WorldWideScience

Sample records for truncated binary multiplication

  1. Properties of truncated multiplicity distributions

    International Nuclear Information System (INIS)

    Lupia, S.

    1995-01-01

    Truncation effects on multiplicity distributions are discussed. Observables sensitive to the tail, like factorial moments, factorial cumulants and their ratio, are shown to be strongly affected by truncation. A possible way to overcome this problem by looking at the head of the distribution is suggested. (author)

  2. Properties of truncated multiplicity distributions

    Energy Technology Data Exchange (ETDEWEB)

    Lupia, S. [Turin Univ. (Italy). Dipt. di Fisica

    1995-12-31

    Truncation effects on multiplicity distributions are discussed. Observables sensitive to the tail, like factorial moments, factorial cumulants and their ratio, are shown to be strongly affected by truncation. A possible way to overcome this problem by looking at the head of the distribution is suggested. (author)

  3. Applications of Fast Truncated Multiplication in Cryptography

    Directory of Open Access Journals (Sweden)

    Laszlo Hars

    2006-12-01

    Full Text Available Truncated multiplications compute truncated products, contiguous subsequences of the digits of integer products. For an n-digit multiplication algorithm of time complexity O(nα, with 1<α≤2, there is a truncated multiplication algorithm, which is constant times faster when computing a short enough truncated product. Applying these fast truncated multiplications, several cryptographic long integer arithmetic algorithms are improved, including integer reciprocals, divisions, Barrett and Montgomery multiplications, 2n-digit modular multiplication on hardware for n-digit half products. For example, Montgomery multiplication is performed in 2.6 Karatsuba multiplication time.

  4. Causal analysis of ordinal treatments and binary outcomes under truncation by death.

    Science.gov (United States)

    Wang, Linbo; Richardson, Thomas S; Zhou, Xiao-Hua

    2017-06-01

    It is common that in multi-arm randomized trials, the outcome of interest is "truncated by death," meaning that it is only observed or well-defined conditioning on an intermediate outcome. In this case, in addition to pairwise contrasts, the joint inference for all treatment arms is also of interest. Under a monotonicity assumption we present methods for both pairwise and joint causal analyses of ordinal treatments and binary outcomes in presence of truncation by death. We illustrate via examples the appropriateness of our assumptions in different scientific contexts.

  5. Multiple-scattering theory with a truncated basis set

    International Nuclear Information System (INIS)

    Zhang, X.; Butler, W.H.

    1992-01-01

    Multiple-scattering theory (MST) is an extremely efficient technique for calculating the electronic structure of an assembly of atoms. The wave function in MST is expanded in terms of spherical waves centered on each atom and indexed by their orbital and azimuthal quantum numbers, l and m. The secular equation which determines the characteristic energies can be truncated at a value of the orbital angular momentum l max , for which the higher angular momentum phase shifts, δ l (l>l max ), are sufficiently small. Generally, the wave-function coefficients which are calculated from the secular equation are also truncated at l max . Here we point out that this truncation of the wave function is not necessary and is in fact inconsistent with the truncation of the secular equation. A consistent procedure is described in which the states with higher orbital angular momenta are retained but with their phase shifts set to zero. We show that this treatment gives smooth, continuous, and correctly normalized wave functions and that the total charge density calculated from the corresponding Green function agrees with the Lloyd formula result. We also show that this augmented wave function can be written as a linear combination of Andersen's muffin-tin orbitals in the case of muffin-tin potentials, and can be used to generalize the muffin-tin orbital idea to full-cell potentals

  6. Filter Factors of Truncated TLS Regularization with Multiple Observations

    Czech Academy of Sciences Publication Activity Database

    Hnětynková, I.; Plešinger, Martin; Žáková, J.

    2017-01-01

    Roč. 62, č. 2 (2017), s. 105-120 ISSN 0862-7940 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : truncated total least squares * multiple right-hand sides * eigenvalues of rank-d update * ill-posed problem * regularization * filter factors Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.618, year: 2016 http://hdl.handle.net/10338.dmlcz/146698

  7. Astronomy of binary and multiple stars

    International Nuclear Information System (INIS)

    Tokovinin, A.A.

    1984-01-01

    Various types of binary stars and methods for their observation are described in a popular form. Some models of formation and evolution of binary and multiple star systems are presented. It is concluded that formation of binary and multiple stars is a regular stage in the process of star production

  8. Accurate evolutions of inspiralling neutron-star binaries: assessment of the truncation error

    International Nuclear Information System (INIS)

    Baiotti, Luca; Giacomazzo, Bruno; Rezzolla, Luciano

    2009-01-01

    We have recently presented an investigation in full general relativity of the dynamics and gravitational-wave emission from binary neutron stars which inspiral and merge, producing a black hole surrounded by a torus (Baiotti et al 2008 Phys. Rev. D 78 084033). We discuss here in more detail the convergence properties of the results presented in Baiotti et al (2008 Phys. Rev. D 78 084033) and, in particular, the deterioration of the convergence rate at the merger and during the survival of the merged object, when strong shocks are formed and turbulence develops. We also show that physically reasonable and numerically convergent results obtained at low resolution suffer however from large truncation errors and hence are of little physical use. We summarize our findings in an 'error budget', which includes the different sources of possible inaccuracies we have investigated and provides a first quantitative assessment of the precision in the modelling of compact fluid binaries.

  9. Hardware-Efficient On-line Learning through Pipelined Truncated-Error Backpropagation in Binary-State Networks

    Directory of Open Access Journals (Sweden)

    Hesham Mostafa

    2017-09-01

    Full Text Available Artificial neural networks (ANNs trained using backpropagation are powerful learning architectures that have achieved state-of-the-art performance in various benchmarks. Significant effort has been devoted to developing custom silicon devices to accelerate inference in ANNs. Accelerating the training phase, however, has attracted relatively little attention. In this paper, we describe a hardware-efficient on-line learning technique for feedforward multi-layer ANNs that is based on pipelined backpropagation. Learning is performed in parallel with inference in the forward pass, removing the need for an explicit backward pass and requiring no extra weight lookup. By using binary state variables in the feedforward network and ternary errors in truncated-error backpropagation, the need for any multiplications in the forward and backward passes is removed, and memory requirements for the pipelining are drastically reduced. Further reduction in addition operations owing to the sparsity in the forward neural and backpropagating error signal paths contributes to highly efficient hardware implementation. For proof-of-concept validation, we demonstrate on-line learning of MNIST handwritten digit classification on a Spartan 6 FPGA interfacing with an external 1Gb DDR2 DRAM, that shows small degradation in test error performance compared to an equivalently sized binary ANN trained off-line using standard back-propagation and exact errors. Our results highlight an attractive synergy between pipelined backpropagation and binary-state networks in substantially reducing computation and memory requirements, making pipelined on-line learning practical in deep networks.

  10. Hardware-Efficient On-line Learning through Pipelined Truncated-Error Backpropagation in Binary-State Networks.

    Science.gov (United States)

    Mostafa, Hesham; Pedroni, Bruno; Sheik, Sadique; Cauwenberghs, Gert

    2017-01-01

    Artificial neural networks (ANNs) trained using backpropagation are powerful learning architectures that have achieved state-of-the-art performance in various benchmarks. Significant effort has been devoted to developing custom silicon devices to accelerate inference in ANNs. Accelerating the training phase, however, has attracted relatively little attention. In this paper, we describe a hardware-efficient on-line learning technique for feedforward multi-layer ANNs that is based on pipelined backpropagation. Learning is performed in parallel with inference in the forward pass, removing the need for an explicit backward pass and requiring no extra weight lookup. By using binary state variables in the feedforward network and ternary errors in truncated-error backpropagation, the need for any multiplications in the forward and backward passes is removed, and memory requirements for the pipelining are drastically reduced. Further reduction in addition operations owing to the sparsity in the forward neural and backpropagating error signal paths contributes to highly efficient hardware implementation. For proof-of-concept validation, we demonstrate on-line learning of MNIST handwritten digit classification on a Spartan 6 FPGA interfacing with an external 1Gb DDR2 DRAM, that shows small degradation in test error performance compared to an equivalently sized binary ANN trained off-line using standard back-propagation and exact errors. Our results highlight an attractive synergy between pipelined backpropagation and binary-state networks in substantially reducing computation and memory requirements, making pipelined on-line learning practical in deep networks.

  11. Modified Truncated Multiplicity Analysis to Improve Verification of Uranium Fuel Cycle Materials

    International Nuclear Information System (INIS)

    LaFleur, A.; Miller, K.; Swinhoe, M.; Belian, A.; Croft, S.

    2015-01-01

    Accurate verification of 235U enrichment and mass in UF6 storage cylinders and the UO2F2 holdup contained in the process equipment is needed to improve international safeguards and nuclear material accountancy at uranium enrichment plants. Small UF6 cylinders (1.5'' and 5'' diameter) are used to store the full range of enrichments from depleted to highly-enriched UF6. For independent verification of these materials, it is essential that the 235U mass and enrichment measurements do not rely on facility operator declarations. Furthermore, in order to be deployed by IAEA inspectors to detect undeclared activities (e.g., during complementary access), it is also imperative that the measurement technique is quick, portable, and sensitive to a broad range of 235U masses. Truncated multiplicity analysis is a technique that reduces the variance in the measured count rates by only considering moments 1, 2, and 3 of the multiplicity distribution. This is especially important for reducing the uncertainty in the measured doubles and triples rates in environments with a high cosmic ray background relative to the uranium signal strength. However, we believe that the existing truncated multiplicity analysis throws away too much useful data by truncating the distribution after the third moment. This paper describes a modified truncated multiplicity analysis method that determines the optimal moment to truncate the multiplicity distribution based on the measured data. Experimental measurements of small UF6 cylinders and UO2F2 working reference materials were performed at Los Alamos National Laboratory (LANL). The data were analyzed using traditional and modified truncated multiplicity analysis to determine the optimal moment to truncate the multiplicity distribution to minimize the uncertainty in the measured count rates. The results from this analysis directly support nuclear safeguards at enrichment plants and provide a more accurate verification method for UF6

  12. TCP (truncated compound Poisson) process for multiplicity distributions in high energy collisions

    International Nuclear Information System (INIS)

    Srivastave, P.P.

    1990-01-01

    On using the Poisson distribution truncated at zero for intermediate cluster decay in a compound Poisson process, the authors obtain TCP distribution which describes quite well the multiplicity distributions in high energy collisions. A detailed comparison is made between TCP and NB for UA5 data. The reduced moments up to the fifth agree very well with the observed ones. The TCP curves are narrower than NB at high multiplicity tail, look narrower at very high energy and develop shoulders and oscillations which become increasingly pronounced as the energy grows. At lower energies the distributions, of the data for fixed intervals of rapidity for UA5 data and for the data (at low energy) for e + e - annihilation and pion-proton, proton-proton and muon-proton scattering. A discussion of compound Poisson distribution, expression of reduced moments and Poisson transforms are also given. The TCP curves and curves of the reduced moments for different values of the parameters are also presented

  13. The Possibility of Multiple Habitable Worlds Orbiting Binary Stars

    Science.gov (United States)

    Mason, P. A.

    2014-03-01

    Are there planetary systems for which there is life on multiple worlds? Where are these fruitful planetary systems and how do we detect them? In order to address these questions; conditions which enable life and those that prevent or destroy it must be considered. Many constraints are specific to planetary systems, independent of the number of worlds in habitable zones. For instance, life on rocky planets or moons likely requires the right abundance of volatiles and radiogenic elements for prolonged geologic activity. Catastrophic sterilization events such as nearby supernovae and gamma-ray bursts affect entire planetary systems not just specific worlds. Giant planets may either enhance or disrupt the development of complex life within a given system. It might be rare for planetary systems to possess qualities that promote life and lucky enough to avoid cataclysm. However, multiple habitable planets may provide enhanced chances for advanced life to develop. The best predictor of life on one habitable zone planet might be the presence of life on its neighbor as panspermia may occur in planetary systems with several habitable worlds. Circumbinary habitability may go hand in hand with habitability of multiple worlds. The circumstances in which the Binary Habitability Mechanism (BHM) operates are reviewed. In some cases, the early synchronization of the primary's rotation with the binary period results in a reduction of XUV flux and stellar winds. Main sequence binaries with periods in the 10-50 days provide excellent habitable environments, within which multiple worlds may thrive. Planets and moons in these habitable zones need less magnetic protection than their single star counterparts. Exomoons orbiting a Neptune-like planet, within a BHM protected habitable zone, are expected to be habitable over a wide range of semimajor axes due to a larger planetary Hill radius. A result confirmed by numerical orbital calculations. Binaries containing a solar type star with a

  14. Computing all hybridization networks for multiple binary phylogenetic input trees.

    Science.gov (United States)

    Albrecht, Benjamin

    2015-07-30

    The computation of phylogenetic trees on the same set of species that are based on different orthologous genes can lead to incongruent trees. One possible explanation for this behavior are interspecific hybridization events recombining genes of different species. An important approach to analyze such events is the computation of hybridization networks. This work presents the first algorithm computing the hybridization number as well as a set of representative hybridization networks for multiple binary phylogenetic input trees on the same set of taxa. To improve its practical runtime, we show how this algorithm can be parallelized. Moreover, we demonstrate the efficiency of the software Hybroscale, containing an implementation of our algorithm, by comparing it to PIRNv2.0, which is so far the best available software computing the exact hybridization number for multiple binary phylogenetic trees on the same set of taxa. The algorithm is part of the software Hybroscale, which was developed specifically for the investigation of hybridization networks including their computation and visualization. Hybroscale is freely available(1) and runs on all three major operating systems. Our simulation study indicates that our approach is on average 100 times faster than PIRNv2.0. Moreover, we show how Hybroscale improves the interpretation of the reported hybridization networks by adding certain features to its graphical representation.

  15. Binary moving-blocker-based scatter correction in cone-beam computed tomography with width-truncated projections: proof of concept

    Science.gov (United States)

    Lee, Ho; Fahimian, Benjamin P.; Xing, Lei

    2017-03-01

    This paper proposes a binary moving-blocker (BMB)-based technique for scatter correction in cone-beam computed tomography (CBCT). In concept, a beam blocker consisting of lead strips, mounted in front of the x-ray tube, moves rapidly in and out of the beam during a single gantry rotation. The projections are acquired in alternating phases of blocked and unblocked cone beams, where the blocked phase results in a stripe pattern in the width direction. To derive the scatter map from the blocked projections, 1D B-Spline interpolation/extrapolation is applied by using the detected information in the shaded regions. The scatter map of the unblocked projections is corrected by averaging two scatter maps that correspond to their adjacent blocked projections. The scatter-corrected projections are obtained by subtracting the corresponding scatter maps from the projection data and are utilized to generate the CBCT image by a compressed-sensing (CS)-based iterative reconstruction algorithm. Catphan504 and pelvis phantoms were used to evaluate the method’s performance. The proposed BMB-based technique provided an effective method to enhance the image quality by suppressing scatter-induced artifacts, such as ring artifacts around the bowtie area. Compared to CBCT without a blocker, the spatial nonuniformity was reduced from 9.1% to 3.1%. The root-mean-square error of the CT numbers in the regions of interest (ROIs) was reduced from 30.2 HU to 3.8 HU. In addition to high resolution, comparable to that of the benchmark image, the CS-based reconstruction also led to a better contrast-to-noise ratio in seven ROIs. The proposed technique enables complete scatter-corrected CBCT imaging with width-truncated projections and allows reducing the acquisition time to approximately half. This work may have significant implications for image-guided or adaptive radiation therapy, where CBCT is often used.

  16. Age and helium content of the open cluster NGC 6791 from multiple eclipsing binary members. II

    DEFF Research Database (Denmark)

    Brogaard, K.; VandenBerg, D. A.; Bruntt, H.

    2012-01-01

    Models of stellar structure and evolution can be constrained by measuring accurate parameters of detached eclipsing binaries in open clusters. Multiple binary stars provide the means to determine helium abundances in these old stellar systems, and in turn, to improve estimates of their age. In th...

  17. BSDB: A New Consistent Designation Scheme for Identifying Objects in Binary and Multiple Stars

    Directory of Open Access Journals (Sweden)

    Kovaleva D. A.

    2015-06-01

    Full Text Available The new consistent scheme for designation of objects in binary and multiple systems, BSDB, is described. It was developed in the frame of the Binary star DataBase, BDB (http://www.inasan.ru, due to necessity of a unified and consistent system for designation of objects in the database, and the name of the designation scheme was derived from that of the database. The BSDB scheme covers all types of observational data. Three classes of objects introduced within the BSDB nomenclature provide correct links between objects and data, what is especially important for complex multiple stellar systems. The final stage of establishing the BSDB scheme is compilation of the Identification List of Binaries, ILB, where all known objects in binary and multiple stars are presented with their BSDB identifiers along with identifiers according to major catalogues and lists.

  18. Decimal multiplication using compressor based-BCD to binary converter

    Directory of Open Access Journals (Sweden)

    Sasidhar Mukkamala

    2018-02-01

    Full Text Available The objective of this work is to implement a scalable decimal to binary converter from 8 to 64 bits (i.e 2-digit to 16-digit using parallel architecture. The proposed converters, along with binary coded decimal (BCD adder and binary to BCD converters, are used in parallel implementation of Urdhva Triyakbhyam (UT-based 32-bit BCD multiplier. To increase the performance, compressor circuits were used in converters and multiplier. The designed hardware circuits were verified by behavioural and post layout simulations. The implementation was carried out using Virtex-6 Field Programmable Gate Array (FPGA and Application Specific Integrated Circuit (ASIC with 90-nm technology library platforms. The results on FPGA shows that compressor based converters and multipliers produced less amount of propagation delay with a slight increase of hardware resources. In case of ASIC implementation, a compressor based converter delay is equivalent to conventional converter with a slight increase of gate count. However, the reduction of delay is evident in case of compressor based multiplier.

  19. Multiplicity distributions in the binary fragmenting with inhibition at the transition line

    Energy Technology Data Exchange (ETDEWEB)

    Botet, R. [Paris-11 Univ., 91 - Orsay (France); Ploszajczak, M. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)

    1996-03-01

    Properties of the fragment multiplicity distribution obtained in the sequential binary fragmentation process at the transition line are investigated. It is shown that the multifragment cumulant correlation functions have the hierarchical, linked-pair structure. Several distinct classes of multiplicity domains are clearly identified, and the asymptotic appearance of the Koba - Nielsen - Olesen scaling is discussed. (author). 36 refs.

  20. Multiplicity distributions in the binary fragmenting with inhibition at the transition line

    International Nuclear Information System (INIS)

    Botet, R.; Ploszajczak, M.

    1996-03-01

    Properties of the fragment multiplicity distribution obtained in the sequential binary fragmentation process at the transition line are investigated. It is shown that the multifragment cumulant correlation functions have the hierarchical, linked-pair structure. Several distinct classes of multiplicity domains are clearly identified, and the asymptotic appearance of the Koba - Nielsen - Olesen scaling is discussed. (author)

  1. On the kinematics of visual binary and multiple stars of the FK4 cataloque

    International Nuclear Information System (INIS)

    Starikova, G.A.

    1981-01-01

    Kinematic features of single, binary and multiple stars are considered. To compare kinematics of such stars with the kinematics of single stars the data on positions and proper motions of those stars which are given in the basic catalogue FK4. Single as well as visual binary and multiple stars united because of their limited content in FK4 have been subdivided by spectra and classes of luminosity into groups with account for known kinematic peculiarities of various spectral groups. Kinematic features for the studied spectral groups are given. By the stars of the FK4 catalogue for various spectral classes the difference of kinematic features of single, visual binary and multiple stars is obtained. However the values of these differences need to be specified due to small number of stars included in five of six groups considered

  2. Stationary Size Distributions of Growing Cells with Binary and Multiple Cell Division

    Science.gov (United States)

    Rading, M. M.; Engel, T. A.; Lipowsky, R.; Valleriani, A.

    2011-10-01

    Populations of unicellular organisms that grow under constant environmental conditions are considered theoretically. The size distribution of these cells is calculated analytically, both for the usual process of binary division, in which one mother cell produces always two daughter cells, and for the more complex process of multiple division, in which one mother cell can produce 2 n daughter cells with n=1,2,3,… . The latter mode of division is inspired by the unicellular algae Chlamydomonas reinhardtii. The uniform response of the whole population to different environmental conditions is encoded in the individual rates of growth and division of the cells. The analytical treatment of the problem is based on size-dependent rules for cell growth and stochastic transition processes for cell division. The comparison between binary and multiple division shows that these different division processes lead to qualitatively different results for the size distribution and the population growth rates.

  3. Theoretical Models of Protostellar Binary and Multiple Systems with AMR Simulations

    Science.gov (United States)

    Matsumoto, Tomoaki; Tokuda, Kazuki; Onishi, Toshikazu; Inutsuka, Shu-ichiro; Saigo, Kazuya; Takakuwa, Shigehisa

    2017-05-01

    We present theoretical models for protostellar binary and multiple systems based on the high-resolution numerical simulation with an adaptive mesh refinement (AMR) code, SFUMATO. The recent ALMA observations have revealed early phases of the binary and multiple star formation with high spatial resolutions. These observations should be compared with theoretical models with high spatial resolutions. We present two theoretical models for (1) a high density molecular cloud core, MC27/L1521F, and (2) a protobinary system, L1551 NE. For the model for MC27, we performed numerical simulations for gravitational collapse of a turbulent cloud core. The cloud core exhibits fragmentation during the collapse, and dynamical interaction between the fragments produces an arc-like structure, which is one of the prominent structures observed by ALMA. For the model for L1551 NE, we performed numerical simulations of gas accretion onto protobinary. The simulations exhibit asymmetry of a circumbinary disk. Such asymmetry has been also observed by ALMA in the circumbinary disk of L1551 NE.

  4. Is stellar multiplicity universal? Tight stellar binaries in the Orion Nebula Cluster

    Science.gov (United States)

    Duchêne, Gaspard; Lacour, S.; Moraux, E.; Goodwin, S.; Bouvier, J.

    2018-05-01

    We present a survey for the tightest visual binaries among 0.3-2 M⊙ members the Orion Nebula Cluster (ONC). Among 42 targets, we discovered 13 new 0{^''.}025-0{^''.}15 companions. Accounting for the Branch bias, we find a companion star fraction (CSF) in the 10-60 au range of 21^{+8}_{-5}%, consistent with that observed in other star-forming regions (SFRs) and twice as high as among field stars; this excess is found with a high level of confidence. Since our sample is dominated by disk-bearing targets, this indicates that disk disruption by close binaries is inefficient, or has not yet taken place, in the ONC. The resulting separation distribution in the ONC drops sharply outside 60 au. These findings are consistent with a scenario in which the initial multiplicity properties, set by the star formation process itself, are identical in the ONC and in other SFRs and subsequently altered by the cluster's dynamical evolution. This implies that the fragmentation process does not depend on the global properties of a molecular cloud, but on the local properties of prestellar cores, and that the latter are self-regulated to be nearly identical in a wide range of environments. These results, however, raise anew the question of the origin of field stars as the tight binaries we have discovered will not be destroyed as the ONC dissolves into the galactic field. It thus appears that most field stars formed in regions that differ from well-studied SFRs in the Solar neighborhood, possibly due to changes in core fragmentation on Gyr timescales.

  5. A Multiple-star Combined Solution Program - Application to the Population II Binary μ Cas

    Science.gov (United States)

    Gudehus, D. H.

    2001-05-01

    A multiple-star combined-solution computer program which can simultaneously fit astrometric, speckle, and spectroscopic data, and solve for the orbital parameters, parallax, proper motion, and masses has been written and is now publicly available. Some features of the program are the ability to scale the weights at run time, hold selected parameters constant, handle up to five spectroscopic subcomponents for the primary and the secondary each, account for the light travel time across the system, account for apsidal motion, plot the results, and write the residuals in position to a standard file for further analysis. The spectroscopic subcomponent data can be represented by reflex velocities and/or by independent measurements. A companion editing program which can manage the data files is included in the package. The program has been applied to the Population II binary μ Cas to derive improved masses and an estimate of the primordial helium abundance. The source code, executables, sample data files, and documentation for OpenVMS and Unix, including Linux, are available at http://www.chara.gsu.edu/\\rlap\\ \\ gudehus/binary.html.

  6. Close Binaries in the Orion Nebula Cluster: On the Universality of Stellar Multiplicity and the Origin of Field Stars

    Science.gov (United States)

    Duchene, Gaspard; Lacour, Sylvestre; Moraux, Estelle; Bouvier, Jerome; Goodwin, Simon

    2018-01-01

    While stellar multiplicity is an ubiquitous outcome of star formation, there is a clear dichotomy between the multiplicity properties of young (~1 Myr-old) stellar clusters, like the ONC, which host a mostly field-like population of visual binaries, and those of equally young sparse populations, like the Taurus-Auriga region, which host twice as many stellar companions. Two distinct scenarios can account for this observation: one in which different star-forming regions form different number of stars, and one in which multiplicity properties are universal at birth but where internal cluster dynamics destroy many wide binaries. To solve this ambiguity, one must probe binaries that are sufficiently close so as not to be destroyed through interactions with other cluster members. To this end, we have conducted a survey for 10-100 au binaries in the ONC using the aperture masking technique with the VLT adaptive optics system. Among our sample of the 42 ONC members, we discovered 13 companions in this range of projected separations. This is consistent with the companion frequency observed in the Taurus population and twice as high as that observed among field stars. This survey thus strongly supports the idea that stellar multiplicity is characterized by near-universal initial properties that can later be dynamically altered. On the other hand, this exacerbates the question of the origin of field stars, since only clusters much denser than the ONC can effectively destroyed binaries closer than 100 au.

  7. V773 Cas, QS Aql, AND BR Ind: ECLIPSING BINARIES AS PARTS OF MULTIPLE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Zasche, P.; Juryšek, J.; Nemravová, J.; Wolf, M.; Korčáková, D. [Astronomical Institute, Charles University in Prague, Faculty of Mathematics and Physics, CZ-180 00, Praha 8, V Holešovičkách 2 (Czech Republic); Uhlař, R. [Private Observatory, Pohoří 71, CZ-254 01, Jílové u Prahy (Czech Republic); Svoboda, P. [Private Observatory, Výpustky 5, CZ-614 00, Brno (Czech Republic); Hoňková, K. [Variable Star and Exoplanet Section of Czech Astronomical Society, Vsetínská 941/78, CZ-757 01, Valašské Meziříčí (Czech Republic); Mašek, M.; Prouza, M. [Institute of Physics, The Czech Academy of Sciences, Na Slovance 1999/2, CZ-182 21, Praha (Czech Republic); Čechura, J.; Šlechta, M., E-mail: zasche@sirrah.troja.mff.cuni.cz [Astronomical Institute, The Czech Academy of Sciences, CZ-251 65, Ondřejov (Czech Republic)

    2017-01-01

    Eclipsing binaries remain crucial objects for our understanding of the universe. In particular, those that are components of multiple systems can help us solve the problem of the formation of these systems. Analysis of the radial velocities together with the light curve produced for the first time precise physical parameters of the components of the multiple systems V773 Cas, QS Aql, and BR Ind. Their visual orbits were also analyzed, which resulted in slightly improved orbital elements. What is typical for all these systems is that their most dominant source is the third distant component. The system V773 Cas consists of two similar G1-2V stars revolving in a circular orbit and a more distant component of the A3V type. Additionally, the improved value of parallax was calculated to be 17.6 mas. Analysis of QS Aql resulted in the following: the inner eclipsing pair is composed of B6V and F1V stars, and the third component is of about the B6 spectral type. The outer orbit has high eccentricity of about 0.95, and observations near its upcoming periastron passage between the years 2038 and 2040 are of high importance. Also, the parallax of the system was derived to be about 2.89 mas, moving the star much closer to the Sun than originally assumed. The system BR Ind was found to be a quadruple star consisting of two eclipsing K dwarfs orbiting each other with a period of 1.786 days; the distant component is a single-lined spectroscopic binary with an orbital period of about 6 days. Both pairs are moving around each other on their 148 year orbit.

  8. Spitzer/IRS Observations Of Multiple Main-Belt And Binary Near-Earth Asteroids

    Science.gov (United States)

    Enriquez, J. Emilio; Marchis, F.; Emery, J. P.; Im, S.

    2010-10-01

    Since the discovery of Ida's companion in 1993, 195 companions of asteroids have been discovered. To understand the formation process of these interesting bodies, their physical properties such as their bulk density, size, shape, and surface roughness need to be determined. During the Spitzer Cycle-4, we obtained IRS thermal emission spectra (5-42 um) of 23 known binary systems. The majority of asteroids are from the main-belt (16), while the rest are NEOs (7). After extracting the thermal spectra, we used a modified Standard Thermal Model (STM) to calculate their equivalent diameter (from 0.8 km to 237 km), their albedo (from 0.04 for C-type to 0.394 for a V-type) and their beaming factor related to the surface roughness and thermal inertia. We derive their emissivity spectra, which is useful to detect silicate features. Combining these measurements with 3D-models of these multiple asteroid systems obtained by lightcurve inversion, we should be able to derive an accurate estimate of their bulk-density and contrast them with their taxonomic classes. Preliminary studies by Marchis et al. (2008)1, suggested a relationship between bulk density and the taxonomic class of asteroids, which varies from 0.9 g/cc for C-complex to 2.4 g/cc for S-complex asteroids. The National Science Foundation supported this research under award number AAG-0807468. It was conducted with the Spitzer space telescope, which is operated by JPL under a contract with NASA. 1 Marchis et al. , 2008, "Mid-infrared Spectra of Binary Asteroids With Spitzer/IRS", 40th DPS Meeting, Bulletin of the American Astronomical Society, 40, 508

  9. Multiple ECG Fiducial Points-Based Random Binary Sequence Generation for Securing Wireless Body Area Networks.

    Science.gov (United States)

    Zheng, Guanglou; Fang, Gengfa; Shankaran, Rajan; Orgun, Mehmet A; Zhou, Jie; Qiao, Li; Saleem, Kashif

    2017-05-01

    Generating random binary sequences (BSes) is a fundamental requirement in cryptography. A BS is a sequence of N bits, and each bit has a value of 0 or 1. For securing sensors within wireless body area networks (WBANs), electrocardiogram (ECG)-based BS generation methods have been widely investigated in which interpulse intervals (IPIs) from each heartbeat cycle are processed to produce BSes. Using these IPI-based methods to generate a 128-bit BS in real time normally takes around half a minute. In order to improve the time efficiency of such methods, this paper presents an ECG multiple fiducial-points based binary sequence generation (MFBSG) algorithm. The technique of discrete wavelet transforms is employed to detect arrival time of these fiducial points, such as P, Q, R, S, and T peaks. Time intervals between them, including RR, RQ, RS, RP, and RT intervals, are then calculated based on this arrival time, and are used as ECG features to generate random BSes with low latency. According to our analysis on real ECG data, these ECG feature values exhibit the property of randomness and, thus, can be utilized to generate random BSes. Compared with the schemes that solely rely on IPIs to generate BSes, this MFBSG algorithm uses five feature values from one heart beat cycle, and can be up to five times faster than the solely IPI-based methods. So, it achieves a design goal of low latency. According to our analysis, the complexity of the algorithm is comparable to that of fast Fourier transforms. These randomly generated ECG BSes can be used as security keys for encryption or authentication in a WBAN system.

  10. RED GIANTS IN ECLIPSING BINARY AND MULTIPLE-STAR SYSTEMS: MODELING AND ASTEROSEISMIC ANALYSIS OF 70 CANDIDATES FROM KEPLER DATA

    International Nuclear Information System (INIS)

    Gaulme, P.; McKeever, J.; Rawls, M. L.; Jackiewicz, J.; Mosser, B.; Guzik, J. A.

    2013-01-01

    Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentially offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a δ-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many of the

  11. Multiple kernel learning using single stage function approximation for binary classification problems

    Science.gov (United States)

    Shiju, S.; Sumitra, S.

    2017-12-01

    In this paper, the multiple kernel learning (MKL) is formulated as a supervised classification problem. We dealt with binary classification data and hence the data modelling problem involves the computation of two decision boundaries of which one related with that of kernel learning and the other with that of input data. In our approach, they are found with the aid of a single cost function by constructing a global reproducing kernel Hilbert space (RKHS) as the direct sum of the RKHSs corresponding to the decision boundaries of kernel learning and input data and searching that function from the global RKHS, which can be represented as the direct sum of the decision boundaries under consideration. In our experimental analysis, the proposed model had shown superior performance in comparison with that of existing two stage function approximation formulation of MKL, where the decision functions of kernel learning and input data are found separately using two different cost functions. This is due to the fact that single stage representation helps the knowledge transfer between the computation procedures for finding the decision boundaries of kernel learning and input data, which inturn boosts the generalisation capacity of the model.

  12. Experimental investigations of multiple scattering of 662 keV gamma photons in elements and binary alloys

    International Nuclear Information System (INIS)

    Singh, Gurvinderjit; Singh, Manpreet; Sandhu, B.S.; Singh, Bhajan

    2008-01-01

    The energy, intensity and angular distributions of multiple scattering of 662 keV gamma photons, emerging from targets of pure elements and binary alloys, are observed as a function of target thickness in reflection and transmission geometries. The observed spectra recorded by a properly shielded NaI (Tl) scintillation detector, in addition to singly scattered events, consist of photons scattered more than once for thick targets. To extract the contribution of multiply scattered photons from the measured spectra, a singly scattered distribution is reconstructed analytically. We observe that the numbers of multiply scattered events increase with increase in target thickness, and saturate for a particular thickness called saturation thickness. The saturation thickness decreases with increasing atomic number. The multiple scattering, an interfering background noise in Compton profiles and Compton cross-section measurements, has been successfully used as a new technique to assign the 'effective atomic number' to binary alloys. Monte Carlo calculations support the present experimental results

  13. Experimental Determination of Impurity and Interdiffusion Coefficients in Seven Ti and Zr Binary Systems Using Diffusion Multiples

    Science.gov (United States)

    Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng

    2018-05-01

    Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.

  14. Causal mediation analysis with a binary outcome and multiple continuous or ordinal mediators: Simulations and application to an alcohol intervention

    OpenAIRE

    Nguyen, Trang Quynh; Webb-Vargas, Yenny; Koning, Ina M.; Stuart, Elizabeth A.

    2016-01-01

    We investigate a method to estimate the combined effect of multiple continuous/ordinal mediators on a binary outcome: 1) fit a structural equation model with probit link for the outcome and identity/probit link for continuous/ordinal mediators, 2) predict potential outcome probabilities, and 3) compute natural direct and indirect effects. Step 2 involves rescaling the latent continuous variable underlying the outcome to address residual mediator variance/covariance. We evaluate the estimation...

  15. R Programs for Truncated Distributions

    Directory of Open Access Journals (Sweden)

    Saralees Nadarajah

    2006-08-01

    Full Text Available Truncated distributions arise naturally in many practical situations. In this note, we provide programs for computing six quantities of interest (probability density function, mean, variance, cumulative distribution function, quantile function and random numbers for any truncated distribution: whether it is left truncated, right truncated or doubly truncated. The programs are written in R: a freely downloadable statistical software.

  16. Hierarchical multiple binary image encryption based on a chaos and phase retrieval algorithm in the Fresnel domain

    International Nuclear Information System (INIS)

    Wang, Zhipeng; Hou, Chenxia; Lv, Xiaodong; Wang, Hongjuan; Gong, Qiong; Qin, Yi

    2016-01-01

    Based on the chaos and phase retrieval algorithm, a hierarchical multiple binary image encryption is proposed. In the encryption process, each plaintext is encrypted into a diffraction intensity pattern by two chaos-generated random phase masks (RPMs). Thereafter, the captured diffraction intensity patterns are partially selected by different binary masks and then combined together to form a single intensity pattern. The combined intensity pattern is saved as ciphertext. For decryption, an iterative phase retrieval algorithm is performed, in which a support constraint in the output plane and a median filtering operation are utilized to achieve a rapid convergence rate without a stagnation problem. The proposed scheme has a simple optical setup and large encryption capacity. In particular, it is well suited for constructing a hierarchical security system. The security and robustness of the proposal are also investigated. (letter)

  17. A SURVEY OF THE HIGH ORDER MULTIPLICITY OF NEARBY SOLAR-TYPE BINARY STARS WITH Robo-AO

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Reed L.; Bui, Khanh; Dekany, Richard G.; Kulkarni, Shrinivas; Tendulkar, Shriharsh P. [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Tokovinin, Andrei [Cerro Tololo Inter-American Observatory, Casilla 603, La Serena (Chile); Mason, Brian D.; Hartkopf, William I. [U.S. Naval Observatory, 3450 Massachusetts Avenue, Washington, DC 20392-5420 (United States); Roberts, Lewis C. Jr. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Baranec, Christoph [Institute for Astronomy, University of Hawai" i at Mānoa, Hilo, HI 96720-2700 (United States); Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Burse, Mahesh P.; Das, H. K.; Punnadi, Sujit; Ramaprakash, A. N. [Inter-University Centre for Astronomy and Astrophysics, Ganeshkhind, Pune, 411007 (India)

    2015-01-20

    We conducted a survey of nearby binary systems composed of main sequence stars of spectral types F and G in order to improve our understanding of the hierarchical nature of multiple star systems. Using Robo-AO, the first robotic adaptive optics instrument, we collected high angular resolution images with deep and well-defined detection limits in the Sloan Digital Sky Survey i' band. A total of 695 components belonging to 595 systems were observed. We prioritized observations of faint secondary components with separations over 10'' to quantify the still poorly constrained frequency of their subsystems. Of the 214 secondaries observed, 39 contain such subsystems; 19 of those were discovered with Robo-AO. The selection-corrected frequency of secondary subsystems with periods from 10{sup 3.5} to 10{sup 5} days is 0.12 ± 0.03, the same as the frequency of such companions to the primary. Half of the secondary pairs belong to quadruple systems where the primary is also a close pair, showing that the presence of subsystems in both components of the outer binary is correlated. The relatively large abundance of 2+2 quadruple systems is a new finding, and will require more exploration of the formation mechanism of multiple star systems. We also targeted close binaries with periods less than 100 yr, searching for their distant tertiary components, and discovered 17 certain and 2 potential new triples. In a subsample of 241 close binaries, 71 have additional outer companions. The overall frequency of tertiary components is not enhanced, compared to all (non-binary) targets, but in the range of outer periods from 10{sup 6} to 10{sup 7.5} days (separations on the order of 500 AU), the frequency of tertiary components is 0.16 ± 0.03, exceeding the frequency of similar systems among all targets (0.09) by almost a factor of two. Measurements of binary stars with Robo-AO allowed us to compute first orbits for 9 pairs and to improve orbits of another 11 pairs.

  18. LUT REVEALS AN ALGOL-TYPE ECLIPSING BINARY WITH THREE ADDITIONAL STELLAR COMPANIONS IN A MULTIPLE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L.-Y.; Zhou, X.; Qian, S.-B.; Li, L.-J.; Liao, W.-P.; Tian, X.-M.; Wang, Z.-H. [Yunnan Observatories, Chinese Academy of Sciences (CAS), P.O. Box 110, 650011 Kunming (China); Hu, J.-Y., E-mail: zhuly@ynao.ac.cn [National Astronomical Observatories, Chinese Academy of Sciences, 100012 Beijing (China)

    2016-04-15

    A complete light curve of the neglected eclipsing binary Algol V548 Cygni in the UV band was obtained with the Lunar-based Ultraviolet Telescope in 2014 May. Photometric solutions are obtained using the Wilson–Devinney method. It is found that solutions with and without third light are quite different. The mass ratio without third light is determined to be q = 0.307, while that derived with third light is q = 0.606. It is shown that V548 Cygni is a semi-detached binary where the secondary component is filling the critical Roche lobe. An analysis of all available eclipse times suggests that there are three cyclic variations in the O–C diagram that are interpreted by the light travel-time effect via the presence of three additional stellar companions. This is in agreement with the presence of a large quantity of third light in the system. The masses of these companions are estimated as m sin i′ ∼ 1.09, 0.20, and 0.52 M{sub ⊙}. They are orbiting the central binary with orbital periods of about 5.5, 23.3, and 69.9 years, i.e., in 1:4:12 resonance orbit. Their orbital separations are about 4.5, 13.2, and 26.4 au, respectively. Our photometric solutions suggest that they contribute about 32.4% to the total light of the multiple system. No obvious long-term changes in the orbital period were found, indicating that the contributions of the mass transfer and the mass loss due to magnetic braking to the period variations are comparable. The detection of three possible additional stellar components orbiting a typical Algol in a multiple system make V548 Cygni a very interesting binary to study in the future.

  19. Modelling and nonlinear shock waves for binary gas mixtures by the discrete Boltzmann equation with multiple collisions

    International Nuclear Information System (INIS)

    Bianchi, M.P.

    1991-01-01

    The discrete Boltzmann equation is a mathematical model in the kinetic theory of gases which defines the time and space evolution of a system of gas particles with a finite number of selected velocities. Discrete kinetic theory is an interesting field of research in mathematical physics and applied mathematics for several reasons. One of the relevant fields of application of the discrete Boltzmann equation is the analysis of nonlinear shock wave phenomena. Here, a new multiple collision regular plane model for binary gas mixtures is proposed within the discrete theory of gases and applied to the analysis of the classical problems of shock wave propagation

  20. Sufficient condition for generation of multiple solidification front in one-dimensional solidification of binary alloys

    International Nuclear Information System (INIS)

    Bobula, E.; Kalicka, Z.

    1981-10-01

    In the paper we consider the one-dimensional solidification of binary alloys in the finite system. The authors present the sufficient condition for solidification in the liquid in front of the moving solid-liquid interface. The effect may produce a fluctuating concentration distributin in the solid. The convection in the liquid and supercooling required for homogeneous nucleation are omitted. A local-equilibrium approximation at the liquid-solid interface is supposed. (author)

  1. Gaia eclipsing binary and multiple systems. Supervised classification and self-organizing maps

    Science.gov (United States)

    Süveges, M.; Barblan, F.; Lecoeur-Taïbi, I.; Prša, A.; Holl, B.; Eyer, L.; Kochoska, A.; Mowlavi, N.; Rimoldini, L.

    2017-07-01

    Context. Large surveys producing tera- and petabyte-scale databases require machine-learning and knowledge discovery methods to deal with the overwhelming quantity of data and the difficulties of extracting concise, meaningful information with reliable assessment of its uncertainty. This study investigates the potential of a few machine-learning methods for the automated analysis of eclipsing binaries in the data of such surveys. Aims: We aim to aid the extraction of samples of eclipsing binaries from such databases and to provide basic information about the objects. We intend to estimate class labels according to two different, well-known classification systems, one based on the light curve morphology (EA/EB/EW classes) and the other based on the physical characteristics of the binary system (system morphology classes; detached through overcontact systems). Furthermore, we explore low-dimensional surfaces along which the light curves of eclipsing binaries are concentrated, and consider their use in the characterization of the binary systems and in the exploration of biases of the full unknown Gaia data with respect to the training sets. Methods: We have explored the performance of principal component analysis (PCA), linear discriminant analysis (LDA), Random Forest classification and self-organizing maps (SOM) for the above aims. We pre-processed the photometric time series by combining a double Gaussian profile fit and a constrained smoothing spline, in order to de-noise and interpolate the observed light curves. We achieved further denoising, and selected the most important variability elements from the light curves using PCA. Supervised classification was performed using Random Forest and LDA based on the PC decomposition, while SOM gives a continuous 2-dimensional manifold of the light curves arranged by a few important features. We estimated the uncertainty of the supervised methods due to the specific finite training set using ensembles of models constructed

  2. hamlet, a binary genetic switch between single- and multiple- dendrite neuron morphology.

    Science.gov (United States)

    Moore, Adrian W; Jan, Lily Yeh; Jan, Yuh Nung

    2002-08-23

    The dendritic morphology of neurons determines the number and type of inputs they receive. In the Drosophila peripheral nervous system (PNS), the external sensory (ES) neurons have a single nonbranched dendrite, whereas the lineally related multidendritic (MD) neurons have extensively branched dendritic arbors. We report that hamlet is a binary genetic switch between these contrasting morphological types. In hamlet mutants, ES neurons are converted to an MD fate, whereas ectopic hamlet expression in MD precursors results in transformation of MD neurons into ES neurons. Moreover, hamlet expression induced in MD neurons undergoing dendrite outgrowth drastically reduces arbor branching.

  3. V773 Cas, QS Aql, and BR Ind: eclipsing binaries as parts of multiple systems

    Czech Academy of Sciences Publication Activity Database

    Zasche, P.; Juryšek, Jakub; Nemravová, J.; Uhlář, R.; Svoboda, P.; Wolf, M.; Hoňková, K.; Mašek, Martin; Prouza, Michael; Čechura, Jan; Korčáková, D.; Šlechta, Miroslav

    2017-01-01

    Roč. 153, č. 1 (2017), 1-7, č. článku 36. ISSN 0004-6256 R&D Projects: GA MŠk LM2015038; GA MŠk LG15014; GA ČR(CZ) GA14-17501S; GA MŠk LG14013 Institutional support: RVO:68378271 ; RVO:67985815 Keywords : binaries * eclipsing stars * spectroscopy Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 2.609, year: 2016

  4. Joint analysis of time-to-event and multiple binary indicators of latent classes

    DEFF Research Database (Denmark)

    Larsen, Klaus

    2004-01-01

    Multiple categorical variables are commonly used in medical and epidemiological research to measure specific aspects of human health and functioning. To analyze such data, models have been developed considering these categorical variables as imperfect indicators of an individual's "true" status o...

  5. Two Wrongs Make a Right: Addressing Underreporting in Binary Data from Multiple Sources.

    Science.gov (United States)

    Cook, Scott J; Blas, Betsabe; Carroll, Raymond J; Sinha, Samiran

    2017-04-01

    Media-based event data-i.e., data comprised from reporting by media outlets-are widely used in political science research. However, events of interest (e.g., strikes, protests, conflict) are often underreported by these primary and secondary sources, producing incomplete data that risks inconsistency and bias in subsequent analysis. While general strategies exist to help ameliorate this bias, these methods do not make full use of the information often available to researchers. Specifically, much of the event data used in the social sciences is drawn from multiple, overlapping news sources (e.g., Agence France-Presse, Reuters). Therefore, we propose a novel maximum likelihood estimator that corrects for misclassification in data arising from multiple sources. In the most general formulation of our estimator, researchers can specify separate sets of predictors for the true-event model and each of the misclassification models characterizing whether a source fails to report on an event. As such, researchers are able to accurately test theories on both the causes of and reporting on an event of interest. Simulations evidence that our technique regularly out performs current strategies that either neglect misclassification, the unique features of the data-generating process, or both. We also illustrate the utility of this method with a model of repression using the Social Conflict in Africa Database.

  6. The Multiple-component Binary Hyad, vA 351 - a Progress Report

    Science.gov (United States)

    Benedict, George Fritz; Franz, Otto G.; Wasserman, Lawrence H.

    2017-06-01

    We extend results first announced by Franz et al. (1998) in the abstract, http://adsabs.harvard.edu/abs/1998AAS...19310207F ,that identified vA 351 = H346 in the Hyades as a multiple star system containing a white dwarf. With HST/FGS fringe tracking and scanning, spanning four years, we establish a parallax, relative orbit, and mass fraction for the A-B components, with a period, P~5.47y. With ground-based radial velocities from the McDonald Observatory Struve 2.1m telescope and Sandiford Spectrograph, spanning 14 years, we find that component B consists of BC, two M dwarf stars orbiting with a very short period (P(BC)~0.75 days), having a mass ratio C/B~0.94. We confirm that the total mass of the system can only be reconciled with the distance and component photometry by including a fainter, higher mass component, proposed to be a ~0.8Msun white dwarf. Thus, the quadruple system consists of three M dwarfs (A,B,C) and one white dwarf (D). The M dwarf masses and absolute magnitudes are consistent with the Benedict et al. (2016, http://adsabs.harvard.edu/abs/2016AJ....152..141B) lower Main Sequence Mass-Luminosity Relation. The radial velocity signal has so far yielded a signature only for the short-period BC orbital motion. Velocities from H-α and He I emission lines confirm the BC period from absorption lines, with similar (He I) and higher (H-α) velocity amplitudes.

  7. A donor splice site mutation in CISD2 generates multiple truncated, non-functional isoforms in Wolfram syndrome type 2 patients.

    Science.gov (United States)

    Cattaneo, Monica; La Sala, Lucia; Rondinelli, Maurizio; Errichiello, Edoardo; Zuffardi, Orsetta; Puca, Annibale Alessandro; Genovese, Stefano; Ceriello, Antonio

    2017-12-13

    Mutations in the gene that encodes CDGSH iron sulfur domain 2 (CISD2) are causative of Wolfram syndrome type 2 (WFS2), a rare autosomal recessive neurodegenerative disorder mainly characterized by diabetes mellitus, optic atrophy, peptic ulcer bleeding and defective platelet aggregation. Four mutations in the CISD2 gene have been reported. Among these mutations, the homozygous c.103 + 1G > A substitution was identified in the donor splice site of intron 1 in two Italian sisters and was predicted to cause a exon 1 to be skipped. Here, we employed molecular assays to characterize the c.103 + 1G > A mutation using the patient's peripheral blood mononuclear cells (PBMCs). 5'-RACE coupled with RT-PCR were used to analyse the effect of the c.103 + 1G > A mutation on mRNA splicing. Western blot analysis was used to analyse the consequences of the CISD2 mutation on the encoded protein. We demonstrated that the c.103 + 1G > A mutation functionally impaired mRNA splicing, producing multiple splice variants characterized by the whole or partial absence of exon 1, which introduced amino acid changes and a premature stop. The affected mRNAs resulted in either predicted targets for nonsense mRNA decay (NMD) or non-functional isoforms. We concluded that the c.103 + 1G > A mutation resulted in the loss of functional CISD2 protein in the two Italian WFS2 patients.

  8. Causal mediation analysis with a binary outcome and multiple continuous or ordinal mediators: Simulations and application to an alcohol intervention.

    Science.gov (United States)

    Nguyen, Trang Quynh; Webb-Vargas, Yenny; Koning, Ina M; Stuart, Elizabeth A

    We investigate a method to estimate the combined effect of multiple continuous/ordinal mediators on a binary outcome: 1) fit a structural equation model with probit link for the outcome and identity/probit link for continuous/ordinal mediators, 2) predict potential outcome probabilities, and 3) compute natural direct and indirect effects. Step 2 involves rescaling the latent continuous variable underlying the outcome to address residual mediator variance/covariance. We evaluate the estimation of risk-difference- and risk-ratio-based effects (RDs, RRs) using the ML, WLSMV and Bayes estimators in Mplus. Across most variations in path-coefficient and mediator-residual-correlation signs and strengths, and confounding situations investigated, the method performs well with all estimators, but favors ML/WLSMV for RDs with continuous mediators, and Bayes for RRs with ordinal mediators. Bayes outperforms WLSMV/ML regardless of mediator type when estimating RRs with small potential outcome probabilities and in two other special cases. An adolescent alcohol prevention study is used for illustration.

  9. Mixtures of truncated basis functions

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael

    2012-01-01

    In this paper we propose a framework, called mixtures of truncated basis functions (MoTBFs), for representing general hybrid Bayesian networks. The proposed framework generalizes both the mixture of truncated exponentials (MTEs) framework and the mixture of polynomials (MoPs) framework. Similar t...

  10. A Post-Truncation Parameterization of Truncated Normal Technical Inefficiency

    OpenAIRE

    Christine Amsler; Peter Schmidt; Wen-Jen Tsay

    2013-01-01

    In this paper we consider a stochastic frontier model in which the distribution of technical inefficiency is truncated normal. In standard notation, technical inefficiency u is distributed as N^+ (μ,σ^2). This distribution is affected by some environmental variables z that may or may not affect the level of the frontier but that do affect the shortfall of output from the frontier. We will distinguish the pre-truncation mean (μ) and variance (σ^2) from the post-truncation mean μ_*=E(u) and var...

  11. How Truncating Are 'Truncating Languages'? Evidence from Russian and German.

    Science.gov (United States)

    Rathcke, Tamara V

    Russian and German have pr eviously been described as 'truncating', or cutting off target frequencies of the phrase-final pitch trajectories when the time available for voicing is compromised. However, supporting evidence is rare and limited to only a few pitch categories. This paper reports a production study conducted to document pitch adjustments to linguistic materials, in which the amount of voicing available for the realization of a pitch pattern varies from relatively long to extremely short. Productions of nuclear H+L*, H* and L*+H pitch accents followed by a low boundary tone were investigated in the two languages. The results of the study show that speakers of both 'truncating languages' do not utilize truncation exclusively when accommodating to different segmental environments. On the contrary, they employ several strategies - among them is truncation but also compression and temporal re-alignment - to produce the target pitch categories under increasing time pressure. Given that speakers can systematically apply all three adjustment strategies to produce some pitch patterns (H* L% in German and Russian) while not using truncation in others (H+L* L% particularly in Russian), we question the effectiveness of the typological classification of these two languages as 'truncating'. Moreover, the phonetic detail of truncation varies considerably, both across and within the two languages, indicating that truncation cannot be easily modeled as a unified phenomenon. The results further suggest that the phrase-final pitch adjustments are sensitive to the phonological composition of the tonal string and the status of a particular tonal event (associated vs. boundary tone), and do not apply to falling vs. rising pitch contours across the board, as previously put forward for German. Implications for the intonational phonology and prosodic typology are addressed in the discussion. © 2017 S. Karger AG, Basel.

  12. Truncated Calogero-Sutherland models

    Science.gov (United States)

    Pittman, S. M.; Beau, M.; Olshanii, M.; del Campo, A.

    2017-05-01

    A one-dimensional quantum many-body system consisting of particles confined in a harmonic potential and subject to finite-range two-body and three-body inverse-square interactions is introduced. The range of the interactions is set by truncation beyond a number of neighbors and can be tuned to interpolate between the Calogero-Sutherland model and a system with nearest and next-nearest neighbors interactions discussed by Jain and Khare. The model also includes the Tonks-Girardeau gas describing impenetrable bosons as well as an extension with truncated interactions. While the ground state wave function takes a truncated Bijl-Jastrow form, collective modes of the system are found in terms of multivariable symmetric polynomials. We numerically compute the density profile, one-body reduced density matrix, and momentum distribution of the ground state as a function of the range r and the interaction strength.

  13. Interacting binaries

    International Nuclear Information System (INIS)

    Eggleton, P.P.; Pringle, J.E.

    1985-01-01

    This volume contains 15 review articles in the field of binary stars. The subjects reviewed span considerably, from the shortest period of interacting binaries to the longest, symbiotic stars. Also included are articles on Algols, X-ray binaries and Wolf-Rayet stars (single and binary). Contents: Preface. List of Participants. Activity of Contact Binary Systems. Wolf-Rayet Stars and Binarity. Symbiotic Stars. Massive X-ray Binaries. Stars that go Hump in the Night: The SU UMa Stars. Interacting Binaries - Summing Up

  14. Angular truncation errors in integrating nephelometry

    International Nuclear Information System (INIS)

    Moosmueller, Hans; Arnott, W. Patrick

    2003-01-01

    Ideal integrating nephelometers integrate light scattered by particles over all directions. However, real nephelometers truncate light scattered in near-forward and near-backward directions below a certain truncation angle (typically 7 deg. ). This results in truncation errors, with the forward truncation error becoming important for large particles. Truncation errors are commonly calculated using Mie theory, which offers little physical insight and no generalization to nonspherical particles. We show that large particle forward truncation errors can be calculated and understood using geometric optics and diffraction theory. For small truncation angles (i.e., <10 deg. ) as typical for modern nephelometers, diffraction theory by itself is sufficient. Forward truncation errors are, by nearly a factor of 2, larger for absorbing particles than for nonabsorbing particles because for large absorbing particles most of the scattered light is due to diffraction as transmission is suppressed. Nephelometers calibration procedures are also discussed as they influence the effective truncation error

  15. New results to BDD truncation method for efficient top event probability calculation

    International Nuclear Information System (INIS)

    Mo, Yuchang; Zhong, Farong; Zhao, Xiangfu; Yang, Quansheng; Cui, Gang

    2012-01-01

    A Binary Decision Diagram (BDD) is a graph-based data structure that calculates an exact top event probability (TEP). It has been a very difficult task to develop an efficient BDD algorithm that can solve a large problem since its memory consumption is very high. Recently, in order to solve a large reliability problem within limited computational resources, Jung presented an efficient method to maintain a small BDD size by a BDD truncation during a BDD calculation. In this paper, it is first identified that Jung's BDD truncation algorithm can be improved for a more practical use. Then, a more efficient truncation algorithm is proposed in this paper, which can generate truncated BDD with smaller size and approximate TEP with smaller truncation error. Empirical results showed this new algorithm uses slightly less running time and slightly more storage usage than Jung's algorithm. It was also found, that designing a truncation algorithm with ideal features for every possible fault tree is very difficult, if not impossible. The so-called ideal features of this paper would be that with the decrease of truncation limits, the size of truncated BDD converges to the size of exact BDD, but should never be larger than exact BDD.

  16. Truncated States Obtained by Iteration

    International Nuclear Information System (INIS)

    Cardoso, W. B.; Almeida, N. G. de

    2008-01-01

    We introduce the concept of truncated states obtained via iterative processes (TSI) and study its statistical features, making an analogy with dynamical systems theory (DST). As a specific example, we have studied TSI for the doubling and the logistic functions, which are standard functions in studying chaos. TSI for both the doubling and logistic functions exhibit certain similar patterns when their statistical features are compared from the point of view of DST

  17. Truncated Groebner fans and lattice ideals

    OpenAIRE

    Lauritzen, Niels

    2005-01-01

    We outline a generalization of the Groebner fan of a homogeneous ideal with maximal cells parametrizing truncated Groebner bases. This "truncated" Groebner fan is usually much smaller than the full Groebner fan and offers the natural framework for conversion between truncated Groebner bases. The generic Groebner walk generalizes naturally to this setting by using the Buchberger algorithm with truncation on facets. We specialize to the setting of lattice ideals. Here facets along the generic w...

  18. Secular dynamics of hierarchical multiple systems composed of nested binaries, with an arbitrary number of bodies and arbitrary hierarchical structure - II. External perturbations: flybys and supernovae

    Science.gov (United States)

    Hamers, Adrian S.

    2018-05-01

    We extend the formalism of a previous paper to include the effects of flybys and instantaneous perturbations such as supernovae on the long-term secular evolution of hierarchical multiple systems with an arbitrary number of bodies and hierarchy, provided that the system is composed of nested binary orbits. To model secular encounters, we expand the Hamiltonian in terms of the ratio of the separation of the perturber with respect to the barycentre of the multiple system, to the separation of the widest orbit. Subsequently, we integrate over the perturber orbit numerically or analytically. We verify our method for secular encounters and illustrate it with an example. Furthermore, we describe a method to compute instantaneous orbital changes to multiple systems, such as asymmetric supernovae and impulsive encounters. The secular code, with implementation of the extensions described in this paper, is publicly available within AMUSE, and we provide a number of simple example scripts to illustrate its usage for secular and impulsive encounters and asymmetric supernovae. The extensions presented in this paper are a next step towards efficiently modelling the evolution of complex multiple systems embedded in star clusters.

  19. Planet formation in Binaries

    OpenAIRE

    Thebault, Ph.; Haghighipour, N.

    2014-01-01

    Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review her...

  20. Zero-truncated negative binomial - Erlang distribution

    Science.gov (United States)

    Bodhisuwan, Winai; Pudprommarat, Chookait; Bodhisuwan, Rujira; Saothayanun, Luckhana

    2017-11-01

    The zero-truncated negative binomial-Erlang distribution is introduced. It is developed from negative binomial-Erlang distribution. In this work, the probability mass function is derived and some properties are included. The parameters of the zero-truncated negative binomial-Erlang distribution are estimated by using the maximum likelihood estimation. Finally, the proposed distribution is applied to real data, the number of methamphetamine in the Bangkok, Thailand. Based on the results, it shows that the zero-truncated negative binomial-Erlang distribution provided a better fit than the zero-truncated Poisson, zero-truncated negative binomial, zero-truncated generalized negative-binomial and zero-truncated Poisson-Lindley distributions for this data.

  1. Formation of multiple stoichiometric phases in binary systems by combined bulk and grain boundary diffusion: Experiments and model

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.; Schillinger, W.

    2013-01-01

    The thermodynamic extremal principle has been used by the authors to treat the evolution of binary and multicomponent systems under the assumption that all phases are nearly stoichiometric. Up to now only bulk diffusion has been taken into account. The concept is now extended to combined bulk and grain boundary diffusion possible in each newly formed phase. The grains are approximated by cylinders allowing interface diffusion along the top and bottom of the grains and grain boundary diffusion along the mantle with different interface/grain boundary diffusion coefficients. A consistent analysis yields an effective diffusion coefficient taking into account the combined interface/grain boundary and bulk diffusion of each individual component. The current concept is applied to the Cu–Sn couple which has been studied by a number of researchers. The results of simulations are compared with experiments at 200 °C on solid systems reported in the literature as well as with our experiments at 250 °C with liquid Sn.

  2. Binary catalogue of exoplanets

    Science.gov (United States)

    Schwarz, Richard; Bazso, Akos; Zechner, Renate; Funk, Barbara

    2016-02-01

    Since 1995 there is a database which list most of the known exoplanets (The Extrasolar Planets Encyclopaedia at http://exoplanet.eu/). With the growing number of detected exoplanets in binary and multiple star systems it became more important to mark and to separate them into a new database, which is not available in the Extrasolar Planets Encyclopaedia. Therefore we established an online database (which can be found at: http://www.univie.ac.at/adg/schwarz/multiple.html) for all known exoplanets in binary star systems and in addition for multiple star systems, which will be updated regularly and linked to the Extrasolar Planets Encyclopaedia. The binary catalogue of exoplanets is available online as data file and can be used for statistical purposes. Our database is divided into two parts: the data of the stars and the planets, given in a separate list. We describe also the different parameters of the exoplanetary systems and present some applications.

  3. ALICE measurements in p–Pb collisions: Charged particle multiplicity, centrality determination and implications for binary scaling

    Energy Technology Data Exchange (ETDEWEB)

    Toia, Alberica, E-mail: alberica.toia@cern.ch [Istituto Nazionale di Fisica Nucleare, Padova (Italy); Goethe University Frankfurt (Germany)

    2014-06-15

    Measurements of particle production in proton–nucleus collisions provide a reference to disentangle final state effects, i.e. signatures of the formation of a deconfined hot medium, from initial state effects, already present in cold nuclear matter. Since many initial state effects are expected to vary as function of the number of collisions suffered by the incoming proton, it is crucial to estimate the centrality of the collision. In p-Pb collisions categorization of events into different centrality classes using a particle multiplicity distribution is complicated by the low particle multiplicities and the large multiplicity fluctuations. We present ALICE measurements of particle production in p-Pb collisions at √(s{sub NN})=5.02 TeV, including the pseudo-rapidity and transverse momentum dependence, and we discuss the event classification in centrality classes and its implications for the measurements of nuclear modification factors.

  4. Statistical estimation for truncated exponential families

    CERN Document Server

    Akahira, Masafumi

    2017-01-01

    This book presents new findings on nonregular statistical estimation. Unlike other books on this topic, its major emphasis is on helping readers understand the meaning and implications of both regularity and irregularity through a certain family of distributions. In particular, it focuses on a truncated exponential family of distributions with a natural parameter and truncation parameter as a typical nonregular family. This focus includes the (truncated) Pareto distribution, which is widely used in various fields such as finance, physics, hydrology, geology, astronomy, and other disciplines. The family is essential in that it links both regular and nonregular distributions, as it becomes a regular exponential family if the truncation parameter is known. The emphasis is on presenting new results on the maximum likelihood estimation of a natural parameter or truncation parameter if one of them is a nuisance parameter. In order to obtain more information on the truncation, the Bayesian approach is also considere...

  5. Classification With Truncated Distance Kernel.

    Science.gov (United States)

    Huang, Xiaolin; Suykens, Johan A K; Wang, Shuning; Hornegger, Joachim; Maier, Andreas

    2018-05-01

    This brief proposes a truncated distance (TL1) kernel, which results in a classifier that is nonlinear in the global region but is linear in each subregion. With this kernel, the subregion structure can be trained using all the training data and local linear classifiers can be established simultaneously. The TL1 kernel has good adaptiveness to nonlinearity and is suitable for problems which require different nonlinearities in different areas. Though the TL1 kernel is not positive semidefinite, some classical kernel learning methods are still applicable which means that the TL1 kernel can be directly used in standard toolboxes by replacing the kernel evaluation. In numerical experiments, the TL1 kernel with a pregiven parameter achieves similar or better performance than the radial basis function kernel with the parameter tuned by cross validation, implying the TL1 kernel a promising nonlinear kernel for classification tasks.

  6. Lamp with a truncated reflector cup

    Science.gov (United States)

    Li, Ming; Allen, Steven C.; Bazydola, Sarah; Ghiu, Camil-Daniel

    2013-10-15

    A lamp assembly, and method for making same. The lamp assembly includes first and second truncated reflector cups. The lamp assembly also includes at least one base plate disposed between the first and second truncated reflector cups, and a light engine disposed on a top surface of the at least one base plate. The light engine is configured to emit light to be reflected by one of the first and second truncated reflector cups.

  7. Interacting binaries

    CERN Document Server

    Shore, S N; van den Heuvel, EPJ

    1994-01-01

    This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.

  8. Computing correct truncated excited state wavefunctions

    Science.gov (United States)

    Bacalis, N. C.; Xiong, Z.; Zang, J.; Karaoulanis, D.

    2016-12-01

    We demonstrate that, if a wave function's truncated expansion is small, then the standard excited states computational method, of optimizing one "root" of a secular equation, may lead to an incorrect wave function - despite the correct energy according to the theorem of Hylleraas, Undheim and McDonald - whereas our proposed method [J. Comput. Meth. Sci. Eng. 8, 277 (2008)] (independent of orthogonality to lower lying approximants) leads to correct reliable small truncated wave functions. The demonstration is done in He excited states, using truncated series expansions in Hylleraas coordinates, as well as standard configuration-interaction truncated expansions.

  9. A Comparative Study of Multiple Object Detection Using Haar-Like Feature Selection and Local Binary Patterns in Several Platforms

    Directory of Open Access Journals (Sweden)

    Souhail Guennouni

    2015-01-01

    Full Text Available Object detection has been attracting much interest due to the wide spectrum of applications that use it. It has been driven by an increasing processing power available in software and hardware platforms. In this work we present a developed application for multiple objects detection based on OpenCV libraries. The complexity-related aspects that were considered in the object detection using cascade classifier are described. Furthermore, we discuss the profiling and porting of the application into an embedded platform and compare the results with those obtained on traditional platforms. The proposed application deals with real-time systems implementation and the results give a metric able to select where the cases of object detection applications may be more complex and where it may be simpler.

  10. Perspective on rainbow-ladder truncation

    International Nuclear Information System (INIS)

    Eichmann, G.; Alkofer, R.; Krassnigg, A.; Cloeet, I. C.; Roberts, C. D.

    2008-01-01

    Prima facie the systematic implementation of corrections to the rainbow-ladder truncation of QCD's Dyson-Schwinger equations will uniformly reduce in magnitude those calculated mass-dimensioned results for pseudoscalar and vector meson properties that are not tightly constrained by symmetries. The aim and interpretation of studies employing rainbow-ladder truncation are reconsidered in this light

  11. Stability of Slopes Reinforced with Truncated Piles

    Directory of Open Access Journals (Sweden)

    Shu-Wei Sun

    2016-01-01

    Full Text Available Piles are extensively used as a means of slope stabilization. A novel engineering technique of truncated piles that are unlike traditional piles is introduced in this paper. A simplified numerical method is proposed to analyze the stability of slopes stabilized with truncated piles based on the shear strength reduction method. The influential factors, which include pile diameter, pile spacing, depth of truncation, and existence of a weak layer, are systematically investigated from a practical point of view. The results show that an optimum ratio exists between the depth of truncation and the pile length above a slip surface, below which truncating behavior has no influence on the piled slope stability. This optimum ratio is bigger for slopes stabilized with more flexible piles and piles with larger spacing. Besides, truncated piles are more suitable for slopes with a thin weak layer than homogenous slopes. In practical engineering, the piles could be truncated reasonably while ensuring the reinforcement effect. The truncated part of piles can be filled with the surrounding soil and compacted to reduce costs by using fewer materials.

  12. Planetary Formation and Dynamics in Binary Systems

    Science.gov (United States)

    Xie, J. W.

    2013-01-01

    As of today, over 500 exoplanets have been detected since the first exoplanet was discovered around a solar-like star in 1995. The planets in binaries could be common as stars are usually born in binary or multiple star systems. Although current observations show that the planet host rate in multiple star systems is around 17%, this fraction should be considered as a lower limit because of noticeable selection effects against binaries in planet searches. Most of the current known planet-bearing binary systems are S-types, meaning the companion star acts as a distant satellite, typically orbiting the inner star-planet system over 100 AU away. Nevertheless, there are four systems with a smaller separation of 20 AU, including the Gamma Cephei, GJ 86, HD 41004, and HD 196885. In addition to the planets in circumprimary (S-type) orbits discussed above, planets in circumbinary (P-type) orbits have been found in only two systems. In this thesis, we mainly study the planet formation in the S-type binary systems. In chapter 1, we first summarize current observational facts of exoplanets both in single-star and binary systems, then review the theoretical models of planet formation, with special attention to the application in binary systems. Perturbative effects from stellar companions render the planet formation process in binary systems even more complex than that in single-star systems. The perturbations from a binary companion can excite planetesimal orbits, and increase their mutual impact velocities to the values that might exceed their escape velocity or even the critical velocity for the onset of eroding collisions. The intermediate stage of the formation process---from planetesimals to planetary embryos---is thus the most problematic. In the following chapters, we investigate whether and how the planet formation goes through such a problematic stage. In chapter 2, we study the effects of gas dissipation on the planetesimals' mutual accretion. We find that in a

  13. Non-ergodicity transition and multiple glasses in binary mixtures: on the accuracy of the input static structure in the mode coupling theory

    International Nuclear Information System (INIS)

    Tchangnwa Nya, F; Ayadim, A; Germain, Ph; Amokrane, S

    2012-01-01

    We examine the question of the accuracy of the static correlation functions used as input in the mode coupling theory (MCT) of non-ergodic states in binary mixtures. We first consider hard-sphere mixtures and compute the static pair structure from the Ornstein-Zernike equations with the Percus-Yevick closure and more accurate ones that use bridge functions deduced from Rosenfeld’s fundamental measures functional. The corresponding MCT predictions for the non-ergodicity lines and the transitions between multiple glassy states are determined from the long-time limit of the density autocorrelation functions. We find that while the non-ergodicity transition line is not very sensitive to the input static structure, up to diameter ratios D 2 /D 1 = 10, quantitative differences exist for the transitions between different glasses. The discrepancies with the more accurate closures become even qualitative for sufficiently asymmetric mixtures. They are correlated with the incorrect behavior of the PY structure at high size asymmetry. From the example of ultra-soft potential it is argued that this issue is of general relevance beyond the hard-sphere model. (paper)

  14. Trojan Binaries

    Science.gov (United States)

    Noll, K. S.

    2017-12-01

    The Jupiter Trojans, in the context of giant planet migration models, can be thought of as an extension of the small body populations found beyond Neptune in the Kuiper Belt. Binaries are a distinctive feature of small body populations in the Kuiper Belt with an especially high fraction apparent among the brightest Cold Classicals. The binary fraction, relative sizes, and separations in the dynamically excited populations (Scattered, Resonant) reflects processes that may have eroded a more abundant initial population. This trend continues in the Centaurs and Trojans where few binaries have been found. We review new evidence including a third resolved Trojan binary and lightcurve studies to understand how the Trojans are related to the small body populations that originated in the outer protoplanetary disk.

  15. Soluble γ-secretase modulators selectively inhibit the production of the 42-amino acid amyloid β peptide variant and augment the production of multiple carboxy-truncated amyloid β species.

    Science.gov (United States)

    Wagner, Steven L; Zhang, Can; Cheng, Soan; Nguyen, Phuong; Zhang, Xulun; Rynearson, Kevin D; Wang, Rong; Li, Yueming; Sisodia, Sangram S; Mobley, William C; Tanzi, Rudolph E

    2014-02-04

    Alzheimer's disease (AD) is characterized pathologically by an abundance of extracellular neuritic plaques composed primarily of the 42-amino acid amyloid β peptide variant (Aβ42). In the majority of familial AD (FAD) cases, e.g., those harboring mutations in presenilin 1 (PS1), there is a relative increase in the levels of Aβ42 compared to the levels of Aβ40. We previously reported the characterization of a series of aminothiazole-bridged aromates termed aryl aminothiazole γ-secretase modulators or AGSMs [Kounnas, M. Z., et al. (2010) Neuron 67, 769-780] and showed their potential for use in the treatment of FAD [Wagner, S. L., et al. (2012) Arch. Neurol. 69, 1255-1258]. Here we describe a series of GSMs with physicochemical properties improved compared to those of AGSMs. Specific heterocycle replacements of the phenyl rings in AGSMs provided potent molecules with improved aqueous solubilities. A number of these soluble γ-secretase modulators (SGSMs) potently lowered Aβ42 levels without inhibiting proteolysis of Notch or causing accumulation of amyloid precursor protein carboxy-terminal fragments, even at concentrations approximately 1000-fold greater than their IC50 values for reducing Aβ42 levels. The effects of one potent SGSM on Aβ peptide production were verified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, showing enhanced production of a number of carboxy-truncated Aβ species. This SGSM also inhibited Aβ42 peptide production in a highly purified reconstituted γ-secretase in vitro assay system and retained the ability to modulate γ-secretase-mediated proteolysis in a stably transfected cell culture model overexpressing a human PS1 mutation validating the potential for use in FAD.

  16. Clustered survival data with left-truncation

    DEFF Research Database (Denmark)

    Eriksson, Frank; Martinussen, Torben; Scheike, Thomas H.

    2015-01-01

    Left-truncation occurs frequently in survival studies, and it is well known how to deal with this for univariate survival times. However, there are few results on how to estimate dependence parameters and regression effects in semiparametric models for clustered survival data with delayed entry....... Surprisingly, existing methods only deal with special cases. In this paper, we clarify different kinds of left-truncation and suggest estimators for semiparametric survival models under specific truncation schemes. The large-sample properties of the estimators are established. Small-sample properties...

  17. NLO renormalization in the Hamiltonian truncation

    Science.gov (United States)

    Elias-Miró, Joan; Rychkov, Slava; Vitale, Lorenzo G.

    2017-09-01

    Hamiltonian truncation (also known as "truncated spectrum approach") is a numerical technique for solving strongly coupled quantum field theories, in which the full Hilbert space is truncated to a finite-dimensional low-energy subspace. The accuracy of the method is limited only by the available computational resources. The renormalization program improves the accuracy by carefully integrating out the high-energy states, instead of truncating them away. In this paper, we develop the most accurate ever variant of Hamiltonian Truncation, which implements renormalization at the cubic order in the interaction strength. The novel idea is to interpret the renormalization procedure as a result of integrating out exactly a certain class of high-energy "tail states." We demonstrate the power of the method with high-accuracy computations in the strongly coupled two-dimensional quartic scalar theory and benchmark it against other existing approaches. Our work will also be useful for the future goal of extending Hamiltonian truncation to higher spacetime dimensions.

  18. Planets in Binary Star Systems

    CERN Document Server

    Haghighipour, Nader

    2010-01-01

    The discovery of extrasolar planets over the past decade has had major impacts on our understanding of the formation and dynamical evolution of planetary systems. There are features and characteristics unseen in our solar system and unexplainable by the current theories of planet formation and dynamics. Among these new surprises is the discovery of planets in binary and multiple-star systems. The discovery of such "binary-planetary" systems has confronted astrodynamicists with many new challenges, and has led them to re-examine the theories of planet formation and dynamics. Among these challenges are: How are planets formed in binary star systems? What would be the notion of habitability in such systems? Under what conditions can binary star systems have habitable planets? How will volatiles necessary for life appear on such planets? This volume seeks to gather the current research in the area of planets in binary and multistar systems and to familiarize readers with its associated theoretical and observation...

  19. Equivalence of truncated count mixture distributions and mixtures of truncated count distributions.

    Science.gov (United States)

    Böhning, Dankmar; Kuhnert, Ronny

    2006-12-01

    This article is about modeling count data with zero truncation. A parametric count density family is considered. The truncated mixture of densities from this family is different from the mixture of truncated densities from the same family. Whereas the former model is more natural to formulate and to interpret, the latter model is theoretically easier to treat. It is shown that for any mixing distribution leading to a truncated mixture, a (usually different) mixing distribution can be found so that the associated mixture of truncated densities equals the truncated mixture, and vice versa. This implies that the likelihood surfaces for both situations agree, and in this sense both models are equivalent. Zero-truncated count data models are used frequently in the capture-recapture setting to estimate population size, and it can be shown that the two Horvitz-Thompson estimators, associated with the two models, agree. In particular, it is possible to achieve strong results for mixtures of truncated Poisson densities, including reliable, global construction of the unique NPMLE (nonparametric maximum likelihood estimator) of the mixing distribution, implying a unique estimator for the population size. The benefit of these results lies in the fact that it is valid to work with the mixture of truncated count densities, which is less appealing for the practitioner but theoretically easier. Mixtures of truncated count densities form a convex linear model, for which a developed theory exists, including global maximum likelihood theory as well as algorithmic approaches. Once the problem has been solved in this class, it might readily be transformed back to the original problem by means of an explicitly given mapping. Applications of these ideas are given, particularly in the case of the truncated Poisson family.

  20. Binary effectivity rules

    DEFF Research Database (Denmark)

    Keiding, Hans; Peleg, Bezalel

    2006-01-01

    is binary if it is rationalized by an acyclic binary relation. The foregoing result motivates our definition of a binary effectivity rule as the effectivity rule of some binary SCR. A binary SCR is regular if it satisfies unanimity, monotonicity, and independence of infeasible alternatives. A binary...

  1. Truncation correction for oblique filtering lines

    International Nuclear Information System (INIS)

    Hoppe, Stefan; Hornegger, Joachim; Lauritsch, Guenter; Dennerlein, Frank; Noo, Frederic

    2008-01-01

    State-of-the-art filtered backprojection (FBP) algorithms often define the filtering operation to be performed along oblique filtering lines in the detector. A limited scan field of view leads to the truncation of those filtering lines, which causes artifacts in the final reconstructed volume. In contrast to the case where filtering is performed solely along the detector rows, no methods are available for the case of oblique filtering lines. In this work, the authors present two novel truncation correction methods which effectively handle data truncation in this case. Method 1 (basic approach) handles data truncation in two successive preprocessing steps by applying a hybrid data extrapolation method, which is a combination of a water cylinder extrapolation and a Gaussian extrapolation. It is independent of any specific reconstruction algorithm. Method 2 (kink approach) uses similar concepts for data extrapolation as the basic approach but needs to be integrated into the reconstruction algorithm. Experiments are presented from simulated data of the FORBILD head phantom, acquired along a partial-circle-plus-arc trajectory. The theoretically exact M-line algorithm is used for reconstruction. Although the discussion is focused on theoretically exact algorithms, the proposed truncation correction methods can be applied to any FBP algorithm that exposes oblique filtering lines.

  2. Formal truncations of connected kernel equations

    International Nuclear Information System (INIS)

    Dixon, R.M.

    1977-01-01

    The Connected Kernel Equations (CKE) of Alt, Grassberger and Sandhas (AGS); Kouri, Levin and Tobocman (KLT); and Bencze, Redish and Sloan (BRS) are compared against reaction theory criteria after formal channel space and/or operator truncations have been introduced. The Channel Coupling Class concept is used to study the structure of these CKE's. The related wave function formalism of Sandhas, of L'Huillier, Redish and Tandy and of Kouri, Krueger and Levin are also presented. New N-body connected kernel equations which are generalizations of the Lovelace three-body equations are derived. A method for systematically constructing fewer body models from the N-body BRS and generalized Lovelace (GL) equations is developed. The formally truncated AGS, BRS, KLT and GL equations are analyzed by employing the criteria of reciprocity and two-cluster unitarity. Reciprocity considerations suggest that formal truncations of BRS, KLT and GL equations can lead to reciprocity-violating results. This study suggests that atomic problems should employ three-cluster connected truncations and that the two-cluster connected truncations should be a useful starting point for nuclear systems

  3. New Schemes for Positive Real Truncation

    Directory of Open Access Journals (Sweden)

    Kari Unneland

    2007-07-01

    Full Text Available Model reduction, based on balanced truncation, of stable and of positive real systems are considered. An overview over some of the already existing techniques are given: Lyapunov balancing and stochastic balancing, which includes Riccati balancing. A novel scheme for positive real balanced truncation is then proposed, which is a combination of the already existing Lyapunov balancing and Riccati balancing. Using Riccati balancing, the solution of two Riccati equations are needed to obtain positive real reduced order systems. For the suggested method, only one Lyapunov equation and one Riccati equation are solved in order to obtain positive real reduced order systems, which is less computationally demanding. Further it is shown, that in order to get positive real reduced order systems, only one Riccati equation needs to be solved. Finally, this is used to obtain positive real frequency weighted balanced truncation.

  4. An iterative reconstruction from truncated projection data

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Various methods have been proposed for tomographic reconstruction from truncated projection data. In this paper, a reconstructive method is discussed which consists of iterations of filtered back-projection, reprojection and some nonlinear processings. First, the method is so constructed that it converges to a fixed point. Then, to examine its effectiveness, comparisons are made by computer experiments with two existing reconstructive methods for truncated projection data, that is, the method of extrapolation based on the smooth assumption followed by filtered back-projection, and modified additive ART

  5. Stellar Disk Truncations: HI Density and Dynamics

    Science.gov (United States)

    Trujillo, Ignacio; Bakos, Judit

    2010-06-01

    Using HI Nearby Galaxy Survey (THINGS) 21-cm observations of a sample of nearby (nearly face-on) galaxies we explore whether the stellar disk truncation phenomenon produces any signature either in the HI gas density and/or in the gas dynamics. Recent cosmological simulations suggest that the origin of the break on the surface brightness distribution is produced by the appearance of a warp at the truncation position. This warp should produce a flaring on the gas distribution increasing the velocity dispersion of the HI component beyond the break. We do not find, however, any evidence of this increase in the gas velocity dispersion profile.

  6. The Dynamics of Truncated Black Hole Accretion Disks. I. Viscous Hydrodynamic Case

    Energy Technology Data Exchange (ETDEWEB)

    Hogg, J. Drew; Reynolds, Christopher S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2017-07-10

    Truncated accretion disks are commonly invoked to explain the spectro-temporal variability in accreting black holes in both small systems, i.e., state transitions in galactic black hole binaries (GBHBs), and large systems, i.e., low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the dynamics of truncated disks is lacking. We present a well-resolved viscous, hydrodynamic simulation that uses an ad hoc cooling prescription to drive a thermal instability and, hence, produce the first sustained truncated accretion disk. With this simulation, we perform a study of the dynamics, angular momentum transport, and energetics of a truncated disk. We find that the time variability introduced by the quasi-periodic transition of gas from efficient cooling to inefficient cooling impacts the evolution of the simulated disk. A consequence of the thermal instability is that an outflow is launched from the hot/cold gas interface, which drives large, sub-Keplerian convective cells into the disk atmosphere. The convective cells introduce a viscous θ − ϕ stress that is less than the generic r − ϕ viscous stress component, but greatly influences the evolution of the disk. In the truncated disk, we find that the bulk of the accreted gas is in the hot phase.

  7. Truncation in diffraction pattern analysis. Pt. 1

    International Nuclear Information System (INIS)

    Delhez, R.; Keijser, T.H. de; Mittemeijer, E.J.; Langford, J.I.

    1986-01-01

    An evaluation of the concept of a line profile is provoked by truncation of the range of intensity measurement in practice. The measured truncated line profile can be considered either as part of the total intensity distribution which peaks at or near the reciprocal-lattice points (approach 1), or as part of a component line profile which is confined to a single reciprocal-lattice point (approach 2). Some false conceptions in line-profile analysis can then be avoided and recipes can be developed for the extrapolation of the tails of the truncated line profile. Fourier analysis of line profiles, according to the first approach, implies a Fourier series development of the total intensity distribution defined within [l - 1/2, l + 1/2] (l indicates the node considered in reciprocal space); the second approach implies a Fourier transformation of the component line profile defined within [ - ∞, + ∞]. Exact descriptions of size broadening are provided by both approaches, whereas combined size and strain broadening can only be evaluated adequately within the first approach. Straightforward methods are given for obtaining truncation-corrected values for the average crystallite size. (orig.)

  8. Balanced truncation for linear switched systems

    DEFF Research Database (Denmark)

    Petreczky, Mihaly; Wisniewski, Rafal; Leth, John-Josef

    2013-01-01

    In this paper, we present a theoretical analysis of the model reduction algorithm for linear switched systems from Shaker and Wisniewski (2011, 2009) and . This algorithm is a reminiscence of the balanced truncation method for linear parameter varying systems (Wood et al., 1996) [3]. Specifically...

  9. Family Therapy for the "Truncated" Nuclear Family.

    Science.gov (United States)

    Zuk, Gerald H.

    1980-01-01

    The truncated nuclear family consists of a two-generation group in which conflict has produced a polarization of values. The single-parent family is at special risk. Go-between process enables the therapist to depolarize sharply conflicted values and reduce pathogenic relating. (Author)

  10. The Young Visual Binary Survey

    Science.gov (United States)

    Prato, Lisa; Avilez, Ian; Lindstrom, Kyle; Graham, Sean; Sullivan, Kendall; Biddle, Lauren; Skiff, Brian; Nofi, Larissa; Schaefer, Gail; Simon, Michal

    2018-01-01

    Differences in the stellar and circumstellar properties of the components of young binaries provide key information about star and disk formation and evolution processes. Because objects with separations of a few to a few hundred astronomical units share a common environment and composition, multiple systems allow us to control for some of the factors which play into star formation. We are completing analysis of a rich sample of about 100 pre-main sequence binaries and higher order multiples, primarily located in the Taurus and Ophiuchus star forming regions. This poster will highlight some of out recent, exciting results. All reduced spectra and the results of our analysis will be publicly available to the community at http://jumar.lowell.edu/BinaryStars/. Support for this research was provided in part by NSF award AST-1313399 and by NASA Keck KPDA funding.

  11. On truncations of the exact renormalization group

    CERN Document Server

    Morris, T R

    1994-01-01

    We investigate the Exact Renormalization Group (ERG) description of (Z_2 invariant) one-component scalar field theory, in the approximation in which all momentum dependence is discarded in the effective vertices. In this context we show how one can perform a systematic search for non-perturbative continuum limits without making any assumption about the form of the lagrangian. Concentrating on the non-perturbative three dimensional Wilson fixed point, we then show that the sequence of truncations n=2,3,\\dots, obtained by expanding about the field \\varphi=0 and discarding all powers \\varphi^{2n+2} and higher, yields solutions that at first converge to the answer obtained without truncation, but then cease to further converge beyond a certain point. No completely reliable method exists to reject the many spurious solutions that are also found. These properties are explained in terms of the analytic behaviour of the untruncated solutions -- which we describe in some detail.

  12. Truncated Wigner dynamics and conservation laws

    Science.gov (United States)

    Drummond, Peter D.; Opanchuk, Bogdan

    2017-10-01

    Ultracold Bose gases can be used to experimentally test many-body theory predictions. Here we point out that both exact conservation laws and dynamical invariants exist in the topical case of the one-dimensional Bose gas, and these provide an important validation of methods. We show that the first four quantum conservation laws are exactly conserved in the approximate truncated Wigner approach to many-body quantum dynamics. Center-of-mass position variance is also exactly calculable. This is nearly exact in the truncated Wigner approximation, apart from small terms that vanish as N-3 /2 as N →∞ with fixed momentum cutoff. Examples of this are calculated in experimentally relevant, mesoscopic cases.

  13. No chiral truncation of quantum log gravity?

    Science.gov (United States)

    Andrade, Tomás; Marolf, Donald

    2010-03-01

    At the classical level, chiral gravity may be constructed as a consistent truncation of a larger theory called log gravity by requiring that left-moving charges vanish. In turn, log gravity is the limit of topologically massive gravity (TMG) at a special value of the coupling (the chiral point). We study the situation at the level of linearized quantum fields, focussing on a unitary quantization. While the TMG Hilbert space is continuous at the chiral point, the left-moving Virasoro generators become ill-defined and cannot be used to define a chiral truncation. In a sense, the left-moving asymptotic symmetries are spontaneously broken at the chiral point. In contrast, in a non-unitary quantization of TMG, both the Hilbert space and charges are continuous at the chiral point and define a unitary theory of chiral gravity at the linearized level.

  14. Approximate truncation robust computed tomography—ATRACT

    International Nuclear Information System (INIS)

    Dennerlein, Frank; Maier, Andreas

    2013-01-01

    We present an approximate truncation robust algorithm to compute tomographic images (ATRACT). This algorithm targets at reconstructing volumetric images from cone-beam projections in scenarios where these projections are highly truncated in each dimension. It thus facilitates reconstructions of small subvolumes of interest, without involving prior knowledge about the object. Our method is readily applicable to medical C-arm imaging, where it may contribute to new clinical workflows together with a considerable reduction of x-ray dose. We give a detailed derivation of ATRACT that starts from the conventional Feldkamp filtered-backprojection algorithm and that involves, as one component, a novel original formula for the inversion of the two-dimensional Radon transform. Discretization and numerical implementation are discussed and reconstruction results from both, simulated projections and first clinical data sets are presented. (paper)

  15. Truncated Dual-Cap Nucleation Site Development

    Science.gov (United States)

    Matson, Douglas M.; Sander, Paul J.

    2012-01-01

    During heterogeneous nucleation within a metastable mushy-zone, several geometries for nucleation site development must be considered. Traditional spherical dual cap and crevice models are compared to a truncated dual cap to determine the activation energy and critical cluster growth kinetics in ternary Fe-Cr-Ni steel alloys. Results of activation energy results indicate that nucleation is more probable at grain boundaries within the solid than at the solid-liquid interface.

  16. On the Truncated Pareto Distribution with applications

    OpenAIRE

    Zaninetti, Lorenzo; Ferraro, Mario

    2008-01-01

    The Pareto probability distribution is widely applied in different fields such us finance, physics, hydrology, geology and astronomy. This note deals with an application of the Pareto distribution to astrophysics and more precisely to the statistical analysis of mass of stars and of diameters of asteroids. In particular a comparison between the usual Pareto distribution and its truncated version is presented. Finally a possible physical mechanism that produces Pareto tails for the distributio...

  17. Evolution of binaries with compact objects in globular clusters

    OpenAIRE

    Ivanova, Natalia

    2017-01-01

    Dynamical interactions that take place between objects in dense stellar systems lead to frequent formation of exotic stellar objects, unusual binaries, and systems of higher multiplicity. They are most important for the formation of binaries with neutron stars and black holes, which are usually observationally revealed in mass-transferring binaries. Here we review the current understanding of compact object's retention, of the metallicity dependence on the formation of low-mass X-ray binaries...

  18. Binary aspects and particle multiplicities of the fragments from sup(nat)Ag+340 MeV 40Ar deep inelastic collisions

    International Nuclear Information System (INIS)

    Cauvin, B.; Jared, R.C.; Russo, P.; Schmitt, R.P.; Babinet, R.; Moretto, L.G.

    1978-01-01

    Deep inelastic fragments from the reaction sup(nat)Ag+340MeV 40 Ar have been studied in coincidence. Charged particles (10<=Z<=32) were detected and indentified in Z by means of a ΔE-E telescope, while the complementary fragments were detected in a one-dimensional solid-state position-sensitive detector. Both in-plane and out-of-plane correlations were measured. The results confirm the binary nature of the deep inelastic process for this reaction. From the measured energies and angles of the fragments and the atomic number of one of the fragments, it was possible to determine the total mass loss due to the de-excitation of the fragments as well as the total evaporated charge at symmetry. An iterative procedure is discussed which enables one to determine the masses and kinetic energies of the fragments before evaporation, as well as the total number of particles evaporated by each fragment. The widths of the in-plane and out-of-plane correlations agree with the results of the iterative calculations, as do evaporation calculations which are based on the charge equilibrium model. The experimental results support the charge equilibrium model and indicate that thermal equilibrium is achieved between the fragments at fixed mass asymmetry. (Auth.)

  19. Joint survival probability via truncated invariant copula

    International Nuclear Information System (INIS)

    Kim, Jeong-Hoon; Ma, Yong-Ki; Park, Chan Yeol

    2016-01-01

    Highlights: • We have studied an issue of dependence structure between default intensities. • We use a multivariate shot noise intensity process, where jumps occur simultaneously and their sizes are correlated. • We obtain the joint survival probability of the integrated intensities by using a copula. • We apply our theoretical result to pricing basket default swap spread. - Abstract: Given an intensity-based credit risk model, this paper studies dependence structure between default intensities. To model this structure, we use a multivariate shot noise intensity process, where jumps occur simultaneously and their sizes are correlated. Through very lengthy algebra, we obtain explicitly the joint survival probability of the integrated intensities by using the truncated invariant Farlie–Gumbel–Morgenstern copula with exponential marginal distributions. We also apply our theoretical result to pricing basket default swap spreads. This result can provide a useful guide for credit risk management.

  20. Shell model truncation schemes for rotational nuclei

    International Nuclear Information System (INIS)

    Halse, P.; Jaqua, L.; Barrett, B.R.

    1990-01-01

    The suitability of the pair condensate approach for rotational states is studied in a single j = 17/2 shell of identical nucleons interacting through a quadrupole-quadrupole hamiltonian. The ground band and a K = 2 excited band are both studied in detail. A direct comparison of the exact states with those constituting the SD and SDG subspaces is used to identify the important degrees of freedom for these levels. The range of pairs necessary for a good description is found to be highly state dependent; S and D pairs are the major constituents of the low-spin ground band levels, while G pairs are needed for those in the γ-band. Energy spectra are obtained for each truncated subspace. SDG pairs allow accurate reproduction of the binding energy and K = 2 excitation energy, but still give a moment of inertia which is about 30% too small even for the lowest levels

  1. Entanglement entropy from the truncated conformal space

    Directory of Open Access Journals (Sweden)

    T. Palmai

    2016-08-01

    Full Text Available A new numerical approach to entanglement entropies of the Rényi type is proposed for one-dimensional quantum field theories. The method extends the truncated conformal spectrum approach and we will demonstrate that it is especially suited to study the crossover from massless to massive behavior when the subsystem size is comparable to the correlation length. We apply it to different deformations of massless free fermions, corresponding to the scaling limit of the Ising model in transverse and longitudinal fields. For massive free fermions the exactly known crossover function is reproduced already in very small system sizes. The new method treats ground states and excited states on the same footing, and the applicability for excited states is illustrated by reproducing Rényi entropies of low-lying states in the transverse field Ising model.

  2. Analysis of truncation limit in probabilistic safety assessment

    International Nuclear Information System (INIS)

    Cepin, Marko

    2005-01-01

    A truncation limit defines the boundaries of what is considered in the probabilistic safety assessment and what is neglected. The truncation limit that is the focus here is the truncation limit on the size of the minimal cut set contribution at which to cut off. A new method was developed, which defines truncation limit in probabilistic safety assessment. The method specifies truncation limits with more stringency than presenting existing documents dealing with truncation criteria in probabilistic safety assessment do. The results of this paper indicate that the truncation limits for more complex probabilistic safety assessments, which consist of larger number of basic events, should be more severe than presently recommended in existing documents if more accuracy is desired. The truncation limits defined by the new method reduce the relative errors of importance measures and produce more accurate results for probabilistic safety assessment applications. The reduced relative errors of importance measures can prevent situations, where the acceptability of change of equipment under investigation according to RG 1.174 would be shifted from region, where changes can be accepted, to region, where changes cannot be accepted, if the results would be calculated with smaller truncation limit

  3. Do stellar clusters form fewer binaries? Using moderate separation binaries to distinguish between nature and nurture

    Science.gov (United States)

    Reiter, Megan

    2017-08-01

    Fewer wide-separation binaries are found in dense stellar clusters than in looser stellar associations. It is therefore unclear whether feedback in clusters prevents the formation of multiple systems or dynamical interactions destroy them. Measuring the prevalence of close, bound binary systems provide a key test to distinguish between these possibilities. Systems with separations of 10-50 AU will survive interactions in the cluster environment, and therefore are more representative of the natal population of multiple systems. By fitting a double-star PSF, we will identify visual binaries in the Orion Nebula with separations as small as 0.03. At the distance of Orion, this corresponds to a physical separation of 12 AU, effectively closing the observational gap in the binary separation distribution left between known visual and spectroscopic binaries (>65 AU or PhD thesis.

  4. Solving a binary puzzle

    NARCIS (Netherlands)

    Utomo, P.H.; Makarim, R.H.

    2017-01-01

    A Binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set {0,1} {0,1}. Let n≥4 be an even integer, a solved binary puzzle is an n×n binary array that satisfies the following conditions: (1) no three consecutive ones and no three consecutive zeros in each row and each

  5. Eclipsing binaries in open clusters

    DEFF Research Database (Denmark)

    Southworth, John; Clausen, J.V.

    2006-01-01

    Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...

  6. Observation of the dispersion of wedge waves propagating along cylinder wedge with different truncations by laser ultrasound technique

    Science.gov (United States)

    Jia, Jing; Zhang, Yu; Han, Qingbang; Jing, Xueping

    2017-10-01

    The research focuses on study the influence of truncations on the dispersion of wedge waves propagating along cylinder wedge with different truncations by using the laser ultrasound technique. The wedge waveguide models with different truncations were built by using finite element method (FEM). The dispersion curves were obtained by using 2D Fourier transformation method. Multiple mode wedge waves were observed, which was well agreed with the results estimated from Lagasse's empirical formula. We established cylinder wedge with radius of 3mm, 20° and 60°angle, with 0μm, 5μm, 10μm, 20μm, 30μm, 40μm, and 50μm truncations, respectively. It was found that non-ideal wedge tip caused abnormal dispersion of the mode of cylinder wedge, the modes of 20° cylinder wedge presents the characteristics of guide waves which propagating along hollow cylinder as the truncation increasing. Meanwhile, the modes of 60° cylinder wedge with truncations appears the characteristics of guide waves propagating along hollow cylinder, and its mode are observed clearly. The study can be used to evaluate and detect wedge structure.

  7. Characterization of mTOR-Responsive Truncated mRNAs in Cell Proliferation

    Science.gov (United States)

    2017-07-01

    These findings identify a previously uncharacterized role for mTOR in modulating 3’- UTR length of mRNAs by alternative polyadenylation ( APA ). Another...outcome of APA in the mTOR-activated transcriptome is an early termination of mRNA transcription to produce truncated mRNAs with polyadenylation in...for exhaustive analysis of Alternative cleavage and polyadenylation ( APA ) events (Figure 1). In IntMAP, first the position of multiple

  8. Application of a truncated normal failure distribution in reliability testing

    Science.gov (United States)

    Groves, C., Jr.

    1968-01-01

    Statistical truncated normal distribution function is applied as a time-to-failure distribution function in equipment reliability estimations. Age-dependent characteristics of the truncated function provide a basis for formulating a system of high-reliability testing that effectively merges statistical, engineering, and cost considerations.

  9. Wigner distribution function of circularly truncated light beams

    NARCIS (Netherlands)

    Bastiaans, M.J.; Nijhawan, O.P.; Gupta, A.K.; Musla, A.K.; Singh, Kehar

    1998-01-01

    Truncating a light beam is expressed as a convolution of its Wigner distribution function and the WDF of the truncating aperture. The WDF of a circular aperture is derived and an approximate expression - which is exact in the space and the spatial-frequency origin and whose integral over the spatial

  10. Vortex breakdown in a truncated conical bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Balci, Adnan; Brøns, Morten [DTU Compute, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Herrada, Miguel A [E.S.I, Universidad de Sevilla, Camino de los Descubrimientos s/n, E-41092 (Spain); Shtern, Vladimir N, E-mail: mobr@dtu.dk [Shtern Research and Consulting, Houston, TX 77096 (United States)

    2015-12-15

    This numerical study explains the eddy formation and disappearance in a slow steady axisymmetric air–water flow in a vertical truncated conical container, driven by the rotating top disk. Numerous topological metamorphoses occur as the water height, H{sub w}, and the bottom-sidewall angle, α, vary. It is found that the sidewall convergence (divergence) from the top to the bottom stimulates (suppresses) the development of vortex breakdown (VB) in both water and air. At α = 60°, the flow topology changes eighteen times as H{sub w} varies. The changes are due to (a) competing effects of AMF (the air meridional flow) and swirl, which drive meridional motions of opposite directions in water, and (b) feedback of water flow on AMF. For small H{sub w}, the AMF effect dominates. As H{sub w} increases, the swirl effect dominates and causes VB. The water flow feedback produces and modifies air eddies. The results are of fundamental interest and can be relevant for aerial bioreactors. (paper)

  11. Vortex breakdown in a truncated conical bioreactor

    International Nuclear Information System (INIS)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A; Shtern, Vladimir N

    2015-01-01

    This numerical study explains the eddy formation and disappearance in a slow steady axisymmetric air–water flow in a vertical truncated conical container, driven by the rotating top disk. Numerous topological metamorphoses occur as the water height, H w , and the bottom-sidewall angle, α, vary. It is found that the sidewall convergence (divergence) from the top to the bottom stimulates (suppresses) the development of vortex breakdown (VB) in both water and air. At α = 60°, the flow topology changes eighteen times as H w varies. The changes are due to (a) competing effects of AMF (the air meridional flow) and swirl, which drive meridional motions of opposite directions in water, and (b) feedback of water flow on AMF. For small H w , the AMF effect dominates. As H w increases, the swirl effect dominates and causes VB. The water flow feedback produces and modifies air eddies. The results are of fundamental interest and can be relevant for aerial bioreactors. (paper)

  12. A dearth of short-period massive binaries in the young massive star forming region M 17. Evidence for a large orbital separation at birth?

    Science.gov (United States)

    Sana, H.; Ramírez-Tannus, M. C.; de Koter, A.; Kaper, L.; Tramper, F.; Bik, A.

    2017-03-01

    Aims: The formation of massive stars remains poorly understood and little is known about their birth multiplicity properties. Here, we aim to quantitatively investigate the strikingly low radial-velocity dispersion measured for a sample of 11 massive pre- and near-main-sequence stars (σ1D= 5.6 ± 0.2 km s-1) in the very young massive star forming region M 17, in order to obtain first constraints on the multiplicity properties of young massive stellar objects. Methods: We compute the radial-velocity dispersion of synthetic populations of massive stars for various multiplicity properties and we compare the obtained σ1D distributions to the observed value. We specifically investigate two scenarios: a low binary fraction and a dearth of short-period binary systems. Results: Simulated populations with low binary fractions () or with truncated period distributions (Pcutoff > 9 months) are able to reproduce the low σ1D observed within their 68%-confidence intervals. Furthermore, parent populations with fbin > 0.42 or Pcutoff < 47 d can be rejected at the 5%-significance level. Both constraints are in stark contrast with the high binary fraction and plethora of short-period systems in few Myr-old, well characterized OB-type populations. To explain the difference in the context of the first scenario would require a variation of the outcome of the massive star formation process. In the context of the second scenario, compact binaries must form later on, and the cut-off period may be related to physical length-scales representative of the bloated pre-main-sequence stellar radii or of their accretion disks. Conclusions: If the obtained constraints for the M 17's massive-star population are representative of the multiplicity properties of massive young stellar objects, our results may provide support to a massive star formation process in which binaries are initially formed at larger separations, then harden or migrate to produce the typical (untruncated) power-law period

  13. Binary Masking & Speech Intelligibility

    DEFF Research Database (Denmark)

    Boldt, Jesper

    The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experime......The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either...... experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined ideal binary mask is evaluated using hearing impaired listeners, and a novel binary mask -- the target...... binary mask -- is introduced. The target binary mask shows the same substantial increase in intelligibility as the ideal binary mask and is proposed as a new reference for binary masking. In the category of real-life applications, two new methods are proposed: a method for estimation of the ideal binary...

  14. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  15. Evolution of truncated moments of singlet parton distributions

    International Nuclear Information System (INIS)

    Forte, S.; Magnea, L.; Piccione, A.; Ridolfi, G.

    2001-01-01

    We define truncated Mellin moments of parton distributions by restricting the integration range over the Bjorken variable to the experimentally accessible subset x 0 ≤x≤1 of the allowed kinematic range 0≤x≤1. We derive the evolution equations satisfied by truncated moments in the general (singlet) case in terms of an infinite triangular matrix of anomalous dimensions which couple each truncated moment to all higher moments with orders differing by integers. We show that the evolution of any moment can be determined to arbitrarily good accuracy by truncating the system of coupled moments to a sufficiently large but finite size, and show how the equations can be solved in a way suitable for numerical applications. We discuss in detail the accuracy of the method in view of applications to precision phenomenology

  16. Flexible scheme to truncate the hierarchy of pure states.

    Science.gov (United States)

    Zhang, P-P; Bentley, C D B; Eisfeld, A

    2018-04-07

    The hierarchy of pure states (HOPS) is a wavefunction-based method that can be used for numerically modeling open quantum systems. Formally, HOPS recovers the exact system dynamics for an infinite depth of the hierarchy. However, truncation of the hierarchy is required to numerically implement HOPS. We want to choose a "good" truncation method, where by "good" we mean that it is numerically feasible to check convergence of the results. For the truncation approximation used in previous applications of HOPS, convergence checks are numerically challenging. In this work, we demonstrate the application of the "n-particle approximation" to HOPS. We also introduce a new approximation, which we call the "n-mode approximation." We then explore the convergence of these truncation approximations with respect to the number of equations required in the hierarchy in two exemplary problems: absorption and energy transfer of molecular aggregates.

  17. Measuring a Truncated Disk in Aquila X-1

    Science.gov (United States)

    King, Ashley L.; Tomsick, John A.; Miller, Jon M.; Chenevez, Jerome; Barret, Didier; Boggs, Steven E.; Chakrabarty, Deepto; Christensen, Finn E.; Craig, William W.; Feurst, Felix; hide

    2016-01-01

    We present NuSTAR and Swift observations of the neutron star Aquila X-1 during the peak of its 2014 July outburst. The spectrum is soft with strong evidence for a broad Fe K(alpha) line. Modeled with a relativistically broadened reflection model, we find that the inner disk is truncated with an inner radius of 15 +/- 3RG. The disk is likely truncated by either the boundary layer and/or a magnetic field. Associating the truncated inner disk with pressure from a magnetic field gives an upper limit of B < 5+/- 2x10(exp 8) G. Although the radius is truncated far from the stellar surface, material is still reaching the neutron star surface as evidenced by the X-ray burst present in the NuSTAR observation.

  18. Squeezing in multi-mode nonlinear optical state truncation

    International Nuclear Information System (INIS)

    Said, R.S.; Wahiddin, M.R.B.; Umarov, B.A.

    2007-01-01

    In this Letter, we show that multi-mode qubit states produced via nonlinear optical state truncation driven by classical external pumpings exhibit squeezing condition. We restrict our discussions to the two- and three-mode cases

  19. Investigation of propagation dynamics of truncated vector vortex beams.

    Science.gov (United States)

    Srinivas, P; Perumangatt, C; Lal, Nijil; Singh, R P; Srinivasan, B

    2018-06-01

    In this Letter, we experimentally investigate the propagation dynamics of truncated vector vortex beams generated using a Sagnac interferometer. Upon focusing, the truncated vector vortex beam is found to regain its original intensity structure within the Rayleigh range. In order to explain such behavior, the propagation dynamics of a truncated vector vortex beam is simulated by decomposing it into the sum of integral charge beams with associated complex weights. We also show that the polarization of the truncated composite vector vortex beam is preserved all along the propagation axis. The experimental observations are consistent with theoretical predictions based on previous literature and are in good agreement with our simulation results. The results hold importance as vector vortex modes are eigenmodes of the optical fiber.

  20. Truncated Newton-Raphson Methods for Quasicontinuum Simulations

    National Research Council Canada - National Science Library

    Liang, Yu; Kanapady, Ramdev; Chung, Peter W

    2006-01-01

    .... In this research, we report the effectiveness of the truncated Newton-Raphson method and quasi-Newton method with low-rank Hessian update strategy that are evaluated against the full Newton-Raphson...

  1. Truncation Depth Rule-of-Thumb for Convolutional Codes

    Science.gov (United States)

    Moision, Bruce

    2009-01-01

    In this innovation, it is shown that a commonly used rule of thumb (that the truncation depth of a convolutional code should be five times the memory length, m, of the code) is accurate only for rate 1/2 codes. In fact, the truncation depth should be 2.5 m/(1 - r), where r is the code rate. The accuracy of this new rule is demonstrated by tabulating the distance properties of a large set of known codes. This new rule was derived by bounding the losses due to truncation as a function of the code rate. With regard to particular codes, a good indicator of the required truncation depth is the path length at which all paths that diverge from a particular path have accumulated the minimum distance of the code. It is shown that the new rule of thumb provides an accurate prediction of this depth for codes of varying rates.

  2. Flexible scheme to truncate the hierarchy of pure states

    Science.gov (United States)

    Zhang, P.-P.; Bentley, C. D. B.; Eisfeld, A.

    2018-04-01

    The hierarchy of pure states (HOPS) is a wavefunction-based method that can be used for numerically modeling open quantum systems. Formally, HOPS recovers the exact system dynamics for an infinite depth of the hierarchy. However, truncation of the hierarchy is required to numerically implement HOPS. We want to choose a "good" truncation method, where by "good" we mean that it is numerically feasible to check convergence of the results. For the truncation approximation used in previous applications of HOPS, convergence checks are numerically challenging. In this work, we demonstrate the application of the "n-particle approximation" to HOPS. We also introduce a new approximation, which we call the "n-mode approximation." We then explore the convergence of these truncation approximations with respect to the number of equations required in the hierarchy in two exemplary problems: absorption and energy transfer of molecular aggregates.

  3. On the propagation of truncated localized waves in dispersive silica

    KAUST Repository

    Salem, Mohamed; Bagci, Hakan

    2010-01-01

    Propagation characteristics of truncated Localized Waves propagating in dispersive silica and free space are numerically analyzed. It is shown that those characteristics are affected by the changes in the relation between the transverse spatial

  4. Mining frequent binary expressions

    NARCIS (Netherlands)

    Calders, T.; Paredaens, J.; Kambayashi, Y.; Mohania, M.K.; Tjoa, A.M.

    2000-01-01

    In data mining, searching for frequent patterns is a common basic operation. It forms the basis of many interesting decision support processes. In this paper we present a new type of patterns, binary expressions. Based on the properties of a specified binary test, such as reflexivity, transitivity

  5. Conditional truncated plurigaussian simulation; Simulacao plurigaussiana truncada com condicionamento

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Vitor Hugo

    1997-12-01

    The goal of this work was a development of an algorithm for the Truncated Plurigaussian Stochastic Simulation and its validation in a complex geologic model. The reservoir data comes from Aux Vases Zone at Rural Hill Field in Illinois, USA, and from the 2D geological interpretation, described by WEIMER et al. (1982), three sets of samples, with different grid densities ware taken. These sets were used to condition the simulation and to refine the estimates of the non-stationary matrix of facies proportions, used to truncate the gaussian random functions (RF). The Truncated Plurigaussian Model is an extension of the Truncated Gaussian Model (TG). In this new model its possible to use several facies with different spatial structures, associated with the simplicity of TG. The geological interpretation, used as a validation model, was chosen because it shows a set of NW/SE elongated tidal channels cutting the NE/SW shoreline deposits interleaved by impermeable facies. These characteristics of spatial structures of sedimentary facies served to evaluate the simulation model. Two independent gaussian RF were used, as well as an 'erosive model' as the truncation strategy. Also, non-conditional simulations were proceeded, using linearly combined gaussian RF with varying correlation coefficients. It was analyzed the influence of some parameters like: number of gaussian RF,correlation coefficient, truncations strategy, in the outcome of simulation, and also the physical meaning of these parameters under a geological point of view. It was showed, step by step, using an example, the theoretical model, and how to construct an algorithm to simulate with the Truncated Plurigaussian Model. The conclusion of this work was that even with a plain algorithm of the Conditional Truncated Plurigaussian and a complex geological model it's possible to obtain a usefulness product. (author)

  6. Enhancing propagation characteristics of truncated localized waves in silica

    KAUST Repository

    Salem, Mohamed

    2011-07-01

    The spectral characteristics of truncated Localized Waves propagating in dispersive silica are analyzed. Numerical experiments show that the immunity of the truncated Localized Waves propagating in dispersive silica to decay and distortion is enhanced as the non-linearity of the relation between the transverse spatial spectral components and the wave vector gets stronger, in contrast to free-space propagating waves, which suffer from early decay and distortion. © 2011 IEEE.

  7. Tau truncation is a productive posttranslational modification of neurofibrillary degeneration in Alzheimer's disease.

    Science.gov (United States)

    Kovacech, B; Novak, M

    2010-12-01

    Deposits of the misfolded neuronal protein tau are major hallmarks of neurodegeneration in Alzheimer's disease (AD) and other tauopathies. The etiology of the transformation process of the intrinsically disordered soluble protein tau into the insoluble misordered aggregate has attracted much attention. Tau undergoes multiple modifications in AD, most notably hyperphosphorylation and truncation. Hyperphosphorylation is widely regarded as the hottest candidate for the inducer of the neurofibrillary pathology. However, the true nature of the impetus that initiates the whole process in the human brains remains unknown. In AD, several site-specific tau cleavages were identified and became connected to the progression of the disease. In addition, western blot analyses of tau species in AD brains reveal multitudes of various truncated forms. In this review we summarize evidence showing that tau truncation alone is sufficient to induce the complete cascade of neurofibrillary pathology, including hyperphosphorylation and accumulation of misfolded insoluble forms of tau. Therefore, proteolytical abnormalities in the stressed neurons and production of aberrant tau cleavage products deserve closer attention and should be considered as early therapeutic targets for Alzheimer's disease.

  8. A binomial truncation function proposed for the second-moment approximation of tight-binding potential and application in the ternary Ni-Hf-Ti system

    International Nuclear Information System (INIS)

    Li, J H; Dai, X D; Wang, T L; Liu, B X

    2007-01-01

    We propose a two-parameter binomial truncation function for the second-moment approximation of the tight-binding (TB-SMA) interatomic potential and illustrate in detail the procedure of constructing the potentials for binary and ternary transition metal systems. For the ternary Ni-Hf-Ti system, the lattice constants, cohesion energies, elastic constants and bulk moduli of six binary compounds, i.e. L1 2 Ni 3 Hf, NiHf 3 , Ni 3 Ti, NiTi 3 , Hf 3 Ti and HfTi 3 , are firstly acquired by ab initio calculations and then employed to derive the binomial-truncated TB-SMA Ni-Hf-Ti potential. Applying the ab initio derived Ni-Hf-Ti potential, the lattice constants, cohesive energy, elastic constants and bulk moduli of another six binary compounds, i.e. D0 3 NiHf 3 , NiTi 3 HfTi 3 , and B2 NiHf, NiTi, HfTi, and two ternary compounds, i.e. C1 b NiHfTi, L2 1 Ni 2 HfTi, are calculated, respectively. It is found that, for the eight binary compounds studied, the calculated lattice constants and cohesion energies are in excellent agreement with those directly acquired from ab initio calculations and that the elastic constants and bulk moduli calculated from the potential are also qualitatively consistent with the results from ab initio calculations

  9. Close binary stars

    International Nuclear Information System (INIS)

    Larsson-Leander, G.

    1979-01-01

    Studies of close binary stars are being persued more vigorously than ever, with about 3000 research papers and notes pertaining to the field being published during the triennium 1976-1978. Many major advances and spectacular discoveries were made, mostly due to increased observational efficiency and precision, especially in the X-ray, radio, and ultraviolet domains. Progress reports are presented in the following areas: observational techniques, methods of analyzing light curves, observational data, physical data, structure and models of close binaries, statistical investigations, and origin and evolution of close binaries. Reports from the Coordinates Programs Committee, the Committee for Extra-Terrestrial Observations and the Working Group on RS CVn binaries are included. (Auth./C.F.)

  10. Binary spectral minutiae representation with multi-sample fusion for fingerprint recognition

    NARCIS (Netherlands)

    Xu, H.; Veldhuis, Raymond N.J.

    Biometric fusion is the approach to improve the biometric system performance by combining multiple sources of biometric information. The binary spectral minutiae representation is a method to represent a fingerprint minutiae set as a fixed-length binary string. This binary representation has the

  11. Binary and ternary systems

    International Nuclear Information System (INIS)

    Petrov, D.A.

    1986-01-01

    Conditions for thermodynamical equilibrium in binary and ternary systems are considered. Main types of binary and ternary system phase diagrams are sequently constructed on the basis of general regularities on the character of transition from one equilibria to others. New statements on equilibrium line direction in the diagram triple points and their isothermal cross sections are developed. New represenations on equilibria in case of monovariant curve minimum and maximum on three-phase equilibrium formation in ternary system are introduced

  12. The Stars and Gas in Outer Parts of Galaxy Disks : Extended or Truncated, Flat or Warped?

    NARCIS (Netherlands)

    van der Kruit, P. C.; Funes, JG; Corsini, EM

    2008-01-01

    I review observations of truncations of stellar disks and models for their origin, compare observations of truncations in moderately inclined galaxies to those in edge-on systems and discuss the relation between truncations and H I-warps and their systematics and origin. Truncations are a common

  13. Truncated predictor feedback for time-delay systems

    CERN Document Server

    Zhou, Bin

    2014-01-01

    This book provides a systematic approach to the design of predictor based controllers for (time-varying) linear systems with either (time-varying) input or state delays. Differently from those traditional predictor based controllers, which are infinite-dimensional static feedback laws and may cause difficulties in their practical implementation, this book develops a truncated predictor feedback (TPF) which involves only finite dimensional static state feedback. Features and topics: A novel approach referred to as truncated predictor feedback for the stabilization of (time-varying) time-delay systems in both the continuous-time setting and the discrete-time setting is built systematically Semi-global and global stabilization problems of linear time-delay systems subject to either magnitude saturation or energy constraints are solved in a systematic manner Both stabilization of a single system and consensus of a group of systems (multi-agent systems) are treated in a unified manner by applying the truncated pre...

  14. Probability distributions with truncated, log and bivariate extensions

    CERN Document Server

    Thomopoulos, Nick T

    2018-01-01

    This volume presents a concise and practical overview of statistical methods and tables not readily available in other publications. It begins with a review of the commonly used continuous and discrete probability distributions. Several useful distributions that are not so common and less understood are described with examples and applications in full detail: discrete normal, left-partial, right-partial, left-truncated normal, right-truncated normal, lognormal, bivariate normal, and bivariate lognormal. Table values are provided with examples that enable researchers to easily apply the distributions to real applications and sample data. The left- and right-truncated normal distributions offer a wide variety of shapes in contrast to the symmetrically shaped normal distribution, and a newly developed spread ratio enables analysts to determine which of the three distributions best fits a particular set of sample data. The book will be highly useful to anyone who does statistical and probability analysis. This in...

  15. Binary Logistic Regression Versus Boosted Regression Trees in Assessing Landslide Susceptibility for Multiple-Occurring Regional Landslide Events: Application to the 2009 Storm Event in Messina (Sicily, southern Italy).

    Science.gov (United States)

    Lombardo, L.; Cama, M.; Maerker, M.; Parisi, L.; Rotigliano, E.

    2014-12-01

    This study aims at comparing the performances of Binary Logistic Regression (BLR) and Boosted Regression Trees (BRT) methods in assessing landslide susceptibility for multiple-occurrence regional landslide events within the Mediterranean region. A test area was selected in the north-eastern sector of Sicily (southern Italy), corresponding to the catchments of the Briga and the Giampilieri streams both stretching for few kilometres from the Peloritan ridge (eastern Sicily, Italy) to the Ionian sea. This area was struck on the 1st October 2009 by an extreme climatic event resulting in thousands of rapid shallow landslides, mainly of debris flows and debris avalanches types involving the weathered layer of a low to high grade metamorphic bedrock. Exploiting the same set of predictors and the 2009 landslide archive, BLR- and BRT-based susceptibility models were obtained for the two catchments separately, adopting a random partition (RP) technique for validation; besides, the models trained in one of the two catchments (Briga) were tested in predicting the landslide distribution in the other (Giampilieri), adopting a spatial partition (SP) based validation procedure. All the validation procedures were based on multi-folds tests so to evaluate and compare the reliability of the fitting, the prediction skill, the coherence in the predictor selection and the precision of the susceptibility estimates. All the obtained models for the two methods produced very high predictive performances, with a general congruence between BLR and BRT in the predictor importance. In particular, the research highlighted that BRT-models reached a higher prediction performance with respect to BLR-models, for RP based modelling, whilst for the SP-based models the difference in predictive skills between the two methods dropped drastically, converging to an analogous excellent performance. However, when looking at the precision of the probability estimates, BLR demonstrated to produce more robust

  16. Riesz Representation Theorem on Bilinear Spaces of Truncated Laurent Series

    Directory of Open Access Journals (Sweden)

    Sabarinsyah

    2017-06-01

    Full Text Available In this study a generalization of the Riesz representation theorem on non-degenerate bilinear spaces, particularly on spaces of truncated Laurent series, was developed. It was shown that any linear functional on a non-degenerate bilinear space is representable by a unique element of the space if and only if its kernel is closed. Moreover an explicit equivalent condition can be identified for the closedness property of the kernel when the bilinear space is a space of truncated Laurent series.

  17. Frequency interval balanced truncation of discrete-time bilinear systems

    DEFF Research Database (Denmark)

    Jazlan, Ahmad; Sreeram, Victor; Shaker, Hamid Reza

    2016-01-01

    This paper presents the development of a new model reduction method for discrete-time bilinear systems based on the balanced truncation framework. In many model reduction applications, it is advantageous to analyze the characteristics of the system with emphasis on particular frequency intervals...... are the solution to a pair of new generalized Lyapunov equations. The conditions for solvability of these new generalized Lyapunov equations are derived and a numerical solution method for solving these generalized Lyapunov equations is presented. Numerical examples which illustrate the usage of the new...... generalized frequency interval controllability and observability gramians as part of the balanced truncation framework are provided to demonstrate the performance of the proposed method....

  18. Binaries and triples among asteroid pairs

    Science.gov (United States)

    Pravec, Petr; Scheirich, Peter; Kušnirák, Peter; Hornoch, Kamil; Galád, Adrián

    2015-08-01

    Despite major achievements obtained during the past two decades, our knowledge of the population and properties of small binary and multiple asteroid systems is still far from advanced. There is a numerous indirect evidence for that most small asteroid systems were formed by rotational fission of cohesionless parent asteroids that were spun up to the critical frequency presumably by YORP, but details of the process are lacking. Furthermore, as we proceed with observations of more and more binary and paired asteroids, we reveal new facts that substantially refine and sometimes change our understanding of the asteroid systems. One significant new finding we have recently obtained is that primaries of many asteroid pairs are actually binary or triple systems. The first such case found is (3749) Balam (Vokrouhlický, ApJL 706, L37, 2009). We have found 9 more binary systems among asteroid pairs within our ongoing NEOSource photometric project since October 2012. They are (6369) 1983 UC, (8306) Shoko, (9783) Tensho-kan, (10123) Fideoja, (21436) Chaoyichi, (43008) 1999 UD31, (44620) 1999 RS43, (46829) 1998 OS14 and (80218) 1999 VO123. We will review their characteristics. These paired binaries as we call them are mostly similar to binaries in the general ("background") population (of unpaired asteroids), but there are a few trends. The paired binaries tend to have larger secondaries with D_2/D_1 = 0.3 to 0.5 and they also tend to be wider systems with 8 of the 10 having orbital periods between 30 and 81 hours, than average among binaries in the general population. There may be also a larger fraction of triples; (3749) Balam is a confirmed triple, having a larger close and a smaller distant satellite, and (8306) Shoko and (10123) Fideoja are suspect triples as they show additional rotational lightcurve components with periods of 61 and 38.8 h that differ from the orbital period of 36.2 and 56.5 h, respectively. The unbound secondaries tend to be of the same size or

  19. Star formation history: Modeling of visual binaries

    Science.gov (United States)

    Gebrehiwot, Y. M.; Tessema, S. B.; Malkov, O. Yu.; Kovaleva, D. A.; Sytov, A. Yu.; Tutukov, A. V.

    2018-05-01

    Most stars form in binary or multiple systems. Their evolution is defined by masses of components, orbital separation and eccentricity. In order to understand star formation and evolutionary processes, it is vital to find distributions of physical parameters of binaries. We have carried out Monte Carlo simulations in which we simulate different pairing scenarios: random pairing, primary-constrained pairing, split-core pairing, and total and primary pairing in order to get distributions of binaries over physical parameters at birth. Next, for comparison with observations, we account for stellar evolution and selection effects. Brightness, radius, temperature, and other parameters of components are assigned or calculated according to approximate relations for stars in different evolutionary stages (main-sequence stars, red giants, white dwarfs, relativistic objects). Evolutionary stage is defined as a function of system age and component masses. We compare our results with the observed IMF, binarity rate, and binary mass-ratio distributions for field visual binaries to find initial distributions and pairing scenarios that produce observed distributions.

  20. RADIAL VELOCITY STUDIES OF CLOSE BINARY STARS. XIV

    International Nuclear Information System (INIS)

    Pribulla, Theodor; Rucinski, Slavek M.; DeBond, Heide; De Ridder, Archie; Karmo, Toomas; Thomson, J. R.; Croll, Bryce; Ogloza, Waldemar; Pilecki, Bogumil; Siwak, Michal

    2009-01-01

    Radial velocity (RV) measurements and sine curve fits to the orbital RV variations are presented for 10 close binary systems: TZ Boo, VW Boo, EL Boo, VZ CVn, GK Cep, RW Com, V2610 Oph, V1387 Ori, AU Ser, and FT UMa. Our spectroscopy revealed two quadruple systems, TZ Boo and V2610 Oph, while three stars showing small photometric amplitudes, EL Boo, V1387 Ori, and FT UMa, were found to be triple systems. GK Cep is a close binary with a faint third component. While most of the studied eclipsing systems are contact binaries, VZ CVn and GK Cep are detached or semidetached double-lined binaries, and EL Boo, V1387 Ori, and FT UMa are close binaries of uncertain binary type. The large fraction of triple and quadruple systems found in this sample supports the hypothesis of formation of close binaries in multiple stellar systems; it also demonstrates that low photometric amplitude binaries are a fertile ground for further discoveries of multiple systems.

  1. Skewed Binary Search Trees

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Moruz, Gabriel

    2006-01-01

    It is well-known that to minimize the number of comparisons a binary search tree should be perfectly balanced. Previous work has shown that a dominating factor over the running time for a search is the number of cache faults performed, and that an appropriate memory layout of a binary search tree...... can reduce the number of cache faults by several hundred percent. Motivated by the fact that during a search branching to the left or right at a node does not necessarily have the same cost, e.g. because of branch prediction schemes, we in this paper study the class of skewed binary search trees....... For all nodes in a skewed binary search tree the ratio between the size of the left subtree and the size of the tree is a fixed constant (a ratio of 1/2 gives perfect balanced trees). In this paper we present an experimental study of various memory layouts of static skewed binary search trees, where each...

  2. Anomalies in the Spectra of the Uncorrelated Components of the Electric Field of the Earth at Frequencies that are Multiples of the Frequencies of Rotation of Relativistic Binary Star Systems

    Science.gov (United States)

    Grunskaya, L. V.; Isakevich, V. V.; Isakevich, D. V.

    2018-05-01

    A system is constructed, which, on the basis of extensive experimental material and the use of eigenoscopy, has allowed us to detect anomalies in the spectra of uncorrelated components localized near the rotation frequencies and twice the rotation frequencies of relativistic binary star systems with vanishingly low probability of false alarm, not exceeding 10-17.

  3. Generation of truncated recombinant form of tumor necrosis factor ...

    African Journals Online (AJOL)

    7. Original Research Article. Generation of truncated recombinant form of tumor necrosis factor ... as 6×His tagged using E.coli BL21 (DE3) expression system. The protein was ... proapoptotic signaling cascade through TNFR1. [5] which is ...

  4. Measuring a truncated disk in Aquila X-1

    DEFF Research Database (Denmark)

    King, Ashley L.; Tomsick, John A.; Miller, Jon M.

    2016-01-01

    We present NuSTAR and Swift observations of the neutron star Aquila X-1 during the peak of its 2014 July outburst. The spectrum is soft with strong evidence for a broad Fe Kα line. Modeled with a relativistically broadened reflection model, we find that the inner disk is truncated with an inner r...

  5. Scavenger receptor AI/II truncation, lung function and COPD

    DEFF Research Database (Denmark)

    Thomsen, M; Nordestgaard, B G; Tybjaerg-Hansen, A

    2011-01-01

    The scavenger receptor A-I/II (SRA-I/II) on alveolar macrophages is involved in recognition and clearance of modified lipids and inhaled particulates. A rare variant of the SRA-I/II gene, Arg293X, truncates the distal collagen-like domain, which is essential for ligand recognition. We tested whet...

  6. Parameter Estimation and Model Selection for Mixtures of Truncated Exponentials

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael

    2010-01-01

    Bayesian networks with mixtures of truncated exponentials (MTEs) support efficient inference algorithms and provide a flexible way of modeling hybrid domains (domains containing both discrete and continuous variables). On the other hand, estimating an MTE from data has turned out to be a difficul...

  7. Maximum nondiffracting propagation distance of aperture-truncated Airy beams

    Science.gov (United States)

    Chu, Xingchun; Zhao, Shanghong; Fang, Yingwu

    2018-05-01

    Airy beams have called attention of many researchers due to their non-diffracting, self-healing and transverse accelerating properties. A key issue in research of Airy beams and its applications is how to evaluate their nondiffracting propagation distance. In this paper, the critical transverse extent of physically realizable Airy beams is analyzed under the local spatial frequency methodology. The maximum nondiffracting propagation distance of aperture-truncated Airy beams is formulated and analyzed based on their local spatial frequency. The validity of the formula is verified by comparing the maximum nondiffracting propagation distance of an aperture-truncated ideal Airy beam, aperture-truncated exponentially decaying Airy beam and exponentially decaying Airy beam. Results show that the formula can be used to evaluate accurately the maximum nondiffracting propagation distance of an aperture-truncated ideal Airy beam. Therefore, it can guide us to select appropriate parameters to generate Airy beams with long nondiffracting propagation distance that have potential application in the fields of laser weapons or optical communications.

  8. Analytic Method for Pressure Recovery in Truncated Diffusers ...

    African Journals Online (AJOL)

    A prediction method is presented for the static pressure recovery in subsonic axisymmetric truncated conical diffusers. In the analysis, a turbulent boundary layer is assumed at the diffuser inlet and a potential core exists throughout the flow. When flow separation occurs, this approach cannot be used to predict the maximum ...

  9. Moments of the very high multiplicity distributions

    International Nuclear Information System (INIS)

    Nechitailo, V.A.

    2004-01-01

    In experiment, the multiplicity distributions of inelastic processes are truncated due to finite energy, insufficient statistics, or special choice of events. It is shown that the moments of such truncated multiplicity distributions possess some typical features. In particular, the oscillations of cumulant moments at high ranks and their negative values at the second rank can be considered as ones most indicative of the specifics of these distributions. They allow one to distinguish between distributions of different type

  10. Modelling binary data

    CERN Document Server

    Collett, David

    2002-01-01

    INTRODUCTION Some Examples The Scope of this Book Use of Statistical Software STATISTICAL INFERENCE FOR BINARY DATA The Binomial Distribution Inference about the Success Probability Comparison of Two Proportions Comparison of Two or More Proportions MODELS FOR BINARY AND BINOMIAL DATA Statistical Modelling Linear Models Methods of Estimation Fitting Linear Models to Binomial Data Models for Binomial Response Data The Linear Logistic Model Fitting the Linear Logistic Model to Binomial Data Goodness of Fit of a Linear Logistic Model Comparing Linear Logistic Models Linear Trend in Proportions Comparing Stimulus-Response Relationships Non-Convergence and Overfitting Some other Goodness of Fit Statistics Strategy for Model Selection Predicting a Binary Response Probability BIOASSAY AND SOME OTHER APPLICATIONS The Tolerance Distribution Estimating an Effective Dose Relative Potency Natural Response Non-Linear Logistic Regression Models Applications of the Complementary Log-Log Model MODEL CHECKING Definition of Re...

  11. Evolution of dwarf binaries

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Fedorova, A.V.; Yungel'son, L.R.

    1982-01-01

    The conditions of mass exchange in close binary systems with masses of components less or equal to one solar mass have been analysed for the case, when the system radiates gravitational waves. It has been shown that the mass exchange rate depends in a certain way on the mass ratio of components and on the mass of component that fills its inner critical lobe. The comparison of observed periods, masses of contact components, and mass exchange rates of observed cataclysmic binaries have led to the conclusion that the evolution of close binaries WZ Sge, OY Car, Z Cha, TT Ari, 2A 0311-227, and G 61-29 may be driven by the emission of gravitational waves [ru

  12. Binary and Millisecond Pulsars.

    Science.gov (United States)

    Lorimer, Duncan R

    2008-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M ⊙ , a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric ( e = 0.44) orbit around an unevolved companion. Supplementary material is available for this article at 10.12942/lrr-2008-8.

  13. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  14. Dissipative binary collisions

    International Nuclear Information System (INIS)

    Aboufirassi, M; Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Meslin, C.; Metivier, V.; Nakagawa, T.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Wieloch, A.; Yuasa-Nakagawa, K.

    1998-01-01

    The binary character of the heavy ion collisions at intermediate energies in the exit channel has been observed under 30 MeV/n in medium and heavy systems. Measurements in light systems at energies approaching ∼ 100 MeV/nucleon as well as in very heavy systems have allowed to extend considerably the investigations of this binary process. Thus, the study of the Pb + Au system showed that the complete charge events indicated two distinct sources: the quasi-projectile and the quasi-target. The characteristics of these two sources are rather well reproduced by a trajectory computation which takes into account the Coulomb and nuclear forces and the friction appearing from the projectile-target interaction. The Wilczynski diagram is used to probe the correlation between the kinetic energy quenching and the deflecting angle. In case of the system Pb + Au at 29 MeV/nucleon the diagram indicate dissipative binary collisions typical for low energies. This binary aspect was also detected in the systems Xe + Ag at 44 MeV/nucleon, 36 Ar + 27 Al and 64 Zn + nat Ti. Thus, it was possible to reconstruct the quasi-projectile and to study its mass and excitation energy evolution as a function of the impact parameter. The dissipative binary collisions represent for the systems and energies under considerations the main contribution to the cross section. This does not implies that there are not other processes; particularly, the more or less complete fusion is also observed but with a low cross section which decreases with the increase of bombardment energy. More exclusive measurements with the INDRA detector on quasi-symmetric systems as Ar + KCl and Xe + Sn seem to confirm the importance of the binary collisions. The two source reconstruction of the Xe + Sn data at 50 MeV/nucleon reproduces the same behaviour as that observed in the system Pb + Au at 29 MeV/nucleon

  15. Modifications of Geometric Truncation of the Scattering Phase Function

    Science.gov (United States)

    Radkevich, A.

    2017-12-01

    Phase function (PF) of light scattering on large atmospheric particles has very strong peak in forward direction constituting a challenge for accurate numerical calculations of radiance. Such accurate (and fast) evaluations are important in the problems of remote sensing of the atmosphere. Scaling transformation replaces original PF with a sum of the delta function and a new regular smooth PF. A number of methods to construct such a PF were suggested. Delta-M and delta-fit methods require evaluation of the PF moments which imposes a numerical problem if strongly anisotropic PF is given as a function of angle. Geometric truncation keeps the original PF unchanged outside the forward peak cone replacing it with a constant within the cone. This approach is designed to preserve the asymmetry parameter. It has two disadvantages: 1) PF has discontinuity at the cone; 2) the choice of the cone is subjective, no recommendations were provided on the choice of the truncation angle. This choice affects both truncation fraction and the value of the phase function within the forward cone. Both issues are addressed in this study. A simple functional form of the replacement PF is suggested. This functional form allows for a number of modifications. This study consider 3 versions providing continuous PF. The considered modifications also bear either of three properties: preserve asymmetry parameter, provide continuity of the 1st derivative of the PF, and preserve mean scattering angle. The second problem mentioned above is addressed with a heuristic approach providing unambiguous criterion of selection of the truncation angle. The approach showed good performance on liquid water and ice clouds with different particle size distributions. Suggested modifications were tested on different cloud PFs using both discrete ordinates and Monte Carlo methods. It was showed that the modifications provide better accuracy of the radiance computation compare to the original geometric truncation.

  16. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2005-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.

  17. What fraction of white dwarfs are members of binary systems?

    International Nuclear Information System (INIS)

    Holberg, J B

    2009-01-01

    White dwarfs were originally discovered as the subordinate faint companions of bright nearby stars (i.e. Sirius B and 40 Eri B). Several general categories of binary systems involving white dwarfs are recognized: Sirius-like systems, where the white dwarf may be difficult to detect, binary systems containing white dwarfs and low mass stars, where the white dwarf is often readily discerned; and double degenerate systems. Different modes of white dwarf discovery influence our perception of both the overall binary fraction and the nature of these systems; proper motion surveys emphasize resolved systems, while photometric surveys emphasize unresolved systems containing relatively hot white dwarfs. Recent studies of the local white dwarf population offer some hope of achieving realistic estimates of the relative number of binary systems containing white dwarfs. A sample of 132 white dwarfs within 20 pc indicates that an individual white dwarf has a probability of 32 ± 8% of occurring within a binary or multiple star system.

  18. Equational binary decision diagrams

    NARCIS (Netherlands)

    J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and

  19. Binary tense and modality

    NARCIS (Netherlands)

    Broekhuis, H.; Verkuyl, H.J

    2014-01-01

    The present paper adopts as its point of departure the claim by Te Winkel (1866) and Verkuyl (2008) that mental temporal representations are built on the basis of three binary oppositions: Present/Past, Synchronous/Posterior and Imperfect/Perfect. Te Winkel took the second opposition in terms of the

  20. N-Bit Binary Resistor

    Science.gov (United States)

    Tcheng, Ping

    1989-01-01

    Binary resistors in series tailored to precise value of resistance. Desired value of resistance obtained by cutting appropriate traces across resistors. Multibit, binary-based, adjustable resistor with high resolution used in many applications where precise resistance required.

  1. The True Ultracool Binary Fraction Using Spectral Binaries

    Science.gov (United States)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris

    2018-01-01

    Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (dwarfs as spectral binaries by identifying traces of methane in the spectra of late-M and early-L dwarfs. Imaging follow-up of 17 spectral binaries yielded 3 (18%) resolved systems, corroborating the observed binary fraction, but 5 (29%) known binaries were missed, reinforcing the hypothesis that the short-separation systems are undercounted. In order to find the true binary fraction of brown dwarfs, we have compiled a volume-limited, spectroscopic sample of M7-L5 dwarfs and searched for T dwarf companions. In the 25 pc volume, 4 candidates were found, three of which are already confirmed, leading to a spectral binary fraction of 0.95 ± 0.50%, albeit for a specific combination of spectral types. To extract the true binary fraction and determine the biases of the spectral binary method, we have produced a binary population simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant planet companions to young brown

  2. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  3. Propagation of truncated modified Laguerre-Gaussian beams

    Science.gov (United States)

    Deng, D.; Li, J.; Guo, Q.

    2010-01-01

    By expanding the circ function into a finite sum of complex Gaussian functions and applying the Collins formula, the propagation of hard-edge diffracted modified Laguerre-Gaussian beams (MLGBs) through a paraxial ABCD system is studied, and the approximate closed-form propagation expression of hard-edge diffracted MLGBs is obtained. The transverse intensity distribution of the MLGB carrying finite power can be characterized by a single bright and symmetric ring during propagation when the aperture radius is very large. Starting from the definition of the generalized truncated second-order moments, the beam quality factor of MLGBs through a hard-edged circular aperture is investigated in a cylindrical coordinate system, which turns out to be dependent on the truncated radius and the beam orders.

  4. Rotating D0-branes and consistent truncations of supergravity

    International Nuclear Information System (INIS)

    Anabalón, Andrés; Ortiz, Thomas; Samtleben, Henning

    2013-01-01

    The fluctuations around the D0-brane near-horizon geometry are described by two-dimensional SO(9) gauged maximal supergravity. We work out the U(1) 4 truncation of this theory whose scalar sector consists of five dilaton and four axion fields. We construct the full non-linear Kaluza–Klein ansatz for the embedding of the dilaton sector into type IIA supergravity. This yields a consistent truncation around a geometry which is the warped product of a two-dimensional domain wall and the sphere S 8 . As an application, we consider the solutions corresponding to rotating D0-branes which in the near-horizon limit approach AdS 2 ×M 8 geometries, and discuss their thermodynamical properties. More generally, we study the appearance of such solutions in the presence of non-vanishing axion fields

  5. Intersection spaces, spatial homology truncation, and string theory

    CERN Document Server

    Banagl, Markus

    2010-01-01

    Intersection cohomology assigns groups which satisfy a generalized form of Poincaré duality over the rationals to a stratified singular space. The present monograph introduces a method that assigns to certain classes of stratified spaces cell complexes, called intersection spaces, whose ordinary rational homology satisfies generalized Poincaré duality. The cornerstone of the method is a process of spatial homology truncation, whose functoriality properties are analyzed in detail. The material on truncation is autonomous and may be of independent interest to homotopy theorists. The cohomology of intersection spaces is not isomorphic to intersection cohomology and possesses algebraic features such as perversity-internal cup-products and cohomology operations that are not generally available for intersection cohomology. A mirror-symmetric interpretation, as well as applications to string theory concerning massless D-branes arising in type IIB theory during a Calabi-Yau conifold transition, are discussed.

  6. Rotating D0-branes and consistent truncations of supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberales, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Université de Lyon, Laboratoire de Physique, UMR 5672, CNRS École Normale Supérieure de Lyon 46, allée d' Italie, F-69364 Lyon cedex 07 (France); Ortiz, Thomas; Samtleben, Henning [Université de Lyon, Laboratoire de Physique, UMR 5672, CNRS École Normale Supérieure de Lyon 46, allée d' Italie, F-69364 Lyon cedex 07 (France)

    2013-12-18

    The fluctuations around the D0-brane near-horizon geometry are described by two-dimensional SO(9) gauged maximal supergravity. We work out the U(1){sup 4} truncation of this theory whose scalar sector consists of five dilaton and four axion fields. We construct the full non-linear Kaluza–Klein ansatz for the embedding of the dilaton sector into type IIA supergravity. This yields a consistent truncation around a geometry which is the warped product of a two-dimensional domain wall and the sphere S{sup 8}. As an application, we consider the solutions corresponding to rotating D0-branes which in the near-horizon limit approach AdS{sub 2}×M{sub 8} geometries, and discuss their thermodynamical properties. More generally, we study the appearance of such solutions in the presence of non-vanishing axion fields.

  7. Learning to assign binary weights to binary descriptor

    Science.gov (United States)

    Huang, Zhoudi; Wei, Zhenzhong; Zhang, Guangjun

    2016-10-01

    Constructing robust binary local feature descriptors are receiving increasing interest due to their binary nature, which can enable fast processing while requiring significantly less memory than their floating-point competitors. To bridge the performance gap between the binary and floating-point descriptors without increasing the computational cost of computing and matching, optimal binary weights are learning to assign to binary descriptor for considering each bit might contribute differently to the distinctiveness and robustness. Technically, a large-scale regularized optimization method is applied to learn float weights for each bit of the binary descriptor. Furthermore, binary approximation for the float weights is performed by utilizing an efficient alternatively greedy strategy, which can significantly improve the discriminative power while preserve fast matching advantage. Extensive experimental results on two challenging datasets (Brown dataset and Oxford dataset) demonstrate the effectiveness and efficiency of the proposed method.

  8. SPECKLE INTERFEROMETRY OF SECONDARY COMPONENTS IN NEARBY VISUAL BINARIES

    International Nuclear Information System (INIS)

    Tokovinin, Andrei; Horch, Elliott P.

    2016-01-01

    Statistical characterization of secondary subsystems in binaries helps to distinguish between various scenarios of multiple-star formation. The Differential Speckle Survey Instrument was used at the Gemini-N telescope for several hours in 2015 July to probe the binarity of 25 secondary components in nearby solar-type binaries. Six new subsystems were resolved, with meaningful detection limits for the remaining targets. The large incidence of secondary subsystems agrees with other similar studies. The newly resolved subsystem HIP 115417 Ba,Bb causes deviations in the observed motion of the outer binary from which an astrometric orbit of Ba,Bb with a period of 117 years is deduced.

  9. Generation of truncated recombinant form of tumor necrosis factor ...

    African Journals Online (AJOL)

    Purpose: To produce truncated recombinant form of tumor necrosis factor receptor 1 (TNFR1), cysteine-rich domain 2 (CRD2) and CRD3 regions of the receptor were generated using pET28a and E. coli/BL21. Methods: DNA coding sequence of CRD2 and CRD3 was cloned into pET28a vector and the corresponding ...

  10. Dual scan CT image recovery from truncated projections

    Science.gov (United States)

    Sarkar, Shubhabrata; Wahi, Pankaj; Munshi, Prabhat

    2017-12-01

    There are computerized tomography (CT) scanners available commercially for imaging small objects and they are often categorized as mini-CT X-ray machines. One major limitation of these machines is their inability to scan large objects with good image quality because of the truncation of projection data. An algorithm is proposed in this work which enables such machines to scan large objects while maintaining the quality of the recovered image.

  11. A SUZAKU OBSERVATION OF NGC 4593: ILLUMINATING THE TRUNCATED DISK

    International Nuclear Information System (INIS)

    Markowitz, A. G.; Reeves, J. N.

    2009-01-01

    We report results from a 2007 Suzaku observation of the Seyfert 1 AGN NGC 4593. The narrow Fe Kα emission line has a FWHM width ∼ 4000 km s -1 , indicating emission from ∼> 5000 R g . There is no evidence for a relativistically broadened Fe K line, consistent with the presence of a radiatively efficient outer disk which is truncated or transitions to an interior radiatively inefficient flow. The Suzaku observation caught the source in a low-flux state; comparison to a 2002 XMM-Newton observation indicates that the hard X-ray flux decreased by 3.6, while the Fe Kα line intensity and width σ each roughly halved. Two model-dependent explanations for the changes in Fe Kα line profile are explored. In one, the Fe Kα line width has decreased from ∼10,000 to ∼4000 km s -1 from 2002 to 2007, suggesting that the thin disk truncation/transition radius has increased from 1000-2000 to ∼>5000 R g . However, there are indications from other compact accreting systems that such truncation radii tend to be associated only with accretion rates relative to Eddington much lower than that of NGC 4593. In the second model, the line profile in the XMM-Newton observation consists of a time-invariant narrow component plus a broad component originating from the inner part of the truncated disk (∼300 R g ) which has responded to the drop in continuum flux. The Compton reflection component strength R is ∼ 1.1, consistent with the measured Fe Kα line total equivalent width with an Fe abundance 1.7 times the solar value. The modest soft excess, modeled well by either thermal bremsstrahlung emission or by Comptonization of soft seed photons in an optical thin plasma, has fallen by a factor of ∼20 from 2002 to 2007, ruling out emission from a region 5 lt-yr in size.

  12. Hyperbolic Cross Truncations for Stochastic Fourier Cosine Series

    Science.gov (United States)

    Zhang, Zhihua

    2014-01-01

    Based on our decomposition of stochastic processes and our asymptotic representations of Fourier cosine coefficients, we deduce an asymptotic formula of approximation errors of hyperbolic cross truncations for bivariate stochastic Fourier cosine series. Moreover we propose a kind of Fourier cosine expansions with polynomials factors such that the corresponding Fourier cosine coefficients decay very fast. Although our research is in the setting of stochastic processes, our results are also new for deterministic functions. PMID:25147842

  13. Molecular dynamics simulations of lipid bilayers : major artifacts due to truncating electrostatic interactions

    NARCIS (Netherlands)

    Patra, M.; Karttunen, M.E.J.; Hyvönen, M.T.; Falck, E.; Lindqvist, P.; Vattulainen, I.

    2003-01-01

    We study the influence of truncating the electrostatic interactions in a fully hydrated pure dipalmitoylphosphatidylcholine (DPPC) bilayer through 20 ns molecular dynamics simulations. The computations in which the electrostatic interactions were truncated are compared to similar simulations using

  14. A protein-truncating R179X variant in RNF186 confers protection against ulcerative colitis

    NARCIS (Netherlands)

    Rivas, Manuel A.; Graham, Daniel; Sulem, Patrick; Stevens, Christine; Desch, A. Nicole; Goyette, Philippe; Gudbjartsson, Daniel; Jonsdottir, Ingileif; Thorsteinsdottir, Unnur; Degenhardt, Frauke; Mucha, Soeren; Kurki, Mitja I.; Li, Dalin; D'Amato, Mauro; Annese, Vito; Vermeire, Severine; Weersma, Rinse K.; Halfvarson, Jonas; Paavola-Sakki, Paulina; Lappalainen, Maarit; Lek, Monkol; Cummings, Beryl; Tukiainen, Taru; Haritunians, Talin; Halme, Leena; Koskinen, Lotta L. E.; Ananthakrishnan, Ashwin N.; Luo, Yang; Heap, Graham A.; Visschedijk, Marijn C.; MacArthur, Daniel G.; Neale, Benjamin M.; Ahmad, Tariq; Anderson, Carl A.; Brant, Steven R.; Duerr, Richard H.; Silverberg, Mark S.; Cho, Judy H.; Palotie, Aarno; Saavalainen, Paivi; Kontula, Kimmo; Farkkila, Martti; McGovern, Dermot P. B.; Franke, Andre; Stefansson, Kari; Rioux, John D.; Xavier, Ramnik J.; Daly, Mark J.

    Protein-truncating variants protective against human disease provide in vivo validation of therapeutic targets. Here we used targeted sequencing to conduct a search for protein-truncating variants conferring protection against inflammatory bowel disease exploiting knowledge of common variants

  15. Evidence for Truncated Exponential Probability Distribution of Earthquake Slip

    KAUST Repository

    Thingbaijam, Kiran Kumar; Mai, Paul Martin

    2016-01-01

    Earthquake ruptures comprise spatially varying slip on the fault surface, where slip represents the displacement discontinuity between the two sides of the rupture plane. In this study, we analyze the probability distribution of coseismic slip, which provides important information to better understand earthquake source physics. Although the probability distribution of slip is crucial for generating realistic rupture scenarios for simulation-based seismic and tsunami-hazard analysis, the statistical properties of earthquake slip have received limited attention so far. Here, we use the online database of earthquake source models (SRCMOD) to show that the probability distribution of slip follows the truncated exponential law. This law agrees with rupture-specific physical constraints limiting the maximum possible slip on the fault, similar to physical constraints on maximum earthquake magnitudes.We show the parameters of the best-fitting truncated exponential distribution scale with average coseismic slip. This scaling property reflects the control of the underlying stress distribution and fault strength on the rupture dimensions, which determines the average slip. Thus, the scale-dependent behavior of slip heterogeneity is captured by the probability distribution of slip. We conclude that the truncated exponential law accurately quantifies coseismic slip distribution and therefore allows for more realistic modeling of rupture scenarios. © 2016, Seismological Society of America. All rights reserverd.

  16. Evidence for Truncated Exponential Probability Distribution of Earthquake Slip

    KAUST Repository

    Thingbaijam, Kiran K. S.

    2016-07-13

    Earthquake ruptures comprise spatially varying slip on the fault surface, where slip represents the displacement discontinuity between the two sides of the rupture plane. In this study, we analyze the probability distribution of coseismic slip, which provides important information to better understand earthquake source physics. Although the probability distribution of slip is crucial for generating realistic rupture scenarios for simulation-based seismic and tsunami-hazard analysis, the statistical properties of earthquake slip have received limited attention so far. Here, we use the online database of earthquake source models (SRCMOD) to show that the probability distribution of slip follows the truncated exponential law. This law agrees with rupture-specific physical constraints limiting the maximum possible slip on the fault, similar to physical constraints on maximum earthquake magnitudes.We show the parameters of the best-fitting truncated exponential distribution scale with average coseismic slip. This scaling property reflects the control of the underlying stress distribution and fault strength on the rupture dimensions, which determines the average slip. Thus, the scale-dependent behavior of slip heterogeneity is captured by the probability distribution of slip. We conclude that the truncated exponential law accurately quantifies coseismic slip distribution and therefore allows for more realistic modeling of rupture scenarios. © 2016, Seismological Society of America. All rights reserverd.

  17. Truncatable bootstrap equations in algebraic form and critical surface exponents

    Energy Technology Data Exchange (ETDEWEB)

    Gliozzi, Ferdinando [Dipartimento di Fisica, Università di Torino andIstituto Nazionale di Fisica Nucleare - sezione di Torino,Via P. Giuria 1, Torino, I-10125 (Italy)

    2016-10-10

    We describe examples of drastic truncations of conformal bootstrap equations encoding much more information than that obtained by a direct numerical approach. A three-term truncation of the four point function of a free scalar in any space dimensions provides algebraic identities among conformal block derivatives which generate the exact spectrum of the infinitely many primary operators contributing to it. In boundary conformal field theories, we point out that the appearance of free parameters in the solutions of bootstrap equations is not an artifact of truncations, rather it reflects a physical property of permeable conformal interfaces which are described by the same equations. Surface transitions correspond to isolated points in the parameter space. We are able to locate them in the case of 3d Ising model, thanks to a useful algebraic form of 3d boundary bootstrap equations. It turns out that the low-lying spectra of the surface operators in the ordinary and the special transitions of 3d Ising model form two different solutions of the same polynomial equation. Their interplay yields an estimate of the surface renormalization group exponents, y{sub h}=0.72558(18) for the ordinary universality class and y{sub h}=1.646(2) for the special universality class, which compare well with the most recent Monte Carlo calculations. Estimates of other surface exponents as well as OPE coefficients are also obtained.

  18. Adaptation of the delta-m and δ-fit truncation methods to vector radiative transfer: Effect of truncation on radiative transfer accuracy

    International Nuclear Information System (INIS)

    Sanghavi, Suniti; Stephens, Graeme

    2015-01-01

    In the presence of aerosol and/or clouds, the use of appropriate truncation methods becomes indispensable for accurate but cost-efficient radiative transfer computations. Truncation methods allow the reduction of the large number (usually several hundreds) of Fourier components associated with particulate scattering functions to a more manageable number, thereby making it possible to carry out radiative transfer computations with a modest number of streams. While several truncation methods have been discussed for scalar radiative transfer, few rigorous studies have been made of truncation methods for the vector case. Here, we formally derive the vector form of Wiscombe's delta-m truncation method. Two main sources of error associated with delta-m truncation are identified as the delta-separation error (DSE) and the phase-truncation error (PTE). The view angles most affected by truncation error occur in the vicinity of the direction of exact backscatter. This view geometry occurs commonly in satellite based remote sensing applications, and is hence of considerable importance. In order to deal with these errors, we adapt the δ-fit approach of Hu et al. (2000) [17] to vector radiative transfer. The resulting δBGE-fit is compared with the vectorized delta-m method. For truncation at l=25 of an original phase matrix consisting of over 300 Fourier components, the use of the δBGE-fit minimizes the error due to truncation at these view angles, while practically eliminating error at other angles. We also show how truncation errors have a distorting effect on hyperspectral absorption line shapes. The choice of the δBGE-fit method over delta-m truncation minimizes errors in absorption line depths, thus affording greater accuracy for sensitive retrievals such as those of XCO 2 from OCO-2 or GOSAT measurements. - Highlights: • Derives vector form for delta-m truncation method. • Adapts δ-fit truncation approach to vector RTE as δBGE-fit. • Compares truncation

  19. Mesh Denoising based on Normal Voting Tensor and Binary Optimization

    OpenAIRE

    Yadav, S. K.; Reitebuch, U.; Polthier, K.

    2016-01-01

    This paper presents a tensor multiplication based smoothing algorithm that follows a two step denoising method. Unlike other traditional averaging approaches, our approach uses an element based normal voting tensor to compute smooth surfaces. By introducing a binary optimization on the proposed tensor together with a local binary neighborhood concept, our algorithm better retains sharp features and produces smoother umbilical regions than previous approaches. On top of that, we provide a stoc...

  20. Cross-layer designed adaptive modulation algorithm with packet combining and truncated ARQ over MIMO Nakagami fading channels

    KAUST Repository

    Aniba, Ghassane

    2011-04-01

    This paper presents an optimal adaptive modulation (AM) algorithm designed using a cross-layer approach which combines truncated automatic repeat request (ARQ) protocol and packet combining. Transmissions are performed over multiple-input multiple-output (MIMO) Nakagami fading channels, and retransmitted packets are not necessarily modulated using the same modulation format as in the initial transmission. Compared to traditional approach, cross-layer design based on the coupling across the physical and link layers, has proven to yield better performance in wireless communications. However, there is a lack for the performance analysis and evaluation of such design when the ARQ protocol is used in conjunction with packet combining. Indeed, previous works addressed the link layer performance of AM with truncated ARQ but without packet combining. In addition, previously proposed AM algorithms are not optimal and can provide poor performance when packet combining is implemented. Herein, we first show that the packet loss rate (PLR) resulting from the combining of packets modulated with different constellations can be well approximated by an exponential function. This model is then used in the design of an optimal AM algorithm for systems employing packet combining, truncated ARQ and MIMO antenna configurations, considering transmission over Nakagami fading channels. Numerical results are provided for operation with or without packet combining, and show the enhanced performance and efficiency of the proposed algorithm in comparison with existing ones. © 2011 IEEE.

  1. Processing Of Binary Images

    Science.gov (United States)

    Hou, H. S.

    1985-07-01

    An overview of the recent progress in the area of digital processing of binary images in the context of document processing is presented here. The topics covered include input scan, adaptive thresholding, halftoning, scaling and resolution conversion, data compression, character recognition, electronic mail, digital typography, and output scan. Emphasis has been placed on illustrating the basic principles rather than descriptions of a particular system. Recent technology advances and research in this field are also mentioned.

  2. Young and Waltzing Binary Stars

    Science.gov (United States)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  3. Massive Black Hole Binary Evolution

    Directory of Open Access Journals (Sweden)

    Merritt David

    2005-11-01

    Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  4. Constraining the Statistics of Population III Binaries

    Science.gov (United States)

    Stacy, Athena; Bromm, Volker

    2012-01-01

    We perform a cosmological simulation in order to model the growth and evolution of Population III (Pop III) stellar systems in a range of host minihalo environments. A Pop III multiple system forms in each of the ten minihaloes, and the overall mass function is top-heavy compared to the currently observed initial mass function in the Milky Way. Using a sink particle to represent each growing protostar, we examine the binary characteristics of the multiple systems, resolving orbits on scales as small as 20 AU. We find a binary fraction of approx. 36, with semi-major axes as large as 3000 AU. The distribution of orbital periods is slightly peaked at approx. < 900 yr, while the distribution of mass ratios is relatively flat. Of all sink particles formed within the ten minihaloes, approx. 50 are lost to mergers with larger sinks, and 50 of the remaining sinks are ejected from their star-forming disks. The large binary fraction may have important implications for Pop III evolution and nucleosynthesis, as well as the final fate of the first stars.

  5. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    International Nuclear Information System (INIS)

    Reipurth, Bo; Mikkola, Seppo

    2015-01-01

    15,894 at 100 Myr (∼8%). The total binary fraction among freefloating BDs is 0.43, higher than indicated by current observations, which, however, are still incomplete. Also, the gradual breakup of higher-order multiples leads to many more singles, thus lowering the binary fraction. The main threat to newly born triple systems is internal instabilities, not external perturbations. At 1 Myr there are 1325 BD binaries still bound to a star, corresponding to 0.66% of the simulations, but only 253 (0.13%) are stable on timescales >100 Myr. These simulations indicate that dynamical interactions in newborn triple systems of stellar embryos embedded in and accreting from a cloud core naturally form a population of freefloating BD binaries, and this mechanism may constitute a significant pathway for the formation of BD binaries

  6. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Reipurth, Bo [Institute for Astronomy and NASA Astrobiology Institute University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Mikkola, Seppo, E-mail: reipurth@ifa.hawaii.edu, E-mail: Seppo.Mikkola@utu.fi [Tuorla Observatory, University of Turku, Väisäläntie 20, Piikkiö (Finland)

    2015-04-15

    15,894 at 100 Myr (∼8%). The total binary fraction among freefloating BDs is 0.43, higher than indicated by current observations, which, however, are still incomplete. Also, the gradual breakup of higher-order multiples leads to many more singles, thus lowering the binary fraction. The main threat to newly born triple systems is internal instabilities, not external perturbations. At 1 Myr there are 1325 BD binaries still bound to a star, corresponding to 0.66% of the simulations, but only 253 (0.13%) are stable on timescales >100 Myr. These simulations indicate that dynamical interactions in newborn triple systems of stellar embryos embedded in and accreting from a cloud core naturally form a population of freefloating BD binaries, and this mechanism may constitute a significant pathway for the formation of BD binaries.

  7. Probabilistic seismic history matching using binary images

    Science.gov (United States)

    Davolio, Alessandra; Schiozer, Denis Jose

    2018-02-01

    Currently, the goal of history-matching procedures is not only to provide a model matching any observed data but also to generate multiple matched models to properly handle uncertainties. One such approach is a probabilistic history-matching methodology based on the discrete Latin Hypercube sampling algorithm, proposed in previous works, which was particularly efficient for matching well data (production rates and pressure). 4D seismic (4DS) data have been increasingly included into history-matching procedures. A key issue in seismic history matching (SHM) is to transfer data into a common domain: impedance, amplitude or pressure, and saturation. In any case, seismic inversions and/or modeling are required, which can be time consuming. An alternative to avoid these procedures is using binary images in SHM as they allow the shape, rather than the physical values, of observed anomalies to be matched. This work presents the incorporation of binary images in SHM within the aforementioned probabilistic history matching. The application was performed with real data from a segment of the Norne benchmark case that presents strong 4D anomalies, including softening signals due to pressure build up. The binary images are used to match the pressurized zones observed in time-lapse data. Three history matchings were conducted using: only well data, well and 4DS data, and only 4DS. The methodology is very flexible and successfully utilized the addition of binary images for seismic objective functions. Results proved the good convergence of the method in few iterations for all three cases. The matched models of the first two cases provided the best results, with similar well matching quality. The second case provided models presenting pore pressure changes according to the expected dynamic behavior (pressurized zones) observed on 4DS data. The use of binary images in SHM is relatively new with few examples in the literature. This work enriches this discussion by presenting a new

  8. Binary versus non-binary information in real time series: empirical results and maximum-entropy matrix models

    Science.gov (United States)

    Almog, Assaf; Garlaschelli, Diego

    2014-09-01

    The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information.

  9. Binary versus non-binary information in real time series: empirical results and maximum-entropy matrix models

    International Nuclear Information System (INIS)

    Almog, Assaf; Garlaschelli, Diego

    2014-01-01

    The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information. (paper)

  10. LGI2 truncation causes a remitting focal epilepsy in dogs.

    Directory of Open Access Journals (Sweden)

    Eija H Seppälä

    2011-07-01

    Full Text Available One quadrillion synapses are laid in the first two years of postnatal construction of the human brain, which are then pruned until age 10 to 500 trillion synapses composing the final network. Genetic epilepsies are the most common neurological diseases with onset during pruning, affecting 0.5% of 2-10-year-old children, and these epilepsies are often characterized by spontaneous remission. We previously described a remitting epilepsy in the Lagotto romagnolo canine breed. Here, we identify the gene defect and affected neurochemical pathway. We reconstructed a large Lagotto pedigree of around 34 affected animals. Using genome-wide association in 11 discordant sib-pairs from this pedigree, we mapped the disease locus to a 1.7 Mb region of homozygosity in chromosome 3 where we identified a protein-truncating mutation in the Lgi2 gene, a homologue of the human epilepsy gene LGI1. We show that LGI2, like LGI1, is neuronally secreted and acts on metalloproteinase-lacking members of the ADAM family of neuronal receptors, which function in synapse remodeling, and that LGI2 truncation, like LGI1 truncations, prevents secretion and ADAM interaction. The resulting epilepsy onsets at around seven weeks (equivalent to human two years, and remits by four months (human eight years, versus onset after age eight in the majority of human patients with LGI1 mutations. Finally, we show that Lgi2 is expressed highly in the immediate post-natal period until halfway through pruning, unlike Lgi1, which is expressed in the latter part of pruning and beyond. LGI2 acts at least in part through the same ADAM receptors as LGI1, but earlier, ensuring electrical stability (absence of epilepsy during pruning years, preceding this same function performed by LGI1 in later years. LGI2 should be considered a candidate gene for common remitting childhood epilepsies, and LGI2-to-LGI1 transition for mechanisms of childhood epilepsy remission.

  11. On the propagation of truncated localized waves in dispersive silica

    KAUST Repository

    Salem, Mohamed

    2010-01-01

    Propagation characteristics of truncated Localized Waves propagating in dispersive silica and free space are numerically analyzed. It is shown that those characteristics are affected by the changes in the relation between the transverse spatial spectral components and the wave vector. Numerical experiments demonstrate that as the non-linearity of this relation gets stronger, the pulses propagating in silica become more immune to decay and distortion whereas the pulses propagating in free-space suffer from early decay and distortion. © 2010 Optical Society of America.

  12. Truncated conformal space approach to scaling Lee-Yang model

    International Nuclear Information System (INIS)

    Yurov, V.P.; Zamolodchikov, Al.B.

    1989-01-01

    A numerical approach to 2D relativstic field theories is suggested. Considering a field theory model as an ultraviolet conformal field theory perturbed by suitable relevant scalar operator one studies it in finite volume (on a circle). The perturbed Hamiltonian acts in the conformal field theory space of states and its matrix elements can be extracted from the conformal field theory. Truncation of the space at reasonable level results in a finite dimensional problem for numerical analyses. The nonunitary field theory with the ultraviolet region controlled by the minimal conformal theory μ(2/5) is studied in detail. 9 refs.; 17 figs

  13. Chaos and noise in a truncated Toda potential

    International Nuclear Information System (INIS)

    Habib, S.; Kandrup, H.E.; Mahon, M.E.

    1996-01-01

    Results are reported from a numerical investigation of orbits in a truncated Toda potential that is perturbed by weak friction and noise. Aside from the perturbations displaying a simple scaling in the amplitude of the friction and noise, it is found that even very weak friction and noise can induce an extrinsic diffusion through cantori on a time scale that is much shorter than that associated with intrinsic diffusion in the unperturbed system. The results have applications in galactic dynamics and in the formation of a beam halo in charged particle beams. copyright 1996 The American Physical Society

  14. Binary optics: Trends and limitations

    Science.gov (United States)

    Farn, Michael W.; Veldkamp, Wilfrid B.

    1993-01-01

    We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.

  15. Particle acceleration in binaries

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.G.

    2017-01-01

    Full Text Available Cygnus X-3 massive binary system is one of the powerful sources of radio and X-ray emission consisting of an accreting compact object, probably a black hole, with a Wolf-Rayet star companion. Based on the detections of ultra high energy gamma-rays by Kiel and Havera Park, Cygnus X-3 has been proposed to be one of the most powerful sources of charged cosmic ray particles in the Galaxy. The results of long-term observations of the Cyg X-3 binary at energies 800 GeV–85 TeV detected by SHALON in 1995 are presented with images, integral spectra and spectral energy distribution. The identification of source with Cygnus X-3 detected by SHALON was secured by the detection of its 4.8 hour orbital period in TeV gamma-rays. During the whole observation period of Cyg X-3 with SHALON significant flux increases were detected at energies above 0.8 TeV. These TeV flux increases are correlated with flaring activity at a lower energy range of X-ray and/or at observations of Fermi LAT as well as with radio emission from the relativistic jets of Cygnus X-3. The variability of very high-energy gamma-radiation and correlation of radiation activity in the wide energy range can provide essential information on particle mechanism production up to very high energies. Whereas, modulation of very high energy emission connected to the orbital motion of the binary system, provides an understanding of the emission processes, nature and location of particle acceleration.

  16. Generation of Binary Off-axis Digital Fresnel Hologram with Enhanced Quality

    Directory of Open Access Journals (Sweden)

    Peter Wai Ming Tsang

    2015-06-01

    Full Text Available The emergence of high resolution printer and digital micromirror device (DMD has enabled real, off-axis holograms to be printed, or projected onto a screen. As most printers and DMD can only reproduce binary dots, the pixels in a hologram have to be truncated to 2 levels. However, direct binarizing a hologram will lead to severe degradation on its reconstructed image. In this paper, a method for generating binary off-axis digital Fresnel hologram is reported. A hologram generated with the proposed method is referred to as the "Enhanced Sampled Binary Hologram" (ESBH. The reconstructed image of the ESBH is superior in visual quality as compare with the one obtained with existing technique, and also resistant to noise contamination.

  17. Binary Cepheids: Separations and Mass Ratios in 5 M ⊙ Binaries

    Science.gov (United States)

    Evans, Nancy Evans; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.; Karovska, Margarita; Tingle, Evan

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ~5 M ⊙—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M ⊙. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M ⊙ binaries have systematically shorter periods than do 1 M ⊙ stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  18. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M ☉ BINARIES

    International Nuclear Information System (INIS)

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.

    2013-01-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ∼5 M ☉ —are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M ☉ . Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M ☉ binaries have systematically shorter periods than do 1 M ☉ stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple

  19. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M {sub ☉} BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan [Smithsonian Astrophysical Observatory, MS 4, 60 Garden Street, Cambridge, MA 02138 (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Schaefer, Gail H. [The CHARA Array, Georgia State University, P.O. Box 3965, Atlanta, GA 30302-3965 (United States); Mason, Brian D., E-mail: nevans@cfa.harvard.edu, E-mail: heb11@psu.edu, E-mail: schaefer@chara-array.org [US Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420 (United States)

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ∼5 M {sub ☉}—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M {sub ☉}. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M {sub ☉} binaries have systematically shorter periods than do 1 M {sub ☉} stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple.

  20. Magnetic binary nanofillers

    International Nuclear Information System (INIS)

    Morales Mendoza, N.; Goyanes, S.; Chiliotte, C.; Bekeris, V.; Rubiolo, G.; Candal, R.

    2012-01-01

    Magnetic binary nanofillers containing multiwall carbon nanotubes (MWCNT) and hercynite were synthesized by Chemical Vapor Deposition (CVD) on Fe/AlOOH prepared by the sol-gel method. The catalyst precursor was fired at 450 °C, ground and sifted through different meshes. Two powders were obtained with different particle sizes: sample A (50-75 μm) and sample B (smaller than 50 μm). These powders are composed of iron oxide particles widely dispersed in the non-crystalline matrix of aluminum oxide and they are not ferromagnetic. After reduction process the powders are composed of α-Fe nanoparticles inside hercynite matrix. These nanofillers are composed of hercynite containing α-Fe nanoparticles and MWCNT. The binary magnetic nanofillers were slightly ferromagnetic. The saturation magnetization of the nanofillers depended on the powder particle size. The nanofiller obtained from powder particles in the range 50-75 μm showed a saturation magnetization 36% higher than the one formed from powder particles smaller than 50 μm. The phenomenon is explained in terms of changes in the magnetic environment of the particles as consequence of the presence of MWCNT.

  1. Magnetic binary nanofillers

    Energy Technology Data Exchange (ETDEWEB)

    Morales Mendoza, N. [INQUIMAE, CONICET-UBA, Ciudad Universitaria, Pab2, (C1428EHA) Bs As (Argentina); LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Goyanes, S. [LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Chiliotte, C.; Bekeris, V. [LBT, Dep. De Fisica, FCEN-UBA. Ciudad Universitaria, Pab1, C1428EGA CABA (Argentina); Rubiolo, G. [LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Unidad de Actividad Materiales, CNEA, Av Gral. Paz 1499, San Martin (1650), Prov. de Bs As (Argentina); Candal, R., E-mail: candal@qi.fcen.uba.ar [INQUIMAE, CONICET-UBA, Ciudad Universitaria, Pab2, (C1428EHA) Bs As (Argentina); Escuela de Ciencia y Tecnologia, 3iA, Universidad de Gral. San Martin, San Martin, Prov. Bs As (Argentina)

    2012-08-15

    Magnetic binary nanofillers containing multiwall carbon nanotubes (MWCNT) and hercynite were synthesized by Chemical Vapor Deposition (CVD) on Fe/AlOOH prepared by the sol-gel method. The catalyst precursor was fired at 450 Degree-Sign C, ground and sifted through different meshes. Two powders were obtained with different particle sizes: sample A (50-75 {mu}m) and sample B (smaller than 50 {mu}m). These powders are composed of iron oxide particles widely dispersed in the non-crystalline matrix of aluminum oxide and they are not ferromagnetic. After reduction process the powders are composed of {alpha}-Fe nanoparticles inside hercynite matrix. These nanofillers are composed of hercynite containing {alpha}-Fe nanoparticles and MWCNT. The binary magnetic nanofillers were slightly ferromagnetic. The saturation magnetization of the nanofillers depended on the powder particle size. The nanofiller obtained from powder particles in the range 50-75 {mu}m showed a saturation magnetization 36% higher than the one formed from powder particles smaller than 50 {mu}m. The phenomenon is explained in terms of changes in the magnetic environment of the particles as consequence of the presence of MWCNT.

  2. Phase retrieval via incremental truncated amplitude flow algorithm

    Science.gov (United States)

    Zhang, Quanbing; Wang, Zhifa; Wang, Linjie; Cheng, Shichao

    2017-10-01

    This paper considers the phase retrieval problem of recovering the unknown signal from the given quadratic measurements. A phase retrieval algorithm based on Incremental Truncated Amplitude Flow (ITAF) which combines the ITWF algorithm and the TAF algorithm is proposed. The proposed ITAF algorithm enhances the initialization by performing both of the truncation methods used in ITWF and TAF respectively, and improves the performance in the gradient stage by applying the incremental method proposed in ITWF to the loop stage of TAF. Moreover, the original sampling vector and measurements are preprocessed before initialization according to the variance of the sensing matrix. Simulation experiments verified the feasibility and validity of the proposed ITAF algorithm. The experimental results show that it can obtain higher success rate and faster convergence speed compared with other algorithms. Especially, for the noiseless random Gaussian signals, ITAF can recover any real-valued signal accurately from the magnitude measurements whose number is about 2.5 times of the signal length, which is close to the theoretic limit (about 2 times of the signal length). And it usually converges to the optimal solution within 20 iterations which is much less than the state-of-the-art algorithms.

  3. Symmetric truncations of the shallow-water equations

    International Nuclear Information System (INIS)

    Rouhi, A.; Abarbanel, H.D.I.

    1993-01-01

    Conservation of potential vorticity in Eulerian fluids reflects particle interchange symmetry in the Lagrangian fluid version of the same theory. The algebra associated with this symmetry in the shallow-water equations is studied here, and we give a method for truncating the degrees of freedom of the theory which preserves a maximal number of invariants associated with this algebra. The finite-dimensional symmetry associated with keeping only N modes of the shallow-water flow is SU(N). In the limit where the number of modes goes to infinity (N→∞) all the conservation laws connected with potential vorticity conservation are recovered. We also present a Hamiltonian which is invariant under this truncated symmetry and which reduces to the familiar shallow-water Hamiltonian when N→∞. All this provides a finite-dimensional framework for numerical work with the shallow-water equations which preserves not only energy and enstrophy but all other known conserved quantities consistent with the finite number of degrees of freedom. The extension of these ideas to other nearly two-dimensional flows is discussed

  4. Learning Mixtures of Truncated Basis Functions from Data

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre; Pérez-Bernabé, Inmaculada

    2014-01-01

    In this paper we investigate methods for learning hybrid Bayesian networks from data. First we utilize a kernel density estimate of the data in order to translate the data into a mixture of truncated basis functions (MoTBF) representation using a convex optimization technique. When utilizing a ke...... propose an alternative learning method that relies on the cumulative distribution function of the data. Empirical results demonstrate the usefulness of the approaches: Even though the methods produce estimators that are slightly poorer than the state of the art (in terms of log......In this paper we investigate methods for learning hybrid Bayesian networks from data. First we utilize a kernel density estimate of the data in order to translate the data into a mixture of truncated basis functions (MoTBF) representation using a convex optimization technique. When utilizing......-likelihood), they are significantly faster, and therefore indicate that the MoTBF framework can be used for inference and learning in reasonably sized domains. Furthermore, we show how a particular sub- class of MoTBF potentials (learnable by the proposed methods) can be exploited to significantly reduce complexity during inference....

  5. Theoretical analysis of balanced truncation for linear switched systems

    DEFF Research Database (Denmark)

    Petreczky, Mihaly; Wisniewski, Rafal; Leth, John-Josef

    2012-01-01

    In this paper we present theoretical analysis of model reduction of linear switched systems based on balanced truncation, presented in [1,2]. More precisely, (1) we provide a bound on the estimation error using L2 gain, (2) we provide a system theoretic interpretation of grammians and their singu......In this paper we present theoretical analysis of model reduction of linear switched systems based on balanced truncation, presented in [1,2]. More precisely, (1) we provide a bound on the estimation error using L2 gain, (2) we provide a system theoretic interpretation of grammians...... for showing this independence is realization theory of linear switched systems. [1] H. R. Shaker and R. Wisniewski, "Generalized gramian framework for model/controller order reduction of switched systems", International Journal of Systems Science, Vol. 42, Issue 8, 2011, 1277-1291. [2] H. R. Shaker and R....... Wisniewski, "Switched Systems Reduction Framework Based on Convex Combination of Generalized Gramians", Journal of Control Science and Engineering, 2009....

  6. Firewalls as artefacts of inconsistent truncations of quantum geometries

    Energy Technology Data Exchange (ETDEWEB)

    Germani, Cristiano [Max-Planck-Institut fuer Physik, Muenchen (Germany); Arnold Sommerfeld Center, Ludwig-Maximilians-University, Muenchen (Germany); Institut de Ciencies del Cosmos, Universitat de Barcelona (Spain); Sarkar, Debajyoti [Max-Planck-Institut fuer Physik, Muenchen (Germany); Arnold Sommerfeld Center, Ludwig-Maximilians-University, Muenchen (Germany)

    2016-01-15

    In this paper we argue that a firewall is simply a manifestation of an inconsistent truncation of non-perturbative effects that unitarize the semiclassical black hole. Namely, we show that a naive truncation of quantum corrections to the Hawking spectrum at order O(e{sup -S}), inexorably leads to a ''localised'' divergent energy density near the black hole horizon. Nevertheless, in the same approximation, a distant observer only sees a discretised spectrum and concludes that unitarity is achieved by (e{sup -S}) effects. This is due to the fact that instead, the correct quantum corrections to the Hawking spectrum go like (g{sup tt}e{sup -S}). Therefore, while at a distance far away from the horizon, where g{sup tt} ∼ 1, quantum corrections are perturbative, they do diverge close to the horizon, where g{sup tt} → ∞. Nevertheless, these ''corrections'' nicely re-sum so that correlations functions are smooth at the would-be black hole horizon. Thus, we conclude that the appearance of firewalls is just a signal of the breaking of the semiclassical approximation at the Page time, even for large black holes. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Firewalls as artefacts of inconsistent truncations of quantum geometries

    Science.gov (United States)

    Germani, Cristiano; Sarkar, Debajyoti

    2016-01-01

    In this paper we argue that a firewall is simply a manifestation of an inconsistent truncation of non-perturbative effects that unitarize the semiclassical black hole. Namely, we show that a naive truncation of quantum corrections to the Hawking spectrum at order ${\\cal O}(e^{-S})$, inexorably leads to a "localised'' divergent energy density near the black hole horizon. Nevertheless, in the same approximation, a distant observer only sees a discretised spectrum and concludes that unitarity is achieved by ${\\cal O}(e^{-S})$ effects. This is due to the fact that instead, the correct quantum corrections to the Hawking spectrum go like ${\\cal O}( g^{tt} e^{-S})$. Therefore, while at a distance far away from the horizon, where $g^{tt}\\approx 1$, quantum corrections {\\it are} perturbative, they {\\it do} diverge close to the horizon, where $g^{tt}\\rightarrow \\infty$. Nevertheless, these "corrections" nicely re-sum so that correlations functions are smooth at the would-be black hole horizon. Thus, we conclude that the appearance of firewalls is just a signal of the breaking of the semiclassical approximation at the Page time, even for large black holes.

  8. Firewalls as artefacts of inconsistent truncations of quantum geometries

    International Nuclear Information System (INIS)

    Germani, Cristiano; Sarkar, Debajyoti

    2016-01-01

    In this paper we argue that a firewall is simply a manifestation of an inconsistent truncation of non-perturbative effects that unitarize the semiclassical black hole. Namely, we show that a naive truncation of quantum corrections to the Hawking spectrum at order O(e -S ), inexorably leads to a ''localised'' divergent energy density near the black hole horizon. Nevertheless, in the same approximation, a distant observer only sees a discretised spectrum and concludes that unitarity is achieved by (e -S ) effects. This is due to the fact that instead, the correct quantum corrections to the Hawking spectrum go like (g tt e -S ). Therefore, while at a distance far away from the horizon, where g tt ∼ 1, quantum corrections are perturbative, they do diverge close to the horizon, where g tt → ∞. Nevertheless, these ''corrections'' nicely re-sum so that correlations functions are smooth at the would-be black hole horizon. Thus, we conclude that the appearance of firewalls is just a signal of the breaking of the semiclassical approximation at the Page time, even for large black holes. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Hamiltonian truncation approach to quenches in the Ising field theory

    Directory of Open Access Journals (Sweden)

    T. Rakovszky

    2016-10-01

    Full Text Available In contrast to lattice systems where powerful numerical techniques such as matrix product state based methods are available to study the non-equilibrium dynamics, the non-equilibrium behaviour of continuum systems is much harder to simulate. We demonstrate here that Hamiltonian truncation methods can be efficiently applied to this problem, by studying the quantum quench dynamics of the 1+1 dimensional Ising field theory using a truncated free fermionic space approach. After benchmarking the method with integrable quenches corresponding to changing the mass in a free Majorana fermion field theory, we study the effect of an integrability breaking perturbation by the longitudinal magnetic field. In both the ferromagnetic and paramagnetic phases of the model we find persistent oscillations with frequencies set by the low-lying particle excitations not only for small, but even for moderate size quenches. In the ferromagnetic phase these particles are the various non-perturbative confined bound states of the domain wall excitations, while in the paramagnetic phase the single magnon excitation governs the dynamics, allowing us to capture the time evolution of the magnetisation using a combination of known results from perturbation theory and form factor based methods. We point out that the dominance of low lying excitations allows for the numerical or experimental determination of the mass spectra through the study of the quench dynamics.

  10. Multiplicity in Early Stellar Evolution

    Science.gov (United States)

    Reipurth, B.; Clarke, C. J.; Boss, A. P.; Goodwin, S. P.; Rodríguez, L. F.; Stassun, K. G.; Tokovinin, A.; Zinnecker, H.

    Observations from optical to centimeter wavelengths have demonstrated that multiple systems of two or more bodies is the norm at all stellar evolutionary stages. Multiple systems are widely agreed to result from the collapse and fragmentation of cloud cores, despite the inhibiting influence of magnetic fields. Surveys of class 0 protostars with millimeter interferometers have revealed a very high multiplicity frequency of about 2/3, even though there are observational difficulties in resolving close protobinaries, thus supporting the possibility that all stars could be born in multiple systems. Near-infrared adaptive optics observations of class I protostars show a lower binary frequency relative to the class 0 phase, a declining trend that continues through the class II/III stages to the field population. This loss of companions is a natural consequence of dynamical interplay in small multiple systems, leading to ejection of members. We discuss observational consequences of this dynamical evolution, and its influence on circumstellar disks, and we review the evolution of circumbinary disks and their role in defining binary mass ratios. Special attention is paid to eclipsing PMS binaries, which allow for observational tests of evolutionary models of early stellar evolution. Many stars are born in clusters and small groups, and we discuss how interactions in dense stellar environments can significantly alter the distribution of binary separations through dissolution of wider binaries. The binaries and multiples we find in the field are the survivors of these internal and external destructive processes, and we provide a detailed overview of the multiplicity statistics of the field, which form a boundary condition for all models of binary evolution. Finally, we discuss various formation mechanisms for massive binaries, and the properties of massive trapezia.

  11. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  12. Spectral properties of binary asteroids

    Science.gov (United States)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-04-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15% of all small asteroids). For that, an analysis of 0.8-2.5{μ m} near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF is presented. Taxonomic class and meteorite analog is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21%. Most binary systems are bound in the S-, X-, and C- classes, followed by Q and V-types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C-types which are under-represented among binaries.

  13. RS CVn binary systems

    International Nuclear Information System (INIS)

    Linsky, J.L.

    1984-01-01

    The author attempts to place in context the vast amount of data obtained in the last few years as a result of X-ray, ultraviolet, optical, and microwave observations of RS CVn and similar spectroscopic binary systems. He concentrates on the RS CVn systems and their long-period analogs, and restricts the scope by attempting to answer on the basis of the recent data and theory following questions: (1) Are the original defining characteristics still valid and still adequate? (2) What is the evidence for discrete active regions? (3) Have we derived any meaningful physical properties for the atmospheres of RS CVn systems? (4) What are the flare observations telling us about magnetic fields in the RS CVn systems? (5) Is there evidence for systematic trends in RS CVn systems with spectral type?

  14. Circumstellar disks around binary stars in Taurus

    International Nuclear Information System (INIS)

    Akeson, R. L.; Jensen, E. L. N.

    2014-01-01

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10 –4 M ☉ . We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F mm ∝M ∗ 1.5--2.0 to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  15. Circumstellar disks around binary stars in Taurus

    Energy Technology Data Exchange (ETDEWEB)

    Akeson, R. L. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States); Jensen, E. L. N. [Swarthmore College, Department of Physics and Astronomy, Swarthmore, PA 19081 (United States)

    2014-03-20

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10{sup –4} M {sub ☉}. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F{sub mm}∝M{sub ∗}{sup 1.5--2.0} to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  16. Instabilities in Interacting Binary Stars

    Science.gov (United States)

    Andronov, I. L.; Andrych, K. D.; Antoniuk, K. A.; Baklanov, A. V.; Beringer, P.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Cook, L. M.; Cook, M.; Dubovský, P.; Godlowski, W.; Hegedüs, T.; Hoňková, K.; Hric, L.; Jeon, Y.-B.; Juryšek, J.; Kim, C.-H.; Kim, Y.; Kim, Y.-H.; Kolesnikov, S. V.; Kudashkina, L. S.; Kusakin, A. V.; Marsakova, V. I.; Mason, P. A.; Mašek, M.; Mishevskiy, N.; Nelson, R. H.; Oksanen, A.; Parimucha, S.; Park, J.-W.; Petrík, K.; Quiñones, C.; Reinsch, K.; Robertson, J. W.; Sergey, I. M.; Szpanko, M.; Tkachenko, M. G.; Tkachuk, L. G.; Traulsen, I.; Tremko, J.; Tsehmeystrenko, V. S.; Yoon, J.-N.; Zola, S.; Shakhovskoy, N. M.

    2017-07-01

    The types of instability in the interacting binary stars are briefly reviewed. The project “Inter-Longitude Astronomy” is a series of smaller projects on concrete stars or groups of stars. It has no special funds, and is supported from resources and grants of participating organizations, when informal working groups are created. This “ILA” project is in some kind similar and complementary to other projects like WET, CBA, UkrVO, VSOLJ, BRNO, MEDUZA, AstroStatistics, where many of us collaborate. Totally we studied 1900+ variable stars of different types, including newly discovered variables. The characteristic timescale is from seconds to decades and (extrapolating) even more. The monitoring of the first star of our sample AM Her was initiated by Prof. V.P. Tsesevich (1907-1983). Since more than 358 ADS papers were published. In this short review, we present some highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types: classical (AM Her, QQ Vul, V808 Aur = CSS 081231:071126+440405, FL Cet), asynchronous (BY Cam, V1432 Aql), intermediate (V405 Aql, BG CMi, MU Cam, V1343 Her, FO Aqr, AO Psc, RXJ 2123, 2133, 0636, 0704) polars and magnetic dwarf novae (DO Dra) with 25 timescales corresponding to different physical mechanisms and their combinations (part “Polar”); negative and positive superhumpers in nova-like (TT Ari, MV Lyr, V603 Aql, V795 Her) and many dwarf novae stars (“Superhumper”); eclipsing “non-magnetic” cataclysmic variables(BH Lyn, DW UMa, EM Cyg; PX And); symbiotic systems (“Symbiosis”); super-soft sources (SSS, QR And); spotted (and not spotted) eclipsing variables with (and without) evidence for a current mass transfer (“Eclipser”) with a special emphasis on systems with a direct impact of the stream into the gainer star's atmosphere, which we propose to call “Impactor” (short from “Extreme Direct Impactor”), or V361 Lyr-type stars. Other

  17. Design and Synthesis of a Series of Truncated Neplanocin Fleximers

    Directory of Open Access Journals (Sweden)

    Sarah C. Zimmermann

    2014-12-01

    Full Text Available In an effort to study the effects of flexibility on enzyme recognition and activity, we have developed several different series of flexible nucleoside analogues in which the purine base is split into its respective imidazole and pyrimidine components. The focus of this particular study was to synthesize the truncated neplanocin A fleximers to investigate their potential anti-protozoan activities by inhibition of S-adenosylhomocysteine hydrolase (SAHase. The three fleximers tested displayed poor anti-trypanocidal activities, with EC50 values around 200 μM. Further studies of the corresponding ribose fleximers, most closely related to the natural nucleoside substrates, revealed low affinity for the known T. brucei nucleoside transporters P1 and P2, which may be the reason for the lack of trypanocidal activity observed.

  18. Administering truncated receive functions in a parallel messaging interface

    Science.gov (United States)

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2014-12-09

    Administering truncated receive functions in a parallel messaging interface (`PMI`) of a parallel computer comprising a plurality of compute nodes coupled for data communications through the PMI and through a data communications network, including: sending, through the PMI on a source compute node, a quantity of data from the source compute node to a destination compute node; specifying, by an application on the destination compute node, a portion of the quantity of data to be received by the application on the destination compute node and a portion of the quantity of data to be discarded; receiving, by the PMI on the destination compute node, all of the quantity of data; providing, by the PMI on the destination compute node to the application on the destination compute node, only the portion of the quantity of data to be received by the application; and discarding, by the PMI on the destination compute node, the portion of the quantity of data to be discarded.

  19. Effect of truncated cone roughness element density on hydrodynamic drag

    Science.gov (United States)

    Womack, Kristofer; Schultz, Michael; Meneveau, Charles

    2017-11-01

    An experimental study was conducted on rough-wall, turbulent boundary layer flow with roughness elements whose idealized shape model barnacles that cause hydrodynamic drag in many applications. Varying planform densities of truncated cone roughness elements were investigated. Element densities studied ranged from 10% to 79%. Detailed turbulent boundary layer velocity statistics were recorded with a two-component LDV system on a three-axis traverse. Hydrodynamic roughness length (z0) and skin-friction coefficient (Cf) were determined and compared with the estimates from existing roughness element drag prediction models including Macdonald et al. (1998) and other recent models. The roughness elements used in this work model idealized barnacles, so implications of this data set for ship powering are considered. This research was supported by the Office of Naval Research and by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  20. Pair truncation for rotational nuclei: j=17/2 model

    International Nuclear Information System (INIS)

    Halse, P.; Jaqua, L.; Barrett, B.R.

    1989-01-01

    The suitability of the pair condensate approach for rotational states is studied in a single j=17/2 shell of identical nucleons interacting through a quadrupole-quadrupole Hamiltonian. The ground band and a K=2 excited band are both studied in detail. A direct comparison of the exact states with those constituting the SD and SDG subspaces is used to identify the important degrees of freedom for these levels. The range of pairs necessary for a good description is found to be highly state dependent; S and D pairs are the major constituents of the low-spin ground-band levels, while G pairs are needed for those in the γ band. Energy spectra are obtained for each truncated subspace. SDG pairs allow accurate reproduction of the binding energy and K=2 excitation energy, but still give a moment of inertia which is about 30% too small even for the lowest levels

  1. Solution of the Stieltjes truncated matrix moment problem

    Directory of Open Access Journals (Sweden)

    Vadim M. Adamyan

    2005-01-01

    Full Text Available The truncated Stieltjes matrix moment problem consisting in the description of all matrix distributions \\(\\boldsymbol{\\sigma}(t\\ on \\([0,\\infty\\ with given first \\(2n+1\\ power moments \\((\\mathbf{C}_j_{n=0}^j\\ is solved using known results on the corresponding Hamburger problem for which \\(\\boldsymbol{\\sigma}(t\\ are defined on \\((-\\infty,\\infty\\. The criterion of solvability of the Stieltjes problem is given and all its solutions in the non-degenerate case are described by selection of the appropriate solutions among those of the Hamburger problem for the same set of moments. The results on extensions of non-negative operators are used and a purely algebraic algorithm for the solution of both Hamburger and Stieltjes problems is proposed.

  2. Generalized Truncated Methods for an Efficient Solution of Retrial Systems

    Directory of Open Access Journals (Sweden)

    Ma Jose Domenech-Benlloch

    2008-01-01

    Full Text Available We are concerned with the analytic solution of multiserver retrial queues including the impatience phenomenon. As there are not closed-form solutions to these systems, approximate methods are required. We propose two different generalized truncated methods to effectively solve this type of systems. The methods proposed are based on the homogenization of the state space beyond a given number of users in the retrial orbit. We compare the proposed methods with the most well-known methods appeared in the literature in a wide range of scenarios. We conclude that the proposed methods generally outperform previous proposals in terms of accuracy for the most common performance parameters used in retrial systems with a moderated growth in the computational cost.

  3. Developmental regulation of human truncated nerve growth factor receptor

    Energy Technology Data Exchange (ETDEWEB)

    DiStefano, P.S.; Clagett-Dame, M.; Chelsea, D.M.; Loy, R. (Abbott Laboratories, Abbott Park, IL (USA))

    1991-01-01

    Monoclonal antibodies (designated XIF1 and IIIG5) recognizing distinct epitopes of the human truncated nerve growth factor receptor (NGF-Rt) were used in a two-site radiometric immunosorbent assay to monitor levels of NGF-Rt in human urine as a function of age. Urine samples were collected from 70 neurologically normal subjects ranging in age from 1 month to 68 years. By using this sensitive two-site radiometric immunosorbent assay, NGF-Rt levels were found to be highest in urine from 1-month old subjects. By 2.5 months, NGF-Rt values were half of those seen at 1 month and decreased more gradually between 0.5 and 15 years. Between 15 and 68 years, urine NGF-Rt levels were relatively constant at 5% of 1-month values. No evidence for diurnal variation of adult NGF-Rt was apparent. Pregnant women in their third trimester showed significantly elevated urine NGF-Rt values compared with age-matched normals. Affinity labeling of NGF-Rt with 125I-NGF followed by immunoprecipitation with ME20.4-IgG and gel autoradiography indicated that neonatal urine contained high amounts of truncated receptor (Mr = 50 kd); decreasingly lower amounts of NGF-Rt were observed on gel autoradiograms with development, indicating that the two-site radiometric immunosorbent assay correlated well with the affinity labeling technique for measuring NGF-Rt. NGF-Rt in urines from 1-month-old and 36-year-old subjects showed no differences in affinities for NGF or for the monoclonal antibody IIIG5. These data show that NGF-Rt is developmentally regulated in human urine, and are discussed in relation to the development and maturation of the peripheral nervous system.

  4. Developmental regulation of human truncated nerve growth factor receptor

    International Nuclear Information System (INIS)

    DiStefano, P.S.; Clagett-Dame, M.; Chelsea, D.M.; Loy, R.

    1991-01-01

    Monoclonal antibodies (designated XIF1 and IIIG5) recognizing distinct epitopes of the human truncated nerve growth factor receptor (NGF-Rt) were used in a two-site radiometric immunosorbent assay to monitor levels of NGF-Rt in human urine as a function of age. Urine samples were collected from 70 neurologically normal subjects ranging in age from 1 month to 68 years. By using this sensitive two-site radiometric immunosorbent assay, NGF-Rt levels were found to be highest in urine from 1-month old subjects. By 2.5 months, NGF-Rt values were half of those seen at 1 month and decreased more gradually between 0.5 and 15 years. Between 15 and 68 years, urine NGF-Rt levels were relatively constant at 5% of 1-month values. No evidence for diurnal variation of adult NGF-Rt was apparent. Pregnant women in their third trimester showed significantly elevated urine NGF-Rt values compared with age-matched normals. Affinity labeling of NGF-Rt with 125I-NGF followed by immunoprecipitation with ME20.4-IgG and gel autoradiography indicated that neonatal urine contained high amounts of truncated receptor (Mr = 50 kd); decreasingly lower amounts of NGF-Rt were observed on gel autoradiograms with development, indicating that the two-site radiometric immunosorbent assay correlated well with the affinity labeling technique for measuring NGF-Rt. NGF-Rt in urines from 1-month-old and 36-year-old subjects showed no differences in affinities for NGF or for the monoclonal antibody IIIG5. These data show that NGF-Rt is developmentally regulated in human urine, and are discussed in relation to the development and maturation of the peripheral nervous system

  5. Analysis of the upper-truncated Weibull distribution for wind speed

    International Nuclear Information System (INIS)

    Kantar, Yeliz Mert; Usta, Ilhan

    2015-01-01

    Highlights: • Upper-truncated Weibull distribution is proposed to model wind speed. • Upper-truncated Weibull distribution nests Weibull distribution as special case. • Maximum likelihood is the best method for upper-truncated Weibull distribution. • Fitting accuracy of upper-truncated Weibull is analyzed on wind speed data. - Abstract: Accurately modeling wind speed is critical in estimating the wind energy potential of a certain region. In order to model wind speed data smoothly, several statistical distributions have been studied. Truncated distributions are defined as a conditional distribution that results from restricting the domain of statistical distribution and they also cover base distribution. This paper proposes, for the first time, the use of upper-truncated Weibull distribution, in modeling wind speed data and also in estimating wind power density. In addition, a comparison is made between upper-truncated Weibull distribution and well known Weibull distribution using wind speed data measured in various regions of Turkey. The obtained results indicate that upper-truncated Weibull distribution shows better performance than Weibull distribution in estimating wind speed distribution and wind power. Therefore, upper-truncated Weibull distribution can be an alternative for use in the assessment of wind energy potential

  6. THE CLOSE BINARY FRACTION OF DWARF M STARS

    International Nuclear Information System (INIS)

    Clark, Benjamin M.; Blake, Cullen H.; Knapp, Gillian R.

    2012-01-01

    We describe a search for close spectroscopic dwarf M star binaries using data from the Sloan Digital Sky Survey to address the question of the rate of occurrence of multiplicity in M dwarfs. We use a template-fitting technique to measure radial velocities from 145,888 individual spectra obtained for a magnitude-limited sample of 39,543 M dwarfs. Typically, the three or four spectra observed for each star are separated in time by less than four hours, but for ∼17% of the stars, the individual observations span more than two days. In these cases we are sensitive to large-amplitude radial velocity variations on timescales comparable to the separation between the observations. We use a control sample of objects having observations taken within a four-hour period to make an empirical estimate of the underlying radial velocity error distribution and simulate our detection efficiency for a wide range of binary star systems. We find the frequency of binaries among the dwarf M stars with a < 0.4 AU to be 3%-4%. Comparison with other samples of binary stars demonstrates that the close binary fraction, like the total binary fraction, is an increasing function of primary mass.

  7. THE CLOSE BINARY FRACTION OF DWARF M STARS

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Benjamin M. [Penn Manor High School, 100 East Cottage Avenue, Millersville, PA 17551 (United States); Blake, Cullen H.; Knapp, Gillian R. [Princeton University, Department of Astrophysical Sciences, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States)

    2012-01-10

    We describe a search for close spectroscopic dwarf M star binaries using data from the Sloan Digital Sky Survey to address the question of the rate of occurrence of multiplicity in M dwarfs. We use a template-fitting technique to measure radial velocities from 145,888 individual spectra obtained for a magnitude-limited sample of 39,543 M dwarfs. Typically, the three or four spectra observed for each star are separated in time by less than four hours, but for {approx}17% of the stars, the individual observations span more than two days. In these cases we are sensitive to large-amplitude radial velocity variations on timescales comparable to the separation between the observations. We use a control sample of objects having observations taken within a four-hour period to make an empirical estimate of the underlying radial velocity error distribution and simulate our detection efficiency for a wide range of binary star systems. We find the frequency of binaries among the dwarf M stars with a < 0.4 AU to be 3%-4%. Comparison with other samples of binary stars demonstrates that the close binary fraction, like the total binary fraction, is an increasing function of primary mass.

  8. A Novel SCCA Approach via Truncated ℓ1-norm and Truncated Group Lasso for Brain Imaging Genetics.

    Science.gov (United States)

    Du, Lei; Liu, Kefei; Zhang, Tuo; Yao, Xiaohui; Yan, Jingwen; Risacher, Shannon L; Han, Junwei; Guo, Lei; Saykin, Andrew J; Shen, Li

    2017-09-18

    Brain imaging genetics, which studies the linkage between genetic variations and structural or functional measures of the human brain, has become increasingly important in recent years. Discovering the bi-multivariate relationship between genetic markers such as single-nucleotide polymorphisms (SNPs) and neuroimaging quantitative traits (QTs) is one major task in imaging genetics. Sparse Canonical Correlation Analysis (SCCA) has been a popular technique in this area for its powerful capability in identifying bi-multivariate relationships coupled with feature selection. The existing SCCA methods impose either the ℓ 1 -norm or its variants to induce sparsity. The ℓ 0 -norm penalty is a perfect sparsity-inducing tool which, however, is an NP-hard problem. In this paper, we propose the truncated ℓ 1 -norm penalized SCCA to improve the performance and effectiveness of the ℓ 1 -norm based SCCA methods. Besides, we propose an efficient optimization algorithms to solve this novel SCCA problem. The proposed method is an adaptive shrinkage method via tuning τ . It can avoid the time intensive parameter tuning if given a reasonable small τ . Furthermore, we extend it to the truncated group-lasso (TGL), and propose TGL-SCCA model to improve the group-lasso-based SCCA methods. The experimental results, compared with four benchmark methods, show that our SCCA methods identify better or similar correlation coefficients, and better canonical loading profiles than the competing methods. This demonstrates the effectiveness and efficiency of our methods in discovering interesting imaging genetic associations. The Matlab code and sample data are freely available at http://www.iu.edu/∼shenlab/tools/tlpscca/ . © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  9. Optimally cloned binary coherent states

    Science.gov (United States)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  10. Efficient linear precoding for massive MIMO systems using truncated polynomial expansion

    KAUST Repository

    Müller, Axel

    2014-06-01

    Massive multiple-input multiple-output (MIMO) techniques have been proposed as a solution to satisfy many requirements of next generation cellular systems. One downside of massive MIMO is the increased complexity of computing the precoding, especially since the relatively \\'antenna-efficient\\' regularized zero-forcing (RZF) is preferred to simple maximum ratio transmission. We develop in this paper a new class of precoders for single-cell massive MIMO systems. It is based on truncated polynomial expansion (TPE) and mimics the advantages of RZF, while offering reduced and scalable computational complexity that can be implemented in a convenient parallel fashion. Using random matrix theory we provide a closed-form expression of the signal-to-interference-and-noise ratio under TPE precoding and compare it to previous works on RZF. Furthermore, the sum rate maximizing polynomial coefficients in TPE precoding are calculated. By simulation, we find that to maintain a fixed peruser rate loss as compared to RZF, the polynomial degree does not need to scale with the system, but it should be increased with the quality of the channel knowledge and signal-to-noise ratio. © 2014 IEEE.

  11. Gas dynamics of semidetached binaries

    International Nuclear Information System (INIS)

    Lubow, S.H.; Shu, F.H.

    1975-01-01

    We analyze the gas dynamics of semidetached binary systems within the context of the Rohce model. With the adoption of the assumptions that the contact component rotates synchronously and that the flow occurs isothermally with the thermal speed being a small fraction epsilon of the relative orbital speed, Ωd, of the two stars, we show that the steady flow can be formulated in terms of a problem with multiple length scales. Using this concept, we demonstrate the following by semianalytical methods. (1) The escape of material from the surface of the contact component is accomplished by a highly nonisotropic stellar wind which reaches sonic velocities in a neighborhood of the inner Lagrangian point, L1, of size epsilon in comparison with the orbit separation d. (2) This wind throttles into a narrow stram of material which makes a prescribed angle with respect to the line joining the stellar centers ranging from 19 0 5 to 28 0 4 for the full range of possible stellar mass ratios. (3) The width of the stream scales epsilond while its density scales with epsilon -2 M-dot/Ωd 3 , where M-dot is the mass transfer rate. (4) The stream width remains nearly constant over the part of the stream which is nearly straight, and narrows somewhat as the stream curves toward the detached component. (5) If the detached component is smaller than a certain specified size, the stream results in the formation of a disk of material of prescribed size orbiting the detached component in a direct sense. A subsidi []ry issue examined briefly in this paper is the flow mechanism responsible for moving material to the equator of the contact component, and from there to the L1 region where it is lost by the directed stellar wind. Comparisons of our work are made with previous theoretical studies, and some applications are indicated

  12. Separation in 5 Msun Binaries

    Science.gov (United States)

    Evans, Nancy R.; Bond, H. E.; Schaefer, G.; Mason, B. D.; Karovska, M.; Tingle, E.

    2013-01-01

    Cepheids (5 Msun stars) provide an excellent sample for determining the binary properties of fairly massive stars. International Ultraviolet Explorer (IUE) observations of Cepheids brighter than 8th magnitude resulted in a list of ALL companions more massive than 2.0 Msun uniformly sensitive to all separations. Hubble Space Telescope Wide Field Camera 3 (WFC3) has resolved three of these binaries (Eta Aql, S Nor, and V659 Cen). Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations for a sample of 18 Cepheids, and also a distribution of mass ratios. The distribution of orbital periods shows that the 5 Msun binaries prefer shorter periods than 1 Msun stars, reflecting differences in star formation processes.

  13. Mesoscopic model for binary fluids

    Science.gov (United States)

    Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.

    2017-10-01

    We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.

  14. Some properties of spectral binary stars

    International Nuclear Information System (INIS)

    Krajcheva, Z.T.; Popova, E.I.; Tutukov, A.V.; Yungel'son, L.R.; AN SSSR, Moscow. Astronomicheskij Sovet)

    1978-01-01

    Statistical investigations of spectra binary stars are carried out. Binary systems consisting of main sequence stars are considered. For 826 binary stars masses of components, ratios of component masses, semiaxes of orbits and orbital angular momenta are calculated. The distributions of these parameters and their correlations are analyzed. The dependences of statistical properties of spectral binary stars on their origin and evolution are discussed

  15. Impact of degree truncation on the spread of a contagious process on networks.

    Science.gov (United States)

    Harling, Guy; Onnela, Jukka-Pekka

    2018-03-01

    Understanding how person-to-person contagious processes spread through a population requires accurate information on connections between population members. However, such connectivity data, when collected via interview, is often incomplete due to partial recall, respondent fatigue or study design, e.g., fixed choice designs (FCD) truncate out-degree by limiting the number of contacts each respondent can report. Past research has shown how FCD truncation affects network properties, but its implications for predicted speed and size of spreading processes remain largely unexplored. To study the impact of degree truncation on predictions of spreading process outcomes, we generated collections of synthetic networks containing specific properties (degree distribution, degree-assortativity, clustering), and also used empirical social network data from 75 villages in Karnataka, India. We simulated FCD using various truncation thresholds and ran a susceptible-infectious-recovered (SIR) process on each network. We found that spreading processes propagated on truncated networks resulted in slower and smaller epidemics, with a sudden decrease in prediction accuracy at a level of truncation that varied by network type. Our results have implications beyond FCD to truncation due to any limited sampling from a larger network. We conclude that knowledge of network structure is important for understanding the accuracy of predictions of process spread on degree truncated networks.

  16. Estimation of Panel Data Regression Models with Two-Sided Censoring or Truncation

    DEFF Research Database (Denmark)

    Alan, Sule; Honore, Bo E.; Hu, Luojia

    2014-01-01

    This paper constructs estimators for panel data regression models with individual speci…fic heterogeneity and two–sided censoring and truncation. Following Powell (1986) the estimation strategy is based on moment conditions constructed from re–censored or re–truncated residuals. While these moment...

  17. Inference for shared-frailty survival models with left-truncated data

    NARCIS (Netherlands)

    van den Berg, G.J.; Drepper, B.

    2016-01-01

    Shared-frailty survival models specify that systematic unobserved determinants of duration outcomes are identical within groups of individuals. We consider random-effects likelihood-based statistical inference if the duration data are subject to left-truncation. Such inference with left-truncated

  18. On truncated Taylor series and the position of their spurious zeros

    DEFF Research Database (Denmark)

    Christiansen, Søren; Madsen, Per A.

    2006-01-01

    A truncated Taylor series, or a Taylor polynomial, which may appear when treating the motion of gravity water waves, is obtained by truncating an infinite Taylor series for a complex, analytical function. For such a polynomial the position of the complex zeros is considered in case the Taylor...

  19. A Lynden-Bell integral estimator for the tail index of right-truncated ...

    African Journals Online (AJOL)

    By means of a Lynden-Bell integral with deterministic threshold, Worms and Worms [A Lynden-Bell integral estimator for extremes of randomly truncated data. Statist. Probab. Lett. 2016; 109: 106-117] recently introduced an asymptotically normal estimator of the tail index for randomly right-truncated Pareto-type data.

  20. Resonant Excitation of a Truncated Metamaterial Cylindrical Shell by a Thin Wire Monopole

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Erentok, Aycan; Breinbjerg, Olav

    2009-01-01

    A truncated metamaterial cylindrical shell excited by a thin wire monopole is investigated using the integral equation technique as well as the finite element method. Simulations reveal a strong field singularity at the edge of the truncated cylindrical shell, which critically affects the matching...

  1. Immature truncated O-glycophenotype of cancer directly induces oncogenic features

    DEFF Research Database (Denmark)

    Radhakrishnan, Prakash; Dabelsteen, Sally; Madsen, Frey Brus

    2014-01-01

    Aberrant expression of immature truncated O-glycans is a characteristic feature observed on virtually all epithelial cancer cells, and a very high frequency is observed in early epithelial premalignant lesions that precede the development of adenocarcinomas. Expression of the truncated O-glycan s...

  2. Bounded real and positive real balanced truncation using Σ-normalised coprime factors

    NARCIS (Netherlands)

    Trentelman, H.L.

    2009-01-01

    In this article, we will extend the method of balanced truncation using normalised right coprime factors of the system transfer matrix to balanced truncation with preservation of half line dissipativity. Special cases are preservation of positive realness and bounded realness. We consider a half

  3. Repair for scattering expansion truncation errors in transport calculations

    International Nuclear Information System (INIS)

    Emmett, M.B.; Childs, R.L.; Rhoades, W.A.

    1980-01-01

    Legendre expansion of angular scattering distributions is usually limited to P 3 in practical transport calculations. This truncation often results in non-trivial errors, especially alternating negative and positive lateral scattering peaks. The effect is especially prominent in forward-peaked situations such as the within-group component of the Compton Scattering of gammas. Increasing the expansion to P 7 often makes the peaks larger and narrower. Ward demonstrated an accurate repair, but his method requires special cross section sets and codes. The DOT IV code provides fully-compatible, but heuristic, repair of the erroneous scattering. An analytical Klein-Nishina estimator, newly available in the MORSE code, allows a test of this method. In the MORSE calculation, particle scattering histories are calculated in the usual way, with scoring by an estimator routine at each collision site. Results for both the conventional P 3 estimator and the analytical estimator were obtained. In the DOT calculation, the source moments are expanded into the directional representation at each iteration. Optionally a sorting procedure removes all negatives, and removes enough small positive values to restore particle conservation. The effect of this is to replace the alternating positive and negative values with positive values of plausible magnitude. The accuracy of those values is examined herein

  4. Influence of miscut on crystal truncation rod scattering

    International Nuclear Information System (INIS)

    Munkholm, A.; Brennan, S.

    1999-01-01

    X-rays can be used to measure the roughness of a surface by the study of crystal truncation rod scattering. It is shown that for a simple cubic lattice the presence of a miscut surface with a regular step array has no effect on the scattered intensity of a single rod and that a distribution of terrace widths on the surface is shown to have the same effect as adding roughness to the surface. For a perfect crystal without miscut, the scattered intensity is the sum of the intensity from all the rods with the same in-plane momentum transfer. For all real crystals, the scattered intensity is better described as that from a single rod. It is shown that data-collection strategies must correctly account for the sample miscut or there is a potential for improperly measuring the rod intensity. This can result in an asymmetry in the rod intensity above and below the Bragg peak, which can be misinterpreted as being due to a relaxation of the surface. The calculations presented here are compared with data for silicon (001) wafers with 0.1 and 4 miscuts. (orig.)

  5. Weakly nonlinear sloshing in a truncated circular conical tank

    International Nuclear Information System (INIS)

    Gavrilyuk, I P; Hermann, M; Lukovsky, I A; Solodun, O V; Timokha, A N

    2013-01-01

    Sloshing of an ideal incompressible liquid in a rigid truncated (tapered) conical tank is considered when the tank performs small-magnitude oscillatory motions with the forcing frequency close to the lowest natural sloshing frequency. The multimodal method, the non-conformal mapping technique and the Moiseev type asymptotics are employed to derive a finite-dimensional system of weakly nonlinear ordinary differential (modal) equations. This modal system is a generalization of that by Gavrilyuk et al 2005 Fluid Dyn. Res. 37 399–429. Using the derived modal equations, we classify the resonant steady-state wave regimes occurring due to horizontal harmonic tank excitations. The frequency ranges are detected where the ‘planar’ and/or ‘swirling’ steady-state sloshing are stable as well as a range in which all steady-state wave regimes are not stable and irregular (chaotic) liquid motions occur is established. The results on the frequency ranges are qualitatively supported by experiments by Matta E 2002 PhD Thesis Politecnico di Torino, Torino. (paper)

  6. Adaptive designs based on the truncated product method

    Directory of Open Access Journals (Sweden)

    Neuhäuser Markus

    2005-09-01

    Full Text Available Abstract Background Adaptive designs are becoming increasingly important in clinical research. One approach subdivides the study into several (two or more stages and combines the p-values of the different stages using Fisher's combination test. Methods Alternatively to Fisher's test, the recently proposed truncated product method (TPM can be applied to combine the p-values. The TPM uses the product of only those p-values that do not exceed some fixed cut-off value. Here, these two competing analyses are compared. Results When an early termination due to insufficient effects is not appropriate, such as in dose-response analyses, the probability to stop the trial early with the rejection of the null hypothesis is increased when the TPM is applied. Therefore, the expected total sample size is decreased. This decrease in the sample size is not connected with a loss in power. The TPM turns out to be less advantageous, when an early termination of the study due to insufficient effects is possible. This is due to a decrease of the probability to stop the trial early. Conclusion It is recommended to apply the TPM rather than Fisher's combination test whenever an early termination due to insufficient effects is not suitable within the adaptive design.

  7. Consistent Kaluza-Klein truncations via exceptional field theory

    Energy Technology Data Exchange (ETDEWEB)

    Hohm, Olaf [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Samtleben, Henning [Université de Lyon, Laboratoire de Physique, UMR 5672, CNRS,École Normale Supérieure de Lyon, 46, allée d’Italie, F-69364 Lyon cedex 07 (France)

    2015-01-26

    We present the generalized Scherk-Schwarz reduction ansatz for the full supersymmetric exceptional field theory in terms of group valued twist matrices subject to consistency equations. With this ansatz the field equations precisely reduce to those of lower-dimensional gauged supergravity parametrized by an embedding tensor. We explicitly construct a family of twist matrices as solutions of the consistency equations. They induce gauged supergravities with gauge groups SO(p,q) and CSO(p,q,r). Geometrically, they describe compactifications on internal spaces given by spheres and (warped) hyperboloides H{sup p,q}, thus extending the applicability of generalized Scherk-Schwarz reductions beyond homogeneous spaces. Together with the dictionary that relates exceptional field theory to D=11 and IIB supergravity, respectively, the construction defines an entire new family of consistent truncations of the original theories. These include not only compactifications on spheres of different dimensions (such as AdS{sub 5}×S{sup 5}), but also various hyperboloid compactifications giving rise to a higher-dimensional embedding of supergravities with non-compact and non-semisimple gauge groups.

  8. Proteolysis of truncated hemolysin A yields a stable dimerization interface

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Walter R.P.; Bhattacharyya, Basudeb; Grilley, Daniel P.; Weaver, Todd M. (Wabash); (UW)

    2017-02-21

    Wild-type and variant forms of HpmA265 (truncated hemolysin A) fromProteus mirabilisreveal a right-handed, parallel β-helix capped and flanked by segments of antiparallel β-strands. The low-salt crystal structures form a dimeric structureviathe implementation of on-edge main-chain hydrogen bonds donated by residues 243–263 of adjacent monomers. Surprisingly, in the high-salt structures of two variants, Y134A and Q125A-Y134A, a new dimeric interface is formedviamain-chain hydrogen bonds donated by residues 203–215 of adjacent monomers, and a previously unobserved tetramer is formed. In addition, an eight-stranded antiparallel β-sheet is formed from the flap regions of crystallographically related monomers in the high-salt structures. This new interface is possible owing to additional proteolysis of these variants after Tyr240. The interface formed in the high-salt crystal forms of hemolysin A variants may mimic the on-edge β-strand positioning used in template-assisted hemolytic activity.

  9. Thirty New Low-mass Spectroscopic Binaries

    Science.gov (United States)

    Shkolnik, Evgenya L.; Hebb, Leslie; Liu, Michael C.; Reid, I. Neill; Collier Cameron, Andrew

    2010-06-01

    As part of our search for young M dwarfs within 25 pc, we acquired high-resolution spectra of 185 low-mass stars compiled by the NStars project that have strong X-ray emission. By cross-correlating these spectra with radial velocity standard stars, we are sensitive to finding multi-lined spectroscopic binaries. We find a low-mass spectroscopic binary fraction of 16% consisting of 27 SB2s, 2 SB3s, and 1 SB4, increasing the number of known low-mass spectroscopic binaries (SBs) by 50% and proving that strong X-ray emission is an extremely efficient way to find M-dwarf SBs. WASP photometry of 23 of these systems revealed two low-mass eclipsing binaries (EBs), bringing the count of known M-dwarf EBs to 15. BD-22 5866, the ESB4, was fully described in 2008 by Shkolnik et al. and CCDM J04404+3127 B consists of two mid-M stars orbiting each other every 2.048 days. WASP also provided rotation periods for 12 systems, and in the cases where the synchronization time scales are short, we used P rot to determine the true orbital parameters. For those with no P rot, we used differential radial velocities to set upper limits on orbital periods and semimajor axes. More than half of our sample has near-equal-mass components (q > 0.8). This is expected since our sample is biased toward tight orbits where saturated X-ray emission is due to tidal spin-up rather than stellar youth. Increasing the samples of M-dwarf SBs and EBs is extremely valuable in setting constraints on current theories of stellar multiplicity and evolution scenarios for low-mass multiple systems. Based on observations collected at the W. M. Keck Observatory, the Canada-France-Hawaii Telescope and by the WASP Consortium. The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation. The CFHT is operated by the National Research Council of Canada

  10. Binary Systems and the Initial Mass Function

    Science.gov (United States)

    Malkov, O. Yu.

    2017-07-01

    In the present paper we discuss advantages and disadvantages of binary stars, which are important for star formation history determination. We show that to make definite conclusions of the initial mass function shape, it is necessary to study binary population well enough to correct the luminosity function for unresolved binaries; to construct the mass-luminosity relation based on wide binaries data, and to separate observational mass functions of primaries, of secondaries, and of unresolved binaries.

  11. Growth of binary solid solution single crystals and calculation of melt surface displacement velocity

    International Nuclear Information System (INIS)

    Agamaliyev, Z.A.; Tahirov, V.I.; Hasanov, Z.Y.; Quliyev, A.F.

    2007-01-01

    A binary solid solution single crystal growth method has been worked out. Cylinder feeding alloy with complex content distribution and truncated cone crucible are used. Second component distribution coefficient is more than unit. Content distribution along grown crystal is found by solving continuity equation. After reaching dynamic equilibrium state second component concentration in grown crystal is saturated the value of which is less than the average ona in the feeding alloy. Using the method Ge-Si perfect single crystals has been grown. Calculation method of melt surface displacement velocity has been offered as well

  12. Gaia Assorted Mass Binaries Long Excluded from SLoWPoKES (GAMBLES): Identifying Ultra-wide Binary Pairs with Components of Diverse Mass

    Energy Technology Data Exchange (ETDEWEB)

    Oelkers, Ryan J.; Stassun, Keivan G.; Dhital, Saurav, E-mail: ryan.j.oelkers@vanderbilt.edu [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN 37235 (United States)

    2017-06-01

    The formation and evolution of binary star systems are some of the remaining key questions in modern astronomy. Wide binary pairs (separations >10{sup 3} au) are particularly intriguing because their low binding energies make it difficult for the stars to stay gravitationally bound over extended timescales, and thus to probe the dynamics of binary formation and dissolution. Our previous SLoWPoKES catalogs, I and II, provided the largest and most complete sample of wide-binary pairs of low masses. Here we present an extension of these catalogs to a broad range of stellar masses: the Gaia Assorted Mass Binaries Long Excluded from SloWPoKES (GAMBLES), comprising 8660 statistically significant wide pairs that we make available in a living online database. Within this catalog we identify a subset of 543 long-lived (dissipation timescale >1.5 Gyr) candidate binary pairs, of assorted mass, with typical separations between 10{sup 3} and 10{sup 5.5} au (0.002–1.5 pc), using the published distances and proper motions from the Tycho -Gaia Astrometric Solution and Sloan Digital Sky Survey photometry. Each pair has at most a false positive probability of 0.05; the total expectation is 2.44 false binaries in our sample. Among these, we find 22 systems with 3 components, 1 system with 4 components, and 15 pairs consisting of at least 1 possible red giant. We find the largest long-lived binary separation to be nearly 3.2 pc; even so, >76% of GAMBLES long-lived binaries have large binding energies and dissipation lifetimes longer than 1.5 Gyr. Finally, we find that the distribution of binary separations is clearly bimodal, corroborating the findings from SloWPoKES and suggesting multiple pathways for the formation and dissipation of the widest binaries in the Galaxy.

  13. Gaia Assorted Mass Binaries Long Excluded from SLoWPoKES (GAMBLES): Identifying Ultra-wide Binary Pairs with Components of Diverse Mass

    International Nuclear Information System (INIS)

    Oelkers, Ryan J.; Stassun, Keivan G.; Dhital, Saurav

    2017-01-01

    The formation and evolution of binary star systems are some of the remaining key questions in modern astronomy. Wide binary pairs (separations >10 3 au) are particularly intriguing because their low binding energies make it difficult for the stars to stay gravitationally bound over extended timescales, and thus to probe the dynamics of binary formation and dissolution. Our previous SLoWPoKES catalogs, I and II, provided the largest and most complete sample of wide-binary pairs of low masses. Here we present an extension of these catalogs to a broad range of stellar masses: the Gaia Assorted Mass Binaries Long Excluded from SloWPoKES (GAMBLES), comprising 8660 statistically significant wide pairs that we make available in a living online database. Within this catalog we identify a subset of 543 long-lived (dissipation timescale >1.5 Gyr) candidate binary pairs, of assorted mass, with typical separations between 10 3 and 10 5.5 au (0.002–1.5 pc), using the published distances and proper motions from the Tycho -Gaia Astrometric Solution and Sloan Digital Sky Survey photometry. Each pair has at most a false positive probability of 0.05; the total expectation is 2.44 false binaries in our sample. Among these, we find 22 systems with 3 components, 1 system with 4 components, and 15 pairs consisting of at least 1 possible red giant. We find the largest long-lived binary separation to be nearly 3.2 pc; even so, >76% of GAMBLES long-lived binaries have large binding energies and dissipation lifetimes longer than 1.5 Gyr. Finally, we find that the distribution of binary separations is clearly bimodal, corroborating the findings from SloWPoKES and suggesting multiple pathways for the formation and dissipation of the widest binaries in the Galaxy.

  14. UNUSUALLY WIDE BINARIES: ARE THEY WIDE OR UNUSUAL?

    International Nuclear Information System (INIS)

    Kraus, Adam L.; Hillenbrand, Lynne A.

    2009-01-01

    We describe an astrometric and spectroscopic campaign to confirm the youth and association of a complete sample of candidate wide companions in Taurus and Upper Sco. Our survey found 15 new binary systems (three in Taurus and 12 in Upper Sco) with separations of 3''-30'' (500-5000 AU) among all of the known members with masses of 2.5-0.012 M sun . The total sample of 49 wide systems in these two regions conforms to only some expectations from field multiplicity surveys. Higher mass stars have a higher frequency of wide binary companions, and there is a marked paucity of wide binary systems near the substellar regime. However, the separation distribution appears to be log-flat, rather than declining as in the field, and the mass ratio distribution is more biased toward similar-mass companions than the initial mass function or the field G-dwarf distribution. The maximum separation also shows no evidence of a limit at ∼ sun . We attribute this result to the post-natal dynamical sculpting that occurs for most field systems; our binary systems will escape to the field intact, but most field stars are formed in denser clusters and undergo significant dynamical evolution. In summary, only wide binary systems with total masses ∼ sun appear to be 'unusually wide'.

  15. Binary Classification Method of Social Network Users

    Directory of Open Access Journals (Sweden)

    I. A. Poryadin

    2017-01-01

    Full Text Available The subject of research is a binary classification method of social network users based on the data analysis they have placed. Relevance of the task to gain information about a person by examining the content of his/her pages in social networks is exemplified. The most common approach to its solution is a visual browsing. The order of the regional authority in our country illustrates that its using in school education is needed. The article shows restrictions on the visual browsing of pupil’s pages in social networks as a tool for the teacher and the school psychologist and justifies that a process of social network users’ data analysis should be automated. Explores publications, which describe such data acquisition, processing, and analysis methods and considers their advantages and disadvantages. The article also gives arguments to support a proposal to study the classification method of social network users. One such method is credit scoring, which is used in banks and credit institutions to assess the solvency of clients. Based on the high efficiency of the method there is a proposal for significant expansion of its using in other areas of society. The possibility to use logistic regression as the mathematical apparatus of the proposed method of binary classification has been justified. Such an approach enables taking into account the different types of data extracted from social networks. Among them: the personal user data, information about hobbies, friends, graphic and text information, behaviour characteristics. The article describes a number of existing methods of data transformation that can be applied to solve the problem. An experiment of binary gender-based classification of social network users is described. A logistic model obtained for this example includes multiple logical variables obtained by transforming the user surnames. This experiment confirms the feasibility of the proposed method. Further work is to define a system

  16. Hidden slow pulsars in binaries

    Science.gov (United States)

    Tavani, Marco; Brookshaw, Leigh

    1993-01-01

    The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.

  17. Truncated RAP-MUSIC (TRAP-MUSIC) for MEG and EEG source localization.

    Science.gov (United States)

    Mäkelä, Niko; Stenroos, Matti; Sarvas, Jukka; Ilmoniemi, Risto J

    2018-02-15

    Electrically active brain regions can be located applying MUltiple SIgnal Classification (MUSIC) on magneto- or electroencephalographic (MEG; EEG) data. We introduce a new MUSIC method, called truncated recursively-applied-and-projected MUSIC (TRAP-MUSIC). It corrects a hidden deficiency of the conventional RAP-MUSIC algorithm, which prevents estimation of the true number of brain-signal sources accurately. The correction is done by applying a sequential dimension reduction to the signal-subspace projection. We show that TRAP-MUSIC significantly improves the performance of MUSIC-type localization; in particular, it successfully and robustly locates active brain regions and estimates their number. We compare TRAP-MUSIC and RAP-MUSIC in simulations with varying key parameters, e.g., signal-to-noise ratio, correlation between source time-courses, and initial estimate for the dimension of the signal space. In addition, we validate TRAP-MUSIC with measured MEG data. We suggest that with the proposed TRAP-MUSIC method, MUSIC-type localization could become more reliable and suitable for various online and offline MEG and EEG applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Numerical method for multigroup one-dimensional SN eigenvalue problems with no spatial truncation error

    International Nuclear Information System (INIS)

    Abreu, M.P.; Filho, H.A.; Barros, R.C.

    1993-01-01

    The authors describe a new nodal method for multigroup slab-geometry discrete ordinates S N eigenvalue problems that is completely free from all spatial truncation errors. The unknowns in the method are the node-edge angular fluxes, the node-average angular fluxes, and the effective multiplication factor k eff . The numerical values obtained for these quantities are exactly those of the dominant analytic solution of the S N eigenvalue problem apart from finite arithmetic considerations. This method is based on the use of the standard balance equation and two nonstandard auxiliary equations. In the nonmultiplying regions, e.g., the reflector, we use the multigroup spectral Green's function (SGF) auxiliary equations. In the fuel regions, we use the multigroup spectral diamond (SD) auxiliary equations. The SD auxiliary equation is an extension of the conventional auxiliary equation used in the diamond difference (DD) method. This hybrid characteristic of the SD-SGF method improves both the numerical stability and the convergence rate

  19. Molecular evaluation of a novel missense mutation & an insertional truncating mutation in SUMF1 gene

    Directory of Open Access Journals (Sweden)

    Udhaya H Kotecha

    2014-01-01

    Full Text Available Background & objectives: Multiple suphphatase deficiency (MSD is an autosomal recessive disorder affecting the post translational activation of all enzymes of the sulphatase family. To date, approximately 30 different mutations have been identified in the causative gene, sulfatase modifying factor 1 (SUMF1. We describe here the mutation analysis of a case of MSD. Methods: The proband was a four year old boy with developmental delay followed by neuroregression. He had coarse facies, appendicular hypertonia, truncal ataxia and ichthyosis limited to both lower limbs. Radiographs showed dysostosis multiplex. Clinical suspicion of MSD was confirmed by enzyme analysis of four enzymes of the sulphatase group. Results: The patient was compound heterozygote for a c.451A>G (p.K151E substitution in exon 3 and a single base insertion mutation (c.690_691 InsT in exon 5 in the SUMF1 gene. The bioinformatic analysis of the missense mutation revealed no apparent effect on the overall structure. However, the mutated 151-amino acid residue was found to be adjacent to the substrate binding and the active site residues, thereby affecting the substrate binding and/or catalytic activity, resulting in almost complete loss of enzyme function. Conclusions: The two mutations identified in the present case were novel. This is perhaps the first report of an insertion mutation in SUMF1 causing premature truncation of the protein.

  20. A Support Vector Machine Approach for Truncated Fingerprint Image Detection from Sweeping Fingerprint Sensors

    Science.gov (United States)

    Chen, Chi-Jim; Pai, Tun-Wen; Cheng, Mox

    2015-01-01

    A sweeping fingerprint sensor converts fingerprints on a row by row basis through image reconstruction techniques. However, a built fingerprint image might appear to be truncated and distorted when the finger was swept across a fingerprint sensor at a non-linear speed. If the truncated fingerprint images were enrolled as reference targets and collected by any automated fingerprint identification system (AFIS), successful prediction rates for fingerprint matching applications would be decreased significantly. In this paper, a novel and effective methodology with low time computational complexity was developed for detecting truncated fingerprints in a real time manner. Several filtering rules were implemented to validate existences of truncated fingerprints. In addition, a machine learning method of supported vector machine (SVM), based on the principle of structural risk minimization, was applied to reject pseudo truncated fingerprints containing similar characteristics of truncated ones. The experimental result has shown that an accuracy rate of 90.7% was achieved by successfully identifying truncated fingerprint images from testing images before AFIS enrollment procedures. The proposed effective and efficient methodology can be extensively applied to all existing fingerprint matching systems as a preliminary quality control prior to construction of fingerprint templates. PMID:25835186

  1. A Support Vector Machine Approach for Truncated Fingerprint Image Detection from Sweeping Fingerprint Sensors

    Directory of Open Access Journals (Sweden)

    Chi-Jim Chen

    2015-03-01

    Full Text Available A sweeping fingerprint sensor converts fingerprints on a row by row basis through image reconstruction techniques. However, a built fingerprint image might appear to be truncated and distorted when the finger was swept across a fingerprint sensor at a non-linear speed. If the truncated fingerprint images were enrolled as reference targets and collected by any automated fingerprint identification system (AFIS, successful prediction rates for fingerprint matching applications would be decreased significantly. In this paper, a novel and effective methodology with low time computational complexity was developed for detecting truncated fingerprints in a real time manner. Several filtering rules were implemented to validate existences of truncated fingerprints. In addition, a machine learning method of supported vector machine (SVM, based on the principle of structural risk minimization, was applied to reject pseudo truncated fingerprints containing similar characteristics of truncated ones. The experimental result has shown that an accuracy rate of 90.7% was achieved by successfully identifying truncated fingerprint images from testing images before AFIS enrollment procedures. The proposed effective and efficient methodology can be extensively applied to all existing fingerprint matching systems as a preliminary quality control prior to construction of fingerprint templates.

  2. Truncation of CPC solar collectors and its effect on energy collection

    Science.gov (United States)

    Carvalho, M. J.; Collares-Pereira, M.; Gordon, J. M.; Rabl, A.

    1985-01-01

    Analytic expressions are derived for the angular acceptance function of two-dimensional compound parabolic concentrator solar collectors (CPC's) of arbitrary degree of truncation. Taking into account the effect of truncation on both optical and thermal losses in real collectors, the increase in monthly and yearly collectible energy is also evaluated. Prior analyses that have ignored the correct behavior of the angular acceptance function at large angles for truncated collectors are shown to be in error by 0-2 percent in calculations of yearly collectible energy for stationary collectors.

  3. Zlib: A numerical library for optimal design of truncated power series algebra and map parameterization routines

    International Nuclear Information System (INIS)

    Yan, Y.T.

    1996-11-01

    A brief review of the Zlib development is given. Emphasized is the Zlib nerve system which uses the One-Step Index Pointers (OSIPs) for efficient computation and flexible use of the Truncated Power Series Algebra (TPSA). Also emphasized is the treatment of parameterized maps with an object-oriented language (e.g. C++). A parameterized map can be a Vector Power Series (Vps) or a Lie generator represented by an exponent of a Truncated Power Series (Tps) of which each coefficient is an object of truncated power series

  4. A Multistep Extending Truncation Method towards Model Construction of Infinite-State Markov Chains

    Directory of Open Access Journals (Sweden)

    Kemin Wang

    2014-01-01

    Full Text Available The model checking of Infinite-State Continuous Time Markov Chains will inevitably encounter the state explosion problem when constructing the CTMCs model; our method is to get a truncated model of the infinite one; to get a sufficient truncated model to meet the model checking of Continuous Stochastic Logic based system properties, we propose a multistep extending advanced truncation method towards model construction of CTMCs and implement it in the INFAMY model checker; the experiment results show that our method is effective.

  5. A Line Search Multilevel Truncated Newton Algorithm for Computing the Optical Flow

    Directory of Open Access Journals (Sweden)

    Lluís Garrido

    2015-06-01

    Full Text Available We describe the implementation details and give the experimental results of three optimization algorithms for dense optical flow computation. In particular, using a line search strategy, we evaluate the performance of the unilevel truncated Newton method (LSTN, a multiresolution truncated Newton (MR/LSTN and a full multigrid truncated Newton (FMG/LSTN. We use three image sequences and four models of optical flow for performance evaluation. The FMG/LSTN algorithm is shown to lead to better optical flow estimation with less computational work than both the LSTN and MR/LSTN algorithms.

  6. Truncating Mutations of MAGEL2, a Gene within the Prader-Willi Locus, Are Responsible for Severe Arthrogryposis

    Science.gov (United States)

    Mejlachowicz, Dan; Nolent, Flora; Maluenda, Jérome; Ranjatoelina-Randrianaivo, Hanitra; Giuliano, Fabienne; Gut, Ivo; Sternberg, Damien; Laquerrière, Annie; Melki, Judith

    2015-01-01

    Arthrogryposis multiplex congenita (AMC) is characterized by the presence of multiple joint contractures resulting from reduced or absent fetal movement. Here, we report two unrelated families affected by lethal AMC. By genetic mapping and whole-exome sequencing in a multiplex family, a heterozygous truncating MAGEL2 mutation leading to frameshift and a premature stop codon (c.1996delC, p.Gln666Serfs∗36) and inherited from the father was identified in the probands. In another family, a distinct heterozygous truncating mutation leading to frameshift (c.2118delT, p.Leu708Trpfs∗7) and occurring de novo on the paternal allele of MAGEL2 was identified in the affected individual. In both families, RNA analysis identified the mutated paternal MAGEL2 transcripts only in affected individuals. MAGEL2 is one of the paternally expressed genes within the Prader-Willi syndrome (PWS) locus. PWS is associated with, to varying extents, reduced fetal mobility, severe infantile hypotonia, childhood-onset obesity, hypogonadism, and intellectual disability. MAGEL2 mutations have been recently reported in affected individuals with features resembling PWS and called Schaaf-Yang syndrome. Here, we show that paternal MAGEL2 mutations are also responsible for lethal AMC, recapitulating the clinical spectrum of PWS and suggesting that MAGEL2 is a PWS-determining gene. PMID:26365340

  7. Evolution in close binary systems

    International Nuclear Information System (INIS)

    Yungel'son, L.R.; Masevich, A.G.

    1983-01-01

    Duality is the property most typical of stars. If one investigates how prevalent double stars are, making due allowance for selection effects, one finds that as many as 90 percent of all stars are paired. Contrary to tradition it is single stars that are out of the ordinary, and as will be shown presently even some of these may have been formed by coalescence of the members of binary systems. This review deals with the evolution of close binaries, defined as double-star systems whose evolution entails exchange of material between the two components

  8. Control of broadband optically generated ultrasound pulses using binary amplitude holograms.

    Science.gov (United States)

    Brown, Michael D; Jaros, Jiri; Cox, Ben T; Treeby, Bradley E

    2016-04-01

    In this work, the use of binary amplitude holography is investigated as a mechanism to focus broadband acoustic pulses generated by high peak-power pulsed lasers. Two algorithms are described for the calculation of the binary holograms; one using ray-tracing, and one using an optimization based on direct binary search. It is shown using numerical simulations that when a binary amplitude hologram is excited by a train of laser pulses at its design frequency, the acoustic field can be focused at a pre-determined distribution of points, including single and multiple focal points, and line and square foci. The numerical results are validated by acoustic field measurements from binary amplitude holograms, excited by a high peak-power laser.

  9. A generalized right truncated bivariate Poisson regression model with applications to health data.

    Science.gov (United States)

    Islam, M Ataharul; Chowdhury, Rafiqul I

    2017-01-01

    A generalized right truncated bivariate Poisson regression model is proposed in this paper. Estimation and tests for goodness of fit and over or under dispersion are illustrated for both untruncated and right truncated bivariate Poisson regression models using marginal-conditional approach. Estimation and test procedures are illustrated for bivariate Poisson regression models with applications to Health and Retirement Study data on number of health conditions and the number of health care services utilized. The proposed test statistics are easy to compute and it is evident from the results that the models fit the data very well. A comparison between the right truncated and untruncated bivariate Poisson regression models using the test for nonnested models clearly shows that the truncated model performs significantly better than the untruncated model.

  10. Reduction of variable-truncation artifacts from beam occlusion during in situ x-ray tomography

    DEFF Research Database (Denmark)

    Borg, Leise; Jørgensen, Jakob Sauer; Frikel, Jürgen

    2017-01-01

    Many in situ x-ray tomography studies require experimental rigs which may partially occlude the beam and cause parts of the projection data to be missing. In a study of fluid flow in porous chalk using a percolation cell with four metal bars drastic streak artifacts arise in the filtered...... and artifact-reduction methods are designed in context of FBP reconstruction motivated by computational efficiency practical for large, real synchrotron data. While a specific variable-truncation case is considered, the proposed methods can be applied to general data cut-offs arising in different in situ x-ray...... backprojection (FBP) reconstruction at certain orientations. Projections with non-trivial variable truncation caused by the metal bars are the source of these variable-truncation artifacts. To understand the artifacts a mathematical model of variable-truncation data as a function of metal bar radius and distance...

  11. Propagation of a general-type beam through a truncated fractional Fourier transform optical system.

    Science.gov (United States)

    Zhao, Chengliang; Cai, Yangjian

    2010-03-01

    Paraxial propagation of a general-type beam through a truncated fractional Fourier transform (FRT) optical system is investigated. Analytical formulas for the electric field and effective beam width of a general-type beam in the FRT plane are derived based on the Collins formula. Our formulas can be used to study the propagation of a variety of laser beams--such as Gaussian, cos-Gaussian, cosh-Gaussian, sine-Gaussian, sinh-Gaussian, flat-topped, Hermite-cosh-Gaussian, Hermite-sine-Gaussian, higher-order annular Gaussian, Hermite-sinh-Gaussian and Hermite-cos-Gaussian beams--through a FRT optical system with or without truncation. The propagation properties of a Hermite-cos-Gaussian beam passing through a rectangularly truncated FRT optical system are studied as a numerical example. Our results clearly show that the truncated FRT optical system provides a convenient way for laser beam shaping.

  12. truncSP: An R Package for Estimation of Semi-Parametric Truncated Linear Regression Models

    Directory of Open Access Journals (Sweden)

    Maria Karlsson

    2014-05-01

    Full Text Available Problems with truncated data occur in many areas, complicating estimation and inference. Regarding linear regression models, the ordinary least squares estimator is inconsistent and biased for these types of data and is therefore unsuitable for use. Alternative estimators, designed for the estimation of truncated regression models, have been developed. This paper presents the R package truncSP. The package contains functions for the estimation of semi-parametric truncated linear regression models using three different estimators: the symmetrically trimmed least squares, quadratic mode, and left truncated estimators, all of which have been shown to have good asymptotic and ?nite sample properties. The package also provides functions for the analysis of the estimated models. Data from the environmental sciences are used to illustrate the functions in the package.

  13. The Binary Ties that Bind

    Science.gov (United States)

    Rose, Mike

    2008-01-01

    As any reader of "About Campus" knows, binary oppositions contribute to the definitions of institutional types--the trade school versus the liberal arts college, for example. They help define disciplines and subdisciplines and the status differentials among them: consider the difference in intellectual cachet as one moves from linguistics to…

  14. Optimally cloned binary coherent states

    DEFF Research Database (Denmark)

    Mueller, C. R.; Leuchs, G.; Marquardt, Ch

    2017-01-01

    their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal...

  15. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  16. Misclassification in binary choice models

    Czech Academy of Sciences Publication Activity Database

    Meyer, B. D.; Mittag, Nikolas

    2017-01-01

    Roč. 200, č. 2 (2017), s. 295-311 ISSN 0304-4076 R&D Projects: GA ČR(CZ) GJ16-07603Y Institutional support: Progres-Q24 Keywords : measurement error * binary choice models * program take-up Subject RIV: AH - Economics OBOR OECD: Economic Theory Impact factor: 1.633, year: 2016

  17. Misclassification in binary choice models

    Czech Academy of Sciences Publication Activity Database

    Meyer, B. D.; Mittag, Nikolas

    2017-01-01

    Roč. 200, č. 2 (2017), s. 295-311 ISSN 0304-4076 Institutional support: RVO:67985998 Keywords : measurement error * binary choice models * program take-up Subject RIV: AH - Economics OBOR OECD: Economic Theory Impact factor: 1.633, year: 2016

  18. Binary logic is rich enough

    International Nuclear Information System (INIS)

    Zapatrin, R.R.

    1992-01-01

    Given a finite ortholattice L, the *-semigroup is explicitly built whose annihilator ortholattice is isomorphic to L. Thus, it is shown that any finite quantum logic is the additive part of a binary logic. Some areas of possible applications are outlined. 7 refs

  19. The effect of truncation on very small cardiac SPECT camera systems

    International Nuclear Information System (INIS)

    Rohmer, Damien; Eisner, Robert L.; Gullberg, Grant T.

    2006-01-01

    Background: The limited transaxial field-of-view (FOV) of a very small cardiac SPECT camera system causes view-dependent truncation of the projection of structures exterior to, but near the heart. Basic tomographic principles suggest that the reconstruction of non-attenuated truncated data gives a distortion-free image in the interior of the truncated region, but the DC term of the Fourier spectrum of the reconstructed image is incorrect, meaning that the intensity scale of the reconstruction is inaccurate. The purpose of this study was to characterize the reconstructed image artifacts from truncated data, and to quantify their effects on the measurement of tracer uptake in the myocardial. Particular attention was given to instances where the heart wall is close to hot structures (structures of high activity uptake).Methods: The MCAT phantom was used to simulate a 2D slice of the heart region. Truncated and non-truncated projections were formed both with and without attenuation. The reconstructions were analyzed for artifacts in the myocardium caused by truncation, and for the effect that attenuation has relative to increasing those artifacts. Results: The inaccuracy due to truncation is primarily caused by an incorrect DC component. For visualizing the left ventricular wall, this error is not worse than the effect of attenuation. The addition of a small hot bowel-like structure near the left ventricle causes few changes in counts on the wall. Larger artifacts due to the truncation are located at the boundary of the truncation and can be eliminated by sinogram interpolation. Finally,algebraic reconstruction methods are shown to give better reconstruction results than an analytical filtered back-projection reconstruction algorithm. Conclusion: Small inaccuracies in reconstructed images from small FOV camera systems should have little effect on clinical interpretation. However, changes in the degree of inaccuracy in counts from slice to slice are due to changes in

  20. Cross-layer combining of power control and adaptive modulation with truncated ARQ for cognitive radios

    Institute of Scientific and Technical Information of China (English)

    CHENG Shi-lun; YANG Zhen

    2008-01-01

    To maximize throughput and to satisfy users' requirements in cognitive radios, a cross-layer optimization problem combining adaptive modulation and power control at the physical layer and truncated automatic repeat request at the medium access control layer is proposed. Simulation results show the combination of power control, adaptive modulation, and truncated automatic repeat request can regulate transmitter powers and increase the total throughput effectively.

  1. Truncation scheme of time-dependent density-matrix approach II

    Energy Technology Data Exchange (ETDEWEB)

    Tohyama, Mitsuru [Kyorin University School of Medicine, Mitaka, Tokyo (Japan); Schuck, Peter [Institut de Physique Nucleaire, IN2P3-CNRS, Universite Paris-Sud, Orsay (France); Laboratoire de Physique et de Modelisation des Milieux Condenses, CNRS et Universite Joseph Fourier, Grenoble (France)

    2017-09-15

    A truncation scheme of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for reduced density matrices, where a three-body density matrix is approximated by two-body density matrices, is improved to take into account a normalization effect. The truncation scheme is tested for the Lipkin model. It is shown that the obtained results are in good agreement with the exact solutions. (orig.)

  2. Reduction of variable-truncation artifacts from beam occlusion during in situ x-ray tomography

    Science.gov (United States)

    Borg, Leise; Jørgensen, Jakob S.; Frikel, Jürgen; Sporring, Jon

    2017-12-01

    Many in situ x-ray tomography studies require experimental rigs which may partially occlude the beam and cause parts of the projection data to be missing. In a study of fluid flow in porous chalk using a percolation cell with four metal bars drastic streak artifacts arise in the filtered backprojection (FBP) reconstruction at certain orientations. Projections with non-trivial variable truncation caused by the metal bars are the source of these variable-truncation artifacts. To understand the artifacts a mathematical model of variable-truncation data as a function of metal bar radius and distance to sample is derived and verified numerically and with experimental data. The model accurately describes the arising variable-truncation artifacts across simulated variations of the experimental setup. Three variable-truncation artifact-reduction methods are proposed, all aimed at addressing sinogram discontinuities that are shown to be the source of the streaks. The ‘reduction to limited angle’ (RLA) method simply keeps only non-truncated projections; the ‘detector-directed smoothing’ (DDS) method smooths the discontinuities; while the ‘reflexive boundary condition’ (RBC) method enforces a zero derivative at the discontinuities. Experimental results using both simulated and real data show that the proposed methods effectively reduce variable-truncation artifacts. The RBC method is found to provide the best artifact reduction and preservation of image features using both visual and quantitative assessment. The analysis and artifact-reduction methods are designed in context of FBP reconstruction motivated by computational efficiency practical for large, real synchrotron data. While a specific variable-truncation case is considered, the proposed methods can be applied to general data cut-offs arising in different in situ x-ray tomography experiments.

  3. A Residual Approach for Balanced Truncation Model Reduction (BTMR of Compartmental Systems

    Directory of Open Access Journals (Sweden)

    William La Cruz

    2014-05-01

    Full Text Available This paper presents a residual approach of the square root balanced truncation algorithm for model order reduction of continuous, linear and time-invariante compartmental systems. Specifically, the new approach uses a residual method to approximate the controllability and observability gramians, whose resolution is an essential step of the square root balanced truncation algorithm, that requires a great computational cost. Numerical experiences are included to highlight the efficacy of the proposed approach.

  4. Amplitude reconstruction from complete photoproduction experiments and truncated partial-wave expansions

    International Nuclear Information System (INIS)

    Workman, R. L.; Tiator, L.; Wunderlich, Y.; Doring, M.; Haberzettl, H.

    2017-01-01

    Here, we compare the methods of amplitude reconstruction, for a complete experiment and a truncated partial-wave analysis, applied to the photoproduction of pseudoscalar mesons. The approach is pedagogical, showing in detail how the amplitude reconstruction (observables measured at a single energy and angle) is related to a truncated partial-wave analysis (observables measured at a single energy and a number of angles).

  5. Free vibration of symmetric angle ply truncated conical shells under different boundary conditions using spline method

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, K. K.; Aziz, Z. A.; Javed, Saira; Yaacob, Y. [Universiti Teknologi Malaysia, Johor Bahru (Malaysia); Pullepu, Babuji [S R M University, Chennai (India)

    2015-05-15

    Free vibration of symmetric angle-ply laminated truncated conical shell is analyzed to determine the effects of frequency parameter and angular frequencies under different boundary condition, ply angles, different material properties and other parameters. The governing equations of motion for truncated conical shell are obtained in terms of displacement functions. The displacement functions are approximated by cubic and quintic splines resulting into a generalized eigenvalue problem. The parametric studies have been made and discussed.

  6. Free vibration of symmetric angle ply truncated conical shells under different boundary conditions using spline method

    International Nuclear Information System (INIS)

    Viswanathan, K. K.; Aziz, Z. A.; Javed, Saira; Yaacob, Y.; Pullepu, Babuji

    2015-01-01

    Free vibration of symmetric angle-ply laminated truncated conical shell is analyzed to determine the effects of frequency parameter and angular frequencies under different boundary condition, ply angles, different material properties and other parameters. The governing equations of motion for truncated conical shell are obtained in terms of displacement functions. The displacement functions are approximated by cubic and quintic splines resulting into a generalized eigenvalue problem. The parametric studies have been made and discussed.

  7. Performance Comparison of Assorted Color Spaces for Multilevel Block Truncation Coding based Face Recognition

    OpenAIRE

    H.B. Kekre; Sudeep Thepade; Karan Dhamejani; Sanchit Khandelwal; Adnan Azmi

    2012-01-01

    The paper presents a performance analysis of Multilevel Block Truncation Coding based Face Recognition among widely used color spaces. In [1], Multilevel Block Truncation Coding was applied on the RGB color space up to four levels for face recognition. Better results were obtained when the proposed technique was implemented using Kekre’s LUV (K’LUV) color space [25]. This was the motivation to test the proposed technique using assorted color spaces. For experimental analysis, two face databas...

  8. Measuring Parameters of Massive Black Hole Binaries with Partially Aligned Spins

    Science.gov (United States)

    Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.

    2011-01-01

    The future space-based gravitational wave detector LISA will be able to measure parameters of coalescing massive black hole binaries, often to extremely high accuracy. Previous work has demonstrated that the black hole spins can have a strong impact on the accuracy of parameter measurement. Relativistic spin-induced precession modulates the waveform in a manner which can break degeneracies between parameters, in principle significantly improving how well they are measured. Recent studies have indicated, however, that spin precession may be weak for an important subset of astrophysical binary black holes: those in which the spins are aligned due to interactions with gas. In this paper, we examine how well a binary's parameters can be measured when its spins are partially aligned and compare results using waveforms that include higher post-Newtonian harmonics to those that are truncated at leading quadrupole order. We find that the weakened precession can substantially degrade parameter estimation, particularly for the "extrinsic" parameters sky position and distance. Absent higher harmonics, LISA typically localizes the sky position of a nearly aligned binary about an order of magnitude less accurately than one for which the spin orientations are random. Our knowledge of a source's sky position will thus be worst for the gas-rich systems which are most likely to produce electromagnetic counterparts. Fortunately, higher harmonics of the waveform can make up for this degradation. By including harmonics beyond the quadrupole in our waveform model, we find that the accuracy with which most of the binary's parameters are measured can be substantially improved. In some cases, the improvement is such that they are measured almost as well as when the binary spins are randomly aligned.

  9. Data and performance profiles applying an adaptive truncation criterion, within linesearch-based truncated Newton methods, in large scale nonconvex optimization

    Directory of Open Access Journals (Sweden)

    Andrea Caliciotti

    2018-04-01

    Full Text Available In this paper, we report data and experiments related to the research article entitled “An adaptive truncation criterion, for linesearch-based truncated Newton methods in large scale nonconvex optimization” by Caliciotti et al. [1]. In particular, in Caliciotti et al. [1], large scale unconstrained optimization problems are considered by applying linesearch-based truncated Newton methods. In this framework, a key point is the reduction of the number of inner iterations needed, at each outer iteration, to approximately solving the Newton equation. A novel adaptive truncation criterion is introduced in Caliciotti et al. [1] to this aim. Here, we report the details concerning numerical experiences over a commonly used test set, namely CUTEst (Gould et al., 2015 [2]. Moreover, comparisons are reported in terms of performance profiles (Dolan and Moré, 2002 [3], adopting different parameters settings. Finally, our linesearch-based scheme is compared with a renowned trust region method, namely TRON (Lin and Moré, 1999 [4].

  10. A binary plasmid system for shuffling combinatorial antibody libraries.

    OpenAIRE

    Collet, T A; Roben, P; O'Kennedy, R; Barbas, C F; Burton, D R; Lerner, R A

    1992-01-01

    We have used a binary system of replicon-compatible plasmids to test the potential for promiscuous recombination of heavy and light chains within sets of human Fab fragments isolated from combinatorial antibody libraries. Antibody molecules showed a surprising amount of promiscuity in that a particular heavy chain could recombine with multiple light chains with retention of binding to a protein antigen. The degree to which a given heavy chain productively paired with any light chain to bind a...

  11. Coevolution of Binaries and Circumbinary Gaseous Disks

    Science.gov (United States)

    Fleming, David; Quinn, Thomas R.

    2018-04-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.

  12. Formation and evolution of compact binaries

    NARCIS (Netherlands)

    Sluijs, Marcel Vincent van der

    2006-01-01

    In this thesis we investigate the formation and evolution of compact binaries. Chapters 2 through 4 deal with the formation of luminous, ultra-compact X-ray binaries in globular clusters. We show that the proposed scenario of magnetic capture produces too few ultra-compact X-ray binaries to explain

  13. Binary Linear-Time Erasure Decoding for Non-Binary LDPC codes

    OpenAIRE

    Savin, Valentin

    2009-01-01

    In this paper, we first introduce the extended binary representation of non-binary codes, which corresponds to a covering graph of the bipartite graph associated with the non-binary code. Then we show that non-binary codewords correspond to binary codewords of the extended representation that further satisfy some simplex-constraint: that is, bits lying over the same symbol-node of the non-binary graph must form a codeword of a simplex code. Applied to the binary erasure channel, this descript...

  14. Detecting Malicious Code by Binary File Checking

    Directory of Open Access Journals (Sweden)

    Marius POPA

    2014-01-01

    Full Text Available The object, library and executable code is stored in binary files. Functionality of a binary file is altered when its content or program source code is changed, causing undesired effects. A direct content change is possible when the intruder knows the structural information of the binary file. The paper describes the structural properties of the binary object files, how the content can be controlled by a possible intruder and what the ways to identify malicious code in such kind of files. Because the object files are inputs in linking processes, early detection of the malicious content is crucial to avoid infection of the binary executable files.

  15. Permutation Entropy for Random Binary Sequences

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2015-12-01

    Full Text Available In this paper, we generalize the permutation entropy (PE measure to binary sequences, which is based on Shannon’s entropy, and theoretically analyze this measure for random binary sequences. We deduce the theoretical value of PE for random binary sequences, which can be used to measure the randomness of binary sequences. We also reveal the relationship between this PE measure with other randomness measures, such as Shannon’s entropy and Lempel–Ziv complexity. The results show that PE is consistent with these two measures. Furthermore, we use PE as one of the randomness measures to evaluate the randomness of chaotic binary sequences.

  16. Numerical relativity simulations of precessing binary neutron star mergers

    Science.gov (United States)

    Dietrich, Tim; Bernuzzi, Sebastiano; Brügmann, Bernd; Ujevic, Maximiliano; Tichy, Wolfgang

    2018-03-01

    We present the first set of numerical relativity simulations of binary neutron mergers that include spin precession effects and are evolved with multiple resolutions. Our simulations employ consistent initial data in general relativity with different spin configurations and dimensionless spin magnitudes ˜0.1 . They start at a gravitational-wave frequency of ˜392 Hz and cover more than 1 precession period and about 15 orbits up to merger. We discuss the spin precession dynamics by analyzing coordinate trajectories, quasilocal spin measurements, and energetics, by comparing spin aligned, antialigned, and irrotational configurations. Gravitational waveforms from different spin configuration are compared by calculating the mismatch between pairs of waveforms in the late inspiral. We find that precession effects are not distinguishable from nonprecessing configurations with aligned spins for approximately face-on binaries, while the latter are distinguishable from nonspinning configurations. Spin precession effects are instead clearly visible for approximately edge-on binaries. For the parameters considered here, precession does not significantly affect the characteristic postmerger gravitational-wave frequencies nor the mass ejection. Our results pave the way for the modeling of spin precession effects in the gravitational waveform from binary neutron star events.

  17. Flow equation of quantum Einstein gravity in a higher-derivative truncation

    International Nuclear Information System (INIS)

    Lauscher, O.; Reuter, M.

    2002-01-01

    Motivated by recent evidence indicating that quantum Einstein gravity (QEG) might be nonperturbatively renormalizable, the exact renormalization group equation of QEG is evaluated in a truncation of theory space which generalizes the Einstein-Hilbert truncation by the inclusion of a higher-derivative term (R 2 ). The beta functions describing the renormalization group flow of the cosmological constant, Newton's constant, and the R 2 coupling are computed explicitly. The fixed point properties of the 3-dimensional flow are investigated, and they are confronted with those of the 2-dimensional Einstein-Hilbert flow. The non-Gaussian fixed point predicted by the latter is found to generalize to a fixed point on the enlarged theory space. In order to test the reliability of the R 2 truncation near this fixed point we analyze the residual scheme dependence of various universal quantities; it turns out to be very weak. The two truncations are compared in detail, and their numerical predictions are found to agree with a surprisingly high precision. Because of the consistency of the results it appears increasingly unlikely that the non-Gaussian fixed point is an artifact of the truncation. If it is present in the exact theory QEG is probably nonperturbatively renormalizable and ''asymptotically safe.'' We discuss how the conformal factor problem of Euclidean gravity manifests itself in the exact renormalization group approach and show that, in the R 2 truncation, the investigation of the fixed point is not afflicted with this problem. Also the Gaussian fixed point of the Einstein-Hilbert truncation is analyzed; it turns out that it does not generalize to a corresponding fixed point on the enlarged theory space

  18. A ROSAT Survey of Contact Binary Stars

    Science.gov (United States)

    Geske, M. T.; Gettel, S. J.; McKay, T. A.

    2006-01-01

    Contact binary stars are common variable stars that are all believed to emit relatively large fluxes of X-rays. In this work we combine a large new sample of contact binary stars derived from the ROTSE-I telescope with X-ray data from the ROSAT All Sky Survey (RASS) to estimate the X-ray volume emissivity of contact binary stars in the Galaxy. We obtained X-ray fluxes for 140 contact binaries from the RASS, as well as two additional stars observed by the XMM-Newton observatory. From these data we confirm the emission of X-rays from all contact binary systems, with typical luminosities of approximately 1.0×1030 ergs s-1. Combining calculated luminosities with an estimated contact binary space density, we find that contact binaries do not have strong enough X-ray emission to account for a significant portion of the Galactic X-ray background.

  19. Binary evolution and observational constraints

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of close binaries is discussed in connection with problems concerning mass and angular momentum losses. Theoretical and observational evidence for outflow of matter, leaving the system during evolution is given: statistics on total masses and mass ratios, effects of the accretion of the mass gaining component, the presence of streams, disks, rings, circumstellar envelopes, period changes, abundance changes in the atmosphere. The effects of outflowing matter on the evolution is outlined, and estimates of the fraction of matter expelled by the loser, and leaving the system, are given. The various time scales involved with evolution and observation are compared. Examples of non conservative evolution are discussed. Problems related to contact phases, on mass and energy losses, in connection with entropy changes are briefly analysed. For advanced stages the disruption probabilities for supernova explosions are examined. A global picture is given for the evolution of massive close binaries, from ZAMS, through WR phases, X-ray phases, leading to runaway pulsars or to a binary pulsar and later to a millisecond pulsar. (Auth.)

  20. X rays from radio binaries

    International Nuclear Information System (INIS)

    Apparao, K.M.V.

    1977-01-01

    Reference is made to the radio binary systems CC Cas, AR Lac, β Per (Algol), β Lyr, b Per and Cyg X-1. It is stated that a thermal interpretation of the radiation from Algol requires a much larger x-ray flux than the observed value of 3.8 x 10 -11 erg/cm 2 /sec/keV in the 2 to 6 keV energy range. Observations of some non-thermal flares, together with the small size of the radio source in Algol, indicate that the radio emission is non-thermal in nature. The radio emission is interpreted as synchrotron radiation and it is suggested that the observed x-ray emission is due to inverse Compton scattering of the light of the primary star by the radio electrons. The x-ray emission from other radio binaries is also calculated using this model. The energy for the radio electrons can arise from annihilation of magnetic lines connecting the binary stars, twisted by the rotation of the stars. (U.K.)

  1. Modeling the Effect of APC Truncation on Destruction Complex Function in Colorectal Cancer Cells

    Science.gov (United States)

    Barua, Dipak; Hlavacek, William S.

    2013-01-01

    In colorectal cancer cells, APC, a tumor suppressor protein, is commonly expressed in truncated form. Truncation of APC is believed to disrupt degradation of β—catenin, which is regulated by a multiprotein complex called the destruction complex. The destruction complex comprises APC, Axin, β—catenin, serine/threonine kinases, and other proteins. The kinases and , which are recruited by Axin, mediate phosphorylation of β—catenin, which initiates its ubiquitination and proteosomal degradation. The mechanism of regulation of β—catenin degradation by the destruction complex and the role of truncation of APC in colorectal cancer are not entirely understood. Through formulation and analysis of a rule-based computational model, we investigated the regulation of β—catenin phosphorylation and degradation by APC and the effect of APC truncation on function of the destruction complex. The model integrates available mechanistic knowledge about site-specific interactions and phosphorylation of destruction complex components and is consistent with an array of published data. We find that the phosphorylated truncated form of APC can outcompete Axin for binding to β—catenin, provided that Axin is limiting, and thereby sequester β—catenin away from Axin and the Axin-recruited kinases and . Full-length APC also competes with Axin for binding to β—catenin; however, full-length APC is able, through its SAMP repeats, which bind Axin and which are missing in truncated oncogenic forms of APC, to bring β—catenin into indirect association with Axin and Axin-recruited kinases. Because our model indicates that the positive effects of truncated APC on β—catenin levels depend on phosphorylation of APC, at the first 20-amino acid repeat, and because phosphorylation of this site is mediated by , we suggest that is a potential target for therapeutic intervention in colorectal cancer. Specific inhibition of is predicted to limit binding of β—catenin to truncated

  2. Closed-form kinetic parameter estimation solution to the truncated data problem

    International Nuclear Information System (INIS)

    Zeng, Gengsheng L; Kadrmas, Dan J; Gullberg, Grant T

    2010-01-01

    In a dedicated cardiac single photon emission computed tomography (SPECT) system, the detectors are focused on the heart and the background is truncated in the projections. Reconstruction using truncated data results in biased images, leading to inaccurate kinetic parameter estimates. This paper has developed a closed-form kinetic parameter estimation solution to the dynamic emission imaging problem. This solution is insensitive to the bias in the reconstructed images that is caused by the projection data truncation. This paper introduces two new ideas: (1) it includes background bias as an additional parameter to estimate, and (2) it presents a closed-form solution for compartment models. The method is based on the following two assumptions: (i) the amount of the bias is directly proportional to the truncated activities in the projection data, and (ii) the background concentration is directly proportional to the concentration in the myocardium. In other words, the method assumes that the image slice contains only the heart and the background, without other organs, that the heart is not truncated, and that the background radioactivity is directly proportional to the radioactivity in the blood pool. As long as the background activity can be modeled, the proposed method is applicable regardless of the number of compartments in the model. For simplicity, the proposed method is presented and verified using a single compartment model with computer simulations using both noiseless and noisy projections.

  3. Transiently truncated and differentially regulated expression of midkine during mouse embryogenesis

    International Nuclear Information System (INIS)

    Chen Qin; Yuan Yuanyang; Lin Shuibin; Chang Youde; Zhuo Xinming; Wei Wei; Tao Ping; Ruan Lingjuan; Li Qifu; Li Zhixing

    2005-01-01

    Midkine (MK) is a retinoic acid response cytokine, mostly expressed in embryonic tissues. Aberrant expression of MK was found in numerous cancers. In human, a truncated MK was expressed specifically in tumor/cancer tissues. Here we report the discovery of a novel truncated form of MK transiently expressed during normal mouse embryonic development. In addition, MK is concentrated at the interface between developing epithelium and mesenchyme as well as highly proliferating cells. Its expression, which is closely coordinated with angiogenesis and vasculogenesis, is spatiotemporally regulated with peaks in extensive organogenesis period and undifferentiated cells tailing off in maturing cells, implying its role in nascent blood vessel (endothelial) signaling of tissue differentiation and stem cell renewal/differentiation.. Cloning and sequencing analysis revealed that the embryonic truncated MK, in which the conserved domain is in-frame deleted, presumably producing a novel secreted small peptide, is different from the truncated form in human cancer tissues, whose deletion results in a frame-shift mutation. Our data suggest that MK may play a role in epithelium-mesenchyme interactions, blood vessel signaling, and the decision of proliferation vs differentiation. Detection of the transiently expressed truncated MK reveals its novel function in development and sheds light on its role in carcinogenesis

  4. Analytic reconstruction algorithms for triple-source CT with horizontal data truncation

    International Nuclear Information System (INIS)

    Chen, Ming; Yu, Hengyong

    2015-01-01

    Purpose: This paper explores a triple-source imaging method with horizontal data truncation to enlarge the field of view (FOV) for big objects. Methods: The study is conducted by using theoretical analysis, mathematical deduction, and numerical simulations. The proposed algorithms are implemented in c + + and MATLAB. While the basic platform is constructed in MATLAB, the computationally intensive segments are coded in c + +, which are linked via a MEX interface. Results: A triple-source circular scanning configuration with horizontal data truncation is developed, where three pairs of x-ray sources and detectors are unevenly distributed on the same circle to cover the whole imaging object. For this triple-source configuration, a fan-beam filtered backprojection-type algorithm is derived for truncated full-scan projections without data rebinning. The algorithm is also extended for horizontally truncated half-scan projections and cone-beam projections in a Feldkamp-type framework. Using their method, the FOV is enlarged twofold to threefold to scan bigger objects with high speed and quality. The numerical simulation results confirm the correctness and effectiveness of the developed algorithms. Conclusions: The triple-source scanning configuration with horizontal data truncation cannot only keep most of the advantages of a traditional multisource system but also cover a larger FOV for big imaging objects. In addition, because the filtering is shift-invariant, the proposed algorithms are very fast and easily parallelized on graphic processing units

  5. A min cut-set-wise truncation procedure for importance measures computation in probabilistic safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Duflot, Nicolas [Universite de technologie de Troyes, Institut Charles Delaunay/LM2S, FRE CNRS 2848, 12, rue Marie Curie, BP2060, F-10010 Troyes cedex (France)], E-mail: nicolas.duflot@areva.com; Berenguer, Christophe [Universite de technologie de Troyes, Institut Charles Delaunay/LM2S, FRE CNRS 2848, 12, rue Marie Curie, BP2060, F-10010 Troyes cedex (France)], E-mail: christophe.berenguer@utt.fr; Dieulle, Laurence [Universite de technologie de Troyes, Institut Charles Delaunay/LM2S, FRE CNRS 2848, 12, rue Marie Curie, BP2060, F-10010 Troyes cedex (France)], E-mail: laurence.dieulle@utt.fr; Vasseur, Dominique [EPSNA Group (Nuclear PSA and Application), EDF Research and Development, 1, avenue du Gal de Gaulle, 92141 Clamart cedex (France)], E-mail: dominique.vasseur@edf.fr

    2009-11-15

    A truncation process aims to determine among the set of minimal cut-sets (MCS) produced by a probabilistic safety assessment (PSA) model which of them are significant. Several truncation processes have been proposed for the evaluation of the probability of core damage ensuring a fixed accuracy level. However, the evaluation of new risk indicators as importance measures requires to re-examine the truncation process in order to ensure that the produced estimates will be accurate enough. In this paper a new truncation process is developed permitting to estimate from a single set of MCS the importance measure of any basic event with the desired accuracy level. The main contribution of this new method is to propose an MCS-wise truncation criterion involving two thresholds: an absolute threshold in addition to a new relative threshold concerning the potential probability of the MCS of interest. The method has been tested on a complete level 1 PSA model of a 900 MWe NPP developed by 'Electricite de France' (EDF) and the results presented in this paper indicate that to reach the same accuracy level the proposed method produces a set of MCS whose size is significantly reduced.

  6. A min cut-set-wise truncation procedure for importance measures computation in probabilistic safety assessment

    International Nuclear Information System (INIS)

    Duflot, Nicolas; Berenguer, Christophe; Dieulle, Laurence; Vasseur, Dominique

    2009-01-01

    A truncation process aims to determine among the set of minimal cut-sets (MCS) produced by a probabilistic safety assessment (PSA) model which of them are significant. Several truncation processes have been proposed for the evaluation of the probability of core damage ensuring a fixed accuracy level. However, the evaluation of new risk indicators as importance measures requires to re-examine the truncation process in order to ensure that the produced estimates will be accurate enough. In this paper a new truncation process is developed permitting to estimate from a single set of MCS the importance measure of any basic event with the desired accuracy level. The main contribution of this new method is to propose an MCS-wise truncation criterion involving two thresholds: an absolute threshold in addition to a new relative threshold concerning the potential probability of the MCS of interest. The method has been tested on a complete level 1 PSA model of a 900 MWe NPP developed by 'Electricite de France' (EDF) and the results presented in this paper indicate that to reach the same accuracy level the proposed method produces a set of MCS whose size is significantly reduced.

  7. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    Energy Technology Data Exchange (ETDEWEB)

    Holley-Bockelmann, Kelly [Vanderbilt University, Nashville, TN (United States); Khan, Fazeel Mahmood, E-mail: k.holley@vanderbilt.edu [Institute of Space Technology (IST), Islamabad (Pakistan)

    2015-09-10

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.

  8. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    International Nuclear Information System (INIS)

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood

    2015-01-01

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy

  9. On Utmost Multiplicity of Hierarchical Stellar Systems

    Directory of Open Access Journals (Sweden)

    Gebrehiwot Y. M.

    2016-12-01

    Full Text Available According to theoretical considerations, multiplicity of hierarchical stellar systems can reach, depending on masses and orbital parameters, several hundred, while observational data confirm the existence of at most septuple (seven-component systems. In this study, we cross-match the stellar systems of very high multiplicity (six and more components in modern catalogues of visual double and multiple stars to find among them the candidates to hierarchical systems. After cross-matching the catalogues of closer binaries (eclipsing, spectroscopic, etc., some of their components were found to be binary/multiple themselves, what increases the system's degree of multiplicity. Optical pairs, known from literature or filtered by the authors, were flagged and excluded from the statistics. We compiled a list of hierarchical systems with potentially very high multiplicity that contains ten objects. Their multiplicity does not exceed 12, and we discuss a number of ways to explain the lack of extremely high multiplicity systems.

  10. ANTI-CORRELATED TIME LAGS IN THE Z SOURCE GX 5-1: POSSIBLE EVIDENCE FOR A TRUNCATED ACCRETION DISK

    Energy Technology Data Exchange (ETDEWEB)

    Sriram, K.; Choi, C. S. [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Rao, A. R., E-mail: astrosriram@yahoo.co.in [Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2012-06-01

    We investigate the nature of the inner accretion disk in the neutron star source GX 5-1 by making a detailed study of time lags between X-rays of different energies. Using the cross-correlation analysis, we found anti-correlated hard and soft time lags of the order of a few tens to a few hundred seconds and the corresponding intensity states were mostly the horizontal branch (HB) and upper normal branch. The model independent and dependent spectral analysis showed that during these time lags the structure of the accretion disk significantly varied. Both eastern and western approaches were used to unfold the X-ray continuum and systematic changes were observed in soft and hard spectral components. These changes along with a systematic shift in the frequency of quasi-periodic oscillations (QPOs) made it substantially evident that the geometry of the accretion disk is truncated. Simultaneous energy spectral and power density spectral study shows that the production of the horizontal branch oscillations (HBOs) is closely related to the Comptonizing region rather than the disk component in the accretion disk. We found that as the HBO frequency decreases from the hard apex to upper HB, the disk temperature increases along with an increase in the coronal temperature, which is in sharp contrast with the changes found in black hole binaries where the decrease in the QPO frequency is accompanied by a decrease in the disk temperature and a simultaneous increase in the coronal temperature. We discuss the results in the context of re-condensation of coronal material in the inner region of the disk.

  11. Hexagonal pixel detector with time encoded binary readout

    International Nuclear Information System (INIS)

    Hoedlmoser, H.; Varner, G.; Cooney, M.

    2009-01-01

    The University of Hawaii is developing continuous acquisition pixel (CAP) detectors for vertexing applications in lepton colliding experiments such as SuperBelle or ILC. In parallel to the investigation of different technology options such as MAPS or SOI, both analog and binary readout concepts have been tested. First results with a binary readout scheme in which the hit information is time encoded by means of a signal shifting mechanism have recently been published. This paper explains the hit reconstruction for such a binary detector with an emphasis on fake hit reconstruction probabilities in order to evaluate the rate capability in a high background environment such as the planned SuperB factory at KEK. The results show that the binary concept is at least comparable to any analog readout strategy if not better in terms of occupancy. Furthermore, we present a completely new binary readout strategy in which the pixel cells are arranged in a hexagonal grid allowing the use of three independent output directions to reduce reconstruction ambiguities. The new concept uses the same signal shifting mechanism for time encoding, however, in dedicated transfer lines on the periphery of the detector, which enables higher shifting frequencies. Detailed Monte Carlo simulations of full size pixel matrices including hit and BG generation, signal generation, and data reconstruction show that by means of multiple signal transfer lines on the periphery the pixel can be made smaller (higher resolution), the number of output channels and the data volume per triggered event can be reduced dramatically, fake hit reconstruction is lowered to a minimum and the resulting effective occupancies are less than 10 -4 . A prototype detector has been designed in the AMS 0.35μm Opto process and is currently under fabrication.

  12. Coupled binary embedding for large-scale image retrieval.

    Science.gov (United States)

    Zheng, Liang; Wang, Shengjin; Tian, Qi

    2014-08-01

    Visual matching is a crucial step in image retrieval based on the bag-of-words (BoW) model. In the baseline method, two keypoints are considered as a matching pair if their SIFT descriptors are quantized to the same visual word. However, the SIFT visual word has two limitations. First, it loses most of its discriminative power during quantization. Second, SIFT only describes the local texture feature. Both drawbacks impair the discriminative power of the BoW model and lead to false positive matches. To tackle this problem, this paper proposes to embed multiple binary features at indexing level. To model correlation between features, a multi-IDF scheme is introduced, through which different binary features are coupled into the inverted file. We show that matching verification methods based on binary features, such as Hamming embedding, can be effectively incorporated in our framework. As an extension, we explore the fusion of binary color feature into image retrieval. The joint integration of the SIFT visual word and binary features greatly enhances the precision of visual matching, reducing the impact of false positive matches. Our method is evaluated through extensive experiments on four benchmark datasets (Ukbench, Holidays, DupImage, and MIR Flickr 1M). We show that our method significantly improves the baseline approach. In addition, large-scale experiments indicate that the proposed method requires acceptable memory usage and query time compared with other approaches. Further, when global color feature is integrated, our method yields competitive performance with the state-of-the-arts.

  13. The evidence for synthesis of truncated triangular silver nanoplates in the presence of CTAB

    International Nuclear Information System (INIS)

    He Xin; Zhao Xiujian; Chen Yunxia; Feng Jinyang

    2008-01-01

    Truncated triangular silver nanoplates were prepared by a solution-phase approach, which involved the seed-mediated growth of silver nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) at 40 deg. C. The result of X-ray diffraction indicates that the as-prepared nanoparticles are made of pure face centered cubic silver. Transmission electron microscopy and atomic force microscopy studies show that the truncated triangular silver nanoplates, with edge lengths of 50 ± 5 nm and thicknesses of 27 ± 3 nm, are oriented differently on substrates of a copper grid and a fresh mica flake. The corners of these nanoplates are round. The selected area electron diffraction analysis reveals that the silver nanoplates are single crystals with an atomically flat surface. We determine the holistic morphology of truncated triangular silver nanoplates through the above measurements with the aid of computer-aided 3D perspective images

  14. Autocorrelation as a source of truncated Lévy flights in foreign exchange rates

    Science.gov (United States)

    Figueiredo, Annibal; Gleria, Iram; Matsushita, Raul; Da Silva, Sergio

    2003-05-01

    We suggest that the ultraslow speed of convergence associated with truncated Lévy flights (Phys. Rev. Lett. 73 (1994) 2946) may well be explained by autocorrelations in data. We show how a particular type of autocorrelation generates power laws consistent with a truncated Lévy flight. Stock exchanges have been suggested to be modeled by a truncated Lévy flight (Nature 376 (1995) 46; Physica A 297 (2001) 509; Econom. Bull. 7 (2002) 1). Here foreign exchange rate data are taken instead. Scaling power laws in the “probability of return to the origin” are shown to emerge for most currencies. A novel approach to measure how distant a process is from a Gaussian regime is presented.

  15. Local and accumulated truncation errors in a class of perturbative numerical methods

    International Nuclear Information System (INIS)

    Adam, G.; Adam, S.; Corciovei, A.

    1980-01-01

    The approach to the solution of the radial Schroedinger equation using piecewise perturbative theory with a step function reference potential leads to a class of powerful numerical methods, conveniently abridged as SF-PNM(K), where K denotes the order at which the perturbation series was truncated. In the present paper rigorous results are given for the local truncation errors and bounds are derived for the accumulated truncated errors associated to SF-PNM(K), K = 0, 1, 2. They allow us to establish the smoothness conditions which have to be fulfilled by the potential in order to ensure a safe use of SF-PNM(K), and to understand the experimentally observed behaviour of the numerical results with the step size h. (author)

  16. Adaptive bit plane quadtree-based block truncation coding for image compression

    Science.gov (United States)

    Li, Shenda; Wang, Jin; Zhu, Qing

    2018-04-01

    Block truncation coding (BTC) is a fast image compression technique applied in spatial domain. Traditional BTC and its variants mainly focus on reducing computational complexity for low bit rate compression, at the cost of lower quality of decoded images, especially for images with rich texture. To solve this problem, in this paper, a quadtree-based block truncation coding algorithm combined with adaptive bit plane transmission is proposed. First, the direction of edge in each block is detected using Sobel operator. For the block with minimal size, adaptive bit plane is utilized to optimize the BTC, which depends on its MSE loss encoded by absolute moment block truncation coding (AMBTC). Extensive experimental results show that our method gains 0.85 dB PSNR on average compare to some other state-of-the-art BTC variants. So it is desirable for real time image compression applications.

  17. The Apparent Lack of Lorentz Invariance in Zero-Point Fields with Truncated Spectra

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-01-01

    Full Text Available The integrals that describe the expectation values of the zero-point quantum-field-theoretic vacuum state are semi-infinite, as are the integrals for the stochastic electrodynamic vacuum. The unbounded upper limit to these integrals leads in turn to infinite energy densities and renormalization masses. A number of models have been put forward to truncate the integrals so that these densities and masses are finite. Unfortunately the truncation apparently destroys the Lorentz invariance of the integrals. This note argues that the integrals are naturally truncated by the graininess of the negative-energy Planck vacuum state from which the zero-point vacuum arises, and are thus automatically Lorentz invariant.

  18. Optical asymmetric cryptography based on elliptical polarized light linear truncation and a numerical reconstruction technique.

    Science.gov (United States)

    Lin, Chao; Shen, Xueju; Wang, Zhisong; Zhao, Cheng

    2014-06-20

    We demonstrate a novel optical asymmetric cryptosystem based on the principle of elliptical polarized light linear truncation and a numerical reconstruction technique. The device of an array of linear polarizers is introduced to achieve linear truncation on the spatially resolved elliptical polarization distribution during image encryption. This encoding process can be characterized as confusion-based optical cryptography that involves no Fourier lens and diffusion operation. Based on the Jones matrix formalism, the intensity transmittance for this truncation is deduced to perform elliptical polarized light reconstruction based on two intensity measurements. Use of a quick response code makes the proposed cryptosystem practical, with versatile key sensitivity and fault tolerance. Both simulation and preliminary experimental results that support theoretical analysis are presented. An analysis of the resistance of the proposed method on a known public key attack is also provided.

  19. On the viability of the truncated Israel–Stewart theory in cosmology

    International Nuclear Information System (INIS)

    Shogin, Dmitry; Amundsen, Per Amund; Hervik, Sigbjørn

    2015-01-01

    We apply the causal Israel–Stewart theory of irreversible thermodynamics to model the matter content of the Universe as a dissipative fluid with bulk and shear viscosity. Along with the full transport equations we consider their widely used truncated version. By implementing a dynamical systems approach to Bianchi type IV and V cosmological models with and without cosmological constant, we determine the future asymptotic states of such Universes and show that the truncated Israel–Stewart theory leads to solutions essentially different from the full theory. The solutions of the truncated theory may also manifest unphysical properties. Finally, we find that in the full theory shear viscosity can give a substantial rise to dissipative fluxes, driving the fluid extremely far from equilibrium, where the linear Israel–Stewart theory ceases to be valid. (paper)

  20. The Mass-to-Light Ratios of the Draco and Ursa Minor Dwarf Spheroidal Galaxies. II. The Binary Population and Its Effect in the Measured Velocity Dispersions of Dwarf Spheroidal Galaxies

    OpenAIRE

    Olszewski, E.; Pryor, C.; Armandroff, T.

    1995-01-01

    We use a large set of radial velocities in the Ursa Minor and Draco dwarf spheroidal galaxies to search for binary stars and to infer the binary frequency. Of the 118 stars in our sample with multiple observations, six are velocity variables with $\\chi^2$ probabilities below 0.001. We use Monte Carlo simulations that mimic our observations to determine the efficiency with which our observations find binary stars. Our best, though significantly uncertain, estimate of the binary frequency for s...

  1. Fluorometric graphene oxide-based detection of Salmonella enteritis using a truncated DNA aptamer.

    Science.gov (United States)

    Chinnappan, Raja; AlAmer, Saleh; Eissa, Shimaa; Rahamn, Anas Abdel; Abu Salah, Khalid M; Zourob, Mohammed

    2017-12-18

    The work describes a fluorescence-based study for mapping the highest affinity truncated aptamer from the full length sequence and its integration in a graphene oxide platform for the detection of Salmonella enteriditis. To identify the best truncated sequence, molecular beacons and a displacement assay design are applied. In the fluorescence displacement assay, the truncated aptamer was hybridized with fluorescein and quencher-labeled complementary sequences to form a fluorescence/quencher pair. In the presence of S. enteritidis, the aptamer dissociates from the complementary labeled oligonucleotides and thus, the fluorescein/quencher pair becomes physically separated. This leads to an increase in fluorescence intensity. One of the truncated aptamers identified has a 2-fold lower dissociation constant (3.2 nM) compared to its full length aptamer (6.3 nM). The truncated aptamer selected in this process was used to develop a fluorometric graphene oxide (GO) based assay. If fluorescein-labeled aptamer is adsorbed on GO via π stacking interaction, fluorescence is quenched. However, in the presence of target (S. enteriditis), the labeled aptamers is released from surface to form a stable complex with the bacteria and fluorescence is restored, depending on the quantity of bacteria being present. The resulting assay has an unsurpassed detection limit of 25 cfu·mL -1 in the best case. The cross reactivity to Salmonella typhimurium, Staphylococcus aureus and Escherichia coli is negligible. The assay was applied to analyze doped milk samples for and gave good recovery. Thus, we believe that the truncated aptamer/graphene oxide platform is a potential tool for the detection of S. Enteritidis. Graphical abstract Fluorescently labelled aptamer against Salmonella enteritidis was adsorbed on the surface of graphene oxide by π-stacking interaction. This results in quenching of the fluorescence of the label. Addition of Salmonella enteritidis restores fluorescence, and this

  2. Pressure-sensitive paint on a truncated cone in hypersonic flow at incidences

    International Nuclear Information System (INIS)

    Yang, L.; Erdem, E.; Zare-Behtash, H.; Kontis, K.; Saravanan, S.

    2012-01-01

    Highlights: ► Global pressure map over the truncated cone is obtained at various incidence angles in Mach 5 flow. ► Successful application of AA-PSP in hypersonic flow expands operation area of this technique. ► AA-PSP reveals complex three-dimensional pattern which is difficult for transducer to obtain. ► Quantitative data provides strong correlation with colour Schlieren and oil flow results. ► High spatial resolution pressure mappings identify small scale vortices and flow separation. - Abstract: The flow over a truncated cone is a classical and fundamental problem for aerodynamic research due to its three-dimensional and complicated characteristics. The flow is made more complex when examining high angles of incidence. Recently these types of flows have drawn more attention for the purposes of drag reduction in supersonic/hypersonic flows. In the present study the flow over a truncated cone at various incidences was experimentally investigated in a Mach 5 flow with a unit Reynolds number of 13.5 × 10 6 m −1 . The cone semi-apex angle is 15° and the truncation ratio (truncated length/cone length) is 0.5. The incidence of the model varied from −12° to 12° with 3° intervals relative to the freestream direction. The external flow around the truncated cone was visualised by colour Schlieren photography, while the surface flow pattern was revealed using the oil flow method. The surface pressure distribution was measured using the anodized aluminium pressure-sensitive paint (AA-PSP) technique. Both top and sideviews of the pressure distribution on the model surface were acquired at various incidences. AA-PSP showed high pressure sensitivity and captured the complicated flow structures which correlated well with the colour Schlieren and oil flow visualisation results.

  3. Truncation artifact suppression in cone-beam radionuclide transmission CT using maximum likelihood techniques: evaluation with human subjects

    International Nuclear Information System (INIS)

    Manglos, S.H.

    1992-01-01

    Transverse image truncation can be a serious problem for human imaging using cone-beam transmission CT (CB-CT) implemented on a conventional rotating gamma camera. This paper presents a reconstruction method to reduce or eliminate the artifacts resulting from the truncation. The method uses a previously published transmission maximum likelihood EM algorithm, adapted to the cone-beam geometry. The reconstruction method is evaluated qualitatively using three human subjects of various dimensions and various degrees of truncation. (author)

  4. Be discs in coplanar circular binaries: Phase-locked variations of emission lines

    Science.gov (United States)

    Panoglou, Despina; Faes, Daniel M.; Carciofi, Alex C.; Okazaki, Atsuo T.; Baade, Dietrich; Rivinius, Thomas; Borges Fernandes, Marcelo

    2018-01-01

    In this paper, we present the first results of radiative transfer calculations on decretion discs of binary Be stars. A smoothed particle hydrodynamics code computes the structure of Be discs in coplanar circular binary systems for a range of orbital and disc parameters. The resulting disc configuration consists of two spiral arms, and this can be given as input into a Monte Carlo code, which calculates the radiative transfer along the line of sight for various observational coordinates. Making use of the property of steady disc structure in coplanar circular binaries, observables are computed as functions of the orbital phase. Some orbital-phase series of line profiles are given for selected parameter sets under various viewing angles, to allow comparison with observations. Flat-topped profiles with and without superimposed multiple structures are reproduced, showing, for example, that triple-peaked profiles do not have to be necessarily associated with warped discs and misaligned binaries. It is demonstrated that binary tidal effects give rise to phase-locked variability of the violet-to-red (V/R) ratio of hydrogen emission lines. The V/R ratio exhibits two maxima per cycle; in certain cases those maxima are equal, leading to a clear new V/R cycle every half orbital period. This study opens a way to identifying binaries and to constraining the parameters of binary systems that exhibit phase-locked variations induced by tidal interaction with a companion star.

  5. Activity coefficients of solutes in binary solvents

    International Nuclear Information System (INIS)

    Gokcen, N.A.

    1982-01-01

    The activity coefficients in dilute ternary systems are discussed in detail by using the Margules equations. Analyses of some relevant data at high temperatures show that the sparingly dissolved solutes in binary solvents follow complex behavior even when the binary solvents are very nearly ideal. It is shown that the activity data on the solute or the binary system cannot permit computation of the remaining activities except for the regular solutions. It is also shown that a fourth-order equation is usually adequate in expressing the activity coefficient of a solute in binary solvents at high temperatures. When the activity data for a binary solvent are difficult to obtain in a certain range of composition, the activity data for a sparingly dissolved solute can be used to supplement determination of the binary activities

  6. Stability Analysis of Periodic Systems by Truncated Point Mappings

    Science.gov (United States)

    Guttalu, R. S.; Flashner, H.

    1996-01-01

    An approach is presented deriving analytical stability and bifurcation conditions for systems with periodically varying coefficients. The method is based on a point mapping(period to period mapping) representation of the system's dynamics. An algorithm is employed to obtain an analytical expression for the point mapping and its dependence on the system's parameters. The algorithm is devised to derive the coefficients of a multinominal expansion of the point mapping up to an arbitrary order in terms of the state variables and of the parameters. Analytical stability and bifurcation condition are then formulated and expressed as functional relations between the parameters. To demonstrate the application of the method, the parametric stability of Mathieu's equation and of a two-degree of freedom system are investigated. The results obtained by the proposed approach are compared to those obtained by perturbation analysis and by direct integration which we considered to the "exact solution". It is shown that, unlike perturbation analysis, the proposed method provides very accurate solution even for large valuesof the parameters. If an expansion of the point mapping in terms of a small parameter is performed the method is equivalent to perturbation analysis. Moreover, it is demonstrated that the method can be easily applied to multiple-degree-of-freedom systems using the same framework. This feature is an important advantage since most of the existing analysis methods apply mainly to single-degree-of-freedom systems and their extension to higher dimensions is difficult and computationally cumbersome.

  7. The Truncated Lognormal Distribution as a Luminosity Function for SWIFT-BAT Gamma-Ray Bursts

    Directory of Open Access Journals (Sweden)

    Lorenzo Zaninetti

    2016-11-01

    Full Text Available The determination of the luminosity function (LF in Gamma ray bursts (GRBs depends on the adopted cosmology, each one characterized by its corresponding luminosity distance. Here, we analyze three cosmologies: the standard cosmology, the plasma cosmology and the pseudo-Euclidean universe. The LF of the GRBs is firstly modeled by the lognormal distribution and the four broken power law and, secondly, by a truncated lognormal distribution. The truncated lognormal distribution fits acceptably the range in luminosity of GRBs as a function of the redshift.

  8. Determination of αS from scaling violations of truncated moments of structure functions

    International Nuclear Information System (INIS)

    Forte, Stefano; Latorre, J.I.; Magnea, Lorenzo; Piccione, Andrea

    2002-01-01

    We determine the strong coupling α S (M Z ) from scaling violations of truncated moments of the nonsinglet deep inelastic structure function F 2 . Truncated moments are determined from BCDMS and NMC data using a neural network parametrization which retains the full experimental information on errors and correlations. Our method minimizes all sources of theoretical uncertainty and bias which characterize extractions of α S from scaling violations. We obtain α S (M Z )=0.124 +0.004 -0.007 (exp.) +0.003 -0.004 (th.)

  9. Application of the AMPLE cluster-and-truncate approach to NMR structures for molecular replacement

    Energy Technology Data Exchange (ETDEWEB)

    Bibby, Jaclyn [University of Liverpool, Liverpool L69 7ZB (United Kingdom); Keegan, Ronan M. [Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom); Mayans, Olga [University of Liverpool, Liverpool L69 7ZB (United Kingdom); Winn, Martyn D. [Science and Technology Facilities Council Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Rigden, Daniel J., E-mail: drigden@liv.ac.uk [University of Liverpool, Liverpool L69 7ZB (United Kingdom)

    2013-11-01

    Processing of NMR structures for molecular replacement by AMPLE works well. AMPLE is a program developed for clustering and truncating ab initio protein structure predictions into search models for molecular replacement. Here, it is shown that its core cluster-and-truncate methods also work well for processing NMR ensembles into search models. Rosetta remodelling helps to extend success to NMR structures bearing low sequence identity or high structural divergence from the target protein. Potential future routes to improved performance are considered and practical, general guidelines on using AMPLE are provided.

  10. Fusion events lead to truncation of FOS in epithelioid hemangioma of bone

    DEFF Research Database (Denmark)

    van IJzendoorn, David G P; de Jong, Danielle; Romagosa, Cleofe

    2015-01-01

    in exon 4 of the FOS gene and the fusion event led to the introduction of a stop codon. In all instances, the truncation of the FOS gene would result in the loss of the transactivation domain (TAD). Using FISH probes we found a break in the FOS gene in two additional cases, in none of these cases...... differential diagnosis of vascular tumors of bone. Our data suggest that the translocation causes truncation of the FOS protein, with loss of the TAD, which is thereby a novel mechanism involved in tumorigenesis....

  11. Solving Schwinger-Dyson equations by truncation in zero-dimensional scalar quantum field theory

    International Nuclear Information System (INIS)

    Okopinska, A.

    1991-01-01

    Three sets of Schwinger-Dyson equations, for all Green's functions, for connected Green's functions, and for proper vertices, are considered in scalar quantum field theory. A truncation scheme applied to the three sets gives three different approximation series for Green's functions. For the theory in zero-dimensional space-time the results for respective two-point Green's functions are compared with the exact value calculated numerically. The best convergence of the truncation scheme is obtained for the case of proper vertices

  12. SpeX spectroscopy of unresolved very low mass binaries. II. Identification of 14 candidate binaries with late-M/early-L and T dwarf components

    International Nuclear Information System (INIS)

    Bardalez Gagliuffi, Daniella C.; Burgasser, Adam J.; Nicholls, Christine P.; Gelino, Christopher R.; Looper, Dagny L.; Schmidt, Sarah J.; Cruz, Kelle; West, Andrew A.; Gizis, John E.; Metchev, Stanimir

    2014-01-01

    Multiplicity is a key statistic for understanding the formation of very low mass (VLM) stars and brown dwarfs. Currently, the separation distribution of VLM binaries remains poorly constrained at small separations (≤1 AU), leading to uncertainty in the overall binary fraction. We approach this problem by searching for late-M/early-L plus T dwarf spectral binaries whose combined light spectra exhibit distinct peculiarities, allowing for separation-independent identification. We define a set of spectral indices designed to identify these systems, and we use a spectral template fitting method to confirm and characterize spectral binary candidates from a library of 815 spectra from the SpeX Prism Spectral Libraries. We present 11 new binary candidates, confirm 3 previously reported candidates, and rule out 2 previously identified candidates, all with primary and secondary spectral types in the range M7-L7 and T1-T8, respectively. We find that subdwarfs and blue L dwarfs are the primary contaminants in our sample and propose a method for segregating these sources. If confirmed by follow-up observations, these systems may add to the growing list of tight separation binaries, whose orbital properties may yield further insight into brown dwarf formation scenarios.

  13. Pulsar magnetospheres in binary systems

    Science.gov (United States)

    Ershkovich, A. I.; Dolan, J. F.

    1985-01-01

    The criterion for stability of a tangential discontinuity interface in a magnetized, perfectly conducting inviscid plasma is investigated by deriving the dispersion equation including the effects of both gravitational and centrifugal acceleration. The results are applied to neutron star magnetospheres in X-ray binaries. The Kelvin-Helmholtz instability appears to be important in determining whether MHD waves of large amplitude generated by instability may intermix the plasma effectively, resulting in accretion onto the whole star as suggested by Arons and Lea and leading to no X-ray pulsar behavior.

  14. The structures of binary compounds

    CERN Document Server

    Hafner, J; Jensen, WB; Majewski, JA; Mathis, K; Villars, P; Vogl, P; de Boer, FR

    1990-01-01

    - Up-to-date compilation of the experimental data on the structures of binary compounds by Villars and colleagues. - Coloured structure maps which order the compounds into their respective structural domains and present for the first time the local co-ordination polyhedra for the 150 most frequently occurring structure types, pedagogically very helpful and useful in the search for new materials with a required crystal structure. - Crystal co-ordination formulas: a flexible notation for the interpretation of solid-state structures by chemist Bill Jensen. - Recent important advances in unders

  15. Tomographic reconstruction of binary fields

    International Nuclear Information System (INIS)

    Roux, Stéphane; Leclerc, Hugo; Hild, François

    2012-01-01

    A novel algorithm is proposed for reconstructing binary images from their projection along a set of different orientations. Based on a nonlinear transformation of the projection data, classical back-projection procedures can be used iteratively to converge to the sought image. A multiscale implementation allows for a faster convergence. The algorithm is tested on images up to 1 Mb definition, and an error free reconstruction is achieved with a very limited number of projection data, saving a factor of about 100 on the number of projections required for classical reconstruction algorithms.

  16. Microlensing Signature of Binary Black Holes

    Science.gov (United States)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  17. Survival of planets around shrinking stellar binaries.

    Science.gov (United States)

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  18. Contact Binaries on Their Way Towards Merging

    Science.gov (United States)

    Gazeas, K.

    2015-07-01

    Contact binaries are the most frequently observed type of eclipsing star system. They are small, cool, low-mass binaries belonging to a relatively old stellar population. They follow certain empirical relationships that closely connect a number of physical parameters with each other, largely because of constraints coming from the Roche geometry. As a result, contact binaries provide an excellent test of stellar evolution, specifically for stellar merger scenarios. Observing campaigns by many authors have led to the cataloging of thousands of contact binaries and enabled statistical studies of many of their properties. A large number of contact binaries have been found to exhibit extraordinary behavior, requiring follow-up observations to study their peculiarities in detail. For example, a doubly-eclipsing quadruple system consisting of a contact binary and a detached binary is a highly constrained system offering an excellent laboratory to test evolutionary theories for binaries. A new observing project was initiated at the University of Athens in 2012 in order to investigate the possible lower limit for the orbital period of binary systems before coalescence, prior to merging.

  19. Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers.

    Science.gov (United States)

    Mandic, Vuk; Bird, Simeon; Cholis, Ilias

    2016-11-11

    Recent Advanced LIGO detections of binary black hole mergers have prompted multiple studies investigating the possibility that the heavy GW150914 binary system was of primordial origin, and hence could be evidence for dark matter in the form of black holes. We compute the stochastic background arising from the incoherent superposition of such primordial binary black hole systems in the Universe and compare it to the similar background spectrum due to binary black hole systems of stellar origin. We investigate the possibility of detecting this background with future gravitational-wave detectors, and conclude that constraining the dark matter component in the form of black holes using stochastic gravitational-wave background measurements will be very challenging.

  20. Generation of binary holograms for deep scenes captured with a camera and a depth sensor

    Science.gov (United States)

    Leportier, Thibault; Park, Min-Chul

    2017-01-01

    This work presents binary hologram generation from images of a real object acquired from a Kinect sensor. Since hologram calculation from a point-cloud or polygon model presents a heavy computational burden, we adopted a depth-layer approach to generate the holograms. This method enables us to obtain holographic data of large scenes quickly. Our investigations focus on the performance of different methods, iterative and noniterative, to convert complex holograms into binary format. Comparisons were performed to examine the reconstruction of the binary holograms at different depths. We also propose to modify the direct binary search algorithm to take into account several reference image planes. Then, deep scenes featuring multiple planes of interest can be reconstructed with better efficiency.

  1. Molecular evolution of pentatricopeptide repeat genes reveals truncation in species lacking an editing target and structural domains under distinct selective pressures

    Directory of Open Access Journals (Sweden)

    Hayes Michael L

    2012-05-01

    Full Text Available Abstract Background Pentatricopeptide repeat (PPR proteins are required for numerous RNA processing events in plant organelles including C-to-U editing, splicing, stabilization, and cleavage. Fifteen PPR proteins are known to be required for RNA editing at 21 sites in Arabidopsis chloroplasts, and belong to the PLS class of PPR proteins. In this study, we investigate the co-evolution of four PPR genes (CRR4, CRR21, CLB19, and OTP82 and their six editing targets in Brassicaceae species. PPR genes are composed of approximately 10 to 20 tandem repeats and each repeat has two α-helical regions, helix A and helix B, that are separated by short coil regions. Each repeat and structural feature was examined to determine the selective pressures on these regions. Results All of the PPR genes examined are under strong negative selection. Multiple independent losses of editing site targets are observed for both CRR21 and OTP82. In several species lacking the known editing target for CRR21, PPR genes are truncated near the 17th PPR repeat. The coding sequences of the truncated CRR21 genes are maintained under strong negative selection; however, the 3’ UTR sequences beyond the truncation site have substantially diverged. Phylogenetic analyses of four PPR genes show that sequences corresponding to helix A are high compared to helix B sequences. Differential evolutionary selection of helix A versus helix B is observed in both plant and mammalian PPR genes. Conclusion PPR genes and their cognate editing sites are mutually constrained in evolution. Editing sites are frequently lost by replacement of an edited C with a genomic T. After the loss of an editing site, the PPR genes are observed with three outcomes: first, few changes are detected in some cases; second, the PPR gene is present as a pseudogene; and third, the PPR gene is present but truncated in the C-terminal region. The retention of truncated forms of CRR21 that are maintained under strong negative

  2. Molecular evolution of pentatricopeptide repeat genes reveals truncation in species lacking an editing target and structural domains under distinct selective pressures.

    Science.gov (United States)

    Hayes, Michael L; Giang, Karolyn; Mulligan, R Michael

    2012-05-14

    Pentatricopeptide repeat (PPR) proteins are required for numerous RNA processing events in plant organelles including C-to-U editing, splicing, stabilization, and cleavage. Fifteen PPR proteins are known to be required for RNA editing at 21 sites in Arabidopsis chloroplasts, and belong to the PLS class of PPR proteins. In this study, we investigate the co-evolution of four PPR genes (CRR4, CRR21, CLB19, and OTP82) and their six editing targets in Brassicaceae species. PPR genes are composed of approximately 10 to 20 tandem repeats and each repeat has two α-helical regions, helix A and helix B, that are separated by short coil regions. Each repeat and structural feature was examined to determine the selective pressures on these regions. All of the PPR genes examined are under strong negative selection. Multiple independent losses of editing site targets are observed for both CRR21 and OTP82. In several species lacking the known editing target for CRR21, PPR genes are truncated near the 17th PPR repeat. The coding sequences of the truncated CRR21 genes are maintained under strong negative selection; however, the 3' UTR sequences beyond the truncation site have substantially diverged. Phylogenetic analyses of four PPR genes show that sequences corresponding to helix A are high compared to helix B sequences. Differential evolutionary selection of helix A versus helix B is observed in both plant and mammalian PPR genes. PPR genes and their cognate editing sites are mutually constrained in evolution. Editing sites are frequently lost by replacement of an edited C with a genomic T. After the loss of an editing site, the PPR genes are observed with three outcomes: first, few changes are detected in some cases; second, the PPR gene is present as a pseudogene; and third, the PPR gene is present but truncated in the C-terminal region. The retention of truncated forms of CRR21 that are maintained under strong negative selection even in the absence of an editing site target

  3. SLoWPoKES-II: 100,000 WIDE BINARIES IDENTIFIED IN SDSS WITHOUT PROPER MOTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Dhital, Saurav [Department of Physical Sciences, Embry-Riddle Aeronautical University, 600 South Clyde Morris Blvd., Daytona Beach, FL 32114 (United States); West, Andrew A.; Schluns, Kyle J.; Massey, Angela P. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Stassun, Keivan G., E-mail: dhitals@erau.edu [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235 (United States)

    2015-08-15

    We present the Sloan Low-mass Wide Pairs of Kinematically Equivalent Stars (SLoWPoKES)-II catalog of low-mass visual binaries identified from the Sloan Digital Sky Survey (SDSS) by matching photometric distances. The candidate pairs are vetted by comparing the stellar information. The candidate pairs are vetted by comparing the stellar density at their respective Galactic positions to Monte Carlo realizations of a simulated Milky Way. In this way, we are able to identify large numbers of bona fide wide binaries without the need for proper motions. Here, 105,537 visual binaries with angular separations of ∼1–20″ were identified, each with a probability of chance alignment of ≤5%. This is the largest catalog of bona fide wide binaries to date, and it contains a diversity of systems—in mass, mass ratios, binary separations, metallicity, and evolutionary states—that should facilitate follow-up studies to characterize the properties of M dwarfs and white dwarfs. There is a subtle but definitive suggestion of multiple populations in the physical separation distribution, supporting earlier findings. We suggest that wide binaries are composed of multiple populations, most likely representing different formation modes. There are 141 M7 or later wide binary candidates, representing a seven-fold increase over the number currently known. These binaries are too wide to have been formed via the ejection mechanism. Finally, we found that 6% of spectroscopically confirmed M dwarfs are not included in the SDSS STAR catalog; they are misclassified as extended sources due to the presence of a nearby or partially resolved companion. The SLoWPoKES-II catalog is publicly available to the entire community on the World Wide Web via the Filtergraph data visualization portal.

  4. Fabricating binary optics: An overview of binary optics process technology

    Science.gov (United States)

    Stern, Margaret B.

    1993-01-01

    A review of binary optics processing technology is presented. Pattern replication techniques have been optimized to generate high-quality efficient microoptics in visible and infrared materials. High resolution optical photolithography and precision alignment is used to fabricate maximally efficient fused silica diffractive microlenses at lambda = 633 nm. The degradation in optical efficiency of four-phase-level fused silica microlenses resulting from an intentional 0.35 micron translational error has been systematically measured as a function of lens speed (F/2 - F/60). Novel processes necessary for high sag refractive IR microoptics arrays, including deep anisotropic Si-etching, planarization of deep topography and multilayer resist techniques, are described. Initial results are presented for monolithic integration of photonic and microoptic systems.

  5. Truncation effects in connected arrays: Analytical models to describe the edge-induced wave phenomena

    NARCIS (Netherlands)

    Neto, A.; Cavallo, D.; Gerini, G.

    2011-01-01

    This paper presents a Green's function based procedure to assess edge effects in finite wideband connected arrays. Truncation effects are more severe in broadband arrays, since the inter-element mutual coupling facilitates the propagation of edge-born waves that can become dominant over large

  6. An analysis of longitudinal data with nonignorable dropout using the truncated multivariate normal distribution

    NARCIS (Netherlands)

    Jolani, Shahab

    2014-01-01

    For a vector of multivariate normal when some elements, but not necessarily all, are truncated, we derive the moment generating function and obtain expressions for the first two moments involving the multivariate hazard gradient. To show one of many applications of these moments, we then extend the

  7. Multivariate density estimation using dimension reducing information and tail flattening transformations for truncated or censored data

    DEFF Research Database (Denmark)

    Buch-Kromann, Tine; Nielsen, Jens

    2012-01-01

    This paper introduces a multivariate density estimator for truncated and censored data with special emphasis on extreme values based on survival analysis. A local constant density estimator is considered. We extend this estimator by means of tail flattening transformation, dimension reducing prior...

  8. N-terminally truncated POM121C inhibits HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Hideki Saito

    Full Text Available Recent studies have identified host cell factors that regulate early stages of HIV-1 infection including viral cDNA synthesis and orientation of the HIV-1 capsid (CA core toward the nuclear envelope, but it remains unclear how viral DNA is imported through the nuclear pore and guided to the host chromosomal DNA. Here, we demonstrate that N-terminally truncated POM121C, a component of the nuclear pore complex, blocks HIV-1 infection. This truncated protein is predominantly localized in the cytoplasm, does not bind to CA, does not affect viral cDNA synthesis, reduces the formation of 2-LTR and diminished the amount of integrated proviral DNA. Studies with an HIV-1-murine leukemia virus (MLV chimeric virus carrying the MLV-derived Gag revealed that Gag is a determinant of this inhibition. Intriguingly, mutational studies have revealed that the blockade by N-terminally-truncated POM121C is closely linked to its binding to importin-β/karyopherin subunit beta 1 (KPNB1. These results indicate that N-terminally-truncated POM121C inhibits HIV-1 infection after completion of reverse transcription and before integration, and suggest an important role for KPNB1 in HIV-1 replication.

  9. On the Computation of Optimal Monotone Mean-Variance Portfolios via Truncated Quadratic Utility

    OpenAIRE

    Ales Cerný; Fabio Maccheroni; Massimo Marinacci; Aldo Rustichini

    2008-01-01

    We report a surprising link between optimal portfolios generated by a special type of variational preferences called divergence preferences (cf. [8]) and optimal portfolios generated by classical expected utility. As a special case we connect optimization of truncated quadratic utility (cf. [2]) to the optimal monotone mean-variance portfolios (cf. [9]), thus simplifying the computation of the latter.

  10. Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r-1 summation

    International Nuclear Information System (INIS)

    Wolf, D.; Keblinski, P.; Phillpot, S.R.; Eggebrecht, J.

    1999-01-01

    Based on a recent result showing that the net Coulomb potential in condensed ionic systems is rather short ranged, an exact and physically transparent method permitting the evaluation of the Coulomb potential by direct summation over the r -1 Coulomb pair potential is presented. The key observation is that the problems encountered in determining the Coulomb energy by pairwise, spherically truncated r -1 summation are a direct consequence of the fact that the system summed over is practically never neutral. A simple method is developed that achieves charge neutralization wherever the r -1 pair potential is truncated. This enables the extraction of the Coulomb energy, forces, and stresses from a spherically truncated, usually charged environment in a manner that is independent of the grouping of the pair terms. The close connection of our approach with the Ewald method is demonstrated and exploited, providing an efficient method for the simulation of even highly disordered ionic systems by direct, pairwise r -1 summation with spherical truncation at rather short range, i.e., a method which fully exploits the short-ranged nature of the interactions in ionic systems. The method is validated by simulations of crystals, liquids, and interfacial systems, such as free surfaces and grain boundaries. copyright 1999 American Institute of Physics

  11. Algorithmic impediments filtration using the α-truncated mean method in resolver-to-digital converter

    Directory of Open Access Journals (Sweden)

    Gordiyenko V. I.

    2009-02-01

    Full Text Available A test diagram of the microcontroller-type resolver-to-digital converter and algorithms for impediments filtration therein are developed. Experimental verification of the α-truncated mean algorithm intended for the suppression of impulse and noise interference is conducted. The test results are given.

  12. Truncated SALL1 Impedes Primary Cilia Function in Townes-Brocks Syndrome

    DEFF Research Database (Denmark)

    Bozal-Basterra, Laura; Martín-Ruíz, Itziar; Pirone, Lucia

    2018-01-01

    by mutations in the gene encoding the transcriptional repressor SALL1 and is associated with the presence of a truncated protein that localizes to the cytoplasm. Here, we provide evidence that SALL1 mutations might cause TBS by means beyond its transcriptional capacity. By using proximity proteomics, we show...

  13. Electron transfer reactions, cyanide and O2 binding of truncated hemoglobin from Bacillus subtilis

    DEFF Research Database (Denmark)

    Fernandez, Esther; Larsson, Jonas T.; McLean, Kirsty J.

    2013-01-01

    The truncated hemoglobin from Bacillus subtilis (trHb-Bs) possesses a surprisingly high affinity for oxygen and resistance to (auto)oxidation; its physiological role in the bacterium is not understood and may be connected with its very special redox and ligand binding reactions. Electron transfer...

  14. Five-dimensional truncation of the plane incompressible navier-stokes equations

    Energy Technology Data Exchange (ETDEWEB)

    Boldrighini, C [Camerino Univ. (Italy). Istituto di Matematica; Franceschini, V [Modena Univ. (Italy). Istituto Matematico

    1979-01-01

    A five-modes truncation of the Navier-Stokes equations for a two dimensional incompressible fluid on a torus is considered. A computer analysis shows that for a certain range of the Reynolds number the system exhibits a stochastic behaviour, approached through an involved sequence of bifurcations.

  15. Lymphoscintigraphy for sentinel lymph node detection in breast cancer: usefulness of image truncation

    International Nuclear Information System (INIS)

    Carrier, P.; Remp, H.J.; Chaborel, J.P.; Lallement, M.; Bussiere, F.; Darcourt, J.; Lallement, M.; Leblanc-Talent, P.; Machiavello, J.C.; Ettore, F.

    2004-01-01

    The sentinel lymph node (SNL) detection in breast cancer has been recently validated. It allows the reduction of the number of axillary dissections and their corresponding side effects. We tested a simple method of image truncation in order to improve the sensitivity of lymphoscintigraphy. This approach is justified by the magnitude of uptake difference between the injection site and the SNL. We prospectively investigated SNL detection using a triple method (lymphoscintigraphy, blue dye and surgical radio detection) in 130 patients. SNL was identified in 104 of the 132 patients (80%) using the standard images and in 126 of them (96, 9%) using the truncated images. Blue dye detection and surgical radio detection had a sensitivity of 76,9% and 98,5% respectively. The false negative rate was 10,3%. 288 SNL were dissected, 31 were metastatic. Among the 19 patients with metastatic SNL and more than one SNL detected, the metastatic SNL was not the hottest in 9 of them. 28 metastatic SNL were detected Y on truncated images versus only 19 on standard images. Truncation which dramatically increases the sensitivity of lymphoscintigraphy allows to increase the number of dissected SNL and probably reduces the false negative rate. (author)

  16. A computational approach for fluid queues driven by truncated birth-death processes.

    NARCIS (Netherlands)

    Lenin, R.B.; Parthasarathy, P.R.

    2000-01-01

    In this paper, we analyze fluid queues driven by truncated birth-death processes with general birth and death rates. We compute the equilibrium distribution of the content of the fluid buffer by providing efficient numerical procedures to compute the eigenvalues and the eigenvectors of the

  17. Organisation and melting of solution grown truncated lozenge polyethylene single crystals

    NARCIS (Netherlands)

    Loos, J.; Tian, M.

    2003-01-01

    Morphological features and the melting behaviour of truncated lozenge crystals have been studied. For the crystals investigated, the heights of the (110) and the (200) sectors were measured to be 14.5 and 12.7 nm, respectively, using atomic force microscopy (AFM) in contact and non-contact mode.

  18. Low-mode truncation methods in the sine-Gordon equation

    International Nuclear Information System (INIS)

    Xiong Chuyu.

    1991-01-01

    In this dissertation, the author studies the chaotic and coherent motions (i.e., low-dimensional chaotic attractor) in some near integrable partial differential equations, particularly the sine-Gordon equation and the nonlinear Schroedinger equation. In order to study the motions, he uses low mode truncation methods to reduce these partial differential equations to some truncated models (low-dimensional ordinary differential equations). By applying many methods available to low-dimensional ordinary differential equations, he can understand the low-dimensional chaotic attractor of PDE's much better. However, there are two important questions one needs to answer: (1) How many modes is good enough for the low mode truncated models to capture the dynamics uniformly? (2) Is the chaotic attractor in a low mode truncated model close to the chaotic attractor in the original PDE? And how close is? He has developed two groups of powerful methods to help to answer these two questions. They are the computation methods of continuation and local bifurcation, and local Lyapunov exponents and Lyapunov exponents. Using these methods, he concludes that the 2N-nls ODE is a good model for the sine-Gordon equation and the nonlinear Schroedinger equation provided one chooses a 'good' basis and uses 'enough' modes (where 'enough' depends on the parameters of the system but is small for the parameter studied here). Therefore, one can use 2N-nls ODE to study the chaos of PDE's in more depth

  19. The Most Developmentally Truncated Fishes Show Extensive Hox Gene Loss and Miniaturized Genomes

    Science.gov (United States)

    Malmstrøm, Martin; Britz, Ralf; Matschiner, Michael; Tørresen, Ole K; Hadiaty, Renny Kurnia; Yaakob, Norsham; Tan, Heok Hui; Jakobsen, Kjetill Sigurd; Salzburger, Walter; Rüber, Lukas

    2018-01-01

    Abstract The world’s smallest fishes belong to the genus Paedocypris. These miniature fishes are endemic to an extreme habitat: the peat swamp forests in Southeast Asia, characterized by highly acidic blackwater. This threatened habitat is home to a large array of fishes, including a number of miniaturized but also developmentally truncated species. Especially the genus Paedocypris is characterized by profound, organism-wide developmental truncation, resulting in sexually mature individuals of <8 mm in length with a larval phenotype. Here, we report on evolutionary simplification in the genomes of two species of the dwarf minnow genus Paedocypris using whole-genome sequencing. The two species feature unprecedented Hox gene loss and genome reduction in association with their massive developmental truncation. We also show how other genes involved in the development of musculature, nervous system, and skeleton have been lost in Paedocypris, mirroring its highly progenetic phenotype. Further, our analyses suggest two mechanisms responsible for the genome streamlining in Paedocypris in relation to other Cypriniformes: severe intron shortening and reduced repeat content. As the first report on the genomic sequence of a vertebrate species with organism-wide developmental truncation, the results of our work enhance our understanding of genome evolution and how genotypes are translated to phenotypes. In addition, as a naturally simplified system closely related to zebrafish, Paedocypris provides novel insights into vertebrate development. PMID:29684203

  20. Importance-truncated shell model for multi-shell valence spaces

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Christina; Vobig, Klaus; Roth, Robert [Institut fuer Kernphysik, TU Darmstadt (Germany)

    2016-07-01

    The valence-space shell model is one of the work horses in nuclear structure theory. In traditional applications, shell-model calculations are carried out using effective interactions constructed in a phenomenological framework for rather small valence spaces, typically spanned by one major shell. We improve on this traditional approach addressing two main aspects. First, we use new effective interactions derived in an ab initio approach and, thus, establish a connection to the underlying nuclear interaction providing access to single- and multi-shell valence spaces. Second, we extend the shell model to larger valence spaces by applying an importance-truncation scheme based on a perturbative importance measure. In this way, we reduce the model space to the relevant basis states for the description of a few target eigenstates and solve the eigenvalue problem in this physics-driven truncated model space. In particular multi-shell valence spaces are not tractable otherwise. We combine the importance-truncated shell model with refined extrapolation schemes to approximately recover the exact result. We present first results obtained in the importance-truncated shell model with the newly derived ab initio effective interactions for multi-shell valence spaces, e.g., the sdpf shell.

  1. Use of the negative binomial-truncated Poisson distribution in thunderstorm prediction

    Science.gov (United States)

    Cohen, A. C.

    1971-01-01

    A probability model is presented for the distribution of thunderstorms over a small area given that thunderstorm events (1 or more thunderstorms) are occurring over a larger area. The model incorporates the negative binomial and truncated Poisson distributions. Probability tables for Cape Kennedy for spring, summer, and fall months and seasons are presented. The computer program used to compute these probabilities is appended.

  2. Computing the Moments of Order Statistics from Truncated Pareto Distributions Based on the Conditional Expectation

    Directory of Open Access Journals (Sweden)

    Gökhan Gökdere

    2014-05-01

    Full Text Available In this paper, closed form expressions for the moments of the truncated Pareto order statistics are obtained by using conditional distribution. We also derive some results for the moments which will be useful for moment computations based on ordered data.

  3. Integral equation solution for truncated slab structures by using a fringe current formulation

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Toccafondi, A.; Maci, S.

    1999-01-01

    Full-wave solutions of truncated dielectric slab problems are interesting for a variety of engineering applications, in particular patch antennas on finite ground planes. For this application a canonical reference solution is that of a semi-infinite slab illuminated by a line source. Standard int...

  4. Family losses following truncation selection in populations of half-sib families

    Science.gov (United States)

    J. H. Roberds; G. Namkoong; H. Kang

    1980-01-01

    Family losses during truncation selection may be sizable in populations of half-sib families. Substantial losses may occur even in populations containing little or no variation among families. Heavier losses will occur, however, under conditions of high heritability where there is considerable family variation. Standard deviations and therefore variances of family loss...

  5. No evidence that protein truncating variants in BRIP1 are associated with breast cancer risk

    DEFF Research Database (Denmark)

    Easton, Douglas F; Lesueur, Fabienne; Decker, Brennan

    2016-01-01

    BACKGROUND: BRCA1 interacting protein C-terminal helicase 1 (BRIP1) is one of the Fanconi Anaemia Complementation (FANC) group family of DNA repair proteins. Biallelic mutations in BRIP1 are responsible for FANC group J, and previous studies have also suggested that rare protein truncating variants...

  6. Propagation of coherently combined truncated laser beam arrays with beam distortions in non-Kolmogorov turbulence.

    Science.gov (United States)

    Tao, Rumao; Si, Lei; Ma, Yanxing; Zhou, Pu; Liu, Zejin

    2012-08-10

    The propagation properties of coherently combined truncated laser beam arrays with beam distortions through non-Kolmogorov turbulence are studied in detail both analytically and numerically. The analytical expressions for the average intensity and the beam width of coherently combined truncated laser beam arrays with beam distortions propagating through turbulence are derived based on the combination of statistical optics methods and the extended Huygens-Fresnel principle. The effect of beam distortions, such as amplitude modulation and phase fluctuation, is studied by numerical examples. The numerical results reveal that phase fluctuations have significant influence on the spreading of coherently combined truncated laser beam arrays in non-Kolmogorov turbulence, and the effects of the phase fluctuations can be negligible as long as the phase fluctuations are controlled under a certain level, i.e., a>0.05 for the situation considered in the paper. Furthermore, large phase fluctuations can convert the beam distribution rapidly to a Gaussian form, vary the spreading, weaken the optimum truncation effects, and suppress the dependence of spreading on the parameters of the non-Kolmogorov turbulence.

  7. A computational approach for a fluid queue driven by a truncated birth-death process

    NARCIS (Netherlands)

    Lenin, R.B.; Parthasarathy, P.R.

    1999-01-01

    In this paper, we consider a fluid queue driven by a truncated birth-death process with general birth and death rates. We find the equilibrium distribution of the content of the fluid buffer by computing the eigenvalues and eigenvectors of an associated real tridiagonal matrix. We provide efficient

  8. The Most Developmentally Truncated Fishes Show Extensive Hox Gene Loss and Miniaturized Genomes.

    Science.gov (United States)

    Malmstrøm, Martin; Britz, Ralf; Matschiner, Michael; Tørresen, Ole K; Hadiaty, Renny Kurnia; Yaakob, Norsham; Tan, Heok Hui; Jakobsen, Kjetill Sigurd; Salzburger, Walter; Rüber, Lukas

    2018-04-01

    The world's smallest fishes belong to the genus Paedocypris. These miniature fishes are endemic to an extreme habitat: the peat swamp forests in Southeast Asia, characterized by highly acidic blackwater. This threatened habitat is home to a large array of fishes, including a number of miniaturized but also developmentally truncated species. Especially the genus Paedocypris is characterized by profound, organism-wide developmental truncation, resulting in sexually mature individuals of <8 mm in length with a larval phenotype. Here, we report on evolutionary simplification in the genomes of two species of the dwarf minnow genus Paedocypris using whole-genome sequencing. The two species feature unprecedented Hox gene loss and genome reduction in association with their massive developmental truncation. We also show how other genes involved in the development of musculature, nervous system, and skeleton have been lost in Paedocypris, mirroring its highly progenetic phenotype. Further, our analyses suggest two mechanisms responsible for the genome streamlining in Paedocypris in relation to other Cypriniformes: severe intron shortening and reduced repeat content. As the first report on the genomic sequence of a vertebrate species with organism-wide developmental truncation, the results of our work enhance our understanding of genome evolution and how genotypes are translated to phenotypes. In addition, as a naturally simplified system closely related to zebrafish, Paedocypris provides novel insights into vertebrate development.

  9. CONVERGENCE OF THE FRACTIONAL PARTS OF THE RANDOM VARIABLES TO THE TRUNCATED EXPONENTIAL DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Bogdan Gheorghe Munteanu

    2013-01-01

    Full Text Available Using the stochastic approximations, in this paper it was studiedthe convergence in distribution of the fractional parts of the sum of random variables to the truncated exponential distribution with parameter lambda. This fact is feasible by means of the Fourier-Stieltjes sequence (FSS of the random variable.

  10. Phospholipid lateral diffusion in phosphatidylcholine-sphingomyelin-cholesterol monolayers; Effects of oxidatively truncated phosphatidylcholines

    Czech Academy of Sciences Publication Activity Database

    Parkkila, P.; Štefl, Martin; Olžyńska, Agnieszka; Hof, Martin; Kinnunen, P. K. J.

    2015-01-01

    Roč. 1848, č. 1 (2015), s. 167-173 ISSN 0005-2736 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388955 Keywords : Oxidatively truncated phosphatidylcholines * Lateral diffusion * Fluorescence correlation spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.687, year: 2015

  11. Truncated Gauss-Newton Implementation for Multi-Parameter Full Waveform Inversion

    Science.gov (United States)

    Liu, Y.; Yang, J.; Dong, L.; Wang, Y.

    2014-12-01

    Full waveform inversion (FWI) is a numerical optimization method which aims at minimizing the difference between the synthetic and recorded seismic data to obtain high resolution subsurface images. A practical implementation for FWI is the adjoint-state method (AD), in which the data residuals at receiver locations are simultaneously back-propagated to form the gradient. Scattering-integral method (SI) is an alternative way which is based on the explicit building of the sensitivity kernel (Fréchet derivative matrix). Although it is more memory-consuming, SI is more efficient than AD when the number of the sources is larger than the number of the receivers. To improve the convergence of FWI, the information carried out by the inverse Hessian operator is crucial. Taking account accurately of the effect of this operator in FWI can correct illumination deficits, reserve the amplitude of the subsurface parameters, and remove artifacts generated by multiple reflections. In multi-parameter FWI, the off-diagonal blocks of the Hessian operator reflect the coupling between different parameter classes. Therefore, incorporating its inverse could help to mitigate the trade-off effects. In this study, we focus on the truncated Gauss-Newton implementation for multi-parameter FWI. The model update is computed through a matrix-free conjugate gradient solution of the Newton linear system. Both the gradient and the Hessian-vector product are calculated using the SI approach instead of the first- and second-order AD. However, the gradient expressed by kernel-vector product is calculated through the accumulation of the decomposed vector-scalar products. Thus, it's not necessary to store the huge sensitivity matrix beforehand. We call this method the matrix decomposition approach (MD). And the Hessian-vector product is replaced by two kernel-vector products which are then calculated by the above MD. By this way, we don't need to solve two additional wave propagation problems as in the

  12. Motion of isolated open vortex filaments evolving under the truncated local induction approximation

    Science.gov (United States)

    Van Gorder, Robert A.

    2017-11-01

    The study of nonlinear waves along open vortex filaments continues to be an area of active research. While the local induction approximation (LIA) is attractive due to locality compared with the non-local Biot-Savart formulation, it has been argued that LIA appears too simple to model some relevant features of Kelvin wave dynamics, such as Kelvin wave energy transfer. Such transfer of energy is not feasible under the LIA due to integrability, so in order to obtain a non-integrable model, a truncated LIA, which breaks the integrability of the classical LIA, has been proposed as a candidate model with which to study such dynamics. Recently Laurie et al. ["Interaction of Kelvin waves and nonlocality of energy transfer in superfluids," Phys. Rev. B 81, 104526 (2010)] derived truncated LIA systematically from Biot-Savart dynamics. The focus of the present paper is to study the dynamics of a section of common open vortex filaments under the truncated LIA dynamics. We obtain the analog of helical, planar, and more general filaments which rotate without a change in form in the classical LIA, demonstrating that while quantitative differences do exist, qualitatively such solutions still exist under the truncated LIA. Conversely, solitons and breather solutions found under the LIA should not be expected under the truncated LIA, as the existence of such solutions relies on the existence of an infinite number of conservation laws which is violated due to loss of integrability. On the other hand, similarity solutions under the truncated LIA can be quite different to their counterparts found for the classical LIA, as they must obey a t1/3 type scaling rather than the t1/2 type scaling commonly found in the LIA and Biot-Savart dynamics. This change in similarity scaling means that Kelvin waves are radiated at a slower rate from vortex kinks formed after reconnection events. The loss of soliton solutions and the difference in similarity scaling indicate that dynamics emergent under

  13. Overloaded CDMA Systems with Displaced Binary Signatures

    Directory of Open Access Journals (Sweden)

    Vanhaverbeke Frederik

    2004-01-01

    Full Text Available We extend three types of overloaded CDMA systems, by displacing in time the binary signature sequences of these systems: (1 random spreading (PN, (2 multiple-OCDMA (MO, and (3 PN/OCDMA (PN/O. For each of these systems, we determine the time shifts that minimize the overall multiuser interference power. The achievable channel load with coded and uncoded data is evaluated for the conventional (without displacement and improved (with displacement systems, as well as for systems based on quasi-Welch-bound-equality (QWBE sequences, by means of several types of turbo detectors. For each system, the best performing turbo detector is selected in order to compare the performance of these systems. It is found that the improved systems substantially outperform their original counterparts. With uncoded data, (improved PN/O yields the highest acceptable channel load. For coded data, MO allows for the highest acceptable channel load over all considered systems, both for the conventional and the improved systems. In the latter case, channel loads of about 280% are achievable with a low degradation as compared to a single user system.

  14. ERK and PI3K regulate different aspects of the epithelial to mesenchymal transition of mammary tumor cells induced by truncated MUC1

    International Nuclear Information System (INIS)

    Horn, Galit; Gaziel, Avital; Wreschner, Daniel H.; Smorodinsky, Nechama I.; Ehrlich, Marcelo

    2009-01-01

    Epithelial to mesenchymal transition (EMT) integrates changes to cell morphology and signaling pathways resulting from modifications to the cell's transcriptional response. Different combinations of stimuli ignite this process in the contexts of development or tumor progression. The human MUC1 gene encodes multiple alternatively spliced forms of a polymorphic oncoprotein that is aberrantly expressed in epithelial malignancies. MUC1 is endowed with various signaling modules and has the potential to mediate proliferative and morphological changes characteristic of the progression of epithelial tumors. The tyrosine-rich cytoplasmic domain and the heavily glycosylated extracellular domain both play a role in MUC1-mediated signal transduction. However, the attribution of function to specific domains of MUC1 is difficult due to the concomitant presence of multiple forms of the protein, which stem from alternative splicing and proteolytic cleavage. Here we show that DA3 mouse mammary tumor cells stably transfected with a truncated genomic fragment of human MUC1 undergo EMT. In their EMT, these cells demonstrate altered [i] morphology, [ii] signaling pathways and [iii] expression of epithelial and mesenchymal markers. Similarly to well characterized human breast cancer cell lines, cells transfected with truncated MUC1 show an ERK-dependent increased spreading on fibronectin, and a PI3K-dependent enhancement of their proliferative rate.

  15. Radial Velocities of 41 Kepler Eclipsing Binaries

    Science.gov (United States)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.

    2017-12-01

    Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.

  16. BHDD: Primordial black hole binaries code

    Science.gov (United States)

    Kavanagh, Bradley J.; Gaggero, Daniele; Bertone, Gianfranco

    2018-06-01

    BHDD (BlackHolesDarkDress) simulates primordial black hole (PBH) binaries that are clothed in dark matter (DM) halos. The software uses N-body simulations and analytical estimates to follow the evolution of PBH binaries formed in the early Universe.

  17. Main Memory Implementations for Binary Grouping

    OpenAIRE

    May, Norman; Moerkotte, Guido

    2005-01-01

    An increasing number of applications depend on efficient storage and analysis features for XML data. Hence, query optimization and efficient evaluation techniques for the emerging XQuery standard become more and more important. Many XQuery queries require nested expressions. Unnesting them often introduces binary grouping. We introduce several algorithms implementing binary grouping and analyze their time and space complexity. Experiments demonstrate their performance.

  18. Eliciting Subjective Probabilities with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    objective probabilities. Drawing a sample from the same subject population, we find evidence that the binary lottery procedure induces linear utility in a subjective probability elicitation task using the Quadratic Scoring Rule. We also show that the binary lottery procedure can induce direct revelation...

  19. Bondi-Hoyle-Lyttleton Accretion onto Binaries

    Science.gov (United States)

    Antoni, Andrea; MacLeod, Morgan; Ramírez-Ruiz, Enrico

    2018-01-01

    Binary stars are not rare. While only close binary stars will eventually interact with one another, even the widest binary systems interact with their gaseous surroundings. The rates of accretion and the gaseous drag forces arising in these interactions are the key to understanding how these systems evolve. This poster examines accretion flows around a binary system moving supersonically through a background gas. We perform three-dimensional hydrodynamic simulations of Bondi-Hoyle-Lyttleton accretion using the adaptive mesh refinement code FLASH. We simulate a range of values of semi-major axis of the orbit relative to the gravitational focusing impact parameter of the pair. On large scales, gas is gravitationally focused by the center-of-mass of the binary, leading to dynamical friction drag and to the accretion of mass and momentum. On smaller scales, the orbital motion imprints itself on the gas. Notably, the magnitude and direction of the forces acting on the binary inherit this orbital dependence. The long-term evolution of the binary is determined by the timescales for accretion, slow down of the center-of-mass, and decay of the orbit. We use our simulations to measure these timescales and to establish a hierarchy between them. In general, our simulations indicate that binaries moving through gaseous media will slow down before the orbit decays.

  20. Binary Relations as a Foundation of Mathematics

    NARCIS (Netherlands)

    Kuper, Jan; Barendsen, E.; Capretta, V.; Geuvers, H.; Niqui, M.

    2007-01-01

    We describe a theory for binary relations in the Zermelo-Fraenkel style. We choose for ZFCU, a variant of ZFC Set theory in which the Axiom of Foundation is replaced by an axiom allowing for non-wellfounded sets. The theory of binary relations is shown to be equi-consistent ZFCU by constructing a

  1. RELATIONSHIP BETWEEN FLASH POINTS OF SOME BINARY ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    Miscellaneous binary blends containing solvent neutral-150 (SN-150), ... viscosity, the flash point test has always been a standard part of a lubricant's specification. ... between structure and flash points of organic compounds [5-12] and fuels [13, 14]. ... in binary mixtures, the gaps between flash points would be high enough.

  2. The origin of the RS CVn binaries

    International Nuclear Information System (INIS)

    Biermann, P.

    1976-01-01

    Six possible origins for the RS CVn binaries are considered based on the following possibilities. RS CVn binaries might now be either pre-main-sequence or post-main-sequence. A pre-main-sequence binary might not always have been a binary but might have resulted from fission of a rapidly rotating single pre-main-sequence star. The main-sequence counterparts might be either single stars or binaries. To decide which of the six origins is possible, the following observed data for the RS CVn binaries are considered: total mass, total angular momentum, lack of observed connection with regions of star formation, large space density, kinematical age, and the visual companion of WW Dra. In addition lifetimes and space densities of single stars and other types of binaries are considered. The only origin possible is that the RS CVn binaries are in a thermal phase following fission of a main-sequence single star. In this explanation the single star had a rapidly rotating core which became unstable due to the core contraction which made it begin to evolve off the main sequence. The present Be stars might be examples of such parent single stars. (Auth.)

  3. Algorithms for MDC-based multi-locus phylogeny inference: beyond rooted binary gene trees on single alleles.

    Science.gov (United States)

    Yu, Yun; Warnow, Tandy; Nakhleh, Luay

    2011-11-01

    One of the criteria for inferring a species tree from a collection of gene trees, when gene tree incongruence is assumed to be due to incomplete lineage sorting (ILS), is Minimize Deep Coalescence (MDC). Exact algorithms for inferring the species tree from rooted, binary trees under MDC were recently introduced. Nevertheless, in phylogenetic analyses of biological data sets, estimated gene trees may differ from true gene trees, be incompletely resolved, and not necessarily rooted. In this article, we propose new MDC formulations for the cases where the gene trees are unrooted/binary, rooted/non-binary, and unrooted/non-binary. Further, we prove structural theorems that allow us to extend the algorithms for the rooted/binary gene tree case to these cases in a straightforward manner. In addition, we devise MDC-based algorithms for cases when multiple alleles per species may be sampled. We study the performance of these methods in coalescent-based computer simulations.

  4. Amplitude of Light Scattering by a Truncated Pyramid and Cone in the Rayleigh-Gans-Debye Approximation

    Directory of Open Access Journals (Sweden)

    Konstantin A. Shapovalov

    2013-01-01

    Full Text Available The article considers general approach to structured particle and particle system form factor calculation in the Rayleigh-Gans-Debye (RGD approximation. Using this approach, amplitude of light scattering by a truncated pyramid and cone formulas in RGD approximation are obtained. Light scattering indicator by a truncated pyramid and cone in the RGD approximation are calculated.

  5. Reduction of truncation errors in planar near-field aperture antenna measurements using the method of alternating orthogonal projections

    DEFF Research Database (Denmark)

    Martini, Enrica; Breinbjerg, Olav; Maci, Stefano

    2006-01-01

    A simple and effective procedure for the reduction of truncation error in planar near-field to far-field transformations is presented. The starting point is the consideration that the actual scan plane truncation implies a reliability of the reconstructed plane wave spectrum of the field radiated...

  6. Reduction of Truncation Errors in Planar Near-Field Aperture Antenna Measurements Using the Gerchberg-Papoulis Algorithm

    DEFF Research Database (Denmark)

    Martini, Enrica; Breinbjerg, Olav; Maci, Stefano

    2008-01-01

    A simple and effective procedure for the reduction of truncation errors in planar near-field measurements of aperture antennas is presented. The procedure relies on the consideration that, due to the scan plane truncation, the calculated plane wave spectrum of the field radiated by the antenna is...

  7. Mass Transfer in Mira-Type Binaries

    Directory of Open Access Journals (Sweden)

    Mohamed S.

    2012-06-01

    Full Text Available Detached, symbiotic binaries are generally assumed to interact via Bondi-Hoyle-Littleton (BHL wind accretion. However, the accretion rates and outflow geometries that result from this mass-transfer mechanism cannot adequately explain the observations of the nearest and best studied symbiotic binary, Mira, or the formation of some post-AGB binaries, e.g. barium stars. We propose a new mass-transfer mode for Mira-type binaries, which we call ‘wind Roche-lobe overflow’ (WRLOF, and which we demonstrate with 3D hydrodynamic simulations. Importantly, we show that the circumstellar outflows which result from WRLOF tend to be highly aspherical and strongly focused towards the binary orbital plane. Furthermore, the subsequent mass-transfer rates are at least an order of magnitude greater than the analogous BHL values. We discuss the implications of these results for the shaping of bipolar (proto-planetary nebulae and other related systems.

  8. Logistic chaotic maps for binary numbers generations

    International Nuclear Information System (INIS)

    Kanso, Ali; Smaoui, Nejib

    2009-01-01

    Two pseudorandom binary sequence generators, based on logistic chaotic maps intended for stream cipher applications, are proposed. The first is based on a single one-dimensional logistic map which exhibits random, noise-like properties at given certain parameter values, and the second is based on a combination of two logistic maps. The encryption step proposed in both algorithms consists of a simple bitwise XOR operation of the plaintext binary sequence with the keystream binary sequence to produce the ciphertext binary sequence. A threshold function is applied to convert the floating-point iterates into binary form. Experimental results show that the produced sequences possess high linear complexity and very good statistical properties. The systems are put forward for security evaluation by the cryptographic committees.

  9. Phonons in fcc binary alloys

    International Nuclear Information System (INIS)

    Sharma, Amita; Rathore, R.P.S.

    1992-01-01

    Born-Mayer potential has been modified to account for the unpaired (three body) forces among the common nearest neighbours of the ordered binary fcc alloys i.e. Ni 3 Fe 7 , Ni 5 Fe 5 and Ni 75 Fe 25 . The three body potential is added to the two body form of Morse to formalize the total interaction potential. Measured inverse ionic compressibility, cohesive energy, lattice constant and one measured phonon frequency are used to evaluate the defining parameters of the potential. The potential seeks to bring about the binding among 140 and 132 atoms though pair wise (two body) and non-pair wise (three body) forces respectively. The phonon-dispersion relations obtained by solving the secular equation are compared with the experimental findings on the aforesaid alloys. (author). 19 refs., 3 figs

  10. TIDALLY INDUCED PULSATIONS IN KEPLER ECLIPSING BINARY KIC 3230227

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhao; Gies, Douglas R. [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States); Fuller, Jim, E-mail: guo@astro.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: jfuller@caltech.edu [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, Caltech, Pasadena, CA 91125 (United States)

    2017-01-01

    KIC 3230227 is a short period (P  ≈ 7.0 days) eclipsing binary with a very eccentric orbit ( e  = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M {sub 1} = 1.84 ± 0.18  M {sub ⊙}, M {sub 2} = 1.73 ± 0.17  M {sub ⊙} and radii of R {sub 1} = 2.01 ± 0.09  R {sub ⊙}, R {sub 2} = 1.68 ± 0.08 R {sub ⊙} for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l  = 2, m  = −2 prograde modes.

  11. TIDALLY INDUCED PULSATIONS IN KEPLER ECLIPSING BINARY KIC 3230227

    International Nuclear Information System (INIS)

    Guo, Zhao; Gies, Douglas R.; Fuller, Jim

    2017-01-01

    KIC 3230227 is a short period (P  ≈ 7.0 days) eclipsing binary with a very eccentric orbit ( e  = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M 1  = 1.84 ± 0.18  M ⊙ , M 2  = 1.73 ± 0.17  M ⊙ and radii of R 1  = 2.01 ± 0.09  R ⊙ , R 2  = 1.68 ± 0.08 R ⊙ for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l  = 2, m  = −2 prograde modes.

  12. Inferring Binary and Trinary Stellar Populations in Photometric and Astrometric Surveys

    Science.gov (United States)

    Widmark, Axel; Leistedt, Boris; Hogg, David W.

    2018-04-01

    Multiple stellar systems are ubiquitous in the Milky Way but are often unresolved and seen as single objects in spectroscopic, photometric, and astrometric surveys. However, modeling them is essential for developing a full understanding of large surveys such as Gaia and connecting them to stellar and Galactic models. In this paper, we address this problem by jointly fitting the Gaia and Two Micron All Sky Survey photometric and astrometric data using a data-driven Bayesian hierarchical model that includes populations of binary and trinary systems. This allows us to classify observations into singles, binaries, and trinaries, in a robust and efficient manner, without resorting to external models. We are able to identify multiple systems and, in some cases, make strong predictions for the properties of their unresolved stars. We will be able to compare such predictions with Gaia Data Release 4, which will contain astrometric identification and analysis of binary systems.

  13. Minimum decoding trellis length and truncation depth of wrap-around Viterbi algorithm for TBCC in mobile WiMAX

    Directory of Open Access Journals (Sweden)

    Liu Yu-Sun

    2011-01-01

    Full Text Available Abstract The performance of the wrap-around Viterbi decoding algorithm with finite truncation depth and fixed decoding trellis length is investigated for tail-biting convolutional codes in the mobile WiMAX standard. Upper bounds on the error probabilities induced by finite truncation depth and the uncertainty of the initial state are derived for the AWGN channel. The truncation depth and the decoding trellis length that yield negligible performance loss are obtained for all transmission rates over the Rayleigh channel using computer simulations. The results show that the circular decoding algorithm with an appropriately chosen truncation depth and a decoding trellis just a fraction longer than the original received code words can achieve almost the same performance as the optimal maximum likelihood decoding algorithm in mobile WiMAX. A rule of thumb for the values of the truncation depth and the trellis tail length is also proposed.

  14. Observations of spectroscopic binaries with a solid-state detector

    International Nuclear Information System (INIS)

    Fekel, F. Jr.; Lacy, C.H.; Tomkin, J.

    1980-01-01

    The recent installation of a solid-state 1024-element silicon photodiode array detector (Reticon) at the coude focus of the 2.7 m McDonald Observatory reflector has greatly extended its limits of observation for binary and multiple systems which have weak and/or broad-lined components. This detector can produce extremely high signal-to-noise ratio observations and has high quantum efficiency over the wavelength region 3000-11000 A. The observational programs of three users of this device are described. (Auth.)

  15. Asymptotic Limits for Transport in Binary Stochastic Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Prinja, A. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-01

    The Karhunen-Loeve stochastic spectral expansion of a random binary mixture of immiscible fluids in planar geometry is used to explore asymptotic limits of radiation transport in such mixtures. Under appropriate scalings of mixing parameters - correlation length, volume fraction, and material cross sections - and employing multiple- scale expansion of the angular flux, previously established atomic mix and diffusion limits are reproduced. When applied to highly contrasting material properties in the small cor- relation length limit, the methodology yields a nonstandard reflective medium transport equation that merits further investigation. Finally, a hybrid closure is proposed that produces both small and large correlation length limits of the closure condition for the material averaged equations.

  16. White emission from non-planar InGaN/GaN MQW LEDs grown on GaN template with truncated hexagonal pyramids.

    Science.gov (United States)

    Lee, Ming-Lun; Yeh, Yu-Hsiang; Tu, Shang-Ju; Chen, P C; Lai, Wei-Chih; Sheu, Jinn-Kong

    2015-04-06

    Non-planar InGaN/GaN multiple quantum well (MQW) structures are grown on a GaN template with truncated hexagonal pyramids (THPs) featuring c-plane and r-plane surfaces. The THP array is formed by the regrowth of the GaN layer on a selective-area Si-implanted GaN template. Transmission electron microscopy shows that the InGaN/GaN epitaxial layers regrown on the THPs exhibit different growth rates and indium compositions of the InGaN layer between the c-plane and r-plane surfaces. Consequently, InGaN/GaN MQW light-emitting diodes grown on the GaN THP array emit multiple wavelengths approaching near white light.

  17. Equilibrium points and associated periodic orbits in the gravity of binary asteroid systems: (66391) 1999 KW4 as an example

    Science.gov (United States)

    Shi, Yu; Wang, Yue; Xu, Shijie

    2018-04-01

    The motion of a massless particle in the gravity of a binary asteroid system, referred as the restricted full three-body problem (RF3BP), is fundamental, not only for the evolution of the binary system, but also for the design of relevant space missions. In this paper, equilibrium points and associated periodic orbit families in the gravity of a binary system are investigated, with the binary (66391) 1999 KW4 as an example. The polyhedron shape model is used to describe irregular shapes and corresponding gravity fields of the primary and secondary of (66391) 1999 KW4, which is more accurate than the ellipsoid shape model in previous studies and provides a high-fidelity representation of the gravitational environment. Both of the synchronous and non-synchronous states of the binary system are considered. For the synchronous binary system, the equilibrium points and their stability are determined, and periodic orbit families emanating from each equilibrium point are generated by using the shooting (multiple shooting) method and the homotopy method, where the homotopy function connects the circular restricted three-body problem and RF3BP. In the non-synchronous binary system, trajectories of equivalent equilibrium points are calculated, and the associated periodic orbits are obtained by using the homotopy method, where the homotopy function connects the synchronous and non-synchronous systems. Although only the binary (66391) 1999 KW4 is considered, our methods will also be well applicable to other binary systems with polyhedron shape data. Our results on equilibrium points and associated periodic orbits provide general insights into the dynamical environment and orbital behaviors in proximity of small binary asteroids and enable the trajectory design and mission operations in future binary system explorations.

  18. The truncated Wigner method for Bose-condensed gases: limits of validity and applications

    International Nuclear Information System (INIS)

    Sinatra, Alice; Lobo, Carlos; Castin, Yvan

    2002-01-01

    We study the truncated Wigner method applied to a weakly interacting spinless Bose-condensed gas which is perturbed away from thermal equilibrium by a time-dependent external potential. The principle of the method is to generate an ensemble of classical fields ψ(r) which samples the Wigner quasi-distribution function of the initial thermal equilibrium density operator of the gas, and then to evolve each classical field with the Gross-Pitaevskii equation. In the first part of the paper we improve the sampling technique over our previous work (Sinatra et al 2000 J. Mod. Opt. 47 2629-44) and we test its accuracy against the exactly solvable model of the ideal Bose gas. In the second part of the paper we investigate the conditions of validity of the truncated Wigner method. For short evolution times it is known that the time-dependent Bogoliubov approximation is valid for almost pure condensates. The requirement that the truncated Wigner method reproduces the Bogoliubov prediction leads to the constraint that the number of field modes in the Wigner simulation must be smaller than the number of particles in the gas. For longer evolution times the nonlinear dynamics of the noncondensed modes of the field plays an important role. To demonstrate this we analyse the case of a three-dimensional spatially homogeneous Bose-condensed gas and we test the ability of the truncated Wigner method to correctly reproduce the Beliaev-Landau damping of an excitation of the condensate. We have identified the mechanism which limits the validity of the truncated Wigner method: the initial ensemble of classical fields, driven by the time-dependent Gross-Pitaevskii equation, thermalizes to a classical field distribution at a temperature T class which is larger than the initial temperature T of the quantum gas. When T class significantly exceeds T a spurious damping is observed in the Wigner simulation. This leads to the second validity condition for the truncated Wigner method, T class - T

  19. Functional analysis of Rift Valley fever virus NSs encoding a partial truncation.

    Science.gov (United States)

    Head, Jennifer A; Kalveram, Birte; Ikegami, Tetsuro

    2012-01-01

    Rift Valley fever virus (RVFV), belongs to genus Phlebovirus of the family Bunyaviridae, causes high rates of abortion and fetal malformation in infected ruminants as well as causing neurological disorders, blindness, or lethal hemorrhagic fever in humans. RVFV is classified as a category A priority pathogen and a select agent in the U.S., and currently there are no therapeutics available for RVF patients. NSs protein, a major virulence factor of RVFV, inhibits host transcription including interferon (IFN)-β mRNA synthesis and promotes degradation of dsRNA-dependent protein kinase (PKR). NSs self-associates at the C-terminus 17 aa., while NSs at aa.210-230 binds to Sin3A-associated protein (SAP30) to inhibit the activation of IFN-β promoter. Thus, we hypothesize that NSs function(s) can be abolished by truncation of specific domains, and co-expression of nonfunctional NSs with intact NSs will result in the attenuation of NSs function by dominant-negative effect. Unexpectedly, we found that RVFV NSs truncated at aa. 6-30, 31-55, 56-80, 81-105, 106-130, 131-155, 156-180, 181-205, 206-230, 231-248 or 249-265 lack functions of IFN-β mRNA synthesis inhibition and degradation of PKR. Truncated NSs were less stable in infected cells, while nuclear localization was inhibited in NSs lacking either of aa.81-105, 106-130, 131-155, 156-180, 181-205, 206-230 or 231-248. Furthermore, none of truncated NSs had exhibited significant dominant-negative functions for NSs-mediated IFN-β suppression or PKR degradation upon co-expression in cells infected with RVFV. We also found that any of truncated NSs except for intact NSs does not interact with RVFV NSs even in the presence of intact C-terminus self-association domain. Our results suggest that conformational integrity of NSs is important for the stability, cellular localization and biological functions of RVFV NSs, and the co-expression of truncated NSs does not exhibit dominant-negative phenotype.

  20. Functional analysis of Rift Valley fever virus NSs encoding a partial truncation.

    Directory of Open Access Journals (Sweden)

    Jennifer A Head

    Full Text Available Rift Valley fever virus (RVFV, belongs to genus Phlebovirus of the family Bunyaviridae, causes high rates of abortion and fetal malformation in infected ruminants as well as causing neurological disorders, blindness, or lethal hemorrhagic fever in humans. RVFV is classified as a category A priority pathogen and a select agent in the U.S., and currently there are no therapeutics available for RVF patients. NSs protein, a major virulence factor of RVFV, inhibits host transcription including interferon (IFN-β mRNA synthesis and promotes degradation of dsRNA-dependent protein kinase (PKR. NSs self-associates at the C-terminus 17 aa., while NSs at aa.210-230 binds to Sin3A-associated protein (SAP30 to inhibit the activation of IFN-β promoter. Thus, we hypothesize that NSs function(s can be abolished by truncation of specific domains, and co-expression of nonfunctional NSs with intact NSs will result in the attenuation of NSs function by dominant-negative effect. Unexpectedly, we found that RVFV NSs truncated at aa. 6-30, 31-55, 56-80, 81-105, 106-130, 131-155, 156-180, 181-205, 206-230, 231-248 or 249-265 lack functions of IFN-β mRNA synthesis inhibition and degradation of PKR. Truncated NSs were less stable in infected cells, while nuclear localization was inhibited in NSs lacking either of aa.81-105, 106-130, 131-155, 156-180, 181-205, 206-230 or 231-248. Furthermore, none of truncated NSs had exhibited significant dominant-negative functions for NSs-mediated IFN-β suppression or PKR degradation upon co-expression in cells infected with RVFV. We also found that any of truncated NSs except for intact NSs does not interact with RVFV NSs even in the presence of intact C-terminus self-association domain. Our results suggest that conformational integrity of NSs is important for the stability, cellular localization and biological functions of RVFV NSs, and the co-expression of truncated NSs does not exhibit dominant-negative phenotype.

  1. A SEARCH FOR X-RAY EMISSION FROM COLLIDING MAGNETOSPHERES IN YOUNG ECCENTRIC STELLAR BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Getman, Konstantin V.; Broos, Patrick S. [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Kóspál, Ágnes [Konkoly Observatory, Research Center for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, 1525 Budapest (Hungary); Salter, Demerese M. [Department of Astronomy and Laboratory for Millimeter-Wave Astronomy, University of Maryland, College Park, MD 20742 (United States); Garmire, Gordon P. [Huntingdon Institute for X-ray Astronomy, LLC, 10677 Franks Road, Huntingdon, PA 16652 (United States)

    2016-12-01

    Among young binary stars whose magnetospheres are expected to collide, only two systems have been observed near periastron in the X-ray band: the low-mass DQ Tau and the older and more massive HD 152404. Both exhibit elevated levels of X-ray emission at periastron. Our goal is to determine whether colliding magnetospheres in young high-eccentricity binaries commonly produce elevated average levels of X-ray activity. This work is based on Chandra snapshots of multiple periastron and non-periastron passages in four nearby young eccentric binaries (Parenago 523, RX J1622.7-2325 Nw, UZ Tau E, and HD 152404). We find that for the merged sample of all four binaries the current X-ray data show an increasing average X-ray flux near periastron (at a ∼2.5-sigma level). Further comparison of these data with the X-ray properties of hundreds of young stars in the Orion Nebula Cluster, produced by the Chandra Orion Ultradeep Project (COUP), indicates that the X-ray emission from the merged sample of our binaries cannot be explained within the framework of the COUP-like X-ray activity. However, due to the inhomogeneities of the merged binary sample and the relatively low statistical significance of the detected flux increase, these findings are regarded as tentative only. More data are needed to prove that the flux increase is real and is related to the processes of colliding magnetospheres.

  2. Accuracy requirements for the calculation of gravitational waveforms from coalescing compact binaries in numerical relativity

    International Nuclear Information System (INIS)

    Miller, Mark

    2005-01-01

    I discuss the accuracy requirements on numerical relativity calculations of inspiraling compact object binaries whose extracted gravitational waveforms are to be used as templates for matched filtering signal extraction and physical parameter estimation in modern interferometric gravitational wave detectors. Using a post-Newtonian point particle model for the premerger phase of the binary inspiral, I calculate the maximum allowable errors for the mass and relative velocity and positions of the binary during numerical simulations of the binary inspiral. These maximum allowable errors are compared to the errors of state-of-the-art numerical simulations of multiple-orbit binary neutron star calculations in full general relativity, and are found to be smaller by several orders of magnitude. A post-Newtonian model for the error of these numerical simulations suggests that adaptive mesh refinement coupled with second-order accurate finite difference codes will not be able to robustly obtain the accuracy required for reliable gravitational wave extraction on Terabyte-scale computers. I conclude that higher-order methods (higher-order finite difference methods and/or spectral methods) combined with adaptive mesh refinement and/or multipatch technology will be needed for robustly accurate gravitational wave extraction from numerical relativity calculations of binary coalescence scenarios

  3. Hybrid approach for the assessment of PSA models by means of binary decision diagrams

    International Nuclear Information System (INIS)

    Ibanez-Llano, Cristina; Rauzy, Antoine; Melendez, Enrique; Nieto, Francisco

    2010-01-01

    Binary decision diagrams are a well-known alternative to the minimal cutsets approach to assess the reliability Boolean models. They have been applied successfully to improve the fault trees models assessment. However, its application to solve large models, and in particular the event trees coming from the PSA studies of the nuclear industry, remains to date out of reach of an exact evaluation. For many real PSA models it may be not possible to compute the BDD within reasonable amount of time and memory without considering the truncation or simplification of the model. This paper presents a new approach to estimate the exact probabilistic quantification results (probability/frequency) based on combining the calculation of the MCS and the truncation limits, with the BDD approach, in order to have a better control on the reduction of the model and to properly account for the success branches. The added value of this methodology is that it is possible to ensure a real confidence interval of the exact value and therefore an explicit knowledge of the error bound. Moreover, it can be used to measure the acceptability of the results obtained with traditional techniques. The new method was applied to a real life PSA study and the results obtained confirm the applicability of the methodology and open a new viewpoint for further developments.

  4. Hybrid approach for the assessment of PSA models by means of binary decision diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez-Llano, Cristina, E-mail: cristina.ibanez@iit.upcomillas.e [Instituto de Investigacion Tecnologica (IIT), Escuela Tecnica Superior de Ingenieria ICAI, Universidad Pontificia Comillas, C/Santa Cruz de Marcenado 26, 28015 Madrid (Spain); Rauzy, Antoine, E-mail: Antoine.RAUZY@3ds.co [Dassault Systemes, 10 rue Marcel Dassault CS 40501, 78946 Velizy Villacoublay Cedex (France); Melendez, Enrique, E-mail: ema@csn.e [Consejo de Seguridad Nuclear (CSN), C/Justo Dorado 11, 28040 Madrid (Spain); Nieto, Francisco, E-mail: nieto@iit.upcomillas.e [Instituto de Investigacion Tecnologica (IIT), Escuela Tecnica Superior de Ingenieria ICAI, Universidad Pontificia Comillas, C/Santa Cruz de Marcenado 26, 28015 Madrid (Spain)

    2010-10-15

    Binary decision diagrams are a well-known alternative to the minimal cutsets approach to assess the reliability Boolean models. They have been applied successfully to improve the fault trees models assessment. However, its application to solve large models, and in particular the event trees coming from the PSA studies of the nuclear industry, remains to date out of reach of an exact evaluation. For many real PSA models it may be not possible to compute the BDD within reasonable amount of time and memory without considering the truncation or simplification of the model. This paper presents a new approach to estimate the exact probabilistic quantification results (probability/frequency) based on combining the calculation of the MCS and the truncation limits, with the BDD approach, in order to have a better control on the reduction of the model and to properly account for the success branches. The added value of this methodology is that it is possible to ensure a real confidence interval of the exact value and therefore an explicit knowledge of the error bound. Moreover, it can be used to measure the acceptability of the results obtained with traditional techniques. The new method was applied to a real life PSA study and the results obtained confirm the applicability of the methodology and open a new viewpoint for further developments.

  5. Dynamics of High-Order Spin-Orbit Couplings about Linear Momenta in Compact Binary Systems*

    International Nuclear Information System (INIS)

    Huang Li; Wu Xin; Huang Guo-Qing; Mei Li-Jie

    2017-01-01

    This paper relates to the post-Newtonian Hamiltonian dynamics of spinning compact binaries, consisting of the Newtonian Kepler problem and the leading, next-to-leading and next-to-next-to-leading order spin-orbit couplings as linear functions of spins and momenta. When this Hamiltonian form is transformed to a Lagrangian form, besides the terms corresponding to the same order terms in the Hamiltonian, several additional terms, third post-Newtonian (3PN), 4PN, 5PN, 6PN and 7PN order spin-spin coupling terms, yield in the Lagrangian. That means that the Hamiltonian is nonequivalent to the Lagrangian at the same PN order but is exactly equivalent to the full Lagrangian without any truncations. The full Lagrangian without the spin-spin couplings truncated is integrable and regular. Whereas it is non-integrable and becomes possibly chaotic when any one of the spin-spin terms is dropped. These results are also supported numerically. (paper)

  6. PERIODIC SIGNALS IN BINARY MICROLENSING EVENTS

    International Nuclear Information System (INIS)

    Guo, Xinyi; Stefano, Rosanne Di; Esin, Ann; Taylor, Jeffrey

    2015-01-01

    Gravitational microlensing events are powerful tools for the study of stellar populations. In particular, they can be used to discover and study a variety of binary systems. A large number of binary lenses have already been found through microlensing surveys and a few of these systems show strong evidence of orbital motion on the timescale of the lensing event. We expect that more binary lenses of this kind will be detected in the future. For binaries whose orbital period is comparable to the event duration, the orbital motion can cause the lensing signal to deviate drastically from that of a static binary lens. The most striking property of such light curves is the presence of quasi-periodic features, which are produced as the source traverses the same regions in the rotating lens plane. These repeating features contain information about the orbital period of the lens. If this period can be extracted, then much can be learned about the lensing system even without performing time-consuming, detailed light-curve modeling. However, the relative transverse motion between the source and the lens significantly complicates the problem of period extraction. To resolve this difficulty, we present a modification of the standard Lomb–Scargle periodogram analysis. We test our method for four representative binary lens systems and demonstrate its efficiency in correctly extracting binary orbital periods

  7. Topological and categorical properties of binary trees

    Directory of Open Access Journals (Sweden)

    H. Pajoohesh

    2008-04-01

    Full Text Available Binary trees are very useful tools in computer science for estimating the running time of so-called comparison based algorithms, algorithms in which every action is ultimately based on a prior comparison between two elements. For two given algorithms A and B where the decision tree of A is more balanced than that of B, it is known that the average and worst case times of A will be better than those of B, i.e., ₸A(n ≤₸B(n and TWA (n≤TWB (n. Thus the most balanced and the most imbalanced binary trees play a main role. Here we consider them as semilattices and characterize the most balanced and the most imbalanced binary trees by topological and categorical properties. Also we define the composition of binary trees as a commutative binary operation, *, such that for binary trees A and B, A * B is the binary tree obtained by attaching a copy of B to any leaf of A. We show that (T,* is a commutative po-monoid and investigate its properties.

  8. Theoretical studies of binaries in astrophysics

    Science.gov (United States)

    Dischler, Johann Sebastian

    This thesis introduces and summarizes four papers dealing with computer simulations of astrophysical processes involving binaries. The first part gives the rational and theoretical background to these papers. In paper I and II a statistical approach to studying eclipsing binaries is described. By using population synthesis models for binaries the probabilities for eclipses are calculated for different luminosity classes of binaries. These are compared with Hipparcos data and they agree well if one uses a standard input distribution for the orbit sizes. If one uses a random pairing model, where both companions are independently picked from an IMF, one finds too feclipsing binaries by an order of magnitude. In paper III we investigate a possible scenario for the origin of the stars observed close to the centre of our galaxy, called S stars. We propose that a cluster falls radially cowards the central black hole. The binaries within the cluster can then, if they have small impact parameters, be broken up by the black hole's tidal held and one of the components of the binary will be captured by the black hole. Paper IV investigates how the onset of mass transfer in eccentric binaries depends on the eccentricity. To do this we have developed a new two-phase SPH scheme where very light particles are at tire outer edge of our simulated star. This enables us to get a much better resolution of the very small mass that is transferred in close binaries. Our simulations show that the minimum required distance between the stars to have mass transfer decreases with the eccentricity.

  9. SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuepeng [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Arce, Hector G.; Dunham, Michael M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang Qizhou; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Henning, Thomas [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Jorgensen, Jes K. [Niels Bohr Institute and Centre for Star and Planet Formation, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Lee, Chin-Fei [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Foster, Jonathan B. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Pineda, Jaime E., E-mail: xpchen@pmo.ac.cn, E-mail: xuepeng.chen@yale.edu [ESO, Karl Schwarzschild Str. 2, D-85748 Garching bei Munchen (Germany)

    2013-05-10

    We present high angular resolution 1.3 mm and 850 {mu}m dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.''5, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 AU to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64 {+-} 0.08 and 0.91 {+-} 0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I young stellar objects, and approximately three (for MF) and four (for CSF) times larger than the values found among main-sequence stars, with a similar range of separations. Furthermore, the observed fraction of high-order multiple systems to binary systems in Class 0 protostars (0.50 {+-} 0.09) is also larger than the fractions found in Class I young stellar objects (0.31 {+-} 0.07) and main-sequence stars ({<=}0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary/multiple systems shows a general trend in which CSF increases with decreasing companion separation. We find that 67% {+-} 8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation, based on this

  10. Binary neutron star merger simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bruegmann, Bernd [Jena Univ. (Germany)

    2016-11-01

    Our research focuses on the numerical tools necessary to solve Einstein's equations. In recent years we have been particularly interested in spacetimes consisting of two neutron stars in the final stages of their evolution. Because of the emission of gravitational radiation, the objects are driven together to merge; the emitted gravitational wave signal is visualized. This emitted gravitational radiation carries energy and momentum away from the system and contains information about the system. Late last year the Laser Interferometer Gravitational-wave Observatory (LIGO) began searches for these gravitational wave signals at a sensitivity at which detections are expected. Although such systems can radiate a significant amount of their total mass-energy in gravitational waves, the gravitational wave signals one expects to receive on Earth are not strong, since sources of gravitational waves are often many millions of light years away. Therefore one needs accurate templates for the radiation one expects from such systems in order to be able to extract them out of the detector's noise. Although analytical models exist for compact binary systems when the constituents are well separated, we need numerical simulation to investigate the last orbits before merger to obtain accurate templates and validate analytical approximations. Due to the strong nonlinearity of the equations and the large separation of length scales, these simulations are computationally demanding and need to be run on large supercomputers. When matter is present the computational cost as compared to pure black hole (vacuum) simulations increases even more due to the additional matter fields. But also more interesting astrophysical phenomena can happen. In fact, there is the possibility for a strong electromagnetic signal from the merger (e.g., a short gamma-ray burst or lower-energy electromagnetic signatures from the ejecta) and significant neutrino emission. Additionally, we can expect that

  11. Variance in binary stellar population synthesis

    Science.gov (United States)

    Breivik, Katelyn; Larson, Shane L.

    2016-03-01

    In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations in less than a week, thus allowing a full exploration of the variance associated with a binary stellar evolution model.

  12. Proposed experiment to test fundamentally binary theories

    Science.gov (United States)

    Kleinmann, Matthias; Vértesi, Tamás; Cabello, Adán

    2017-09-01

    Fundamentally binary theories are nonsignaling theories in which measurements of many outcomes are constructed by selecting from binary measurements. They constitute a sensible alternative to quantum theory and have never been directly falsified by any experiment. Here we show that fundamentally binary theories are experimentally testable with current technology. For that, we identify a feasible Bell-type experiment on pairs of entangled qutrits. In addition, we prove that, for any n , quantum n -ary correlations are not fundamentally (n -1 ) -ary. For that, we introduce a family of inequalities that hold for fundamentally (n -1 ) -ary theories but are violated by quantum n -ary correlations.

  13. Galactic binaries with eLISA

    OpenAIRE

    Nelemans, G.

    2013-01-01

    I review what eLISA will see from Galactic binaries -- double stars with orbital periods less than a few hours and white dwarf (or neutron star/black hole) components. I discuss the currently known binaries that are guaranteed (or verification) sources and explain why the expected total number of eLISA Galactic binaries is several thousand, even though there are large uncertainties in our knowledge of this population, in particular that of the interacting AM CVn systems. I very briefly sketch...

  14. A truncated accretion disk in the galactic black hole candidate source H1743-322

    International Nuclear Information System (INIS)

    Sriram, Kandulapati; Agrawal, Vivek Kumar; Rao, Arikkala Raghurama

    2009-01-01

    To investigate the geometry of the accretion disk in the source H1743-322, we have carried out a detailed X-ray temporal and spectral study using RXTE pointed observations. We have selected all data pertaining to the Steep Power Law (SPL) state during the 2003 outburst of this source. We find anti-correlated hard X-ray lags in three of the observations and the changes in the spectral and timing parameters (like the QPO frequency) confirm the idea of a truncated accretion disk in this source. Compiling data from similar observations of other sources, we find a correlation between the fractional change in the QPO frequency and the observed delay. We suggest that these observations indicate a definite size scale in the inner accretion disk (the radius of the truncated disk) and we explain the observed correlation using various disk parameters like Compton cooling time scale, viscous time scale etc. (research papers)

  15. Truncation effects in the functional renormalization group study of spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    Defenu, N.; Mati, P.; Márián, I.G.; Nándori, I.; Trombettoni, A.

    2015-01-01

    We study the occurrence of spontaneous symmetry breaking (SSB) for O(N) models using functional renormalization group techniques. We show that even the local potential approximation (LPA) when treated exactly is sufficient to give qualitatively correct results for systems with continuous symmetry, in agreement with the Mermin-Wagner theorem and its extension to systems with fractional dimensions. For general N (including the Ising model N=1) we study the solutions of the LPA equations for various truncations around the zero field using a finite number of terms (and different regulators), showing that SSB always occurs even where it should not. The SSB is signalled by Wilson-Fisher fixed points which for any truncation are shown to stay on the line defined by vanishing mass beta functions.

  16. Increased frequency of FBN1 truncating and splicing variants in Marfan syndrome patients with aortic events.

    Science.gov (United States)

    Baudhuin, Linnea M; Kotzer, Katrina E; Lagerstedt, Susan A

    2015-03-01

    Marfan syndrome is a systemic disorder that typically involves FBN1 mutations and cardiovascular manifestations. We investigated FBN1 genotype-phenotype correlations with aortic events (aortic dissection and prophylactic aortic surgery) in patients with Marfan syndrome. Genotype and phenotype information from probands (n = 179) with an FBN1 pathogenic or likely pathogenic variant were assessed. A higher frequency of truncating or splicing FBN1 variants was observed in Ghent criteria-positive patients with an aortic event (n = 34) as compared with all other probands (n = 145) without a reported aortic event (79 vs. 39%; P Marfan syndrome patients with FBN1 truncating and splicing variants.Genet Med 17 3, 177-187.

  17. Virtues and limitations of the truncated Holstein–Primakoff description of quantum rotors

    International Nuclear Information System (INIS)

    Hirsch, Jorge G; Castaños, Octavio; López-Peña, Ramón; Nahmad-Achar, Eduardo

    2013-01-01

    A Hamiltonian describing the collective behaviour of N interacting spins can be mapped to a bosonic one employing the Holstein–Primakoff realization, at the expense of having an infinite series in powers of the boson creation and annihilation operators. Truncating this series up to quadratic terms allows obtaining analytic solutions through a Bogoliubov transformation, which becomes exact in the limit N → ∞. The Hamiltonian exhibits a phase transition from single-spin excitations to a collective mode. In the vicinity of this phase transition, the truncated solutions predict the existence of singularities for a finite number of spins, which have no counterpart in the exact diagonalization. Renormalization allows to extract from these divergences the exact behaviour of relevant observables with the number of spins around the phase transition, and to relate it with the class of universality to which the model belongs. In this work a detailed analysis of these aspects is presented for the Lipkin model. (comment)

  18. The Extended Erlang-Truncated Exponential distribution: Properties and application to rainfall data

    Directory of Open Access Journals (Sweden)

    I.E. Okorie

    2017-06-01

    Full Text Available The Erlang-Truncated Exponential ETE distribution is modified and the new lifetime distribution is called the Extended Erlang-Truncated Exponential EETE distribution. Some statistical and reliability properties of the new distribution are given and the method of maximum likelihood estimate was proposed for estimating the model parameters. The usefulness and flexibility of the EETE distribution was illustrated with an uncensored data set and its fit was compared with that of the ETE and three other three-parameter distributions. Results based on the minimized log-likelihood (−ℓˆ, Akaike information criterion (AIC, Bayesian information criterion (BIC and the generalized Cramér–von Mises W⋆ statistics shows that the EETE distribution provides a more reasonable fit than the one based on the other competing distributions. Keywords: Mathematics, Applied mathematics

  19. The Extended Erlang-Truncated Exponential distribution: Properties and application to rainfall data.

    Science.gov (United States)

    Okorie, I E; Akpanta, A C; Ohakwe, J; Chikezie, D C

    2017-06-01

    The Erlang-Truncated Exponential ETE distribution is modified and the new lifetime distribution is called the Extended Erlang-Truncated Exponential EETE distribution. Some statistical and reliability properties of the new distribution are given and the method of maximum likelihood estimate was proposed for estimating the model parameters. The usefulness and flexibility of the EETE distribution was illustrated with an uncensored data set and its fit was compared with that of the ETE and three other three-parameter distributions. Results based on the minimized log-likelihood ([Formula: see text]), Akaike information criterion (AIC), Bayesian information criterion (BIC) and the generalized Cramér-von Mises [Formula: see text] statistics shows that the EETE distribution provides a more reasonable fit than the one based on the other competing distributions.

  20. Use of the truncated shifted Pareto distribution in assessing size distribution of oil and gas fields

    Science.gov (United States)

    Houghton, J.C.

    1988-01-01

    The truncated shifted Pareto (TSP) distribution, a variant of the two-parameter Pareto distribution, in which one parameter is added to shift the distribution right and left and the right-hand side is truncated, is used to model size distributions of oil and gas fields for resource assessment. Assumptions about limits to the left-hand and right-hand side reduce the number of parameters to two. The TSP distribution has advantages over the more customary lognormal distribution because it has a simple analytic expression, allowing exact computation of several statistics of interest, has a "J-shape," and has more flexibility in the thickness of the right-hand tail. Oil field sizes from the Minnelusa play in the Powder River Basin, Wyoming and Montana, are used as a case study. Probability plotting procedures allow easy visualization of the fit and help the assessment. ?? 1988 International Association for Mathematical Geology.

  1. Zero-truncated panel Poisson mixture models: Estimating the impact on tourism benefits in Fukushima Prefecture.

    Science.gov (United States)

    Narukawa, Masaki; Nohara, Katsuhito

    2018-04-01

    This study proposes an estimation approach to panel count data, truncated at zero, in order to apply a contingent behavior travel cost method to revealed and stated preference data collected via a web-based survey. We develop zero-truncated panel Poisson mixture models by focusing on respondents who visited a site. In addition, we introduce an inverse Gaussian distribution to unobserved individual heterogeneity as an alternative to a popular gamma distribution, making it possible to capture effectively the long tail typically observed in trip data. We apply the proposed method to estimate the impact on tourism benefits in Fukushima Prefecture as a result of the Fukushima Nuclear Power Plant No. 1 accident. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Ab Initio Study of 40Ca with an Importance Truncated No-Core Shell Model

    Energy Technology Data Exchange (ETDEWEB)

    Roth, R; Navratil, P

    2007-05-22

    We propose an importance truncation scheme for the no-core shell model, which enables converged calculations for nuclei well beyond the p-shell. It is based on an a priori measure for the importance of individual basis states constructed by means of many-body perturbation theory. Only the physically relevant states of the no-core model space are considered, which leads to a dramatic reduction of the basis dimension. We analyze the validity and efficiency of this truncation scheme using different realistic nucleon-nucleon interactions and compare to conventional no-core shell model calculations for {sup 4}He and {sup 16}O. Then, we present the first converged calculations for the ground state of {sup 40}Ca within no-core model spaces including up to 16{h_bar}{Omega}-excitations using realistic low-momentum interactions. The scheme is universal and can be easily applied to other quantum many-body problems.

  3. Protoplanetary disc truncation mechanisms in stellar clusters: comparing external photoevaporation and tidal encounters

    Science.gov (United States)

    Winter, A. J.; Clarke, C. J.; Rosotti, G.; Ih, J.; Facchini, S.; Haworth, T. J.

    2018-04-01

    Most stars form and spend their early life in regions of enhanced stellar density. Therefore the evolution of protoplanetary discs (PPDs) hosted by such stars are subject to the influence of other members of the cluster. Physically, PPDs might be truncated either by photoevaporation due to ultraviolet flux from massive stars, or tidal truncation due to close stellar encounters. Here we aim to compare the two effects in real cluster environments. In this vein we first review the properties of well studied stellar clusters with a focus on stellar number density, which largely dictates the degree of tidal truncation, and far ultraviolet (FUV) flux, which is indicative of the rate of external photoevaporation. We then review the theoretical PPD truncation radius due to an arbitrary encounter, additionally taking into account the role of eccentric encounters that play a role in hot clusters with a 1D velocity dispersion σv ≳ 2 km/s. Our treatment is then applied statistically to varying local environments to establish a canonical threshold for the local stellar density (nc ≳ 104 pc-3) for which encounters can play a significant role in shaping the distribution of PPD radii over a timescale ˜3 Myr. By combining theoretical mass loss rates due to FUV flux with viscous spreading in a PPD we establish a similar threshold for which a massive disc is completely destroyed by external photoevaporation. Comparing these thresholds in local clusters we find that if either mechanism has a significant impact on the PPD population then photoevaporation is always the dominating influence.

  4. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition

    DEFF Research Database (Denmark)

    Ropero, S; Fraga, MF; Ballestar, E

    2006-01-01

    Disruption of histone acetylation patterns is a common feature of cancer cells, but very little is known about its genetic basis. We have identified truncating mutations in one of the primary human histone deacetylases, HDAC2, in sporadic carcinomas with microsatellite instability and in tumors a...... deacetylase inhibitors. As such drugs may serve as therapeutic agents for cancer, our findings support the use of HDAC2 mutational status in future pharmacogenetic treatment of these individuals....

  5. Truncation of the many body hierarchy and relaxation times in the McKean model

    International Nuclear Information System (INIS)

    Schmitt, K.J.

    1987-01-01

    In the McKean model the BBGKY-hierarchy is equivalent to a simple hierarchy of coupled equations for the p-particle correlation functions. Truncation effects and the convergence of the one-particle distribution towards its exact shape have been studied. In the long time limit the equations can be solved in a closed form. It turns out that the p-particle correlation decays p-times faster than the non-equilibrium one-particle distribution

  6. Prion Protein on Astrocytes or in Extracellular Fluid Impedes Neurodegeneration Induced by Truncated Prion Protein

    OpenAIRE

    Race, Brent; Meade-White, Kimberly; Race, Richard; Baumann, Frank; Aguzzi, Adriano; Chesebro, Bruce

    2009-01-01

    Prion protein (PrP) is a host-encoded membrane-anchored glycoprotein which is required for susceptibility to prion disease. PrP may also be important for normal brain functions such as hippocampal spatial memory. Previously transgenic mice expressing amino terminally truncated mouse PrP (Δ32–134) spontaneously developed a fatal disease associated with degeneration of cerebellar granular neurons as well as vacuolar degeneration of deep cerebellar and brain stem white matter. This disease could...

  7. Loads experiments study on two-story RC box and truncated conical walls

    International Nuclear Information System (INIS)

    Asega, H.; Iizuka, S.; Kurihara, I.; Kubo, T.

    1987-01-01

    The failure modes of the two specimens were the sliding shear failure. The two specimens showed almost equal deformation at the maximum shear strength. The ratio of the flexural deformation in the deformation of the truncated conical was larger than that of the box wall. The ratio of the shear deformation in the deformation of the two-story RC box wall was larger than that of the flexural deformation. (orig./HP)

  8. A numerical method for multigroup slab-geometry discrete ordinates problems with no spatial truncation error

    International Nuclear Information System (INIS)

    Barros, R.C. de; Larsen, E.W.

    1991-01-01

    A generalization of the one-group Spectral Green's Function (SGF) method is developed for multigroup, slab-geometry discrete ordinates (S N ) problems. The multigroup SGF method is free from spatial truncation errors; it generated numerical values for the cell-edge and cell-average angular fluxes that agree with the analytic solution of the multigroup S N equations. Numerical results are given to illustrate the method's accuracy

  9. Analytical Investigation of Elastic Thin-Walled Cylinder and Truncated Cone Shell Intersection Under Internal Pressure

    OpenAIRE

    Zamani, J.; Soltani, B.; Aghaei, M.

    2014-01-01

    An elastic solution of cylinder-truncated cone shell intersection under internal pressure is presented. The edge solution theory that has been used in this study takes bending moments and shearing forces into account in the thin-walled shell of revolution element. The general solution of the cone equations is based on power series method. The effect of cone apex angle on the stress distribution in conical and cylindrical parts of structure is investigated. In addition, the effect of the inter...

  10. Seniority truncation in an equations-of-motion approach to the shell model

    International Nuclear Information System (INIS)

    Covello, A.; Andreozzi, F.; Gargano, A.; Porrino, A.

    1989-01-01

    This paper presents an equations-of-motion method for treating shell-model problems within the framework of the seniority scheme. This method can be applied at many levels of approximation and represents therefore a valuable tool to further reduce seniority truncated shell-model spaces. To show its practical value the authors report some results of an extensive study of the N = 82 isotones which is currently under way

  11. Scavenger receptor AI/II truncation, lung function and COPD: a large population-based study

    DEFF Research Database (Denmark)

    Thomsen, M; Nordestgaard, B G; Tybjærg-Hansen, Anne

    2011-01-01

    The scavenger receptor A-I/II (SRA-I/II) on alveolar macrophages is involved in recognition and clearance of modified lipids and inhaled particulates. A rare variant of the SRA-I/II gene, Arg293X, truncates the distal collagen-like domain, which is essential for ligand recognition. We tested...... whether the Arg293X variant is associated with reduced lung function and risk of chronic obstructive pulmonary disease (COPD) in the general population....

  12. Selective apoptosis induction in MCF-7 cell line by truncated minimal functional region of Apoptin

    International Nuclear Information System (INIS)

    Shen Ni, Lim; Allaudin, Zeenathul Nazariah bt; Mohd Lila, Mohd Azmi b; Othman, Abas Mazni b; Othman, Fauziah bt

    2013-01-01

    Chicken Anemia Virus (CAV) VP3 protein (also known as Apoptin), a basic and proline-rich protein has a unique capability in inducing apoptosis in cancer cells but not in normal cells. Five truncated Apoptin proteins were analyzed to determine their selective ability to migrate into the nucleus of human breast adenocarcinoma MCF-7 cells for inducing apoptosis. For identification of the minimal selective domain for apoptosis, the wild-type Apoptin gene had been reconstructed by PCR to generate segmental deletions at the N’ terminal and linked with nuclear localization sites (NLS1 and NLS2). All the constructs were fused with maltose-binding protein gene and individually expressed by in vitro Rapid Translation System. Standardized dose of proteins were delivered into human breast adenocarcinoma MCF-7 cells and control human liver Chang cells by cytoplasmic microinjection, and subsequently observed for selective apoptosis effect. Three of the truncated Apoptin proteins with N-terminal deletions spanning amino acid 32–83 retained the cancer selective nature of wild-type Apoptin. The proteins were successfully translocated to the nucleus of MCF-7 cells initiating apoptosis, whereas non-toxic cytoplasmic retention was observed in normal Chang cells. Whilst these truncated proteins retained the tumour-specific death effector ability, the specificity for MCF-7 cells was lost in two other truncated proteins that harbor deletions at amino acid 1–31. The detection of apoptosing normal Chang cells and MCF-7 cells upon cytoplasmic microinjection of these proteins implicated a loss in Apoptin’s signature targeting activity. Therefore, the critical stretch spanning amino acid 1–31 at the upstream of a known hydrophobic leucine-rich stretch (LRS) was strongly suggested as one of the prerequisite region in Apoptin for cancer targeting. Identification of this selective domain provides a platform for developing small targets to facilitating carrier-mediated-transport across

  13. Efficient Tridiagonal Preconditioner for the Matrix-Free Truncated Newton Method

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Vlček, Jan

    2014-01-01

    Roč. 235, 25 May (2014), s. 394-407 ISSN 0096-3003 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : unconstrained optimization * large scale optimization * matrix-free truncated Newton method * preconditioned conjugate gradient method * preconditioners obtained by the directional differentiation * numerical algorithms Subject RIV: BA - General Mathematics Impact factor: 1.551, year: 2014

  14. Analysis and design of optimized truncated scarfed nozzles subject to external flow effects

    Science.gov (United States)

    Shyne, Rickey J.; Keith, Theo G., Jr.

    1990-01-01

    Rao's method for computing optimum thrust nozzles is modified to study the effects of external flow on the performance of a class of exhaust nozzles. Members of this class are termed scarfed nozzles. These are two-dimensional, nonsymmetric nozzles with a flat lower wall. The lower wall (the cowl) is truncated in order to save weight. Results from a parametric investigation are presented to show the effects of the external flowfield on performance.

  15. On the Minimax Value in the Scale Model with Truncated Data

    OpenAIRE

    Gajek, Leslaw

    1988-01-01

    Let $X$ be a positive random variable with Lebesgue density $f_\\theta(x)$, where $\\theta$ is the scale parameter, and let $Y$ be a positive random variable independent of $X$. We consider two models of truncation: the LHS model, where the data consist only of those observations of $X$ for which $X > Y$; and the RHS model, where the data consist of those observations of $X$ for which $X \\leq Y$. Consider the problem of estimating $\\theta^s, s \

  16. Truncated exponential-rigid-rotor model for strong electron and ion rings

    International Nuclear Information System (INIS)

    Larrabee, D.A.; Lovelace, R.V.; Fleischmann, H.H.

    1979-01-01

    A comprehensive study of exponential-rigid-rotor equilibria for strong electron and ion rings indicates the presence of a sizeable percentage of untrapped particles in all equilibria with aspect-ratios R/a approximately <4. Such aspect-ratios are required in fusion-relevant rings. Significant changes in the equilibria are observed when untrapped particles are excluded by the use of a truncated exponential-rigid-rotor distribution function. (author)

  17. TRUNCATION OF THE MANY BODY HIERARCHY AND RELAXATION TIMES IN THE McKEAN MODEL

    OpenAIRE

    Schmitt , K.-J.

    1987-01-01

    In the McKean model the BBGKY-hierarchy is equivalent to a simple hierarchy of coupled equations for the p-particle correlation functions. Truncation effects and the convergence of the one-particle distribution towards its exact shape have been studied. In the long time limit the equations can be solved in a closed form. It turns out that the p-particle correlation decays p-times faster than the non-equilibrium one-particle distribution.

  18. Electro-optical study of nanoscale Al-Si-truncated conical photodetector with subwavelength aperture

    Science.gov (United States)

    Karelits, Matityahu; Mandelbaum, Yaakov; Chelly, Avraham; Karsenty, Avi

    2017-10-01

    A type of silicon photodiode has been designed and simulated to probe the optical near field and detect evanescent waves. These waves convey subwavelength resolution. This photodiode consists of a truncated conical shaped, silicon Schottky diode having a subwavelength aperture of 150 nm. Electrical and electro-optical simulations have been conducted. These results are promising toward the fabrication of a new generation of photodetector devices.

  19. The combination of i-leader truncation and gemcitabine improves oncolytic adenovirus efficacy in an immunocompetent model.

    Science.gov (United States)

    Puig-Saus, C; Laborda, E; Rodríguez-García, A; Cascalló, M; Moreno, R; Alemany, R

    2014-02-01

    Adenovirus (Ad) i-leader protein is a small protein of unknown function. The C-terminus truncation of the i-leader protein increases Ad release from infected cells and cytotoxicity. In the current study, we use the i-leader truncation to enhance the potency of an oncolytic Ad. In vitro, an i-leader truncated oncolytic Ad is released faster to the supernatant of infected cells, generates larger plaques, and is more cytotoxic in both human and Syrian hamster cell lines. In mice bearing human tumor xenografts, the i-leader truncation enhances oncolytic efficacy. However, in a Syrian hamster pancreatic tumor model, which is immunocompetent and less permissive to human Ad, antitumor efficacy is only observed when the i-leader truncated oncolytic Ad, but not the non-truncated version, is combined with gemcitabine. This synergistic effect observed in the Syrian hamster model was not seen in vitro or in immunodeficient mice bearing the same pancreatic hamster tumors, suggesting a role of the immune system in this synergism. These results highlight the interest of the i-leader C-terminus truncation because it enhances the antitumor potency of an oncolytic Ad and provides synergistic effects with gemcitabine in the presence of an immune competent system.

  20. Aligning Metabolic Pathways Exploiting Binary Relation of Reactions.

    Directory of Open Access Journals (Sweden)

    Yiran Huang

    Full Text Available Metabolic pathway alignment has been widely used to find one-to-one and/or one-to-many reaction mappings to identify the alternative pathways that have similar functions through different sets of reactions, which has important applications in reconstructing phylogeny and understanding metabolic functions. The existing alignment methods exhaustively search reaction sets, which may become infeasible for large pathways. To address this problem, we present an effective alignment method for accurately extracting reaction mappings between two metabolic pathways. We show that connected relation between reactions can be formalized as binary relation of reactions in metabolic pathways, and the multiplications of zero-one matrices for binary relations of reactions can be accomplished in finite steps. By utilizing the multiplications of zero-one matrices for binary relation of reactions, we efficiently obtain reaction sets in a small number of steps without exhaustive search, and accurately uncover biologically relevant reaction mappings. Furthermore, we introduce a measure of topological similarity of nodes (reactions by comparing the structural similarity of the k-neighborhood subgraphs of the nodes in aligning metabolic pathways. We employ this similarity metric to improve the accuracy of the alignments. The experimental results on the KEGG database show that when compared with other state-of-the-art methods, in most cases, our method obtains better performance in the node correctness and edge correctness, and the number of the edges of the largest common connected subgraph for one-to-one reaction mappings, and the number of correct one-to-many reaction mappings. Our method is scalable in finding more reaction mappings with better biological relevance in large metabolic pathways.

  1. Fitting Social Network Models Using Varying Truncation Stochastic Approximation MCMC Algorithm

    KAUST Repository

    Jin, Ick Hoon

    2013-10-01

    The exponential random graph model (ERGM) plays a major role in social network analysis. However, parameter estimation for the ERGM is a hard problem due to the intractability of its normalizing constant and the model degeneracy. The existing algorithms, such as Monte Carlo maximum likelihood estimation (MCMLE) and stochastic approximation, often fail for this problem in the presence of model degeneracy. In this article, we introduce the varying truncation stochastic approximation Markov chain Monte Carlo (SAMCMC) algorithm to tackle this problem. The varying truncation mechanism enables the algorithm to choose an appropriate starting point and an appropriate gain factor sequence, and thus to produce a reasonable parameter estimate for the ERGM even in the presence of model degeneracy. The numerical results indicate that the varying truncation SAMCMC algorithm can significantly outperform the MCMLE and stochastic approximation algorithms: for degenerate ERGMs, MCMLE and stochastic approximation often fail to produce any reasonable parameter estimates, while SAMCMC can do; for nondegenerate ERGMs, SAMCMC can work as well as or better than MCMLE and stochastic approximation. The data and source codes used for this article are available online as supplementary materials. © 2013 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.

  2. Neurodegeneration caused by expression of human truncated tau leads to progressive neurobehavioural impairment in transgenic rats.

    Science.gov (United States)

    Hrnkova, Miroslava; Zilka, Norbert; Minichova, Zuzana; Koson, Peter; Novak, Michal

    2007-01-26

    Human truncated tau protein is an active constituent of the neurofibrillary degeneration in sporadic Alzheimer's disease. We have shown that modified tau protein, when expressed as a transgene in rats, induced AD characteristic tau cascade consisting of tau hyperphosphorylation, formation of argyrophilic tangles and sarcosyl-insoluble tau complexes. These pathological changes led to the functional impairment characterized by a variety of neurobehavioural symptoms. In the present study we have focused on the behavioural alterations induced by transgenic expression of human truncated tau. Transgenic rats underwent a battery of behavioural tests involving cognitive- and sensorimotor-dependent tasks accompanied with neurological assessment at the age of 4.5, 6 and 9 months. Behavioural examination of these rats showed altered spatial navigation in Morris water maze resulting in less time spent in target quadrant (popen field was not influenced by transgene expression. However beam walking test revealed that transgenic rats developed progressive sensorimotor disturbances related to the age of tested animals. The disturbances were most pronounced at the age of 9 months (p<0.01). Neurological alterations indicating impaired reflex responses were other added features of behavioural phenotype of this novel transgenic rat. These results allow us to suggest that neurodegeneration, caused by the non-mutated human truncated tau derived from sporadic human AD, result in the neuronal dysfunction consequently leading to the progressive neurobehavioural impairment.

  3. High-yield water-based synthesis of truncated silver nanocubes

    International Nuclear Information System (INIS)

    Chang, Yun-Min; Lu, I-Te; Chen, Chih-Yuan; Hsieh, Yu-Chi; Wu, Pu-Wei

    2014-01-01

    Highlights: • Development of a water-based formula to fabricate truncated Ag nanocubes. • The sample exhibits (1 0 0), (1 1 0), and (1 1 1) on the facets, edges, and corners. • The sample shows three characteristic absorption peaks due to plasma resonance. -- Abstract: A high-yield water-based hydrothermal synthesis was developed using silver nitrate, ammonia, glucose, and cetyltrimethylammonium bromide (CTAB) as precursors to synthesize truncated silver nanocubes with uniform sizes and in large quantities. With a fixed CTAB concentration, truncated silver nanocubes with sizes of 49.3 ± 4.1 nm were produced when the molar ratio of glucose/silver cation was maintained at 0.1. The sample exhibited (1 0 0), (1 1 0), and (1 1 1) planes on the facets, edges, and corners, respectively. In contrast, with a slightly larger glucose/silver cation ratio of 0.35, well-defined nanocubes with sizes of 70.9 ± 3.8 nm sizes were observed with the (1 0 0) plane on six facets. When the ratio was further increased to 1.5, excess reduction of silver cations facilitated the simultaneous formation of nanoparticles with cubic, spherical, and irregular shapes. Consistent results were obtained from transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and UV–visible absorption measurements

  4. High-yield water-based synthesis of truncated silver nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yun-Min; Lu, I-Te; Chen, Chih-Yuan; Hsieh, Yu-Chi; Wu, Pu-Wei, E-mail: ppwu@mail.nctu.edu.tw

    2014-02-15

    Highlights: • Development of a water-based formula to fabricate truncated Ag nanocubes. • The sample exhibits (1 0 0), (1 1 0), and (1 1 1) on the facets, edges, and corners. • The sample shows three characteristic absorption peaks due to plasma resonance. -- Abstract: A high-yield water-based hydrothermal synthesis was developed using silver nitrate, ammonia, glucose, and cetyltrimethylammonium bromide (CTAB) as precursors to synthesize truncated silver nanocubes with uniform sizes and in large quantities. With a fixed CTAB concentration, truncated silver nanocubes with sizes of 49.3 ± 4.1 nm were produced when the molar ratio of glucose/silver cation was maintained at 0.1. The sample exhibited (1 0 0), (1 1 0), and (1 1 1) planes on the facets, edges, and corners, respectively. In contrast, with a slightly larger glucose/silver cation ratio of 0.35, well-defined nanocubes with sizes of 70.9 ± 3.8 nm sizes were observed with the (1 0 0) plane on six facets. When the ratio was further increased to 1.5, excess reduction of silver cations facilitated the simultaneous formation of nanoparticles with cubic, spherical, and irregular shapes. Consistent results were obtained from transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and UV–visible absorption measurements.

  5. Detecting and correcting for publication bias in meta-analysis - A truncated normal distribution approach.

    Science.gov (United States)

    Zhu, Qiaohao; Carriere, K C

    2016-01-01

    Publication bias can significantly limit the validity of meta-analysis when trying to draw conclusion about a research question from independent studies. Most research on detection and correction for publication bias in meta-analysis focus mainly on funnel plot-based methodologies or selection models. In this paper, we formulate publication bias as a truncated distribution problem, and propose new parametric solutions. We develop methodologies of estimating the underlying overall effect size and the severity of publication bias. We distinguish the two major situations, in which publication bias may be induced by: (1) small effect size or (2) large p-value. We consider both fixed and random effects models, and derive estimators for the overall mean and the truncation proportion. These estimators will be obtained using maximum likelihood estimation and method of moments under fixed- and random-effects models, respectively. We carried out extensive simulation studies to evaluate the performance of our methodology, and to compare with the non-parametric Trim and Fill method based on funnel plot. We find that our methods based on truncated normal distribution perform consistently well, both in detecting and correcting publication bias under various situations.

  6. Correlations between chaos in a perturbed sine-Gordon equation and a truncated model system

    International Nuclear Information System (INIS)

    Bishop, A.R.; Flesch, R.; Forests, M.G.; Overman, E.A.

    1990-01-01

    The purpose of this paper is to present a first step toward providing coordinates and associated dynamics for low-dimensional attractors in nearly integrable partial differential equations (pdes), in particular, where the truncated system reflects salient geometric properties of the pde. This is achieved by correlating: (1) numerical results on the bifurcations to temporal chaos with spatial coherence of the damped, periodically forced sine-Gordon equation with periodic boundary conditions; (2) an interpretation of the spatial and temporal bifurcation structures of this perturbed integrable system with regard to the exact structure of the sine-Gordon phase space; (3) a model dynamical systems problem, which is itself a perturbed integrable Hamiltonian system, derived from the perturbed sine-Gordon equation by a finite mode Fourier truncation in the nonlinear Schroedinger limit; and (4) the bifurcations to chaos in the truncated phase space. In particular, a potential source of chaos in both the pde and the model ordinary differential equation systems is focused on: the existence of homoclinic orbits in the unperturbed integrable phase space and their continuation in the perturbed problem. The evidence presented here supports the thesis that the chaotic attractors of the weakly perturbed periodic sine-Gordon system consists of low-dimensional metastable attacking states together with intermediate states that are O(1) unstable and correspond to homoclinic states in the integrable phase space. It is surmised that the chaotic dynamics on these attractors is due to the perturbation of these homocline integrable configurations

  7. Non-linear buckling of an FGM truncated conical shell surrounded by an elastic medium

    International Nuclear Information System (INIS)

    Sofiyev, A.H.; Kuruoglu, N.

    2013-01-01

    In this paper, the non-linear buckling of the truncated conical shell made of functionally graded materials (FGMs) surrounded by an elastic medium has been studied using the large deformation theory with von Karman–Donnell-type of kinematic non-linearity. A two-parameter foundation model (Pasternak-type) is used to describe the shell–foundation interaction. The FGM properties are assumed to vary continuously through the thickness direction. The fundamental relations, the modified Donnell type non-linear stability and compatibility equations of the FGM truncated conical shell resting on the Pasternak-type elastic foundation are derived. By using the Superposition and Galerkin methods, the non-linear stability equations for the FGM truncated conical shell is solved. Finally, influences of variations of Winkler foundation stiffness and shear subgrade modulus of the foundation, compositional profiles and shell characteristics on the dimensionless critical non-linear axial load are investigated. The present results are compared with the available data for a special case. -- Highlights: • Nonlinear buckling of FGM conical shell surrounded by elastic medium is studied. • Pasternak foundation model is used to describe the shell–foundation interaction. • Nonlinear basic equations are derived. • Problem is solved by using Superposition and Galerkin methods. • Influences of various parameters on the nonlinear critical load are investigated

  8. Selective translational repression of truncated proteins from frameshift mutation-derived mRNAs in tumors.

    Directory of Open Access Journals (Sweden)

    Kwon Tae You

    2007-05-01

    Full Text Available Frameshift and nonsense mutations are common in tumors with microsatellite instability, and mRNAs from these mutated genes have premature termination codons (PTCs. Abnormal mRNAs containing PTCs are normally degraded by the nonsense-mediated mRNA decay (NMD system. However, PTCs located within 50-55 nucleotides of the last exon-exon junction are not recognized by NMD (NMD-irrelevant, and some PTC-containing mRNAs can escape from the NMD system (NMD-escape. We investigated protein expression from NMD-irrelevant and NMD-escape PTC-containing mRNAs by Western blotting and transfection assays. We demonstrated that transfection of NMD-irrelevant PTC-containing genomic DNA of MARCKS generates truncated protein. In contrast, NMD-escape PTC-containing versions of hMSH3 and TGFBR2 generate normal levels of mRNA, but do not generate detectable levels of protein. Transfection of NMD-escape mutant TGFBR2 genomic DNA failed to generate expression of truncated proteins, whereas transfection of wild-type TGFBR2 genomic DNA or mutant PTC-containing TGFBR2 cDNA generated expression of wild-type protein and truncated protein, respectively. Our findings suggest a novel mechanism of gene expression regulation for PTC-containing mRNAs in which the deleterious transcripts are regulated either by NMD or translational repression.

  9. A truncated conical beam model for analysis of the vibration of rat whiskers.

    Science.gov (United States)

    Yan, Wenyi; Kan, Qianhua; Kergrene, Kenan; Kang, Guozheng; Feng, Xi-Qiao; Rajan, Ramesh

    2013-08-09

    A truncated conical beam model is developed to study the vibration behaviour of a rat whisker. Translational and rotational springs are introduced to better represent the constraint conditions at the base of the whiskers in a living rat. Dimensional analysis shows that the natural frequency of a truncated conical beam with generic spring constraints at its ends is inversely proportional to the square root of the mass density. Under all the combinations of the classical free, pinned, sliding or fixed boundary conditions of a truncated conical beam, it is proved that the natural frequency can be expressed as f = α(rb/L(2))E/ρ and the frequency coefficient α only depends on the ratio of the radii at the two ends of the beam. The natural frequencies of a representative rat whisker are predicted for two typical situations: freely whisking in air and the tip touching an object. Our numerical results show that there exists a window where the natural frequencies of a rat whisker are very sensitive to the change of the rotational constraint at the base. This finding is also confirmed by the numerical results of 18 whiskers with their data available from literature. It can be concluded that the natural frequencies of a rat whisker can be adjusted within a wide range through manipulating the constraints of the follicle on the rat base by a behaving animal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Digestion proteomics: tracking lactoferrin truncation and peptide release during simulated gastric digestion.

    Science.gov (United States)

    Grosvenor, Anita J; Haigh, Brendan J; Dyer, Jolon M

    2014-11-01

    The extent to which nutritional and functional benefit is derived from proteins in food is related to its breakdown and digestion in the body after consumption. Further, detailed information about food protein truncation during digestion is critical to understanding and optimising the availability of bioactives, in controlling and limiting allergen release, and in minimising or monitoring the effects of processing and food preparation. However, tracking the complex array of products formed during the digestion of proteins is not easily accomplished using classical proteomics. We here present and develop a novel proteomic approach using isobaric labelling to mapping and tracking protein truncation and peptide release during simulated gastric digestion, using bovine lactoferrin as a model food protein. The relative abundance of related peptides was tracked throughout a digestion time course, and the effect of pasteurisation on peptide release assessed. The new approach to food digestion proteomics developed here therefore appears to be highly suitable not only for tracking the truncation and relative abundance of released peptides during gastric digestion, but also for determining the effects of protein modification on digestibility and potential bioavailability.

  11. The lamppost model: effects of photon trapping, the bottom lamp and disc truncation

    Science.gov (United States)

    Niedźwiecki, Andrzej; Zdziarski, Andrzej A.

    2018-04-01

    We study the lamppost model, in which the primary X-ray sources in accreting black-hole systems are located symmetrically on the rotation axis on both sides of the black hole surrounded by an accretion disc. We show the importance of the emission of the source on the opposite side to the observer. Due to gravitational light bending, its emission can increase the direct (i.e., not re-emitted by the disc) flux by as much as an order of magnitude. This happens for near to face-on observers when the disc is even moderately truncated. For truncated discs, we also consider effects of emission of the top source gravitationally bent around the black hole. We also present results for the attenuation of the observed radiation with respect to that emitted by the lamppost as functions of the lamppost height, black-hole spin and the degree of disc truncation. This attenuation, which is due to the time dilation, gravitational redshift and the loss of photons crossing the black-hole horizon, can be as severe as by several orders of magnitude for low lamppost heights. We also consider the contribution to the observed flux due to re-emission by optically-thick matter within the innermost stable circular orbit.

  12. Varying coefficient subdistribution regression for left-truncated semi-competing risks data.

    Science.gov (United States)

    Li, Ruosha; Peng, Limin

    2014-10-01

    Semi-competing risks data frequently arise in biomedical studies when time to a disease landmark event is subject to dependent censoring by death, the observation of which however is not precluded by the occurrence of the landmark event. In observational studies, the analysis of such data can be further complicated by left truncation. In this work, we study a varying co-efficient subdistribution regression model for left-truncated semi-competing risks data. Our method appropriately accounts for the specifical truncation and censoring features of the data, and moreover has the flexibility to accommodate potentially varying covariate effects. The proposed method can be easily implemented and the resulting estimators are shown to have nice asymptotic properties. We also present inference, such as Kolmogorov-Smirnov type and Cramér Von-Mises type hypothesis testing procedures for the covariate effects. Simulation studies and an application to the Denmark diabetes registry demonstrate good finite-sample performance and practical utility of the proposed method.

  13. Spectroscopic characterization of a truncated hemoglobin from the nitrogen-fixing bacterium Herbaspirillum seropedicae.

    Science.gov (United States)

    Razzera, Guilherme; Vernal, Javier; Baruh, Debora; Serpa, Viviane I; Tavares, Carolina; Lara, Flávio; Souza, Emanuel M; Pedrosa, Fábio O; Almeida, Fábio C L; Terenzi, Hernán; Valente, Ana Paula

    2008-09-01

    The Herbaspirillum seropedicae genome sequence encodes a truncated hemoglobin typical of group II (Hs-trHb1) members of this family. We show that His-tagged recombinant Hs-trHb1 is monomeric in solution, and its optical spectrum resembles those of previously reported globins. NMR analysis allowed us to assign heme substituents. All data suggest that Hs-trHb1 undergoes a transition from an aquomet form in the ferric state to a hexacoordinate low-spin form in the ferrous state. The close positions of Ser-E7, Lys-E10, Tyr-B10, and His-CD1 in the distal pocket place them as candidates for heme coordination and ligand regulation. Peroxide degradation kinetics suggests an easy access to the heme pocket, as the protein offered no protection against peroxide degradation when compared with free heme. The high solvent exposure of the heme may be due to the presence of a flexible loop in the access pocket, as suggested by a structural model obtained by using homologous globins as templates. The truncated hemoglobin described here has unique features among truncated hemoglobins and may function in the facilitation of O(2) transfer and scavenging, playing an important role in the nitrogen-fixation mechanism.

  14. Truncating SLC5A7 mutations underlie a spectrum of dominant hereditary motor neuropathies.

    Science.gov (United States)

    Salter, Claire G; Beijer, Danique; Hardy, Holly; Barwick, Katy E S; Bower, Matthew; Mademan, Ines; De Jonghe, Peter; Deconinck, Tine; Russell, Mark A; McEntagart, Meriel M; Chioza, Barry A; Blakely, Randy D; Chilton, John K; De Bleecker, Jan; Baets, Jonathan; Baple, Emma L; Walk, David; Crosby, Andrew H

    2018-04-01

    To identify the genetic cause of disease in 2 previously unreported families with forms of distal hereditary motor neuropathies (dHMNs). The first family comprises individuals affected by dHMN type V, which lacks the cardinal clinical feature of vocal cord paralysis characteristic of dHMN-VII observed in the second family. Next-generation sequencing was performed on the proband of each family. Variants were annotated and filtered, initially focusing on genes associated with neuropathy. Candidate variants were further investigated and confirmed by dideoxy sequence analysis and cosegregation studies. Thorough patient phenotyping was completed, comprising clinical history, examination, and neurologic investigation. dHMNs are a heterogeneous group of peripheral motor neuron disorders characterized by length-dependent neuropathy and progressive distal limb muscle weakness and wasting. We previously reported a dominant-negative frameshift mutation located in the concluding exon of the SLC5A7 gene encoding the choline transporter (CHT), leading to protein truncation, as the likely cause of dominantly-inherited dHMN-VII in an extended UK family. In this study, our genetic studies identified distinct heterozygous frameshift mutations located in the last coding exon of SLC5A7 , predicted to result in the truncation of the CHT C-terminus, as the likely cause of the condition in each family. This study corroborates C-terminal CHT truncation as a cause of autosomal dominant dHMN, confirming upper limb predominating over lower limb involvement, and broadening the clinical spectrum arising from CHT malfunction.

  15. Dixie Valley Bottoming Binary Unit

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Dale [Terra-Gen Sierra Holdings, LLC, Reno, NV (United States)

    2014-12-21

    This binary plant is the first air cooled, high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a hydrocarbon based cycle are not necessary. The unit is largely modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. The Air Cooled Condensers (ACC), equipment piping, and Balance of Plant (BOP) piping were constructed at site. This project further demonstrates the technical feasibility of using low temperature brine for geothermal power utilization. The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  16. The symbiotics as binary stars

    International Nuclear Information System (INIS)

    Plavec, M.J.

    1982-01-01

    The author envisages at least three models that can give a symbiotic object: He has called them, respectively, the PN symbiotic, the Algol symbiotic, and the novalike symbiotic. Their properties are briefly discussed. The most promising model is one of a binary system in the second stage of mass transfer, actually at the beginning of it: The cool component is a red giant ascending the asymptotic branch, expanding but not yet filling its critical lobe. The hot star is a subdwarf located in the same region of the Hertzsprung-Russell diagram as the central stars of planetary nebulae. It may be closely related to them, or it may be a helium star, actually a remnant of an Algol primary which underwent the first stage of mass transfer. In these cases, accretion on this star may not play a significant role (PN symbiotic). Perhaps more often, the subdwarf is a ''rejuvenated'' degenerate dwarf whose nuclear burning shells were ignited and are maintained by accretion of material coming from the red giant in the form of a stellar wind. Eruptions are often inevitable: this is the novalike symbiotic. A third alternative is a system in the first stage of mass transfer, where the photons needed for ionization of the nebula come from an accretion disk surrounding a main sequence star: an Algol symbiotic. In spite of considerable observational effort, the symbiotics are known so poorly that it is hard to decide between the models, or even decide if all three can actually exist. (Auth.)

  17. Pulsars in binary systems: probing binary stellar evolution and general relativity.

    Science.gov (United States)

    Stairs, Ingrid H

    2004-04-23

    Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system.

  18. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    International Nuclear Information System (INIS)

    Haghighipour, Nader; Kaltenegger, Lisa

    2013-01-01

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results

  19. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Kaltenegger, Lisa [MPIA, Koenigstuhl 17, Heidelberg, D-69117 (Germany)

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  20. Error bounds for augmented truncations of discrete-time block-monotone Markov chains under subgeometric drift conditions

    OpenAIRE

    Masuyama, Hiroyuki

    2015-01-01

    This paper studies the last-column-block-augmented northwest-corner truncation (LC-block-augmented truncation, for short) of discrete-time block-monotone Markov chains under subgeometric drift conditions. The main result of this paper is to present an upper bound for the total variation distance between the stationary probability vectors of a block-monotone Markov chain and its LC-block-augmented truncation. The main result is extended to Markov chains that themselves may not be block monoton...

  1. General simulation algorithm for autocorrelated binary processes.

    Science.gov (United States)

    Serinaldi, Francesco; Lombardo, Federico

    2017-02-01

    The apparent ubiquity of binary random processes in physics and many other fields has attracted considerable attention from the modeling community. However, generation of binary sequences with prescribed autocorrelation is a challenging task owing to the discrete nature of the marginal distributions, which makes the application of classical spectral techniques problematic. We show that such methods can effectively be used if we focus on the parent continuous process of beta distributed transition probabilities rather than on the target binary process. This change of paradigm results in a simulation procedure effectively embedding a spectrum-based iterative amplitude-adjusted Fourier transform method devised for continuous processes. The proposed algorithm is fully general, requires minimal assumptions, and can easily simulate binary signals with power-law and exponentially decaying autocorrelation functions corresponding, for instance, to Hurst-Kolmogorov and Markov processes. An application to rainfall intermittency shows that the proposed algorithm can also simulate surrogate data preserving the empirical autocorrelation.

  2. General simulation algorithm for autocorrelated binary processes

    Science.gov (United States)

    Serinaldi, Francesco; Lombardo, Federico

    2017-02-01

    The apparent ubiquity of binary random processes in physics and many other fields has attracted considerable attention from the modeling community. However, generation of binary sequences with prescribed autocorrelation is a challenging task owing to the discrete nature of the marginal distributions, which makes the application of classical spectral techniques problematic. We show that such methods can effectively be used if we focus on the parent continuous process of beta distributed transition probabilities rather than on the target binary process. This change of paradigm results in a simulation procedure effectively embedding a spectrum-based iterative amplitude-adjusted Fourier transform method devised for continuous processes. The proposed algorithm is fully general, requires minimal assumptions, and can easily simulate binary signals with power-law and exponentially decaying autocorrelation functions corresponding, for instance, to Hurst-Kolmogorov and Markov processes. An application to rainfall intermittency shows that the proposed algorithm can also simulate surrogate data preserving the empirical autocorrelation.

  3. Observations of new Wolf-Rayet binaries

    International Nuclear Information System (INIS)

    Niemela, V.S.

    1982-01-01

    The author reports here preliminary results of spectrographic observations for three southern WR stars, whose binary nature had not been previously verified: HDE 320102, CD -45 0 4482, HD 62910. The observations were carried out at the Cerro Tololo Inter-American Observatory, Chile, mostly with the Cassegrain spectrograph with IT attached to the 1-m reflector. These spectrograms were secured on Kodak IIIaJ emulsion, and have a dispersion of 45 A/mm. The results suggest that HDE 320102 must be a double-lined 05-7 + WN3 spectroscopic binary, that CD -45 0 4482 appears to be a single-lined spectroscopic binary and that HD 62910 may be a binary. (Auth.)

  4. Diffusion in ordered binary solid systems

    International Nuclear Information System (INIS)

    Stolwijk, N.A.

    1980-01-01

    This thesis contains contributions to the field of diffusion in ordered binary solid systems. An extensive experimental investigation of the self diffusion in CoGa is presented. The results of these diffusion measurements strongly suggest that a substantial part of the atomic migration is caused by a new type of defect. A quantitative description of the atomic displacements via this defect is given. Finally computer simulations are presented of diffusion and ordering in binary solid systems. (Auth.)

  5. An Introduction to Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Andersen, Henrik Reif

    1996-01-01

    This note is a short introduction to Binary Decision Diagrams (BDDs). It provides some background knowledge and describes the core algorithms. It is used in the course "C4340 Advanced Algorithms" at the Technical University of Denmark, autumn 1996.......This note is a short introduction to Binary Decision Diagrams (BDDs). It provides some background knowledge and describes the core algorithms. It is used in the course "C4340 Advanced Algorithms" at the Technical University of Denmark, autumn 1996....

  6. Extreme gravity tests with gravitational waves from compact binary coalescences: (II) ringdown

    Science.gov (United States)

    Berti, Emanuele; Yagi, Kent; Yang, Huan; Yunes, Nicolás

    2018-05-01

    The LIGO/Virgo detections of binary black hole mergers marked a watershed moment in astronomy, ushering in the era of precision tests of Kerr dynamics. We review theoretical and experimental challenges that must be overcome to carry out black hole spectroscopy with present and future gravitational wave detectors. Among other topics, we discuss quasinormal mode excitation in binary mergers, astrophysical event rates, tests of black hole dynamics in modified theories of gravity, parameterized "post-Kerr" ringdown tests, exotic compact objects, and proposed data analysis methods to improve spectroscopic tests of Kerr dynamics by stacking multiple events.

  7. Asteroseismic effects in close binary stars

    Science.gov (United States)

    Springer, Ofer M.; Shaviv, Nir J.

    2013-09-01

    Turbulent processes in the convective envelopes of the Sun and stars have been shown to be a source of internal acoustic excitations. In single stars, acoustic waves having frequencies below a certain cut-off frequency propagate nearly adiabatically and are effectively trapped below the photosphere where they are internally reflected. This reflection essentially occurs where the local wavelength becomes comparable to the pressure scale height. In close binary stars, the sound speed is a constant on equipotentials, while the pressure scale height, which depends on the local effective gravity, varies on equipotentials and may be much greater near the inner Lagrangian point (L1). As a result, waves reaching the vicinity of L1 may propagate unimpeded into low-density regions, where they tend to dissipate quickly due to non-linear and radiative effects. We study the three-dimensional propagation and enhanced damping of such waves inside a set of close binary stellar models using a WKB approximation of the acoustic field. We find that these waves can have much higher damping rates in close binaries, compared to their non-binary counterparts. We also find that the relative distribution of acoustic energy density at the visible surface of close binaries develops a ring-like feature at specific acoustic frequencies and binary separations.

  8. Texture classification by texton: statistical versus binary.

    Directory of Open Access Journals (Sweden)

    Zhenhua Guo

    Full Text Available Using statistical textons for texture classification has shown great success recently. The maximal response 8 (Statistical_MR8, image patch (Statistical_Joint and locally invariant fractal (Statistical_Fractal are typical statistical texton algorithms and state-of-the-art texture classification methods. However, there are two limitations when using these methods. First, it needs a training stage to build a texton library, thus the recognition accuracy will be highly depended on the training samples; second, during feature extraction, local feature is assigned to a texton by searching for the nearest texton in the whole library, which is time consuming when the library size is big and the dimension of feature is high. To address the above two issues, in this paper, three binary texton counterpart methods were proposed, Binary_MR8, Binary_Joint, and Binary_Fractal. These methods do not require any training step but encode local feature into binary representation directly. The experimental results on the CUReT, UIUC and KTH-TIPS databases show that binary texton could get sound results with fast feature extraction, especially when the image size is not big and the quality of image is not poor.

  9. Origin of very-short orbital-period binary systems

    International Nuclear Information System (INIS)

    Miyaji, S.

    1983-01-01

    Recent observations of four close binaries have established that there is a group of very-short orbital-period (VSOP) binaries whose orbital periods are less than 60 minutes. The VSOP binaries consist of both X-ray close binaries and cataclysmic variables. Their orbital periods are too short to have a main-sequence companion. However, four binaries, none of which belongs to any globular cluster, are too abundant to be explained by the capturing mechanism of a white dwarf. Therefore it seemed to be worthwhile to present an evolutionary scenario from an original binary system which can be applied for all VSOP binaries. (Auth.)

  10. PLANET FORMATION IN HIGHLY INCLINED BINARY SYSTEMS. I. PLANETESIMALS JUMP INWARD AND PILE UP

    International Nuclear Information System (INIS)

    Xie Jiwei; Zhou Jilin; Payne, Matthew J.; Ge Jian; Thebault, Philippe

    2011-01-01

    Most detected planet-bearing binaries are in wide orbits, for which a high inclination, i B , between the binary orbital plane and the plane of the planetary disk around the primary is likely to be common. In this paper, we investigate the intermediate stages-from planetesimals to planetary embryos/cores-of planet formation in such highly inclined cases. Our focus is on the effects of gas drag on the planetesimals' orbital evolution, in particular on the evolution of the planetesimals' semimajor axis distribution and their mutual relative velocities. We first demonstrate that a non-evolving axisymmetric disk model is a good approximation for studying the effects of gas drag on a planetesimal in the highly inclined case (30 deg. B B . For both regimes, a robust outcome over a wide range of parameters is that planetesimals migrate/jump inward and pile up, leading to a severely truncated and dense planetesimal disk around the primary. In this compact and dense disk, collision rates are high but relative velocities are low, providing conditions that are favorable for planetesimal growth and potentially allow for the subsequent formation of planets.

  11. S-type and P-type habitability in stellar binary systems: A comprehensive approach. I. Method and applications

    Energy Technology Data Exchange (ETDEWEB)

    Cuntz, M., E-mail: cuntz@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019-0059 (United States)

    2014-01-01

    A comprehensive approach is provided for the study of both S-type and P-type habitability in stellar binary systems, which in principle can also be expanded to systems of higher order. P-type orbits occur when the planet orbits both binary components, whereas in the case of S-type orbits, the planet orbits only one of the binary components with the second component considered a perturbator. The selected approach encapsulates a variety of different aspects, which include: (1) the consideration of a joint constraint, including orbital stability and a habitable region for a putative system planet through the stellar radiative energy fluxes ({sup r}adiative habitable zone{sup ;} RHZ), needs to be met; (2) the treatment of conservative, general, and extended zones of habitability for the various systems as defined for the solar system and beyond; (3) the provision of a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are presented for the kind of system in which S-type and P-type habitability is realized; (4) applications of the attained theoretical approach to standard (theoretical) main-sequence stars. In principle, five different cases of habitability are identified, which are S-type and P-type habitability provided by the full extent of the RHZs; habitability, where the RHZs are truncated by the additional constraint of planetary orbital stability (referred to as ST- and PT-type, respectively); and cases of no habitability at all. Regarding the treatment of planetary orbital stability, we utilize the formulae of Holman and Wiegert as also used in previous studies. In this work, we focus on binary systems in circular orbits. Future applications will also consider binary systems in elliptical orbits and provide thorough comparisons to other methods and results given in the literature.

  12. C-terminal truncations in human 3 '-5 ' DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy

    NARCIS (Netherlands)

    Richards, Anna; van den Maagdenberg, Arn M. J. M.; Jen, Joanna C.; Kavanagh, David; Bertram, Paula; Spitzer, Dirk; Liszewski, M. Kathryn; Barilla-LaBarca, Maria-Louise; Terwindt, Gisela M.; Kasai, Yumi; McLellan, Mike; Grand, Mark Gilbert; Vanmolkot, Kaate R. J.; de Vries, Boukje; Wan, Jijun; Kane, Michael J.; Mamsa, Hafsa; Schaefer, Ruth; Stam, Anine H.; Haan, Joost; Paulus, T. V. M. de Jong; Storimans, Caroline W.; van Schooneveld, Mary J.; Oosterhuis, Jendo A.; Gschwendter, Andreas; Dichgans, Martin; Kotschet, Katya E.; Hodgkinson, Suzanne; Hardy, Todd A.; Delatycki, Martin B.; Hajj-Ali, Rula A.; Kothari, Parul H.; Nelson, Stanley F.; Frants, Rune R.; Baloh, Robert W.; Ferrari, Michel D.; Atkinson, John P.

    Autosomal dominant retinal vasculopathy with cerebral leukodystrophy is a microvascular endotheliopathy with middle- age onset. In nine families, we identified heterozygous C- terminal frameshift mutations in TREX1, which encodes a 3'-5' exonuclease. These truncated proteins retain exonuclease

  13. Optimal auxiliary Hamiltonians for truncated boson-space calculations by means of a maximal-decoupling variational principle

    International Nuclear Information System (INIS)

    Li, C.

    1991-01-01

    A new method based on a maximal-decoupling variational principle is proposed to treat the Pauli-principle constraints for calculations of nuclear collective motion in a truncated boson space. The viability of the method is demonstrated through an application to the multipole form of boson Hamiltonians for the single-j and nondegenerate multi-j pairing interactions. While these boson Hamiltonians are Hermitian and contain only one- and two-boson terms, they are also the worst case for truncated boson-space calculations because they are not amenable to any boson truncations at all. By using auxiliary Hamiltonians optimally determined by the maximal-decoupling variational principle, however, truncations in the boson space become feasible and even yield reasonably accurate results. The method proposed here may thus be useful for doing realistic calculations of nuclear collective motion as well as for obtaining a viable interacting-boson-model type of boson Hamiltonian from the shell model

  14. Different truncation methods of AUC between Japan and the EU for bioequivalence assessment: influence on the regulatory judgment.

    Science.gov (United States)

    Oishi, Masayo; Chiba, Koji; Fukushima, Takashi; Tomono, Yoshiro; Suwa, Toshio

    2012-01-01

    In regulatory guidelines for bioequivalence (BE) assessment, the definitions of AUC for primary assessment are different in ICH countries, i.e., AUC from zero to the last sampling point (AUCall) in Japan, AUC from zero to infinity (AUCinf) or AUC from zero to the last measurable point (AUClast) in the US, and AUClast in the EU. To assure sufficient accuracy of truncated AUC for BE assessment, the ratio of truncated AUC (AUCall or AUClast) to AUCinf should be more than 80% both in Japanese and EU guidelines. We investigated how the difference in the definition of truncated AUC affects BE assessment of sustained release (SR) formulation. Our simulation result demonstrated that AUCall/AUCinf could be ≥80% despite AUClast/AUCinf being AUC affected the judgment of validity of truncated AUC for BE assessment, and AUCall could fail to detect the substantially different in vivo dissolution profile of generic drugs with SR formulation from the original drug.

  15. Cross-layer designed adaptive modulation algorithm with packet combining and truncated ARQ over MIMO Nakagami fading channels

    KAUST Repository

    Aniba, Ghassane; Aissa, Sonia

    2011-01-01

    works addressed the link layer performance of AM with truncated ARQ but without packet combining. In addition, previously proposed AM algorithms are not optimal and can provide poor performance when packet combining is implemented. Herein, we first show

  16. Close-binary central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Bond, H.E.; Grauer, A.D.

    1987-01-01

    Recent observations of PN central stars identified as binary systems are reviewed. The theoretical significance of binary central stars is discussed, and the characteristics of UU Sge, V 477 Lyr, MT Ser, LSS 2018, VW Pyx, and the central star of HFG 1 are briefly summarized. All of these binaries are shown to have periods less than 1 day, and it is estimated that about 10 percent of all binary central stars are close binaries. 27 references

  17. Error Bounds for Augmented Truncations of Discrete-Time Block-Monotone Markov Chains under Geometric Drift Conditions

    OpenAIRE

    Masuyama, Hiroyuki

    2014-01-01

    In this paper we study the augmented truncation of discrete-time block-monotone Markov chains under geometric drift conditions. We first present a bound for the total variation distance between the stationary distributions of an original Markov chain and its augmented truncation. We also obtain such error bounds for more general cases, where an original Markov chain itself is not necessarily block monotone but is blockwise dominated by a block-monotone Markov chain. Finally,...

  18. Identification of target genes for wild type and truncated HMGA2 in mesenchymal stem-like cells

    DEFF Research Database (Denmark)

    Henriksen, Jørn Mølgaard; Stabell, Marianne; Meza-Zepeda, Leonardo A

    2010-01-01

    The HMGA2 gene, coding for an architectural transcription factor involved in mesenchymal embryogenesis, is frequently deranged by translocation and/or amplification in mesenchymal tumours, generally leading to over-expression of shortened transcripts and a truncated protein.......The HMGA2 gene, coding for an architectural transcription factor involved in mesenchymal embryogenesis, is frequently deranged by translocation and/or amplification in mesenchymal tumours, generally leading to over-expression of shortened transcripts and a truncated protein....

  19. Binary Tree Pricing to Convertible Bonds with Credit Risk under Stochastic Interest Rates

    Directory of Open Access Journals (Sweden)

    Jianbo Huang

    2013-01-01

    Full Text Available The convertible bonds usually have multiple additional provisions that make their pricing problem more difficult than straight bonds and options. This paper uses the binary tree method to model the finance market. As the underlying stock prices and the interest rates are important to the convertible bonds, we describe their dynamic processes by different binary tree. Moreover, we consider the influence of the credit risks on the convertible bonds that is described by the default rate and the recovery rate; then the two-factor binary tree model involving the credit risk is established. On the basis of the theoretical analysis, we make numerical simulation and get the pricing results when the stock prices are CRR model and the interest rates follow the constant volatility and the time-varying volatility, respectively. This model can be extended to other financial derivative instruments.

  20. Identification of a functionally distinct truncated BDNF mRNA splice variant and protein in Trachemys scripta elegans.

    Directory of Open Access Journals (Sweden)

    Ganesh Ambigapathy

    Full Text Available Brain-derived neurotrophic factor (BDNF has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein.

  1. Identification of a functionally distinct truncated BDNF mRNA splice variant and protein in Trachemys scripta elegans.

    Science.gov (United States)

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein.

  2. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Zabalza, V.; Paredes, J. M. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E08028 Barcelona (Spain); Bosch-Ramon, V., E-mail: vzabalza@am.ub.es [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  3. Multiple star formation : chemistry, physics and coevality

    NARCIS (Netherlands)

    Murillo, Mejias N.M.

    2017-01-01

    Multiple stars, that is two or more stars composing a gravitationally bound system, are common in the universe.They are the cause of many interesting phenomena, from supernovae and planetary nebulae, to binary black hole mergers. Observations of main sequence stars, young stars and forming

  4. A Novel Truncated Form of Serum Amyloid A in Kawasaki Disease.

    Directory of Open Access Journals (Sweden)

    John C Whitin

    Full Text Available Kawasaki disease (KD is an acute vasculitis in children that can cause coronary artery abnormalities. Its diagnosis is challenging, and many cytokines, chemokines, acute phase reactants, and growth factors have failed evaluation as specific biomarkers to distinguish KD from other febrile illnesses. We performed protein profiling, comparing plasma from children with KD with febrile control (FC subjects to determine if there were specific proteins or peptides that could distinguish the two clinical states.Plasma from three independent cohorts from the blood of 68 KD and 61 FC subjects was fractionated by anion exchange chromatography, followed by surface-enhanced laser desorption ionization (SELDI mass spectrometry of the fractions. The mass spectra of KD and FC plasma samples were analyzed for peaks that were statistically significantly different.A mass spectrometry peak with a mass of 7,860 Da had high intensity in acute KD subjects compared to subacute KD (p = 0.0003 and FC (p = 7.9 x 10-10 subjects. We identified this peak as a novel truncated form of serum amyloid A with N-terminal at Lys-34 of the circulating form and validated its identity using a hybrid mass spectrum immunoassay technique. The truncated form of serum amyloid A was present in plasma of KD subjects when blood was collected in tubes containing protease inhibitors. This peak disappeared when the patients were examined after their symptoms resolved. Intensities of this peptide did not correlate with KD-associated laboratory values or with other mass spectrum peaks from the plasma of these KD subjects.Using SELDI mass spectrometry, we have discovered a novel truncated form of serum amyloid A that is elevated in the plasma of KD when compared with FC subjects. Future studies will evaluate its relevance as a diagnostic biomarker and its potential role in the pathophysiology of KD.

  5. Effects of truncation of the peptide chain on the secondary structure and bioactivities of palmitoylated anoplin.

    Science.gov (United States)

    Salas, Remmer L; Garcia, Jan Kathryne D L; Miranda, Ana Carmela R; Rivera, Windell L; Nellas, Ricky B; Sabido, Portia Mahal G

    2018-06-01

    Anoplin (GLLKRIKTLL-NH 2 ) is of current interest due to its short sequence and specificity towards bacteria. Recent studies on anoplin have shown that truncation and acylation compromises its antimicrobial activity and specificity, respectively. In this study, truncated analogues (pal-ano-9 to pal-ano-5) of palmitoylated anoplin (pal-anoplin) were synthesized to determine the effects of C-truncation on its bioactivities. Moreover, secondary structure of each analogue using circular dichroism (CD) spectroscopy was determined to correlate with bioactivities. Interestingly, pal-anoplin, pal-ano-9 and pal-ano-6 were helical in water, unlike anoplin. In contrast, pal-ano-8, pal-ano-7 and pal-ano-5, with polar amino acid residues at the C-terminus, were random coil in water. Nevertheless, all the peptides folded into helical structures in 30% trifluoroethanol/water (TFE/H 2 O) except for the shortest analogue pal-ano-5. Hydrophobicity played a significant role in the enhancement of activity against bacteria E. coli and S. aureus as all lipopeptides including the random coil pal-ano-5 were more active than the parent anoplin. Meanwhile, the greatest improvement in activity against the fungus C. albicans was observed for pal-anoplin analogues (pal-ano-9 and pal-ano-6) that were helical in water. Although, hydrophobicity is a major factor in the secondary structure and antimicrobial activity, it appears that the nature of amino acids at the C-terminus also influence folding of lipopeptides in water and its antifungal activity. Moreover, the hemolytic activity of the analogues was found to correlate with hydrophobicity, except for the least hemolytic, pal-ano-5. Since most of the analogues are more potent and shorter than anoplin, they are promising drug candidates for further development. Copyright © 2018. Published by Elsevier Inc.

  6. Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance.

    Science.gov (United States)

    Patel, Kashyap A; Kettunen, Jarno; Laakso, Markku; Stančáková, Alena; Laver, Thomas W; Colclough, Kevin; Johnson, Matthew B; Abramowicz, Marc; Groop, Leif; Miettinen, Päivi J; Shepherd, Maggie H; Flanagan, Sarah E; Ellard, Sian; Inagaki, Nobuya; Hattersley, Andrew T; Tuomi, Tiinamaija; Cnop, Miriam; Weedon, Michael N

    2017-10-12

    Finding new causes of monogenic diabetes helps understand glycaemic regulation in humans. To find novel genetic causes of maturity-onset diabetes of the young (MODY), we sequenced MODY cases with unknown aetiology and compared variant frequencies to large public databases. From 36 European patients, we identify two probands with novel RFX6 heterozygous nonsense variants. RFX6 protein truncating variants are enriched in the MODY discovery cohort compared to the European control population within ExAC (odds ratio = 131, P = 1 × 10 -4 ). We find similar results in non-Finnish European (n = 348, odds ratio = 43, P = 5 × 10 -5 ) and Finnish (n = 80, odds ratio = 22, P = 1 × 10 -6 ) replication cohorts. RFX6 heterozygotes have reduced penetrance of diabetes compared to common HNF1A and HNF4A-MODY mutations (27, 70 and 55% at 25 years of age, respectively). The hyperglycaemia results from beta-cell dysfunction and is associated with lower fasting and stimulated gastric inhibitory polypeptide (GIP) levels. Our study demonstrates that heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance.Maturity-onset diabetes of the young (MODY) is the most common subtype of familial diabetes. Here, Patel et al. use targeted DNA sequencing of MODY patients and large-scale publically available data to show that RFX6 heterozygous protein truncating variants cause reduced penetrance MODY.

  7. N-terminally truncated forms of human cathepsin F accumulate in aggresome-like inclusions.

    Science.gov (United States)

    Jerič, Barbara; Dolenc, Iztok; Mihelič, Marko; Klarić, Martina; Zavašnik-Bergant, Tina; Gunčar, Gregor; Turk, Boris; Turk, Vito; Stoka, Veronika

    2013-10-01

    The contribution of individual cysteine cathepsins as positive mediators of programmed cell death is dependent on several factors, such as the type of stimuli, intensity and duration of the stimulus, and cell type involved. Of the eleven human cysteine cathepsins, cathepsin F is the only cathepsin that exhibits an extended N-terminal proregion, which contains a cystatin-like domain. We predicted that the wild-type human cathepsin F contains three natively disordered regions within the enzyme's propeptide and various amino acid stretches with high fibrillation propensity. Wild-type human cathepsin F and its N-terminally truncated forms, Ala(20)-Asp(484) (Δ(19)CatF), Pro(126)-Asp(484) (Δ(125)CatF), and Met(147)-Asp(484) (Δ(146)CatF) were cloned into the pcDNA3 vector and overexpressed in HEK 293T cells. Wild-type human cathepsin F displayed a clear vesicular labeling and colocalized with the LAMP2 protein, a lysosomal marker. However, all three N-terminally truncated forms of human cathepsin F were recovered as insoluble proteins, suggesting that the deletion of at least the signal peptides (Δ(19)CatF), results in protein aggregation. Noteworthy, they concentrated large perinuclear-juxtanuclear aggregates that accumulated within aggresome-like inclusions. These inclusions showed p62-positive immunoreactivity and were colocalized with the autophagy marker LC3B, but not with the LAMP2 protein. In addition, an approximately 2-3 fold increase in DEVDase activity was not sufficient to induce apoptotic cell death. These results suggested the clearance of the N-terminally truncated forms of human cathepsin F via the autophagy pathway, underlying its protective and prosurvival mechanisms. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Three-dimensional free vibration of functionally graded truncated conical shells subjected to thermal environment

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, P., E-mail: p_malekz@yahoo.com [Department of Mechanical Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Fiouz, A.R.; Sobhrouyan, M. [Department of Civil Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of)

    2012-01-15

    A three-dimensional (3D) free vibration analysis of the functionally graded (FG) truncated conical shells subjected to thermal environment is presented. The material properties are assumed to be temperature-dependent and graded in the radius direction, which can vary according to a simple power law distribution. The initial thermal stresses are obtained accurately by solving the thermoelastic equilibrium equations and by considering the two-dimensional axisymmetric temperature distribution in the shell. The differential quadrature method (DQM) as an efficient and accurate numerical tool is adopted to solve the thermal and thermo-mechanical governing equations. For this purpose, a mapping technique is employed to transform the cross section of the shell into the computational domain of DQM. The convergence behavior of the method is numerically demonstrated and comparison studies with the available solutions in the literature are performed. The effects of temperature dependence of material properties, geometrical parameters, material graded index, thermal and mechanical boundary conditions on the frequency parameters of the FG truncated conical shells are carried out. - Highlights: Black-Right-Pointing-Pointer 3D free vibration analysis of the functionally graded truncated conical shells is presented. Black-Right-Pointing-Pointer Two-dimensional axisymmetric temperature distribution in the shell is assumed. Black-Right-Pointing-Pointer The material properties are assumed to be temperature-dependent. Black-Right-Pointing-Pointer Initial thermal stresses due to thermal environment are evaluated accurately and included. Black-Right-Pointing-Pointer Representing the effects of different parameters on the non-dimensional frequencies.

  9. Effect of Synthetic Truncated Apolipoprotein C-I Peptide on Plasma Lipoprotein Cholesterol in Nonhuman Primates

    Directory of Open Access Journals (Sweden)

    Rampratap S. Kushwaha

    2004-01-01

    Full Text Available The present studies were conducted to determine whether a synthetic truncated apoC-I peptide that inhibits CETP activity in baboons would raise plasma HDL cholesterol levels in nonhuman primates with low HDL levels. We used 2 cynomolgus monkeys and 3 baboons fed a cholesterol- and fat-enriched diet. In cynomolgus monkeys, we injected synthetic truncated apoC-I inhibitor peptide at a dose of 20 mg/kg and, in baboons, at doses of 10, 15, and 20 mg/kg at weekly intervals. Blood samples were collected 3 times a week and VLDL + LDL and HDL cholesterol concentrations were measured. In cynomolgus monkeys, administration of the inhibitor peptide caused a rapid decrease in VLDL + LDL cholesterol concentrations (30%–60% and an increase in HDL cholesterol concentrations (10%–20%. VLDL + LDL cholesterol concentrations returned to baseline levels in approximately 15 days. In baboons, administration of the synthetic inhibitor peptide caused a decrease in VLDL + LDL cholesterol (20%–60% and an increase in HDL cholesterol (10%–20%. VLDL + LDL cholesterol returned to baseline levels by day 21, whereas HDL cholesterol concentrations remained elevated for up to 26 days. ApoA-I concentrations increased, whereas apoE and triglyceride concentrations decreased. Subcutaneous and intravenous administrations of the inhibitor peptide had similar effects on LDL and HDL cholesterol concentrations. There was no change in body weight, food consumption, or plasma IgG levels of any baboon during the study. These studies suggest that the truncated apoC-I peptide can be used to raise HDL in humans.

  10. Tailor-made dimensions of diblock copolymer truncated micelles on a solid by UV irradiation.

    Science.gov (United States)

    Liou, Jiun-You; Sun, Ya-Sen

    2015-09-28

    We investigated the structural evolution of truncated micelles in ultrathin films of polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP, of monolayer thickness on bare silicon substrates (SiOx/Si) upon UV irradiation in air- (UVIA) and nitrogen-rich (UVIN) environments. The structural evolution of micelles upon UV irradiation was monitored using GISAXS measurements in situ, while the surface morphology was probed using atomic force microscopy ex situ and the chemical composition using X-ray photoelectron spectroscopy (XPS). This work provides clear evidence for the interpretation of the relationship between the structural evolution and photochemical reactions in PS-b-P2VP truncated micelles upon UVIA and UVIN. Under UVIA treatment, photolysis and cross-linking reactions coexisted within the micelles; photolysis occurred mainly at the top of the micelles, whereas cross-linking occurred preferentially at the bottom. The shape and size of UVIA-treated truncated micelles were controlled predominantly by oxidative photolysis reactions, which depended on the concentration gradient of free radicals and oxygen along the micelle height. Because of an interplay between photolysis and photo-crosslinking, the scattering length densities (SLD) of PS and P2VP remained constant. In contrast, UVIN treatments enhanced the contrast in SLD between the PS shell and the P2VP core as cross-linking dominated over photolysis in the presence of nitrogen. The enhancement of the SLD contrast was due to the various degrees of cross-linking under UVIN for the PS and P2VP blocks.

  11. Simulating the X-ray luminosity of Be X-ray binaries: the case for black holes versus neutron stars

    Science.gov (United States)

    Brown, R. O.; Ho, W. C. G.; Coe, M. J.; Okazaki, A. T.

    2018-04-01

    There are over 100 Be stars that are known to have neutron star companions but only one such system with a black hole. Previous theoretical work suggests this is not due to their formation but due to differences in X-ray luminosity. It has also been proposed that the truncation of the Be star's circumstellar disc is dependent on the mass of the compact object. Hence, Be star discs in black hole binaries are smaller. Since accretion onto the compact object from the Be star's disc is what powers the X-ray luminosity, a smaller disc in black hole systems leads to a lower luminosity. In this paper, simulations are performed with a range of eccentricities and compact object mass. The disc's size and density are shown to be dependent on both quantities. Mass capture and, in turn, X-ray luminosity are heavily dependent on the size and density of the disc. Be/black hole binaries are expected to be up to ˜10 times fainter than Be/neutron star binaries when both systems have the same eccentricity and can be 100 times fainter when comparing systems with different eccentricity.

  12. ROTATIONAL SYNCHRONIZATION MAY ENHANCE HABITABILITY FOR CIRCUMBINARY PLANETS: KEPLER BINARY CASE STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Paul A. [Department of Physics, University of Texas at El Paso, El Paso, TX 79968 (United States); Zuluaga, Jorge I.; Cuartas-Restrepo, Pablo A. [FACom-Instituto de Fisica-FCEN, Universidad de Antioquia, Calle 70 No. 52-21, Medellin (Colombia); Clark, Joni M. [Department of Mathematics and Physical Sciences, New Mexico State University-DACC, Las Cruces, NM 88003 (United States)

    2013-09-10

    We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression toward planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of X-ray and ultraviolet (XUV) radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in some cases improved environments if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass companions, like Kepler 47, allow for protected planets over a wide range of secondary masses and binary periods. Kepler 38 and related binaries are marginal cases. Kepler 64 and analogs have dramatically reduced stellar aggression due to synchronization of the primary, but are limited by the short lifetime. Kepler 16 appears to be inhospitable to planets due to extreme XUV flux. These results have important implications for estimates of the number of stellar systems containing habitable planets in the Galaxy and allow for the selection of binaries suitable for follow-up searches for habitable planets.

  13. ROTATIONAL SYNCHRONIZATION MAY ENHANCE HABITABILITY FOR CIRCUMBINARY PLANETS: KEPLER BINARY CASE STUDIES

    International Nuclear Information System (INIS)

    Mason, Paul A.; Zuluaga, Jorge I.; Cuartas-Restrepo, Pablo A.; Clark, Joni M.

    2013-01-01

    We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression toward planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of X-ray and ultraviolet (XUV) radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in some cases improved environments if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass companions, like Kepler 47, allow for protected planets over a wide range of secondary masses and binary periods. Kepler 38 and related binaries are marginal cases. Kepler 64 and analogs have dramatically reduced stellar aggression due to synchronization of the primary, but are limited by the short lifetime. Kepler 16 appears to be inhospitable to planets due to extreme XUV flux. These results have important implications for estimates of the number of stellar systems containing habitable planets in the Galaxy and allow for the selection of binaries suitable for follow-up searches for habitable planets

  14. Performance Analysis of New Binary User Codes for DS-CDMA Communication

    Science.gov (United States)

    Usha, Kamle; Jaya Sankar, Kottareddygari

    2016-03-01

    This paper analyzes new binary spreading codes through correlation properties and also presents their performance over additive white Gaussian noise (AWGN) channel. The proposed codes are constructed using gray and inverse gray codes. In this paper, a n-bit gray code appended by its n-bit inverse gray code to construct the 2n-length binary user codes are discussed. Like Walsh codes, these binary user codes are available in sizes of power of two and additionally code sets of length 6 and their even multiples are also available. The simple construction technique and generation of code sets of different sizes are the salient features of the proposed codes. Walsh codes and gold codes are considered for comparison in this paper as these are popularly used for synchronous and asynchronous multi user communications respectively. In the current work the auto and cross correlation properties of the proposed codes are compared with those of Walsh codes and gold codes. Performance of the proposed binary user codes for both synchronous and asynchronous direct sequence CDMA communication over AWGN channel is also discussed in this paper. The proposed binary user codes are found to be suitable for both synchronous and asynchronous DS-CDMA communication.

  15. On the gravitational wave background from black hole binaries after the first LIGO detections

    Energy Technology Data Exchange (ETDEWEB)

    Cholis, Ilias, E-mail: icholis1@jhu.edu [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland, 21218 (United States)

    2017-06-01

    The detection of gravitational waves from the merger of binary black holes by the LIGO Collaboration has opened a new window to astrophysics. With the sensitivities of ground based detectors in the coming years, we will principally detect local binary black hole mergers. The integrated merger rate can instead be probed by the gravitational-wave background, the incoherent superposition of the released energy in gravitational waves during binary-black-hole coalescence. Through that, the properties of the binary black holes can be studied. In this work we show that by measuring the energy density Ω{sub GW} (in units of the cosmic critical density) of the gravitational-wave background, we can search for the rare ∼ 100 M {sub ⊙} massive black holes formed in the Universe. In addition, we can answer how often the least massive BHs of mass ≳ 3 M {sub ⊙} form. Finally, if there are multiple channels for the formation of binary black holes and if any of them predicts a narrow mass range for the black holes, then the total Ω{sub GW} spectrum may have features that with the future Einstein Telescope can be detected.

  16. Serial binary interval ratios improve rhythm reproduction.

    Science.gov (United States)

    Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao

    2013-01-01

    Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  17. Serial binary interval ratios improve rhythm reproduction

    Directory of Open Access Journals (Sweden)

    Xiang eWu

    2013-08-01

    Full Text Available Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8, non-binary integer (1:3:5:6, and non-integer (1:2.3:5.3:6.4 ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  18. Beyond binaries : a way forward for comparativeeducation

    Directory of Open Access Journals (Sweden)

    Marianne Larsen

    2012-09-01

    Full Text Available Binary discourses shape and produce the stories we construct about the field of comparative education. In the first part of this article, I review a set of binary discourses that have characterized social science research since the Enlightenment, including: quantitative-qualitative, nomotheticidiographic, inductive-deductive, and practice-theory. We can think of each of these binaries at opposite ends of a set of spectrums. In the second section of the paper, I show some of the ways in which these binaries have influenced the ways that we write and talk about research within the field of comparative education. I refer to the notion of binary discourses and the productive capacity of these discourses to shape our field. I then outline some critiques of these binaries to demonstrate the inherent limitations of binary discourses, and why we need to move beyond binaries in our research, and in the histories about our field. Finally, I present some tentative conclusions on ways to get ourselves out of the trap of binary thinking.Los discursos binarios moldean y producen los argumentos que construimos sobre la disciplina de la Educación Comparada. En la primera parte de este artículo, analizo un conjunto de discursos binarios que han caracterizado la investigación en Ciencias Sociales desde la Ilustración, incluyendo la cuantitativa-cualitativa, nomotética-idiográfica, inductivadeductiva, y la práctica-teoría. Podemos pensar sobre cada uno de estos discursos binarios como argumentos en los polos de un conjunto de posibilidades. En la segunda sección del artículo, revelo algunos modos en los que estos discursos binarios han influenciado las formas a través de las cuales escribimos y analizamos la investigación en el ámbito de la Educación Comparada. Analizo la noción de discursos binarios y la capacidad productiva de estos discursos de impactar nuestra ciencia. Seguidamente expongo algunas críticas de estos discursos binarios con el

  19. Binary similarity measures for fingerprint analysis of qualitative metabolomic profiles.

    Science.gov (United States)

    Rácz, Anita; Andrić, Filip; Bajusz, Dávid; Héberger, Károly

    2018-01-01

    Contemporary metabolomic fingerprinting is based on multiple spectrometric and chromatographic signals, used either alone or combined with structural and chemical information of metabolic markers at the qualitative and semiquantitative level. However, signal shifting, convolution, and matrix effects may compromise metabolomic patterns. Recent increase in the use of qualitative metabolomic data, described by the presence (1) or absence (0) of particular metabolites, demonstrates great potential in the field of metabolomic profiling and fingerprint analysis. The aim of this study is a comprehensive evaluation of binary similarity measures for the elucidation of patterns among samples of different botanical origin and various metabolomic profiles. Nine qualitative metabolomic data sets covering a wide range of natural products and metabolomic profiles were applied to assess 44 binary similarity measures for the fingerprinting of plant extracts and natural products. The measures were analyzed by the novel sum of ranking differences method (SRD), searching for the most promising candidates. Baroni-Urbani-Buser (BUB) and Hawkins-Dotson (HD) similarity coefficients were selected as the best measures by SRD and analysis of variance (ANOVA), while Dice (Di1), Yule, Russel-Rao, and Consonni-Todeschini 3 ranked the worst. ANOVA revealed that concordantly and intermediately symmetric similarity coefficients are better candidates for metabolomic fingerprinting than the asymmetric and correlation based ones. The fingerprint analysis based on the BUB and HD coefficients and qualitative metabolomic data performed equally well as the quantitative metabolomic profile analysis. Fingerprint analysis based on the qualitative metabolomic profiles and binary similarity measures proved to be a reliable way in finding the same/similar patterns in metabolomic data as that extracted from quantitative data.

  20. Formation of truncated proteins and high-molecular-mass aggregates upon soft illumination of photosynthetic proteins

    DEFF Research Database (Denmark)

    Rinalducci, Sara; Campostrini, Natascia; Antonioli, Paolo

    2005-01-01

    Different spot profiles were observed in 2D gel electrophoresis of thylakoid membranes performed either under complete darkness or by leaving the sample for a short time to low visible light. In the latter case, a large number of new spots with lower molecular masses, ranging between 15,000 and 25......,000 Da, were observed, and high-molecular-mass aggregates, seen as a smearing in the upper part of the gel, appeared in the region around 250 kDa. Identification of protein(s) contained in these new spots by MS/MS revealed that most of them are simply truncated proteins deriving from native ones...