complex. The Complex is nearly 1000 ft below ground with dedicated drifts for testing, instrumentation, and post-shot entombment. To ensure the reliability, safety, and performance of the LBPG, a qualification plan has been established and documented here. Requirements for the LBPG have been established and documented in WE-14-TR-0065 U A, Large Bore Powder Gun Customer Requirements. The document includes the requirements for the physics experiments, the gun and confinement systems, and operations at NNSS. A detailed description of the requirements is established in that document and is referred to and quoted throughout this document. Two Gun and Confinement Systems will be fielded. The Prototype Gun will be used primarily to characterize the gun and confinement performance and be the primary platform for qualification actions. This gun will also be used to investigate and qualify target and diagnostic modifications through the life of the program (U1a.104 Drift). An identical gun, the Physics Gun, will be fielded for confirmatory and Pu experiments (U1a.102D Drift). Both guns will be qualified for operation. The Gun and Confinement System design will be qualified through analysis, inspection, and testing using the Prototype Gun for the majority of process. The Physics Gun will be qualified through inspection and a limited number of qualification tests to ensure performance and behavior equivalent to the Prototype gun. Figure 1.1 shows the partial configuration of U1a and the locations of the Prototype and Physics Gun/Confinement Systems.

  15. Measurement of Antenna Bore-Sight Gain

    Science.gov (United States)

    Fortinberry, Jarrod; Shumpert, Thomas H.

    2016-01-01

    The absolute or free-field gain of a simple antenna can be approximated using standard antenna theory formulae or for a more accurate prediction, numerical methods may be employed to solve for antenna parameters including gain. Both of these methods will result in relatively reasonable estimates but in practice antenna gain is usually verified and documented via measurements and calibration. In this paper, a relatively simple and low-cost, yet effective means of determining the bore-sight free-field gain of a VHF/UHF antenna is proposed by using the Brewster angle relationship.

  16. The Bored Self in Knowledge Work

    DEFF Research Database (Denmark)

    Costas, Jana; Kärreman, Dan

    2016-01-01

    of the bored self as a combination of unfilled aspirations and the sense of stagnation, leading to an arrested identity. Our contribution is to expand extant conceptualizations of employee interactions with identity regulation, in particular relating to identity work and identification. The findings provide......This article draws attention to reported experiences of boredom in knowledge work. Drawing on extensive qualitative data gathered at two management consultancy firms, we analyze these experiences as a particular interaction with identity regulation and work experiences. We conceptualize the reports...

  17. Midway Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midway Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a suite...

  18. Yakutat Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Yakutat, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  19. Historical Tsunami Event Locations with Runups

    Data.gov (United States)

    Department of Homeland Security — The Global Historical Tsunami Database provides information on over 2,400 tsunamis from 2100 BC to the present in the the Atlantic, Indian, and Pacific Oceans; and...

  20. Bermuda Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Bermuda Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  1. Washington Tsunami Hazard Mitigation Program

    Science.gov (United States)

    Walsh, T. J.; Schelling, J.

    2012-12-01

    Washington State has participated in the National Tsunami Hazard Mitigation Program (NTHMP) since its inception in 1995. We have participated in the tsunami inundation hazard mapping, evacuation planning, education, and outreach efforts that generally characterize the NTHMP efforts. We have also investigated hazards of significant interest to the Pacific Northwest. The hazard from locally generated earthquakes on the Cascadia subduction zone, which threatens tsunami inundation in less than hour following a magnitude 9 earthquake, creates special problems for low-lying accretionary shoreforms in Washington, such as the spits of Long Beach and Ocean Shores, where high ground is not accessible within the limited time available for evacuation. To ameliorate this problem, we convened a panel of the Applied Technology Council to develop guidelines for construction of facilities for vertical evacuation from tsunamis, published as FEMA 646, now incorporated in the International Building Code as Appendix M. We followed this with a program called Project Safe Haven (http://www.facebook.com/ProjectSafeHaven) to site such facilities along the Washington coast in appropriate locations and appropriate designs to blend with the local communities, as chosen by the citizens. This has now been completed for the entire outer coast of Washington. In conjunction with this effort, we have evaluated the potential for earthquake-induced ground failures in and near tsunami hazard zones to help develop cost estimates for these structures and to establish appropriate tsunami evacuation routes and evacuation assembly areas that are likely to to be available after a major subduction zone earthquake. We intend to continue these geotechnical evaluations for all tsunami hazard zones in Washington.

  2. A Hybrid Tsunami Risk Model for Japan

    Science.gov (United States)

    Haseemkunju, A. V.; Smith, D. F.; Khater, M.; Khemici, O.; Betov, B.; Scott, J.

    2014-12-01

    Around the margins of the Pacific Ocean, denser oceanic plates slipping under continental plates cause subduction earthquakes generating large tsunami waves. The subducting Pacific and Philippine Sea plates create damaging interplate earthquakes followed by huge tsunami waves. It was a rupture of the Japan Trench subduction zone (JTSZ) and the resultant M9.0 Tohoku-Oki earthquake that caused the unprecedented tsunami along the Pacific coast of Japan on March 11, 2011. EQECAT's Japan Earthquake model is a fully probabilistic model which includes a seismo-tectonic model describing the geometries, magnitudes, and frequencies of all potential earthquake events; a ground motion model; and a tsunami model. Within the much larger set of all modeled earthquake events, fault rupture parameters for about 24000 stochastic and 25 historical tsunamigenic earthquake events are defined to simulate tsunami footprints using the numerical tsunami model COMCOT. A hybrid approach using COMCOT simulated tsunami waves is used to generate inundation footprints, including the impact of tides and flood defenses. Modeled tsunami waves of major historical events are validated against observed data. Modeled tsunami flood depths on 30 m grids together with tsunami vulnerability and financial models are then used to estimate insured loss in Japan from the 2011 tsunami. The primary direct report of damage from the 2011 tsunami is in terms of the number of buildings damaged by municipality in the tsunami affected area. Modeled loss in Japan from the 2011 tsunami is proportional to the number of buildings damaged. A 1000-year return period map of tsunami waves shows high hazard along the west coast of southern Honshu, on the Pacific coast of Shikoku, and on the east coast of Kyushu, primarily associated with major earthquake events on the Nankai Trough subduction zone (NTSZ). The highest tsunami hazard of more than 20m is seen on the Sanriku coast in northern Honshu, associated with the JTSZ.

  3. Numerical modelling and evacuation strategies for tsunami awareness: lessons from the 2012 Haida Gwaii Tsunami

    OpenAIRE

    Santos, Angela; Tavares, Alexandre Oliveira; Queirós, Margarida

    2016-01-01

    On October 28, 2012, an earthquake occurred offshore Canada, with a magnitude Mw of 7.8, triggering a tsunami that propagated through the Pacific Ocean. The tsunami numerical model results show it would not be expected to generate widespread inundation on Hawaii. Yet, two hours after the earthquake, the Pacific Tsunami Warning Centre (PTWC) issued a tsunami warning to the state of Hawaii. Since the state was hit by several tsunamis in the past, regular siren exercises, tsuna...

  4. Synthetic tsunamis along the Israeli coast.

    Science.gov (United States)

    Tobias, Joshua; Stiassnie, Michael

    2012-04-13

    The new mathematical model for tsunami evolution by Tobias & Stiassnie (Tobias & Stiassnie 2011 J. Geophys. Res. Oceans 116, C06026) is used to derive a synthetic tsunami database for the southern part of the Eastern Mediterranean coast. Information about coastal tsunami amplitudes, half-periods, currents and inundation levels is presented.

  5. Conditions for tidal bore formation in convergent alluvial estuaries

    Science.gov (United States)

    Bonneton, Philippe; Filippini, Andrea Gilberto; Arpaia, Luca; Bonneton, Natalie; Ricchiuto, Mario

    2016-04-01

    Over the last decade there has been an increasing interest in tidal bore dynamics. However most studies have been focused on small-scale bore processes. The present paper describes the first quantitative study, at the estuary scale, of the conditions for tidal bore formation in convergent alluvial estuaries. When freshwater discharge and large-scale spatial variations of the estuary water depth can be neglected, tide propagation in such estuaries is controlled by three main dimensionless parameters: the nonlinearity parameter ε0 , the convergence ratio δ0 and the friction parameter ϕ0. In this paper we explore this dimensionless parameter space, in terms of tidal bore occurrence, from a database of 21 estuaries (8 tidal-bore estuaries and 13 non tidal-bore estuaries). The field data point out that tidal bores occur for convergence ratios close to the critical convergence δc. A new proposed definition of the friction parameter highlights a clear separation on the parameter plane (ϕ0,ε0) between tidal-bore estuaries and non tidal-bore estuaries. More specifically, we have established that tidal bores occur in convergent estuaries when the nonlinearity parameter is greater than a critical value, εc , which is an increasing function of the friction parameter ϕ0. This result has been confirmed by numerical simulations of the two-dimensional Saint Venant equations. The real-estuary observations and the numerical simulations also show that, contrary to what is generally assumed, tide amplification is not a necessary condition for tidal bore formation. The effect of freshwater discharge on tidal bore occurrence has been analyzed from the database acquired during three long-term campaigns carried out on the Gironde/Garonne estuary. We have shown that in the upper estuary the tidal bore intensity is mainly governed by the local dimensionless tide amplitude ε. The bore intensity is an increasing function of ε and this relationship does not depend on freshwater

  6. Integrating Caribbean Seismic and Tsunami Hazard into Public Policy and Action

    Science.gov (United States)

    von Hillebrandt-Andrade, C.

    2012-12-01

    The Caribbean has a long history of tsunamis and earthquakes. Over the past 500 years, more than 80 tsunamis have been documented in the region by the NOAA National Geophysical Data Center. Almost 90% of all these historical tsunamis have been associated with earthquakes. Just since 1842, 3510 lives have been lost to tsunamis; this is more than in the Northeastern Pacific for the same time period. With a population of almost 160 million and a heavy concentration of residents, tourists, businesses and critical infrastructure along the Caribbean shores (especially in the northern and eastern Caribbean), the risk to lives and livelihoods is greater than ever before. Most of the countries also have a very high exposure to earthquakes. Given the elevated vulnerability, it is imperative that government officials take steps to mitigate the potentially devastating effects of these events. Nevertheless, given the low frequency of high impact earthquakes and tsunamis, in comparison to hurricanes, combined with social and economic considerations, the needed investments are not made and disasters like the 2010 Haiti earthquake occur. In the absence of frequent significant events, an important driving force for public officials to take action, is the dissemination of scientific studies. When papers of this nature have been published and media advisories issued, public officials demonstrate heightened interest in the topic which in turn can lead to increased legislation and funding efforts. This is especially the case if the material can be easily understood by the stakeholders and there is a local contact. In addition, given the close link between earthquakes and tsunamis, in Puerto Rico alone, 50% of the high impact earthquakes have also generated destructive tsunamis, it is very important that earthquake and tsunami hazards studies demonstrate consistency. Traditionally in the region, earthquake and tsunami impacts have been considered independently in the emergency planning

  7. Seaside, Oregon, Tsunami Vulnerability Assessment Pilot Study

    Science.gov (United States)

    Dunbar, P. K.; Dominey-Howes, D.; Varner, J.

    2006-12-01

    The results of a pilot study to assess the risk from tsunamis for the Seaside-Gearhart, Oregon region will be presented. To determine the risk from tsunamis, it is first necessary to establish the hazard or probability that a tsunami of a particular magnitude will occur within a certain period of time. Tsunami inundation maps that provide 100-year and 500-year probabilistic tsunami wave height contours for the Seaside-Gearhart, Oregon, region were developed as part of an interagency Tsunami Pilot Study(1). These maps provided the probability of the tsunami hazard. The next step in determining risk is to determine the vulnerability or degree of loss resulting from the occurrence of tsunamis due to exposure and fragility. The tsunami vulnerability assessment methodology used in this study was developed by M. Papathoma and others(2). This model incorporates multiple factors (e.g. parameters related to the natural and built environments and socio-demographics) that contribute to tsunami vulnerability. Data provided with FEMA's HAZUS loss estimation software and Clatsop County, Oregon, tax assessment data were used as input to the model. The results, presented within a geographic information system, reveal the percentage of buildings in need of reinforcement and the population density in different inundation depth zones. These results can be used for tsunami mitigation, local planning, and for determining post-tsunami disaster response by emergency services. (1)Tsunami Pilot Study Working Group, Seaside, Oregon Tsunami Pilot Study--Modernization of FEMA Flood Hazard Maps, Joint NOAA/USGS/FEMA Special Report, U.S. National Oceanic and Atmospheric Administration, U.S. Geological Survey, U.S. Federal Emergency Management Agency, 2006, Final Draft. (2)Papathoma, M., D. Dominey-Howes, D.,Y. Zong, D. Smith, Assessing Tsunami Vulnerability, an example from Herakleio, Crete, Natural Hazards and Earth System Sciences, Vol. 3, 2003, p. 377-389.

  8. Tsunami Forecast for Galapagos Islands

    Science.gov (United States)

    Renteria, W.

    2012-04-01

    The objective of this study is to present a model for the short-term and long-term tsunami forecast for Galapagos Islands. For both cases the ComMIT/MOST(Titov,et al 2011) numerical model and methodology have been used. The results for the short-term model has been compared with the data from Lynett et al, 2011 surveyed from the impacts of the March/11 in the Galapagos Islands. For the case of long-term forecast, several scenarios have run along the Pacific, an extreme flooding map is obtained, the method is considered suitable for places with poor or without tsunami impact information, but under tsunami risk geographic location.

  9. The Sri Lanka tsunami experience.

    Science.gov (United States)

    Yamada, Seiji; Gunatilake, Ravindu P; Roytman, Timur M; Gunatilake, Sarath; Fernando, Thushara; Fernando, Lalan

    2006-01-01

    The Indian Ocean tsunami of 2004 killed 31,000 people in Sri Lanka and produced morbidity primarily resulting from near-drownings and traumatic injuries. In the immediate aftermath, the survivors brought bodies to the hospitals, which hampered the hospitals' operations. The fear of epidemics led to mass burials. Infectious diseases were prevented through the provision of clean water and through vector control. Months after the tsunami, little rebuilding of permanent housing was evident, and many tsunami victims continued to reside in transit camps without means of generating their own income. The lack of an incident command system, limited funding, and political conflicts were identified as barriers to optimal relief efforts. Despite these barriers, Sri Lanka was fortunate in drawing upon a well-developed community health infrastructure as well as local and international resources. The need continues for education and training in clinical skills for mass rescue and emergency treatment, as well as participation in a multidisciplinary response.

  10. Seismic source characterisation of a Tunnel Boring Machine (TBM)

    Science.gov (United States)

    Kreutzer, Ingrid; Brückl, Ewald; Radinger, Alexander

    2015-04-01

    The Tunnel Seismic While Drilling (TSWD) method aims at predicting continuously the geological situation ahead of the tunnel without disturbing the construction work. Thereby the Tunnel Boring Machine (TBM) itself is used as seismic source. The cutting process generates seismic waves radiating into the rock mass and vibrations propagating to the main bearing of the cutter head. These vibrations are monitored and used as pilot signal. For the processing and interpretation it was hypothesized so far that the TBM acts like a single force. To prove this assumption the radiation pattern of several TBM's under construction were investigated. Therefore 3-components geophones were installed at the surface, which were situated directly above the tunnel axes and also with lateral offset. Additional, borehole geophones were placed in the wall of one tube of a two-tube tunnel. The geophones collected the forward and backward radiated wave field, as the TBM, operating in the other tube, passed their positions. The obtained seismic data contains continuous records over a range of 600 m of the TBM position. The offsets vary from 25 m to 400 m and the frequency ranges from 20-250 Hertz. The polarisation of the p-wave and the s-wave and their amplitude ratio were determined and compared with modelled seismograms with different source mechanism. The results show that the description of the source mechanism by a single force can be used as a first order approximation. More complex radiation pattern including tensile forces and several source locations like the transmission of reaction forces over the gripper to the tunnel wall are further tested and addressed.

  11. On the characteristics of landslide tsunamis.

    Science.gov (United States)

    Løvholt, F; Pedersen, G; Harbitz, C B; Glimsdal, S; Kim, J

    2015-10-28

    This review presents modelling techniques and processes that govern landslide tsunami generation, with emphasis on tsunamis induced by fully submerged landslides. The analysis focuses on a set of representative examples in simplified geometries demonstrating the main kinematic landslide parameters influencing initial tsunami amplitudes and wavelengths. Scaling relations from laboratory experiments for subaerial landslide tsunamis are also briefly reviewed. It is found that the landslide acceleration determines the initial tsunami elevation for translational landslides, while the landslide velocity is more important for impulsive events such as rapid slumps and subaerial landslides. Retrogressive effects stretch the tsunami, and in certain cases produce enlarged amplitudes due to positive interference. In an example involving a deformable landslide, it is found that the landslide deformation has only a weak influence on tsunamigenesis. However, more research is needed to determine how landslide flow processes that involve strong deformation and long run-out determine tsunami generation. © 2015 The Authors.

  12. Tsunami response system for ports in Korea

    Science.gov (United States)

    Cho, H.-R.; Cho, J.-S.; Cho, Y.-S.

    2015-09-01

    The tsunamis that have occurred in many places around the world over the past decade have taken a heavy toll on human lives and property. The eastern coast of the Korean Peninsula is not safe from tsunamis, particularly the eastern coastal areas, which have long sustained tsunami damage. The eastern coast had been attacked by 1983 and 1993 tsunami events. The aim of this study was to mitigate the casualties and property damage against unexpected tsunami attacks along the eastern coast of the Korean Peninsula by developing a proper tsunami response system for important ports and harbors with high population densities and high concentrations of key national industries. The system is made based on numerical and physical modelings of 3 historical and 11 virtual tsunamis events, field surveys, and extensive interviews with related people.

  13. Automating horizontal boring and milling machine

    International Nuclear Information System (INIS)

    Naqvi, S.A.R.; Mahmood, T.; Choudhry, M.A.; Hanif, A.

    2012-01-01

    Aiming at the requirements of modification for many old import machine tools in industry, the schemes suited to the renovation are presented in this paper. A horizontal boring and milling machine (HBM) involved in machining of tank Al-Khalid has been modified using Mitsubishi FX-1N and FX-2N PLC. The developed software is for control of all the functions of the said machine. These functions include power on/off oil pump, spindle rotation and machine movement in all axes. All the decisions required by the machine for actuation of instructions are based on the data acquired from the control panel, timers and limit switches. Also the developed software minimize the down time, safety of operator and error free actuation of instructions. (author)

  14. Borehole imaging tool detects well bore fractures

    International Nuclear Information System (INIS)

    Ma, T.A.; Bigelow, E.L.

    1993-01-01

    This paper reports on borehole imaging data which can provide high quality geological and petrophysical information to improve fracture identification, dip computations, and lithology determinations in a well bore. The ability to visually quantify the area of a borehole wall occupied by fractures and vugs enhances reservoir characterization and well completion operations. The circumferential borehole imaging log (CBIL) instrument is an acoustic logging device designed to produce a map of the entire borehole wall. The visual images can confirm computed dips and the geological features related to dip. Borehole geometry, including breakout, are accurately described by complete circumferential caliper measurements, which is important information for drilling and completion engineers. In may reservoirs, the images can identify porosity type, bedding characteristics, and petrophysical parameters

  15. Analysis of Tsunami Culture in Countries Affected by Recent Tsunamis

    NARCIS (Netherlands)

    Esteban, M.; Tsimopoulou, V.; Shibayama, T.; Mikami, T.; Ohira, K.

    2012-01-01

    Since 2004 there is a growing global awareness of the risks that tsunamis pose to coastal communities. Despite the fact that these events were already an intrinsic part of the culture of some countries (such as Chile and Japan), in many other places they had been virtually unheard of before 2004.

  16. Formulating entompathogens for control of boring beetles in avocado orchards

    Science.gov (United States)

    A foam formulation of Beauveria bassiana was adapted to control boring beetles in avocado orchards. The two geographically independent avocado growing areas in the United States are threatened by emerging diseases vectored by boring beetles. In the California growing region, Fusarium dieback is vect...

  17. Key technologies of drilling process with raise boring method

    Directory of Open Access Journals (Sweden)

    Zhiqiang Liu

    2015-08-01

    Full Text Available This study presents the concept of shaft constructed by raise boring in underground mines, and the idea of inverse construction can be extended to other fields of underground engineering. The conventional raise boring methods, such as the wood support method, the hanging cage method, the creeping cage method, and the deep-hole blasting method, are analyzed and compared. In addition, the raise boring machines are classified into different types and the characteristics of each type are described. The components of a raise boring machine including the drill rig, the drill string and the auxiliary system are also presented. Based on the analysis of the raise boring method, the rock mechanics problems during the raise boring process are put forward, including rock fragmentation, removal of cuttings, shaft wall stability, and borehole deviation control. Finally, the development trends of raise boring technology are described as follows: (i improvement of rock-breaking modes to raise drilling efficiency, (ii development of an intelligent control technique, and (iii development of technology and equipment for nonlinear raise boring.

  18. Inversion of the perturbation GPS-TEC data induced by tsunamis in order to estimate the sea level anomaly.

    Science.gov (United States)

    Rakoto, Virgile; Lognonné, Philippe; Rolland, Lucie; Coïsson, Pierdavide; Drilleau, Mélanie

    2017-04-01

    Large underwater earthquakes (Mw > 7) can transmit part of their energy to the surrounding ocean through large sea-floor motions, generating tsunamis that propagate over long distances. The forcing effect of tsunami waves on the atmosphere generate internal gravity waves which produce detectable ionospheric perturbations when they reach the upper atmosphere. Theses perturbations are frequently observed in the total electron content (TEC) measured by the multi-frequency Global navigation Satellite systems (GNSS) data (e.g., GPS,GLONASS). In this paper, we performed for the first time an inversion of the sea level anomaly using the GPS TEC data using a least square inversion (LSQ) through a normal modes summation modeling technique. Using the tsunami of the 2012 Haida Gwaii in far field as a test case, we showed that the amplitude peak to peak of the sea level anomaly inverted using this method is below 10 % error. Nevertheless, we cannot invert the second wave arriving 20 minutes later. This second wave is generaly explain by the coastal reflection which the normal modeling does not take into account. Our technique is then applied to two other tsunamis : the 2006 Kuril Islands tsunami in far field, and the 2011 Tohoku tsunami in closer field. This demonstrates that the inversion using a normal mode approach is able to estimate fairly well the amplitude of the first arrivals of the tsunami. In the future, we plan to invert in real the TEC data in order to retrieve the tsunami height.

  19. Tsunami of 26 December 2004

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    In the absence of earlier studies, an attempt is made to identify the vulnerable areas of the Indian coast for the damages due to Tsunami based on an earlier study reported in the context of sea level rise due to greenhouse effect. It is inferred...

  20. The Pacific tsunami warning system

    Science.gov (United States)

    Pararas-Carayannis, G.

    1986-01-01

    Of all natural disasters, tsunamis are among the most terrifying and complex phenomena, responsible for great loss of lives and vast destruction of property. Enormous destruction of coastal communities has taken place throughout the world by such great waves since the beginning of recorded history.

  1. Nowcasting Earthquakes and Tsunamis

    Science.gov (United States)

    Rundle, J. B.; Turcotte, D. L.

    2017-12-01

    . As another application, we can define large rectangular regions of subduction zones and shallow depths to compute the progress of the fault zone towards the next major tsunami-genic earthquake. We can then rank the relative progress of the major subduction zones of the world through their cycles of large earthquakes using this method to determine which zones are most at risk.

  2. THE ALL-SOURCE GREEN’S FUNCTION AND ITS APPLICATIONS TO TSUNAMI PROBLEMS

    Directory of Open Access Journals (Sweden)

    ZHIGANG XU

    2007-01-01

    Full Text Available The classical Green’s function provides the global linear response to impulse forcing at a particular source location. It is a type of one-source-all-receiver Green’s function. This paper presents a new type of Green’s function, referred to as the all-source-one-receiver, or for short the all-source Green’s function (ASGF, in which the solution at a point of interest (POI can be written in terms of global forcing without requiring the solution at other locations. The ASGF is particularly applicable to tsunami problems. The response to forcing anywhere in the global ocean can be determined within a few seconds on an ordinary personal computer or on a web server. The ASGF also brings in two new types of tsunami charts, one for the arrival time and the second for the gain, without assuming the location of the epicenter or reversibility of the tsunami travel path. Thus it provides a useful tool for tsunami hazard preparedness and to rapidly calculate the real-time responses at selected POIs for a tsunami generated anywhere in the world’s oceans.

  3. Defining Tsunami Magnitude as Measure of Potential Impact

    Science.gov (United States)

    Titov, V. V.; Tang, L.

    2016-12-01

    The goal of tsunami forecast, as a system for predicting potential impact of a tsunami at coastlines, requires quick estimate of a tsunami magnitude. This goal has been recognized since the beginning of tsunami research. The work of Kajiura, Soloviev, Abe, Murty, and many others discussed several scales for tsunami magnitude based on estimates of tsunami energy. However, difficulties of estimating tsunami energy based on available tsunami measurements at coastal sea-level stations has carried significant uncertainties and has been virtually impossible in real time, before tsunami impacts coastlines. The slow process of tsunami magnitude estimates, including collection of vast amount of available coastal sea-level data from affected coastlines, made it impractical to use any tsunami magnitude scales in tsunami warning operations. Uncertainties of estimates made tsunami magnitudes difficult to use as universal scale for tsunami analysis. Historically, the earthquake magnitude has been used as a proxy of tsunami impact estimates, since real-time seismic data is available of real-time processing and ample amount of seismic data is available for an elaborate post event analysis. This measure of tsunami impact carries significant uncertainties in quantitative tsunami impact estimates, since the relation between the earthquake and generated tsunami energy varies from case to case. In this work, we argue that current tsunami measurement capabilities and real-time modeling tools allow for establishing robust tsunami magnitude that will be useful for tsunami warning as a quick estimate for tsunami impact and for post-event analysis as a universal scale for tsunamis inter-comparison. We present a method for estimating the tsunami magnitude based on tsunami energy and present application of the magnitude analysis for several historical events for inter-comparison with existing methods.

  4. Evolution of tsunami warning systems and products.

    Science.gov (United States)

    Bernard, Eddie; Titov, Vasily

    2015-10-28

    Each year, about 60 000 people and $4 billion (US$) in assets are exposed to the global tsunami hazard. Accurate and reliable tsunami warning systems have been shown to provide a significant defence for this flooding hazard. However, the evolution of warning systems has been influenced by two processes: deadly tsunamis and available technology. In this paper, we explore the evolution of science and technology used in tsunami warning systems, the evolution of their products using warning technologies, and offer suggestions for a new generation of warning products, aimed at the flooding nature of the hazard, to reduce future tsunami impacts on society. We conclude that coastal communities would be well served by receiving three standardized, accurate, real-time tsunami warning products, namely (i) tsunami energy estimate, (ii) flooding maps and (iii) tsunami-induced harbour current maps to minimize the impact of tsunamis. Such information would arm communities with vital flooding guidance for evacuations and port operations. The advantage of global standardized flooding products delivered in a common format is efficiency and accuracy, which leads to effectiveness in promoting tsunami resilience at the community level. © 2015 The Authors.

  5. Evolution of tsunami warning systems and products

    Science.gov (United States)

    Bernard, Eddie; Titov, Vasily

    2015-01-01

    Each year, about 60 000 people and $4 billion (US$) in assets are exposed to the global tsunami hazard. Accurate and reliable tsunami warning systems have been shown to provide a significant defence for this flooding hazard. However, the evolution of warning systems has been influenced by two processes: deadly tsunamis and available technology. In this paper, we explore the evolution of science and technology used in tsunami warning systems, the evolution of their products using warning technologies, and offer suggestions for a new generation of warning products, aimed at the flooding nature of the hazard, to reduce future tsunami impacts on society. We conclude that coastal communities would be well served by receiving three standardized, accurate, real-time tsunami warning products, namely (i) tsunami energy estimate, (ii) flooding maps and (iii) tsunami-induced harbour current maps to minimize the impact of tsunamis. Such information would arm communities with vital flooding guidance for evacuations and port operations. The advantage of global standardized flooding products delivered in a common format is efficiency and accuracy, which leads to effectiveness in promoting tsunami resilience at the community level. PMID:26392620

  6. Tsunami Numerical Simulation for Hypothetical Giant or Great Earthquakes along the Izu-Bonin Trench

    Science.gov (United States)

    Harada, T.; Ishibashi, K.; Satake, K.

    2013-12-01

    . Tsunami propagation was computed by the finite-difference method of the non-liner long-wave equations with Corioli's force (Satake, 1995, PAGEOPH) in the area of 130 - 145°E and 25 - 37°N. The 15-seconds gridded bathymetry data are used. The tsunami propagations for eight hours since the faulting of the various fault models were computed. As a result, large tsunamis from assumed giant/great both interplate and outer-rise earthquakes reach the Ryukyu Islands' coasts and the Pacific coasts of Kyushu, Shikoku and western Honshu west of Kanto. Therefore, the tsunami simulations support the Ishibashi and Harada's hypothesis. At the time of writing, the best yet preliminary model to reproduce the 1605 tsunami heights is an outer-rise steep fault model which extends 26.5 - 29.0°N (300 km of length) and with 16.7 m of average slip (Mw 8.6). We will examine tsunami behavior in the Pacific Ocean from this fault model. To examine our results, field investigations of tsunami deposits in the Bonin Islands and discussions on plate dynamics and seismogenic characteristics along the Izu-Bonin trench are necessary.

  7. Persistence motives in irrational decisions to complete a boring task.

    Science.gov (United States)

    Halkjelsvik, Torleif; Rise, Jostein

    2015-01-01

    We explored a novel task paradigm where participants from the online work marketplace Amazon Mechanical Turk were given the choice to quit or continue an unfinished boring task for identical economic rewards. In Studies 1a and 1b, about half the participants chose to continue (corresponding to an average of 55 and 35 cents in foregone earnings). Participants' self-reported reasons for continuing involved various types of persistence motives, reflecting a desire to persist or complete per se. Studies 2, 3a, 3b, and 3c ruled out the possibility that people continued because they enjoyed the task or believed there were additional rewards for continuing. Study 4 showed that the choice to quit/continue was associated with the manner in which the choice was presented (persistence test vs. decision-making test) and individual differences in dispositional persistence motives. The present data indicate that motivational forces independent of the focal reward may affect intertemporal decisions. © 2014 by the Society for Personality and Social Psychology, Inc.

  8. Simulation of Tsunami Resistance of a Pinus Thunbergii tree in Coastal Forest in Japan

    Science.gov (United States)

    Nanko, K.; Suzuki, S.; Noguchi, H.; Hagino, H.

    2015-12-01

    Forests reduce fluid force of tsunami, whereas extreme tsunami sometimes breaks down the forest trees. It is difficult to estimate the interactive relationship between the fluid and the trees because fluid deform tree architecture and deformed tree changes flow field. Dynamic tree deformation and fluid behavior should be clarified by fluid-structure interaction analysis. For the initial step, we have developed dynamic simulation of tree sway and breakage caused by tsunami based on a vibrating system with multiple degrees of freedom. The target specie of the simulation was Japanese black pine (pinus thunbergii), which is major specie in the coastal forest to secure livelihood area from the damage by blown sand and salt in Japanese coastal area. For the simulation, a tree was segmented into 0.2 m long circular truncated cones. Turning moment induced by tsunami and self-weight was calculated at each segment bottom. Tree deformation was computed on multi-degree-of-freedom vibration equation. Tree sway was simulated by iterative calculation of the tree deformation with time step 0.05 second with temporally varied flow velocity of tsunami. From the calculation of bending stress and turning moment at tree base, we estimated resistance of a Pinus thunbergii tree from tsunami against tree breakage.

  9. Revisiting resolution in hydrodynamic countercurrent chromatography: tubing bore effect.

    Science.gov (United States)

    Berthod, A; Faure, K

    2015-04-17

    A major challenge in countercurrent chromatography (CCC), the technique that works with a support-free biphasic liquid system, is to retain the liquid stationary phase inside the CCC column (Sf parameter). Two solutions are commercially available: the hydrostatic CCC columns, also called centrifugal partition chromatographs (CPC), with disks of interconnected channels and rotary seals, and the hydrodynamic CCC columns with bobbins of coiled open tube and no rotary seals. It was demonstrated that the amount of liquid stationary phase retained by a coiled tube was higher with larger bore tubing than with small bore tubes. At constant column volume, small bore tubing will be longer producing more efficiency than larger bore tube that will better retain the liquid stationary phase. Since the resolution equation in CCC is depending on both column efficiency and stationary phase retention ratio, the influence of the tubing bore should be studied. This theoretical work showed that there is an optimum tubing bore size depending on solute partition coefficient and mobile phase flow rate. The interesting result of the theoretical study is that larger tubing bores allow for dramatically reduced experiment durations for all solutes: in reversed phase CCC (polar mobile phase), hydrophobic solutes are usually highly retained. These apolar solutes can be separated by the same coil at high flow rates and reduced Sf with similar retention times as polar solutes separated at smaller flow rates and much higher Sf. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Issues of tsunami hazard maps revealed by the 2011 Tohoku tsunami

    Science.gov (United States)

    Sugimoto, M.

    2013-12-01

    Tsunami scientists are imposed responsibilities of selection for people's tsunami evacuation place after the 2011 Tohoku Tsunami in Japan. A lot of matured people died out of tsunami hazard zone based on tsunami hazard map though students made a miracle by evacuation on their own judgment in Kamaishi city. Tsunami hazard maps were based on numerical model smaller than actual magnitude 9. How can we bridge the gap between hazard map and future disasters? We have to discuss about using tsunami numerical model better enough to contribute tsunami hazard map. How do we have to improve tsunami hazard map? Tsunami hazard map should be revised included possibility of upthrust or downthrust after earthquakes and social information. Ground sank 1.14m below sea level in Ayukawa town, Tohoku. Ministry of Land, Infrastructure, Transport and Tourism's research shows around 10% people know about tsunami hazard map in Japan. However, people know about their evacuation places (buildings) through experienced drills once a year even though most people did not know about tsunami hazard map. We need wider spread of tsunami hazard with contingency of science (See the botom disaster handbook material's URL). California Emergency Management Agency (CEMA) team practically shows one good practice and solution to me. I followed their field trip in Catalina Island, California in Sep 2011. A team members are multidisciplinary specialists: A geologist, a GIS specialist, oceanographers in USC (tsunami numerical modeler) and a private company, a local policeman, a disaster manager, a local authority and so on. They check field based on their own specialties. They conduct an on-the-spot inspection of ambiguous locations between tsunami numerical model and real field conditions today. The data always become older. They pay attention not only to topographical conditions but also to social conditions: vulnerable people, elementary schools and so on. It takes a long time to check such field

  11. Osedax borings in fossil marine bird bones

    Science.gov (United States)

    Kiel, Steffen; Kahl, Wolf-Achim; Goedert, James L.

    2011-01-01

    The bone-eating marine annelid Osedax consumes mainly whale bones on the deep-sea floor, but recent colonization experiments with cow bones and molecular age estimates suggesting a possible Cretaceous origin of Osedax indicate that this worm might be able grow on a wider range of substrates. The suggested Cretaceous origin was thought to imply that Osedax could colonize marine reptile or fish bones, but there is currently no evidence that Osedax consumes bones other than those of mammals. We provide the first evidence that Osedax was, and most likely still is, able to consume non-mammalian bones, namely bird bones. Borings resembling those produced by living Osedax were found in bones of early Oligocene marine flightless diving birds (family Plotopteridae). The species that produced these boreholes had a branching filiform root that grew to a length of at least 3 mm, and lived in densities of up to 40 individuals per square centimeter. The inclusion of bird bones into the diet of Osedax has interesting implications for the recent suggestion of a Cretaceous origin of this worm because marine birds have existed continuously since the Cretaceous. Bird bones could have enabled this worm to survive times in the Earth's history when large marine vertebrates other than fish were rare, specifically after the disappearance of large marine reptiles at the end-Cretaceous mass extinction event and before the rise of whales in the Eocene.

  12. Bored tunnel storage of nuclear waste

    International Nuclear Information System (INIS)

    Penberthy, L.

    1983-01-01

    Contrary to the current emphasis on deep geologic disposal of high-level nuclear waste, simple bored tunnels offer many advantages. Much lower cost is important in this period of severe budget crisis. Recoverability is feasible from a tunnel in a mountain, but dubious from a flooded mine 3000 ft deep. It is quite possible that the world will need the breeder energy cycle urgently 200 years from now. In the writer's opinion, it would be a sin for our generation to make so much fertile and fissile uranium fuel unavailable for future generations. Storage conditions in a near-surface repository are much better than deep because the temperature can be kept down, pressure will be atmospheric instead of potentially 1200 psi, and flooding will not occur. The so-called ''hydrothermal'' conditions are thus completely avoided. Accordingly, endless studies of hydrogeology, water pathway times, waste-host rock interactions and the like are unnecessary, and the time for action is much shorter

  13. Optimization of large bore gas engine

    International Nuclear Information System (INIS)

    Laiminger, S.

    1999-01-01

    This doctoral thesis is concerned with the experimental part of combustion optimization of a large bore gas engine. Nevertheless there was a very close co-operation with the simultaneous numeric simulation. The terms of reference were a systematic investigation of the optimization potential of the current combustion mode with the objective target to get a higher brake efficiency and lower NO x emissions. In a second part a new combustion mode for fuels containing H 2 , for fuels with very low heating value and for special fuels should be developed. The optimization contained all relevant components of the engine to achieve a stable and well suited combustion with short duration even with very lean mixture. After the optimization the engine was running stable with substantial lower NO x emissions. It was world-wide the first time when a gas medium-sized engine could reach a total electrical efficiency of more than 40 percent. Finally a combustion mode for gaseous fuels containing H 2 was developed. The engine is running now with direct ignition and with prechamber ignition. Both modes reach approximately the same efficiency and thermodynamic stability. (author)

  14. Year in diabetes 2012: The diabetes tsunami.

    Science.gov (United States)

    Sherwin, R; Jastreboff, A M

    2012-12-01

    Diabetes affects more than 300 million individuals globally, contributing to significant morbidity and mortality worldwide. As the incidence and prevalence of diabetes continue to escalate with the force of an approaching tsunami, it is imperative that we better define the biological mechanisms causing both obesity and diabetes and identify optimal prevention and treatment strategies that will enable a healthier environment and calmer waters. New guidelines from the American Diabetes Association/European Association of the Study of Diabetes and The Endocrine Society encourage individualized care for each patient with diabetes, both in the outpatient and inpatient setting. Recent data suggest that restoration of normal glucose metabolism in people with prediabetes may delay progression to type 2 diabetes (T2DM). However, several large clinical trials have underscored the limitations of current treatment options once T2DM has developed, particularly in obese children with the disease. Prospects for reversing new-onset type 1 diabetes also appear limited, although recent clinical trials indicate that immunotherapy can delay the loss of β-cell function, suggesting potential benefits if treatment is initiated earlier. Research demonstrating a role for the central nervous system in the development of obesity and T2DM, the identification of a new hormone that simulates some of the benefits of exercise, and the development of new β-cell imaging techniques may provide novel therapeutic targets and biomarkers of early diabetes detection for optimization of interventions. Today's message is that a diabetes tsunami is imminent, and the only way to minimize the damage is to create an early warning system and improve interventions to protect those in its path.

  15. Challenges in Defining Tsunami Wave Height

    Science.gov (United States)

    Stroker, K. J.; Dunbar, P. K.; Mungov, G.; Sweeney, A.; Arcos, N. P.

    2017-12-01

    The NOAA National Centers for Environmental Information (NCEI) and co-located World Data Service for Geophysics maintain the global tsunami archive consisting of the historical tsunami database, imagery, and raw and processed water level data. The historical tsunami database incorporates, where available, maximum wave heights for each coastal tide gauge and deep-ocean buoy that recorded a tsunami signal. These data are important because they are used for tsunami hazard assessment, model calibration, validation, and forecast and warning. There have been ongoing discussions in the tsunami community about the correct way to measure and report these wave heights. It is important to understand how these measurements might vary depending on how the data were processed and the definition of maximum wave height. On September 16, 2015, an 8.3 Mw earthquake located 48 km west of Illapel, Chile generated a tsunami that was observed all over the Pacific region. We processed the time-series water level data for 57 tide gauges that recorded this tsunami and compared the maximum wave heights determined from different definitions. We also compared the maximum wave heights from the NCEI-processed data with the heights reported by the NOAA Tsunami Warning Centers. We found that in the near field different methods of determining the maximum tsunami wave heights could result in large differences due to possible instrumental clipping. We also found that the maximum peak is usually larger than the maximum amplitude (½ peak-to-trough), but the differences for the majority of the stations were Warning Centers. Since there is currently only one field in the NCEI historical tsunami database to store the maximum tsunami wave height, NCEI will consider adding an additional field for the maximum peak measurement.

  16. Tsunami Propagation Models Based on First Principles

    Science.gov (United States)

    2012-11-21

    geodesic lines from the epicenter shown in the figure are great circles with a longitudinal separation of 90o, which define a ‘ lune ’ that covers one...past which the waves begin to converge according to Model C. A tsunami propagating in this lune does not encounter any continental landmass until...2011 Japan tsunami in a lune of angle 90o with wavefronts at intervals of 5,000 km The 2011 Japan tsunami was felt throughout the Pacific Ocean

  17. Development of Tsunami PSA method for Korean NPP site

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Choi, In Kil; Park, Jin Hee

    2010-01-01

    A methodology of tsunami PSA was developed in this study. A tsunami PSA consists of tsunami hazard analysis, tsunami fragility analysis and system analysis. In the case of tsunami hazard analysis, evaluation of tsunami return period is major task. For the evaluation of tsunami return period, numerical analysis and empirical method can be applied. The application of this method was applied to a nuclear power plant, Ulchin 56 NPP, which is located in the east coast of Korean peninsula. Through this study, whole tsunami PSA working procedure was established and example calculation was performed for one of real nuclear power plant in Korea

  18. Near-Field Population Response During the 2 April 2007 Solomon Islands Tsunami

    Science.gov (United States)

    McAdoo, B. G.; Moore, A. L.; Baumwoll, J.

    2007-12-01

    When the magnitude 8.1 earthquake and subsequent tsunami hit the Solomon Islands on 2 April 2007 it killed 52 people. On Ghizo Island, home of the capital of the Western Province, Gizo, waves approaching 4 m in height inundated the south coast villages. Eyewitness accounts supported by geologic data from the offshore coral reef and sediment deposited on land suggest a wave that came in as the shaking stopped as a rapidly-rising tide rather than a turbulent bore- vehicles and houses were floated inland with very little damage. Those that survived in villages affected by the tsunami had indigenous knowledge of prior events, whereas immigrant populations died in higher proportions. While buoy-based early warning systems are necessary to mitigate the effects of teletsunamis, they would have done little good in this near-field environment. In Pailongge, a village of 76 indigenous Solomon Islanders on Ghizo's south coast, there were no deaths. Village elders directed the people inland following the shaking and the almost immediate withdrawal of water from the lagoon, and heads of household made sure that children were accounted for and evacuated. Of the 366 Gilbertese living in Titiana, however, 13 people died, 8 of which were children who were exploring the emptied lagoon. A large proportion of the dead were children (24) as they were likely too weak to swim against the non-bore flow. The Gilbertese migrated from Kiribati in the 1950"s, and had not experienced a major earthquake and tsunami, hence had no cultural memory. In the case of the Solomon Islands tsunami, as was the case in the 2004 Indian Ocean tsunami, indigenous knowledge served the people in the near-field well. In the case of the Indian Ocean where there was 10-20 minutes separation between the time the shaking began and the waves arrived, the combination of an in-place plan and a suitable physical geography allowed the population of Simeulue Island and the Moken people of Thailand to escape before the

  19. National Geophysical Data Center Tsunami Data Archive

    Science.gov (United States)

    Stroker, K. J.; Dunbar, P. K.; Brocko, R.

    2008-12-01

    NOAA's National Geophysical Data Center (NGDC) and co-located World Data Center for Geophysics and Marine Geology long-term tsunami data archive provides data and derived products essential for tsunami hazard assessment, forecast and warning, inundation modeling, preparedness, mitigation, education, and research. As a result of NOAA's efforts to strengthen its tsunami activities, the long-term tsunami data archive has grown from less than 5 gigabyte in 2004 to more than 2 terabytes in 2008. The types of data archived for tsunami research and operation activities have also expanded in fulfillment of the P.L. 109-424. The archive now consists of: global historical tsunami, significant earthquake and significant volcanic eruptions database; global tsunami deposits and proxies database; reference database; damage photos; coastal water-level data (i.e. digital tide gauge data and marigrams on microfiche); bottom pressure recorder (BPR) data as collected by Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys. The tsunami data archive comes from a wide variety of data providers and sources. These include the NOAA Tsunami Warning Centers, NOAA National Data Buoy Center, NOAA National Ocean Service, IOC/NOAA International Tsunami Information Center, NOAA Pacific Marine Environmental Laboratory, U.S. Geological Survey, tsunami catalogs, reconnaissance reports, journal articles, newspaper articles, internet web pages, and email. NGDC has been active in the management of some of these data for more than 50 years while other data management efforts are more recent. These data are openly available, either directly on-line or by contacting NGDC. All of the NGDC tsunami and related databases are stored in a relational database management system. These data are accessible over the Web as tables, reports, and interactive maps. The maps provide integrated web-based GIS access to individual GIS layers including tsunami sources, tsunami effects, significant earthquakes

  20. Holocene Tsunamis in Avachinsky Bay, Kamchatka, Russia

    Science.gov (United States)

    Pinegina, Tatiana K.; Bazanova, Lilya I.; Zelenin, Egor A.; Bourgeois, Joanne; Kozhurin, Andrey I.; Medvedev, Igor P.; Vydrin, Danil S.

    2018-04-01

    This article presents results of the study of tsunami deposits on the Avachinsky Bay coast, Kurile-Kamchatka island arc, NW Pacific. We used tephrochronology to assign ages to the tsunami deposits, to correlate them between excavations, and to restore paleo-shoreline positions. In addition to using established regional marker tephra, we establish a detailed tephrochronology for more local tephra from Avachinsky volcano. For the first time in this area, proximal to Kamchatka's primary population, we reconstruct the vertical runup and horizontal inundation for 33 tsunamis recorded over the past 4200 years, 5 of which are historical events - 1737, 1792, 1841, 1923 (Feb) and 1952. The runup heights for all 33 tsunamis range from 1.9 to 5.7 m, and inundation distances from 40 to 460 m. The average recurrence for historical events is 56 years and for the entire study period 133 years. The obtained data makes it possible to calculate frequencies of tsunamis by size, using reconstructed runup and inundation, which is crucial for tsunami hazard assessment and long-term tsunami forecasting. Considering all available data on the distribution of historical and paleo-tsunami heights along eastern Kamchatka, we conclude that the southern part of the Kamchatka subduction zone generates stronger tsunamis than its northern part. The observed differences could be associated with variations in the relative velocity and/or coupling between the downgoing Pacific Plate and Kamchatka.

  1. Tsunami hazard map in eastern Bali

    Science.gov (United States)

    Afif, Haunan; Cipta, Athanasius

    2015-04-01

    Bali is a popular tourist destination both for Indonesian and foreign visitors. However, Bali is located close to the collision zone between the Indo-Australian Plate and Eurasian Plate in the south and back-arc thrust off the northern coast of Bali resulted Bali prone to earthquake and tsunami. Tsunami hazard map is needed for better understanding of hazard level in a particular area and tsunami modeling is one of the most reliable techniques to produce hazard map. Tsunami modeling conducted using TUNAMI N2 and set for two tsunami sources scenarios which are subduction zone in the south of Bali and back thrust in the north of Bali. Tsunami hazard zone is divided into 3 zones, the first is a high hazard zones with inundation height of more than 3m. The second is a moderate hazard zone with inundation height 1 to 3m and the third is a low tsunami hazard zones with tsunami inundation heights less than 1m. Those 2 scenarios showed southern region has a greater potential of tsunami impact than the northern areas. This is obviously shown in the distribution of the inundated area in the south of Bali including the island of Nusa Penida, Nusa Lembongan and Nusa Ceningan is wider than in the northern coast of Bali although the northern region of the Nusa Penida Island more inundated due to the coastal topography.

  2. Using GPS to Detect Imminent Tsunamis

    Science.gov (United States)

    Song, Y. Tony

    2009-01-01

    A promising method of detecting imminent tsunamis and estimating their destructive potential involves the use of Global Positioning System (GPS) data in addition to seismic data. Application of the method is expected to increase the reliability of global tsunami-warning systems, making it possible to save lives while reducing the incidence of false alarms. Tsunamis kill people every year. The 2004 Indian Ocean tsunami killed about 230,000 people. The magnitude of an earthquake is not always a reliable indication of the destructive potential of a tsunami. The 2004 Indian Ocean quake generated a huge tsunami, while the 2005 Nias (Indonesia) quake did not, even though both were initially estimated to be of the similar magnitude. Between 2005 and 2007, five false tsunami alarms were issued worldwide. Such alarms result in negative societal and economic effects. GPS stations can detect ground motions of earthquakes in real time, as frequently as every few seconds. In the present method, the epicenter of an earthquake is located by use of data from seismometers, then data from coastal GPS stations near the epicenter are used to infer sea-floor displacements that precede a tsunami. The displacement data are used in conjunction with local topographical data and an advanced theory to quantify the destructive potential of a tsunami on a new tsunami scale, based on the GPS-derived tsunami energy, much like the Richter Scale used for earthquakes. An important element of the derivation of the advanced theory was recognition that horizontal sea-floor motions contribute much more to generation of tsunamis than previously believed. The method produces a reliable estimate of the destructive potential of a tsunami within minutes typically, well before the tsunami reaches coastal areas. The viability of the method was demonstrated in computational tests in which the method yielded accurate representations of three historical tsunamis for which well-documented ground

  3. Peru 2007 tsunami runup observations and modeling

    Science.gov (United States)

    Fritz, H. M.; Kalligeris, N.; Borrero, J. C.

    2008-05-01

    On 15 August 2007 an earthquake with moment magnitude (Mw) of 8.0 centered off the coast of central Peru, generated a tsunami with locally focused runup heights of up to 10 m. A reconnaissance team was deployed in the immediate aftermath and investigated the tsunami effects at 51 sites. The largest runup heights were measured in a sparsely populated desert area south of the Paracas Peninsula resulting in only 3 tsunami fatalities. Numerical modeling of the earthquake source and tsunami suggest that a region of high slip near the coastline was primarily responsible for the extreme runup heights. The town of Pisco was spared by the presence of the Paracas Peninsula, which blocked tsunami waves from propagating northward from the high slip region. The coast of Peru has experienced numerous deadly and destructive tsunamis throughout history, which highlights the importance of ongoing tsunami awareness and education efforts in the region. The Peru tsunami is compared against recent mega-disasters such as the 2004 Indian Ocean tsunami and Hurricane Katrina.

  4. Tsunami hazard map in eastern Bali

    International Nuclear Information System (INIS)

    Afif, Haunan; Cipta, Athanasius

    2015-01-01

    Bali is a popular tourist destination both for Indonesian and foreign visitors. However, Bali is located close to the collision zone between the Indo-Australian Plate and Eurasian Plate in the south and back-arc thrust off the northern coast of Bali resulted Bali prone to earthquake and tsunami. Tsunami hazard map is needed for better understanding of hazard level in a particular area and tsunami modeling is one of the most reliable techniques to produce hazard map. Tsunami modeling conducted using TUNAMI N2 and set for two tsunami sources scenarios which are subduction zone in the south of Bali and back thrust in the north of Bali. Tsunami hazard zone is divided into 3 zones, the first is a high hazard zones with inundation height of more than 3m. The second is a moderate hazard zone with inundation height 1 to 3m and the third is a low tsunami hazard zones with tsunami inundation heights less than 1m. Those 2 scenarios showed southern region has a greater potential of tsunami impact than the northern areas. This is obviously shown in the distribution of the inundated area in the south of Bali including the island of Nusa Penida, Nusa Lembongan and Nusa Ceningan is wider than in the northern coast of Bali although the northern region of the Nusa Penida Island more inundated due to the coastal topography

  5. Tsunami hazard map in eastern Bali

    Energy Technology Data Exchange (ETDEWEB)

    Afif, Haunan, E-mail: afif@vsi.esdm.go.id [Geological Agency, Bandung (Indonesia); Cipta, Athanasius [Geological Agency, Bandung (Indonesia); Australian National University, Canberra (Australia)

    2015-04-24

    Bali is a popular tourist destination both for Indonesian and foreign visitors. However, Bali is located close to the collision zone between the Indo-Australian Plate and Eurasian Plate in the south and back-arc thrust off the northern coast of Bali resulted Bali prone to earthquake and tsunami. Tsunami hazard map is needed for better understanding of hazard level in a particular area and tsunami modeling is one of the most reliable techniques to produce hazard map. Tsunami modeling conducted using TUNAMI N2 and set for two tsunami sources scenarios which are subduction zone in the south of Bali and back thrust in the north of Bali. Tsunami hazard zone is divided into 3 zones, the first is a high hazard zones with inundation height of more than 3m. The second is a moderate hazard zone with inundation height 1 to 3m and the third is a low tsunami hazard zones with tsunami inundation heights less than 1m. Those 2 scenarios showed southern region has a greater potential of tsunami impact than the northern areas. This is obviously shown in the distribution of the inundated area in the south of Bali including the island of Nusa Penida, Nusa Lembongan and Nusa Ceningan is wider than in the northern coast of Bali although the northern region of the Nusa Penida Island more inundated due to the coastal topography.

  6. Holocene Tsunamis in Avachinsky Bay, Kamchatka, Russia

    Science.gov (United States)

    Pinegina, Tatiana K.; Bazanova, Lilya I.; Zelenin, Egor A.; Bourgeois, Joanne; Kozhurin, Andrey I.; Medvedev, Igor P.; Vydrin, Danil S.

    2018-03-01

    This article presents results of the study of tsunami deposits on the Avachinsky Bay coast, Kurile-Kamchatka island arc, NW Pacific. We used tephrochronology to assign ages to the tsunami deposits, to correlate them between excavations, and to restore paleo-shoreline positions. In addition to using established regional marker tephra, we establish a detailed tephrochronology for more local tephra from Avachinsky volcano. For the first time in this area, proximal to Kamchatka's primary population, we reconstruct the vertical runup and horizontal inundation for 33 tsunamis recorded over the past 4200 years, 5 of which are historical events - 1737, 1792, 1841, 1923 (Feb) and 1952. The runup heights for all 33 tsunamis range from 1.9 to 5.7 m, and inundation distances from 40 to 460 m. The average recurrence for historical events is 56 years and for the entire study period 133 years. The obtained data makes it possible to calculate frequencies of tsunamis by size, using reconstructed runup and inundation, which is crucial for tsunami hazard assessment and long-term tsunami forecasting. Considering all available data on the distribution of historical and paleo-tsunami heights along eastern Kamchatka, we conclude that the southern part of the Kamchatka subduction zone generates stronger tsunamis than its northern part. The observed differences could be associated with variations in the relative velocity and/or coupling between the downgoing Pacific Plate and Kamchatka.

  7. Book review: Physics of tsunamis

    Science.gov (United States)

    Geist, Eric L.

    2017-01-01

    “Physics of Tsunamis”, second edition, provides a comprehensive analytical treatment of the hydrodynamics associated with the tsunami generation process. The book consists of seven chapters covering 388 pages. Because the subject matter within each chapter is distinct, an abstract appears at the beginning and references appear at the end of each chapter, rather than at the end of the book. Various topics of tsunami physics are examined largely from a theoretical perspective, although there is little information on how the physical descriptions are applied in numerical models.“Physics of Tsunamis”, by B. W. Levin and M. A. Nosov, Second Edition, Springer, 2016; ISBN-10: 33-1933106X, ISBN-13: 978-331933-1065

  8. Tunnel Boring Machine for nuclear waste repository research project

    International Nuclear Information System (INIS)

    Janzon, H.A.

    1994-01-01

    A description is presented of a Tunnel Boring Machine and its intended use on a research project underway in Sweden for demonstrating and testing methods for rock investigation at a suitable depth for a deep repository for nuclear waste

  9. Tsunami Loss Assessment For Istanbul

    Science.gov (United States)

    Hancilar, Ufuk; Cakti, Eser; Zulfikar, Can; Demircioglu, Mine; Erdik, Mustafa

    2010-05-01

    Tsunami risk and loss assessment incorporating with the inundation mapping in Istanbul and the Marmara Sea region are presented in this study. The city of Istanbul is under the threat of earthquakes expected to originate from the Main Marmara branch of North Anatolian Fault System. In the Marmara region the earthquake hazard reached very high levels with 2% annual probability of occurrence of a magnitude 7+ earthquake on the Main Marmara Fault. Istanbul is the biggest city of Marmara region as well as of Turkey with its almost 12 million inhabitants. It is home to 40% of the industrial facilities in Turkey and operates as the financial and trade hub of the country. Past earthquakes have evidenced that the structural reliability of residential and industrial buildings, as well as that of lifelines including port and harbor structures in the country is questionable. These facts make the management of earthquake risks imperative for the reduction of physical and socio-economic losses. The level of expected tsunami hazard in Istanbul is low as compared to earthquake hazard. Yet the assets at risk along the shores of the city make a thorough assessment of tsunami risk imperative. Important residential and industrial centres exist along the shores of the Marmara Sea. Particularly along the northern and eastern shores we see an uninterrupted settlement pattern with industries, businesses, commercial centres and ports and harbours in between. Following the inundation maps resulting from deterministic and probabilistic tsunami hazard analyses, vulnerability and risk analyses are presented and the socio-economic losses are estimated. This study is part of EU-supported FP6 project ‘TRANSFER'.

  10. Tsunami-Induced Nearshore Hydrodynamic Modeling using a 3D VOF Method: A Gulf of Mexico Case Study

    Science.gov (United States)

    Kian, R.; Horrillo, J. J.; Fang, N. Z.

    2017-12-01

    Long-term morphology changes can be interrupted by extreme events such as hurricanes and tsunamis. In particular, the impact of tsunamis on coastal erosion and accretion patterns is presently not well understood. In order to understand the sediment movement during coastal tsunami impact a numerical sediment transport model is added to a 3D VOF model. This model allows for spatially varying bottom sediment characteristics and entails functions for entrainment, bedload, and suspended load transport. As a case study, a Gulf of Mexico (GOM) coastal study site is selected to investigate the effect of a landslide-tsunami on the coastal morphology. The GOM is recognized as a vast and productive body of water with great ecologic and economic value. The morphodynamic response of the nearshore environment to the tsunami hydrodynamic forcing is influenced by many factors including bathymetry, topography, tsunami wave and current magnitude, and the characteristics of the local bottom substrate. The 3D model addition can account for all these factors. Finally, necessary strategies for reduction of the potential tsunami impact and management of the morphological changes are discussed.

  11. Tsunami disaster risk management capabilities in Greece

    Science.gov (United States)

    Marios Karagiannis, Georgios; Synolakis, Costas

    2015-04-01

    Greece is vulnerable to tsunamis, due to the length of the coastline, its islands and its geographical proximity to the Hellenic Arc, an active subduction zone. Historically, about 10% of all world tsunamis occur in the Mediterranean region. Here we review existing tsunami disaster risk management capabilities in Greece. We analyze capabilities across the disaster management continuum, including prevention, preparedness, response and recovery. Specifically, we focus on issues like legal requirements, stakeholders, hazard mitigation practices, emergency operations plans, public awareness and education, community-based approaches and early-warning systems. Our research is based on a review of existing literature and official documentation, on previous projects, as well as on interviews with civil protection officials in Greece. In terms of tsunami disaster prevention and hazard mitigation, the lack of tsunami inundation maps, except for some areas in Crete, makes it quite difficult to get public support for hazard mitigation practices. Urban and spatial planning tools in Greece allow the planner to take into account hazards and establish buffer zones near hazard areas. However, the application of such ordinances at the local and regional levels is often difficult. Eminent domain is not supported by law and there are no regulatory provisions regarding tax abatement as a disaster prevention tool. Building codes require buildings and other structures to withstand lateral dynamic earthquake loads, but there are no provisions for resistance to impact loading from water born debris Public education about tsunamis has increased during the last half-decade but remains sporadic. In terms of disaster preparedness, Greece does have a National Tsunami Warning Center (NTWC) and is a Member of UNESCO's Tsunami Program for North-eastern Atlantic, the Mediterranean and connected seas (NEAM) region. Several exercises have been organized in the framework of the NEAM Tsunami Warning

  12. A probabilistic tsunami hazard assessment for Indonesia

    Science.gov (United States)

    Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.

    2014-11-01

    Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence-based decision-making regarding risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean tsunami, but this has been largely concentrated on the Sunda Arc with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent probabilistic tsunami hazard assessment (PTHA) for Indonesia. This assessment produces time-independent forecasts of tsunami hazards at the coast using data from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting the larger maximum magnitudes. The annual probability of experiencing a tsunami with a height of > 0.5 m at the coast is greater than 10% for Sumatra, Java, the Sunda islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of > 3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national-scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.

  13. Seismic and tsunami safety margin assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Nuclear Regulation Authority is going to establish new seismic and tsunami safety guidelines to increase the safety of NPPs. The main purpose of this research is testing structures/components important to safety and tsunami resistant structures/components, and evaluating the capacity of them against earthquake and tsunami. Those capacity data will be utilized for the seismic and tsunami back-fit review based on the new seismic and tsunami safety guidelines. The summary of the program in 2012 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. PWR emergency diesel generator partial-model seismic capacity tests have been conducted and quantitative seismic capacities have been evaluated. 2. Seismic capacity evaluation of switching-station electric equipment. Existing seismic test data investigation, specification survey and seismic response analyses have been conducted. 3. Tsunami capacity evaluation of anti-inundation measure facilities. Tsunami pressure test have been conducted utilizing a small breakwater model and evaluated basic characteristics of tsunami pressure against seawall structure. (author)

  14. Seismic and tsunami safety margin assessment

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear Regulation Authority is going to establish new seismic and tsunami safety guidelines to increase the safety of NPPs. The main purpose of this research is testing structures/components important to safety and tsunami resistant structures/components, and evaluating the capacity of them against earthquake and tsunami. Those capacity data will be utilized for the seismic and tsunami back-fit review based on the new seismic and tsunami safety guidelines. The summary of the program in 2012 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. PWR emergency diesel generator partial-model seismic capacity tests have been conducted and quantitative seismic capacities have been evaluated. 2. Seismic capacity evaluation of switching-station electric equipment. Existing seismic test data investigation, specification survey and seismic response analyses have been conducted. 3. Tsunami capacity evaluation of anti-inundation measure facilities. Tsunami pressure test have been conducted utilizing a small breakwater model and evaluated basic characteristics of tsunami pressure against seawall structure. (author)

  15. Quantifying Coastal Hazard of Airburst-Generated Tsunamis

    Science.gov (United States)

    Titov, V. V.; Boslough, M.

    2017-12-01

    The effort to prevent or mitigate the effects of an impact on Earth is known as planetary defense. A significant component of planetary defense research involves risk assessment. Much of our understanding of the risk from near-Earth objects comes from the geologic record in the form of impact craters, but not all asteroid impacts are crater-forming events. Small asteroids explode before reaching the surface, generating an airburst, and most impacts into the ocean do not penetrate the water to form a crater in the sea floor. The risk from these non-crater-forming ocean impacts and airbursts is difficult to quantify and represents a significant uncertainty in our assessment of the overall threat. One of the suggested mechanisms for the production of asteroid-generated tsunami is by direct coupling of the pressure wave to the water, analogous to the means by which a moving weather front can generate a meteotsunami. To test this hypothesis, we have run a series of airburst simulations and provided time-resolved pressure and wind profiles for tsunami modelers to use as source functions. We used hydrocodes to model airburst scenarios and provide time dependent boundary conditions as input to shallow-water wave propagation codes. The strongest and most destructive meteotsunami are generated by atmospheric pressure oscillations with amplitudes of only a few hPa, corresponding to changes in sea level of a few cm. The resulting wave is strongest when there is a resonance between the ocean and the atmospheric forcing. The blast wave from an airburst propagates at a speed close to a tsunami speed only in the deepest part of the ocean, and a Proudman resonance cannot be usually achieved even though the overpressures are orders of magnitude greater. However, blast wave profiles are N-waves in which a sharp shock wave leading to overpressure is followed by a more gradual rarefaction to a much longer-duration underpressure phase. Even though the blast outruns the water wave it is

  16. Tsunami sediments and their grain size characteristics

    Science.gov (United States)

    Sulastya Putra, Purna

    2018-02-01

    Characteristics of tsunami deposits are very complex as the deposition by tsunami is very complex processes. The grain size characteristics of tsunami deposits are simply generalized no matter the local condition in which the deposition took place. The general characteristics are fining upward and landward, poor sorting, and the grain size distribution is not unimodal. Here I review the grain size characteristics of tsunami deposit in various environments: swale, coastal marsh and lagoon/lake. Review results show that although there are similar characters in some environments and cases, but in detail the characteristics in each environment can be distinguished; therefore, the tsunami deposit in each environment has its own characteristic. The local geological and geomorphological condition of the environment may greatly affect the grain size characteristics.

  17. Removing well bore liquid blockage by gas injection

    International Nuclear Information System (INIS)

    Ahmed, Tarek

    2000-01-01

    Gas condensate reservoirs have long presented production problems when the pressure around the well bore drops below the dew point pressure. The formation of the condensate around the well bore can be thought of as an additional 'skin' that causes a reduction in the gas flow rates. Many processes have been used successfully to prevent or reduce the formation of liquids within the entire reservoir, such as pressure maintenance schemes and gas cycling processes. The pressure maintenance scheme is designed to keep the reservoir pressure at or above the dew point pressure while the gas cycling process is intended to reduce the liquid dropout by vaporization.Often times the pressure in the near-well bore region of the reservoir falls below the dew point pressure, while the pressure in the reservoir remains higher than the dew point pressure. As the near-well bore pressure drops below the dew point pressure, retrograde condensation occurs leading to the formation and then the mobilization of the condensate phase towards the producing wells. The liquid phase accumulates in the near Well bore region, forming a ring, which progressively reduces the gas deliverability. This study is designed to provide an insight into the mechanism of gas injection process in reducing gas-well productivity losses due to condensate blocking in the near well bore region. The study also evaluates the effectiveness of lean gas, N 2 , and CO 2 Huff 'n' Puff injection technique in removing the liquid dropout accumulation in and around the well bore. Results of the study show the importance of selecting the optimum injection volume and pressure. (author)

  18. High-Pressure Hot-Gas Self-Acting Floating Ring Shaft Seal for Liquid Rocket Turbopumps. [tapered bore seals

    Science.gov (United States)

    Burcham, R. E.; Diamond, W. A.

    1980-01-01

    Design analysis, detail design, fabrication, and experimental evaluation was performed on two self acting floating ring shaft seals for a rocket engine turbopump high pressure 24132500 n/sq m (3500 psig) hot gas 533 K 9500 F) high speed 3142 rad/sec (30000 rmp) turbine. The initial design used Rayleigh step hydrodynamic lift pads to assist in centering the seal ring with minimum rubbing contact. The final design used a convergent tapered bore to provide hydrostatic centering force. The Rayleigh step design was tested for 107 starts and 4.52 hours total. The leakage was satisfactory; however, the design was not acceptable due to excessive wear caused by inadequate centering force and failure of the sealing dam caused by erosion damage. The tapered bore design was tested for 370 starts and 15.93 hours total. Satisfactory performance for the required life of 7.5 hours per seal was successfully demonstrated.

  19. OBSERVATION OF TSUNAMI RADIATION AT TOHOKU BY REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    Frank C. Lin

    2011-01-01

    Full Text Available We present prima facie evidence that upon the onset of the Tohoku tsunami of Mar. 11, 2011 infrared radiation was emitted by the tsunami and was detected by the Japanese satellite MTSAT-IR1, in agreement with our earlier findings for the Great Sumatra Tsunami of 2004. Implications for a worldwide Tsunami Early Warning System are discussed.

  20. Tsunami Deposits on Simeulue Island, Indonesia--A tale of two tsunamis

    Science.gov (United States)

    Jaffe, B. E.; Higman, B.

    2007-12-01

    As tsunami deposits become more widely used for evaluating tsunami risk, it has become increasingly valuable to improve the ability to interpret deposits to determine tsunami characteristics such as size and flow speed. A team of U.S. and Indonesian scientists went to Simeulue Island 125 km east of Sumatra in April 2005 to learn more about the relation between tsunami deposition and flow. Busong, on the southeast coast of Simeulue Island, was inundated twice in a three-months period by tsunamis. The 26 December 2004 tsunami inundated 130 m inland to an elevation of approximately 4 m. The 28 March 2005 tsunami inundated less than 100 m to an elevation of approximately 2 m. Both tsunamis created deposits that were observed to be an amalgamated 20- cm thick, predominately fine to medium sand overlying a sandy soil. The contact between 2004 and 2005 tsunami deposits is at 13 cm above the top of the sandy soil and is clearly marked by vegetation that grew on the 2004 deposit in the 3 months between tsunamis. Grass roots are present in the upper half of the 2004 deposit and absent both below that level and in the 2005 deposit. We analyzed the fine-scale sedimentary structures and vertical variation in grain size of the deposits to search for diagnostic criteria for unequivocally identifying deposits formed by multiple tsunamis. At Busung, we expected there to be differences between each tsunami's deposits because the tsunami height, period, and direction of the 2004 and 2005 tsunamis were different. Both the 2004 and 2005 deposits were predominately normally graded, although each had inversely graded and massive sections. Faint laminations, which became more defined in a peel of the deposit, were discontinuous and predominately quasi-parallel. Knowing where the contact between the two tsunamis was, subtle sedimentary differences were identified that may be used to tell that it is composed of two separate tsunamis. We will present quantitative analyses of the variations

  1. Influence of friction on buckling of a drill string in the circular channel of a bore hole

    Directory of Open Access Journals (Sweden)

    Valery Gulyayev

    2016-10-01

    Full Text Available Abstract Enhancement of technology and techniques for drilling deep directed oil and gas bore hole is one of the most important problems of the current petroleum industry. Not infrequently, the drilling of these bore holes is attended by occurrence of extraordinary situations associated with technical accidents. Among these is the Eulerian loss of stability of a drill string in the channel of a curvilinear bore hole. Methods of computer simulation should play a dominant role in prediction of these states. In this paper, a new statement of the problem of critical buckling of the drill strings in 3D curvilinear bore holes is proposed. It is based on combined use of the theory of curvilinear elastic rods, Eulerian theory of stability, theory of channel surfaces, and methods of classical mechanics of systems with nonlinear constraints. It is noted that the stated problem is singularly perturbed and its solutions have the shapes of localized harmonic wavelets. The calculation results showed that the friction effects lead to essential redistribution of internal axial forces, as well as changing the eigenmode shapes and sites of their localization. These features make the buckling phenomena less predictable and raise the role of computer simulation of these effects.

  2. Effect of earthquake and tsunami. Ground motion and tsunami observed at nuclear power station

    International Nuclear Information System (INIS)

    Hijikata, Katsuichirou

    2012-01-01

    Fukushima Daiichi and Daini Nuclear Power Stations (NPSs) were struck by the earthquake off the pacific coast in the Tohoku District, which occurred at 14:46 on March 11, 2011. Afterwards, tsunamis struck the Tohoku District. In terms of the earthquake observed at the Fukushima NPSs, the acceleration response spectra of the earthquake movement observed on the basic board of reactor buildings exceeded the acceleration response spectra of the response acceleration to the standard seismic ground motion Ss for partial periodic bands at the Fukushima Daiichi NPS. As for the Fukushima Daini NPS, the acceleration response spectra of the earthquake movement observed on the basic board of the reactor buildings was below the acceleration response spectra of the response acceleration to the standard seismic ground motion Ss. Areas inundated by Tsunami at each NPS were investigated and tsunami inversion analysis was made to build tsunami source model to reproduce tide record, tsunami height, crustal movement and inundated area, based on tsunami observation records in the wide areas from Hokkaido to Chiba prefectures. Tsunami heights of Fukushima Daiichi and Daini NPSs were recalculated as O.P. +13m and +9m respectively and tsunami peak height difference was attributed to the extent of superposition of tsunami waves of tsunami earthquake type of wave source in the area along interplane trench off the coast in the Fukushima prefecture and interplane earthquake type of wave source in rather deep interplate area off the coast in the Miyagi prefecture. (T. Tanaka)

  3. TSUNAMIS AND TSUNAMI-LIKE WAVES OF THE EASTERN UNITED STATES

    Directory of Open Access Journals (Sweden)

    James F. Lander

    2002-01-01

    Full Text Available The threat of tsunamis and tsunami-like waves hitting the eastern United States is very real despite a general impression to the contrary. We have cataloged 40 tsunamis and tsunami-like waves that have occurred in the eastern United States since 1600. Tsunamis were generated from such events as the 1755 Queen Anne’s earthquake, the Grand Banks event of 1929, the Charleston earthquake of 1886, and the New Madrid earthquakes of 1811-1812. The Queen Anne tsunami was observed as far away as St. Martin in the West Indies and is the only known teletsunami generated in this source region.Since subduction zones are absent around most of the Atlantic basin, tsunamis and tsunami-like waves along the United States East Coast are not generated from this traditional source, but appear, in most cases to be the result of slumping or landsliding associated with local earthquakes or with wave action associated with strong storms. Other sources of tsunamis and tsunami-like waves along the eastern seaboard have recently come to light including volcanic debris falls or catastrophic failure of volcanic slopes; explosive decompression of underwater methane deposits or oceanic meteor splashdowns. These sources are considered as well.

  4. Real-time correction of tsunami site effect by frequency-dependent tsunami-amplification factor

    Science.gov (United States)

    Tsushima, H.

    2017-12-01

    For tsunami early warning, I developed frequency-dependent tsunami-amplification factor and used it to design a recursive digital filter that can be applicable for real-time correction of tsunami site response. In this study, I assumed that a tsunami waveform at an observing point could be modeled by convolution of source, path and site effects in time domain. Under this assumption, spectral ratio between offshore and the nearby coast can be regarded as site response (i.e. frequency-dependent amplification factor). If the amplification factor can be prepared before tsunamigenic earthquakes, its temporal convolution to offshore tsunami waveform provides tsunami prediction at coast in real time. In this study, tsunami waveforms calculated by tsunami numerical simulations were used to develop frequency-dependent tsunami-amplification factor. Firstly, I performed numerical tsunami simulations based on nonlinear shallow-water theory from many tsuanmigenic earthquake scenarios by varying the seismic magnitudes and locations. The resultant tsunami waveforms at offshore and the nearby coastal observing points were then used in spectral-ratio analysis. An average of the resulted spectral ratios from the tsunamigenic-earthquake scenarios is regarded as frequency-dependent amplification factor. Finally, the estimated amplification factor is used in design of a recursive digital filter that can be applicable in time domain. The above procedure is applied to Miyako bay at the Pacific coast of northeastern Japan. The averaged tsunami-height spectral ratio (i.e. amplification factor) between the location at the center of the bay and the outside show a peak at wave-period of 20 min. A recursive digital filter based on the estimated amplification factor shows good performance in real-time correction of tsunami-height amplification due to the site effect. This study is supported by Japan Society for the Promotion of Science (JSPS) KAKENHI grant 15K16309.

  5. The First Real-Time Tsunami Animation

    Science.gov (United States)

    Becker, N. C.; Wang, D.; McCreery, C.; Weinstein, S.; Ward, B.

    2014-12-01

    For the first time a U.S. tsunami warning center created and issued a tsunami forecast model animation while the tsunami was still crossing an ocean. Pacific Tsunami Warning Center (PTWC) scientists had predicted they would have this ability (Becker et al., 2012) with their RIFT forecast model (Wang et al., 2009) by using rapidly-determined W-phase centroid-moment tensor earthquake focal mechanisms as tsunami sources in the RIFT model (Wang et al., 2012). PTWC then acquired its own YouTube channel in 2013 for its outreach efforts that showed animations of historic tsunamis (Becker et al., 2013), but could also be a platform for sharing future tsunami animations. The 8.2 Mw earthquake of 1 April 2014 prompted PTWC to issue official warnings for a dangerous tsunami in Chile, Peru and Ecuador. PTWC ended these warnings five hours later, then issued its new tsunami marine hazard product (i.e., no coastal evacuations) for the State of Hawaii. With the international warning canceled but with a domestic hazard still present PTWC generated a forecast model animation and uploaded it to its YouTube channel six hours before the arrival of the first waves in Hawaii. PTWC also gave copies of this animation to television reporters who in turn passed it on to their national broadcast networks. PTWC then created a version for NOAA's Science on a Sphere system so it could be shown on these exhibits as the tsunami was still crossing the Pacific Ocean. While it is difficult to determine how many people saw this animation since local, national, and international news networks showed it in their broadcasts, PTWC's YouTube channel provides some statistics. As of 1 August 2014 this animation has garnered more than 650,000 views. Previous animations, typically released during significant anniversaries, rarely get more than 10,000 views, and even then only when external websites share them. Clearly there is a high demand for a tsunami graphic that shows both the speed and the severity of a

  6. Second international tsunami workshop on the technical aspects of tsunami warning systems, tsunami analysis, preparedness, observation and instrumentation

    International Nuclear Information System (INIS)

    1989-01-01

    The Second Workshop on the Technical Aspects of Tsunami Warning Systems, Tsunami Analysis, Preparedness, Observation, and Instrumentation, sponsored and convened by the Intergovernmental Oceanographic Commission (IOC), was held on 1-2 August 1989, in the modern and attractive research town of Academgorodok, which is located 20 km south from downtown Novosibirsk, the capital of Siberia, USSR. The Program was arranged in eight major areas of interest covering the following: Opening and Introduction; Survey of Existing Tsunami Warning Centers - present status, results of work, plans for future development; Survey of some existing seismic data processing systems and future projects; Methods for fast evaluation of Tsunami potential and perspectives of their implementation; Tsunami data bases; Tsunami instrumentation and observations; Tsunami preparedness; and finally, a general discussion and adoption of recommendations. The Workshop presentations not only addressed the conceptual improvements that have been made, but focused on the inner workings of the Tsunami Warning System, as well, including computer applications, on-line processing and numerical modelling. Furthermore, presentations reported on progress has been made in the last few years on data telemetry, instrumentation and communications. Emphasis was placed on new concepts and their application into operational techniques that can result in improvements in data collection, rapid processing of the data, in analysis and prediction. A Summary Report on the Second International Tsunami Workshop, containing abstracted and annotated proceedings has been published as a separate report. The present Report is a Supplement to the Summary Report and contains the full text of the papers presented at this Workshop. Refs, figs and tabs

  7. Correlation Equation of Fault Size, Moment Magnitude, and Height of Tsunami Case Study: Historical Tsunami Database in Sulawesi

    Science.gov (United States)

    Julius, Musa, Admiral; Pribadi, Sugeng; Muzli, Muzli

    2018-03-01

    Sulawesi, one of the biggest island in Indonesia, located on the convergence of two macro plate that is Eurasia and Pacific. NOAA and Novosibirsk Tsunami Laboratory show more than 20 tsunami data recorded in Sulawesi since 1820. Based on this data, determination of correlation between tsunami and earthquake parameter need to be done to proved all event in the past. Complete data of magnitudes, fault sizes and tsunami heights on this study sourced from NOAA and Novosibirsk Tsunami database, completed with Pacific Tsunami Warning Center (PTWC) catalog. This study aims to find correlation between moment magnitude, fault size and tsunami height by simple regression. The step of this research are data collecting, processing, and regression analysis. Result shows moment magnitude, fault size and tsunami heights strongly correlated. This analysis is enough to proved the accuracy of historical tsunami database in Sulawesi on NOAA, Novosibirsk Tsunami Laboratory and PTWC.

  8. Tsunami risk assessments in Messina, Sicily - Italy

    Science.gov (United States)

    Grezio, A.; Gasparini, P.; Marzocchi, W.; Patera, A.; Tinti, S.

    2012-01-01

    We present a first detailed tsunami risk assessment for the city of Messina where one of the most destructive tsunami inundations of the last centuries occurred in 1908. In the tsunami hazard evaluation, probabilities are calculated through a new general modular Bayesian tool for Probability Tsunami Hazard Assessment. The estimation of losses of persons and buildings takes into account data collected directly or supplied by: (i) the Italian National Institute of Statistics that provides information on the population, on buildings and on many relevant social aspects; (ii) the Italian National Territory Agency that provides updated economic values of the buildings on the basis of their typology (residential, commercial, industrial) and location (streets); and (iii) the Train and Port Authorities. For human beings, a factor of time exposition is introduced and calculated in terms of hours per day in different places (private and public) and in terms of seasons, considering that some factors like the number of tourists can vary by one order of magnitude from January to August. Since the tsunami risk is a function of the run-up levels along the coast, a variable tsunami risk zone is defined as the area along the Messina coast where tsunami inundations may occur.

  9. Evaluation methods of vibration stress of small bore piping

    Energy Technology Data Exchange (ETDEWEB)

    Hiramatsu, Miki; Sasaki, Toru [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Fatigue fracture by vibration stress is one of the main causes of troubles which occur at small bore piping in nuclear power plants. Therefore at the plants they manage small bore piping using a method in which their vibration accelerations are measured and the vibration stresses are calculated. In this work, vibration tests for two sets of mock-ups simulating actual piping in the plants by sinusoidal oscillation and by that obtained at an actual plant were carried out, and then an evaluation method was developed to obtain proper value of vibration stress from the measured data by the vibration tests. In comparison of the vibration stress obtained from the measured acceleration with that directly measured using strain gauges, it is confirmed that accurate vibration stress can be evaluated by a formula in which the real center of gravity of small bore piping and the acceleration of main (system) piping are considered. (author)

  10. Plasmon tsunamis on metallic nanoclusters.

    Science.gov (United States)

    Lucas, A A; Sunjic, M

    2012-03-14

    A model is constructed to describe inelastic scattering events accompanying electron capture by a highly charged ion flying by a metallic nanosphere. The electronic energy liberated by an electron leaving the Fermi level of the metal and dropping into a deep Rydberg state of the ion is used to increase the ion kinetic energy and, simultaneously, to excite multiple surface plasmons around the positively charged hole left behind on the metal sphere. This tsunami-like phenomenon manifests itself as periodic oscillations in the kinetic energy gain spectrum of the ion. The theory developed here extends our previous treatment (Lucas et al 2011 New J. Phys. 13 013034) of the Ar(q+)/C(60) charge exchange system. We provide an analysis of how the individual multipolar surface plasmons of the metallic sphere contribute to the formation of the oscillatory gain spectrum. Gain spectra showing characteristic, tsunami-like oscillations are simulated for Ar(15+) ions capturing one electron in distant collisions with Al and Na nanoclusters.

  11. Role of Compressibility on Tsunami Propagation

    Science.gov (United States)

    Abdolali, Ali; Kirby, James T.

    2017-12-01

    In the present paper, we aim to reduce the discrepancies between tsunami arrival times evaluated from tsunami models and real measurements considering the role of ocean compressibility. We perform qualitative studies to reveal the phase speed reduction rate via a modified version of the Mild Slope Equation for Weakly Compressible fluid (MSEWC) proposed by Sammarco et al. (2013). The model is validated against a 3-D computational model. Physical properties of surface gravity waves are studied and compared with those for waves evaluated from an incompressible flow solver over realistic geometry for 2011 Tohoku-oki event, revealing reduction in phase speed.Plain Language SummarySubmarine earthquakes and submarine mass failures (SMFs), can generate long gravitational waves (or tsunamis) that propagate at the free surface. Tsunami waves can travel long distances and are known for their dramatic effects on coastal areas. Nowadays, numerical models are used to reconstruct the tsunamigenic events for many scientific and socioeconomic aspects i.e. Tsunami Early Warning Systems, inundation mapping, risk and hazard analysis, etc. A number of typically neglected parameters in these models cause discrepancies between model outputs and observations. Most of the tsunami models predict tsunami arrival times at distant stations slightly early in comparison to observations. In this study, we show how ocean compressibility would affect the tsunami wave propagation speed. In this framework, an efficient two-dimensional model equation for the weakly compressible ocean has been developed, validated and tested for simplified and real cases against three dimensional and incompressible solvers. Taking the effect of compressibility, the phase speed of surface gravity waves is reduced compared to that of an incompressible fluid. Then, we used the model for the case of devastating Tohoku-Oki 2011 tsunami event, improving the model accuracy. This study sheds light for future model development

  12. Continuous measurements of in-bore projectile velocity

    International Nuclear Information System (INIS)

    Asay, J.R.; Konrad, C.H.; Hall, C.A.; Shahinpoor, M.

    1989-01-01

    The application of velocity interferometry to the continuous measurement of in-bore projectile velocity in a small-bore three-stage railgun is described. These measurements are useful for determining projectile acceleration and for evaluating gun performance. The launcher employed in these studies consists of a two-stage light gas gun used to inject projectiles into a railgun for additional acceleration. Results obtained for projectile velocities to 7.4 km/s with the two-stage injector are reported and potential improvements for railgun applications are discussed

  13. Grinding tool for making hemispherical bores in hard materials

    Science.gov (United States)

    Duran, E.L.

    1985-04-03

    A grinding tool for forming hemispherical bores in hard materials such as boron carbide. The tool comprises a hemicircular grinding bit, formed of a metal bond diamond matrix, which is mounted transversely on one end of a tubular tool shaft. The bit includes a spherically curved outer edge surface which is the active grinding surface of the tool. Two coolant fluid ports on opposite sides of the bit enable introduction of coolant fluid through the bore of the tool shaft so as to be emitted adjacent the opposite sides of the grinding bit, thereby providing optimum cooling of both the workpiece and the bit.

  14. Can undersea voltage measurements detect tsunamis?

    Digital Repository Service at National Institute of Oceanography (India)

    Manoj, C.; Kuvshinov, A.; Neetu, S.; Harinarayana, T.

    the temporal variations of these electric fields? To answer these questions, we use a barotropic tsunami model and a state-of-the-art 3-D EM induction code to simulate the electric and magnetic fields generated by the Indian Ocean Tsunami. We will first...). The 4 C. MANOJ et al.: TSUNAMI GENERATED ELECTRIC FIELDS solution allows for simulating electromagnetic (EM) field in a spherical models of the Earth with three-dimensional (3-D) distribution of electrical conductivity. These models consist of a number...

  15. Numerical modelling and evacuation strategies for tsunami awareness: lessons from the 2012 Haida Gwaii Tsunami

    Directory of Open Access Journals (Sweden)

    Angela Santos

    2016-07-01

    Full Text Available On October 28, 2012, an earthquake occurred offshore Canada, with a magnitude Mw of 7.8, triggering a tsunami that propagated through the Pacific Ocean. The tsunami numerical model results show it would not be expected to generate widespread inundation on Hawaii. Yet, two hours after the earthquake, the Pacific Tsunami Warning Centre (PTWC issued a tsunami warning to the state of Hawaii. Since the state was hit by several tsunamis in the past, regular siren exercises, tsunami hazard maps and other prevention measures are available for public use, revealing that residents are well prepared regarding tsunami evacuation procedures. Nevertheless, residents and tourists evacuated mostly by car, and because of that, heavy traffic was reported, showing that it was a non-viable option for evacuation. The tsunami caused minor damages on the coastline, and several car accidents were reported, with one fatality. In recent years, there has been a remarkable interest in tsunami impacts. However, if risk planners seem to be very knowledgeable about how to avoid or mitigate their potential harmful effects, they seem to disregard its integration with other sectors of human activity and other social factors.

  16. An advanced three-phase physical, experimental and numerical method for tsunami induced boulder transport

    Science.gov (United States)

    Oetjen, Jan; Engel, Max; Prasad Pudasaini, Shiva; Schüttrumpf, Holger; Brückner, Helmut

    2017-04-01

    Coasts around the world are affected by high-energy wave events like storm surges or tsunamis depending on their regional climatological and geological settings. By focusing on tsunami impacts, we combine the abilities and experiences of different scientific fields aiming at improved insights of near- and onshore tsunami hydrodynamics. We investigate the transport of coarse clasts - so called boulders - due to tsunami impacts by a multi-methodology approach of numerical modelling, laboratory experiments, and sedimentary field records. Coupled numerical hydrodynamic and boulder transport models (BTM) are widely applied for analysing the impact characteristics of the transport by tsunami, such as wave height and flow velocity. Numerical models able to simulate past tsunami events and the corresponding boulder transport patterns with high accuracy and acceptable computational effort can be utilized as powerful forecasting models predicting the impact of a coast approaching tsunami. We have conducted small-scale physical experiments in the tilting flume with real shaped boulder models. Utilizing the structure from motion technique (Westoby et al., 2012) we reconstructed real boulders from a field study on the Island of Bonaire (Lesser Antilles, Caribbean Sea, Engel & May, 2012). The obtained three-dimensional boulder meshes are utilized for creating downscaled replica of the real boulder for physical experiments. The results of the irregular shaped boulder are compared to experiments with regular shaped boulder models to achieve a better insight about the shape related influence on transport patterns. The numerical model is based on the general two-phase mass flow model by Pudasaini (2012) enhanced for boulder transport simulations. The boulder is implemented using the immersed boundary technique (Peskin, 2002) and the direct forcing approach. In this method Cartesian grids (fluid and particle phase) and Lagrangian meshes (boulder) are combined. By applying the

  17. Boring of full scale deposition holes at the Aespoe Hard Rock Laboratory. Operational experiences including boring performance and a work time analysis

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Johansson, Aasa [SWECO, Stockholm (Sweden)

    2002-12-01

    Thirteen experimental deposition holes similar to those in the present KBS-3 design have been bored at the Aespoe Hard Rock Laboratory, Oskarshamn, Sweden. The objective with the boring program was to test and demonstrate the current technique for boring of large vertical holes in granitic rock. Conclusions and results from this project is used in the planning process for the deposition holes that will be bored in the real repository for spent nuclear fuel. The boreholes are also important for three major projects. The Prototype Repository, the Canister Retrieval Test and the Demonstration project will all need full-scale deposition holes for their commissioning. The holes are bored in full scale and have a radius of 1.75 m and a depth of 8.5 m. To bore the holes an existing TBM design was modified to produce a novel type Shaft Boring Machine (SBM) suitable for boring 1.75 m diameter holes from a relatively small tunnel. The cutter head was equipped with two types of roller cutters: two row carbide button cutters and disc cutters. Removal of the cuttings was made with a vacuum suction system. The boring was monitored and boring parameters recorded by a computerised system for the evaluation of the boring performance. During boring of four of the holes temperature, stress and strain measurements were performed. Acoustic emission measurements were also performed during boring of these four holes. The results of these activities will not be discussed in this report since they are reported separately. Criteria regarding nominal borehole diameter, deviation of start and end centre point, surface roughness and performance of the machine were set up according to the KBS-3 design and were fulfilled with a fair margin. The average total time for boring one deposition hole during this project was 105 hours.

  18. Boring of full scale deposition holes at the Aespoe Hard Rock Laboratory. Operational experiences including boring performance and a work time analysis

    International Nuclear Information System (INIS)

    Andersson, Christer; Johansson, Aasa

    2002-12-01

    Thirteen experimental deposition holes similar to those in the present KBS-3 design have been bored at the Aespoe Hard Rock Laboratory, Oskarshamn, Sweden. The objective with the boring program was to test and demonstrate the current technique for boring of large vertical holes in granitic rock. Conclusions and results from this project is used in the planning process for the deposition holes that will be bored in the real repository for spent nuclear fuel. The boreholes are also important for three major projects. The Prototype Repository, the Canister Retrieval Test and the Demonstration project will all need full-scale deposition holes for their commissioning. The holes are bored in full scale and have a radius of 1.75 m and a depth of 8.5 m. To bore the holes an existing TBM design was modified to produce a novel type Shaft Boring Machine (SBM) suitable for boring 1.75 m diameter holes from a relatively small tunnel. The cutter head was equipped with two types of roller cutters: two row carbide button cutters and disc cutters. Removal of the cuttings was made with a vacuum suction system. The boring was monitored and boring parameters recorded by a computerised system for the evaluation of the boring performance. During boring of four of the holes temperature, stress and strain measurements were performed. Acoustic emission measurements were also performed during boring of these four holes. The results of these activities will not be discussed in this report since they are reported separately. Criteria regarding nominal borehole diameter, deviation of start and end centre point, surface roughness and performance of the machine were set up according to the KBS-3 design and were fulfilled with a fair margin. The average total time for boring one deposition hole during this project was 105 hours

  19. Development of a Probabilistic Tsunami Hazard Analysis in Japan

    International Nuclear Information System (INIS)

    Toshiaki Sakai; Tomoyoshi Takeda; Hiroshi Soraoka; Ken Yanagisawa; Tadashi Annaka

    2006-01-01

    It is meaningful for tsunami assessment to evaluate phenomena beyond the design basis as well as seismic design. Because once we set the design basis tsunami height, we still have possibilities tsunami height may exceeds the determined design tsunami height due to uncertainties regarding the tsunami phenomena. Probabilistic tsunami risk assessment consists of estimating for tsunami hazard and fragility of structures and executing system analysis. In this report, we apply a method for probabilistic tsunami hazard analysis (PTHA). We introduce a logic tree approach to estimate tsunami hazard curves (relationships between tsunami height and probability of excess) and present an example for Japan. Examples of tsunami hazard curves are illustrated, and uncertainty in the tsunami hazard is displayed by 5-, 16-, 50-, 84- and 95-percentile and mean hazard curves. The result of PTHA will be used for quantitative assessment of the tsunami risk for important facilities located on coastal area. Tsunami hazard curves are the reasonable input data for structures and system analysis. However the evaluation method for estimating fragility of structures and the procedure of system analysis is now being developed. (authors)

  20. Boulder Dislodgement by Tsunamis and Storms: Version 2.0

    Science.gov (United States)

    Weiss, Robert

    2016-04-01

    In the past, boulder dislodgement by tsunami and storm waves has been approached with a simple threshold approach in which a boulder was moved if the sum of the acting forces on the boulder is larger than zero. The impulse theory taught us, however, that this criterion is not enough to explain particle dislodgement. We employ an adapted version of the Newton's Second Law of Motion (NSLM) in order to consider the essence of the impulse theory which is that the sum of the forces has to exceed a certain threshold for a certain period of time. Furthermore, a classical assumption is to consider linear waves. However, when waves travel toward the shore, they alter due to non-linear processes. We employ the TRIADS model to quantify that change and how it impacts boulder dislodgement. We present our results of the coupled model (adapted NSLM and TRIADS model). The results project a more complex picture of boulder transport by storms and tsunami. The following question arises: What information do we actually invert, and what does it tell us about the causative event?

  1. Simulation of rock fragmentation induced by a tunnel boring machine disk cutter

    Directory of Open Access Journals (Sweden)

    Huiyun Li

    2016-05-01

    Full Text Available A constitutive model based on the Johnson–Cook material model and the extended Drucker–Prager strength criterion was implemented in LS-DYNA to simulate the rock failure process induced by a single disk cutter of a tunnel boring machine. The normal, rolling, and side forces were determined by numerical tests. The simulation results showed that the normal and rolling forces increased with increasing penetration while the side force changed little. The normal force also increased under the conditions of confining pressures. The damage region of rock and cutting forces were also obtained by simulation of two disk cutters acting in tandem with different cutting spacings. The optimum ratio of cutter spacing to penetration depth determined from numerical modeling agrees well with that obtained by linear cutting machine tests. The average normal and rolling forces acting on the first cutter are slightly greater than those acting on the second when the cutting disk spacing is relatively small. The numerical modeling was verified to accurately capture the fragmentation of rock induced by disk cutter.

  2. Tsunami Induced Scour Around Monopile Foundations

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Eltard-Larsen, Bjarke; Baykal, Cüneyt

    While the run-up, inundation, and destructive potential of tsunami events has received considerable attention in the literature, the associated interaction with the sea bed i.e. boundary layer dynamics, induced sediment transport, and resultant sea bed morphology, has received relatively little...... specific attention. The present paper aims to further the understanding of tsunami-induced scour, by numerically investigating tsunami-induced flow and scour processes around a monopile structure, representative of those commonly utilized as offshore wind turbine foundations. The simulations are based...... a monopile at model (laboratory) spatial and temporal scales. Therefore, prior to conducting such numerical simulations involving tsunami-induced scour, it is necessary to first establish a methodology for maintaining similarity of model and full field scales. To achieve hydrodynamic similarity we...

  3. Tsunami Induced Scour Around Monopile Foundations

    DEFF Research Database (Denmark)

    Eltard-Larsen, Bjarke; Fuhrman, David R.; Baykal, Cüneyt

    2017-01-01

    A fully-coupled (hydrodynamic and morphologic) numerical model is presented, and utilized for the simulation of tsunami-induced scour around a monopile structure, representative of those commonly utilized as offshore wind turbine foundations at moderate depths i.e. for depths less than 30 m...... a steady current, where a generally excellent match with experimentally-based results is found. A methodology for maintaining and assessing hydrodynamic and morphologic similarity between field and (laboratory) model-scale tsunami events is then presented, combining diameter-based Froude number similarity...... with that based on the dimensionless wave boundary layer thickness-to-monopile diameter ratio. This methodology is utilized directly in the selection of governing tsunami wave parameters (i.e. velocity magnitude and period) used for subsequent simulation within the numerical model, with the tsunami-induced flow...

  4. Hydrophysical manifestations of the Indian ocean tsunami

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Murthy, T.V.R.; Rao, B.P.

    described in detail by several authors. This chapter summarises the results of our investigations on the hydrophysical manifestations (salinity and temperature, coastal currents, internal waves, etc.) of the tsunami on the coastal environments in India...

  5. The Mauritius and Indian Tsunami Case Study

    African Journals Online (AJOL)

    Nafiisah

    such unforeseen disasters in order to alleviate sufferings and to reduce loss of lives. Nowadays .... up an Indian Ocean Tsunami Warning and Mitigation System (I.O.T.W.S). ... and other natural disasters like floods, typhoons, hurricanes, and.

  6. Standardized procedure for tsunami PRA by AESJ

    International Nuclear Information System (INIS)

    Kirimoto, Yukihiro; Yamaguchi, Akira; Ebisawa, Katsumi

    2013-01-01

    After Fukushima Accident (March 11, 2011), the Atomic Energy Society of Japan (AESJ) started to develop the standard of Tsunami Probabilistic Risk Assessment (PRA) for nuclear power plants in May 2011. As Japan is one of the countries with frequent earthquakes, a great deal of efforts has been made in the field of seismic research since the early stage. To our regret, the PRA procedures guide for tsunami has not yet been developed although the importance is held in mind of the PRA community. Accordingly, AESJ established a standard to specify the standardized procedure for tsunami PRA considering the results of investigation into the concept, the requirements that should have and the concrete methods regarding tsunami PRA referring the opinions of experts in the associated fields in December 2011 (AESJ-SC-RK004:2011). (author)

  7. Tsunamis and Hurricanes A Mathematical Approach

    CERN Document Server

    Cap, Ferdinand

    2006-01-01

    Tsunamis and hurricanes have had a devastating impact on the population living near the coast during the year 2005. The calculation of the power and intensity of tsunamis and hurricanes are of great importance not only for engineers and meteorologists but also for governments and insurance companies. This book presents new research on the mathematical description of tsunamis and hurricanes. A combination of old and new approaches allows to derive a nonlinear partial differential equation of fifth order describing the steepening up and the propagation of tsunamis. The description includes dissipative terms and does not contain singularities or two valued functions. The equivalence principle of solutions of nonlinear large gas dynamics waves and of solutions of water wave equations will be used. An extension of the continuity equation by a source term due to evaporation rates of salt seawater will help to understand hurricanes. Detailed formula, tables and results of the calculations are given.

  8. Annotated Tsunami bibliography: 1962-1976

    International Nuclear Information System (INIS)

    Pararas-Carayannis, G.; Dong, B.; Farmer, R.

    1982-08-01

    This compilation contains annotated citations to nearly 3000 tsunami-related publications from 1962 to 1976 in English and several other languages. The foreign-language citations have English titles and abstracts

  9. Tsunami Source Identification on the 1867 Tsunami Event Based on the Impact Intensity

    Science.gov (United States)

    Wu, T. R.

    2014-12-01

    The 1867 Keelung tsunami event has drawn significant attention from people in Taiwan. Not only because the location was very close to the 3 nuclear power plants which are only about 20km away from the Taipei city but also because of the ambiguous on the tsunami sources. This event is unique in terms of many aspects. First, it was documented on many literatures with many languages and with similar descriptions. Second, the tsunami deposit was discovered recently. Based on the literatures, earthquake, 7-meter tsunami height, volcanic smoke, and oceanic smoke were observed. Previous studies concluded that this tsunami was generated by an earthquake with a magnitude around Mw7.0 along the Shanchiao Fault. However, numerical results showed that even a Mw 8.0 earthquake was not able to generate a 7-meter tsunami. Considering the steep bathymetry and intense volcanic activities along the Keelung coast, one reasonable hypothesis is that different types of tsunami sources were existed, such as the submarine landslide or volcanic eruption. In order to confirm this scenario, last year we proposed the Tsunami Reverse Tracing Method (TRTM) to find the possible locations of the tsunami sources. This method helped us ruling out the impossible far-field tsunami sources. However, the near-field sources are still remain unclear. This year, we further developed a new method named 'Impact Intensity Analysis' (IIA). In the IIA method, the study area is divided into a sequence of tsunami sources, and the numerical simulations of each source is conducted by COMCOT (Cornell Multi-grid Coupled Tsunami Model) tsunami model. After that, the resulting wave height from each source to the study site is collected and plotted. This method successfully helped us to identify the impact factor from the near-field potential sources. The IIA result (Fig. 1) shows that the 1867 tsunami event was a multi-source event. A mild tsunami was trigged by a Mw7.0 earthquake, and then followed by the submarine

  10. Mega Tsunamis of the World Ocean and Their Implication for the Tsunami Hazard Assessment

    Science.gov (United States)

    Gusiakov, V. K.

    2014-12-01

    Mega tsunamis are the strongest tsunamigenic events of tectonic origin that are characterized by run-up heights up to 40-50 m measured along a considerable part of the coastline (up to 1000 km). One of the most important features of mega-tsunamis is their ability to cross the entire oceanic basin and to cause an essential damage to its opposite coast. Another important feature is their ability to penetrate into the marginal seas (like the Sea of Okhotsk, the Bering Sea) and cause dangerous water level oscillations along the parts of the coast, which are largely protected by island arcs against the impact of the strongest regional tsunamis. Among all known historical tsunamis (nearly 2250 events during the last 4000 years) they represent only a small fraction (less than 1%) however they are responsible for more than half the total tsunami fatalities and a considerable part of the overall tsunami damage. The source of all known mega tsunamis is subduction submarine earthquakes with magnitude 9.0 or higher having a return period from 200-300 years to 1000-1200 years. The paper presents a list of 15 mega tsunami events identified so far in historical catalogs with their basic source parameters, near-field and far-field impact effects and their generation and propagation features. The far-field impact of mega tsunamis is largely controlled by location and orientation of their earthquake source as well as by deep ocean bathymetry features. We also discuss the problem of the long-term tsunami hazard assessment when the occurrence of mega tsunamis is taken into account.

  11. Our fingerprint in tsunami deposits - anthropogenic markers as a new tsunami identification tool

    Science.gov (United States)

    Bellanova, P.; Schwarzbauer, J.; Reicherter, K. R.; Jaffe, B. E.; Szczucinski, W.

    2016-12-01

    Several recent geochemical studies have focused on the use of inorganic indicators to evaluate a tsunami origin of sediment in the geologic record. However, tsunami transport not only particulate sedimentary material from marine to terrestrial areas (and vice versa), but also associated organic material. Thus, tsunami deposits may be characterized by organic-geochemical parameters. Recently increased attention has been given to the use of natural organic substances (biomarkers) to identify tsunami deposits. To date no studies have been made investigating anthropogenic organic indicators in recent tsunami deposits. Anthropogenic organic markers are more sensitive and reliable markers compared to other tracers due to their specific molecular structural properties and higher source specificity. In this study we evaluate whether anthropogenic substances are useful indicators for determining whether an area has been inundated by a tsunami. We chose the Sendai Plain and Sanemoura and Oppa Bays, Japan, as study sites because the destruction of infrastructure by flooding released environmental pollutants (e.g., fuels, fats, tarmac, plastics, heavy metals, etc.) contaminating large areas of the coastal zone during the 2011 Tohoku-oki tsunami. Organic compounds from the tsunami deposits are extracted from tsunami sediment and compared with the organic signature of unaffected pre-tsunami samples using gas chromatography-mass spectrometry (GS/MS) based analyses. For the anthropogenic markers, compounds such as soil derived pesticides (DDT), source specific PAHs, halogenated aromatics from industrial sources were detected and used to observe the inland extent and the impact of the Tohoku-oki tsunami on the coastal region around Sendai.

  12. Quality Designed Twin Wire Arc Spraying of Aluminum Bores

    Science.gov (United States)

    König, Johannes; Lahres, Michael; Methner, Oliver

    2015-01-01

    After 125 years of development in combustion engines, the attractiveness of these powerplants still gains a great deal of attention. The efficiency of engines has been increased continuously through numerous innovations during the last years. Especially in the field of motor engineering, consequent friction optimization leads to cost-effective fuel consumption advantages and a CO2 reduction. This is the motivation and adjusting lever of NANOSLIDE® from Mercedes-Benz. The twin wire arc-spraying process of the aluminum bore creates a thin, iron-carbon-alloyed coating which is surface-finished through honing. Due to the continuous development in engines, the coating strategies must be adapted in parallel to achieve a quality-conformed coating result. The most important factors to this end are the controlled indemnification of a minimal coating thickness and a homogeneous coating deposition of the complete bore. A specific system enables the measuring and adjusting of the part and the central plunging of the coating torch into the bore to achieve a homogeneous coating thickness. Before and after measurement of the bore diameter enables conclusions about the coating thickness. A software tool specifically developed for coating deposition can transfer this information to a model that predicts the coating deposition as a function of the coating strategy.

  13. Pressure bump instability in very large cold bore storage rings

    International Nuclear Information System (INIS)

    Limon, P.

    1983-12-01

    Calculations have been done to estimate the circulating current necessary to induce the onset of a pressure bump instability in a cold bore storage ring. For a wide range of storage ring parameters, the instability threshold current is more than an order of magnitude higher than the operating current. 4 references, 2 tables

  14. A finite element thermohydrodynamic analyis of profile bore bearing

    International Nuclear Information System (INIS)

    Shah Nor bin Basri

    1994-01-01

    A finite element-based method is presented for analysing the thermohydrodynamic (THD) behaviour of profile bore bearing. A variational statement for the governing equation is derived and used to formulate a non-linear quadrilateral finite element of serendipity family. The predicted behaviour is compared with experimental evidence where possible and favorable correlation is obtained

  15. Shaft Boring Machine: A method of mechanized vertical shaft excavation

    International Nuclear Information System (INIS)

    Goodell, T.M.

    1991-01-01

    The Shaft Boring Machine (SBM) is a vertical application of proven rock boring technology. The machine applies a rotating cutter wheel with disk cutters for shaft excavation. The wheel is thrust against the rock by hydraulic cylinders and slews about the shaft bottom as it rotates. Cuttings are removed by a clam shell device similar to conventional shaft mucking and the muck is hoisted by buckets. The entire machine moves down (and up) the shaft through the use of a system of grippers thrust against the shaft wall. These grippers and their associated cylinders also provide the means to maintain verticality and stability of the machine. The machine applies the same principles as tunnel boring machines but in a vertical mode. Other shaft construction activities such as rock bolting, utility installation and shaft concrete lining can be accomplished concurrent with shaft boring. The method is comparable in cost to conventional sinking to a depth of about 460 meters (1500 feet) beyond which the SBM has a clear host advantage. The SBM has a greater advantage in productivity in that it can excavate significantly faster than drill and blast methods

  16. Acoustic Monitoring for Tunnel Boring in Soft Soils

    NARCIS (Netherlands)

    Swinnen, G.

    2003-01-01

    The TBM, not a blind mole! This thesis deals with some aspects of seismic imaging of the soft soil in front of a Tunnel Boring Machine to help tunnel constructors ``see'' the subsurface they are approaching, instead of steering the TBM forward like a ``blind mole''. The Dutch shallow subsurface has

  17. Investigation of the structure of filter cakes from bore flushing

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, A; Oezerler, M; Marx, C; Hartmann, A; Oezerler, M; Marx, C; Poege, S; Young, F

    1985-01-01

    After a description of the tasks and functions of the filter cake in bores, the requirements for filter cakes are explained. The aim of the investigation is finding a correlation between the filter cake structures and the prehistory of flushing. The technique of preparing the samples and previous results from investigations with electron microscopes are introduced and discussed.

  18. Procedure for seismic evaluation and design of small bore piping

    International Nuclear Information System (INIS)

    Bilanin, W.; Sills, S.

    1991-01-01

    Simplified methods for the seismic design of small bore piping in nuclear power plants have teen used for many years. Various number of designers have developed unique methods to treat the large number of class 2 and 3 small bore piping systems. This practice has led to a proliferation of methods which are not standardized in the industry. These methods are generally based on enveloping the results of rigorous dynamic or conservative static analysis and result in an excessive number of supports and unrealistically high support loadings. Experience and test data have become available which warranted taking another look at the present methods for analysis of small bore piping. A recently completed Electric Power Research Institute and NCIG (a utility group) activity developed a new procedure for the seismic design and evaluation of small bore piping which provides significant safety and cost benefits. The procedure streamlines the approach to inertial stresses, which is the main feature that achieves the new benefits. Criteria in the procedure for seismic anchor movement and support design are based analysis and focus the designer on credible failure mechanisms. A walkdown of the as-constructed piping system to identify and eliminate undesirable piping features such as adverse spatial interaction is required

  19. Guidelines for Evaluation of Canadian Forces Indoor Firing Ranges

    National Research Council Canada - National Science Library

    Severs, Y

    1999-01-01

    Indoor Firing Ranges (IFR) within DND are typically used by Canadian Forces (CF) personnel, Cadets, RCMP, and civilian organizations for firing small bore weapons in support of both operational/ occupational and recreational requirements...

  20. Correlation of Fault Size, Moment Magnitude, and Tsunami Height to Proved Paleo-tsunami Data in Sulawesi Indonesia

    Science.gov (United States)

    Julius, A. M.; Pribadi, S.

    2016-02-01

    Sulawesi (Indonesia) island is located in the meeting of three large plates i.e. Indo-Australia, Pacific, and Eurasia. This configuration surely make high risk on tsunami by earthquake and by sea floor landslide. NOAA and Russia Tsunami Laboratory show more than 20 tsunami data recorded in Sulawesi since 1820. Based on this data, determine of correlation between all tsunami parameter need to be done to proved all event in the past. Complete data of magnitudes, fault sizes and tsunami heights in this study sourced from NOAA and Russia Tsunami database and completed with Pacific Tsunami Warning Center (PTWC) catalog. This study aims to find correlation between fault area, moment magnitude, and tsunami height by simple regression in Sulawesi. The step of this research are data collect, processing, and regression analysis. Result shows very good correlation, each moment magnitude, tsunami heights, and fault parameter i.e. long, wide, and slip are correlate linier. In increasing of fault area, the tsunami height and moment magnitude value also increase. In increasing of moment magnitude, tsunami height also increase. This analysis is enough to proved all Sulawesi tsunami parameter catalog in NOAA, Russia Tsunami Laboratory and PTWC are correct. Keyword: tsunami, magnitude, height, fault

  1. Modeling tsunamis induced by retrogressive submarine landslides

    Science.gov (United States)

    Løvholt, F.; Kim, J.; Harbitz, C. B.

    2015-12-01

    Enormous submarine landslides having volumes up to thousands of km3 and long run-out may cause tsunamis with widespread effects. Clay-rich landslides, such as Trænadjupet and Storegga offshore Norway commonly involve retrogressive mass and momentum release mechanisms that affect the tsunami generation. Therefore, such landslides may involve a large amount of smaller blocks. As a consequence, the failure mechanisms and release rate of the individual blocks are of importance for the tsunami generation. Previous attempts to model the tsunami generation due to retrogressive landslides are few, and limited to idealized conditions. Here, we review the basic effects of retrogression on tsunamigenesis in simple geometries. To this end, two different methods are employed for the landslide motion, a series block with pre-scribed time lags and kinematics, and a dynamic retrogressive model where the inter-block time lag is determined by the model. The effect of parameters such as time lag on wave-height, wave-length, and dispersion are discussed. Finally, we discuss how the retrogressive effects may have influenced the tsunamis due to large landslides such as the Storegga slide. The research leading to these results has received funding from the Research Council of Norway under grant number 231252 (Project TsunamiLand) and the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 603839 (Project ASTARTE).

  2. Tsunami simulation method initiated from waveforms observed by ocean bottom pressure sensors for real-time tsunami forecast; Applied for 2011 Tohoku Tsunami

    Science.gov (United States)

    Tanioka, Yuichiro

    2017-04-01

    After tsunami disaster due to the 2011 Tohoku-oki great earthquake, improvement of the tsunami forecast has been an urgent issue in Japan. National Institute of Disaster Prevention is installing a cable network system of earthquake and tsunami observation (S-NET) at the ocean bottom along the Japan and Kurile trench. This cable system includes 125 pressure sensors (tsunami meters) which are separated by 30 km. Along the Nankai trough, JAMSTEC already installed and operated the cable network system of seismometers and pressure sensors (DONET and DONET2). Those systems are the most dense observation network systems on top of source areas of great underthrust earthquakes in the world. Real-time tsunami forecast has depended on estimation of earthquake parameters, such as epicenter, depth, and magnitude of earthquakes. Recently, tsunami forecast method has been developed using the estimation of tsunami source from tsunami waveforms observed at the ocean bottom pressure sensors. However, when we have many pressure sensors separated by 30km on top of the source area, we do not need to estimate the tsunami source or earthquake source to compute tsunami. Instead, we can initiate a tsunami simulation from those dense tsunami observed data. Observed tsunami height differences with a time interval at the ocean bottom pressure sensors separated by 30 km were used to estimate tsunami height distribution at a particular time. In our new method, tsunami numerical simulation was initiated from those estimated tsunami height distribution. In this paper, the above method is improved and applied for the tsunami generated by the 2011 Tohoku-oki great earthquake. Tsunami source model of the 2011 Tohoku-oki great earthquake estimated using observed tsunami waveforms, coseimic deformation observed by GPS and ocean bottom sensors by Gusman et al. (2012) is used in this study. The ocean surface deformation is computed from the source model and used as an initial condition of tsunami

  3. A culture of tsunami preparedness and applying knowledge from recent tsunamis affecting California

    Science.gov (United States)

    Miller, K. M.; Wilson, R. I.

    2012-12-01

    It is the mission of the California Tsunami Program to ensure public safety by protecting lives and property before, during, and after a potentially destructive or damaging tsunami. In order to achieve this goal, the state has sought first to use finite funding resources to identify and quantify the tsunami hazard using the best available scientific expertise, modeling, data, mapping, and methods at its disposal. Secondly, it has been vital to accurately inform the emergency response community of the nature of the threat by defining inundation zones prior to a tsunami event and leveraging technical expertise during ongoing tsunami alert notifications (specifically incoming wave heights, arrival times, and the dangers of strong currents). State scientists and emergency managers have been able to learn and apply both scientific and emergency response lessons from recent, distant-source tsunamis affecting coastal California (from Samoa in 2009, Chile in 2010, and Japan in 2011). Emergency managers must understand and plan in advance for specific actions and protocols for each alert notification level provided by the NOAA/NWS West Coast/Alaska Tsunami Warning Center. Finally the state program has provided education and outreach information via a multitude of delivery methods, activities, and end products while keeping the message simple, consistent, and focused. The goal is a culture of preparedness and understanding of what to do in the face of a tsunami by residents, visitors, and responsible government officials. We provide an update of results and findings made by the state program with support of the National Tsunami Hazard Mitigation Program through important collaboration with other U.S. States, Territories and agencies. In 2009 the California Emergency Management Agency (CalEMA) and the California Geological Survey (CGS) completed tsunami inundation modeling and mapping for all low-lying, populated coastal areas of California to assist local jurisdictions on

  4. Tsunamis

    Indian Academy of Sciences (India)

    Wind waves are deep-water waves because they are normally found in ... shallow water waves observed over the open sea is much weaker. For linear waves, it ..... processes of reflection, refraction, and trapping that the tsuna- mis reached the ...

  5. Tsunamis

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  6. The raising of tsunami-wall based on tsunami evaluation at Onagawa nuclear power plant

    International Nuclear Information System (INIS)

    Takahashi, Jun; Hirata, Kazuo

    2017-01-01

    Onagawa nuclear power station (Onagawa NPS) is located on the Pacific coast of Tohoku district where several massive tsunamis had attacked in the past. Based on this natural condition, tsunami safety measures were planned and carried out since the planning of the unit 1. For example, we set appropriate site height for protecting important facilities from tsunamis. As a result, in the massive tsunami which was caused by the 2011 off the Pacific Tohoku Earthquake (3.11 earthquake) on March 11, 2011, all units of Onagawa NPS achieved the cold shutdown. After 3.11 earthquake, we revaluated tsunami considering latest knowledge. In the tsunami re-evaluation, we carried out documents investigation about all tsunami source factors and set the standard fault models which were thought to be appropriate as tsunami wave sources. As a result, the highest water level at the site front is evaluated as 23.1 m. Based on this examination result, we decided to raise the existing seawall (approximately 17 m) to 29 m in consideration of margin and so on. Because the space of the site was limited, we planned a combination of steel-pipe type vertical wall (L = 680 m) and embankment (L = 120 m) due to cement improved soil. (author)

  7. Development of High Precision Tsunami Runup Calculation Method Coupled with Structure Analysis

    Science.gov (United States)

    Arikawa, Taro; Seki, Katsumi; Chida, Yu; Takagawa, Tomohiro; Shimosako, Kenichiro

    2017-04-01

    The 2011 Great East Japan Earthquake (GEJE) has shown that tsunami disasters are not limited to inundation damage in a specified region, but may destroy a wide area, causing a major disaster. Evaluating standing land structures and damage to them requires highly precise evaluation of three-dimensional fluid motion - an expensive process. Our research goals were thus to develop a coupling STOC-CADMAS (Arikawa and Tomita, 2016) coupling with the structure analysis (Arikawa et. al., 2009) to efficiently calculate all stages from tsunami source to runup including the deformation of structures and to verify their applicability. We also investigated the stability of breakwaters at Kamaishi Bay. Fig. 1 shows the whole of this calculation system. The STOC-ML simulator approximates pressure by hydrostatic pressure and calculates the wave profiles based on an equation of continuity, thereby lowering calculation cost, primarily calculating from a e epi center to the shallow region. As a simulator, STOC-IC solves pressure based on a Poisson equation to account for a shallower, more complex topography, but reduces computation cost slightly to calculate the area near a port by setting the water surface based on an equation of continuity. CS3D also solves a Navier-Stokes equation and sets the water surface by VOF to deal with the runup area, with its complex surfaces of overflows and bores. STR solves the structure analysis including the geo analysis based on the Biot's formula. By coupling these, it efficiently calculates the tsunami profile from the propagation to the inundation. The numerical results compared with the physical experiments done by Arikawa et. al.,2012. It was good agreement with the experimental ones. Finally, the system applied to the local situation at Kamaishi bay. The almost breakwaters were washed away, whose situation was similar to the damage at Kamaishi bay. REFERENCES T. Arikawa and T. Tomita (2016): "Development of High Precision Tsunami Runup

  8. NUMERICAL SIMULATION OF UJONG SEUDEUN LAND SEPARATION CAUSED BY THE 2004 INDIAN OCEAN TSUNAMI, ACEH-INDONESIA

    Directory of Open Access Journals (Sweden)

    Musa Al'ala

    2015-07-01

    Full Text Available The Aceh province in Indonesia, located around the Sumatra subduction area, was one of the worst hit areas with respect to damage from the impact of the 2004 Indian Ocean tsunami. A 9.15 Mw earthquake triggered the tsunami. One of the impacts was the disconnection of several areas from their mainland, thus creating new small islands. This happened around Ujong Seudeun village in Aceh Jaya District. Prior to the tsunami, the village had approximately 500 residents. However, after the tsunami, the area was severely eroded and a small strait had been inserted between the village and the Sumatra Island mainland. This study investigates the magnitude of the tsunami wave forces that separated the area to yield a newly deserted small island. This study was conducted by numerical simulations and by coupling the COMCOT (Cornell Multi-grid Coupled Tsunami Model and Delft3D models. These tools have specific advantages, namely, COMCOT’s linear modeling is based on a series of earthquake mechanisms and Delft3D uses non-linear morphological dynamic modeling. Their software includes the explicit leapfrog finite difference scheme (COMCOT and the non-linear shallow water equation (Delft3D. Bathymetry data fromnewly formed coastline and the small island’s shape were digitized using 2005 Quickbird Images. Results from this research reveal the estimated tsunami wave heights and forces that disconnected the small island of Ujong Seuden from the Sumatra Island mainland. These results can be used to further develop the COMCOT model to incorporate sediment modules.

  9. Introduction to "Global Tsunami Science: Past and Future, Volume III"

    Science.gov (United States)

    Rabinovich, Alexander B.; Fritz, Hermann M.; Tanioka, Yuichiro; Geist, Eric L.

    2018-04-01

    Twenty papers on the study of tsunamis are included in Volume III of the PAGEOPH topical issue "Global Tsunami Science: Past and Future". Volume I of this topical issue was published as PAGEOPH, vol. 173, No. 12, 2016 and Volume II as PAGEOPH, vol. 174, No. 8, 2017. Two papers in Volume III focus on specific details of the 2009 Samoa and the 1923 northern Kamchatka tsunamis; they are followed by three papers related to tsunami hazard assessment for three different regions of the world oceans: South Africa, Pacific coast of Mexico and the northwestern part of the Indian Ocean. The next six papers are on various aspects of tsunami hydrodynamics and numerical modelling, including tsunami edge waves, resonant behaviour of compressible water layer during tsunamigenic earthquakes, dispersive properties of seismic and volcanically generated tsunami waves, tsunami runup on a vertical wall and influence of earthquake rupture velocity on maximum tsunami runup. Four papers discuss problems of tsunami warning and real-time forecasting for Central America, the Mediterranean coast of France, the coast of Peru, and some general problems regarding the optimum use of the DART buoy network for effective real-time tsunami warning in the Pacific Ocean. Two papers describe historical and paleotsunami studies in the Russian Far East. The final set of three papers importantly investigates tsunamis generated by non-seismic sources: asteroid airburst and meteorological disturbances. Collectively, this volume highlights contemporary trends in global tsunami research, both fundamental and applied toward hazard assessment and mitigation.

  10. Introduction to "Tsunamis in the Pacific Ocean: 2011-2012"

    Science.gov (United States)

    Rabinovich, Alexander B.; Borrero, Jose C.; Fritz, Hermann M.

    2014-12-01

    With this volume of the Pure and Applied Geophysics (PAGEOPH) topical issue "Tsunamis in the Pacific Ocean: 2011-2012", we are pleased to present 21 new papers discussing tsunami events occurring in this two-year span. Owing to the profound impact resulting from the unique crossover of a natural and nuclear disaster, research into the 11 March 2011 Tohoku, Japan earthquake and tsunami continues; here we present 12 papers related to this event. Three papers report on detailed field survey results and updated analyses of the wave dynamics based on these surveys. Two papers explore the effects of the Tohoku tsunami on the coast of Russia. Three papers discuss the tsunami source mechanism, and four papers deal with tsunami hydrodynamics in the far field or over the wider Pacific basin. In addition, a series of five papers presents studies of four new tsunami and earthquake events occurring over this time period. This includes tsunamis in El Salvador, the Philippines, Japan and the west coast of British Columbia, Canada. Finally, we present four new papers on tsunami science, including discussions on tsunami event duration, tsunami wave amplitude, tsunami energy and tsunami recurrence.

  11. Pemetaan Risiko Tsunami terhadap Bangunan secara Kuantitatif

    Directory of Open Access Journals (Sweden)

    Totok Wahyu Wibowo

    2017-12-01

    Full Text Available ABSTRAK Tsunami merupakan bencana alam yang sebagian besar kejadiannya dipicu oleh gempabumi dasar laut. Dampak kerugian tsunami terhadap lingkungan pesisir antara lain rusaknya properti, struktur bangunan, infrastruktur dan dapat mengakibatkan gangguan ekonomi. Bencana tsunami memiliki keunikan dibandingkan bencana lainnya, karena memiliki kemungkinan sangat kecil tetapi dengan ancaman yang tinggi. Paradigma Pengurangan Risiko Bencana (PRB yang berkembang dalam beberapa tahun terakhir yang menekankan bahwa risiko merupakan hal utama dalam penentuan strategi terhadap bencana. Kelurahan Ploso, merupakan salah satu lokasi di Kabupaten Pacitan yang berpotensi terkena bencana tsunami. Pemetaan risiko bangunan dilakukan dengan metode kuantitatif, yang mana disusun atas peta kerentanan dan peta harga bangunan. Papathoma Tsunami Vulnerability 3 (PTVA-3 diadopsi untuk pemetaan kerentanan. Data harga bangunan diperoleh dari kombinasi kerja lapangan dan analisis Sistem Informasi Geografis (SIG. Hasil pemetaan risiko menunjukkan bahwa Lingkungan Barehan memiliki risiko kerugian paling tinggi diantara semua lingkungan di Kelurahan Ploso. Hasil ini dapat dijadikan sebagai acuan untuk penentuan strategi pengurangan risiko bencana di Kelurahan Ploso. ABSTRACT Tsunami is a natural disaster whose occurrences are mostly triggered by submarine earthquakes. The impact of tsunami on coastal environment includes damages to properties, building structures, and infrastructures as well as economic disruptions. Compared to other disasters, tsunamis are deemed unique because they have a very small occurrence probability but with a very high threat. The paradigm of Disaster Risk Reduction (DRR that has developed in the last few years stresses risk as the primary factor to determine disaster strategies. Ploso Sub-district, an area in Pacitan Regency, is potentially affected by tsunamis. The risk mapping of the buildings in this sub-district was created using a quantitative

  12. Analysis of Driven Pile Capacity within Pre-Bored Soil : Research Project Capsule

    Science.gov (United States)

    2017-10-01

    Pre-boring is a method used to facilitate large displacement pile driving in hard/dense soils (see Figure 1). By pre-boring a pilot hole, the end bearing and side friction within the pre-bored zone are reduced, thus aiding pile driving installation. ...

  13. Application of a Tsunami Warning Message Metric to refine NOAA NWS Tsunami Warning Messages

    Science.gov (United States)

    Gregg, C. E.; Johnston, D.; Sorensen, J.; Whitmore, P.

    2013-12-01

    In 2010, the U.S. National Weather Service (NWS) funded a three year project to integrate social science into their Tsunami Program. One of three primary requirements of the grant was to make improvements to tsunami warning messages of the NWS' two Tsunami Warning Centers- the West Coast/Alaska Tsunami Warning Center (WCATWC) in Palmer, Alaska and the Pacific Tsunami Warning Center (PTWC) in Ewa Beach, Hawaii. We conducted focus group meetings with a purposive sample of local, state and Federal stakeholders and emergency managers in six states (AK, WA, OR, CA, HI and NC) and two US Territories (US Virgin Islands and American Samoa) to qualitatively asses information needs in tsunami warning messages using WCATWC tsunami messages for the March 2011 Tohoku earthquake and tsunami event. We also reviewed research literature on behavioral response to warnings to develop a tsunami warning message metric that could be used to guide revisions to tsunami warning messages of both warning centers. The message metric is divided into categories of Message Content, Style, Order and Formatting and Receiver Characteristics. A message is evaluated by cross-referencing the message with the operational definitions of metric factors. Findings are then used to guide revisions of the message until the characteristics of each factor are met. Using findings from this project and findings from a parallel NWS Warning Tiger Team study led by T. Nicolini, the WCATWC implemented the first of two phases of revisions to their warning messages in November 2012. A second phase of additional changes, which will fully implement the redesign of messages based on the metric, is in progress. The resulting messages will reflect current state-of-the-art knowledge on warning message effectiveness. Here we present the message metric; evidence-based rational for message factors; and examples of previous, existing and proposed messages.

  14. GEODYNAMICS OF NAZCA RIDGE’S OBLIQUE SUBDUCTION AND MIGRATION - IMPLICATIONS FOR TSUNAMI GENERATION ALONG CENTRAL AND SOUTHERN PERU: Earthquake and Tsunami of 23 June 2001

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2012-01-01

    Full Text Available Peru is in a region of considerable geologic and seismic complexity. Thrust faulting along the boundary where the Nazca plate subducts beneath the South American continent has created three distinct seismic zones. The angle of subduction of the Nazca oceanic plate beneath the South American plate is not uniform along the entire segment of the Peru-Chile Trench. Furthermore, subduction is affected by buoyancy forces of the bounding oceanic ridges and fractures - such as the Mendana Fracture Zone (MFZ to the North and the Nazca Ridge to the South. This narrow zone is characterized by shallow earthquakes that can generate destructive tsunamis of varied intensities. The present study examines the significance of Nazca Ridge’s oblique subduction and migration to the seismicity of Central/Southern Peru and to tsunami generation. The large tsunamigenic earthquake of 23 June 2001 is presented as a case study. This event generated a destructive, local tsunami that struck Peru’s southern coasts with waves ranging from 3 to 4.6 meters (10-15 feet and inland inundation that ranged from 1 to 3 km. In order to understand the near and far-field tsunamigenic efficiency of events along Central/Southern Peru and the significance of Nazca Ridge’s oblique subduction, the present study examines further the geologic structure of the region and this quake’s moment tensor analysis, energy release, fault rupture and the spatial distribution of aftershocks. Tsunami source mechanism characteristics for this event are presented, as inferred from seismic intensities, energy releases, fault plane solutions and the use of empirical relationships. The study concludes that the segment of subduction and faulting paralleling the Peru-Chile Trench from about 150 to 180 South, as well as the obliquity of convergent tectonic plate collision in this region, may be the reason for shorter rupture lengths of major earthquakes and the generation of only local destructive tsunamis.

  15. Introduction to "Global Tsunami Science: Past and Future, Volume II"

    Science.gov (United States)

    Rabinovich, Alexander B.; Fritz, Hermann M.; Tanioka, Yuichiro; Geist, Eric L.

    2017-08-01

    Twenty-two papers on the study of tsunamis are included in Volume II of the PAGEOPH topical issue "Global Tsunami Science: Past and Future". Volume I of this topical issue was published as PAGEOPH, vol. 173, No. 12, 2016 (Eds., E. L. Geist, H. M. Fritz, A. B. Rabinovich, and Y. Tanioka). Three papers in Volume II focus on details of the 2011 and 2016 tsunami-generating earthquakes offshore of Tohoku, Japan. The next six papers describe important case studies and observations of recent and historical events. Four papers related to tsunami hazard assessment are followed by three papers on tsunami hydrodynamics and numerical modelling. Three papers discuss problems of tsunami warning and real-time forecasting. The final set of three papers importantly investigates tsunamis generated by non-seismic sources: volcanic explosions, landslides, and meteorological disturbances. Collectively, this volume highlights contemporary trends in global tsunami research, both fundamental and applied toward hazard assessment and mitigation.

  16. Morehead City, North Carolina Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Morehead City, North Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  17. Nawiliwili, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nawiliwili, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  18. Tsunami Prediction and Earthquake Parameters Estimation in the Red Sea

    KAUST Repository

    Sawlan, Zaid A

    2012-01-01

    parameters and topography. This thesis introduces a real-time tsunami forecasting method that combines tsunami model with observations using a hybrid ensemble Kalman filter and ensemble Kalman smoother. The filter is used for state prediction while

  19. Neah Bay, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Neah Bay, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  20. Bar Harbor, ME Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Bar Harbor, Maine Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  1. Sitka, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  2. Christiansted, Virgin Islands Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Christiansted, Virgin Islands Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  3. Arena Cove, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arena Cove, California Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  4. Atlantic City, New Jersey Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic City, New Jersey Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  5. Crescent City, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Crescent City, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  6. Newport, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Newport, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  7. Wake Island Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Wake Island Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  8. Garibaldi, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Garibaldi, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  9. Keauhou, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Keauhou, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  10. Charlotte Amalie, Virgin Islands Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Charlotte Amalie, Virgin Islands Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami...

  11. Tsunamis: stochastic models of occurrence and generation mechanisms

    Science.gov (United States)

    Geist, Eric L.; Oglesby, David D.

    2014-01-01

    The devastating consequences of the 2004 Indian Ocean and 2011 Japan tsunamis have led to increased research into many different aspects of the tsunami phenomenon. In this entry, we review research related to the observed complexity and uncertainty associated with tsunami generation, propagation, and occurrence described and analyzed using a variety of stochastic methods. In each case, seismogenic tsunamis are primarily considered. Stochastic models are developed from the physical theories that govern tsunami evolution combined with empirical models fitted to seismic and tsunami observations, as well as tsunami catalogs. These stochastic methods are key to providing probabilistic forecasts and hazard assessments for tsunamis. The stochastic methods described here are similar to those described for earthquakes (Vere-Jones 2013) and volcanoes (Bebbington 2013) in this encyclopedia.

  12. Evaluation of tsunami risk in the Lesser Antilles

    Directory of Open Access Journals (Sweden)

    N. Zahibo

    2001-01-01

    Full Text Available The main goal of this study is to give the preliminary estimates of the tsunami risks for the Lesser Antilles. We investigated the available data of the tsunamis in the French West Indies using the historical data and catalogue of the tsunamis in the Lesser Antilles. In total, twenty-four (24 tsunamis were recorded in this area for last 400 years; sixteen (16 events of the seismic origin, five (5 events of volcanic origin and three (3 events of unknown source. Most of the tsunamigenic earthquakes (13 occurred in the Caribbean, and three tsunamis were generated during far away earthquakes (near the coasts of Portugal and Costa Rica. The estimates of tsunami risk are based on a preliminary analysis of the seismicity of the Caribbean area and the historical data of tsunamis. In particular, we investigate the occurrence of historical extreme runup tsunami data on Guadeloupe, and these data are revised after a survey in Guadeloupe.

  13. Westport, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Westport, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  14. Pago Pago, American Samoa Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pago Pago, American Samoa Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  15. Daytona Beach, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Daytona Beach, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  16. Lahaina, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Lahaina, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  17. Deep-ocean Assessment and Reporting of Tsunamis (DART) Stations

    Data.gov (United States)

    Department of Homeland Security — As part of the U.S. National Tsunami Hazard Mitigation Program (NTHMP), the Deep Ocean Assessment and Reporting of Tsunamis (DART(R)) Project is an ongoing effort to...

  18. Myrtle Beach, South Carolina Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Myrtle Beach, South Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  19. Fajardo, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Fajardo, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  20. Florence, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Florence, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  1. Ponce, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ponce, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  2. Shemya, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Shemya, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  3. Key West, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Key West, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  4. Los Angeles, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Los Angeles, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  5. CO-OPS 1-minute Raw Tsunami Water Level Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CO-OPS has been involved with tsunami warning and mitigation since the Coast and Geodetic Survey started the Tsunami Warning System in 1948 to provide warnings to...

  6. Montauk, New York Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Montauk, New York Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  7. Port Angeles, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Angeles, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  8. The 15 August 2007 Peru tsunami runup observations and modeling

    Science.gov (United States)

    Fritz, Hermann M.; Kalligeris, Nikos; Borrero, Jose C.; Broncano, Pablo; Ortega, Erick

    2008-05-01

    On 15 August 2007 an earthquake with moment magnitude (Mw) of 8.0 centered off the coast of central Peru, generated a tsunami with locally focused runup heights of up to10 m. A reconnaissance team was deployed two weeks after the event and investigated the tsunami effects at 51 sites. Three tsunami fatalities were reported south of the Paracas Peninsula in a sparsely populated desert area where the largest tsunami runup heights were measured. Numerical modeling of the earthquake source and tsunami suggest that a region of high slip near the coastline was primarily responsible for the extreme runup heights. The town of Pisco was spared by the Paracas Peninsula, which blocked tsunami waves from propagating northward from the high slip region. The coast of Peru has experienced numerous deadly and destructive tsunamis throughout history, which highlights the importance of ongoing tsunami awareness and education efforts to ensure successful self-evacuation.

  9. Kodiak, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kodiak, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  10. Virginia Beach Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Virginia Beach, Virginia Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  11. Sand Point, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sand Point, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  12. Ocean City, Maryland Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean City, Maryland Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  13. Cordova, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cordova, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  14. Kahului, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kahului, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  15. Nantucket, Massachusetts Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nantucket, Massachusetts Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  16. Unalaska, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Unalaska, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  17. Port Orford, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Orford, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  18. Kailua-Kona, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kailua-Kona, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  19. Seward, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seward, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  20. Seaside, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seaside, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  1. Apra Harbor, Guam Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Apra Harbor, Guam Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  2. Kihei, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kihei, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  3. Adak, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Adak, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  4. Arecibo, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arecibo, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  5. Santa Barbara, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Santa Barbara, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  6. San Juan, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The San Juan, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  7. Point Reyes, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Point Reyes, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  8. Port San Luis, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port San Luis, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  9. Pearl Harbor, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pearl Harbor, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  10. Eureka, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Eureka, California Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  11. Palm Beach, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Palm Beach, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  12. Cape Hatteras, North Carolina Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cape Hatteras, North Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  13. Toke Point, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Toke Point, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  14. Hanalei, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hanalei, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  15. Homer, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Homer, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  16. Projected inundations on the South African coast by tsunami waves

    African Journals Online (AJOL)

    Hayley.Cawthra

    wind waves and swells, and because of its relatively short period, .... Inundation modelling attempts to recreate the tsunami generation in deep or ... The preservation of tsunami deposits in the coastal geological record is a function of the.

  17. Nikolski, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nikolski, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  18. Monterey, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Monterey, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  19. Port Alexander, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Alexander, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  20. San Francisco, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The San Francisco, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  1. La Push, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The La Push, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  2. Elfin Cove, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Elfin Cove, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  3. Haleiwa, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Haleiwa, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  4. British Columbia, Canada Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The British Columbia, Canada Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  5. Hilo, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hilo, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  6. Savannah, Georgia Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Savannah, Georgia Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  7. Chignik, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Chignik, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  8. The Euro-Mediterranean Tsunami Catalogue

    Directory of Open Access Journals (Sweden)

    Alessandra Maramai

    2014-08-01

    Full Text Available A unified catalogue containing 290 tsunamis generated in the European and Mediterranean seas since 6150 B.C. to current days is presented. It is the result of a systematic and detailed review of all the regional catalogues available in literature covering the study area, each of them having their own format and level of accuracy. The realization of a single catalogue covering a so wide area and involving several countries was a complex task that posed a series of challenges, being the standardization and the quality of the data the most demanding. A “reliability” value was used to rate equally the quality of the data for each event and this parameter was assigned based on the trustworthiness of the information related to the generating cause, the tsunami description accuracy and also on the availability of coeval bibliographical sources. Following these criteria we included in the catalogue events whose reliability ranges from 0 (“very improbable tsunami” to 4 (“definite tsunami”. About 900 documentary sources, including historical documents, books, scientific reports, newspapers and previous catalogues, support the tsunami data and descriptions gathered in this catalogue. As a result, in the present paper a list of the 290 tsunamis with their main parameters is reported. The online version of the catalogue, available at http://roma2.rm.ingv.it/en/facilities/data_bases/52/catalogue_of_the_euro-mediterranean_tsunamis, provides additional information such as detailed descriptions, pictures, etc. and the complete list of bibliographical sources. Most of the included events have a high reliability value (3= “probable” and 4= “definite” which makes the Euro-Mediterranean Tsunami Catalogue an essential tool for the implementation of tsunami hazard and risk assessment.

  9. Synthetic tsunami waveform catalogs with kinematic constraints

    Science.gov (United States)

    Baptista, Maria Ana; Miranda, Jorge Miguel; Matias, Luis; Omira, Rachid

    2017-07-01

    In this study we present a comprehensive methodology to produce a synthetic tsunami waveform catalogue in the northeast Atlantic, east of the Azores islands. The method uses a synthetic earthquake catalogue compatible with plate kinematic constraints of the area. We use it to assess the tsunami hazard from the transcurrent boundary located between Iberia and the Azores, whose western part is known as the Gloria Fault. This study focuses only on earthquake-generated tsunamis. Moreover, we assume that the time and space distribution of the seismic events is known. To do this, we compute a synthetic earthquake catalogue including all fault parameters needed to characterize the seafloor deformation covering the time span of 20 000 years, which we consider long enough to ensure the representability of earthquake generation on this segment of the plate boundary. The computed time and space rupture distributions are made compatible with global kinematic plate models. We use the tsunami empirical Green's functions to efficiently compute the synthetic tsunami waveforms for the dataset of coastal locations, thus providing the basis for tsunami impact characterization. We present the results in the form of offshore wave heights for all coastal points in the dataset. Our results focus on the northeast Atlantic basin, showing that earthquake-induced tsunamis in the transcurrent segment of the Azores-Gibraltar plate boundary pose a minor threat to coastal areas north of Portugal and beyond the Strait of Gibraltar. However, in Morocco, the Azores, and the Madeira islands, we can expect wave heights between 0.6 and 0.8 m, leading to precautionary evacuation of coastal areas. The advantages of the method are its easy application to other regions and the low computation effort needed.

  10. The Pacific Tsunami Warning Center's Response to the Tohoku Earthquake and Tsunami

    Science.gov (United States)

    Weinstein, S. A.; Becker, N. C.; Shiro, B.; Koyanagi, K. K.; Sardina, V.; Walsh, D.; Wang, D.; McCreery, C. S.; Fryer, G. J.; Cessaro, R. K.; Hirshorn, B. F.; Hsu, V.

    2011-12-01

    The largest Pacific basin earthquake in 47 years, and also the largest magnitude earthquake since the Sumatra 2004 earthquake, struck off of the east coast of the Tohoku region of Honshu, Japan at 5:46 UTC on 11 March 2011. The Tohoku earthquake (Mw 9.0) generated a massive tsunami with runups of up to 40m along the Tohoku coast. The tsunami waves crossed the Pacific Ocean causing significant damage as far away as Hawaii, California, and Chile, thereby becoming the largest, most destructive tsunami in the Pacific Basin since 1960. Triggers on the seismic stations at Erimo, Hokkaido (ERM) and Matsushiro, Honshu (MAJO), alerted Pacific Tsunami Warning Center (PTWC) scientists 90 seconds after the earthquake began. Four minutes after its origin, and about one minute after the earthquake's rupture ended, PTWC issued an observatory message reporting a preliminary magnitude of 7.5. Eight minutes after origin time, the Japan Meteorological Agency (JMA) issued its first international tsunami message in its capacity as the Northwest Pacific Tsunami Advisory Center. In accordance with international tsunami warning system protocols, PTWC then followed with its first international tsunami warning message using JMA's earthquake parameters, including an Mw of 7.8. Additional Mwp, mantle wave, and W-phase magnitude estimations based on the analysis of later-arriving seismic data at PTWC revealed that the earthquake magnitude reached at least 8.8, and that a destructive tsunami would likely be crossing the Pacific Ocean. The earthquake damaged the nearest coastal sea-level station located 90 km from the epicenter in Ofunato, Japan. The NOAA DART sensor situated 600 km off the coast of Sendai, Japan, at a depth of 5.6 km recorded a tsunami wave amplitude of nearly two meters, making it by far the largest tsunami wave ever recorded by a DART sensor. Thirty minutes later, a coastal sea-level station at Hanasaki, Japan, 600 km from the epicenter, recorded a tsunami wave amplitude of

  11. Evaluation of an advanced rotor bore examination system

    International Nuclear Information System (INIS)

    Alford, J.W.

    1990-01-01

    Evaluations of in-service turbine-generator rotor forgings are often based on an ultrasonic examination of the near-bore region. A portable rotor bore examination system has been developed that provides discontinuity characterization required for a thorough rotor evaluation. This automated system, its procedures and operations personnel have now been qualified for full-scale field application. System development has benefited from merging several technologies with new methods for precise alignment of the drive unit, calibration block and rotor. The system runs a custom interactive software package that allows for flexible calibration and motion control as well as data acquisition and manipulation. A comprehensive evaluation procedure was developed for system qualification using test specimens with natural and artificial reflectors, including a unique fatigue-crack block. Following a discussion of the system features, this paper discusses the system evaluation based on this procedure

  12. Test of TEDA, Tsunami Early Detection Algorithm

    Science.gov (United States)

    Bressan, Lidia; Tinti, Stefano

    2010-05-01

    Tsunami detection in real-time, both offshore and at the coastline, plays a key role in Tsunami Warning Systems since it provides so far the only reliable and timely proof of tsunami generation, and is used to confirm or cancel tsunami warnings previously issued on the basis of seismic data alone. Moreover, in case of submarine or coastal landslide generated tsunamis, which are not announced by clear seismic signals and are typically local, real-time detection at the coastline might be the fastest way to release a warning, even if the useful time for emergency operations might be limited. TEDA is an algorithm for real-time detection of tsunami signal on sea-level records, developed by the Tsunami Research Team of the University of Bologna. The development and testing of the algorithm has been accomplished within the framework of the Italian national project DPC-INGV S3 and the European project TRANSFER. The algorithm is to be implemented at station level, and it is based therefore only on sea-level data of a single station, either a coastal tide-gauge or an offshore buoy. TEDA's principle is to discriminate the first tsunami wave from the previous background signal, which implies the assumption that the tsunami waves introduce a difference in the previous sea-level signal. Therefore, in TEDA the instantaneous (most recent) and the previous background sea-level elevation gradients are characterized and compared by proper functions (IS and BS) that are updated at every new data acquisition. Detection is triggered when the instantaneous signal function passes a set threshold and at the same time it is significantly bigger compared to the previous background signal. The functions IS and BS depend on temporal parameters that allow the algorithm to be adapted different situations: in general, coastal tide-gauges have a typical background spectrum depending on the location where the instrument is installed, due to local topography and bathymetry, while offshore buoys are

  13. A Tsunami PSA for Nuclear Power Plants in Korea

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Choi, In Kil; Park, Jin Hee; Seo, Kyung Suk; Seo, Jeong Moon; Yang, Joon Eon

    2010-06-01

    For the evaluation of safety of NPP caused by Tsunami event, probabilistic safety assessment (PSA) method was applied in this study. At first, an empirical tsunami hazard analysis performed for an evaluation of tsunami return period. A procedure for tsunami fragility methodology was established, and target equipment and structures for investigation of Tsunami Hazard assessment were selected. A several fragility calculations were performed for equipment in Nuclear Power Plant and finally accident scenario of tsunami event in NPP was presented. Finally, a system analysis performed in the case of tsunami event for an evaluation of a CDF of Ulchin 56 NPP site. For the evaluation of safety of NPP caused by Tsunami event, probabilistic safety assessment (PSA) method was applied. A procedure for tsunami fragility methodology was established, and target equipment and structures for investigation of Tsunami Hazard assessment were selected. A several fragility calculations were performed for equipment in Nuclear Power Plant and finally accident scenario of tsunami event in NPP was presented. As a result, in the case of tsunami event, functional failure is mostly governed total failure probability of facilities in NPP site

  14. Identification and characterization of tsunami deposits off southeast ...

    Indian Academy of Sciences (India)

    6Institute of Environmental Geosciences, Department of Earth and Environmental Sciences, Pukyong National. University ... challenging topic to be developed in studies on tsunami hazard assessment. Two core ... A tsunami is one of the most terrifying natural hazards .... identify tsunami deposits in a beach environment.

  15. Mathematical Modelling of Tsunami Propagation | Eze | Journal of ...

    African Journals Online (AJOL)

    The generation of tsunamis with the help of a simple dislocation model of an earthquake and their propagation in the basin are discussed. In this study, we examined the formation of a tsunami wave from an initial sea surface displacement similar to those obtained from earthquakes that have generated tsunami waves and ...

  16. Open-Ocean and Coastal Properties of Recent Major Tsunamis

    Science.gov (United States)

    Rabinovich, A.; Thomson, R.; Zaytsev, O.

    2017-12-01

    The properties of six major tsunamis during the period 2009-2015 (2009 Samoa; 2010 Chile; 2011 Tohoku; 2012 Haida Gwaii; 2014 and 2015 Chile) were thoroughly examined using coastal data from British Columbia, the U.S. West Coast and Mexico, and offshore open-ocean DART and NEPTUNE stations. Based on joint spectral analyses of the tsunamis and background noise, we have developed a method to suppress the influence of local topography and to use coastal observations to determine the underlying spectra of tsunami waves in the deep ocean. The "reconstructed" open-ocean tsunami spectra were found to be in close agreement with the actual tsunami spectra evaluated from the analysis of directly measured open-ocean tsunami records. We have further used the spectral estimates to parameterize tsunamis based on their integral open-ocean spectral characteristics. Three key parameters are introduced to describe individual tsunami events: (1) Integral open-ocean energy; (2) Amplification factor (increase of the mean coastal tsunami variance relative to the open-ocean variance); and (3) Tsunami colour, the frequency composition of the open-ocean tsunami waves. In particular, we found that the strongest tsunamis, associated with large source areas (the 2010 Chile and 2011 Tohoku) are "reddish" (indicating the dominance of low-frequency motions), while small-source events (the 2009 Samoa and 2012 Haida Gwaii) are "bluish" (indicating strong prevalence of high-frequency motions).

  17. Turbulent mixing and wave radiation in non-Boussinesq internal bores

    DEFF Research Database (Denmark)

    Borden, Zac; Koblitz, Tilman; Meiburg, Eckart

    2012-01-01

    Bores, or hydraulic jumps, appear in many natural settings and are useful in many industrial applications. If the densities of the two fluids between which a bore propagates are very different (i.e., water and air), the less dense fluid can be neglected when modeling a bore analytically-a single...... ratio, defined as the ratio of the density of the lighter fluid to the heavier fluid, is greater than approximately one half. For smaller density ratios, undular waves generated at the bore's front dominate over the effects of turbulent mixing, and the expanding layer loses energy across the bore. Based...

  18. Tsunami Ionospheric warning and Ionospheric seismology

    Science.gov (United States)

    Lognonne, Philippe; Rolland, Lucie; Rakoto, Virgile; Coisson, Pierdavide; Occhipinti, Giovanni; Larmat, Carene; Walwer, Damien; Astafyeva, Elvira; Hebert, Helene; Okal, Emile; Makela, Jonathan

    2014-05-01

    The last decade demonstrated that seismic waves and tsunamis are coupled to the ionosphere. Observations of Total Electron Content (TEC) and airglow perturbations of unique quality and amplitude were made during the Tohoku, 2011 giant Japan quake, and observations of much lower tsunamis down to a few cm in sea uplift are now routinely done, including for the Kuril 2006, Samoa 2009, Chili 2010, Haida Gwai 2012 tsunamis. This new branch of seismology is now mature enough to tackle the new challenge associated to the inversion of these data, with either the goal to provide from these data maps or profile of the earth surface vertical displacement (and therefore crucial information for tsunami warning system) or inversion, with ground and ionospheric data set, of the various parameters (atmospheric sound speed, viscosity, collision frequencies) controlling the coupling between the surface, lower atmosphere and the ionosphere. We first present the state of the art in the modeling of the tsunami-atmospheric coupling, including in terms of slight perturbation in the tsunami phase and group velocity and dependance of the coupling strength with local time, ocean depth and season. We then show the confrontation of modelled signals with observations. For tsunami, this is made with the different type of measurement having proven ionospheric tsunami detection over the last 5 years (ground and space GPS, Airglow), while we focus on GPS and GOCE observation for seismic waves. These observation systems allowed to track the propagation of the signal from the ground (with GPS and seismometers) to the neutral atmosphere (with infrasound sensors and GOCE drag measurement) to the ionosphere (with GPS TEC and airglow among other ionospheric sounding techniques). Modelling with different techniques (normal modes, spectral element methods, finite differences) are used and shown. While the fits of the waveform are generally very good, we analyse the differences and draw direction of future

  19. External Microflora of a Marine Wood-Boring Isopod

    OpenAIRE

    Boyle, Paul J.; Mitchell, Ralph

    1981-01-01

    Bacteria associated with the marine wood-boring isopod Limnoria lignorum were enumerated by acridine orange epifluorescence microscopy and by plate counts on several media; the plate-viable bacteria were isolated and identified. Similar procedures were followed to enumerate and identify bacteria associated with the wood substrate from which the isopods were collected and with the surrounding water from the isopod habitat. Approximately 1.4 × 107 bacterial cells were associated with each indiv...

  20. Interaction between groundwater and TBM (Tunnel Boring Machine) excavated tunnels

    OpenAIRE

    Font Capó, Jordi

    2012-01-01

    A number of problems, e.g. sudden inflows are encountered during tunneling under the piezometric level, especially when the excavation crosses high transmissivity areas. These inflows may drag materials when the tunnel crosses low competent layers, resulting in subsidence, chimney formation and collapses. Moreover, inflows can lead to a decrease in head level because of aquifer drainage. Tunnels can be drilled by a tunnel boring machine (TBM) to minimize inflows and groundwater impacts, restr...

  1. Four-layer, two-inch bore, superconducting dipole magnet

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.; Peters, C.; Gilbert, W.; Taylor, C.; Meuser, R.

    1982-11-01

    Superconductors provide the accelerator designer with a unique opportunity to construct machines that can achieve high particle energies and yet have low operating costs. This paper describes the design, fabrication and testing of a 4 layer, 50 mm bore superconducting dipole magnet, D-9A. The magnet reached short sample, 5.8 T at 4.4 K and 8.0 T and 1.8 K, with little training, and exhibited low losses and low ramp rate sensitivity

  2. Can Asteroid Airbursts Cause Dangerous Tsunami?.

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    I have performed a series of high-resolution hydrocode simulations to generate “source functions” for tsunami simulations as part of a proof-of-principle effort to determine whether or not the downward momentum from an asteroid airburst can couple energy into a dangerous tsunami in deep water. My new CTH simulations show enhanced momentum multiplication relative to a nuclear explosion of the same yield. Extensive sensitivity and convergence analyses demonstrate that results are robust and repeatable for simulations with sufficiently high resolution using adaptive mesh refinement. I have provided surface overpressure and wind velocity fields to tsunami modelers to use as time-dependent boundary conditions and to test the hypothesis that this mechanism can enhance the strength of the resulting shallow-water wave. The enhanced momentum result suggests that coupling from an over-water plume-forming airburst could be a more efficient tsunami source mechanism than a collapsing impact cavity or direct air blast alone, but not necessarily due to the originally-proposed mechanism. This result has significant implications for asteroid impact risk assessment and airburst-generated tsunami will be the focus of a NASA-sponsored workshop at the Ames Research Center next summer, with follow-on funding expected.

  3. Mental Health in Sumatra After the Tsunami

    Science.gov (United States)

    Frankenberg, Elizabeth; Friedman, Jed; Gillespie, Thomas; Ingwersen, Nicholas; Pynoos, Robert; Rifai, Iip Umar; Sikoki, Bondan; Steinberg, Alan; Sumantri, Cecep; Suriastini, Wayan; Thomas, Duncan

    2008-01-01

    Objectives. We assessed the levels and correlates of posttraumatic stress reactivity (PTSR) of more than 20000 adult tsunami survivors by analyzing survey data from coastal Aceh and North Sumatra, Indonesia. Methods. A population-representative sample of individuals interviewed before the tsunami was traced in 2005 to 2006. We constructed 2 scales measuring PTSR by using 7 symptom items from the Post Traumatic Stress Disorder (PTSD) Checklist–Civilian Version. One scale measured PTSR at the time of interview, and the other measured PTSR at the point of maximum intensity since the disaster. Results. PTSR scores were highest for respondents from heavily damaged areas. In all areas, scores declined over time. Gender and age were significant predictors of PTSR; markers of socioeconomic status before the tsunami were not. Exposure to traumatic events, loss of kin, and property damage were significantly associated with higher PTSR scores. Conclusions. The tsunami produced posttraumatic stress reactions across a wide region of Aceh and North Sumatra. Public health will be enhanced by the provision of counseling services that reach not only people directly affected by the tsunami but also those living beyond the area of immediate impact. PMID:18633091

  4. Tsunami-tendenko and morality in disasters.

    Science.gov (United States)

    Kodama, Satoshi

    2015-05-01

    Disaster planning challenges our morality. Everyday rules of action may need to be suspended during large-scale disasters in favour of maxims that that may make prudential or practical sense and may even be morally preferable but emotionally hard to accept, such as tsunami-tendenko. This maxim dictates that the individual not stay and help others but run and preserve his or her life instead. Tsunami-tendenko became well known after the great East Japan earthquake on 11 March 2011, when almost all the elementary and junior high school students in one city survived the tsunami because they acted on this maxim that had been taught for several years. While tsunami-tendenko has been praised, two criticisms of it merit careful consideration: one, that the maxim is selfish and immoral; and two, that it goes against the natural tendency to try to save others in dire need. In this paper, I will explain the concept of tsunami-tendenko and then respond to these criticisms. Such ethical analysis is essential for dispelling confusion and doubts about evacuation policies in a disaster. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Public Perceptions of Tsunamis and the NOAA TsunamiReady Program in Los Angeles

    Science.gov (United States)

    Rosati, A.

    2010-12-01

    After the devastating December 2004 Indian Ocean Tsunami, California and other coastal states began installing "Tsunami Warning Zone" and "Evacuation Route" signs at beaches and major access roads. The geography of the Los Angeles area may not be conducive to signage alone for communication of the tsunami risk and safety precautions. Over a year after installation, most people surveyed did not know about or recognize the tsunami signs. More alarming is that many did not believe a tsunami could occur in the area even though earthquake generated waves have reached nearby beaches as recently as September 2009! UPDATE: FEB. 2010. Fifty two percent of the 147 people surveyed did not believe they would survive a natural disaster in Los Angeles. Given the unique geography of Los Angeles, how can the city and county improve the mental health of its citizens before and after a natural disaster? This poster begins to address the issues of community self-efficacy and resiliency in the face of tsunamis. Of note for future research, the data from this survey showed that most people believed climate change would increase the occurrence of tsunamis. Also, the public understanding of water inundation was disturbingly low. As scientists, it is important to understand the big picture of our research - how it is ultimately communicated, understood, and used by the public.

  6. Development of Real-time Tsunami Inundation Forecast Using Ocean Bottom Tsunami Networks along the Japan Trench

    Science.gov (United States)

    Aoi, S.; Yamamoto, N.; Suzuki, W.; Hirata, K.; Nakamura, H.; Kunugi, T.; Kubo, T.; Maeda, T.

    2015-12-01

    In the 2011 Tohoku earthquake, in which huge tsunami claimed a great deal of lives, the initial tsunami forecast based on hypocenter information estimated using seismic data on land were greatly underestimated. From this lesson, NIED is now constructing S-net (Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench) which consists of 150 ocean bottom observatories with seismometers and pressure gauges (tsunamimeters) linked by fiber optic cables. To take full advantage of S-net, we develop a new methodology of real-time tsunami inundation forecast using ocean bottom observation data and construct a prototype system that implements the developed forecasting method for the Pacific coast of Chiba prefecture (Sotobo area). We employ a database-based approach because inundation is a strongly non-linear phenomenon and its calculation costs are rather heavy. We prepare tsunami scenario bank in advance, by constructing the possible tsunami sources, and calculating the tsunami waveforms at S-net stations, coastal tsunami heights and tsunami inundation on land. To calculate the inundation for target Sotobo area, we construct the 10-m-mesh precise elevation model with coastal structures. Based on the sensitivities analyses, we construct the tsunami scenario bank that efficiently covers possible tsunami scenarios affecting the Sotobo area. A real-time forecast is carried out by selecting several possible scenarios which can well explain real-time tsunami data observed at S-net from tsunami scenario bank. An advantage of our method is that tsunami inundations are estimated directly from the actual tsunami data without any source information, which may have large estimation errors. In addition to the forecast system, we develop Web services, APIs, and smartphone applications and brush them up through social experiments to provide the real-time tsunami observation and forecast information in easy way to understand toward urging people to evacuate.

  7. Respiratory-Gated MRgHIFU in Upper Abdomen Using an MR-Compatible In-Bore Digital Camera

    Directory of Open Access Journals (Sweden)

    Vincent Auboiroux

    2014-01-01

    Full Text Available Objective. To demonstrate the technical feasibility and the potential interest of using a digital optical camera inside the MR magnet bore for monitoring the breathing cycle and subsequently gating the PRFS MR thermometry, MR-ARFI measurement, and MRgHIFU sonication in the upper abdomen. Materials and Methods. A digital camera was reengineered to remove its magnetic parts and was further equipped with a 7 m long USB cable. The system was electromagnetically shielded and operated inside the bore of a closed 3T clinical scanner. Suitable triggers were generated based on real-time motion analysis of the images produced by the camera (resolution 640×480 pixels, 30 fps. Respiratory-gated MR-ARFI prepared MRgHIFU ablation was performed in the kidney and liver of two sheep in vivo, under general anaesthesia and ventilator-driven forced breathing. Results. The optical device demonstrated very good MR compatibility. The current setup permitted the acquisition of motion artefact-free and high resolution MR 2D ARFI and multiplanar interleaved PRFS thermometry (average SNR 30 in liver and 56 in kidney. Microscopic histology indicated precise focal lesions with sharply delineated margins following the respiratory-gated HIFU sonications. Conclusion. The proof-of-concept for respiratory motion management in MRgHIFU using an in-bore digital camera has been validated in vivo.

  8. Bore erosion due to plasma armatures in EM launchers

    International Nuclear Information System (INIS)

    Askew, R.F.; Brown, J.L.; Jensen, D.B.

    1987-01-01

    Bore erosion, both to insulators and rails, has been a major concern in the EM Launcher community. Plasma armatures have generally produced both melting and ablation from the rails, with the result that the surface texture of the rails is course and uneven upon resolidification. Ablation evidence for insulators varies with material but mass lose by decomposition appears prevalent. Theoretical models for EML performance, both one and two dimensional, have a strong dependence on armature mass, which is turn is influenced by rail and insulator ablation. Ablation models are strongly dependent on the armature plasma temperature. In order to test the accuracy of models detailed information is needed on the time dependence of the in-bore plasma parameters such as pressure, temperature, and electron density. Previously reported experimental data indicated that mechanisms other than plasma radiation are involved in the ablation process. New experiments have been conducted using a small, square bore (1 cm) facility, 60 cm in length, to quantify the erosions and to relate this to conditions within the armature and possible plasma chemistry processes at the rails and insulators. Mass loss has been measured as a function of position on both the rails and insulators. These have been correlated with the time history of the gas dynamic pressure at that location. In addition, the armature current time history has been correlated with the pressure

  9. Cutting tool for removing materials from well bore

    International Nuclear Information System (INIS)

    Lynde, G.D.; Harvey, H.H. Jr.

    1991-01-01

    This patent describes a cutting tool adapted to be positioned downhole in a well bore for removing a metal member from the well bore; a tool body adapted to be received within said well bore and to be supported at its upper end for rotation about a longitudinal axis; blades at spaced intervals on the body and extending outwardly therefrom, each of the blades having a base with a leading surface relative to the direction of rotation; closely spaced cutting elements of hard cutting material secured to said leading surface of the base in a plurality of transversely extending rows, each cutting element being of a predetermined size and shape and arranged in a predetermined generally symmetrical pattern on the base relative to the other elements, each of said cutting elements having an exposed from cutting face forming a cutting surface, a rear face secured to the leading surface of said base, a peripheral surface extending between said faces, and a relatively sharp edge formed at the juncture of the front face and peripheral surface; the front cutting face of each cutting element being arranged and constructed for directing an extending end portion of a turning cut form said member to effect a breaking of said turning from the member being cut in a predetermined manner to minimize interesting of the turning

  10. Design And Construction Of A 15 T, 120 MM Bore IR Quadrupole Magnet For LARP

    International Nuclear Information System (INIS)

    Caspi, S.; Cheng, D.; Dietderich, D.; Felice, H.; Ferracin, P.; Hafalia, R.; Hannaford, R.; Sabbi, G.S.; Anerella, M.; Ghosh, A.; Schmalzle, J.; Wanderer, P.; Ambrosio, G.; Bossert, R.; Kashikhin, V.; Pasholk, D.; Zlobin, A.

    2009-01-01

    Pushing accelerator magnets beyond 10 T holds a promise of future upgrades to machines like the Large Hadron Collider (LHC) at CERN. Nb 3 Sn conductor is at the present time the only practical superconductor capable of generating fields beyond 10 T. In support of the LHC Phase-II upgrade, the US LHC Accelerator Research Program (LARP) is developing a large bore (120 mm) IR quadrupole (HQ) capable of reaching 15 T at its conductor peak field and a peak gradient of 219 T/m at 1.9 K. While exploring the magnet performance limits in terms of gradient, forces and stresses the 1 m long two-layer coil will demonstrate additional features such as alignment and accelerator field quality. In this paper we summarize the design and report on the magnet construction progress.

  11. Establishment of tunnel-boring machine disk cutter rock-breaking model from energy perspective

    Directory of Open Access Journals (Sweden)

    Liwei Song

    2015-12-01

    Full Text Available As the most important cutting tools during tunnel-boring machine tunneling construction process, V-type disk cutter’s rock-breaking mechanism has been researched by many scholars all over the world. Adopting finite element method, this article focused on the interaction between V-type disk cutters and the intact rock to carry out microscopic parameter analysis methods: first, the stress model of rock breaking was established through V-type disk cutter motion trajectory analysis; second, based on the incremental theorem of the elastic–plastic theory, the strain model of the relative changes of rock displacement during breaking process was created. According to the principle of admissible work by energy method of the elastic–plastic theory to analyze energy transfer rules in the process of breaking rock, rock-breaking force of the V-type disk cutter could be regarded as the external force in the rock system. Finally, by taking the rock system as the reference object, the total potential energy equivalent model of rock system was derived to obtain the forces of the three directions acting on V-type disk cutter during the rock-breaking process. This derived model, which has been proved to be effective and scientific through comparisons with some original force models and by comparative analysis with experimental data, also initiates a new research strategy taking the view of the micro elastic–plastic theory to study the rock-breaking mechanism.

  12. Tsunami forecast by joint inversion of real-time tsunami waveforms and seismic of GPS data: application to the Tohoku 2011 tsunami

    Science.gov (United States)

    Yong, Wei; Newman, Andrew V.; Hayes, Gavin P.; Titov, Vasily V.; Tang, Liujuan

    2014-01-01

    Correctly characterizing tsunami source generation is the most critical component of modern tsunami forecasting. Although difficult to quantify directly, a tsunami source can be modeled via different methods using a variety of measurements from deep-ocean tsunameters, seismometers, GPS, and other advanced instruments, some of which in or near real time. Here we assess the performance of different source models for the destructive 11 March 2011 Japan tsunami using model–data comparison for the generation, propagation, and inundation in the near field of Japan. This comparative study of tsunami source models addresses the advantages and limitations of different real-time measurements with potential use in early tsunami warning in the near and far field. The study highlights the critical role of deep-ocean tsunami measurements and rapid validation of the approximate tsunami source for high-quality forecasting. We show that these tsunami measurements are compatible with other real-time geodetic data, and may provide more insightful understanding of tsunami generation from earthquakes, as well as from nonseismic processes such as submarine landslide failures.

  13. Real-time tsunami inundation forecasting and damage mapping towards enhancing tsunami disaster resiliency

    Science.gov (United States)

    Koshimura, S.; Hino, R.; Ohta, Y.; Kobayashi, H.; Musa, A.; Murashima, Y.

    2014-12-01

    With use of modern computing power and advanced sensor networks, a project is underway to establish a new system of real-time tsunami inundation forecasting, damage estimation and mapping to enhance society's resilience in the aftermath of major tsunami disaster. The system consists of fusion of real-time crustal deformation monitoring/fault model estimation by Ohta et al. (2012), high-performance real-time tsunami propagation/inundation modeling with NEC's vector supercomputer SX-ACE, damage/loss estimation models (Koshimura et al., 2013), and geo-informatics. After a major (near field) earthquake is triggered, the first response of the system is to identify the tsunami source model by applying RAPiD Algorithm (Ohta et al., 2012) to observed RTK-GPS time series at GEONET sites in Japan. As performed in the data obtained during the 2011 Tohoku event, we assume less than 10 minutes as the acquisition time of the source model. Given the tsunami source, the system moves on to running tsunami propagation and inundation model which was optimized on the vector supercomputer SX-ACE to acquire the estimation of time series of tsunami at offshore/coastal tide gauges to determine tsunami travel and arrival time, extent of inundation zone, maximum flow depth distribution. The implemented tsunami numerical model is based on the non-linear shallow-water equations discretized by finite difference method. The merged bathymetry and topography grids are prepared with 10 m resolution to better estimate the tsunami inland penetration. Given the maximum flow depth distribution, the system performs GIS analysis to determine the numbers of exposed population and structures using census data, then estimates the numbers of potential death and damaged structures by applying tsunami fragility curve (Koshimura et al., 2013). Since the tsunami source model is determined, the model is supposed to complete the estimation within 10 minutes. The results are disseminated as mapping products to

  14. Tsunami Evidence in South Coast Java, Case Study: Tsunami Deposit along South Coast of Cilacap

    Science.gov (United States)

    Rizal, Yan; Aswan; Zaim, Yahdi; Dwijo Santoso, Wahyu; Rochim, Nur; Daryono; Dewi Anugrah, Suci; Wijayanto; Gunawan, Indra; Yatimantoro, Tatok; Hidayanti; Herdiyani Rahayu, Resti; Priyobudi

    2017-06-01

    Cilacap Area is situated in coastal area of Southern Java and directly affected by tsunami hazard in 2006. This event was triggered by active subduction in Java Trench which active since long time ago. To detect tsunami and active tectonic in Southern Java, paleo-tsunami study is performed which is targeted paleo-tsunami deposit older than fifty years ago. During 2011 - 2016, 16 locations which suspected as paleo-tsunami location were visited and the test-pits were performed to obtain characteristic and stratigraphy of paleo-tsunami layers. Paleo-tsunami layer was identified by the presence of light-sand in the upper part of paleo-soil, liquefaction fine grain sandstone, and many rip-up clast of mudstone. The systematic samples were taken and analysis (micro-fauna, grainsize and dating analysis). Micro-fauna result shows that paleo-tsunami layer consist of benthonic foraminifera assemblages from different bathymetry and mixing in one layer. Moreover, grainsize shows random grain distribution which characterized as turbulence and strong wave deposit. Paleo-tsunami layers in Cilacap area are correlated using paleo-soil as marker. There are three paleo-tsunami layers and the distribution can be identified as PS-A, PS-B and PS-C. The samples which were taken in Glempang Pasir layer are being dated using Pb - Zn (Lead-Zinc) method. The result of Pb - Zn (Lead-Zinc) dating shows that PS-A was deposited in 139 years ago, PS-B in 21 years ago, and PS C in 10 years ago. This result indicates that PS -1 occurred in 1883 earthquake activity while PS B formed in 1982 earthquake and PS-C was formed by 2006 earthquake. For ongoing research, the older paleo-tsunami layers were determined in the Gua Nagaraja, close to Selok location and 6 layers of Paleo-tsunami suspect found which shown a similar characteristic with the layers from another location. The three layers deeper approximately have an older age than another location in Cilacap.

  15. Holocene Tsunami Deposits From Large Tsunamis Along the Kuril Subduction Zone, Northeast Japan

    Science.gov (United States)

    Nanayama, F.; Furukawa, R.; Satake, K.; Soeda, Y.; Shigeno, K.

    2003-12-01

    Holocene tsunami deposits in eastern Hokkaido between Nemuro and Tokachi show that the Kuril subduction zone repeatedly produced earthquakes and tsunamis larger than those recorded in this region since AD 1804 (Nanayama et al., Nature, 424, 660-663, 2003). Twenty-two postulated tsunami sand layers from the past 9500 years are preserved on lake bottom near Kushiro City, and about ten postulated tsunami sand layers from the past 3000 years are preserved in peat layers on the coastal marsh of Kiritappu. We dated these ten tsunami deposits (named Ts1 to Ts10 from shallower to deeper) in peat layers by radiocarbon and tephrochronology, correlated them with historical earthquakes and tsunamis, and surveyed their spatial distribution to estimate the tsunamisO inland inundation limits. Ts10 and Ts9 are under regional tephra Ta-c2 (ca. 2.5 ka) and represent prehistorical events. Ts8 to Ts5 are between two regional tephra layers Ta-c2 and B-Tm (ca. 9th century). In particular, Ts5 is found just below B-Tm, so it is dated 9th century (Heian era). Ts4 is dated ca 13th century (Kamakura era), while Ts3, found just below Us-b and Ta-b (AD 1667-1663), is dated 17th century (Edo era). Ts2 is dated 19th century (Edo era) and may correspond to the AD 1843 Tempo Tokachi-oki earthquake (Mt 8.0) recorded in a historical document Nikkanki of Kokutai-ji temple at Akkeshi. Ts1 is inferred 20th century and may correspond to the tsunami from the AD 1960 Chilean earthquake (M 9.5) or the AD 1952 Tokachi-oki earthquake (Mt 8.2). Our detailed surveys indicate that Ts3 and Ts4 can be traced more than 3 km from the present coast line in Kirittapu marsh, much longer than the limits (< 1 km) of recent deposits Ts1 and Ts2 or documented inundation of the 19th and 20th century tsunamis. The recurrence intervals of great tsunami inundation are about 400 to 500 years, longer than that of typical interplate earthquakes along the Kuril subduction zone. The longer interval and the apparent large tsunami

  16. Changes in Tsunami Risk Perception in Northern Chile After the April 1 2014 Tsunami

    Science.gov (United States)

    Carvalho, L.; Lagos, M.

    2016-12-01

    Tsunamis are a permanent risk in the coast of Chile. Apart from that, the coastal settlements and the Chilean State, historically, have underestimated the danger of tsunamis. On April 1 2014, a magnitude Mw 8.2 earthquake and a minor tsunami occurred off the coast of northern Chile. Considering that over decades this region has been awaiting an earthquake that would generate a large tsunami, in this study we inquired if the familiarity with the subject tsunami and the lack of frequent tsunamis or occurrence of non-hazardous tsunamis for people could lead to adaptive responses to underestimate the danger. The purpose of this study was to evaluate the perceived risk of tsunami in the city of Arica, before and after the April 1 2014 event. A questionnaire was designed and applied in two time periods to 547 people living in low coastal areas in Arica. In the first step, the survey was applied in March 2014. While in step 2, new questions were included and the survey was reapplied, a year after the minor tsunami. A descriptive analysis of data was performed, followed by a comparison between means. We identified illusion of invulnerability, especially regarding to assessment that preparedness and education actions are enough. Answers about lack of belief in the occurrence of future tsunamis were also reported. At the same time, there were learning elements identified. After April 1, a larger number of participants described self-protection actions for emergency, as well as performing of preventive actions. In addition, we mapped answers about the tsunami danger degree in different locations in the city, where we observed a high knowledge of it. When compared with other hazards, the concern about tsunamis were very high, lower than earthquakes hazard, but higher than pollution, crime and rain. Moreover, we identified place attachment in answers about sense of security and affective bonds with home and their location. We discussed the relationship between risk perception

  17. New Perspective of Tsunami Deposit Investigations: Insight from the 1755 Lisbon Tsunami in Martinique, Lesser Antilles.

    Science.gov (United States)

    Roger, J.; Clouard, V.; Moizan, E.

    2014-12-01

    The recent devastating tsunamis having occurred during the last decades have highlighted the essential necessity to deploy operationnal warning systems and educate coastal populations. This could not be prepared correctly without a minimum knowledge about the tsunami history. That is the case of the Lesser Antilles islands, where a few handfuls of tsunamis have been reported over the past 5 centuries, some of them leading to notable destructions and inundations. But the lack of accurate details for most of the historical tsunamis and the limited period during which we could find written information represents an important problem for tsunami hazard assessment in this region. Thus, it is of major necessity to try to find other evidences of past tsunamis by looking for sedimentary deposits. Unfortunately, island tropical environments do not seem to be the best places to keep such deposits burried. In fact, heavy rainfalls, storms, and all other phenomena leading to coastal erosion, and associated to human activities such as intensive sugarcane cultivation in coastal flat lands, could caused the loss of potential tsunami deposits. Lots of places have been accurately investigated within the Lesser Antilles (from Sainte-Lucia to the British Virgin Islands) the last 3 years and nothing convincing has been found. That is when archeaological investigations excavated a 8-cm thick sandy and shelly layer in downtown Fort-de-France (Martinique), wedged between two well-identified layers of human origin (Fig. 1), that we found new hope: this sandy layer has been quickly attributed without any doubt to the 1755 tsunami, using on one hand the information provided by historical reports of the construction sites, and on the other hand by numerical modeling of the tsunami (wave heights, velocity fields, etc.) showing the ability of this transoceanic tsunami to wrap around the island after ~7 hours of propagation, enter Fort-de-France's Bay with enough energy to carry sediments, and

  18. Tsunami Speed Variations in Density-stratified Compressible Global Oceans

    Science.gov (United States)

    Watada, S.

    2013-12-01

    Recent tsunami observations in the deep ocean have accumulated unequivocal evidence that tsunami traveltime delays compared with the linear long-wave tsunami simulations occur during tsunami propagation in the deep ocean. The delay is up to 2% of the tsunami traveltime. Watada et al. [2013] investigated the cause of the delay using the normal mode theory of tsunamis and attributed the delay to the compressibility of seawater, the elasticity of the solid earth, and the gravitational potential change associated with mass motion during the passage of tsunamis. Tsunami speed variations in the deep ocean caused by seawater density stratification is investigated using a newly developed propagator matrix method that is applicable to seawater with depth-variable sound speeds and density gradients. For a 4-km deep ocean, the total tsunami speed reduction is 0.45% compared with incompressible homogeneous seawater; two thirds of the reduction is due to elastic energy stored in the water and one third is due to water density stratification mainly by hydrostatic compression. Tsunami speeds are computed for global ocean density and sound speed profiles and characteristic structures are discussed. Tsunami speed reductions are proportional to ocean depth with small variations, except for in warm Mediterranean seas. The impacts of seawater compressibility and the elasticity effect of the solid earth on tsunami traveltime should be included for precise modeling of trans-oceanic tsunamis. Data locations where a vertical ocean profile deeper than 2500 m is available in World Ocean Atlas 2009. The dark gray area indicates the Pacific Ocean defined in WOA09. a) Tsunami speed variations. Red, gray and black bars represent global, Pacific, and Mediterranean Sea, respectively. b) Regression lines of the tsunami velocity reduction for all oceans. c)Vertical ocean profiles at grid points indicated by the stars in Figure 1.

  19. Tsunamis: bridging science, engineering and society.

    Science.gov (United States)

    Kânoğlu, U; Titov, V; Bernard, E; Synolakis, C

    2015-10-28

    Tsunamis are high-impact, long-duration disasters that in most cases allow for only minutes of warning before impact. Since the 2004 Boxing Day tsunami, there have been significant advancements in warning methodology, pre-disaster preparedness and basic understanding of related phenomena. Yet, the trail of destruction of the 2011 Japan tsunami, broadcast live to a stunned world audience, underscored the difficulties of implementing advances in applied hazard mitigation. We describe state of the art methodologies, standards for warnings and summarize recent advances in basic understanding, and identify cross-disciplinary challenges. The stage is set to bridge science, engineering and society to help build up coastal resilience and reduce losses. © 2015 The Author(s).

  20. The elusive AD 1826 tsunami, South Westland, New Zealand

    International Nuclear Information System (INIS)

    Goff, J.R.; Wells, A.; Chague-Goff, C.; Nichol, S.L.; Devoy, R.J.N.

    2004-01-01

    In AD 1826 sealers reported earthquake and tsunami activity in Fiordland, although contemporary or near-contemporary accounts of tsunami inundation at the time are elusive. A detailed analysis of recent sediments fom Okarito Lagoon builds on contextual evidence provided by earlier research concerning past tsunami inundation. Sedimentological, geochemical, micropalaeontological and geochronological data are used to determine palaeoenvironments before, during and after what was most probably tsunami inundation in AD 1826. The most compelling chronological control is provided by a young cohort of trees growing on a raised shoreline bench stranded by a drop in the lagoon water level following tsunami inundation. (author). 42 refs., 9 figs., 1 tab

  1. Field survey of the 16 September 2015 Chile tsunami

    Science.gov (United States)

    Lagos, Marcelo; Fritz, Hermann M.

    2016-04-01

    On the evening of 16 September, 2015 a magnitude Mw 8.3 earthquake occurred off the coast of central Chile's Coquimbo region. The ensuing tsunami caused significant inundation and damage in the Coquimbo or 4th region and mostly minor effects in neighbouring 3rd and 5th regions. Fortunately, ancestral knowledge from the past 1922 and 1943 tsunamis in the region along with the catastrophic 2010 Maule and recent 2014 tsunamis, as well as tsunami education and evacuation exercises prompted most coastal residents to spontaneously evacuate to high ground after the earthquake. There were a few tsunami victims; while a handful of fatalities were associated to earthquake induced building collapses and the physical stress of tsunami evacuation. The international scientist joined the local effort from September 20 to 26, 2015. The international tsunami survey team (ITST) interviewed numerous eyewitnesses and documented flow depths, runup heights, inundation distances, sediment deposition, damage patterns, performance of the navigation infrastructure and impact on the natural environment. The ITST covered a 500 km stretch of coastline from Caleta Chañaral de Aceituno (28.8° S) south of Huasco down to Llolleo near San Antonio (33.6° S). We surveyed more than 40 locations and recorded more than 100 tsunami and runup heights with differential GPS and integrated laser range finders. The tsunami impact peaked at Caleta Totoral near Punta Aldea with both tsunami and runup heights exceeding 10 m as surveyed on September 22 and broadcasted nationwide that evening. Runup exceeded 10 m at a second uninhabited location some 15 km south of Caleta Totoral. A significant variation in tsunami impact was observed along the coastlines of central Chile at local and regional scales. The tsunami occurred in the evening hours limiting the availability of eyewitness video footages. Observations from the 2015 Chile tsunami are compared against the 1922, 1943, 2010 and 2014 Chile tsunamis. The

  2. Deterministic tsunami hazard assessment of Sines - Portugal

    OpenAIRE

    Wronna, Martin

    2015-01-01

    Tese de mestrado em Ciências Geográficas, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2015 Neste trabalho apresenta-se uma abordagem determinística de perigo de tsunamis considerando múltiplas fontes para a cidade costeira de Sines, Portugal. Tsunamis ou maremotos são eventos extremos, energeticamente elevados mas pouco frequentes. Normalmente são geradas por um deslocamento duma grande quantidade de água seja por erupções vulcânicas, colapso de caldeiras, desli...

  3. Tsunami Forecasting in the Atlantic Basin

    Science.gov (United States)

    Knight, W. R.; Whitmore, P.; Sterling, K.; Hale, D. A.; Bahng, B.

    2012-12-01

    The mission of the West Coast and Alaska Tsunami Warning Center (WCATWC) is to provide advance tsunami warning and guidance to coastal communities within its Area-of-Responsibility (AOR). Predictive tsunami models, based on the shallow water wave equations, are an important part of the Center's guidance support. An Atlantic-based counterpart to the long-standing forecasting ability in the Pacific known as the Alaska Tsunami Forecast Model (ATFM) is now developed. The Atlantic forecasting method is based on ATFM version 2 which contains advanced capabilities over the original model; including better handling of the dynamic interactions between grids, inundation over dry land, new forecast model products, an optional non-hydrostatic approach, and the ability to pre-compute larger and more finely gridded regions using parallel computational techniques. The wide and nearly continuous Atlantic shelf region presents a challenge for forecast models. Our solution to this problem has been to develop a single unbroken high resolution sub-mesh (currently 30 arc-seconds), trimmed to the shelf break. This allows for edge wave propagation and for kilometer scale bathymetric feature resolution. Terminating the fine mesh at the 2000m isobath keeps the number of grid points manageable while allowing for a coarse (4 minute) mesh to adequately resolve deep water tsunami dynamics. Higher resolution sub-meshes are then included around coastal forecast points of interest. The WCATWC Atlantic AOR includes eastern U.S. and Canada, the U.S. Gulf of Mexico, Puerto Rico, and the Virgin Islands. Puerto Rico and the Virgin Islands are in very close proximity to well-known tsunami sources. Because travel times are under an hour and response must be immediate, our focus is on pre-computing many tsunami source "scenarios" and compiling those results into a database accessible and calibrated with observations during an event. Seismic source evaluation determines the order of model pre

  4. Highly variable recurrence of tsunamis in the 7,400 years before the 2004 Indian Ocean tsunami

    Science.gov (United States)

    Horton, B.; Rubin, C. M.; Sieh, K.; Jessica, P.; Daly, P.; Ismail, N.; Parnell, A. C.

    2017-12-01

    The devastating 2004 Indian Ocean tsunami caught millions of coastal residents and the scientific community off-guard. Subsequent research in the Indian Ocean basin has identified prehistoric tsunamis, but the timing and recurrence intervals of such events are uncertain. Here, we identify coastal caves as a new depositional environment for reconstructing tsunami records and present a 5,000 year record of continuous tsunami deposits from a coastal cave in Sumatra, Indonesia which shows the irregular recurrence of 11 tsunamis between 7,400 and 2,900 years BP. The data demonstrates that the 2004 tsunami was just the latest in a sequence of devastating tsunamis stretching back to at least the early Holocene and suggests a high likelihood for future tsunamis in the Indian Ocean. The sedimentary record in the cave shows that ruptures of the Sunda megathrust vary between large (which generated the 2004 Indian Ocean tsunami) and smaller slip failures. The chronology of events suggests the recurrence of multiple smaller tsunamis within relatively short time periods, interrupted by long periods of strain accumulation followed by giant tsunamis. The average time period between tsunamis is about 450 years with intervals ranging from a long, dormant period of over 2,000 years, to multiple tsunamis within the span of a century. The very long dormant period suggests that the Sunda megathrust is capable of accumulating large slip deficits between earthquakes. Such a high slip rupture would produce a substantially larger earthquake than the 2004 event. Although there is evidence that the likelihood of another tsunamigenic earthquake in Aceh province is high, these variable recurrence intervals suggest that long dormant periods may follow Sunda Megathrust ruptures as large as that of 2004 Indian Ocean tsunami. The remarkable variability of recurrence suggests that regional hazard mitigation plans should be based upon the high likelihood of future destructive tsunami demonstrated by

  5. Elders recall an earlier tsunami on Indian Ocean shores

    Science.gov (United States)

    Kakar, Din Mohammad; Naeem, Ghazala; Usman, Abdullah; Hasan, Haider; Lohdi, Hira; Srinivasalu, Seshachalam; Andrade, Vanessa; Rajendran, C.P.; Naderi Beni, Abdolmajid; Hamzeh, Mohammad Ali; Hoffmann, Goesta; Al Balushi, Noora; Gale, Nora; Kodijat, Ardito; Fritz, Hermann M.; Atwater, Brian F.

    2014-01-01

    Ten years on, the Indian Ocean tsunami of 26 December 2004 still looms large in efforts to reduce coastal risk. The disaster has spurred worldwide advances in tsunami detection and warning, tsunami-risk assessment, and tsunami awareness [Satake, 2014]. Nearly a lifetime has passed since the northwestern Indian Ocean last produced a devastating tsunami. Documentation of this tsunami, in November 1945, was hindered by international instability in the wake of the Second World War and, in British India, by the approach of independence and partition. The parent earthquake, of magnitude 8.1, was widely recorded, and the tsunami registered on tide gauges, but intelligence reports and newspaper articles say little about inundation limits while permitting a broad range of catalogued death tolls. What has been established about the 1945 tsunami falls short of what's needed today for ground-truthing inundation models, estimating risk to enlarged populations, and anchoring awareness campaigns in local facts. Recent efforts to reduce coastal risk around the Arabian Sea include a project in which eyewitnesses to the 1945 tsunami were found and interviewed (Fig. 1), and related archives were gathered. Results are being made available through UNESCO's Indian Ocean Tsunami Information Center in hopes of increasing scientific understanding and public awareness of the region's tsunami hazards.

  6. Tsunami simulation of 2011 Tohoku-Oki Earthquake. Evaluation of difference in tsunami wave pressure acting around Fukushima Daiichi Nuclear Power Station and Fukushima Daini Nuclear Power Station among different tsunami source models

    International Nuclear Information System (INIS)

    Fujihara, Satoru; Hashimoto, Norihiko; Korenaga, Mariko; Tamiya, Takahiro

    2016-01-01

    Since the 2011 Tohoku-Oki Earthquake, evaluations based on a tsunami simulation approach have had a very important role in promoting tsunami disaster prevention measures in the case of mega-thrust earthquakes. When considering tsunami disaster prevention measures based on the knowledge obtained from tsunami simulations, it is important to carefully examine the type of tsunami source model. In current tsunami simulations, there are various ways to set the tsunami source model, and a considerable difference in tsunami behavior can be expected among the tsunami source models. In this study, we carry out a tsunami simulation of the 2011 Tohoku-Oki Earthquake around Fukushima Daiichi (I) Nuclear Power Plant and Fukushima Daini (II) Nuclear Power Plant in Fukushima Prefecture, Japan, using several tsunami source models, and evaluate the difference in the tsunami behavior in the tsunami inundation process. The results show that for an incoming tsunami inundating an inland region, there are considerable relative differences in the maximum tsunami height and wave pressure. This suggests that there could be false information used in promoting tsunami disaster prevention measures in the case of mega-thrust earthquakes, depending on the tsunami source model. (author)

  7. Tsunami Early Warning via a Physics-Based Simulation Pipeline

    Science.gov (United States)

    Wilson, J. M.; Rundle, J. B.; Donnellan, A.; Ward, S. N.; Komjathy, A.

    2017-12-01

    Through independent efforts, physics-based simulations of earthquakes, tsunamis, and atmospheric signatures of these phenomenon have been developed. With the goal of producing tsunami forecasts and early warning tools for at-risk regions, we join these three spheres to create a simulation pipeline. The Virtual Quake simulator can produce thousands of years of synthetic seismicity on large, complex fault geometries, as well as the expected surface displacement in tsunamigenic regions. These displacements are used as initial conditions for tsunami simulators, such as Tsunami Squares, to produce catalogs of potential tsunami scenarios with probabilities. Finally, these tsunami scenarios can act as input for simulations of associated ionospheric total electron content, signals which can be detected by GNSS satellites for purposes of early warning in the event of a real tsunami. We present the most recent developments in this project.

  8. Tsunamis detection, monitoring, and early-warning technologies

    CERN Document Server

    Joseph, Antony

    2011-01-01

    The devastating impacts of tsunamis have received increased focus since the Indian Ocean tsunami of 2004, the most devastating tsunami in over 400 years of recorded history. This professional reference is the first of its kind: it provides a globally inclusive review of the current state of tsunami detection technology and will be a much-needed resource for oceanographers and marine engineers working to upgrade and integrate their tsunami warning systems. It focuses on the two main tsunami warning systems (TWS): International and Regional. Featured are comparative assessments of detection, monitoring, and real-time reporting technologies. The challenges of detection through remote measuring stations are also addressed, as well as the historical and scientific aspects of tsunamis.

  9. The tsunami probabilistic risk assessment (PRA). Example of accident sequence analysis of tsunami PRA according to the standard for procedure of tsunami PRA for nuclear power plants

    International Nuclear Information System (INIS)

    Ohara, Norihiro; Hasegawa, Keiko; Kuroiwa, Katsuya

    2013-01-01

    After the Fukushima Daiichi nuclear power plant (NPP) accident, standard for procedure of tsunami PRA for NPP had been established by the Standardization Committee of AESJ. Industry group had been conducting analysis of Tsunami PRA for PWR based on the standard under the cooperation with electric utilities. This article introduced overview of the standard and examples of accident sequence analysis of Tsunami PRA studied by the industry group according to the standard. The standard consisted of (1) investigation of NPP's composition, characteristics and site information, (2) selection of relevant components for Tsunami PRA and initiating events and identification of accident sequence, (3) evaluation of Tsunami hazards, (4) fragility evaluation of building and components and (5) evaluation of accident sequence. Based on the evaluation, countermeasures for further improvement of safety against Tsunami could be identified by the sensitivity analysis. (T. Tanaka)

  10. Design for tsunami barrier wall based on numerical analyses of tsunami inundation at Shimane Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kiyoshige, Naoya; Yoshitsugu, Shinich; Kawahara, Kazufumi; Ookubo, Yoshimi; Nishihata, Takeshi; Ino, Hitoshi; Kotoura, Tsuyoshi

    2014-01-01

    The conventional tsunami assessment of the active fault beneath the Japan sea in front of the Shimane nuclear power plant and the earthquake feared to happen at the eastern margin of the Japan sea does not expect a huge tsunami as to be assumed on the Pacific sea coast. Hence, the huge tsunami observed at the power plant located near the source of the Tohoku Pacific sea earthquake tsunami whose run-up height reached TP+15m is regarded as the level 2 tsunami for the Shimane nuclear power plant and planned to construct the tsunami barrier walls to endure the supposed level 2 tsunami. In this study, the setting of the Level 2 tsunami by using the numerical analysis based on the non-linear shallow water theory and evaluation for the design tsunami wave pressure exerted on the counter measures by using CADMAS-SURF/3D are discussed. The designed tsunami barrier walls which are suitable to the power plant feasibility and decided from the design tsunami wave pressure distribution based on Tanimoto's formulae and standard earthquake ground motion Ss are also addressed. (author)

  11. Calculation of Tsunami Damage and preparation of Inundation Maps by 2D and 3D numerical modeling in Göcek, Turkey

    Science.gov (United States)

    Ozer Sozdinler, C.; Arikawa, T.; Necmioglu, O.; Ozel, N. M.

    2016-12-01

    The Aegean and its surroundings form the most active part of the Africa-Eurasia collision zone responsible for the high level of seismicity in this region. It constitutes more than 60% of the expected seismicity in Europe up to Mw=8.2 (Moratto et al., 2007; Papazachos, 1990). Shaw and Jackson (2010) argued that the existing system of Hellenic Arc subduction-zone is capable of allowing very large but rare earthquakes on splay faults, such as the one occurred in 365, together with the contribution of small earthquakes. Based on an extensive earthquake generated tsunami scenario database, Necmioğlu and Özel (2015) showed that maximum wave heights in the Eastern Mediterranean for shallow earthquakes defined is >3 m in locations in, around and orthogonal to the Hellenic Arc. Considering the seismicity and the tsunami potential in Eastern Mediterranean, the investigation and monitoring of earthquake and tsunami hazard, and the preparation of mitigation strategies and national resilience plans would become inevitable in Turkey. Gocek town, as one of the Tsunami Forecast Points having a unique geography with many small bays and islands and a very popular touristic destination especially for yachtsmen, is selected in this study for the tsunami modeling by using high resolution bathymetric and topographic data with less than 4m grid size. The tsunami analyses are performed by the numerical codes NAMIDANCE (NAMIDANCE,2011) for 2D modeling and STOC-CADMAS (Arikawa,2014) for 3D modeling for the calculations of tsunami hydrodynamic parameters. Froude numbers, as one of the most important indicators for tsunami damage (Ozer, 2012) and the directions of current velocities inside marinas are solved by NAMIDANCE while STOC-CADMAS determines the tsunami pressure and force exerted onto the sea and land structures with 3D and non-hydrostatic approaches. The results are then used to determine the tsunami inundation and structural resilience and establish the tsunami preparedness and

  12. Seismic Design of a Single Bored Tunnel: Longitudinal Deformations and Seismic Joints

    Science.gov (United States)

    Oh, J.; Moon, T.

    2018-03-01

    The large diameter bored tunnel passing through rock and alluvial deposits subjected to seismic loading is analyzed for estimating longitudinal deformations and member forces on the segmental tunnel liners. The project site has challenges including high hydrostatic pressure, variable ground profile and high seismic loading. To ensure the safety of segmental tunnel liner from the seismic demands, the performance-based two-level design earthquake approach, Functional Evaluation Earthquake and Safety Evaluation Earthquake, has been adopted. The longitudinal tunnel and ground response seismic analyses are performed using a three-dimensional quasi-static linear elastic and nonlinear elastic discrete beam-spring elements to represent segmental liner and ground spring, respectively. Three components (longitudinal, transverse and vertical) of free-field ground displacement-time histories evaluated from site response analyses considering wave passage effects have been applied at the end support of the strain-compatible ground springs. The result of the longitudinal seismic analyses suggests that seismic joint for the mitigation measure requiring the design deflection capacity of 5-7.5 cm is to be furnished at the transition zone between hard and soft ground condition where the maximum member forces on the segmental liner (i.e., axial, shear forces and bending moments) are induced. The paper illustrates how detailed numerical analyses can be practically applied to evaluate the axial and curvature deformations along the tunnel alignment under difficult ground conditions and to provide the seismic joints at proper locations to effectively reduce the seismic demands below the allowable levels.

  13. Highly variable recurrence of tsunamis in the 7,400 years before the 2004 Indian Ocean tsunami.

    Science.gov (United States)

    Rubin, Charles M; Horton, Benjamin P; Sieh, Kerry; Pilarczyk, Jessica E; Daly, Patrick; Ismail, Nazli; Parnell, Andrew C

    2017-07-19

    The devastating 2004 Indian Ocean tsunami caught millions of coastal residents and the scientific community off-guard. Subsequent research in the Indian Ocean basin has identified prehistoric tsunamis, but the timing and recurrence intervals of such events are uncertain. Here we present an extraordinary 7,400 year stratigraphic sequence of prehistoric tsunami deposits from a coastal cave in Aceh, Indonesia. This record demonstrates that at least 11 prehistoric tsunamis struck the Aceh coast between 7,400 and 2,900 years ago. The average time period between tsunamis is about 450 years with intervals ranging from a long, dormant period of over 2,000 years, to multiple tsunamis within the span of a century. Although there is evidence that the likelihood of another tsunamigenic earthquake in Aceh province is high, these variable recurrence intervals suggest that long dormant periods may follow Sunda megathrust ruptures as large as that of the 2004 Indian Ocean tsunami.

  14. A tsunami wave propagation analysis for the Ulchin Nuclear Power Plant considering the tsunami sources of western part of Japan

    International Nuclear Information System (INIS)

    Rhee, Hyun Me; Kim, Min Kyu; Sheen, Dong Hoon; Choi, In Kil

    2013-01-01

    The accident which was caused by a tsunami and the Great East-Japan earthquake in 2011 occurred at the Fukushima Nuclear Power Plant (NPP) site. It is obvious that the NPP accident could be incurred by the tsunami. Therefore a Probabilistic Tsunami Hazard Analysis (PTHA) for an NPP site should be required in Korea. The PTHA methodology is developed on the PSHA (Probabilistic Seismic Hazard Analysis) method which is performed by using various tsunami sources and their weights. In this study, the fault sources of northwestern part of Japan were used to analyze as the tsunami sources. These fault sources were suggested by the Atomic Energy Society of Japan (AESJ). To perform the PTHA, the calculations of maximum and minimum wave elevations from the result of tsunami simulations are required. Thus, in this study, tsunami wave propagation analysis were performed for developing the future study of the PTHA

  15. Scientific Animations for Tsunami Hazard Mitigation: The Pacific Tsunami Warning Center's YouTube Channel

    Science.gov (United States)

    Becker, N. C.; Wang, D.; Shiro, B.; Ward, B.

    2013-12-01

    Outreach and education save lives, and the Pacific Tsunami Warning Center (PTWC) has a new tool--a YouTube Channel--to advance its mission to protect lives and property from dangerous tsunamis. Such outreach and education is critical for coastal populations nearest an earthquake since they may not get an official warning before a tsunami reaches them and will need to know what to do when they feel strong shaking. Those who live far enough away to receive useful official warnings and react to them, however, can also benefit from PTWC's education and outreach efforts. They can better understand a tsunami warning message when they receive one, can better understand the danger facing them, and can better anticipate how events will unfold while the warning is in effect. The same holds true for emergency managers, who have the authority to evacuate the public they serve, and for the news media, critical partners in disseminating tsunami hazard information. PTWC's YouTube channel supplements its formal outreach and education efforts by making its computer animations available 24/7 to anyone with an Internet connection. Though the YouTube channel is only a month old (as of August 2013), it should rapidly develop a large global audience since similar videos on PTWC's Facebook page have reached over 70,000 viewers during organized media events, while PTWC's official web page has received tens of millions of hits during damaging tsunamis. These animations are not mere cartoons but use scientific data and calculations to render graphical depictions of real-world phenomena as accurately as possible. This practice holds true whether the animation is a simple comparison of historic earthquake magnitudes or a complex simulation cycling through thousands of high-resolution data grids to render tsunami waves propagating across an entire ocean basin. PTWC's animations fall into two broad categories. The first group illustrates concepts about seismology and how it is critical to

  16. The double landslide-induced tsunami

    Science.gov (United States)

    Tinti, S.; Armigliat, A.; Manucci, A.; Pagnoni, G.; Tonini, R.; Zaniboni, F.; Maramai, A.; Graziani, L.

    The 2002 crisis of Stromboli culminated on December 30 in a series of mass failures detached from the Sciara del Fuoco, with two main landslides, one submarine followed about 7 min later by a second subaerial. These landslides caused two distinct tsunamis that were seen by most people in the island as a unique event. The double tsunami was strongly damaging, destroying several houses in the waterfront at Ficogrande, Punta Lena, and Scari localities in the northeastern coast of Stromboli. The waves affected also Panarea and were observed in the northern Sicily coast and even in Campania, but with minor effects. There are no direct instrumental records of these tsunamis. What we know resides on (1) observations and quantification of the impact of the waves on the coast, collected in a number of postevent field surveys; (2) interviews of eyewitnesses and a collection of tsunami images (photos and videos) taken by observers; and (3) on results of numerical simulations. In this paper, we propose a critical reconstruction of the events where all the available pieces of information are recomposed to form a coherent and consistent mosaic.

  17. Asteroid-Generated Tsunami and Impact Risk

    Science.gov (United States)

    Boslough, M.; Aftosmis, M.; Berger, M. J.; Ezzedine, S. M.; Gisler, G.; Jennings, B.; LeVeque, R. J.; Mathias, D.; McCoy, C.; Robertson, D.; Titov, V. V.; Wheeler, L.

    2016-12-01

    The justification for planetary defense comes from a cost/benefit analysis, which includes risk assessment. The contribution from ocean impacts and airbursts is difficult to quantify and represents a significant uncertainty in our assessment of the overall risk. Our group is currently working toward improved understanding of impact scenarios that can generate dangerous tsunami. The importance of asteroid-generated tsunami research has increased because a new Science Definition Team, at the behest of NASA's Planetary Defense Coordinating Office, is now updating the results of a 2003 study on which our current planetary defense policy is based Our group was formed to address this question on many fronts, including asteroid entry modeling, tsunami generation and propagation simulations, modeling of coastal run-ups, inundation, and consequences, infrastructure damage estimates, and physics-based probabilistic impact risk assessment. We also organized the Second International Workshop on Asteroid Threat Assessment, focused on asteroid-generated tsunami and associated risk (Aug. 23-24, 2016). We will summarize our progress and present the highlights of our workshop, emphasizing its relevance to earth and planetary science. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  18. On the solitary wave paradigm for tsunamis

    DEFF Research Database (Denmark)

    Madsen, Per A.; Fuhrman, David R.; Schäffer, Hemming Andreas

    2008-01-01

    Since the 1970s, solitary waves have commonly been used to model tsunamis especially in experimental and mathematical studies. Unfortunately, the link to geophysical scales is not well established, and in this work we question the geophysical relevance of this paradigm. In part 1, we simulate...

  19. Tiché tsunami bez hranic

    Czech Academy of Sciences Publication Activity Database

    Konečný, Tomáš

    Roč. 6, č. 24 ( 2008 ), s. 14 ISSN 1801-1446 Institutional research plan: CEZ:AV0Z70280505 Keywords : food crisis Subject RIV: AO - Sociology, Demography http://www.respekt.cz/search.php?f_search_text=tich%E9+tsunami+bez+hranic

  20. Generic methods for design of small-bore pipe supports

    International Nuclear Information System (INIS)

    Clark, G.L.; LaSalle, F.R.

    1981-01-01

    Large numbers of supports for small-bore, low-temperature pipe are utilized in nuclear power plants. These supports often must meet ASME code and project seismic design requirements. Detailed analysis for each support is time consuming and costly. This paper describes some economical generic methods developed to design and qualify supports for two-inch and smaller pipe operating at temperatures less than 300 0 F (185 0 C), on the Fast Flux Test Facility. Use of standard designs, standard support spacing tables, anchor bolt and baseplate considerations, and field qualification methods are discussed

  1. Grouting guidelines for Hanford Tanks Initiative cone penetrometer borings

    International Nuclear Information System (INIS)

    Iwatate, D.F.

    1998-01-01

    Grouting of an open cone penetrometer (CP) borehole is done to construct a barrier that prevents the vertical migration of fluids and contaminants between geologic units and aquifers intersected by the boring. Whether to grout, the types of grout, and the method of deployment are functions of the site-specific conditions. This report recommends the strategy that should be followed both before and during HTI [Hanford Tanks Initiative] CP deployment to decide specific borehole grouting needs at Hanford SST farms. Topics discussed in this report that bear on this strategy include: Regulatory guidance, hydrogeologic conditions, operational factors, specific CP grouting deployment recommendations

  2. System safety analysis of the Yucca Mountain tunnel boring machine

    International Nuclear Information System (INIS)

    Smith, M.G.; Booth, L.; Eisler, L.

    1995-01-01

    The purpose of this analysis was to systematically identify and evaluate hazards related to the tunnel boring machine to be used at Yucca Mountain. This analysis required three steps to complete the risk evaluation: hazard/scenario identification, consequence assessment, and frequency assessment. The result was a 'risk evaluation' of the scenarios identified in this analysis in accordance with MIL-STD-882C. The risk assessment in this analysis characterized the accident scenarios associated with the TBM in terms of relative risk and included recommendations for mitigating all identified risks

  3. Twin header bore welded steam generator for pressurized water reactors

    International Nuclear Information System (INIS)

    Davies, R.J.; Hirst, B.

    1979-01-01

    A description is given of a pressurized water reactor (PWR) steam generator concept, several examples of which have been in service for up to fourteen years. Details are given of the highly successful service record of this equipment and the features which have been incorporated to minimize corrosion and deposition pockets. The design employs a vertical U tube bundle carried off two horizontal headers to which the tubes are welded by the Foster Wheeler Power Products (FWPP) bore welding process. The factors to be considered in uprating the design to meet the current operating conditions for a 1000 MW unit are discussed. (author)

  4. Seismogeodesy for rapid earthquake and tsunami characterization

    Science.gov (United States)

    Bock, Y.

    2016-12-01

    Rapid estimation of earthquake magnitude and fault mechanism is critical for earthquake and tsunami warning systems. Traditionally, the monitoring of earthquakes and tsunamis has been based on seismic networks for estimating earthquake magnitude and slip, and tide gauges and deep-ocean buoys for direct measurement of tsunami waves. These methods are well developed for ocean basin-wide warnings but are not timely enough to protect vulnerable populations and infrastructure from the effects of local tsunamis, where waves may arrive within 15-30 minutes of earthquake onset time. Direct measurements of displacements by GPS networks at subduction zones allow for rapid magnitude and slip estimation in the near-source region, that are not affected by instrumental limitations and magnitude saturation experienced by local seismic networks. However, GPS displacements by themselves are too noisy for strict earthquake early warning (P-wave detection). Optimally combining high-rate GPS and seismic data (in particular, accelerometers that do not clip), referred to as seismogeodesy, provides a broadband instrument that does not clip in the near field, is impervious to magnitude saturation, and provides accurate real-time static and dynamic displacements and velocities in real time. Here we describe a NASA-funded effort to integrate GPS and seismogeodetic observations as part of NOAA's Tsunami Warning Centers in Alaska and Hawaii. It consists of a series of plug-in modules that allow for a hierarchy of rapid seismogeodetic products, including automatic P-wave picking, hypocenter estimation, S-wave prediction, magnitude scaling relationships based on P-wave amplitude (Pd) and peak ground displacement (PGD), finite-source CMT solutions and fault slip models as input for tsunami warnings and models. For the NOAA/NASA project, the modules are being integrated into an existing USGS Earthworm environment, currently limited to traditional seismic data. We are focused on a network of

  5. Leading Wave Amplitude of a Tsunami

    Science.gov (United States)

    Kanoglu, U.

    2015-12-01

    Okal and Synolakis (EGU General Assembly 2015, Geophysical Research Abstracts-Vol. 17-7622) recently discussed that why the maximum amplitude of a tsunami might not occur for the first wave. Okal and Synolakis list observations from 2011 Japan tsunami, which reached to Papeete, Tahiti with a fourth wave being largest and 72 min later after the first wave; 1960 Chilean tsunami reached Hilo, Hawaii with a maximum wave arriving 1 hour later with a height of 5m, first wave being only 1.2m. Largest later waves is a problem not only for local authorities both in terms of warning to the public and rescue efforts but also mislead the public thinking that it is safe to return shoreline or evacuated site after arrival of the first wave. Okal and Synolakis considered Hammack's (1972, Ph.D. Dissertation, Calif. Inst. Tech., 261 pp., Pasadena) linear dispersive analytical solution with a tsunami generation through an uplifting of a circular plug on the ocean floor. They performed parametric study for the radius of the plug and the depth of the ocean since these are the independent scaling lengths in the problem. They identified transition distance, as the second wave being larger, regarding the parameters of the problem. Here, we extend their analysis to an initial wave field with a finite crest length and, in addition, to a most common tsunami initial wave form of N-wave as presented by Tadepalli and Synolakis (1994, Proc. R. Soc. A: Math. Phys. Eng. Sci., 445, 99-112). We compare our results with non-dispersive linear shallow water wave results as presented by Kanoglu et al. (2013, Proc. R. Soc. A: Math. Phys. Eng. Sci., 469, 20130015), investigating focusing feature. We discuss the results both in terms of leading wave amplitude and tsunami focusing. Acknowledgment: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 603839 (Project ASTARTE - Assessment, Strategy and Risk

  6. Real-time Tsunami Inundation Prediction Using High Performance Computers

    Science.gov (United States)

    Oishi, Y.; Imamura, F.; Sugawara, D.

    2014-12-01

    Recently off-shore tsunami observation stations based on cabled ocean bottom pressure gauges are actively being deployed especially in Japan. These cabled systems are designed to provide real-time tsunami data before tsunamis reach coastlines for disaster mitigation purposes. To receive real benefits of these observations, real-time analysis techniques to make an effective use of these data are necessary. A representative study was made by Tsushima et al. (2009) that proposed a method to provide instant tsunami source prediction based on achieving tsunami waveform data. As time passes, the prediction is improved by using updated waveform data. After a tsunami source is predicted, tsunami waveforms are synthesized from pre-computed tsunami Green functions of linear long wave equations. Tsushima et al. (2014) updated the method by combining the tsunami waveform inversion with an instant inversion of coseismic crustal deformation and improved the prediction accuracy and speed in the early stages. For disaster mitigation purposes, real-time predictions of tsunami inundation are also important. In this study, we discuss the possibility of real-time tsunami inundation predictions, which require faster-than-real-time tsunami inundation simulation in addition to instant tsunami source analysis. Although the computational amount is large to solve non-linear shallow water equations for inundation predictions, it has become executable through the recent developments of high performance computing technologies. We conducted parallel computations of tsunami inundation and achieved 6.0 TFLOPS by using 19,000 CPU cores. We employed a leap-frog finite difference method with nested staggered grids of which resolution range from 405 m to 5 m. The resolution ratio of each nested domain was 1/3. Total number of grid points were 13 million, and the time step was 0.1 seconds. Tsunami sources of 2011 Tohoku-oki earthquake were tested. The inundation prediction up to 2 hours after the

  7. Mexican Earthquakes and Tsunamis Catalog Reviewed

    Science.gov (United States)

    Ramirez-Herrera, M. T.; Castillo-Aja, R.

    2015-12-01

    Today the availability of information on the internet makes online catalogs very easy to access by both scholars and the public in general. The catalog in the "Significant Earthquake Database", managed by the National Center for Environmental Information (NCEI formerly NCDC), NOAA, allows access by deploying tabular and cartographic data related to earthquakes and tsunamis contained in the database. The NCEI catalog is the product of compiling previously existing catalogs, historical sources, newspapers, and scientific articles. Because NCEI catalog has a global coverage the information is not homogeneous. Existence of historical information depends on the presence of people in places where the disaster occurred, and that the permanence of the description is preserved in documents and oral tradition. In the case of instrumental data, their availability depends on the distribution and quality of seismic stations. Therefore, the availability of information for the first half of 20th century can be improved by careful analysis of the available information and by searching and resolving inconsistencies. This study shows the advances we made in upgrading and refining data for the earthquake and tsunami catalog of Mexico since 1500 CE until today, presented in the format of table and map. Data analysis allowed us to identify the following sources of error in the location of the epicenters in existing catalogs: • Incorrect coordinate entry • Place name erroneous or mistaken • Too general data that makes difficult to locate the epicenter, mainly for older earthquakes • Inconsistency of earthquakes and the tsunami occurrence: earthquake's epicenter located too far inland reported as tsunamigenic. The process of completing the catalogs directly depends on the availability of information; as new archives are opened for inspection, there are more opportunities to complete the history of large earthquakes and tsunamis in Mexico. Here, we also present new earthquake and

  8. Earthquake and Tsunami: a movie and a book for seismic and tsunami risk reduction in Italy.

    Science.gov (United States)

    Nostro, C.; Baroux, E.; Maramai, A.; Graziani, L.; Tertulliani, A.; Castellano, C.; Arcoraci, L.; Casale, P.; Ciaccio, M. G.; Frepoli, A.

    2009-04-01

    Italy is a country well known for the seismic and volcanic hazard. However, a similarly great hazard, although not well recognized, is posed by the occurrence of tsunami waves along the Italian coastline. This is testified by a rich catalogue and by field evidence of deposits left over by pre- and historical tsunamis, even in places today considered safe. This observation is of great importance since many of the areas affected by tsunamis in the past are today touristic places. The Italian tsunamis can be caused by different sources: 1- off-shore or near coast in-land earthquakes; 2- very large earthquakes on distant sources in the Mediterranean; 3- submarine volcanic explosion in the Tyrrhenian sea; 4- submarine landslides triggered by earthquakes and volcanic activity. The consequence of such a wide spectrum of sources is that an important part of the more than 7000 km long Italian coast line is exposed to the tsunami risk, and thousands of inhabitants (with numbers increasing during summer) live near hazardous coasts. The main historical tsunamis are the 1783 and 1908 events that hit Calabrian and Sicilian coasts. The recent tsunami is that caused by the 2002 Stromboli landslide. In order to reduce this risk and following the emotional impact of the December 2004 Sumatra earthquake and tsunami, we developed an outreach program consisting in talks given by scientists and in a movie and a book, both exploring the causes of the tsunami waves, how do they propagate in deep and shallow waters, and what are the effects on the coasts. Hints are also given on the most dangerous Italian coasts (as deduced by scientific studies), and how to behave in the case of a tsunami approaching the coast. These seminars are open to the general public, but special programs are developed with schools of all grades. In this talk we want to present the book and the movie used during the seminars and scientific expositions, that was realized from a previous 3D version originally

  9. Thermal properties of a large-bore cryocooled 10 T superconducting magnet for a hybrid magnet

    International Nuclear Information System (INIS)

    Ishizuka, M.; Hamajima, T.; Itou, T.; Sakuraba, J.; Nishijima, G.; Awaji, S.; Watanabe, K.

    2010-01-01

    A cryocooled 10 T superconducting magnet with a 360 mm room temperature bore has been developed for a hybrid magnet. The superconducting magnet cooled by four Gifford-McMahon cryocoolers has been designed to generate a magnetic field of 10 T. Since superconducting wires composed of coils were subjected to large hoop stress over 150 MPa and Nb 3 Sn superconducting wires particularly showed a low mechanical strength due to those brittle property, Nb 3 Sn wires strengthened by NbTi-filaments were developed for the cryocooled superconducting magnet. We have already reported that the hybrid magnet could generate the resultant magnetic field of 27.5 T by adding 8.5 T from the superconducting magnet and 19 T from a water-cooled Bitter resistive magnet, after the water-cooled resistive magnet was inserted into the 360 mm room temperature bore of the cryocooled superconducting magnet. When the hybrid magnet generated the field of 27.5 T, it achieved the high magnetic-force field (B x ∂Bz/∂z) of 4500 T 2 /m, which was useful for magneto-science in high fields such as materials levitation research. In this paper, we particularly focus on the cause that the cryocooled superconducting magnet was limited to generate the designed magnetic field of 10 T in the hybrid magnet operation. As a result, it was found that there existed mainly two causes as the limitation of the magnetic field generation. One was a decrease of thermal conductive passes due to exfoliation from the coil bobbin of the cooling flange. The other was large AC loss due to both a thick Nb 3 Sn layer and its large diameter formed on Nb-barrier component in Nb 3 Sn wires.

  10. Mechanism of the 2015 volcanic tsunami earthquake near Torishima, Japan

    Science.gov (United States)

    Satake, Kenji

    2018-01-01

    Tsunami earthquakes are a group of enigmatic earthquakes generating disproportionally large tsunamis relative to seismic magnitude. These events occur most typically near deep-sea trenches. Tsunami earthquakes occurring approximately every 10 years near Torishima on the Izu-Bonin arc are another example. Seismic and tsunami waves from the 2015 event [Mw (moment magnitude) = 5.7] were recorded by an offshore seafloor array of 10 pressure gauges, ~100 km away from the epicenter. We made an array analysis of dispersive tsunamis to locate the tsunami source within the submarine Smith Caldera. The tsunami simulation from a large caldera-floor uplift of ~1.5 m with a small peripheral depression yielded waveforms remarkably similar to the observations. The estimated central uplift, 1.5 m, is ~20 times larger than that inferred from the seismologically determined non–double-couple source. Thus, the tsunami observation is not compatible with the published seismic source model taken at face value. However, given the indeterminacy of Mzx, Mzy, and M{tensile} of a shallow moment tensor source, it may be possible to find a source mechanism with efficient tsunami but inefficient seismic radiation that can satisfactorily explain both the tsunami and seismic observations, but this question remains unresolved. PMID:29740604

  11. Tsunami Prediction and Earthquake Parameters Estimation in the Red Sea

    KAUST Repository

    Sawlan, Zaid A

    2012-12-01

    Tsunami concerns have increased in the world after the 2004 Indian Ocean tsunami and the 2011 Tohoku tsunami. Consequently, tsunami models have been developed rapidly in the last few years. One of the advanced tsunami models is the GeoClaw tsunami model introduced by LeVeque (2011). This model is adaptive and consistent. Because of different sources of uncertainties in the model, observations are needed to improve model prediction through a data assimilation framework. Model inputs are earthquake parameters and topography. This thesis introduces a real-time tsunami forecasting method that combines tsunami model with observations using a hybrid ensemble Kalman filter and ensemble Kalman smoother. The filter is used for state prediction while the smoother operates smoothing to estimate the earthquake parameters. This method reduces the error produced by uncertain inputs. In addition, state-parameter EnKF is implemented to estimate earthquake parameters. Although number of observations is small, estimated parameters generates a better tsunami prediction than the model. Methods and results of prediction experiments in the Red Sea are presented and the prospect of developing an operational tsunami prediction system in the Red Sea is discussed.

  12. A Tsunami Fragility Assessment for Nuclear Power Plants in Korea

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Choi, In Kil; Kang, Keum Seok

    2009-01-01

    Although Tsunami events were defined as an external event in 'PRA Procedure Guide (NUREG/CR- 2300)'after 1982, a Tsunami event was not considered in a design and construction of NPP before the Sumatra earthquake in 2004. But the Madras Atomic Power Station, a commercial nuclear power plant owned and operated by the Nuclear Power Corporation of India Limited (NPCIL), and located near Chennai, India, was affected by the tsunami generated by the 2004 Sumatra earthquake (USNRC 2008). The condenser cooling pumps of Unit 2 of the installation were affected due to flooding of the pump house and subsequent submergence of the seawater pumps by tsunami waves. The turbine was tripped and the reactor shut down. The unit was brought to a cold-shutdown state, and the shutdown-cooling systems were reported as operating safely. After this event, Tsunami hazards were considered as one of the major natural disasters which can affect the safety of Nuclear Power Plants. The IAEA performed an Extrabudgetary project for Tsunami Hazard Assessment and finally an International Seismic Safety Center (ISSC) established in IAEA for protection from natural disasters like earthquake, tsunami etc. For this reason, a tsunami hazard assessment method determined in this study. At first, a procedure for tsunami hazard assessment method was established, and second target equipment and structures for investigation of Tsunami Hazard assessment were selected. Finally, a sample fragility calculation was performed for one of equipment in Nuclear Power Plant

  13. The SAFRR Tsunami Scenario: Improving Resilience for California from a Plausible M9 Earthquake near the Alaska Peninsula

    Science.gov (United States)

    Ross, S.; Jones, L.; Wilson, R. I.; Bahng, B.; Barberopoulou, A.; Borrero, J. C.; Brosnan, D.; Bwarie, J.; Geist, E. L.; Johnson, L.; Kirby, S. H.; Knight, W.; Long, K.; Lynett, P. J.; Miller, K.; Mortensen, C. E.; Nicolsky, D.; Oglesby, D. D.; Perry, S. C.; Plumlee, G. S.; Porter, K. A.; Real, C. R.; Ryan, K. J.; Suleimani, E.; Thio, H. K.; Titov, V.; Wein, A. M.; Whitmore, P.; Wood, N. J.

    2013-12-01

    The SAFRR Tsunami Scenario models a hypothetical but plausible tsunami, created by an Mw9.1 earthquake occurring offshore from the Alaskan peninsula, and its impacts on the California coast. We present the likely inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental impacts, social vulnerability, emergency management, and policy implications for California associated with the tsunami scenario. The intended users are those who must make mitigation decisions before and rapid decisions during future tsunamis. Around a half million people would be present in the scenario's inundation area in residences, businesses, public venues, parks and beaches. Evacuation would likely be ordered for the State of California's maximum mapped tsunami inundation zone, evacuating an additional quarter million people from residences and businesses. Some island and peninsula communities would face particular evacuation challenges because of limited access options and short warning time, caused by the distance between Alaska and California. Evacuations may also be a challenge for certain dependent-care populations. One third of the boats in California's marinas could be damaged or sunk, costing at least 700 million in repairs to boats and docks, and potentially much more to address serious issues due to sediment transport and environmental contamination. Fires would likely start at many sites where fuel and petrochemicals are stored in ports and marinas. Tsunami surges and bores may travel several miles inland up coastal rivers. Debris clean-up and recovery of inundated and damaged areas will take days, months, or years depending on the severity of impacts and the available resources for recovery. The Ports of Los Angeles and Long Beach (POLA/LB) would be shut down for a miniμm of two days due to strong currents. Inundation of dry land in the ports would result in 100 million damages to cargo and additional

  14. Assessing historical rate changes in global tsunami occurrence

    Science.gov (United States)

    Geist, E.L.; Parsons, T.

    2011-01-01

    The global catalogue of tsunami events is examined to determine if transient variations in tsunami rates are consistent with a Poisson process commonly assumed for tsunami hazard assessments. The primary data analyzed are tsunamis with maximum sizes >1m. The record of these tsunamis appears to be complete since approximately 1890. A secondary data set of tsunamis >0.1m is also analyzed that appears to be complete since approximately 1960. Various kernel density estimates used to determine the rate distribution with time indicate a prominent rate change in global tsunamis during the mid-1990s. Less prominent rate changes occur in the early- and mid-20th century. To determine whether these rate fluctuations are anomalous, the distribution of annual event numbers for the tsunami catalogue is compared to Poisson and negative binomial distributions, the latter of which includes the effects of temporal clustering. Compared to a Poisson distribution, the negative binomial distribution model provides a consistent fit to tsunami event numbers for the >1m data set, but the Poisson null hypothesis cannot be falsified for the shorter duration >0.1m data set. Temporal clustering of tsunami sources is also indicated by the distribution of interevent times for both data sets. Tsunami event clusters consist only of two to four events, in contrast to protracted sequences of earthquakes that make up foreshock-main shock-aftershock sequences. From past studies of seismicity, it is likely that there is a physical triggering mechanism responsible for events within the tsunami source 'mini-clusters'. In conclusion, prominent transient rate increases in the occurrence of global tsunamis appear to be caused by temporal grouping of geographically distinct mini-clusters, in addition to the random preferential location of global M >7 earthquakes along offshore fault zones.

  15. A BRIEF HISTORY OF TSUNAMIS IN THE CARIBBEAN SEA

    Directory of Open Access Journals (Sweden)

    Patricia A. Lockridge

    2002-01-01

    Full Text Available The area of the Caribbean Sea is geologically active. Earthquakes and volcanoes are common occurrences. These geologic events can generate powerful tsunamis some of which are more devastating than the earthquake or volcanic eruption itself. This document lists brief descriptions of 91 reported waves that might have been tsunamis within the Caribbean region. Of these, 27 are judged by the authors to be true, verified tsunamis and an additional nine are considered to be very likely true tsunamis. The additional 53 events either are not described with sufficient detail in the literature to verify their tsunami nature or are judged to be reports of other phenomenasuch as sea quakes or hurricane storm surges which may have been reported as tsunamis. Included in these 91 reports are teletsunamis, tectonic tsunamis, landslide tsunamis, and volcanic tsunamis that have caused major damage and deaths. Nevertheless, in recent history these events have been relatively rare. In the interim since the last major tsunami event in the Caribbean Sea the coastal regions have greatly increased in population. Coastal development has also increased. Today tourism is a major industry that exposes thousands of non-residents to the disastrous effects of a tsunami. These factors make the islands in this region much more vulnerable today than they were when the last major tsunami occurred in this area. This paper gives an overview of the tsunami history in the area. This history illustrates what can be expected in the future from this geologic hazard and provides information that will be useful for mitigation purposes.

  16. Historical Tsunami Records on Russian Island, the Sea of Japan

    Science.gov (United States)

    Razjigaeva, N. G.; Ganzey, L. A.; Grebennikova, T. A.; Arslanov, Kh. A.; Ivanova, E. D.; Ganzey, K. S.; Kharlamov, A. A.

    2018-03-01

    In this article, we provide data evidencing tsunamis on Russian Island over the last 700 years. Reconstructions are developed based on the analyses of peat bog sections on the coast of Spokoynaya Bay, including layers of tsunami sands. Ancient beach sands under peat were deposited during the final phase of transgression of the Medieval Warm Period. We used data on diatoms and benthic foraminifers to identify the marine origin of the sands. The grain size compositions of the tsunami deposits were used to determine the sources of material carried by the tsunamis. The chronology of historical tsunamis was determined based on the radiocarbon dating of the underlying organic deposits. There was a stated difference between the deposition environments during tsunamis and large storms during the Goni (2015) and Lionrock (2016) typhoons. Tsunami deposits from 1983 and 1993 were found in the upper part of the sections. The inundation of the 1993 tsunami did not exceed 20 m or a height of 0.5 m a.m.s.l. (0.3 above high tide). The more intensive tsunami of 1983 had a run-up of 0.65 m a.m.s.l. and penetrated inland from the shoreline up to 40 m. Sand layer of tsunami 1940 extend in land up to 50 m from the present shoreline. Evidence of six tsunamis was elicited from the peat bog sections, the deposits of which are located 60 m from the modern coastal line. The deposits of strong historic tsunamis in the Japan Sea region in 1833, 1741, 1614 (or 1644), 1448, the XIV-XV century and 1341 were also identified on Russian Island. Their run-ups and inundation distances were also determined. The strong historic tsunamis appeared to be more intensive than those of the XX century, and considering the sea level drop during the Little Ice Age, the inundation distances were as large as 250 m.

  17. Historical Tsunami Records on Russian Island, the Sea of Japan

    Science.gov (United States)

    Razjigaeva, N. G.; Ganzey, L. A.; Grebennikova, T. A.; Arslanov, Kh. A.; Ivanova, E. D.; Ganzey, K. S.; Kharlamov, A. A.

    2018-04-01

    In this article, we provide data evidencing tsunamis on Russian Island over the last 700 years. Reconstructions are developed based on the analyses of peat bog sections on the coast of Spokoynaya Bay, including layers of tsunami sands. Ancient beach sands under peat were deposited during the final phase of transgression of the Medieval Warm Period. We used data on diatoms and benthic foraminifers to identify the marine origin of the sands. The grain size compositions of the tsunami deposits were used to determine the sources of material carried by the tsunamis. The chronology of historical tsunamis was determined based on the radiocarbon dating of the underlying organic deposits. There was a stated difference between the deposition environments during tsunamis and large storms during the Goni (2015) and Lionrock (2016) typhoons. Tsunami deposits from 1983 and 1993 were found in the upper part of the sections. The inundation of the 1993 tsunami did not exceed 20 m or a height of 0.5 m a.m.s.l. (0.3 above high tide). The more intensive tsunami of 1983 had a run-up of 0.65 m a.m.s.l. and penetrated inland from the shoreline up to 40 m. Sand layer of tsunami 1940 extend in land up to 50 m from the present shoreline. Evidence of six tsunamis was elicited from the peat bog sections, the deposits of which are located 60 m from the modern coastal line. The deposits of strong historic tsunamis in the Japan Sea region in 1833, 1741, 1614 (or 1644), 1448, the XIV-XV century and 1341 were also identified on Russian Island. Their run-ups and inundation distances were also determined. The strong historic tsunamis appeared to be more intensive than those of the XX century, and considering the sea level drop during the Little Ice Age, the inundation distances were as large as 250 m.

  18. Weight Gain in Survivors Living in Temporary Housing in the Tsunami-Stricken Area during the Recovery Phase following the Great East Japan Earthquake and Tsunami.

    Science.gov (United States)

    Takahashi, Shuko; Yonekura, Yuki; Sasaki, Ryohei; Yokoyama, Yukari; Tanno, Kozo; Sakata, Kiyomi; Ogawa, Akira; Kobayashi, Seichiro; Yamamoto, Taro

    2016-01-01

    Survivors who lost their homes in the Great East Japan Earthquake and Tsunami were forced to live in difficult conditions in temporary housing several months after the disaster. Body weights of survivors living in temporary housing for a long period might increase due to changes in their life style and psychosocial state during the medium-term and long-term recovery phases. The aim of this study was to determine whether there were differences between body weight changes of people living in temporary housing and those not living in temporary housing in a tsunami-stricken area during the medium-term and long-term recovery phases. Health check-ups were performed about 7 months after the disaster (in 2011) and about 18 months after the disaster (in 2012) for people living in a tsunami-stricken area (n = 6,601, mean age = 62.3 y). We compared the changes in body weight in people living in temporary housing (TH group, n = 2,002) and those not living in temporary housing (NTH group, n = 4,599) using a multiple linear regression model. While there was no significant difference between body weights in the TH and NTH groups in the 2011 survey, there was a significant difference between the mean changes in body weight in both sexes. We found that the changes in body weight were significantly greater in the TH group than in the NTH group in both sexes. The partial regression coefficients of mean change in body weight were +0.52 kg (P-value tsunami- stricken area had a significant increase in body weight.

  19. Development of large bore superconducting magnet for wastewater treatment application

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui Ming; Xu, Dong; Shen, Fuzhi; Zhang, Hengcheng; Li, Lafeng [State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing (China)

    2017-03-15

    Water issue, especially water pollution, is a serious issue of 21st century. Being an significant technique for securing water resources, superconducting magnetic separation wastewater system was indispensable. A large bore conduction-cooled magnet was custom-tailored for wastewater treatment. The superconducting magnet has been designed, fabricated and tested. The superconducting magnet was composed of NbTi solenoid coils with an effective horizontal warm bore of 400 mm and a maximum central field of 2.56T. The superconducting magnet system was cooled by a two-stage 1.5W 4K GM cryocooler. The NbTi solenoid coils were wound around an aluminum former that is thermally connected to the second stage cold head of the cryocooler through a conductive copper link. The temperature distribution along the conductive link was measured during the cool-down process as well as at steady state. The magnet was cooled down to 4.8K in approximately 65 hours. The test of the magnetic field and quench analysis has been performed to verify the safe operation for the magnet system. Experimental results show that the superconducting magnet reached the designed magnetic performance.

  20. Gun bore flaw image matching based on improved SIFT descriptor

    Science.gov (United States)

    Zeng, Luan; Xiong, Wei; Zhai, You

    2013-01-01

    In order to increase the operation speed and matching ability of SIFT algorithm, the SIFT descriptor and matching strategy are improved. First, a method of constructing feature descriptor based on sector area is proposed. By computing the gradients histogram of location bins which are parted into 6 sector areas, a descriptor with 48 dimensions is constituted. It can reduce the dimension of feature vector and decrease the complexity of structuring descriptor. Second, it introduce a strategy that partitions the circular region into 6 identical sector areas starting from the dominate orientation. Consequently, the computational complexity is reduced due to cancellation of rotation operation for the area. The experimental results indicate that comparing with the OpenCV SIFT arithmetic, the average matching speed of the new method increase by about 55.86%. The matching veracity can be increased even under some variation of view point, illumination, rotation, scale and out of focus. The new method got satisfied results in gun bore flaw image matching. Keywords: Metrology, Flaw image matching, Gun bore, Feature descriptor

  1. The Boring Billion, a slingshot for Complex Life on Earth.

    Science.gov (United States)

    Mukherjee, Indrani; Large, Ross R; Corkrey, Ross; Danyushevsky, Leonid V

    2018-03-13

    The period 1800 to 800 Ma ("Boring Billion") is believed to mark a delay in the evolution of complex life, primarily due to low levels of oxygen in the atmosphere. Earlier studies highlight the remarkably flat C, Cr isotopes and low trace element trends during the so-called stasis, caused by prolonged nutrient, climatic, atmospheric and tectonic stability. In contrast, we suggest a first-order variability of bio-essential trace element availability in the oceans by combining systematic sampling of the Proterozoic rock record with sensitive geochemical analyses of marine pyrite by LA-ICP-MS technique. We also recall that several critical biological evolutionary events, such as the appearance of eukaryotes, origin of multicellularity & sexual reproduction, and the first major diversification of eukaryotes (crown group) occurred during this period. Therefore, it appears possible that the period of low nutrient trace elements (1800-1400 Ma) caused evolutionary pressures which became an essential trigger for promoting biological innovations in the eukaryotic domain. Later periods of stress-free conditions, with relatively high nutrient trace element concentration, facilitated diversification. We propose that the "Boring Billion" was a period of sequential stepwise evolution and diversification of complex eukaryotes, triggering evolutionary pathways that made possible the later rise of micro-metazoans and their macroscopic counterparts.

  2. Building Damage and Business Continuity Management in the Event of Natural Hazards: Case Study of the 2004 Tsunami in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Masami Sugiura

    2013-01-01

    Full Text Available The Sumatra Earthquake and Indian Ocean Tsunami event on the 26 December 2004 has provided a unique and valuable opportunity to evaluate the performance of various structures, facilities and lifeline systems during the tsunami wave attacks. There are especially meaningful observations concerning the structural changes due to the tsunami forces, which open up a wide area of research to develop the mitigation procedure. The business restoration process of business companies in terms of buildings, facilities and lifelines have shown greater research interest. In this study, we investigated the restoration process of business sectors in East and South coastal region in Sri Lanka after the 2004 Indian Ocean Tsunami. A field survey was conducted in East and South coast of Sri Lanka, in order to study the affecting parameters to damage assessment in the restoration process of the business companies. The results of the questionnaire-based field survey are then compared with the statistical analysis results. Finally, the factors affecting the restoration process after the tsunami are identified. As a main conclusion, financial support could be the most important reason for delays in restoration. Moreover, it has been observed that the tsunami inundation level of higher than one meter may have had more effect concerning the damage to the structures and requires additional time for restoration than other areas.

  3. IMPORTANCE OF MANGROVE TO REDUCE THE TSUNAMI WAVE ENERGY

    Directory of Open Access Journals (Sweden)

    Anastasia Neni Candra Purnamasari

    2017-09-01

    Full Text Available Mangrove has a very important role to reduce the tsunami wave energy. It is shown that the coastal areas have no vegetation or in this case will have an impact Mangrove forests greater damage due to tsunami waves than the coastal areas of vegetation. The purpose of the Term Paper is proved the importance of Mangrove to reduce the tsunami wave energy by comparing the various methods that have been observed in some case studies on the impact of the tsunami that occurred in several Asian countries in 2004 and case studies on ocean waves on the Gulf coast of south Florida. Based on the research results that could dampen Mangrove Tsunami wave energy. Tsunami wave energy can be reduced by several factors, namely mangrove species, tree size, vast mangrove forest, nature tree structure, and the size limit Mangrove forest (as far as how much of the ocean to the surface.

  4. Identification of tsunami deposits considering the tsunami waveform: An example of subaqueous tsunami deposits in Holocene shallow bay on southern Boso Peninsula, Central Japan

    Science.gov (United States)

    Fujiwara, Osamu; Kamataki, Takanobu

    2007-08-01

    This study proposes a tsunami depositional model based on observations of emerged Holocene tsunami deposits in outcrops located in eastern Japan. The model is also applicable to the identification of other deposits, such as those laid down by storms. The tsunami deposits described were formed in a small bay of 10-20-m water depth, and are mainly composed of sand and gravel. They show various sedimentary structures, including hummocky cross-stratification (HCS) and inverse and normal grading. Although, individually, the sedimentary structures are similar to those commonly found in storm deposits, the combination of vertical stacking in the tsunami deposits makes a unique pattern. This vertical stacking of internal structures is due to the waveform of the source tsunamis, reflecting: 1) extremely long wavelengths and wave period, and 2) temporal changes of wave sizes from the beginning to end of the tsunamis. The tsunami deposits display many sub-layers with scoured and graded structures. Each sub-layer, especially in sandy facies, is characterized by HCS and inverse and normal grading that are the result of deposition from prolonged high-energy sediment flows. The vertical stack of sub-layers shows incremental deposition from the repeated sediment flows. Mud drapes cover the sub-layers and indicate the existence of flow-velocity stagnant stages between each sediment flow. Current reversals within the sub-layers indicate the repeated occurrence of the up- and return-flows. The tsunami deposits are vertically divided into four depositional units, Tna to Tnd in ascending order, reflecting the temporal change of wave sizes in the tsunami wave trains. Unit Tna is relatively fine-grained and indicative of small tsunami waves during the early stage of the tsunami. Unit Tnb is a protruding coarse-grained and thickest-stratified division and is the result of a relatively large wave group during the middle stage of the tsunami. Unit Tnc is a fine alternation of thin sand

  5. Microbial ecology of Thailand tsunami and non-tsunami affected terrestrials.

    Science.gov (United States)

    Somboonna, Naraporn; Wilantho, Alisa; Jankaew, Kruawun; Assawamakin, Anunchai; Sangsrakru, Duangjai; Tangphatsornruang, Sithichoke; Tongsima, Sissades

    2014-01-01

    The effects of tsunamis on microbial ecologies have been ill-defined, especially in Phang Nga province, Thailand. This ecosystem was catastrophically impacted by the 2004 Indian Ocean tsunami as well as the 600 year-old tsunami in Phra Thong island, Phang Nga province. No study has been conducted to elucidate their effects on microbial ecology. This study represents the first to elucidate their effects on microbial ecology. We utilized metagenomics with 16S and 18S rDNA-barcoded pyrosequencing to obtain prokaryotic and eukaryotic profiles for this terrestrial site, tsunami affected (S1), as well as a parallel unaffected terrestrial site, non-tsunami affected (S2). S1 demonstrated unique microbial community patterns than S2. The dendrogram constructed using the prokaryotic profiles supported the unique S1 microbial communities. S1 contained more proportions of archaea and bacteria domains, specifically species belonging to Bacteroidetes became more frequent, in replacing of the other typical floras like Proteobacteria, Acidobacteria and Basidiomycota. Pathogenic microbes, including Acinetobacter haemolyticus, Flavobacterium spp. and Photobacterium spp., were also found frequently in S1. Furthermore, different metabolic potentials highlighted this microbial community change could impact the functional ecology of the site. Moreover, the habitat prediction based on percent of species indicators for marine, brackish, freshwater and terrestrial niches pointed the S1 to largely comprise marine habitat indicating-species.

  6. Tsunami Simulation Method Assimilating Ocean Bottom Pressure Data Near a Tsunami Source Region

    Science.gov (United States)

    Tanioka, Yuichiro

    2018-02-01

    A new method was developed to reproduce the tsunami height distribution in and around the source area, at a certain time, from a large number of ocean bottom pressure sensors, without information on an earthquake source. A dense cabled observation network called S-NET, which consists of 150 ocean bottom pressure sensors, was installed recently along a wide portion of the seafloor off Kanto, Tohoku, and Hokkaido in Japan. However, in the source area, the ocean bottom pressure sensors cannot observe directly an initial ocean surface displacement. Therefore, we developed the new method. The method was tested and functioned well for a synthetic tsunami from a simple rectangular fault with an ocean bottom pressure sensor network using 10 arc-min, or 20 km, intervals. For a test case that is more realistic, ocean bottom pressure sensors with 15 arc-min intervals along the north-south direction and sensors with 30 arc-min intervals along the east-west direction were used. In the test case, the method also functioned well enough to reproduce the tsunami height field in general. These results indicated that the method could be used for tsunami early warning by estimating the tsunami height field just after a great earthquake without the need for earthquake source information.

  7. Near Source 2007 Peru Tsunami Runup Observations and Modeling

    Science.gov (United States)

    Borrero, J. C.; Fritz, H. M.; Kalligeris, N.; Broncano, P.; Ortega, E.

    2008-12-01

    On 15 August 2007 an earthquake with moment magnitude (Mw) of 8.0 centered off the coast of central Peru, generated a tsunami with locally focused runup heights of up to 10 m. A reconnaissance team was deployed two weeks after the event and investigated the tsunami effects at 51 sites. Three tsunami fatalities were reported south of the Paracas Peninsula in a sparsely populated desert area where the largest tsunami runup heights and massive inundation distances up to 2 km were measured. Numerical modeling of the earthquake source and tsunami suggest that a region of high slip near the coastline was primarily responsible for the extreme runup heights. The town of Pisco was spared by the Paracas Peninsula, which blocked tsunami waves from propagating northward from the high slip region. As with all near field tsunamis, the waves struck within minutes of the massive ground shaking. Spontaneous evacuations coordinated by the Peruvian Coast Guard minimized the fatalities and illustrate the importance of community-based education and awareness programs. The residents of the fishing village Lagunilla were unaware of the tsunami hazard after an earthquake and did not evacuate, which resulted in 3 fatalities. Despite the relatively benign tsunami effects at Pisco from this event, the tsunami hazard for this city (and its liquefied natural gas terminal) cannot be underestimated. Between 1687 and 1868, the city of Pisco was destroyed 4 times by tsunami waves. Since then, two events (1974 and 2007) have resulted in partial inundation and moderate damage. The fact that potentially devastating tsunami runup heights were observed immediately south of the peninsula only serves to underscore this point.

  8. A global probabilistic tsunami hazard assessment from earthquake sources

    Science.gov (United States)

    Davies, Gareth; Griffin, Jonathan; Lovholt, Finn; Glimsdal, Sylfest; Harbitz, Carl; Thio, Hong Kie; Lorito, Stefano; Basili, Roberto; Selva, Jacopo; Geist, Eric L.; Baptista, Maria Ana

    2017-01-01

    Large tsunamis occur infrequently but have the capacity to cause enormous numbers of casualties, damage to the built environment and critical infrastructure, and economic losses. A sound understanding of tsunami hazard is required to underpin management of these risks, and while tsunami hazard assessments are typically conducted at regional or local scales, globally consistent assessments are required to support international disaster risk reduction efforts, and can serve as a reference for local and regional studies. This study presents a global-scale probabilistic tsunami hazard assessment (PTHA), extending previous global-scale assessments based largely on scenario analysis. Only earthquake sources are considered, as they represent about 80% of the recorded damaging tsunami events. Globally extensive estimates of tsunami run-up height are derived at various exceedance rates, and the associated uncertainties are quantified. Epistemic uncertainties in the exceedance rates of large earthquakes often lead to large uncertainties in tsunami run-up. Deviations between modelled tsunami run-up and event observations are quantified, and found to be larger than suggested in previous studies. Accounting for these deviations in PTHA is important, as it leads to a pronounced increase in predicted tsunami run-up for a given exceedance rate.

  9. Study of tsunami propagation in the Ligurian Sea

    Directory of Open Access Journals (Sweden)

    E. Pelinovsky

    2001-01-01

    Full Text Available Tsunami propagation is analyzed for the Ligurian Sea with particular attention on the French coasts of the Mediterranean. Historical data of tsunami manifestation on the French coast are analyzed for the period 2000 B.C.–1991 A.D. Numerical simulations of potential and historical tsunamis in the Ligurian Sea are done in the context of the nonlinear shallow water theory. Tsunami wave heights as well as their distribution function is calculated for historical tsunamis and it is shown that the log-normal distribution describes reasonably the simulated data. This demonstrates the particular role of bottom irregularities for the wave height distribution function near the coastlines. Also, spectral analysis of numerical tide-gauge records is done for potential tsunamis, revealing the complex resonant interactions between the tsunami waves and the bottom oscillations. It is shown that for an earthquake magnitude of 6.8 (averaged value for the Mediterranean Sea the tsunami phenomenon has a very local character but with long duration. For sources located near the steep continental slope in the vicinity of the French-Italian Rivera, the tsunami tide-gauge records in the vicinity of Cannes – Imperia present irregular oscillations with a characteristic period of 20–30 min and a total duration of 10–20 h. For the western French coasts the amplitudes are significantly less with characteristic low-frequency oscillations (period of 40 min–1 h.

  10. Probabilistic tsunami hazard assessment for Point Lepreau Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, D., E-mail: dmullin@nbpower.com [New Brunswick Power Corporation, Point Lepreau Generating Station, Point Lepreau (Canada); Alcinov, T.; Roussel, P.; Lavine, A.; Arcos, M.E.M.; Hanson, K.; Youngs, R., E-mail: trajce.alcinov@amecfw.com, E-mail: patrick.roussel@amecfw.com [AMEC Foster Wheeler Environment & Infrastructure, Dartmouth, NS (Canada)

    2015-07-01

    In 2012 the Geological Survey of Canada published a preliminary probabilistic tsunami hazard assessment in Open File 7201 that presents the most up-to-date information on all potential tsunami sources in a probabilistic framework on a national level, thus providing the underlying basis for conducting site-specific tsunami hazard assessments. However, the assessment identified a poorly constrained hazard for the Atlantic Coastline and recommended further evaluation. As a result, NB Power has embarked on performing a Probabilistic Tsunami Hazard Assessment (PTHA) for Point Lepreau Generating Station. This paper provides the methodology and progress or hazard evaluation results for Point Lepreau G.S. (author)

  11. Landslide tsunami hazard in the Indonesian Sunda Arc

    Directory of Open Access Journals (Sweden)

    S. Brune

    2010-03-01

    Full Text Available The Indonesian archipelago is known for the occurrence of catastrophic earthquake-generated tsunamis along the Sunda Arc. The tsunami hazard associated with submarine landslides however has not been fully addressed. In this paper, we compile the known tsunamigenic events where landslide involvement is certain and summarize the properties of published landslides that were identified with geophysical methods. We depict novel mass movements, found in newly available bathymetry, and determine their key parameters. Using numerical modeling, we compute possible tsunami scenarios. Furthermore, we propose a way of identifying landslide tsunamis using an array of few buoys with bottom pressure units.

  12. GPS water level measurements for Indonesia's Tsunami Early Warning System

    Directory of Open Access Journals (Sweden)

    T. Schöne

    2011-03-01

    Full Text Available On Boxing Day 2004, a severe tsunami was generated by a strong earthquake in Northern Sumatra causing a large number of casualties. At this time, neither an offshore buoy network was in place to measure tsunami waves, nor a system to disseminate tsunami warnings to local governmental entities. Since then, buoys have been developed by Indonesia and Germany, complemented by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART buoys, and have been moored offshore Sumatra and Java. The suite of sensors for offshore tsunami detection in Indonesia has been advanced by adding GPS technology for water level measurements.

    The usage of GPS buoys in tsunami warning systems is a relatively new approach. The concept of the German Indonesian Tsunami Early Warning System (GITEWS (Rudloff et al., 2009 combines GPS technology and ocean bottom pressure (OBP measurements. Especially for near-field installations where the seismic noise may deteriorate the OBP data, GPS-derived sea level heights provide additional information.

    The GPS buoy technology is precise enough to detect medium to large tsunamis of amplitudes larger than 10 cm. The analysis presented here suggests that for about 68% of the time, tsunamis larger than 5 cm may be detectable.

  13. Tsunami prevention and mitigation necessities and options derived from tsunami risk assessment in Indonesia

    Science.gov (United States)

    Post, J.; Zosseder, K.; Wegscheider, S.; Steinmetz, T.; Mück, M.; Strunz, G.; Riedlinger, T.; Anwar, H. Z.; Birkmann, J.; Gebert, N.

    2009-04-01

    Risk and vulnerability assessment is an important component of an effective End-to-End Tsunami Early Warning System and therefore contributes significantly to disaster risk reduction. Risk assessment is a key strategy to implement and design adequate disaster prevention and mitigation measures. The knowledge about expected tsunami hazard impacts, exposed elements, their susceptibility, coping and adaptation mechanisms is a precondition for the development of people-centred warning structures, local specific response and recovery policy planning. The developed risk assessment and its components reflect the disaster management cycle (disaster time line) and cover the early warning as well as the emergency response phase. Consequently the components hazard assessment, exposure (e.g. how many people/ critical facilities are affected?), susceptibility (e.g. are the people able to receive a tsunami warning?), coping capacity (are the people able to evacuate in time?) and recovery (are the people able to restore their livelihoods?) are addressed and quantified. Thereby the risk assessment encompasses three steps: (i) identifying the nature, location, intensity and probability of potential tsunami threats (hazard assessment); (ii) determining the existence and degree of exposure and susceptibility to those threats; and (iii) identifying the coping capacities and resources available to address or manage these threats. The paper presents results of the research work, which is conducted in the framework of the GITEWS project and the Joint Indonesian-German Working Group on Risk Modelling and Vulnerability Assessment. The assessment methodology applied follows a people-centred approach to deliver relevant risk and vulnerability information for the purposes of early warning and disaster management. The analyses are considering the entire coastal areas of Sumatra, Java and Bali facing the Sunda trench. Selected results and products like risk maps, guidelines, decision support

  14. Time-dependent onshore tsunami response

    Science.gov (United States)

    Apotsos, Alex; Gelfenbaum, Guy R.; Jaffe, Bruce E.

    2012-01-01

    While bulk measures of the onshore impact of a tsunami, including the maximum run-up elevation and inundation distance, are important for hazard planning, the temporal evolution of the onshore flow dynamics likely controls the extent of the onshore destruction and the erosion and deposition of sediment that occurs. However, the time-varying dynamics of actual tsunamis are even more difficult to measure in situ than the bulk parameters. Here, a numerical model based on the non-linear shallow water equations is used to examine the effects variations in the wave characteristics, bed slope, and bottom roughness have on the temporal evolution of the onshore flow. Model results indicate that the onshore flow dynamics vary significantly over the parameter space examined. For example, the flow dynamics over steep, smooth morphologies tend to be temporally symmetric, with similar magnitude velocities generated during the run-up and run-down phases of inundation. Conversely, on shallow, rough onshore topographies the flow dynamics tend to be temporally skewed toward the run-down phase of inundation, with the magnitude of the flow velocities during run-up and run-down being significantly different. Furthermore, for near-breaking tsunami waves inundating over steep topography, the flow velocity tends to accelerate almost instantaneously to a maximum and then decrease monotonically. Conversely, when very long waves inundate over shallow topography, the flow accelerates more slowly and can remain steady for a period of time before beginning to decelerate. These results indicate that a single set of assumptions concerning the onshore flow dynamics cannot be applied to all tsunamis, and site specific analyses may be required.

  15. Source of high tsunamis along the southernmost Ryukyu trench inferred from tsunami stratigraphy

    Science.gov (United States)

    Ando, Masataka; Kitamura, Akihisa; Tu, Yoko; Ohashi, Yoko; Imai, Takafumi; Nakamura, Mamoru; Ikuta, Ryoya; Miyairi, Yosuke; Yokoyama, Yusuke; Shishikura, Masanobu

    2018-01-01

    Four paleotsunamis deposits are exposed in a trench on the coastal lowland north of the southern Ryukyu subduction zone trench. Radiocarbon ages on coral and bivalve shells show that the four deposits record tsunamis date from the last 2000 yrs., including a historical tsunami with a maximum run-up of 30 m in 1771, for an average recurrence interval of approximately 600 yrs. Ground fissures in a soil beneath the 1771 tsunami deposit may have been generated by stronger shaking than recorded by historical documents. The repeated occurrence of the paleotsunami deposits supports a tectonic source model on the plate boundary rather than a nontectonic source model, such as submarine landslides. Assuming a thrust model at the subduction zone, the seismic coupling ratio may be as low as 20%.

  16. Ion acceleration by laser hole-boring into plasmas

    International Nuclear Information System (INIS)

    Pogorelsky, I. V.; Dover, N. P.; Babzien, M.; Bell, A. R.; Dangor, A. E.; Horbury, T.; Palmer, C. A. J.; Polyanskiy, M.; Schreiber, J.; Schwartz, S.; Shkolnikov, P.; Yakimenko, V.; Najmudin, Z.

    2012-01-01

    By experiment and simulations, we study the interaction of an intense CO 2 laser pulse with slightly overcritical plasmas of fully ionized helium gas. Transverse optical probing is used to show a recession of the front plasma surface with an initial velocity >10 6 m/s driven by hole-boring by the laser pulse and the resulting radiation pressure driven electrostatic shocks. The collisionless shock propagates through the plasma, dissipates into an ion-acoustic solitary wave, and eventually becomes collisional as it slows further. These observations are supported by PIC simulations which prove the conclusion that monoenergetic protons observed in our earlier reported experiment with a hydrogen jet result from ion trapping and reflection from a shock wave driven through the plasma.

  17. Boring sponges (Porifera, Clionidae) collected during the "Tydeman" Canary Islands expedition Cancap-II, 1977

    NARCIS (Netherlands)

    Groot, de R.A.

    1980-01-01

    INTRODUCTION AND MATERIAL The boring sponges of the Canary Islands have never been studied in any detail, but the boring fauna of this archipelago cannot be expected to be very rich. All islands are volcanic and calcareous rocks are not common. Consequently, in most areas large shells and rhodophyte

  18. A foam formulation of an entomopathogenic fungus for control of boring beetles in avocado orchards

    Science.gov (United States)

    A foam formulation of Beauveria bassiana was adapted to control boring beetles in avocado orchards. The two geographically independent avocado growing areas in the United States are threatened by emerging diseases vectored by boring beetles. In the California growing region, Fusarium dieback is vect...

  19. Looking ahead of a tunnel boring machine with 2-D SH full waveform inversion

    NARCIS (Netherlands)

    Pisupati, P.B.; Mulder, W.A.; Drijkoningen, G.G.; Reijnen, R.

    2015-01-01

    In the near-surface with unconsolidated soils, shear properties can be well imaged, sometimes better than P-wave properties. To facilitate ground prediction ahead of a tunnel boring machine (TBM), active ‘surveys’ with shear-wave vibrators are carried out during boring. In such surveys, only a few

  20. 30 CFR 18.22 - Boring-type machines equipped for auxiliary face ventilation.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boring-type machines equipped for auxiliary..., DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.22 Boring-type machines equipped for...

  1. Ten Years of bored tunnels in the Netherlands : Part I: Geotechnical issues

    NARCIS (Netherlands)

    Bakker, K.J.; Bezuijen, A.

    2008-01-01

    Ten years have passed since in 1997 for the first time construction of bored tunnels in the Netherlands soft soil was undertaken. Before that date essentially only immersed tunnels and cut-and-cover tunnels were constructed in the Netherlands. The first two bored tunnels were Pilot Projects, the 2nd

  2. Tsunami Generation and Propagation by 3D deformable Landslides and Application to Scenarios

    Science.gov (United States)

    McFall, Brian C.; Fritz, Hermann M.

    2014-05-01

    Tsunamis generated by landslides and volcano flank collapse account for some of the most catastrophic natural disasters recorded and can be particularly devastative in the near field region due to locally high wave amplitudes and runup. The events of 1958 Lituya Bay, 1963 Vajont reservoir, 1980 Spirit Lake, 2002 Stromboli and 2010 Haiti demonstrate the danger of tsunamis generated by landslides or volcano flank collapses. Unfortunately critical field data from these events is lacking. Source and runup scenarios based on real world events are physically modeled using generalized Froude similarity in the three dimensional NEES tsunami wave basin at Oregon State University. A novel pneumatic landslide tsunami generator (LTG) was deployed to simulate landslides with varying geometry and kinematics. The bathymetric and topographic scenarios tested with the LTG are the basin-wide propagation and runup, fjord, curved headland fjord and a conical island setting representing a landslide off an island or a volcano flank collapse. The LTG consists of a sliding box filled with 1,350 kg of landslide material which is accelerated by means of four pneumatic pistons down a 2H:1V slope. The landslide is launched from the sliding box and continues to accelerate by gravitational forces up to velocities of 5 m/s. The landslide Froude number at impact with the water is in the range 1

  3. Increasing tsunami risk awareness via mobile application

    Science.gov (United States)

    Leelawat, N.; Suppasri, A.; Latcharote, P.; Imamura, F.; Abe, Y.; Sugiyasu, K.

    2017-02-01

    In the information and communication technology era, smartphones have become a necessity. With the capacity and availability of smart technologies, a number of benefits are possible. As a result, designing a mobile application to increase tsunami awareness has been proposed, and a prototype has been designed and developed. The application uses data from the 2011 Great East Japan Tsunami. Based on the current location determined by a GPS function matched with the nearest point extracted from the detailed mesh data of that earlier disaster, the application generates the inundation depth at the user’s location. Thus, not only local people but also tourists visiting the affected areas can understand the risks involved. Application testing has been conducted in an evacuation experiment involving both Japanese and foreign students. The proposed application can be used as a supplementary information tool in tsunami evacuation drills. It also supports the idea of smart tourism: when people realize their risks, they possess risk awareness and hence can reduce their risks. This application can also be considered a contribution to disaster knowledge and technology, as well as to the lessons learned from the practical outcome.

  4. Educating and Preparing for Tsunamis in the Caribbean

    Science.gov (United States)

    von Hillebrandt-Andrade, C.; Aliaga, B.; Edwards, S.

    2013-12-01

    The Caribbean and Adjacent Regions has a long history of tsunamis and earthquakes. Over the past 500 years, more than 75 tsunamis have been documented in the region by the NOAA National Geophysical Data Center. Just since 1842, 3446 lives have been lost to tsunamis; this is more than in the Northeastern Pacific for the same time period. With a population of almost 160 million, over 40 million visitors a year and a heavy concentration of residents, tourists, businesses and critical infrastructure along its shores (especially in the northern and eastern Caribbean), the risk to lives and livelihoods is greater than ever before. The only way to survive a tsunami is to get out of harm's way before the waves strike. In the Caribbean given the relatively short distances from faults, potential submarine landslides and volcanoes to some of the coastlines, the tsunamis are likely to be short fused, so it is imperative that tsunami warnings be issued extremely quickly and people be educated on how to recognize and respond. Nevertheless, given that tsunamis occur infrequently as compared with hurricanes, it is a challenge for them to receive the priority they require in order to save lives when the next one strikes the region. Close cooperation among countries and territories is required for warning, but also for education and public awareness. Geographical vicinity and spoken languages need to be factored in when developing tsunami preparedness in the Caribbean, to make sure citizens receive a clear, reliable and sound science based message about the hazard and the risk. In 2006, in the wake of the Indian Ocean tsunami and after advocating without success for a Caribbean Tsunami Warning System since the mid 90's, the Intergovernmental Oceanographic Commission of UNESCO established the Intergovernmental Coordination Group for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (CARIBE EWS). Its purpose is to advance an end to end tsunami

  5. Boring crustaceans damage polystyrene floats under docks polluting marine waters with microplastic.

    Science.gov (United States)

    Davidson, Timothy M

    2012-09-01

    Boring isopods damage expanded polystyrene floats under docks and, in the process, expel copious numbers of microplastic particles. This paper describes the impacts of boring isopods in aquaculture facilities and docks, quantifies and discusses the implications of these microplastics, and tests if an alternate foam type prevents boring. Floats from aquaculture facilities and docks were heavily damaged by thousands of isopods and their burrows. Multiple sites in Asia, Australia, Panama, and the USA exhibited evidence of isopod damage. One isopod creates thousands of microplastic particles when excavating a burrow; colonies can expel millions of particles. Microplastics similar in size to these particles may facilitate the spread of non-native species or be ingested by organisms causing physical or toxicological harm. Extruded polystyrene inhibited boring, suggesting this foam may prevent damage in the field. These results reveal boring isopods cause widespread damage to docks and are a novel source of microplastic pollution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Optimal chest drain size: the rise of the small-bore pleural catheter.

    Science.gov (United States)

    Fysh, Edward T H; Smith, Nicola A; Lee, Y C Gary

    2010-12-01

    Drainage of the pleural space is not a modern concept, but the optimal size of chest drains to use remains debated. Conventional teaching advocates blunt dissection and large-bore tubes; but in recent years, small-bore catheters have gained popularity. In the absence of high-quality randomized data, this review summarizes the available literature on the choice of chest drains. The objective data supporting the use of large-bore tubes is scarce in most pleural diseases. Increasing evidence shows that small-bore catheters induce less pain and are of comparable efficacy to large-bore tubes, including in the management of pleural infection, malignant effusion, and pneumothoraces. The onus now is on those who favor large tubes to produce clinical data to justify the more invasive approach. © Thieme Medical Publishers.

  7. Global Tsunami Database: Adding Geologic Deposits, Proxies, and Tools

    Science.gov (United States)

    Brocko, V. R.; Varner, J.

    2007-12-01

    A result of collaboration between NOAA's National Geophysical Data Center (NGDC) and the Cooperative Institute for Research in the Environmental Sciences (CIRES), the Global Tsunami Database includes instrumental records, human observations, and now, information inferred from the geologic record. Deep Ocean Assessment and Reporting of Tsunamis (DART) data, historical reports, and information gleaned from published tsunami deposit research build a multi-faceted view of tsunami hazards and their history around the world. Tsunami history provides clues to what might happen in the future, including frequency of occurrence and maximum wave heights. However, instrumental and written records commonly span too little time to reveal the full range of a region's tsunami hazard. The sedimentary deposits of tsunamis, identified with the aid of modern analogs, increasingly complement instrumental and human observations. By adding the component of tsunamis inferred from the geologic record, the Global Tsunami Database extends the record of tsunamis backward in time. Deposit locations, their estimated age and descriptions of the deposits themselves fill in the tsunami record. Tsunamis inferred from proxies, such as evidence for coseismic subsidence, are included to estimate recurrence intervals, but are flagged to highlight the absence of a physical deposit. Authors may submit their own descriptions and upload digital versions of publications. Users may sort by any populated field, including event, location, region, age of deposit, author, publication type (extract information from peer reviewed publications only, if you wish), grain size, composition, presence/absence of plant material. Users may find tsunami deposit references for a given location, event or author; search for particular properties of tsunami deposits; and even identify potential collaborators. Users may also download public-domain documents. Data and information may be viewed using tools designed to extract and

  8. Did a submarine landslide contribute to the 2011 Tohoku tsunami?

    KAUST Repository

    Tappin, David R.

    2014-09-28

    Many studies have modeled the Tohoku tsunami of March 11, 2011 as being due entirely to slip on an earthquake fault, but the following discrepancies suggest that further research is warranted. (1) Published models of tsunami propagation and coastal impact underpredict the observed runup heights of up to 40 m measured along the coast of the Sanriku district in the northeast part of Honshu Island. (2) Published models cannot reproduce the timing and high-frequency content of tsunami waves recorded at three nearshore buoys off Sanriku, nor the timing and dispersion properties of the waveforms at offshore DART buoy #21418. (3) The rupture centroids obtained by tsunami inversions are biased about 60 km NNE of that obtained by the Global CMT Project. Based on an analysis of seismic and geodetic data, together with recorded tsunami waveforms, we propose that, while the primary source of the tsunami was the vertical displacement of the seafloor due to the earthquake, an additional tsunami source is also required. We infer the location of the proposed additional source based on an analysis of the travel times of higher-frequency tsunami waves observed at nearshore buoys. We further propose that the most likely additional tsunami source was a submarine mass failure (SMF—i.e., a submarine landslide). A comparison of pre- and post-tsunami bathymetric surveys reveals tens of meters of vertical seafloor movement at the proposed SMF location, and a slope stability analysis confirms that the horizontal acceleration from the earthquake was sufficient to trigger an SMF. Forward modeling of the tsunami generated by a combination of the earthquake and the SMF reproduces the recorded on-, near- and offshore tsunami observations well, particularly the high-frequency component of the tsunami waves off Sanriku, which were not well simulated by previous models. The conclusion that a significant part of the 2011 Tohoku tsunami was generated by an SMF source has important implications for

  9. A~probabilistic tsunami hazard assessment for Indonesia

    Science.gov (United States)

    Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.

    2014-05-01

    Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence based decision making on risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean Tsunami, but this has been largely concentrated on the Sunda Arc, with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent Probabilistic Tsunami Hazard Assessment (PTHA) for Indonesia. This assessment produces time independent forecasts of tsunami hazard at the coast from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte-carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and through sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting larger maximum magnitudes along the Sunda Arc. The annual probability of experiencing a tsunami with a height at the coast of > 0.5 m is greater than 10% for Sumatra, Java, the Sunda Islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of >3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.

  10. Should tsunami simulations include a nonzero initial horizontal velocity?

    Science.gov (United States)

    Lotto, Gabriel C.; Nava, Gabriel; Dunham, Eric M.

    2017-08-01

    Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require initial conditions on sea surface height and depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). Full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor confirm that substantial horizontal momentum is imparted to the ocean. However, almost all of that initial momentum is carried away by ocean acoustic waves, with negligible momentum imparted to the tsunami. We also compare tsunami propagation in each simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial velocity. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves from ocean acoustic and seismic waves at some final time, and backpropagating the tsunami waves to their initial state by solving the

  11. Comparison of Human Response against Earthquake and Tsunami

    Science.gov (United States)

    Arikawa, T.; Güler, H. G.; Yalciner, A. C.

    2017-12-01

    The evacuation response against the earthquake and tsunamis is very important for the reduction of human damages against tsunami. But it is very difficult to predict the human behavior after shaking of the earthquake. The purpose of this research is to clarify the difference of the human response after the earthquake shock in the difference countries and to consider the relation between the response and the safety feeling, knowledge and education. For the objective of this paper, the questionnaire survey was conducted after the 21st July 2017 Gokova earthquake and tsunami. Then, consider the difference of the human behavior by comparison of that in 2015 Chilean earthquake and tsunami and 2011 Japan earthquake and tsunami. The seismic intensity of the survey points was almost 6 to 7. The contents of the questions include the feeling of shaking, recalling of the tsunami, the behavior after shock and so on. The questionnaire was conducted for more than 20 20 people in 10 areas. The results are the following; 1) Most people felt that it was a strong shake not to stand, 2) All of the questionnaires did not recall the tsunami, 3) Depending on the area, they felt that after the earthquake the beach was safer than being at home. 4) After they saw the sea drawing, they thought that a tsunami would come and ran away. Fig. 1 shows the comparison of the evacuation rate within 10 minutes in 2011 Japan, 2015 Chile and 2017 Turkey.. From the education point of view, education for tsunami is not done much in Turkey. From the protection facilities point of view, the high sea walls are constructed only in Japan. From the warning alert point of view, there is no warning system against tsunamis in the Mediterranean Sea. As a result of this survey, the importance of tsunami education is shown, and evacuation tends to be delayed if dependency on facilities and alarms is too high.

  12. Observations and modeling of tsunami-induced currents in ports and harbors

    Science.gov (United States)

    Lynett, Patrick J.; Borrero, Jose C.; Weiss, Robert; Son, Sangyoung; Greer, Dougal; Renteria, Willington

    2012-04-01

    Tsunamis, or "harbor waves" in Japanese, are so-named due to common observations of enhanced wave heights, currents and damage in harbors and ports. However, dynamic currents induced by these waves, while regularly observed and known to cause significant damage, are poorly understood. Observations and modeling of the currents induced by the 2011 Tohoku and 2004 Indian Ocean tsunamis allows us to show that the strongest flows in harbor basins are governed by horizontally sheared and rotational shallow features, such as jets and large eddies. When examining currents in harbors, this conclusion will generally require a simulation approach that both includes the relevant physical processes in the governing equations and uses a numerical scheme that does not artificially damp these features. Without proper representation of the physics associated with these phenomena, predictive models may provide drag force estimates that are an order of magnitude or more in error. The immediate implementation of this type of analysis into tsunami hazard studies can mean the difference between an unaffected port and one in which 300 m long container vessels are detached from their moorings and drift chaotically.

  13. Disaster Evacuation from Japan's 2011 Tsunami Disaster and the Fukushima Nuclear Accident

    International Nuclear Information System (INIS)

    Hasegawa, Reiko

    2013-01-01

    The triple disaster that hit the Tohoku region of Japan on 11 March 2011 triggered a massive human displacement: more than 400,000 people evacuated their homes as a gigantic tsunami induced by a magnitude 9.0 earthquake engulfed the coastal areas, and the following nuclear accident in Fukushima released a large amount of radioactive materials into the atmosphere. This study analyses the disaster response, with a particular focus on evacuation of the population, and social consequences of this complex crisis, based on intensive fieldwork carried out one year after the catastrophe. It reveals that the responses of the Japanese authorities and population were significantly different between a natural disaster and an industrial (man-made) accident. Being prone to both earthquakes and tsunamis, Japan had been preparing itself against such risks for many years. A tsunami alert was immediately issued and the population knew how and where to evacuate. In contrast, the evacuation from the nuclear accident was organised in total chaos, as a severe accident or large-scale evacuation had never been envisaged -let alone exercised- before the disaster. The population was thus forced to flee with no information as to the gravity of the accident or radiation risk. In both cases, the risk perception prior to the catastrophe played a key role in determining the vulnerability of the population at the time of the crisis. While tsunami evacuees are struggling with a slow reconstruction process due to financial difficulties, nuclear evacuees are suffering from uncertainty as to their prospect of return. One year after the accident, the Japanese authorities began to encourage nuclear evacuees to return to the areas contaminated by radiation according to a newly established safety standard. This triggered a vivid controversy within the affected communities, creating a rift between those who trust the government's notion of safety and those who do not. The nuclear disaster has thus

  14. The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    Science.gov (United States)

    Ross, Stephanie L.; Jones, Lucile M.

    2013-01-01

    The Science Application for Risk Reduction (SAFRR) tsunami scenario depicts a hypothetical but plausible tsunami created by an earthquake offshore from the Alaska Peninsula and its impacts on the California coast. The tsunami scenario is a collaboration between the U.S. Geological Survey (USGS), the California Geological Survey (CGS), the California Governor’s Office of Emergency Services (Cal OES), the National Oceanic and Atmospheric Administration (NOAA), other Federal, State, County, and local agencies, private companies, and academic and other institutions. This document presents evidence for past tsunamis, the scientific basis for the source, likely inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental and ecological impacts, social vulnerability, emergency management and evacuation challenges, and policy implications for California associated with this hypothetical tsunami. We also discuss ongoing mitigation efforts by the State of California and new communication products. The intended users are those who need to make mitigation decisions before future tsunamis, and those who will need to make rapid decisions during tsunami events. The results of the tsunami scenario will help managers understand the context and consequences of their decisions and how they may improve preparedness and response. An evaluation component will assess the effectiveness of the scenario process for target stakeholders in a separate report to improve similar efforts in the future.

  15. Near-coast tsunami waveguiding: phenomenon and simulations

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Adytia, D.; Adytia, D.; Andonowati, A.

    2008-01-01

    In this paper we show that shallow, elongated parts in a sloping bottom toward the coast will act as a waveguide and lead to large enhanced wave amplification for tsunami waves. Since this is even the case for narrow shallow regions, near-coast tsunami waveguiding may contribute to an explanation

  16. Planning livelihood cohesion for agrarian Tsunami victims | Newport ...

    African Journals Online (AJOL)

    The paper highlights the need for adequate livelihood planning for agrarian Tsunami victims in Tamil Nadu are of India. It looks at the reason why the inhabitants of the area were affected by the disaster especially as they are around the coastal plains, which experience periodic monsoon. The recent tsunami devastated the ...

  17. Post Tsunami Reconstruction in the Context of War | CRDI - Centre ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    On 26 December 2004, a tsunami decimated much of the coastal regions of Aceh province in Indonesia and the eastern and southern coasts of Sri Lanka. The international response was massive, leading to a considerable influx of aid. In both Aceh and Sri Lanka, the aftermath of the tsunami intersected with ongoing civil ...

  18. Did a submarine landslide contribute to the 2011 Tohoku tsunami?

    KAUST Repository

    Tappin, David R.; Grilli, Stephan T.; Harris, Jeffrey C.; Geller, Robert J.; Masterlark, Timothy; Kirby, James T.; Shi, Fengyan; Ma, Gangfeng; Thingbaijam, Kiran Kumar; Mai, Paul Martin

    2014-01-01

    is also required. We infer the location of the proposed additional source based on an analysis of the travel times of higher-frequency tsunami waves observed at nearshore buoys. We further propose that the most likely additional tsunami source was a

  19. The Study to Improve Tsunami Preparedness Education in Turkey

    Science.gov (United States)

    Sakamoto, Mayumi; Tanırcan, Gülüm; Kaneda, Yoshiyuki; Puskulcu, Seyhun; Kumamoto, Kunihiko

    2016-04-01

    Compared to its long history on disastrous earthquakes, disaster education history in Turkey is rather short. It has just started with an initiative of Disaster Preparedness Education Unit of Bogazici University (BU/DPEU) after 1999 Kocaeli Earthquake. Training modules and materials on disaster preparedness were prepared both for students, teachers and community. Regarding to the school education, the Ministry of National Education (MoNE) reformed their education plan in 2003, and disaster education became one of eight focused components for primary-middle education. In 2011-2014 MoNE had conducted "School-based Disaster Education Project" in collaboration with Japan International Cooperation Agency (JICA). The majority of the school education materials focus more on earthquake and there are very few education programs on tsunami. Within the MarDiM (Earthquake and Tsunami Disaster Mitigation in the Marmara Region and Disaster Education in Turkey) project between Turkey and Japan a multidisciplinary engineering research as well as development of disaster education, tsunami education booklet and video were newly developed in 2015. In order to investigate students' knowledge natural disasters and disaster preparedness with focus on tsunami, a questionnaire based survey was conducted. The survey aims to clarify following questions: 1) how students obtain natural disaster information, 2) how students prepare for natural disaster, 3) knowledge on tsunami (hazard mechanism, evacuation behavior, historical disaster). The study was conducted by BU/DPEU in 2015 and 375 students answered the questionnaire. Results showed that students have more interest on earthquake, flood, tsunami and landslide followed it. Most students have heard about tsunami and the school is a key resource of their information. They know relatively well about tsunami mechanism, however, they have less knowledge on tsunami evacuation behavior and tsunami history in Turkey. In order to let students have

  20. Numerical tsunami simulations in the western Pacific Ocean and East China Sea from hypothetical M 9 earthquakes along the Nankai trough

    Science.gov (United States)

    Harada, Tomoya; Satake, Kenji; Furumura, Takashi

    2017-04-01

    We carried out tsunami numerical simulations in the western Pacific Ocean and East China Sea in order to examine the behavior of massive tsunami outside Japan from the hypothetical M 9 tsunami source models along the Nankai Trough proposed by the Cabinet Office of Japanese government (2012). The distribution of MTHs (maximum tsunami heights for 24 h after the earthquakes) on the east coast of China, the east coast of the Philippine Islands, and north coast of the New Guinea Island show peaks with approximately 1.0-1.7 m,4.0-7.0 m,4.0-5.0 m, respectively. They are significantly higher than that from the 1707 Ho'ei earthquake (M 8.7), the largest earthquake along the Nankai trough in recent Japanese history. Moreover, the MTH distributions vary with the location of the huge slip(s) in the tsunami source models although the three coasts are far from the Nankai trough. Huge slip(s) in the Nankai segment mainly contributes to the MTHs, while huge slip(s) or splay faulting in the Tokai segment hardly affects the MTHs. The tsunami source model was developed for responding to the unexpected occurrence of the 2011 Tohoku Earthquake, with 11 models along the Nanakai trough, and simulated MTHs along the Pacific coasts of the western Japan from these models exceed 10 m, with a maximum height of 34.4 m. Tsunami propagation was computed by the finite-difference method of the non-liner long-wave equations with the Corioli's force and bottom friction (Satake, 1995) in the area of 115-155 ° E and 8° S-40° N. Because water depth of the East China Sea is shallower than 200 m, the tsunami propagation is likely to be affected by the ocean bottom fiction. The 30 arc-seconds gridded bathymetry data provided by the General Bathymetric Chart of the Oceans (GEBCO-2014) are used. For long propagation of tsunami we simulated tsunamis for 24 hours after the earthquakes. This study was supported by the"New disaster mitigation research project on Mega thrust earthquakes around Nankai

  1. Evaluation of Tsunami-HySEA for tsunami forecasting at selected locations in U.S.

    Science.gov (United States)

    Gonzalez Vida, J. M., Sr.; Ortega, S.; Castro, M. J.; de la Asuncion, M.; Arcas, D.

    2017-12-01

    The GPU-based Tsunami-HySEA model (Macias, J. et al., Pure and Applied Geophysics, 1-37, 2017, Lynett, P. et al., Ocean modeling, 114, 2017) is used to test four tsunami events: the January, 13, 2007 earthquake in Kuril islands (Mw 8.1), the September, 29, 2009 earthquake in Samoa (Mw 8.3), the February, 27, 2010 earthquake in Chile (Mw 9.8) and the March, 11, 2011 earthquake in Tohoku (Mw 9.0). Initial conditions have been provided by NOAA Center for Tsunami Research (NCTR) obtained from DART inversion results. All simulations have been performed using a global 4 arc-min grid of the Ocean Pacific and three nested-meshes levels around the selected locations. Wave amplitudes time series have been computed at selected tide gauges located at each location and maximum amplitudes compared with both MOST model results and observations where they are available. In addition, inundation also has been computed at selected U.S. locations for the 2011 Tohoku and 2009 Samoa events under the assumption of a steady mean high water level. Finally, computational time is also evaluated in order to study the operational capabilities of Tsunami-HySEA for these kind of events. Ackowledgements: This work has been funded by WE133R16SE1418 contract between PMEL (NOAA) and the Universidad de Málaga (Spain).

  2. Direct bed stress measurements under solitary tsunami-type waves and breaking tsunami wave fronts

    Digital Repository Service at National Institute of Oceanography (India)

    JayaKumar, S.; Baldock, T.E.

    . Experiments in Fluids, 15, 380-384. SYNOLAKIS, C. E. & BERNARD, E. N. (2006) Tsunami science before and beyond Boxing Day 2004. Philosophical Transactions - A Math Physics Engineering Science, 364, 2231-2265. TADEPALLI, S. & SYNOLAKIS, C. E. (1994) THE RUN...

  3. Malaria in Sri Lanka: one year post-tsunami

    DEFF Research Database (Denmark)

    Briët, Olivier J T; Galappaththy, Gawrie N L; Amerasinghe, Priyanie H

    2006-01-01

    One year ago, the authors of this article reported in this journal on the malaria situation in Sri Lanka prior to the tsunami that hit on 26 December 2004, and estimated the likelihood of a post-tsunami malaria outbreak to be low. Malaria incidence has decreased in 2005 as compared to 2004 in most...... districts, including the ones that were hit hardest by the tsunami. The malaria incidence (aggregated for the whole country) in 2005 followed the downward trend that started in 2000. However, surveillance was somewhat affected by the tsunami in some coastal areas and the actual incidence in these areas may...... have been higher than recorded, although there were no indications of this and it is unlikely to have affected the overall trend significantly. The focus of national and international post tsunami malaria control efforts was supply of antimalarials, distribution of impregnated mosquito nets...

  4. Analysis of community tsunami evacuation time: An overview

    Science.gov (United States)

    Yunarto, Y.; Sari, A. M.

    2018-02-01

    Tsunami in Indonesia is defined as local tsunami due to its occurrences which are within a distance of 200 km from the epicenter of the earthquake. A local tsunami can be caused by an earthquake, landslide, or volcanic eruption. Tsunami arrival time in Indonesia is generally between 10-60 minutes. As the estimated time of the tsunami waves to reach the coast is 30 minutes after the earthquake, the community should go to the vertical or horizontal evacuation in less than 30 minutes. In an evacuation, the city frequently does the evacuation after obtaining official directions from the authorities. Otherwise, they perform an independent evacuation without correct instructions from the authorities. Both of these ways have several strengths and limitations. This study analyzes these methods regarding time as well as the number of people expected to be saved.

  5. Seismic monitoring experiment of raise boring in 2014

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2015-01-01

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of ONKALO. The possibility to excavate an illegal access to ONKALO has been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal undetected excavation by blasting within the Olkiluoto seismic network area. In this report a possibility of seismic monitoring of undeclared excavation done by tunnel boring machine (TBM) has been investigated. In the earlier investigations the instruments were at the ground surface and the sensors were triaxial short period (1 Hz) geophones or broadband geophones. The characteristics (frequency content, polarity and amplitude) of the continuous seismic vibration generated by TMB were studied. The onset time of the seismic signal were not distinguished. Altogether 16 new 10 kHz accelerometers were installed in boreholes inside ONKALO March 2012. The sensors comprised a new subnetwork that monitored the raise boring of two shafts done 2014, from the level -455 m to the level -290 m. The aim was to record the seismic signal generated when the drill bit hits the rock at the moment the tunnel boring begins. Altogether 113 seismic signals generated by the drill bit were located during the

  6. Seismic monitoring experiment of raise boring in 2014

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J.; Malm, M. [AaF-Consult Oy, Espoo (Finland)

    2015-01-15

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of ONKALO. The possibility to excavate an illegal access to ONKALO has been concerned when the safeguards are discussed. Therefore all recorded explosions in the Olkiluoto area and in ONKALO are located. If a concentration of explosions is observed, the origin of that is found out. Also a concept of hidden illegal explosions, detonated at the same time as the real excavation blasts, has been examined. According to the experience gained in Olkiluoto, it can be concluded that, as long the seismic network is in operation and the results are analysed by a skilled person, it is practically impossible to do illegal undetected excavation by blasting within the Olkiluoto seismic network area. In this report a possibility of seismic monitoring of undeclared excavation done by tunnel boring machine (TBM) has been investigated. In the earlier investigations the instruments were at the ground surface and the sensors were triaxial short period (1 Hz) geophones or broadband geophones. The characteristics (frequency content, polarity and amplitude) of the continuous seismic vibration generated by TMB were studied. The onset time of the seismic signal were not distinguished. Altogether 16 new 10 kHz accelerometers were installed in boreholes inside ONKALO March 2012. The sensors comprised a new subnetwork that monitored the raise boring of two shafts done 2014, from the level -455 m to the level -290 m. The aim was to record the seismic signal generated when the drill bit hits the rock at the moment the tunnel boring begins. Altogether 113 seismic signals generated by the drill bit were located during the

  7. How effective were mangroves as a defence against the recent tsunami?

    Science.gov (United States)

    Dahdouh-Guebas, F; Jayatissa, L P; Di Nitto, D; Bosire, J O; Lo Seen, D; Koedam, N

    2005-06-21

    Whether or not mangroves function as buffers against tsunamis is the subject of in-depth research, the importance of which has been neglected or underestimated before the recent killer tsunami struck. Our preliminary post-tsunami surveys of Sri Lankan mangrove sites with different degrees of degradation indicate that human activity exacerbated the damage inflicted on the coastal zone by the tsunami.

  8. How effective were mangroves as a defence against the recent tsunami?

    OpenAIRE

    Dahdouh-Guebas, F.; Jayatissa, L.P.; Di Nitto, D.; Bosire, J.O.; Lo Seen, D.; Koedam, N.

    2005-01-01

    Whether or not mangroves function as buffers against tsunamis is the subject of in-depth research, the importance of which has been neglected or underestimated before the recent killer tsunami struck. Our preliminary post-tsunami surveys of Sri Lankan mangrove sites with different degrees of degradation indicate that human activity exacerbated the damage inflicted on the coastal zone by the tsunami.

  9. Tsunami Source Modeling of the 2015 Volcanic Tsunami Earthquake near Torishima, South of Japan

    Science.gov (United States)

    Sandanbata, O.; Watada, S.; Satake, K.; Fukao, Y.; Sugioka, H.; Ito, A.; Shiobara, H.

    2017-12-01

    An abnormal earthquake occurred at a submarine volcano named Smith Caldera, near Torishima Island on the Izu-Bonin arc, on May 2, 2015. The earthquake, which hereafter we call "the 2015 Torishima earthquake," has a CLVD-type focal mechanism with a moderate seismic magnitude (M5.7) but generated larger tsunami waves with an observed maximum height of 50 cm at Hachijo Island [JMA, 2015], so that the earthquake can be regarded as a "tsunami earthquake." In the region, similar tsunami earthquakes were observed in 1984, 1996 and 2006, but their physical mechanisms are still not well understood. Tsunami waves generated by the 2015 earthquake were recorded by an array of ocean bottom pressure (OBP) gauges, 100 km northeastern away from the epicenter. The waves initiated with a small downward signal of 0.1 cm and reached peak amplitude (1.5-2.0 cm) of leading upward signals followed by continuous oscillations [Fukao et al., 2016]. For modeling its tsunami source, or sea-surface displacement, we perform tsunami waveform simulations, and compare synthetic and observed waveforms at the OBP gauges. The linear Boussinesq equations are adapted with the tsunami simulation code, JAGURS [Baba et al., 2015]. We first assume a Gaussian-shaped sea-surface uplift of 1.0 m with a source size comparable to Smith Caldera, 6-7 km in diameter. By shifting source location around the caldera, we found the uplift is probably located within the caldera rim, as suggested by Sandanbata et al. [2016]. However, synthetic waves show no initial downward signal that was observed at the OBP gauges. Hence, we add a ring of subsidence surrounding the main uplift, and examine sizes and amplitudes of the main uplift and the subsidence ring. As a result, the model of a main uplift of around 1.0 m with a radius of 4 km surrounded by a ring of small subsidence shows good agreement of synthetic and observed waveforms. The results yield two implications for the deformation process that help us to understanding

  10. Dominance of hole-boring radiation pressure acceleration regime with thin ribbon of ionized solid hydrogen

    Science.gov (United States)

    Psikal, J.; Matys, M.

    2018-04-01

    Laser-driven proton acceleration from novel cryogenic hydrogen target of the thickness of tens of microns irradiated by multiPW laser pulse is investigated here for relevant laser parameters accessible in near future. It is demonstrated that the efficiency of proton acceleration from relatively thick hydrogen solid ribbon largely exceeds the acceleration efficiency for a thinner ionized plastic foil, which can be explained by enhanced hole boring (HB) driven by laser ponderomotive force in the case of light ions and lower target density. Three-dimensional particle-in-cell (PIC) simulations of laser pulse interaction with relatively thick hydrogen target show larger energies of protons accelerated in the target interior during the HB phase and reduced energies of protons accelerated from the rear side of the target by quasistatic electric field compared with the results obtained from two-dimensional PIC calculations. Linearly and circularly polarized multiPW laser pulses of duration exceeding 100 fs show similar performance in terms of proton acceleration from both the target interior as well as from the rear side of the target. When ultrashort pulse (∼30 fs) is assumed, the number of accelerated protons from the target interior is substantially reduced.

  11. Wear Analysis of Top Piston Ring to Reduce Top Ring Reversal Bore Wear

    Directory of Open Access Journals (Sweden)

    P. Ilanthirayan

    2017-12-01

    Full Text Available The piston rings are the most important part in engine which controls the lubricating oil consumption and blowby of the gases. The lubricating film of oil is provided to seal of gases towards crankcase and also to give smooth friction free translatory motion between rings and liner. Of the three rings present top ring is more crucial as it does the main work of restricting gases downwards the crankcase. Boundary lubrication is present at the Top dead centre (TDC and Bottom dead centre (BDC of the liner surface. In addition to this, top ring is exposed to high temperature gases which makes the oil present near the top ring to get evaporated and decreasing its viscosity, making metal-metal contact most of the time. Due to this at TDC, excess wear happens on the liner which is termed as Top ring reversal bore wear. The wear rate depends upon many parameters such as lubrication condition, viscosity index, contact type, normal forces acting on ring, geometry of ring face, surface roughness, material property. The present work explores the wear depth for different geometries of barrel ring using Finite Element model with the help of Archard wear law and the same is validated through experimentation. The study reveals that Asymmetric barrel rings have less contact pressure which in turn reduces the wear at Top dead centre.

  12. Hard rock tunnel boring machine penetration test as an indicator of chipping process efficiency

    Directory of Open Access Journals (Sweden)

    M.C. Villeneuve

    2017-08-01

    Full Text Available The transition from grinding to chipping can be observed in tunnel boring machine (TBM penetration test data by plotting the penetration rate (distance/revolution against the net cutter thrust (force per cutter over the full range of penetration rates in the test. Correlating penetration test data to the geological and geomechanical characteristics of rock masses through which a penetration test is conducted provides the ability to reveal the efficiency of the chipping process in response to changing geological conditions. Penetration test data can also be used to identify stress-induced tunnel face instability. This research shows that the strength of the rock is an important parameter for controlling how much net cutter thrust is required to transition from grinding to chipping. It also shows that the geological characteristics of a rock will determine how efficient chipping occurs once it has begun. In particular, geological characteristics that lead to efficient fracture propagation, such as fabric and mica contents, will lead to efficient chipping. These findings will enable a better correlation between TBM performance and geological conditions for use in TBM design, as a basis for contractual payments where penetration rate dominates the excavation cycle and in further academic investigations into the TBM excavation process.

  13. Probabilistic Tsunami Hazard Analysis of the Pacific Coast of Mexico: Case Study Based on the 1995 Colima Earthquake Tsunami

    Directory of Open Access Journals (Sweden)

    Nobuhito Mori

    2017-06-01

    Full Text Available This study develops a novel computational framework to carry out probabilistic tsunami hazard assessment for the Pacific coast of Mexico. The new approach enables the consideration of stochastic tsunami source scenarios having variable fault geometry and heterogeneous slip that are constrained by an extensive database of rupture models for historical earthquakes around the world. The assessment focuses upon the 1995 Jalisco–Colima Earthquake Tsunami from a retrospective viewpoint. Numerous source scenarios of large subduction earthquakes are generated to assess the sensitivity and variability of tsunami inundation characteristics of the target region. Analyses of nine slip models along the Mexican Pacific coast are performed, and statistical characteristics of slips (e.g., coherent structures of slip spectra are estimated. The source variability allows exploring a wide range of tsunami scenarios for a moment magnitude (Mw 8 subduction earthquake in the Mexican Pacific region to conduct thorough sensitivity analyses and to quantify the tsunami height variability. The numerical results indicate a strong sensitivity of maximum tsunami height to major slip locations in the source and indicate major uncertainty at the first peak of tsunami waves.

  14. Application of Seismic Array Processing to Tsunami Early Warning

    Science.gov (United States)

    An, C.; Meng, L.

    2015-12-01

    Tsunami wave predictions of the current tsunami warning systems rely on accurate earthquake source inversions of wave height data. They are of limited effectiveness for the near-field areas since the tsunami waves arrive before data are collected. Recent seismic and tsunami disasters have revealed the need for early warning to protect near-source coastal populations. In this work we developed the basis for a tsunami warning system based on rapid earthquake source characterisation through regional seismic array back-projections. We explored rapid earthquake source imaging using onshore dense seismic arrays located at regional distances on the order of 1000 km, which provides faster source images than conventional teleseismic back-projections. We implement this method in a simulated real-time environment, and analysed the 2011 Tohoku earthquake rupture with two clusters of Hi-net stations in Kyushu and Northern Hokkaido, and the 2014 Iquique event with the Earthscope USArray Transportable Array. The results yield reasonable estimates of rupture area, which is approximated by an ellipse and leads to the construction of simple slip models based on empirical scaling of the rupture area, seismic moment and average slip. The slip model is then used as the input of the tsunami simulation package COMCOT to predict the tsunami waves. In the example of the Tohoku event, the earthquake source model can be acquired within 6 minutes from the start of rupture and the simulation of tsunami waves takes less than 2 min, which could facilitate a timely tsunami warning. The predicted arrival time and wave amplitude reasonably fit observations. Based on this method, we propose to develop an automatic warning mechanism that provides rapid near-field warning for areas of high tsunami risk. The initial focus will be Japan, Pacific Northwest and Alaska, where dense seismic networks with the capability of real-time data telemetry and open data accessibility, such as the Japanese HiNet (>800

  15. The effect analysis of 1741 Oshima-Oshima tsunami in the West Coast of Japan to Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minkyu; Rhee, Hyunme; Choi, Inkil [Korea Atomic Energy Research institute, Daejeon (Korea, Republic of)

    2013-05-15

    It is very difficult to determine and assessment for tsunami hazard. For determining a tsunami risk for NPP site, a development of tsunami hazard is one of the most important. Through the tsunami hazard analysis, a tsunami return period can be determined. For the performing a tsunami hazard analysis, empirical method and numerical method should be needed. Kim et al, already developed tsunami hazard for east coast of Korea for the calculation of tsunami risk of nuclear power plant. In the case of tsunami hazard analysis, a development of tsunami catalog should be performed. In the previous research of Kim et al, the maximum wave height was assumed by the author's decision based on historical record in the annals of Chosun dynasty for evaluating the tsunami catalog. Therefore, in this study, a literature survey was performed for a quantitative measure of historical tsunami record transform to qualitative tsunami wave height for the evaluation of tsunami catalog. In this study, the 1741 tsunami was determined by using a literature review for the evaluation of tsunami hazard. The 1741 tsunami reveals a same tsunami between the historical records in Korea and Japan. The tsunami source of 1741 tsunami was not an earthquake and volcanic. Using the numerical analysis, the wave height of 1741 tsunami can be determined qualitatively.

  16. The effect analysis of 1741 Oshima-Oshima tsunami in the West Coast of Japan to Korea

    International Nuclear Information System (INIS)

    Kim, Minkyu; Rhee, Hyunme; Choi, Inkil

    2013-01-01

    It is very difficult to determine and assessment for tsunami hazard. For determining a tsunami risk for NPP site, a development of tsunami hazard is one of the most important. Through the tsunami hazard analysis, a tsunami return period can be determined. For the performing a tsunami hazard analysis, empirical method and numerical method should be needed. Kim et al, already developed tsunami hazard for east coast of Korea for the calculation of tsunami risk of nuclear power plant. In the case of tsunami hazard analysis, a development of tsunami catalog should be performed. In the previous research of Kim et al, the maximum wave height was assumed by the author's decision based on historical record in the annals of Chosun dynasty for evaluating the tsunami catalog. Therefore, in this study, a literature survey was performed for a quantitative measure of historical tsunami record transform to qualitative tsunami wave height for the evaluation of tsunami catalog. In this study, the 1741 tsunami was determined by using a literature review for the evaluation of tsunami hazard. The 1741 tsunami reveals a same tsunami between the historical records in Korea and Japan. The tsunami source of 1741 tsunami was not an earthquake and volcanic. Using the numerical analysis, the wave height of 1741 tsunami can be determined qualitatively

  17. Factors guiding tsunami surge at the Nagapattinam–Cuddalore shelf, Tamil Nadu, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.; Subrahmanyam, A.S.; Murty, G.P.S.; Sarma, K.V.L.N.S.; Subrahmanyam, V.; Rao, K.M.; Rani, P.S.; Anuradha, A.; Adilakshmi, B.; Devi, T.S.

    and tectonics of ECMI, including offshore river b a sins like the Cauvery, Krishna ? RESEARCH COMMUNICATIONS CURRENT SCIENCE, VOL. 90, NO. 11, 10 JUNE 2006 G o davari and Mahanadi were analysed from the data 10 ? 14 . Here, we make use of the data... arrowright 3 km; VE 6.6. RESEARCH COMMUNICATIONS CURRENT SCIENCE, VOL. 90, NO. 11, 10 JUNE 2006 1537 with a gentle slope, which might have accelerated the tsunami surge to flush through at a rapid force. Bathy m etry sections off...

  18. Landslide Tsunami Hazard in Madeira Island, NE Atlantic - Numerical Simulation of the 4 March 1930 Tsunami

    Science.gov (United States)

    Omira, R.; Baptista, M. A.; Quartau, R.; Ramalho, M. I.

    2017-12-01

    Madeira, the main Island of the Madeira Archipelago with an area of 728 km2, is a North East Atlantic volcanic Island highly susceptible to cliff instability. Historical records contain accounts of a number of mass-wasting events along the Island, namely in 1969, 1804, 1929 and 1930. Collapses of cliffs are major hazards in oceanic Islands as they involve relatively large volumes of material, generating fast running debris avalanches, and even cause destructive tsunamis when entering the sea. On March 4th, 1930, a sector of the Cape Girão cliff, located in the southern shore of Madeira Island, collapsed into the sea and generated an 8 m tsunami wave height. The landslide-induced tsunami propagated along Madeirás south coast and flooded the Vigário beach, 200-300 m of inundation extent, causing 20 casualties. In this study, we investigate the 1930 subaerial landslide-induced tsunami and its impact on the nearest coasts using numerical modelling. We first reconstruct the pre-event morphology of the area, and then simulate the initial movement of the sliding mass, the propagation of the tsunami wave and the inundation of the coast. We use a multi-layer numerical model, in which the lower layer represents the deformable slide, assumed to be a visco-plastic fluid, and bounded above by air, in the subaerial motion phase, and by seawater governed by shallow water equations. The results of the simulation are compared with the historical descriptions of the event to calibrate the numerical model and evaluate the coastal impact of a similar event in present-day coastline configuration of the Island. This work is supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz and by TROYO project.

  19. Web-based Tsunami Early Warning System with instant Tsunami Propagation Calculations in the GPU Cloud

    Science.gov (United States)

    Hammitzsch, M.; Spazier, J.; Reißland, S.

    2014-12-01

    Usually, tsunami early warning and mitigation systems (TWS or TEWS) are based on several software components deployed in a client-server based infrastructure. The vast majority of systems importantly include desktop-based clients with a graphical user interface (GUI) for the operators in early warning centers. However, in times of cloud computing and ubiquitous computing the use of concepts and paradigms, introduced by continuously evolving approaches in information and communications technology (ICT), have to be considered even for early warning systems (EWS). Based on the experiences and the knowledge gained in three research projects - 'German Indonesian Tsunami Early Warning System' (GITEWS), 'Distant Early Warning System' (DEWS), and 'Collaborative, Complex, and Critical Decision-Support in Evolving Crises' (TRIDEC) - new technologies are exploited to implement a cloud-based and web-based prototype to open up new prospects for EWS. This prototype, named 'TRIDEC Cloud', merges several complementary external and in-house cloud-based services into one platform for automated background computation with graphics processing units (GPU), for web-mapping of hazard specific geospatial data, and for serving relevant functionality to handle, share, and communicate threat specific information in a collaborative and distributed environment. The prototype in its current version addresses tsunami early warning and mitigation. The integration of GPU accelerated tsunami simulation computations have been an integral part of this prototype to foster early warning with on-demand tsunami predictions based on actual source parameters. However, the platform is meant for researchers around the world to make use of the cloud-based GPU computation to analyze other types of geohazards and natural hazards and react upon the computed situation picture with a web-based GUI in a web browser at remote sites. The current website is an early alpha version for demonstration purposes to give the

  20. Tsunami-hazard assessment based on subaquatic slope-failure susceptibility and tsunami-inundation modeling

    Science.gov (United States)

    Anselmetti, Flavio; Hilbe, Michael; Strupler, Michael; Baumgartner, Christoph; Bolz, Markus; Braschler, Urs; Eberli, Josef; Liniger, Markus; Scheiwiller, Peter; Strasser, Michael

    2015-04-01

    Due to their smaller dimensions and confined bathymetry, lakes act as model oceans that may be used as analogues for the much larger oceans and their margins. Numerous studies in the perialpine lakes of Central Europe have shown that their shores were repeatedly struck by several-meters-high tsunami waves, which were caused by subaquatic slides usually triggered by earthquake shaking. A profound knowledge of these hazards, their intensities and recurrence rates is needed in order to perform thorough tsunami-hazard assessment for the usually densely populated lake shores. In this context, we present results of a study combining i) basinwide slope-stability analysis of subaquatic sediment-charged slopes with ii) identification of scenarios for subaquatic slides triggered by seismic shaking, iii) forward modeling of resulting tsunami waves and iv) mapping of intensity of onshore inundation in populated areas. Sedimentological, stratigraphical and geotechnical knowledge of the potentially unstable sediment drape on the slopes is required for slope-stability assessment. Together with critical ground accelerations calculated from already failed slopes and paleoseismic recurrence rates, scenarios for subaquatic sediment slides are established. Following a previously used approach, the slides are modeled as a Bingham plastic on a 2D grid. The effect on the water column and wave propagation are simulated using the shallow-water equations (GeoClaw code), which also provide data for tsunami inundation, including flow depth, flow velocity and momentum as key variables. Combining these parameters leads to so called «intensity maps» for flooding that provide a link to the established hazard mapping framework, which so far does not include these phenomena. The current versions of these maps consider a 'worst case' deterministic earthquake scenario, however, similar maps can be calculated using probabilistic earthquake recurrence rates, which are expressed in variable amounts of

  1. Modeling of Tsunami Currents in Harbors

    Science.gov (United States)

    Lynett, P. J.

    2010-12-01

    Extreme events, such as large wind waves and tsunamis, are well recognized as a damaging hazard to port and harbor facilities. Wind wave events, particularly those with long period spectral components or infragravity wave generation, can excite resonance inside harbors leading to both large vertical motions and strong currents. Tsunamis can cause great damage as well. The geometric amplification of these very long waves can create large vertical motions in the interior of a harbor. Additionally, if the tsunami is composed of a train of long waves, which it often is, resonance can be easily excited. These long wave motions create strong currents near the node locations of resonant motions, and when interacting with harbor structures such as breakwaters, can create intense turbulent rotational structures, typical in the form of large eddies or gyres. These gyres have tremendous transport potential, and have been observed to break mooring lines, and even cause ships to be trapped inside the rotation, moving helplessly with the flow until collision, grounding, or dissipation of the eddy (e.g. Okal et al., 2006). This presentation will introduce the traditional theory used to predict wave impacts on harbors, discussing both how these models are practically useful and in what types of situations require a more accurate tool. State-of-the-art numerical models will be introduced, with a focus on recent developments in Boussinesq-type modeling. The Boussinesq equations model can account the dispersive, turbulent and rotational flow properties frequently observed in nature. Also they have the ability to coupling currents and waves and can predict nonlinear wave propagation over uneven bottom from deep (or intermediate) water area to shallow water area. However, during the derivation of a 2D-horizontal equation set, some 3D flow features, such those driven by as the dispersive stresses and the effects of the unresolved small scale 3D turbulence, are excluded. Consequently

  2. Tsunami Hazard Evaluation for the East Coast of Korea by using Empirical Data

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Choi, In Kil

    2010-01-01

    In this study, a tsunami hazard curve was determined for a probabilistic safety assessment (PSA) induced tsunami event in Nuclear Power Plant site. A Tsunami catalogue was developed by using historical tsunami record which happen before 1900 and instrumental tsunami record after 1900. For the evaluation of return period of tsunami run-up height, power-law, uppertruncated power law and exponential function were considered for the assessment of regression curves and compared with each result. Although the total tsunami records were only 9 times at the east coast of Korea during tsunami catalogue, there was no such research like this about tsunami hazard curve evaluation and this research lay a cornerstone for probabilistic tsunami hazard assessment (PTHA) in Korea

  3. Checking of seismic and tsunami hazard for coastal NPP of Chinese continent after Fukushima nuclear accident

    Institute of Scientific and Technical Information of China (English)

    Chang Xiangdong; Zhou Bengang; Zhao Lianda

    2013-01-01

    A checking on seismic and tsunami hazard for coastal nuclear power plant (NPP) of Chinese continent has been made after Japanese Fukushima nuclear accident caused by earthquake tsunami.The results of the checking are introduced briefly in this paper,including the evaluations of seismic and tsunami hazard in NPP siting period,checking results on seismic and tsunami hazard.Because Chinese coastal area belongs to the continental shelf and far from the boundary of plate collision,the tsunami hazard is not significant for coastal area of Chinese continent.However,the effect from tsunami still can' t be excluded absolutely since calculated result of Manila trench tsunami source although the tsunami wave is lower than water level from storm surge.The research about earthquake tsunami will continue in future.The tsunami warning system and emergency program of NPP will be established based on principle of defense in depth in China.

  4. Simulation of Single Reed Instruments Oscillations Based on Modal Decomposition of Bore and Reed Dynamics

    OpenAIRE

    Silva, Fabrice; Debut, Vincent; Kergomard, Jean; Vergez, Christophe; Deblevid, Aude; Guillemain, Philippe

    2007-01-01

    This paper investigates the sound production in a system made of a bore coupled with a reed valve. Extending previous work (Debut, 2004), the input impedance of the bore is projected on the modes of the air column. The acoustic pressure is therefore calculated as the sum of modal components. The airrrflow blown into the bore is modulated by reed motion, assuming the reed to be a single degree of freedom oscillator. Calculation of self-sustained oscillations controlled by time-varyi...

  5. Load-deflection characteristics of small bore insulated pipe clamps

    International Nuclear Information System (INIS)

    Severud, L.K.; Clark, G.L.

    1982-01-01

    High temperature LMFBR piping is subject to rapid temperature changes during transient events. Typically, this pipe is supported by specially designed insulated pipe clamps to prevent excessive thermal stress from developing during these transients. The special insulated clamps used on both FFTF and CRBR piping utilize a Belleville spring arrangement to compensate for pipe thermal expansion. Analysis indicates that this produces a non-linear, directionally sensitive clamp spring rate. Since these spring rates influence the seismic response of a supported piping system, it was deemed necessary to evaluate them further by test. This has been accomplished for the FFTF clamps. A more standard insulated pipe clamp, which does not incorporate Belleville springs to accommodate thermal expansion, was also tested. This type clamp is simple in design, and economically attractive. It may have wide application prospects for use in LMFBR small bore auxiliary piping operating at temperatures below 427 0 C. Load deflection tests were conducted on 2.54 CM and 7.62 CM diameter samples of these commercial clamps

  6. Tsunami early warning and decision support

    Directory of Open Access Journals (Sweden)

    T. Steinmetz

    2010-09-01

    Full Text Available An innovative newly developed modular and standards based Decision Support System (DSS is presented which forms part of the German Indonesian Tsunami Early Warning System (GITEWS. The GITEWS project stems from the effort to implement an effective and efficient Tsunami Early Warning and Mitigation System for the coast of Indonesia facing the Sunda Arc along the islands of Sumatra, Java and Bali. The geological setting along an active continental margin which is very close to densely populated areas is a particularly difficult one to cope with, because potential tsunamis' travel times are thus inherently short. National policies require an initial warning to be issued within the first five minutes after an earthquake has occurred. There is an urgent requirement for an end-to-end solution where the decision support takes the entire warning chain into account. The system of choice is based on pre-computed scenario simulations and rule-based decision support which is delivered to the decision maker through a sophisticated graphical user interface (GUI using information fusion and fast information aggregation to create situational awareness in the shortest time possible. The system also contains risk and vulnerability information which was designed with the far end of the warning chain in mind – it enables the decision maker to base his acceptance (or refusal of the supported decision also on regionally differentiated risk and vulnerability information (see Strunz et al., 2010. While the system strives to provide a warning as quickly as possible, it is not in its proper responsibility to send and disseminate the warning to the recipients. The DSS only broadcasts its messages to a dissemination system (and possibly any other dissemination system which is operated under the responsibility of BMKG – the meteorological, climatological and geophysical service of Indonesia – which also hosts the tsunami early warning center. The system is to be seen

  7. New approaches in geological studies of tsunami deposits

    Science.gov (United States)

    Szczucinski, Witold

    2017-04-01

    During the last dozen of years tsunamis have appeared to be the most disastrous natural process worldwide. The dramatic, large tsunamis on Boxing Day, 2004 in the Indian Ocean and on March 11, 2011 offshore Japan caused catastrophes listed as the worst in terms of the number of victims and the economic losses, respectively. In the aftermath, they have become a topic of high public and scientific interest. The record of past tsunamis, mainly in form of tsunami deposits, is often the only way to identify tsunami risk at a particular coast due to relatively low frequency of their occurrence. The identification of paleotsunami deposits is often difficult mainly because the tsunami deposits are represented by various sediment types, may be similar to storm deposits or altered by post-depositional processes. There is no simple universal diagnostic set of criteria that can be applied to interpret tsunami deposits with certainty. Thus, there is a need to develop new methods, which would enhance 'classical', mainly sedimentological and stratigraphic approach. The objective of the present contribution is to show recent progress and application of new approaches including geochemistry (Chagué-Goff et al. 2017) and paleogenetics (Szczuciński et al. 2016) in studies of geological impacts of recent tsunamis from various geographical regions, namely in monsoonal-tropical, temperate and polar zones. It is mainly based on own studies of coastal zones affected by 2004 Indian Ocean Tsunami in Thailand, 2011 Tohoku-oki tsunami and older paleotsunamis in Japan, catastrophic saltwater inundations at the coasts of Baltic Sea and 2000 landslide-generated tsunami in Vaigat Strait (west Greenland). The study was partly funded by Polish National Science Centre grant No. 2011/01/B/ST10/01553. Chagué-Goff C., Szczuciński W., Shinozaki T., 2017. Applications of geochemistry in tsunami research: A review. Earth-Science Reviews 165: 203-244. Szczuciński W., Pawłowska J., Lejzerowicz F

  8. Tsunamis triggered by the 12 January 2010 Earthquake in Haiti

    Science.gov (United States)

    Fritz, H. M.; Hillaire, J. V.; Molière, E.; Mohammed, F.; Wei, Y.

    2010-12-01

    On 12 January 2010 a magnitude Mw 7.0 earthquake occurred 25 km west-southwest of Haiti’s Capital of Port-au-Prince, which resulted in more than 230,000 fatalities. In addition tsunami waves triggered by the earthquake caused at least 3 fatalities at Petit Paradis. Unfortunately, the people of Haiti had neither ancestral knowledge nor educational awareness of tsunami hazards despite the 1946 Dominican Republic tsunami at Hispaniola’s northeast coast. In sharp contrast Sri Lankan UN-soldiers on duty at Jacmel self-evacuated given the memory of the 2004 Indian Ocean tsunami. The International Tsunami Survey Team (ITST) documented flow depths, runup heights, inundation distances, sediment deposition, damage patterns at various scales, and performance of the man-made infrastructure and impact on the natural environment. The 31 January to 7 February 2010 ITST covered the greater Bay of Port-au-Prince and more than 100 km of Hispaniola’s south coast between Pedernales, Dominican Republic and Jacmel, Haiti. The Hispaniola survey data includes more than 20 runup and flow depth measurements. The tsunami impacts peaked with maximum flow depths exceeding 3 m both at Petit Paradis inside the Bay of Grand Goâve located 45 km west-southwest of Port-au-Prince and at Jacmel on Haiti’s south coast. A significant variation in tsunami impact was observed on Hispaniola and tsunami runup of more than 1 m was still observed at Pedernales in the Dominican Republic. Jacmel, which is near the center of the south coast, represents an unfortunate example of a village and harbor that was located for protection from storm waves but is vulnerable to tsunami waves with runup doubling from the entrance to the head of the bay. Inundation and damage was limited to less than 100 m inland at both Jacmel and Petit Paradis. Differences in wave period were documented between the tsunami waves at Petit Paradis and Jacmel. The Petit Paradis tsunami is attributed to a coastal submarine landslide

  9. Comparison between the Coastal Impacts of Cyclone Nargis and the Indian Ocean Tsunami

    Science.gov (United States)

    Fritz, H. M.; Blount, C.

    2009-12-01

    On 26 December 2004 a great earthquake with a moment magnitude of 9.3 occurred off the North tip of Sumatra, Indonesia. The Indian Ocean tsunami claimed 230,000 lives making it the deadliest in recorded history. Less than 4 years later tropical cyclone Nargis (Cat. 4) made landfall in Myanmar’s Ayeyarwady delta on 2 May 2008 causing the worst natural disaster in Myanmar’s recorded history. Official death toll estimates exceed 138,000 fatalities making it the 7th deadliest cyclone ever recorded worldwide. The Bay of Bengal counts seven tropical cyclones with death tolls in excess of 100,000 striking India and Bangladesh in the past 425 years, which highlights the difference in return periods between extreme cyclones and tsunamis. Damage estimates at over $10 billion made Nargis the most damaging cyclone ever recorded in the Indian Ocean. Although the two natural disasters are completely different in their generation mechanisms they both share massive coastal inundations as primary damage and death cause. While the damage patterns exhibit similarities the forcing differs. The primary tsunami impact is dominated by the runup of a few main waves washing rapidly ashore and inducing high lateral forces. On the contrary the tropical cyclone storm surge damage is the result of numerous storm waves continuously hitting the flooded structures on the elevated storm tide level. While coastal vegetation such as mangroves may be effective at reducing superimposed storm waves they are limited at reducing storm surge. Unfortunately, mangroves have been significantly cut for charcoal and land use as rice paddies in Myanmar due to rapid population growth and economic reasons, thereby increasing coastal vulnerability and land loss due to erosion (Figure 1). The period of a storm surge is typically an order of magnitude longer than the period of a tsunami resulting in significantly larger inundation distances along coastal plains and river deltas. The storm surge of cyclone Nargis

  10. Development of a Probabilistic Tsunami Hazard Analysis Method and Application to an NPP in Korea

    International Nuclear Information System (INIS)

    Kim, M. K.; Choi, Ik

    2012-01-01

    A methodology of tsunami PSA was developed in this study. A tsunami PSA consists of tsunami hazard analysis, tsunami fragility analysis and system analysis. In the case of tsunami hazard analysis, evaluation of tsunami return period is a major task. For the evaluation of tsunami return period was evaluated with empirical method using historical tsunami record and tidal gauge record. For the performing a tsunami fragility analysis, procedure of tsunami fragility analysis was established and target equipment and structures for investigation of tsunami fragility assessment were selected. A sample fragility calculation was performed for the equipment in a Nuclear Power Plant. For the system analysis, accident sequence of tsunami event was developed according to the tsunami run-up and draw down, and tsunami induced core damage frequency (CDF) is determined. For the application to the real nuclear power plant, the Ulchin 56 NPP which is located on the east coast of Korean peninsula was selected. Through this study, whole tsunami PSA (Probabilistic Safety Assessment) working procedure was established and an example calculation was performed for one nuclear power plant in Korea

  11. Three Kanto Earthquakes Inferred from the Tsunami Deposits and the Relative Sea Level Change in the Miura Peninsula, Central Japan

    Science.gov (United States)

    Kim, H.; Shimazaki, K.; Chiba, T.; Ishibe, T.; Okamura, M.; Matsuoka, H.; Tsuji, Y.; Satake, K.

    2010-12-01

    The Kanto earthquake is a great interplate earthquake caused by subduction of the Philippine Sea Plate beneath the Japan Island along the Sagami Trough. The 1923 Kanto earthquake (M=7.9) and the 1703 Kanto earthquake (M~8.0) are two of the most devastating earthquake those struck Tokyo Metropolitan area, respectively. These earthquakes brought large (~5 m) tsunami to the coast area and uplifted the Miura peninsula by ~1.4 m. The tide gauge station, moreover, records the subsidence during the interseismic period before and after the 1923 earthquake. Present study clarifies the past Kanto earthquake prior to the 1703 earthquake based on the sedimentary analysis in the Koajiro bay of the southern Miura Peninsula. The continuous samples of inner bay fine sediments were taken by the boring survey using 3-m-long geoslicer. Three layers of coarse sediments, T1, T2, and T3 units from top toward bottom, are observed in the bay sediments at almost all the sites. These units are composed of mixture of materials such as shell fragments, rock clasts and gravel, and some of units have eroded the lower fine sediments, indicating the event deposits by the strong traction flow. The grain sizes of the bay sediments are grading upward and abruptly become larger after the deposition of the T1, T2 and T3 units. Very little diatom is observed in these units, but the total number of diatoms increase in the bay sediments. The ratio of the marine planktonic species against the benthic species gradually rises from the lower part to the upper part in the bay sediment. In the tidal flat sediment, the freshwater planktonic species appear in place of the marine planktonic diatom. The changes of grain size and diatom species make a presumption that the sea depth suddenly becomes shallow by the event and deeper during the interseismic period. The T1, T2 and T3 units, thus, are correlated with the tsunami deposits conveyed by the Kanto earthquake. The T1 and T2 units are inferred to be the tsunami

  12. Spatiotemporal Visualization of Tsunami Waves Using Kml on Google Earth

    Science.gov (United States)

    Mohammadi, H.; Delavar, M. R.; Sharifi, M. A.; Pirooz, M. D.

    2017-09-01

    Disaster risk is a function of hazard and vulnerability. Risk is defined as the expected losses, including lives, personal injuries, property damages, and economic disruptions, due to a particular hazard for a given area and time period. Risk assessment is one of the key elements of a natural disaster management strategy as it allows for better disaster mitigation and preparation. It provides input for informed decision making, and increases risk awareness among decision makers and other stakeholders. Virtual globes such as Google Earth can be used as a visualization tool. Proper spatiotemporal graphical representations of the concerned risk significantly reduces the amount of effort to visualize the impact of the risk and improves the efficiency of the decision-making process to mitigate the impact of the risk. The spatiotemporal visualization of tsunami waves for disaster management process is an attractive topic in geosciences to assist investigation of areas at tsunami risk. In this paper, a method for coupling virtual globes with tsunami wave arrival time models is presented. In this process we have shown 2D+Time of tsunami waves for propagation and inundation of tsunami waves, both coastal line deformation, and the flooded areas. In addition, the worst case scenario of tsunami on Chabahar port derived from tsunami modelling is also presented using KML on google earth.

  13. Tsunami risk assessments in Messina, Sicily – Italy

    Directory of Open Access Journals (Sweden)

    A. Grezio

    2012-01-01

    Full Text Available We present a first detailed tsunami risk assessment for the city of Messina where one of the most destructive tsunami inundations of the last centuries occurred in 1908. In the tsunami hazard evaluation, probabilities are calculated through a new general modular Bayesian tool for Probability Tsunami Hazard Assessment. The estimation of losses of persons and buildings takes into account data collected directly or supplied by: (i the Italian National Institute of Statistics that provides information on the population, on buildings and on many relevant social aspects; (ii the Italian National Territory Agency that provides updated economic values of the buildings on the basis of their typology (residential, commercial, industrial and location (streets; and (iii the Train and Port Authorities. For human beings, a factor of time exposition is introduced and calculated in terms of hours per day in different places (private and public and in terms of seasons, considering that some factors like the number of tourists can vary by one order of magnitude from January to August. Since the tsunami risk is a function of the run-up levels along the coast, a variable tsunami risk zone is defined as the area along the Messina coast where tsunami inundations may occur.

  14. Tsunami Research Status in IAEA after Fukushima Event

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Choi, In Kil

    2012-01-01

    On March 11 th , 2011, a tremendous earthquake and tsunami occurred on the east coast of Japan. This 9.0 magnitude earthquake was the fifth greatest earthquake ever experienced on the planet. The most remarkable problem was that the Fukishima NPP sites. After Japan earthquake, many international researches about tsunami and earthquake event were started or revised. Especially, the most remarkable point of the great earthquake in east coast of Japan was tsunami event. Before this earthquake, the Niigata earthquake occurred in 2007 and the Kashiwazaki Kariwa nuclear power plant had little damaged. The research about the safety of nuclear power plant against earthquake events was activated by 2007 Niigata earthquake. However, the researches about a tsunami event were very few and only tsunami simulation was only focused. After the Fukushima accident, the international society became very interested in tsunami event as a major external event. Therefore in this study, the tsunami research status in IAEA after Fukushima event and the role of Korea are introduced

  15. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  16. Historical tsunami database for France and its overseas territories

    Directory of Open Access Journals (Sweden)

    J. Lambert

    2011-04-01

    Full Text Available A search and analysis of a large number of historical documents has made it possible: (i to discover so-far unknown tsunamis that have hit the French coasts during the last centuries, and (ii conversely, to disprove the tsunami nature of several events referred to in recent catalogues. This information has been structured into a database and also made available as a website (tsunamis.f/" target="_blank">http://www.tsunamis.fr that is accessible in French, English and Spanish. So far 60 genuine ("true" tsunamis have been described (with their dates, causes, oceans/seas, places observed, number of waves, flood and ebb distances, run-up, and intensities and referenced against contemporary sources. Digitized documents are accessible online. In addition, so as to avoid confusion, tsunamis revealed as "false" or "doubtful" have been compiled into a second catalogue.

    Both the database and the website are updated annually corresponding to the state of knowledge, so as to take into account newly discovered historical references and the occurrence of new tsunamis on the coasts of France and many of its overseas territories: Guadeloupe, Martinique, French Guiana, New Caledonia, Réunion, and Mayotte.

  17. 2004 INDIAN OCEAN TSUNAMI ON THE MALDIVES ISLANDS: INITIAL OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    Barbara H. Keating

    2005-01-01

    Full Text Available Post-tsunami field surveys of the Maldives Islands where carried out to document the effects of the tsunami inundation. The study area was situated in the islands of South Male Atoll that were some of the most heavily damaged islands of the Maldive Islands. The tsunami damaged the natural environment, vegetation, man-made structures, and residents. The maximum tsunami wave height was 3-4 m. This level of inundation exceeded the height of most residents. The wave height was greatest on the eastern rim of the South Male Atoll (closest to the tsunami source and these islands were completely flooded. The islands within the interior of the atoll saw the lowest wave heights, and these were only marginally flooded.Surveys of flood lines left on the exterior and interior of structures were measured but proved to be substantially less than that reported by survivors. It appears that the highest inundation was not preserved as flood lines. We suggest that the turbulence associated with the tsunami inundation erased the highest lines or that they did not form due to an absence of debris and organic compounds that acted as adhesion during the initial flooding.Significant erosion was documented. Deposition took place in the form of sand sheets while only desultory deposition of coral clasts in marginal areas was found. Seasonal erosion, and storms are likely to remove most or all of the traces of the tsunami within these islands.

  18. Modeling the mitigation effect of coastal forests on tsunami

    Science.gov (United States)

    Kh'ng, Xin Yi; Teh, Su Yean; Koh, Hock Lye

    2017-08-01

    As we have learned from the 26 Dec 2004 mega Andaman tsunami that killed 250, 000 lives worldwide, tsunami is a devastating natural disaster that can cause severe impacts including immense loss of human lives and extensive destruction of properties. The wave energy can be dissipated by the presence of coastal mangrove forests, which provide some degree of protection against tsunami waves. On the other hand, costly artificial structures such as reinforced walls can substantially diminish the aesthetic value and may cause environmental problems. To quantify the effectiveness of coastal forests in mitigating tsunami waves, an in-house 2-D model TUNA-RP is developed and used to quantify the reduction in wave heights and velocities due to the presence of coastal forests. The degree of reduction varies significantly depending on forest flow-resistant properties such as vegetation characteristics, forest density and forest width. The ability of coastal forest in reducing tsunami wave heights along the west coast of Penang Island is quantified by means of model simulations. Comparison between measured tsunami wave heights for the 2004 Andaman tsunami and 2-D TUNA-RP model simulated values demonstrated good agreement.

  19. Development of tsunami early warning systems and future challenges

    Directory of Open Access Journals (Sweden)

    J. Wächter

    2012-06-01

    Full Text Available Fostered by and embedded in the general development of information and communications technology (ICT, the evolution of tsunami warning systems (TWS shows a significant development from seismic-centred to multi-sensor system architectures using additional sensors (e.g. tide gauges and buoys for the detection of tsunami waves in the ocean.

    Currently, the beginning implementation of regional tsunami warning infrastructures indicates a new phase in the development of TWS. A new generation of TWS should not only be able to realise multi-sensor monitoring for tsunami detection. Moreover, these systems have to be capable to form a collaborative communication infrastructure of distributed tsunami warning systems in order to implement regional, ocean-wide monitoring and warning strategies.

    In the context of the development of the German Indonesian Tsunami Early Warning System (GITEWS and in the EU-funded FP6 project Distant Early Warning System (DEWS, a service platform for both sensor integration and warning dissemination has been newly developed and demonstrated. In particular, standards of the Open Geospatial Consortium (OGC and the Organization for the Advancement of Structured Information Standards (OASIS have been successfully incorporated.

    In the FP7 project Collaborative, Complex and Critical Decision-Support in Evolving Crises (TRIDEC, new developments in ICT (e.g. complex event processing (CEP and event-driven architecture (EDA are used to extend the existing platform to realise a component-based technology framework for building distributed tsunami warning systems.

  20. Safety evaluation of nuclear power plant against the virtual tsunami

    International Nuclear Information System (INIS)

    Chin, S. B.; Imamura, Fumihiko

    2004-01-01

    The main scope of this study is the numerical analysis of virtual tsunami event near the Ulchin Nuclear Power Plants. In the numerical analysis, the maximum run-up height and draw-down are estimated at the Ulchin Nuclear Power Plants. The computer program developed in this study describes the propagation and associated run-up process of tsunamis by solving linear and nonlinear shallow-water equations with finite difference methods. It can be used to check the safety of a nuclear power plant against tsunami attacks. The program can also be used to calculate run-up height of wave and provide proper design criteria for coastal facilities and structures. A maximum inundation zone along the coastline can be developed by using the moving boundary condition. As a result, it is predicted that the Ulchin Nuclear Power Plants might be safe against the virtual tsunami event. Although the Ulchin Nuclear Power Plants are safe against the virtual tsunami event, the occurrence of a huge tsunami in the seismic gap should be investigated in detail. Furthermore, the possibility of nearshore tsunamis around the Korean Peninsula should also be studied and monitored continuously

  1. Effect of Variable Manning Coefficients on Tsunami Inundation

    Science.gov (United States)

    Barberopoulou, A.; Rees, D.

    2017-12-01

    Numerical simulations are commonly used to help estimate tsunami hazard, improve evacuation plans, issue or cancel tsunami warnings, inform forecasting and hazard assessments and have therefore become an integral part of hazard mitigation among the tsunami community. Many numerical codes exist for simulating tsunamis, most of which have undergone extensive benchmarking and testing. Tsunami hazard or risk assessments employ these codes following a deterministic or probabilistic approach. Depending on the scope these studies may or may not consider uncertainty in the numerical simulations, the effects of tides, variable friction or estimate financial losses, none of which are necessarily trivial. Distributed manning coefficients, the roughness coefficients used in hydraulic modeling, are commonly used in simulating both riverine and pluvial flood events however, their use in tsunami hazard assessments is primarily part of limited scope studies and for the most part, not a standard practice. For this work, we investigate variations in manning coefficients and their effects on tsunami inundation extent, pattern and financial loss. To assign manning coefficients we use land use maps that come from the New Zealand Land Cover Database (LCDB) and more recent data from the Ministry of the Environment. More than 40 classes covering different types of land use are combined into major classes such as cropland, grassland and wetland representing common types of land use in New Zealand, each of which is assigned a unique manning coefficient. By utilizing different data sources for variable manning coefficients, we examine the impact of data sources and classification methodology on the accuracy of model outputs.

  2. Improving the coastal record of tsunamis in the ESI-07 scale: Tsunami Environmental Effects Scale (TEE-16 scale)

    Energy Technology Data Exchange (ETDEWEB)

    Lario, J.; Bardaji, T.; Silva, P.G.; Zazo, C.; Goy, J.L.

    2016-07-01

    This paper discusses possibilities to improve the Environmental Seismic Intensity Scale (ESI-07 scale), a scale based on the effects of earthquakes in the environment. This scale comprises twelve intensity degrees and considers primary and secondary effects, one of them the occurrence of tsunamis. Terminology and physical tsunami parameters corresponding to different intensity levels are often misleading and confusing. The present work proposes: i) a revised and updated catalogue of environmental and geological effects of tsunamis, gathering all the available information on Tsunami Environmental Effects (TEEs) produced by recent earthquake-tsunamis; ii) a specific intensity scale (TEE-16) for the effects of tsunamis in the natural environment at coastal areas. The proposed scale could be used in future tsunami events and, in historic and paleo-tsunami studies. The new TEE- 16 scale incorporates the size specific parameters already considered in the ESI-07 scale, such as wave height, run-up and inland extension of inundation, and a comprehensive and more accurate terminology that covers all the different intensity levels identifiable in the geological record (intensities VI-XII). The TEE-16 scale integrates the description and quantification of the potential sedimentary and erosional features (beach scours, transported boulders and classical tsunamites) derived from different tsunami events at diverse coastal environments (e.g. beaches, estuaries, rocky cliffs,). This new approach represents an innovative advance in relation to the tsunami descriptions provided by the ESI-07 scale, and allows the full application of the proposed scale in paleoseismological studies. The analysis of the revised and updated tsunami environmental damage suggests that local intensities recorded in coastal areas do not correlate well with the TEE-16 intensity (normally higher), but shows a good correlation with the earthquake magnitude (Mw). Tsunamis generated by earthquakes can then be

  3. The origin of the 1883 Krakatau tsunamis

    Science.gov (United States)

    Francis, P. W.

    1985-01-01

    Three hypotheses proposed to explain possible causes of the Aug. 27, 1883 Krakatau tsunamis were analyzed: (1) large-scale collapse of the northern part of Krakatau island (Verbeek, 1884), (2) submarine explosion (Yokoyama, 1981), and (3) emplacement of pyroclastic flows (Latter, 1981). A study of timings of the air and sea waves between Krakatau and Batavia, showing that no precise sea wave travel times can be obtained, and a study of the tide and pressure gage records made on August 27, indicating that the air and sea waves were propagated from the focus of eruption on Krakatau island, suggest that neither hypothesis 2 or 3 are sufficiently substantiated. In addition, the event that caused the major air and sea wave was preceded (by 40 min) by a similar, smaller event which generated the second largest tsunami and an air wave. It is concluded that the most likely mechanism for the eruption is a Mt. St. Helens scenario, close to the hypothesis of Verbeek, in which collapse of part of the original volcanic edifice propagated a major explosion.

  4. Challenges of Tsunami Disaster and Extreme climate Events Along Coastal Region in Asia-Pacific

    Science.gov (United States)

    Chaudhari, S.

    2017-12-01

    South Asia is more vulnerable to Geo disasters and impacts of climate changes in recent years. On 26 December 2004 massive waves triggered by an earthquake surged into coastal communities in Asia and East Africa with devastating force. Hitting Indonesia, Sri Lanka , Thailand and India hardest, the deadly waves swept more than 200 000 people to their deaths. Also in an another extreme climate change phenomenon during 2005 - 2006,causing heavy rains and flooding situation in the South Asia - Europe and Pacific region ,more than 100 million population in these regions are witnessing the social- economical and ecological risks and impacts due to climate changes and Geohazards. For mitigating geo-disasters, marine hazards and rehabilitation during post tsunami period, scientific knowledge is needed, requiring experienced research communities who can train the local population during tsunami rehabilitation. Several civil society institutions jointly started the initiatives on the problem identifications in management of risks in geo-disasters, tsunami rehabilitation ,Vulnerability and risk assessments for Geohazards etc., to investigate problems related to social-economic and ecological risks and management issues resulting from the December tsunami and Geo- disaster, to aid mitigation planning in affected areas and to educate scientists and local populations to form a basis for sustainable and economic solutions. The poster aims to assess the potential risk and hazard , technical issues, problems and damage arising from Tsunami in the Asia-pacific region in coastal geology, coastal ecosystems and coastal environmental systems . This poster deals with the status and issues of interactions between Human and Ocean Systems, Geo-risks, marine risks along coastal region of Asia- Pacific and also human influence on the earth system . The poster presentation focuses on capacity building of the local population, scientists and researchers for integration of human and ocean

  5. Tsunami Induced Resonance in Enclosed Basins; Case Study of Haydarpasa Port In Istanbul

    Science.gov (United States)

    Kian, Rozita; Cevdet Yalciner, Ahmet; Zaytsev, Andrey; Aytore, Betul

    2015-04-01

    Coincidence of the frequency of forcing mechanisms and the natural frequency of free oscillations in the harbors or basins leads to formation of resonance oscillations and additional amplifications in the basins. This phenomenon becomes much more critical when it is caused by a tsunamis. In the cases of tsunami induced basin resonances, the wave amplifications may occur with more and unexpected damages. The harbor resilience against the marine hazards is important for the performance and success of recovery operations. Classifying the tsunami effects on the ports and harbors and on their functions is the main concern of this study. There are two types of impacts; direct impacts including structural damages due to strong currents, high water elevation and indirect ones because of basin resonance expose to seiche oscillations. The sea of Marmara has experienced numerous (more than 30) tsunamis in history where a highly populated metropolitan city Istanbul is located at North coast of Maramara sea. There are numerous ports and harbors located at Istanbul Coast. Haydarpasa port (41.0033 N, 29.0139 E) in Istanbul coast near Marmara sea, as a case study is selected to test its resilience under tsunami attack by numerical experiments. There are two breakwaters in Haydarpasa port with total length of three kilometers and the shape of basins are regular. Applying numerical model (NAMI DANCE) which solves nonlinear form of shallow water equations, the resonance oscillations in Haydarpasa Port is investigated by following the method given in Yalciner and Pelinovsky, (2006). In the applications, high resolution bathymetry and topography are used and an initial impulse is inputted to the study domain in the simulations. The computed time histories of water surface fluctuations at different locations inside the harbor are analyzed by using Fast Fourier Transform technique. The frequencies where the peaks of spectrum curves indicates the amplification of waves in the respective

  6. THE EFFECT OF WELL-BORE REVERSE FLOW OF FLUID ON ...

    African Journals Online (AJOL)

    ES Obe

    1980-03-01

    Mar 1, 1980 ... ABSTRACT. Well-bore storage may dominate the bottom-hole pressure profile of ... Type- curve matching is however only accurate when the storage factor .... numerical integration technique ... existence of a measure of well-.

  7. Tsunami Arrival Detection with High Frequency (HF Radar

    Directory of Open Access Journals (Sweden)

    Donald Barrick

    2012-05-01

    Full Text Available Quantitative real-time observations of a tsunami have been limited to deep-water, pressure-sensor observations of changes in the sea surface elevation and observations of sea level fluctuations at the coast, which are essentially point measurements. Constrained by these data, models have been used for predictions and warning of the arrival of a tsunami, but to date no system exists for local detection of an actual incoming wave with a significant warning capability. Networks of coastal high frequency (HF-radars are now routinely observing surface currents in many countries. We report here on an empirical method for the detection of the initial arrival of a tsunami, and demonstrate its use with results from data measured by fourteen HF radar sites in Japan and USA following the magnitude 9.0 earthquake off Sendai, Japan, on 11 March 2011. The distance offshore at which the tsunami can be detected, and hence the warning time provided, depends on the bathymetry: the wider the shallow continental shelf, the greater this time. We compare arrival times at the radars with those measured by neighboring tide gauges. Arrival times measured by the radars preceded those at neighboring tide gauges by an average of 19 min (Japan and 15 min (USA The initial water-height increase due to the tsunami as measured by the tide gauges was moderate, ranging from 0.3 to 2 m. Thus it appears possible to detect even moderate tsunamis using this method. Larger tsunamis could obviously be detected further from the coast. We find that tsunami arrival within the radar coverage area can be announced 8 min (i.e., twice the radar spectral time resolution after its first appearance. This can provide advance warning of the tsunami approach to the coastline locations.

  8. Sobrevivendo a un tsunami: lecciones de Chile, Hawai y Japon

    Science.gov (United States)

    Compilado por Atwater, Brian F.; Cisternas V., Marco; Bourgeois, Joanne; Dudley, Walter C.; Hendley, James W.; Stauffer, Peter H.

    1999-01-01

    Este folleto contiene historias veridicas que ilustran como sobrevivir, y como no sobrevivir, a un tsunami. Esta publicacion esta dirigida a las personas que viven, trabajan o, simplemente, se divierten a lo largo de las costas que pueden ser afectadas por un tsunami. Tales costas rodean la mayor parte del Oceano Pacifico pero tambien incluyen algunas areas costeras de los Oceanos Atlantico e Indico. Aunque mucha gente llama a los tsunamis 'olas de marea', estos no estan relacionados a las mareas, sino son una serie de olas, o 'tren de olas', generalmente causadas por cambios en el nivel del fondo marino durante los terremotos. Los tsunamis tambien pueden ser generados por la erupcion de volcanes costeros, islas volconicas, deslizamientos submarinos e impactos de grandes meteoritos en el mar. Como sucedio en Sumatra en el 2004, los tsunamis pueden alcanzar alturas de 15 metros, no tan solo en la costa sino tambien kilometros tierra adentro. Los relatos presentados en este folleto fueron seleccionados de entrevistas realizadas a personas que sobrevivieron al tsunami del Oceano Pacifico de 1960. Muchas de estas personas, incluyendo a la enfermera de la foto, se enfrento a las olas generadas a poca distancia, en la costa chilena. En cambio, otros debieron hacer frente al tsunami muchas horas despues, en Hawai y Japon. La mayoria de las entrevistas fueron realizadas a fines de los anos ochenta y en los noventa. Las historias ofrecen una mezcla de lecciones de supervivencia a un tsunami. En algunos casos se presentan las acciones que confiablemente salvaron vidas: poner atencion a los avisos de la naturaleza, abandonar los bienes, dirigirse rapidamente a un sector alto y permanecer alli hasta que el tsunami realmente haya terminado. Otras historias describen como se encontro refugio al subir a construcciones y arboles o flotar sobre desechos, tacticas que tuvieron diferentes resultados y que pueden ser recomendadas solo como actos desesperados de personas atrapadas en

  9. Assessment of Nearshore Hazard due to Tsunami-Induced Currents

    Science.gov (United States)

    Lynett, P. J.; Ayca, A.; Borrero, J. C.; Eskijian, M.; Miller, K.; Wilson, R. I.

    2014-12-01

    The California Tsunami Program in cooperation with NOAA and FEMA has begun implementing a plan to increase tsunami hazard preparedness and mitigation in maritime communities (both ships and harbor infrastructure) through the development of in-harbor hazard maps, offshore safety zones for boater evacuation, and associated guidance for harbors and marinas before, during and following tsunamis. The hope is that the maritime guidance and associated education program will help save lives and reduce exposure of damage to boats and harbor infrastructure. Findings will be used to develop maps, guidance documents, and consistent policy recommendations for emergency managers and port authorities and provide information critical to real-time decisions required when responding to tsunami alert notifications. The initial goals of the study are to (1) evaluate the effectiveness and sensitivity of existing numerical models for assessing maritime tsunami hazards, (2) find a relationship between current speeds and expected damage levels, (3) evaluate California ports and harbors in terms of tsunami induced hazards by identifying regions that are prone to higher current speeds and damage and to identify regions of relatively lower impact that may be used for evacuation of maritime assets, and (4) determine 'safe depths' for evacuation of vessels from ports and harbors during a tsunami event. We will present details of a new initiative to evaluate the future likelihood of failure for different structural components of a harbor, leading to the identification of high priority areas for mitigation. This presentation will focus on the results from California ports and harbors across the State, and will include feedback we have received from discussions with local harbor masters and port authorities. To help promote accurate and consistent products, the authors are also working through the National Tsunami Hazard Mitigation Program to organize a tsunami current model benchmark workshop.

  10. Solid-to-hybrid transitioning armature railgun with non-conforming-to-prejudice bore profile

    Science.gov (United States)

    Solberg, Jerome Michael

    2012-12-04

    An improved railgun, railgun barrel, railgun projectile, and railgun system for accelerating a solid-to-hybrid transitioning armature projectile using a barrel having a bore that does not conform to a cross-sectional profile of the projectile, to contact and guide the projectile only by the rails in a low pressure bore volume so as to minimize damage, failure, and/or underperformance caused by plasma armatures, insulator ablation, and/or restrikes.

  11. Seismic response and damping tests of small bore LMFBR piping and supports

    International Nuclear Information System (INIS)

    Barta, D.A.; Anderson, M.J.; Severud, L.K.; Lindquist, M.R.

    1984-01-01

    Seismic testing and analysis of a prototypical Liquid Metal Fast Breeder Reactor (LMFBR) small bore piping system is described. Measured responses to simulated seismic excitations are compared with analytical predictions based on NRC Regulatory Guide 1.61 and measured system damping values. The test specimen was representative of a typical LMFBR insulated small bore piping system, and it was supported from a rigid test frame by prototypic dead weight supports, mechanical snubbers and pipe clamps

  12. ASTARTE: Assessment Strategy and Risk Reduction for Tsunamis in Europe

    Science.gov (United States)

    Baptista, M. A.; Yalciner, A. C.; Canals, M.

    2014-12-01

    Tsunamis are low frequency but high impact natural disasters. In 2004, the Boxing Day tsunami killed hundreds of thousands of people from many nations along the coastlines of the Indian Ocean. Tsunami run-up exceeded 35 m. Seven years later, and in spite of some of the best warning technologies and levels of preparedness in the world, the Tohoku-Oki tsunami in Japan dramatically showed the limitations of scientific knowledge on tsunami sources, coastal impacts and mitigation measures. The experience from Japan raised serious questions on how to improve the resilience of coastal communities, to upgrade the performance of coastal defenses, to adopt a better risk management, and also on the strategies and priorities for the reconstruction of damaged coastal areas. Societal resilience requires the reinforcement of capabilities to manage and reduce risk at national and local scales.ASTARTE (Assessment STrategy And Risk for Tsunami in Europe), a 36-month FP7 project, aims to develop a comprehensive strategy to mitigate tsunami impact in this region. To achieve this goal, an interdisciplinary consortium has been assembled. It includes all CTWPs of NEAM and expert institutions across Europe and worldwide. ASTARTE will improve i) basic knowledge of tsunami generation and recurrence going beyond simple catalogues, with novel empirical data and new statistical analyses for assessing long-term recurrence and hazards of large events in sensitive areas of NEAM, ii) numerical techniques for tsunami simulation, with focus on real-time codes and novel statistical emulation approaches, and iii) methods for assessment of hazard, vulnerability, and risk. ASTARTE will also provide i) guidelines for tsunami Eurocodes, ii) better tools for forecast and warning for CTWPs and NTWCs, and iii) guidelines for decision makers to increase sustainability and resilience of coastal communities. In summary, ASTARTE will develop basic scientific and technical elements allowing for a significant

  13. A review of tsunami simulation activities for NPPs safety

    International Nuclear Information System (INIS)

    Sharma, Pavan K.

    2011-01-01

    The tsunami generated on December 26, 2004 due to Sumatra earthquake of magnitude 9.3 resulted in inundation at the various coastal sites of India. The site selection and design of Indian nuclear power plants demand the evaluation of run up and the structural barriers for the coastal plants: Besides it is also desirable to evaluate the early warning system for tsunamigenic earthquakes. The tsunamis originate from submarine faults, underwater volcanic activities, sub-aerial landslides impinging on the sea and submarine landslides. In case of a submarine earthquake-induced tsunami the wave is generated in the fluid domain due to displacement of the seabed. There are three phases of tsunami: generation, propagation, and run-up. Reactor Safety Division (RSD) of Bhabha Atomic Research Centre (BARC), Trombay has initiated computational simulation for all the three phases of tsunami source generation, its propagation and finally run up evaluation for the protection of public life, property and various industrial infrastructures located on the coastal regions of India. These studies could be effectively utilized for design and implementation of early warning system for coastal region of the country apart from catering to the needs of Indian nuclear installations. This paper presents some results of tsunami waves based on finite difference numerical approaches with shallow water wave theory. The present paper evaluate the results of various simulation i.e. Single fault Sumatra model, four and five fault Sumatra Model, Nias insignificant tsunami and also some parametric studies results for tsunami waring system scenario generation. A study is carried for the tsunami due to Sumatra earthquake in 2004 with TUNAMI-N2 software. Bathymetry data available from the National Geophysical Data Center was used for this study. The single fault and detailed four and five fault data were used to calculate sea surface deformations which were subsequently used as initial conditions for

  14. Techniques for Interventional MRI Guidance in Closed-Bore Systems.

    Science.gov (United States)

    Busse, Harald; Kahn, Thomas; Moche, Michael

    2018-02-01

    Efficient image guidance is the basis for minimally invasive interventions. In comparison with X-ray, computed tomography (CT), or ultrasound imaging, magnetic resonance imaging (MRI) provides the best soft tissue contrast without ionizing radiation and is therefore predestined for procedural control. But MRI is also characterized by spatial constraints, electromagnetic interactions, long imaging times, and resulting workflow issues. Although many technical requirements have been met over the years-most notably magnetic resonance (MR) compatibility of tools, interventional pulse sequences, and powerful processing hardware and software-there is still a large variety of stand-alone devices and systems for specific procedures only.Stereotactic guidance with the table outside the magnet is common and relies on proper registration of the guiding grids or manipulators to the MR images. Instrument tracking, often by optical sensing, can be added to provide the physicians with proper eye-hand coordination during their navigated approach. Only in very short wide-bore systems, needles can be advanced at the extended arm under near real-time imaging. In standard magnets, control and workflow may be improved by remote operation using robotic or manual driving elements.This work highlights a number of devices and techniques for different interventional settings with a focus on percutaneous, interstitial procedures in different organ regions. The goal is to identify technical and procedural elements that might be relevant for interventional guidance in a broader context, independent of the clinical application given here. Key challenges remain the seamless integration into the interventional workflow, safe clinical translation, and proper cost effectiveness.

  15. Method to Determine Appropriate Source Models of Large Earthquakes Including Tsunami Earthquakes for Tsunami Early Warning in Central America

    Science.gov (United States)

    Tanioka, Yuichiro; Miranda, Greyving Jose Arguello; Gusman, Aditya Riadi; Fujii, Yushiro

    2017-08-01

    Large earthquakes, such as the Mw 7.7 1992 Nicaragua earthquake, have occurred off the Pacific coasts of El Salvador and Nicaragua in Central America and have generated distractive tsunamis along these coasts. It is necessary to determine appropriate fault models before large tsunamis hit the coast. In this study, first, fault parameters were estimated from the W-phase inversion, and then an appropriate fault model was determined from the fault parameters and scaling relationships with a depth dependent rigidity. The method was tested for four large earthquakes, the 1992 Nicaragua tsunami earthquake (Mw7.7), the 2001 El Salvador earthquake (Mw7.7), the 2004 El Astillero earthquake (Mw7.0), and the 2012 El Salvador-Nicaragua earthquake (Mw7.3), which occurred off El Salvador and Nicaragua in Central America. The tsunami numerical simulations were carried out from the determined fault models. We found that the observed tsunami heights, run-up heights, and inundation areas were reasonably well explained by the computed ones. Therefore, our method for tsunami early warning purpose should work to estimate a fault model which reproduces tsunami heights near the coast of El Salvador and Nicaragua due to large earthquakes in the subduction zone.

  16. Quantifying human response capabilities towards tsunami threats at community level

    Science.gov (United States)

    Post, J.; Mück, M.; Zosseder, K.; Wegscheider, S.; Taubenböck, H.; Strunz, G.; Muhari, A.; Anwar, H. Z.; Birkmann, J.; Gebert, N.

    2009-04-01

    Decision makers at the community level need detailed information on tsunami risks in their area. Knowledge on potential hazard impact, exposed elements such as people, critical facilities and lifelines, people's coping capacity and recovery potential are crucial to plan precautionary measures for adaptation and to mitigate potential impacts of tsunamis on society and the environment. A crucial point within a people-centred tsunami risk assessment is to quantify the human response capabilities towards tsunami threats. Based on this quantification and spatial representation in maps tsunami affected and safe areas, difficult-to-evacuate areas, evacuation target points and evacuation routes can be assigned and used as an important contribution to e.g. community level evacuation planning. Major component in the quantification of human response capabilities towards tsunami impacts is the factor time. The human response capabilities depend on the estimated time of arrival (ETA) of a tsunami, the time until technical or natural warning signs (ToNW) can be received, the reaction time (RT) of the population (human understanding of a tsunami warning and the decision to take appropriate action), the evacuation time (ET, time people need to reach a safe area) and the actual available response time (RsT = ETA - ToNW - RT). If RsT is larger than ET, people in the respective areas are able to reach a safe area and rescue themselves. Critical areas possess RsT values equal or even smaller ET and hence people whin these areas will be directly affected by a tsunami. Quantifying the factor time is challenging and an attempt to this is presented here. The ETA can be derived by analyzing pre-computed tsunami scenarios for a respective area. For ToNW we assume that the early warning center is able to fulfil the Indonesian presidential decree to issue a warning within 5 minutes. RT is difficult as here human intrinsic factors as educational level, believe, tsunami knowledge and experience

  17. CARIBE WAVE/LANTEX Caribbean and Western Atlantic Tsunami Exercises

    Science.gov (United States)

    von Hillebrandt-Andrade, C.; Whitmore, P.; Aliaga, B.; Huerfano Moreno, V.

    2013-12-01

    Over 75 tsunamis have been documented in the Caribbean and Adjacent Regions over the past 500 years. While most have been generated by local earthquakes, distant generated tsunamis can also affect the region. For example, waves from the 1755 Lisbon earthquake and tsunami were observed in Cuba, Dominican Republic, British Virgin Islands, as well as Antigua, Martinique, Guadalupe and Barbados in the Lesser Antilles. Since 1500, at least 4484 people are reported to have perished in these killer waves. Although the tsunami generated by the 2010 Haiti earthquake claimed only a few lives, in the 1530 El Pilar, Venezuela; 1602 Port Royale, Jamaica; 1918 Puerto Rico; and 1946 Samaná, Dominican Republic tsunamis the death tolls ranged to over a thousand. Since then, there has been an explosive increase in residents, visitors, infrastructure, and economic activity along the coastlines, increasing the potential for human and economic loss. It has been estimated that on any day, upwards of more than 500,000 people could be in harm's way just along the beaches, with hundreds of thousands more working and living in the tsunamis hazard zones. Given the relative infrequency of tsunamis, exercises are a valuable tool to test communications, evaluate preparedness and raise awareness. Exercises in the Caribbean are conducted under the framework of the UNESCO IOC Intergovernmental Coordination Group for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (CARIBE EWS) and the US National Tsunami Hazard Mitigation Program. On March 23, 2011, 34 countries and territories participated in the first CARIBE WAVE/LANTEX regional tsunami exercise, while in the second exercise on March 20, 2013 a total of 45 countries and territories participated. 481 organizations (almost 200 more than in 2011) also registered to receive the bulletins issued by the Pacific Tsunami Warning Center (PTWC), West Coast and Alaska Tsunami Warning Center and/or the Puerto Rico

  18. Tsunami run-up and inundation along the coast of Sabah and Sarawak, Malaysia due to a potential Brunei submarine mass failure.

    Science.gov (United States)

    Tan, Wai Kiat; Teh, Su Yean; Koh, Hock Lye

    2017-07-01

    Submarine landslides, also known as submarine mass failures (SMFs), are major natural marine disasters that could critically damage coastal facilities such as nuclear power plants and oil and gas platforms. It is therefore essential to investigate submarine landslides for potential tsunami hazard assessment. Three-dimensional seismic data from offshore Brunei have revealed a giant seabed mass deposited by a previous SMF. The submarine mass extends over 120 km from the continental slope of the Baram Canyon at 200 m water depth to the deep basin floor of the Northwest Borneo Trough. A suite of in-house two-dimensional depth-averaged tsunami simulation model TUNA (Tsunami-tracking Utilities and Application) is developed to assess the vulnerability of coastal communities in Sabah and Sarawak subject to potential SMF tsunami. The submarine slide is modeled as a rigid body moving along a planar slope with the center of mass motion parallel to the planar slope and subject to external forces due to added mass, gravity, and dissipation. The nonlinear shallow water equations are utilized to simulate tsunami propagation from deepwater up to the shallow offshore areas. A wetting-drying algorithm is used when a tsunami wave reaches the shoreline to compute run up of tsunami along the shoreline. Run-up wave height and inundation maps are provided for seven densely populated locations in Sabah and Sarawak to highlight potential risks at each location, subject to two scenarios of slide slopes: 2° and 4°. The first wave may arrive at Kudat as early as 0.4 h after the SMF, giving local communities little time to evacuate. Over a small area, maximum inundated depths reaching 20.3 m at Kudat, 26.1 m at Kota Kinabalu, and 15.5 m at Miri are projected, while the maximum inundation distance of 4.86 km is expected at Miri due to its low-lying coast. In view of the vulnerability of some locations to the SMF tsunami, it is important to develop and implement community resilience

  19. Tsunami waves generated by submarine landslides of variable volume: analytical solutions for a basin of variable depth

    Directory of Open Access Journals (Sweden)

    I. Didenkulova

    2010-11-01

    Full Text Available Tsunami wave generation by submarine landslides of a variable volume in a basin of variable depth is studied within the shallow-water theory. The problem of landslide induced tsunami wave generation and propagation is studied analytically for two specific convex bottom profiles (h ~ x4/3 and h ~ x4. In these cases the basic equations can be reduced to the constant-coefficient wave equation with the forcing determined by the landslide motion. For certain conditions on the landslide characteristics (speed and volume per unit cross-section the wave field can be described explicitly. It is represented by one forced wave propagating with the speed of the landslide and following its offshore direction, and two free waves propagating in opposite directions with the wave celerity. For the case of a near-resonant motion of the landslide along the power bottom profile h ~ xγ the dynamics of the waves propagating offshore is studied using the asymptotic approach. If the landslide is moving in the fully resonant regime the explicit formula for the amplitude of the wave can be derived. It is demonstrated that generally tsunami wave amplitude varies non-monotonically with distance.

  20. Tsunamis as geomorphic crises: Lessons from the December 26, 2004 tsunami in Lhok Nga, West Banda Aceh (Sumatra, Indonesia)

    Science.gov (United States)

    Paris, Raphaël; Wassmer, Patrick; Sartohadi, Junun; Lavigne, Franck; Barthomeuf, Benjamin; Desgages, Emilie; Grancher, Delphine; Baumert, Philippe; Vautier, Franck; Brunstein, Daniel; Gomez, Christopher

    2009-03-01

    Large tsunamis are major geomorphic crises, since they imply extensive erosion, sediment transport and deposition in a few minutes and over hundreds of kilometres of coast. Nevertheless, little is known about their geomorphologic imprints. The December 26, 2004 tsunami in Sumatra (Indonesia) was one of the largest and deadliest tsunamis in recorded human history. We present a description of the coastal erosion and boulder deposition induced by the 2004 tsunami in the Lhok Nga Bay, located to the West of Banda Aceh (northwest Sumatra). The geomorphological impact of the tsunami is evidenced by: beach erosion (some beaches have almost disappeared); destruction of sand barriers protecting the lagoons or at river mouths; numerous erosion escarpments typically in the order of 0.5-1.5 m when capped by soil and more than 2 m in dunes; bank erosion in the river beds (the retreat along the main river is in the order of 5-15 m, with local retreats exceeding 30 m); large scars typically 20-50 cm deep on slopes; dislodgement of blocks along fractures and structural ramps on cliffs. The upper limit of erosion appears as a continuous trimline at 20-30 m a.s.l., locally reaching 50 m. The erosional imprints of the tsunami extend to 500 m from the shoreline and exceed 2 km along riverbeds. The overall coastal retreat from Lampuuk to Leupung was 60 m (550,000 m 2) and locally exceeded 150 m. Over 276,000 m 3 of coastal sediments were eroded by the tsunami along the 9.2 km of sandy coast. The mean erosion rate of the beaches was ~ 30 m 3/m of coast and locally exceeded 80 m 3/m. The most eroded coasts were tangent to the tsunami wave train, which was coming from the southwest. The fringing reefs were not efficient in reducing the erosional impact of the tsunami. The 220 boulders measured range from 0.3 to 7.2 m large (typically 0.7-1.5 m), with weights from over 50 kg up to 85 t. We found one boulder, less than 1 m large, at 1 km from the coastline, but all the others were

  1. Medical support to Sri Lanka in the wake of tsunamis: planning considerations and lessons learned.

    Science.gov (United States)

    Lane, David A

    2006-10-01

    When massive tsunamis affected the coast of Sri Lanka and other Indian Ocean littorals, elements of the Third Force Service Support Group and assigned Navy, Air Force, Army, and Coast Guard units from the U.S. Pacific Command were "task organized" to form Combined Support Group-Sri Lanka (CSG-SL), charged to conduct humanitarian assistance/disaster relief (HA/DR) operations. The specific mission was to provide immediate relief to the affected population of Sri Lanka and the Maldives, to minimize loss of life, and to mitigate human suffering. A 30-person health care team deployed to the northern province of Jaffna and provided medical assistance to that chronically underserved and acutely overstressed region. For a 12-day period, the team served as the principal medical staff of an under-resourced government hospital and conducted mobile primary care clinics at nearby welfare camps housing > 7,000 internally displaced persons made homeless by the tsunamis. By every measurable standard, CSG-SL accomplished its assigned HA/DR task in Sri Lanka, including the medical mission. In doing so, the medical team learned many important lessons, including five of particular value to planners of similar relief operations in the future. This article discusses the context in which CSG-SL planned and executed the medical aspects of its HA/DR operations in Sri Lanka, and it describes the most significant medical lessons learned.

  2. Liver acquisition with volume acceleration flex on 70-cm wide-bore and 60-cm conventional-bore 3.0-T MRI.

    Science.gov (United States)

    Saito, Shigeyoshi; Tanaka, Keiko; Hashido, Takashi

    2016-07-01

    This study aimed to compare the uniformity of fat suppression and image quality between liver acquisition with volume acceleration flex (LAVA-Flex) and LAVA on 60-cm conventional-bore and 70-cm wide-bore 3.0-T magnetic resonance imaging (MRI). The uniformity of fat suppression by LAVA-Flex and LAVA was assessed as the efficiency of suppression of superficial fat at the levels of the liver dome, porta, and renal hilum. Percentage standard deviation (%SD) was calculated using the following equation: %SD (%) = 100 × SD of the regions of interest (ROIs)/mean value of the signal intensity (SI) in the ROIs. Signal-to-noise ratio (SNR) and contrast ratio (CR) were calculated. In the LAVA sequence, the %SD in all slices on wide-bore 3.0-T MRI was significantly higher than that on conventional-bore 3.0-T MRI (P 3.0-T MRI.

  3. Strengthening Resilience in Tsunami-affected Communities (India ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    . During the December 2004 tsunami in South Asia, it was reported that mangrove wetlands and other thick coastal vegetation served to ... India, Sri Lanka, Central Asia, Far East Asia, South Asia ... M.S. Swaminathan Research Foundation.

  4. Non-seismic tsunamis: filling the forecast gap

    Science.gov (United States)

    Moore, C. W.; Titov, V. V.; Spillane, M. C.

    2015-12-01

    Earthquakes are the generation mechanism in over 85% of tsunamis. However, non-seismic tsunamis, including those generated by meteorological events, landslides, volcanoes, and asteroid impacts, can inundate significant area and have a large far-field effect. The current National Oceanographic and Atmospheric Administration (NOAA) tsunami forecast system falls short in detecting these phenomena. This study attempts to classify the range of effects possible from these non-seismic threats, and to investigate detection methods appropriate for use in a forecast system. Typical observation platforms are assessed, including DART bottom pressure recorders and tide gauges. Other detection paths include atmospheric pressure anomaly algorithms for detecting meteotsunamis and the early identification of asteroids large enough to produce a regional hazard. Real-time assessment of observations for forecast use can provide guidance to mitigate the effects of a non-seismic tsunami.

  5. Joko Tingkir program for estimating tsunami potential rapidly

    Energy Technology Data Exchange (ETDEWEB)

    Madlazim,, E-mail: m-lazim@physics.its.ac.id; Hariyono, E., E-mail: m-lazim@physics.its.ac.id [Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya (UNESA) , Jl. Ketintang, Surabaya 60231 (Indonesia)

    2014-09-25

    The purpose of the study was to estimate P-wave rupture durations (T{sub dur}), dominant periods (T{sub d}) and exceeds duration (T{sub 50Ex}) simultaneously for local events, shallow earthquakes which occurred off the coast of Indonesia. Although the all earthquakes had parameters of magnitude more than 6,3 and depth less than 70 km, part of the earthquakes generated a tsunami while the other events (Mw=7.8) did not. Analysis using Joko Tingkir of the above stated parameters helped understand the tsunami generation of these earthquakes. Measurements from vertical component broadband P-wave quake velocity records and determination of the above stated parameters can provide a direct procedure for assessing rapidly the potential for tsunami generation. The results of the present study and the analysis of the seismic parameters helped explain why the events generated a tsunami, while the others did not.

  6. The importance of mangrove forest in tsunami disaster mitigation.

    Science.gov (United States)

    Osti, Rabindra; Tanaka, Shigenobu; Tokioka, Toshikazu

    2009-04-01

    Tsunamis and storm surges have killed more than one million people and some three billion people currently live with a high risk of these disasters, which are becoming more frequent and devastating worldwide. Effective mitigation of such disasters is possible via healthy coastal forests, which can reduce the energy of tsunamis. In recent years, these natural barriers have declined due to adverse human and natural activities. In the past 20 years, the world has lost almost 50 per cent of its mangrove forests, making them one of the most endangered landscapes. It is essential to recover them and to use them as a shield against a tsunami and as a resource to secure optimal socio-economic, ecological and environmental benefits. This paper examines the emerging scenario facing mangrove forests, discusses protection from tsunamis, and proposes a way to improve the current situation. We hope that practical tips will help communities and agencies to work collectively to achieve a common goal.

  7. Impacts of the June 23, 2001 Peru Tsunami

    Science.gov (United States)

    Dengler, L.

    2001-12-01

    The tsunami generated by the June 23, 2001 Peru earthquake caused significant damage to a 20-km long stretch of coastline in the Municipality of Camana, southern Peru. Over 3000 structures were damaged or destroyed and 2000 hectares of farmland flooded and covered with sand. 22 people were killed in the Municipality and 62 were reported missing. All of the casualties were attributed to the tsunami; in Camana the earthquake produced Modified Mercalli Intensities only of VI or VII. The International Tsunami Survey Team (ITST) were in Peru July 5 - 15 and measured inundation, spoke with City, Red Cross, and Health Department officials, and interviewed survivors. The preliminary ITST findings: All eyewitnesses described an initial draw-down that lasted a substantial amount of time (15 minutes or more). The initial positive wave was small, followed by two destructive waves of near similar impact. Observing the water recede was the key to self-evacuation. No one responded to the ground shaking even though all felt the earthquake strongly. Damage was concentrated along a flat coastal beach no higher than 5 m above sea level. The largest waves (5 to 8 meters) produced by this tsunami coincided with the most developed beach area along the southern Peruvian coast. Tsunami waves penetrated 1.2-km inland and damaged or destroyed nearly all of the structures in this zone. Poorly built adobe and infilled wall structures performed very poorly in the tsunami impacted area. The few structures that survived appeared to have deeper foundations and more reinforcing. The most tsunami-vulnerable populations were newcomers to the coast. Most victims were farm workers and domestic summerhouse sitters who had not grown up along the coast and were unaware of tsunami hazards. Economic impacts are likely to last a long time. The main industries in Camana are tourism and agriculture and the tsunami damaged both. While the extent of inundation and the number of structures damaged or destroyed

  8. Tsunami 2004 and the biological oceanography of Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Stephen, R.; Jayalakshmi, K.J.; Rahman, H.; Karuppasamy, P.K.; Nair, K.K.C.

    in the fishery causing public alarm. Marine Biologists are faced with environmental crisis of new complexity, properties and consequences which are to be closely monitored. PROC. NATIONAL COMMEMORATIVE CONFERENCE ON TSUNAMI. MADURAl. - 28-29, DEC, 2006 23 Fig. 1...

  9. Seaweed floristic studies along tsunami affected Indian coasts: A ...

    Indian Academy of Sciences (India)

    2005-01-15

    Jan 15, 2005 ... On 26th December 2004, the world witnessed the devastating power of tsunami, affecting many ... This has caused significant changes in the shallow and .... University of Kerala, pp. 292 .... Service, Technical Series 119 5–12.

  10. TSUNAMI HAZARD ASSESSMENT IN THE NORTHERN AEGEAN SEA

    Directory of Open Access Journals (Sweden)

    Barbara Theilen-Willige

    2008-01-01

    Full Text Available Emergency planning for the assessment of tsunami hazard inundation and of secondary effects of erosion and landslides, requires mapping that can help identify coastal areas that are potentially vulnerable. The present study reviews tsunami susceptibility mapping for coastal areas of Turkey and Greece in the Aegean Sea. Potential tsunami vulnerable locations were identified from LANDSAT ETM imageries, Shuttle Radar Topography Mission (SRTM, 2000 data and QuickBird imageries and from a GIS integrated spatial database. LANDSAT ETM and Digital Elevation Model (DEM data derived by the SRTM-Mission were investigated to help detect traces of past flooding events. LANDSAT ETM imageries, merged with digitally processed and enhanced SRTM data, clearly indicate the areas that may be prone to flooding if catastrophic tsunami events or storm surges occur.

  11. Indian Ocean Earthquake and Tsunami: Humanitarian Assistance and Relief Operations

    National Research Council Canada - National Science Library

    Margesson, Rhoda

    2005-01-01

    On December 26, 2004, a magnitude 9.0 undersea earthquake off the west coast of northern Sumatra, Indonesia, unleashed a tsunami that affected more than 12 countries throughout south and southeast Asia and stretched as far...

  12. The SAFRR Tsunami Scenario: from Publication to Implementation

    Science.gov (United States)

    Ross, S.; Jones, L.; Miller, K.; Wilson, R. I.; Burkett, E. R.; Bwarie, J.; Campbell, N. M.; Johnson, L. A.; Long, K.; Lynett, P. J.; Perry, S. C.; Plumlee, G. S.; Porter, K.; Real, C. R.; Ritchie, L. A.; Wein, A. M.; Whitmore, P.; Wood, N. J.

    2014-12-01

    The SAFRR Tsunami Scenario modeled a hypothetical but plausible tsunami, created by an Mw9.1 earthquake occurring offshore from the Alaskan peninsula, and its impacts on the California coast. We presented the likely inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental impacts, social vulnerability, emergency management, and policy implications for California associated with the scenario tsunami. The intended users were those responsible for making mitigation decisions before and those who need to make rapid decisions during future tsunamis. The Tsunami Scenario process is being evaluated by the University of Colorado's Natural Hazards Center; this is the first time that a USGS scenario of this scale has been formally and systematically evaluated by an external party. The SAFRR Tsunami Scenario was publicly introduced in September, 2013, through a series of regional workshops in California that brought together emergency managers, maritime authorities, first responders, elected officials and staffers, the business sector, state agencies, local media, scientific partners, and special districts such as utilities (http://pubs.usgs.gov/of/2013/1170/). In March, 2014, NOAA's annual tsunami warning exercise, PACIFEX, was based on the SAFRR Tsunami Scenario. Many groups conducted exercises associated with PACIFEX including the State of Washington and several counties in California. San Francisco had the most comprehensive exercise with a 3-day functional exercise based on the SAFRR Tsunami Scenario. In addition, the National Institutes of Health ran an exercise at the Ports of Los Angeles and Long Beach in April, 2014, building on the Tsunami Scenario, focusing on the recovery phase and adding a refinery fire. The benefits and lessons learned include: 1) stimulating dialogue among practitioners to solve problems; 2) seeing groups add extra components to their exercises that best address their

  13. Numerical Study on the 1682 Tainan Historic Tsunami Event

    Science.gov (United States)

    Tsai, Y.; Wu, T.; Lee, C.; KO, L.; Chuang, M.

    2013-12-01

    We intend to reconstruct the tsunami source of the 1682/1782 tsunami event in Tainan, Taiwan, based on the numerical method. According to Soloviev and Go (1974), a strong earthquake shook the Tainan and caused severe damage, followed by tsunami waves. Almost the whole island was flooded by tsunami for over 120 km. More than 40,000 inhabitants were killed. Forts Zealand and Pigchingi were washed away. 1682/1782 event was the highest death toll in the Pacific Ocean regarded by Bryant (2001). However, the year is ambiguous in 1682 or 1782, and death toll is doubtful. We tend to believe that this event was happened in 1682 based on the evolution of the harbor name. If the 1682 tsunami event does exist, the hazard mitigation plan has to be modified, and restoring the 1682 event becomes important. In this study, we adopted the tsunami reverse tracking method (TRTM) to examine the possible tsunami sources. A series of numerical simulations were carried out by using COMCOT (Cornell Multi-grid Coupled Tsunami model), and nested grid with 30 m resolution was applied to the study area. According to the result of TRTM, the 1682 tsunami is most likely sourcing from the north segment of Manila Trench. From scenario study, we concluded that the 1682 event was triggered by an Mw >= 8.8 earthquake in north segment of Manila Trench, and 4 m wave height was observed in Tainan and its inundation range is agreeable with historical records. If this scenario occurred again, sever damage and death toll will be seen many high population cities, such as Tainan city, Kaohsiung city and Kenting, where No. 3 nuclear power plant is located. Detailed results will be presented in the full paper. Figure 1. Map of Tsunami Reverse Tracking Method (TRTM) in Tainan. Black arrow indicates direction of possible tsunami direction. The color bar denotes the magnitude of the maximum moment flux. Figure 2. Scenario result of Mw 8.8 in northern segment of Manila Trench. (Left: Initial free surface elevation

  14. SAFRR Tsunami Scenarios and USGS-NTHMP Collaboration

    Science.gov (United States)

    Ross, S.; Wood, N. J.; Cox, D. A.; Jones, L.; Cheung, K. F.; Chock, G.; Gately, K.; Jones, J. L.; Lynett, P. J.; Miller, K.; Nicolsky, D.; Richards, K.; Wein, A. M.; Wilson, R. I.

    2015-12-01

    Hazard scenarios provide emergency managers and others with information to help them prepare for future disasters. The SAFRR Tsunami Scenario, published in 2013, modeled a hypothetical but plausible tsunami, created by an Mw9.1 earthquake occurring offshore from the Alaskan peninsula, and its impacts on the California coast. It presented the modeled inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental impacts, social vulnerability, emergency management, and policy implications for California associated with the scenario tsunami. The intended users were those responsible for making mitigation decisions before and those who need to make rapid decisions during future tsunamis. It provided the basis for many exercises involving, among others, NOAA, the State of Washington, several counties in California, and the National Institutes of Health. The scenario led to improvements in the warning protocol for southern California and highlighted issues that led to ongoing work on harbor and marina safety. Building on the lessons learned in the SAFRR Tsunami Scenario, another tsunami scenario is being developed with impacts to Hawaii and to the source region in Alaska, focusing on the evacuation issues of remote communities with primarily shore parallel roads, and also on the effects of port closures. Community exposure studies in Hawaii (Ratliff et al., USGS-SIR, 2015) provided background for selecting these foci. One complicated and important aspect of any hazard scenario is defining the source event. The USGS is building collaborations with the National Tsunami Hazard Mitigation Program (NTHMP) to consider issues involved in developing a standardized set of tsunami sources to support hazard mitigation work. Other key USGS-NTHMP collaborations involve population vulnerability and evacuation modeling.

  15. The 2010 Chile Earthquake: Rapid Assessments of Tsunami

    OpenAIRE

    Michelini, A.; Lauciani, V.; Selvaggi, G.; Lomax, A.

    2010-01-01

    After an earthquake underwater, rapid real-time assessment of earthquake parameters is important for emergency response related to infrastructure damage and, perhaps more exigently, for issuing warnings of the possibility of an impending tsunami. Since 2005, the Istituto Nazionale di Geofisica e Vulcanologia (INGV) has worked on the rapid quantification of earthquake magnitude and tsunami potential, especially for the Mediterranean area. This work includes quantification of earthquake size fr...

  16. Tsunamis: Detection, monitoring, and early-warning technologies

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.

    upon, which are relevant to tsunami warning, include public announcement siren systems and numerical models. Special attention has been paid to the submarine cable-mounted systems. Due importance has been attached to the instrumented era which... of appropriate emergency measures. Whereas satellite-based reporting is one option, a simple and cost-effective methodology for real-time reporting of tsunami from coastal regions and islands is cellular based GPRS technology. From an operational point...

  17. Tsunami Risk Assessment Modelling in Chabahar Port, Iran

    Science.gov (United States)

    Delavar, M. R.; Mohammadi, H.; Sharifi, M. A.; Pirooz, M. D.

    2017-09-01

    The well-known historical tsunami in the Makran Subduction Zone (MSZ) region was generated by the earthquake of November 28, 1945 in Makran Coast in the North of Oman Sea. This destructive tsunami killed over 4,000 people in Southern Pakistan and India, caused great loss of life and devastation along the coasts of Western India, Iran and Oman. According to the report of "Remembering the 1945 Makran Tsunami", compiled by the Intergovernmental Oceanographic Commission (UNESCO/IOC), the maximum inundation of Chabahar port was 367 m toward the dry land, which had a height of 3.6 meters from the sea level. In addition, the maximum amount of inundation at Pasni (Pakistan) reached to 3 km from the coastline. For the two beaches of Gujarat (India) and Oman the maximum run-up height was 3 m from the sea level. In this paper, we first use Makran 1945 seismic parameters to simulate the tsunami in generation, propagation and inundation phases. The effect of tsunami on Chabahar port is simulated using the ComMIT model which is based on the Method of Splitting Tsunami (MOST). In this process the results are compared with the documented eyewitnesses and some reports from researchers for calibration and validation of the result. Next we have used the model to perform risk assessment for Chabahar port in the south of Iran with the worst case scenario of the tsunami. The simulated results showed that the tsunami waves will reach Chabahar coastline 11 minutes after generation and 9 minutes later, over 9.4 Km2 of the dry land will be flooded with maximum wave amplitude reaching up to 30 meters.

  18. TSUNAMI RISK ASSESSMENT MODELLING IN CHABAHAR PORT, IRAN

    Directory of Open Access Journals (Sweden)

    M. R. Delavar

    2017-09-01

    Full Text Available The well-known historical tsunami in the Makran Subduction Zone (MSZ region was generated by the earthquake of November 28, 1945 in Makran Coast in the North of Oman Sea. This destructive tsunami killed over 4,000 people in Southern Pakistan and India, caused great loss of life and devastation along the coasts of Western India, Iran and Oman. According to the report of "Remembering the 1945 Makran Tsunami", compiled by the Intergovernmental Oceanographic Commission (UNESCO/IOC, the maximum inundation of Chabahar port was 367 m toward the dry land, which had a height of 3.6 meters from the sea level. In addition, the maximum amount of inundation at Pasni (Pakistan reached to 3 km from the coastline. For the two beaches of Gujarat (India and Oman the maximum run-up height was 3 m from the sea level. In this paper, we first use Makran 1945 seismic parameters to simulate the tsunami in generation, propagation and inundation phases. The effect of tsunami on Chabahar port is simulated using the ComMIT model which is based on the Method of Splitting Tsunami (MOST. In this process the results are compared with the documented eyewitnesses and some reports from researchers for calibration and validation of the result. Next we have used the model to perform risk assessment for Chabahar port in the south of Iran with the worst case scenario of the tsunami. The simulated results showed that the tsunami waves will reach Chabahar coastline 11 minutes after generation and 9 minutes later, over 9.4 Km2 of the dry land will be flooded with maximum wave amplitude reaching up to 30 meters.

  19. Applications of the TSUNAMI sensitivity and uncertainty analysis methodology

    International Nuclear Information System (INIS)

    Rearden, Bradley T.; Hopper, Calvin M.; Elam, Karla R.; Goluoglu, Sedat; Parks, Cecil V.

    2003-01-01

    The TSUNAMI sensitivity and uncertainty analysis tools under development for the SCALE code system have recently been applied in four criticality safety studies. TSUNAMI is used to identify applicable benchmark experiments for criticality code validation, assist in the design of new critical experiments for a particular need, reevaluate previously computed computational biases, and assess the validation coverage and propose a penalty for noncoverage for a specific application. (author)

  20. Elements of the tsunami precursors' detection physics

    Science.gov (United States)

    Novik, Oleg; Ruzhin, Yuri; Ershov, Sergey; Volgin, Max; Smirnov, Fedor

    In accordance with the main physical principles and geophysical data, we formulated a nonlinear mathematical model of seismo-hydro-electromagnetic (EM) geophysical field interaction and calculated generation and propagation of elastic, EM, temperature and hydrodynamic seismically generated disturbances (i.e. signals) in the basin of a marginal sea. We show transferring of seismic and electromagnetic (EM) energy from the upper mantle beneath the sea into its depths and EM emission from the sea surface into the atmosphere. Basing on the calculated characteristics of the signals of different physical nature (computations correspond to measurements of other authors) we develop the project of a Lithosphere-Ocean-Atmosphere Monitoring System (LOAMS) including: a bottom complex, a moored ocean surface buoy complex, an observational balloon complex, and satellite complex. The underwater stations of the bottom complex of the LOAMS will record the earlier signals of seismic activation beneath a seafloor (the ULF EM signals outrun seismic ones, according to the above calculations) and localize the seafloor epicenter of an expected seaquake. These stations will be equipped, in particular, with: magnetometers, the lines for the electric field measurements, and magneto-telluric blocks to discover dynamics of physical parameters beneath a sea floor as signs of a seaquake and/or tsunami preparation process. The buoy and balloon complexes of the LOAMS will record the meteorological and oceanographic parameters' variations including changes of reflection from a sea surface (tsunami ‘shadows’) caused by a tsunami wave propagation. Cables of the balloon and moored buoy will be used as receiving antennas and for multidisciplinary measurements including gradients of the fields (we show the cases are possible when the first seismic EM signal will be registered by an antenna above a sea). Also, the project includes radio-tomography with satellite instrumentation and sounding of the