WorldWideScience

Sample records for tru contaminated metals

  1. DOE's plan for buried transuranic (TRU) contaminated waste

    International Nuclear Information System (INIS)

    Mathur, J.; D'Ambrosia, J.; Sease, J.

    1987-01-01

    Prior to 1970, TRU-contaminated waste was buried as low-level radioactive waste. In the Defense Waste Management Plan issued in 1983, the plan for this buried TRU-contaminated waste was to monitor the buried waste, take remedial actions, and to periodically evaluate the safety of the waste. In March 1986, the General Accounting Office (GAO) recommended that the Department of Energy (DOE) provide specific plans and cost estimates related to buried TRU-contaminated waste. This plan is in direct response to the GAO request. Buried TRU-contaminated waste and TRU-contaminated soil are located in numerous inactive disposal units at five DOE sites. The total volume of this material is estimated to be about 300,000 to 500,000 m 3 . The DOE plan for TRU-contaminated buried waste and TRU-contaminated soil is to characterize the disposal units; assess the potential impacts from the waste on workers, the surrounding population, and the environment; evaluate the need for remedial actions; assess the remedial action alternatives; and implement and verify the remedial actions as appropriate. Cost estimates for remedial actions for the buried TRU-contaminated waste are highly uncertain, but they range from several hundred million to the order of $10 billion

  2. Gas generation from radiolytic attack of TRU-contaminated hydrogenous waste

    International Nuclear Information System (INIS)

    Zerwekh, A.

    1979-06-01

    In 1970, the Waste Management and Transportation Division of the Atomic Energy Commission ordered a segregation of transuranic (TRU)-contaminated solid wastes. Those below a contamination level of 10 nCi/g could still be buried; those above had to be stored retrievably for 20 y. The possibility that alpha-radiolysis of hydrogenous materials might produce toxic, corrosive, and flammable gases in retrievably stored waste prompted an investigation of gas identities and generation rates in the laboratory and field. Typical waste mixtures were synthesized and contaminated for laboratory experiments, and drums of actual TRU-contaminated waste were instrumented for field testing. Several levels of contamination were studied, as well as pressure, temperature, and moisture effects. G (gas) values were determined for various waste matrices, and degradation products were examined

  3. Development of waste packages for TRU-disposal. 5. Development of cylindrical metal package for TRU wastes

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mizubayashi, Hiroshi; Asano, Hidekazu; Owada, Hitoshi; Otsuki, Akiyoshi

    2005-01-01

    Development of the TRU waste package for hulls and endpieces compression canisters, which include long-lived and low sorption nuclides like C-14 is essential and will contribute a lot to a reasonable enhancement of safety and economy of the TRU-disposal system. The cylindrical metal package made of carbon steel for canisters to enhance the efficiency of the TRU-disposal system and to economically improve their stacking conditions was developed. The package is a welded cylindrical construction with a deep drawn upper cover and a disc plate for a bottom cover. Since the welding is mainly made only for an upper cover and a bottom disc plate, this package has a better containment performance for radioactive nuclide and can reduce the cost for construction and manufacturing including its welding control. Furthermore, this package can be laid down in pile for stacking in the circular cross section disposal tunnel for the sedimentary rock, which can drastically minimize the space for disposal tunnel as mentioned previously in TRU report. This paper reports the results of the study for application of newly developed metal package into the previous TRU-disposal system and for the stacking equipment for the package. (author)

  4. Leaching of solidified TRU-contaminated incinerator ash

    International Nuclear Information System (INIS)

    Fuhrmann, M.; Colombo, P.

    1984-01-01

    Leach rate and cumulative fractional releases of plutonium were determined for a series of laboratory-scale waste forms containing transuranic (TRU) contaminated incinerator ash. The solidification agents from which these waste forms were produced are commercially available materials for radioactive waste disposal. The leachants simulate groundwaters with chemical compositions that are indiginous to different geological media proposed for repositories. In this study TRU-contaminated ash was incorporated into waste forms fabricated with portland type I cement, urea-formaldehyde, polyester-styrene or Pioneer 221 bitumen. The ash was generated at the dual-chamber incinerator at the Rocky Flats Plant. These waste forms contained between 1.25 x 10 -2 and 4.4 x 10 -2 Ci (depending on the solidification agent) of mixed TRU isotopes comprised primarily of 239 Pu and 240 Pu. Five leachant solutions were prepared consisting of: (1) demineralized water, (2) simulated brine, (3) simplified sodium-dominated groundwater (30 meq NaCl/liter), (4) simplified calcium-dominated groundwater (30 meq CaCl 2 /liter), and (5) simplified bicarbonate-dominated groundwater (30 meq NaHCO 3 /liter). Cumulative fractional releases were found to vary significantly with different leachants and solidification agents. In all cases waste forms leached in brine gave the lowest leach rates. Urea-formaldehyde had the greatest release of radionuclides while polyester-styrene and portland cement had approximately equivalent fractional releases. Cement cured for 210 days retained radionuclides three times more effectively than cement cured only 30 days

  5. Contaminated metallic melt volume reduction testing

    International Nuclear Information System (INIS)

    Deichman, J.L.

    1981-01-01

    Laboratory scale metallic melts (stainless steel) were accomplished in support of Decontamination and Decommissioning's (D and D) contaminated equipment volume reduction and Low-Level Lead Site Waste programs. Six laboratory scale melts made with contaminated stainless steel provided data that radionuclide distribution can be predicted when proper temperature rates and ranges are employed, and that major decontamination occurs with the use of designed slagging materials. Stainless steel bars were contaminated with plutonium, cobalt, cesium and europium. This study was limited to stainless steel, however, further study is desirable to establish data for other metals and alloys. This study represents a positive beginning in defining the feasibility of economical volume reduction or conversion from TRU waste forms to LLW forms for a large portion of approximately 50 thousand tons of contaminated metal waste now being stored at Hanford underground or in deactivated facilities

  6. Comprehensive implementation plan for the DOE defense buried TRU- contaminated waste program

    International Nuclear Information System (INIS)

    Everette, S.E.; Detamore, J.A.; Raudenbush, M.H.; Thieme, R.E.

    1988-02-01

    In 1970, the US Atomic Energy Commission established a ''transuranic'' (TRU) waste classification. Waste disposed of prior to the decision to retrievably store the waste and which may contain TRU contamination is referred to as ''buried transuranic-contaminated waste'' (BTW). The DOE reference plan for BTW, stated in the Defense Waste Management Plan, is to monitor it, to take such remedial actions as may be necessary, and to re-evaluate its safety as necessary or in about 10-year periods. Responsibility for management of radioactive waste and byproducts generated by DOE belongs to the Secretary of Energy. Regulatory control for these sites containing mixed waste is exercised by both DOE (radionuclides) and EPA (hazardous constituents). Each DOE Operations Office is responsible for developing and implementing plans for long-term management of its radioactive and hazardous waste sites. This comprehensive plan includes site-by-site long-range plans, site characteristics, site costs, and schedules at each site. 13 figs., 15 tabs

  7. Sodium-cooled Fast Reactor Cores using Uranium-Free Metallic Fuels for Maximizing TRU Support Ratio

    International Nuclear Information System (INIS)

    You, WuSeung; Hong, Ser Gi

    2014-01-01

    The depleted uranium plays important roles in the SFR burner cores because it substantially contributes to the inherent safety of the core through the negative Doppler coefficient and large delayed neutron. However, the use of depleted uranium as a diluent nuclide leads to a limited value of TRU support ratio due to the generation of TRUs through the breeding. In this paper, we designed sodium cooled fast reactor (SFR) cores having uranium-free fuels 3,4 for maximization of TRU consumption rate. However, the uranium-free fuelled burner cores can be penalized by unacceptably small values of the Doppler coefficient and small delayed neutron fraction. In this work, metallic fuels of TRU-(W or Ni)-Zr are considered to improve the performances of the uranium-free cores. The objective of this work is to consistently compare the neutronic performances of uranium-free sodium cooled fast reactor cores having TRU-Zr metallic fuels added with Ni or W and also to clarify what are the problematic features to be resolved. In this paper, a consistent comparative study of 400MWe sodium cooled burner cores having uranium-based fuels and uranium-free fuels was done to analyze the relative core neutronic features. Also, we proposed a uranium-free metallic fuel based on Nickel. From the results, it is found that tungsten-based uranium-free metallic fuel gives large negative Doppler coefficient due to high resonance of tungsten isotopes but this core has large sodium void worth and small effective delayed neutron fraction while the nickel-based uranium-free metallic fuelled core has less negative Doppler coefficient but smaller sodium void worth and larger effective delayed neutron fraction than the tungsten-based one. On the other hand, the core having TRU-Zr has very high burnup reactivity swing which may be problematic in compensating it using control rods and the least negative Doppler coefficient

  8. Study on integrated TRU multi-recycling in sodium cooled fast reactor CDFR

    International Nuclear Information System (INIS)

    Hu Yun; Xu Mi; Wang Kan

    2010-01-01

    In view of recently proposed closed fuel cycle strategy which would recycle the integrated transuranics (TRU) from PWR spent fuel in the fast reactors, the neutronics characteristics of TRU recycled in China Demonstration Fast Reactor (CDFR) are studied in this paper. The results show that loading integrated TRU to substitute pure Pu as driver fuel will mainly make the influence on sodium void worth and negligible effects on other parameters, and hence TRU recycling in CDFR is feasible from viewpoint of core neutronics. If TRU is multi-recycled, the variation of TRU composition depends on fuel types and the ratio of TRU and U when recycling. It is indicated that, when TRU is multi-recycled in CDFR with MOX fuel, the minor actinides (MA) fraction in TRU will firstly decrease to ∼7.24% (minimum) within 8 TRU recycle times and then slowly increase to ∼7.7% after 20 TRU recycle times; while when TRU is multi-recycled in CDFR with metal fuel (TRU-U-10Zr), the MA fraction in TRU will gradually approach to an equilibrium state with the MA fraction of ∼3.8%, demonstrating better MA transmutation effect in metal fuel core. No matter 7.7 or 3.8%, they are both lower than ∼10% in PWR spent fuel with burnup of 45 GWd/tU, which presents satisfying effect of MA amount controlling for TRU multi-recycling strategy. On the other hand, the corresponding recycling parameters such as TRU heat release and neutron emission rate are also much lower in metal fuel than those in MOX fuel. Moreover, TRU recycled in metal fuel will bring greater fissile Pu isotopes equilibrium fraction due to better breeding capability of metal fuel. Finally, it could be summarized that integrated TRU multi-recycling in fast reactor can make contributions to both breeding and transmutation, and such strategy is a prospective closed fuel cycle manner to achieve the object of effective control of cumulated MA amount and sustainable development of nuclear energy.

  9. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION.

    Energy Technology Data Exchange (ETDEWEB)

    FRANCIS, A.J.; DODGE, C.J.

    2006-11-16

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy's (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (1) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (2) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (3) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  10. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Francis, A.J.; Dodge, C.J.

    2006-06-01

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy’s (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (i) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (ii) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (iii) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  11. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Francis, A.J.; Dodge, C.J.

    2006-06-01

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy's (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (1) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (2) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (3) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  12. Defense Waste Management Plan for buried transuranic-contaminated waste, transuranic-contaminated soil, and difficult-to-certify transuranic waste

    International Nuclear Information System (INIS)

    1987-06-01

    GAO recommended that DOE provide specific plans for permanent disposal of buried TRU-contaminated waste, TRU-contaminated soil, and difficult-to-certify TRU waste; cost estimates for permanent disposal of all TRU waste, including the options for the buried TRU-contaminated waste, TRU-contaminated soil, and difficult-to-certify TRU waste; and specific discussions of environmental and safety issues for the permanent disposal of TRU waste. Purpose of this document is to respond to the GAO recommendations by providing plans and cost estimates for the long-term isolation of the buried TRU-contaminated waste, TRU-contaminated soil, and difficult-to-certify TRU waste. This report also provides cost estimates for processing and certifying stored and newly generated TRU waste, decontaminating and decommissioning TRU waste processing facilities, and interim operations

  13. Systematic evaluation of options to avoid generation of noncertifiable transuranic (TRU) waste at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Boak, J.M.; Kosiewicz, S.T.; Triay, I.; Gruetzmacher, K.; Montoya, A.

    1998-03-01

    At present, >35% of the volume of newly generated transuranic (TRU) waste at Los Alamos National Laboratory is not certifiable for transport to the Waste Isolation Pilot Plant (WIPP). Noncertifiable waste would constitute 900--1,000 m 3 of the 2,600 m 3 of waste projected during the period of the Environmental Management (EM) Accelerated Cleanup: Focus on 2006 plan (DOE, 1997). Volume expansion of this waste to meet thermal limits would increase the shipped volume to ∼5,400 m 3 . This paper presents the results of efforts to define which TRU waste streams are noncertifiable at Los Alamos, and to prioritize site-specific options to reduce the volume of certifiable waste over the period of the EM Accelerated Cleanup Plan. A team of Los Alamos TRU waste generators and waste managers reviewed historic generation rates and thermal loads and current practices to estimate the projected volume and thermal load of TRU waste streams for Fiscal Years 1999--2006. These data defined four major problem TRU waste streams. Estimates were also made of the volume expansion that would be required to meet the permissible wattages for all waste. The four waste streams defined were: (1) 238 Pu-contaminated combustible waste from production of Radioactive Thermoelectric Generators (RTGs) with 238 Pu activity which exceeds allowable shipping limits by 10--100X. (2) 241 Am-contaminated cement waste from plutonium recovery processes (nitric and hydrochloric acid recovery) are estimated to exceed thermal limits by ∼3X. (3) 239 Pu-contaminated combustible waste, mainly organic waste materials contaminated with 239 Pu and 241 Am, is estimated to exceed thermal load requirements by a factor of ∼2X. (4) Oversized metal waste objects, (especially gloveboxes), cannot be shipped as is to WIPP because they will not fit in a standard waste box or drum

  14. Nuclear-waste-management technical support in the development of nuclear-waste-form criteria for the NRC. Task 2. Alternative TRU technologies

    International Nuclear Information System (INIS)

    Bida, G.; MacKenzie, D.R.

    1982-02-01

    Three main areas of transuranic (TRU) waste management are addressed: immobilization processes and waste forms for ultimate geologic disposal of TRU waste; decontamination as a method for TRU waste management; and potential problems associated with gas generation by certain TRU wastes. Waste forms are considered in terms of the regulations and criteria proposed in 10 CFR 60. Evaluation of the waste forms is based principally on ability to meet the release rate criterion of 10 -5 /year given in the Performance Objectives of Section 111, but also on the general requirements of Section 133. The two classes of metallic waste which are candidates for decontamination treatment are Zircaloy cladding hulls from light water reactor fuel elements, and failed facilities and equipment. Decontamination methods are addressed with regard to their ability to remove contamination to a level below the 10 nCi/g TRU limit. Other important factors are the volume reduction achieved, and compatibility of the secondary waste streams with acceptable waste forms. Gas generation by combustible TRU wastes and cast concretes containing TRU isotopes is discussed, and its potential for damage to a geologic repository is considered. Exclusion of combustible TRU waste from repositories is recommended. Conclusions are drawn about the suitability of various waste forms and recommendations are made regarding further work needed in the development of specific TRU waste forms

  15. Application of insoluble tannin to recovery of uranium, TRU and heavy metals elements form radioactive liquid waste

    International Nuclear Information System (INIS)

    Hamaguchi, Kazuhiko; Shirato, Wataru; Nakamura, Yasuo; Matsumura, Tatsuro; Takeshita, Kenji; Nakano, Yoshio

    1999-01-01

    Mitsubishi Nuclear Fuel Co., Ltd. (MNF) has developed a new adsorbent, TANNIX (tread mark), for the recovery of uranium, TRU and heavy metal elements in the liquid waste, in which TANNIX derived from a natural tannin polymer. TANNIX has same advantages that handling is easier than that of standard IX-resin, and that the volume of secondary waste is reduced by burning the used TANNIX. We have replaced its radioactive liquid waste treatment system from the conventional co-precipitation process to adsorption process by using TANNIX. TANNIX was founded to be more effective for the recovery of Pu, TRU, and hexavalent chromium Cr-(VI) as well as Uranium. (author)

  16. Transuranic (TRU) waste management at Savannah River - past, present and future

    International Nuclear Information System (INIS)

    D'Ambrosia, J.T.

    1985-01-01

    Defense TRU waste at Savannah River (SR) results from the Department of Energy's (DOE) national defense activities, including the operation of production reactors and fuel reprocessing plants and research and development activities. TRU waste is material declared as having negligible economic value, contaminated with alpha-emitting radionuclides of atomic number greater than 92, and half-lives longer than 20 years, in concentrations greater than 100 nCi/g. TRU waste has been retrievably stored at SR since 1974 awaiting disposal. The Waste Isolation Pilot Plant (WIPP), now under construction in New Mexico, is a research and development facility for demonstrating the safe disposal of defense TRU waste, including that in storage at SR. The major objective of the TRU program at SR is to support the TRU National Program, which is dedicated to preparing waste for, and emplacing waste in, the WIPP. Thus, the SR Program also supports WIPP operations. The SR Site specific goals are to phase out the indefinite storage of TRU waste, which has been the mode of waste management since 1974, and to dispose of SR's Defense TRU waste

  17. Decontamination of TRU glove boxes

    International Nuclear Information System (INIS)

    Crawford, J.H.

    1978-03-01

    Two glove boxes that had been used for work with transuranic nuclides (TRU) for about 12 years were decontaminated in a test program to collect data for developing a decontamination facility for large equipment highly contaminated with alpha emitters. A simple chemical technique consisting of a cycle of water flushes and alkaline permanganate and oxalic acid washes was used for both boxes. The test showed that glove boxes and similar equipment that are grossly contaminated with transuranic nuclides can be decontaminated to the current DIE nonretrievable disposal guide of <10 nCi TRU/g with a moderate amount of decontamination solution and manpower. Decontamination of the first box from an estimated 1.3 Ci to about 5 mCi (6 nCi/g) required 1.3 gallons of decontamination solution and 0.03 man-hour of work for each square foot of surface area. The second box was decontaminated from an estimated 3.4 Ci to about 2.8 mCi (4.2 nCi/g) using 0.9 gallon of decontamination solution and 0.02 man-hour for each square foot of surface area. Further reductions in contamination were achieved by repetitive decontamination cycles, but the effectiveness of the technique decreased sharply after the initial cycle

  18. A Deformation Model of TRU Metal Dispersion Fuel Rod for HYPER

    International Nuclear Information System (INIS)

    Lee, Byoung Oon; Hwang, Woan; Park, Won S.

    2002-01-01

    Deformation analysis in fuel rod design is essential to assure adequate fuel performance and integrity under irradiation conditions. An in-reactor performance computer code for a dispersion fuel rod is being developed in the conceptual design stage of blanket fuel for HYPER. In this paper, a mechanistic deformation model was developed and the model was installed into the DIMAC program. The model was based on the elasto-plasticity theory and power-law creep theory. The preliminary deformation calculation results for (TRU-Zr)-Zr dispersion fuel predicted by DIMAC were compared with those of silicide dispersion fuel predicted by DIFAIR. It appeared that the deformation levels for (TRU-Zr)-Zr dispersion fuel were relatively higher than those of silicide fuel. Some experimental tests including in-pile and out-pile experiments are needed for verifying the predictive capability of the DIMAC code. An in-reactor performance analysis computer code for blanket fuel is being developed at the conceptual design stage of blanket fuel for HYPER. In this paper, a mechanistic deformation model was developed and the model was installed into the DIMAC program. The model was based on the elasto-plasticity theory and power-law creep theory. The preliminary deformation calculation results for (TRUZr)- Zr dispersion fuel predicted by DIMAC were compared with those of silicide dispersion fuel predicted by DIFAIR. It appears that the deformation by swelling within fuel meat is very large for both fuels, and the major deformation mechanism at cladding is creep. The swelling strain is almost constant within the fuel meat, and is assumed to be zero in the cladding made of HT9. It is estimated that the deformation levels for (TRU-Zr)-Zr dispersion fuel were relatively higher than those of silicide fuel, and the dispersion fuel performance may be limited by swelling. But the predicted volume change of the (TRU-Zr)-Zr dispersion fuel models is about 6.1% at 30 at.% burnup. The value of cladding

  19. RH-TRU Waste Content Codes

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions

    2007-07-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  20. Basic study on decontamination of TRU wastes with cerium mediated electrolytic oxidation method

    International Nuclear Information System (INIS)

    Ishii, Junichi; Kobayashi, Fuyumi; Uchida, Shoji; Sumiya, Masato; Kida, Takashi; Shirahashi, Koichi; Umeda, Miki; Sakuraba, Koichi

    2010-03-01

    At Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF), the cerium mediated electrolytic oxidation method which is a decontamination technique to decrease the radioactivity of TRU wastes to the clearance-level has been developed for the effective reduction of TRU wastes generated from the decommissioning of a nuclear fuel reprocessing facility and so on. This method corrodes the oxide layer and the surface of metallic TRU metal wastes by the strong oxidation power of Ce 4+ in nitric acid. In this study, parameter tests were conducted to optimize the solution condition of Ce 3+ initial concentrations and nitric acid concentrations. The target corrosion rate of metallic TRU wastes set to be 2 - 4 μm/h for the practical use of this method. Under the optimized solution condition, a dissolution test of stainless steel simulating wastes was carried out. From the result of the dissolution test, the average corrosion rate was 3.3 μm/h during the test time of 90 hours. Based on the supposition that the corrosion depth of metallic TRU wastes was 20 μm enough to achieve the clearance-level, the treatment time for the decontamination was about 6 hours. It was confirmed from the result that the decontamination could be performed within one day and the decontamination solution could repeatedly reuse 15 times. (author)

  1. Dose potential of sludge contaminated and/or TRU contaminated waste in B-25s for tornado and straight wind events

    Energy Technology Data Exchange (ETDEWEB)

    Aponte, C.I.

    2000-02-17

    F and H Tank Farms generate supernate and sludge contaminated Low-Level Waste. The waste is collected, characterized, and packaged for disposal. Before the waste can be disposed of, however, it must be properly characterized. Since the radionuclide distribution in typical supernate is well known, its characterization is relatively straight forward and requires minimal effort. Non-routine waste, including potentially sludge contaminated, requires much more effort to effectively characterize. The radionuclide distribution must be determined. In some cases the waste can be contaminated by various sludge transfers with unique radionuclide distributions. In these cases, the characterization can require an extensive effort. Even after an extensive characterization effort, the container must still be prepared for shipping. Therefore a significant amount of time may elapse from the time the waste is generated until the time of disposal. During the time it is possible for a tornado or high wind scenario to occur. The purpose of this report is to determine the effect of a tornado on potential sludge contaminated waste, or Transuranic (TRU) waste in B-25s [large storage containers], to evaluate the potential impact on F and H Tank Farms, and to help establish a B-25 control program for tornado events.

  2. Dose potential of sludge contaminated and/or TRU contaminated waste in B-25s for tornado and straight wind events

    International Nuclear Information System (INIS)

    Aponte, C.I.

    2000-01-01

    F and H Tank Farms generate supernate and sludge contaminated Low-Level Waste. The waste is collected, characterized, and packaged for disposal. Before the waste can be disposed of, however, it must be properly characterized. Since the radionuclide distribution in typical supernate is well known, its characterization is relatively straight forward and requires minimal effort. Non-routine waste, including potentially sludge contaminated, requires much more effort to effectively characterize. The radionuclide distribution must be determined. In some cases the waste can be contaminated by various sludge transfers with unique radionuclide distributions. In these cases, the characterization can require an extensive effort. Even after an extensive characterization effort, the container must still be prepared for shipping. Therefore a significant amount of time may elapse from the time the waste is generated until the time of disposal. During the time it is possible for a tornado or high wind scenario to occur. The purpose of this report is to determine the effect of a tornado on potential sludge contaminated waste, or Transuranic (TRU) waste in B-25s [large storage containers], to evaluate the potential impact on F and H Tank Farms, and to help establish a B-25 control program for tornado events

  3. Pyrolysis/Steam Reforming Technology for Treatment of TRU Orphan Wastes

    International Nuclear Information System (INIS)

    Mason, J. B.; McKibbin, J.; Schmoker, D.; Bacala, P.

    2003-01-01

    Certain transuranic (TRU) waste streams within the Department of Energy (DOE) complex cannot be disposed of at the Waste Isolation Pilot Plant (WIPP) because they do not meet the shipping requirements of the TRUPACT-II or the disposal requirements of the Waste Analysis Plan (WAP) in the WIPP RCRA Part B Permit. These waste streams, referred to as orphan wastes, cannot be shipped or disposed of because they contain one or more prohibited items, such as liquids, volatile organic compounds (VOCs), hydrogen gas, corrosive acids or bases, reactive metals, or high concentrations of polychlorinated biphenyl (PCB), etc. The patented, non-incineration, pyrolysis and steam reforming processes marketed by THOR Treatment Technologies LLC removes all of these prohibited items from drums of TRU waste and produces a dry, inert, inorganic waste material that meets the existing TRUPACT-II requirements for shipping, as well as the existing WAP requirements for disposal of TRU waste at WIPP. THOR Treatment Technologies is a joint venture formed in June 2002 by Studsvik, Inc. (Studsvik) and Westinghouse Government Environmental Services Company LLC (WGES) to further develop and deploy Studsvik's patented THORSM technology within the DOE and Department of Defense (DoD) markets. The THORSM treatment process is a commercially proven system that has treated over 100,000 cu. ft. of nuclear waste from commercial power plants since 1999. Some of this waste has had contact dose rates of up to 400 R/hr. A distinguishing characteristic of the THORSM process for TRU waste treatment is the ability to treat drums of waste without removing the waste contents from the drum. This feature greatly minimizes criticality and contamination issues for processing of plutonium-containing wastes. The novel features described herein are protected by issued and pending patents

  4. Behavior of nuclides at plasma melting of TRU wastes

    International Nuclear Information System (INIS)

    Amakawa, Tadashi; Adachi, Kazuo

    2001-01-01

    Arc plasma heating technique can easily be formed at super high temperature, and can carry out stable heating without any effect of physical and chemical properties of the wastes. By focussing to these characteristics, this technique was experimentally investigated on behavior of TRU nuclides when applying TRU wastes forming from reprocessing process of used fuels to melting treatment by using a mimic non-radioactive nuclide. At first, according to mechanism determining the behavior of TRU nuclides, an element (mimic nuclide) to estimate the behavior was selected. And then, to zircaloy with high melting point or steel can simulated to metal and noncombustible wastes and fly ash, the mimic nuclide was added, prior to melting by using the arc plasma heating technique. As a result, on a case of either melting sample, it was elucidated that the nuclides hardly moved into their dusts. Then, the technique seems to be applicable for melting treatment of the TRU wastes. (G.K.)

  5. Evaluation of a TRU fundamental criterion and reference TRU waste units

    International Nuclear Information System (INIS)

    Klett, R.

    1993-01-01

    The comparison of two options for regulating transuranic (TRU) waste disposal is explained in this paper. The two options are (1) fundamental and derived standards developed specifically for the TRU waste and (2) a family of procedures that use a reference to the TRU waste unit with procedures that use a reference to the TRU waste unit with commercial high-level waste (HLW) criteria. Background information pertaining to both options is covered. A section on criteria specifically for TRUE waste suggests a methodology for developing or adapting fundamental and derived criteria that are consistent with all other aspects of the standards. The section on references TRU waste units covers all the parameter variations that have been suggested for this option. The technical bases of each approach is reviewed, implementation is discussed and their relative attributes and deficiencies are evaluated

  6. RH-TRU Waste Content Codes (RH TRUCON)

    International Nuclear Information System (INIS)

    2007-01-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: (1) A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. (2) A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is ''3''. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  7. RH-TRU Waste Content Codes (RH TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions

    2007-05-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  8. RH-TRU Waste Content Codes (RH-Trucon)

    International Nuclear Information System (INIS)

    2007-01-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is '3.' The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based

  9. RH-TRU Waste Content Codes (RH-TRUCON)

    International Nuclear Information System (INIS)

    2007-01-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is '3.' The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based

  10. RH-TRU Waste Content Codes (RH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2007-08-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  11. RH-TRU Waste Content Codes (RH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions

    2007-05-30

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  12. TRU partnership-benefits to the national TRU program

    International Nuclear Information System (INIS)

    Lippis, J.; Lott, S.A.

    1995-01-01

    Because increased regulatory authority has been given to the states, the management of transuranic (TRU) wastes varies considerably. One effective tool for facilitating better communications, coordination, and cooperation among the generator/storage sites is the formation of topic specific interface working groups. The National TRU Program supports these groups, and in 1994, a policy was adopted to manage these interface working groups

  13. Los Alamos National Laboratory TRU waste sampling projects

    International Nuclear Information System (INIS)

    Yeamans, D.; Rogers, P.; Mroz, E.

    1997-01-01

    The Los Alamos National Laboratory (LANL) has begun characterizing transuranic (TRU) waste in order to comply with New Mexico regulations, and to prepare the waste for shipment and disposal at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. Sampling consists of removing some head space gas from each drum, removing a core from a few drums of each homogeneous waste stream, and visually characterizing a few drums from each heterogeneous waste stream. The gases are analyzed by GC/MS, and the cores are analyzed for VOC's and SVOC's by GC/MS and for metals by AA or AE spectroscopy. The sampling and examination projects are conducted in accordance with the ''DOE TRU Waste Quality Assurance Program Plan'' (QAPP) and the ''LANL TRU Waste Quality Assurance Project Plan,'' (QAPjP), guaranteeing that the data meet the needs of both the Carlsbad Area Office (CAO) of DOE and the ''WIPP Waste Acceptance Criteria, Rev. 5,'' (WAC)

  14. Gas generation and migration analysis for TRU waste disposal system

    International Nuclear Information System (INIS)

    Ando, Kenichi; Noda, Masaru; Yamamoto, Mikihiko; Mihara, Morihiro

    2005-09-01

    In TRU waste disposal system, significant quantities of gases may be generated due to metal corrosion, radiolysis effect and microorganism activities. It is therefore recommended that the potential impact of gas generation and migration on TRU waste repository should be evaluated. In this study, gas generation rates were calculated in the repository and gas migration analysis in the disposal system were carried out using two phase flow model with results of gas generation rates. First, the time dependencies of gas generation rate in each TRU waste repositories were evaluated based on amounts of metal, organic matter and radioactivity. Next, the accumulation pressure of gases and expelled pore water volume nuclides in the repository were calculated by TOUGH2 code. After that, the results showed that the increase of gas pressure was the range of 1.3 to 1.4 MPa. In the repository with and without buffer, the rate of expelled pore water was 0.006 - 0.009 m 3 /y and 0.018 - 0.24m 3 /y, respectively. In addition, the radioactive gas migration through the repository and geosphere are evaluated. And re-saturation analysis is also performed to evaluate the initial condition of the system. (author)

  15. Development of TRU waste mobile analysis methods for RCRA-regulated metals

    International Nuclear Information System (INIS)

    Mahan, C.A.; Villarreal, R.; Drake, L.; Figg, D.; Wayne, D.; Goldstein, S.

    1998-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Glow-discharge mass spectrometry (GD-MS), laser-induced breakdown spectroscopy (LIBS), dc-arc atomic-emission spectroscopy (DC-ARC-AES), laser-ablation inductively-coupled-plasma mass spectrometry (LA-ICP-MS), and energy-dispersive x-ray fluorescence (EDXRF) were identified as potential solid-sample analytical techniques for mobile characterization of TRU waste. Each technology developers was provided with surrogate TRU waste samples in order to develop an analytical method. Following successful development of the analytical method, five performance evaluation samples were distributed to each of the researchers in a blind round-robin format. Results of the round robin were compared to known values and Transuranic Waste Characterization Program (TWCP) data quality objectives. Only two techniques, DC-ARC-AES and EDXRF, were able to complete the entire project. Methods development for GD-MS and LA-ICP-MS was halted due to the stand-down at the CMR facility. Results of the round-robin analysis are given for the EDXRF and DCARC-AES techniques. While DC-ARC-AES met several of the data quality objectives, the performance of the EDXRF technique by far surpassed the DC-ARC-AES technique. EDXRF is a simple, rugged, field portable instrument that appears to hold great promise for mobile characterization of TRU waste. The performance of this technique needs to be tested on real TRU samples in order to assess interferences from actinide constituents. In addition, mercury and beryllium analysis will require another analytical technique because the EDXRF method failed to meet the TWCP data quality objectives. Mercury analysis is easily accomplished on solid samples by cold vapor atomic fluorescence (CVAFS). Beryllium can be analyzed by any of a variety of emission techniques

  16. Transuranic contaminated waste form characterization and data base

    International Nuclear Information System (INIS)

    Kniazewycz, B.G.; McArthur, W.C.

    1980-07-01

    This volume contains 5 appendices. Title listing are: technologies for recovery of transuranics; nondestructive assay of TRU contaminated wastes; miscellaneous waste characteristics; acceptance criteria for TRU waste; and TRU waste treatment technologies

  17. TRU partnership-Working smarter-Not harder

    International Nuclear Information System (INIS)

    Armstrong, D.W.; Briggs, S.R.; Martin, M.R.; Turner, D.R.

    1994-01-01

    The open-quotes TRU Partnershipclose quotes was initiated and continues to function under the catch phrase philosophy of open-quotes work smarter, not harderclose quotes. The parntership participants have realized that DOE no longer has the funding available to reinvent the wheel at each site. Information and experiences from each site need to accurately and timely provided to the other sites for their use. The project teams from the different TRU waste handling sites benefit enormously from the strong network that has developed between TRU partnership participants. The partnership working interface places design manager in touch with design manager, project manager with project manager, etc. across site boundaries, and equally important, across corporate boundaries. The TRU Partnership has created a team atmosphere for the participants. The team focus is on the common challenge of managing TRU waste projects to support site needs and the needs of the national TRU waste program. Although consistency of approach for all projects at any given site is important, the TRU Partnership provides an intersite forum to establish consistency and understanding across all DOE projects managing TRU waste. The TRU Partnership has adopted the Westinghouse Electric Corporation open-quotes Savings Through Sharingclose quotes philosophy as an integral part of its organizational objectives. As applied by the group, the approach concentrates on information and experiences that can enhance development and reduce costs for (TRU) waste projects

  18. Radioactive contamination of recycled metals

    International Nuclear Information System (INIS)

    Lubenau, J.O.; Cool, D.A.; Yusko, J.G.

    1996-01-01

    Radioactive sources commingled with metal scrap have become a major problem for the metals recycling industry worldwide. Worldwide there have been 38 confirmed reports of radioactive sources accidentally smelted with recycled metal. In some instances, contaminated metal products were subsequently distributed. The metal mills, their products and byproducts from the metal making process such as slags, crosses and dusts from furnaces can become contaminated. In the U.S., imported ferrous metal products such as reinforcement bars, pipe flanges, table legs and fencing components have been found contaminated with taco. U.S. steel mills have unintentionally smelted radioactive sources on 16 occasions. The resulting cost for decontamination waste disposal and temporary closure of the steel mill is typically USD 10,000,000 and has been as much as USD 23,000,000. Other metal recycling industries that have been affected by this problem include aluminum, copper, zinc, gold, lead and vanadium. (author)

  19. Modeling and preliminary analysis on the temperature profile of the (TRU-Zr)-Zr dispersion fuel rod for HYPER

    International Nuclear Information System (INIS)

    Lee, B. W.; Hwang, W.; Lee, B. S.; Park, W. S.

    2000-01-01

    Either TRU-Zr metal alloy or (TRU-Zr)-Zr dispersion fuel is considered as a blanket fuel for HYPER(Hybrid Power Extraction Reactor). In order to develop the code for dispersion fuel rod performance analysis under steady state condition, the fuel temperature distribution model which is the one of the most important factors in a fuel performance code has been developed in this paper,. This developed model computes the one dimensional radial temperature distribution of a cylindrical fuel rod. The temperature profile results by this model are compared with the temperature distributions of U 3 Si-A1 dispersion fuel and TRU-Zr metal alloy fuel. This model will be installed in performance analysis code for dispersion fuel

  20. Final environmental assessment: TRU waste drum staging building, Technical Area 55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    1996-01-01

    Much of the US Department of Energy's (DOE's) research on plutonium metallurgy and plutonium processing is performed at Los Alamos National Laboratory (LANL), in Los Alamos, New Mexico. LANL's main facility for plutonium research is the Plutonium Facility, also referred to as Technical Area 55 (TA-55). The main laboratory building for plutonium work within the Plutonium Facility (TA-55) is the Plutonium Facility Building 4, or PF-4. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if DOE were to stage sealed containers of transuranic (TRU) and TRU mixed waste in a support building at the Plutonium Facility (TA-55) that is adjacent to PF-4. At present, the waste containers are staged in the basement of PF-4. The proposed project is to convert an existing support structure (Building 185), a prefabricated metal building on a concrete foundation, and operate it as a temporary staging facility for sealed containers of solid TRU and TRU mixed waste. The TRU and TRU mixed wastes would be contained in sealed 55-gallon drums and standard waste boxes as they await approval to be transported to TA-54. The containers would then be transported to a longer term TRU waste storage area at TA-54. The TRU wastes are generated from plutonium operations carried out in PF-4. The drum staging building would also be used to store and prepare for use new, empty TRU waste containers

  1. Characterizing cemented TRU waste for RCRA hazardous constituents

    International Nuclear Information System (INIS)

    Yeamans, D.R.; Betts, S.E.; Bodenstein, S.A.

    1996-01-01

    Los Alamos National Laboratory (LANL) has characterized drums of solidified transuranic (TRU) waste from four major waste streams. The data will help the State of New Mexico determine whether or not to issue a no-migration variance of the Waste Isolation Pilot Plant (WIPP) so that WIPP can receive and dispose of waste. The need to characterize TRU waste stored at LANL is driven by two additional factors: (1) the LANL RCRA Waste Analysis Plan for EPA compliant safe storage of hazardous waste; (2) the WIPP Waste Acceptance Criteria (WAC) The LANL characterization program includes headspace gas analysis, radioassay and radiography for all drums and solids sampling on a random selection of drums from each waste stream. Data are presented showing that the only identified non-metal RCRA hazardous component of the waste is methanol

  2. Vitrification of transuranic and beta-gamma contaminated solid wastes

    International Nuclear Information System (INIS)

    Dukes, M.D.

    1980-06-01

    Vitrification of solid transuranic contaminated (TRU) wastes alone and with high-level liquid wastes (HLLW) was studied. Homogeneous glasses containing 20 to 30 wt % ash were made by using glass frits previously developed at the Savannah River Plant and Pacific Northwest Laboratories. If the ash is vitrified along with the HLLW, 1.0 wt % as can be added to the waste forms without affecting their quality. This loading of ash is well above the loading required by the relative amounts of HLLW and TRU ash that will be processed at the Savannah River Plant. Vitrification of TRU-contaminated electropolishing sludges and high efficiency particular air filter materials along with HLLW would require an increase in the quantity of glass to be produced. However, if these TRU-contaminated solids were vitrified with the HLLW, the addition of low-level beta-gamma contaminated ash would require no further increase in glass production

  3. Physical and chemical feasibility of fueling molten salt reactors with TRU's trifluorides

    International Nuclear Information System (INIS)

    Ignatiev, V.; Feinberg, O.; Konakov, S.; Subbotine, S.; Surenkov, A.; Zakirov, R.

    2001-01-01

    The molten salt reactor (MSR) concept is very important for consideration as an element of future nuclear energy systems. These reactor systems are unique in many ways. Particularly, the MSRs appear to have substantial promise not only as advanced TRU free system operating in U-Th cycle, but also as transmuter of TRU. Physical and chemical feasibility of fueling MSR with TRU trifluorides is examined. Solvent compositions with and without U-Th as fissile / fertile addition are considered. The principle reactor and fuel cycle variables available for optimizing the performance of MSR as TRU transmuting system are discussed. These efforts led to the definition in minimal TRU mass flow rate, reduced total losses to waste and maximum possible burn up rate for the molten salt transmuter. The current status of technology and prospects for revisited interest are summarized. Significant chemical problems are remain to be resolved at the end of prior MSRs programs, notably, graphite life durability, tritium control, fate of noble metal fission products. Questions arising from plutonium and minor actinide fueling include: corrosion and container chemistry, new redox buffer for systems without uranium, analytical chemistry instrumentation, adequate constituent solubilities, suitable fuel processing and waste form development. However these problems appear to be soluble. (author)

  4. Exploration on Wire Discharge Machining Added Powder for Metal-Based Diamond Grinding Wheel on Wire EDM Dressing and Truing of Grinding Tungsten Carbide Material

    Science.gov (United States)

    Chow, H. M.; Yang, L. D.; Lin, Y. C.; Lin, C. L.

    2017-12-01

    In this paper, the effects of material removal rate and abrasive grain protrusion on the metal-based diamond grinding wheel were studied to find the optimal parameters for adding powder and wire discharge. In addition, this kind of electric discharge method to add powder on the metal-based diamond grinding wheel on line after dressing and truing will be applied on tungsten carbide to study the grinding material removal rate, grinding wheel wear, surface roughness, and surface micro-hardness.

  5. TRU waste-sampling program

    International Nuclear Information System (INIS)

    Warren, J.L.; Zerwekh, A.

    1985-08-01

    As part of a TRU waste-sampling program, Los Alamos National Laboratory retrieved and examined 44 drums of 238 Pu- and 239 Pu-contaminated waste. The drums ranged in age from 8 months to 9 years. The majority of drums were tested for pressure, and gas samples withdrawn from the drums were analyzed by a mass spectrometer. Real-time radiography and visual examination were used to determine both void volumes and waste content. Drum walls were measured for deterioration, and selected drum contents were reassayed for comparison with original assays and WIPP criteria. Each drum tested at atmospheric pressure. Mass spectrometry revealed no problem with 239 Pu-contaminated waste, but three 8-month-old drums of 238 Pu-contaminated waste contained a potentially hazardous gas mixture. Void volumes fell within the 81 to 97% range. Measurements of drum walls showed no significant corrosion or deterioration. All reassayed contents were within WIPP waste acceptance criteria. Five of the drums opened and examined (15%) could not be certified as packaged. Three contained free liquids, one had corrosive materials, and one had too much unstabilized particulate. Eleven drums had the wrong (or not the most appropriate) waste code. In many cases, disposal volumes had been inefficiently used. 2 refs., 23 figs., 7 tabs

  6. A Novel and Cost Effective Approach to the Decommissioning and Decontamination of Legacy Glove Boxes - Minimizing TRU Waste and Maximizing LLW Waste - 13634

    Energy Technology Data Exchange (ETDEWEB)

    Pancake, Daniel; Rock, Cynthia M.; Creed, Richard [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Donohoue, Tom; Martin, E. Ray; Mason, John A. [ANTECH Corporation 9050 Marshall Court, Westminster, CO, 80031 (United States); Norton, Christopher J.; Crosby, Daniel [Environmental Alternatives, Inc., 149 Emerald Street, Suite R, Keene, NH 03431 (United States); Nachtman, Thomas J. [InstaCote, Inc., 160 C. Lavoy Road, Erie, MI, 48133 (United States)

    2013-07-01

    This paper describes the process of decommissioning two gloveboxes at the Argonne National Laboratory (ANL) that were employed for work with plutonium and other radioactive materials. The decommissioning process involved an initial phase of clearing tools and materials from the glove boxes and disconnecting them from the laboratory infrastructure. The removed materials, assessed as Transuranic (TRU) waste, were packaged into 55 gallon (200 litre) drums and prepared for ultimate disposal at the Waste Isolation Pilot Plant (WIPP) at Carlsbad New Mexico. The boxes were then sampled to determine the radioactive contents by means of smears that were counted with alpha and beta detectors to determine the residual surface contamination, especially in terms of alpha particle emitters that are an indicator of TRU activity. Paint chip samples were also collected and sent for laboratory analysis in order to ascertain the radioactive contamination contributing to the TRU activity as a fixed contamination. The investigations predicted that it may be feasible to reduce the residual surface contamination and render the glovebox structure low level waste (LLW) for disposal. In order to reduce the TRU activity a comprehensive decontamination process was initiated using chemical compounds that are particularly effective for lifting and dissolving radionuclides that adhere to the inner surfaces of the gloveboxes. The result of the decontamination process was a reduction in the TRU surface activity on the inner surfaces of the gloveboxes by four orders of magnitude in terms of disintegrations per unit area (DPA). The next phase of the process involved a comprehensive assay of the gloveboxes using a combination of passive neutron and gamma ray scintillation detectors and a shielded and collimated high purity Germanium (HPGe) gamma ray detector. The HPGe detector was used to obtain gamma ray spectra for a variety of measurement positions within the glovebox. The spectra were used to

  7. A Novel and Cost Effective Approach to the Decommissioning and Decontamination of Legacy Glove Boxes - Minimizing TRU Waste and Maximizing LLW Waste - 13634

    International Nuclear Information System (INIS)

    Pancake, Daniel; Rock, Cynthia M.; Creed, Richard; Donohoue, Tom; Martin, E. Ray; Mason, John A.; Norton, Christopher J.; Crosby, Daniel; Nachtman, Thomas J.

    2013-01-01

    This paper describes the process of decommissioning two gloveboxes at the Argonne National Laboratory (ANL) that were employed for work with plutonium and other radioactive materials. The decommissioning process involved an initial phase of clearing tools and materials from the glove boxes and disconnecting them from the laboratory infrastructure. The removed materials, assessed as Transuranic (TRU) waste, were packaged into 55 gallon (200 litre) drums and prepared for ultimate disposal at the Waste Isolation Pilot Plant (WIPP) at Carlsbad New Mexico. The boxes were then sampled to determine the radioactive contents by means of smears that were counted with alpha and beta detectors to determine the residual surface contamination, especially in terms of alpha particle emitters that are an indicator of TRU activity. Paint chip samples were also collected and sent for laboratory analysis in order to ascertain the radioactive contamination contributing to the TRU activity as a fixed contamination. The investigations predicted that it may be feasible to reduce the residual surface contamination and render the glovebox structure low level waste (LLW) for disposal. In order to reduce the TRU activity a comprehensive decontamination process was initiated using chemical compounds that are particularly effective for lifting and dissolving radionuclides that adhere to the inner surfaces of the gloveboxes. The result of the decontamination process was a reduction in the TRU surface activity on the inner surfaces of the gloveboxes by four orders of magnitude in terms of disintegrations per unit area (DPA). The next phase of the process involved a comprehensive assay of the gloveboxes using a combination of passive neutron and gamma ray scintillation detectors and a shielded and collimated high purity Germanium (HPGe) gamma ray detector. The HPGe detector was used to obtain gamma ray spectra for a variety of measurement positions within the glovebox. The spectra were used to

  8. The WIPP RCRA Part B permit application for TRU mixed waste disposal

    International Nuclear Information System (INIS)

    Johnson, J.E.

    1995-01-01

    In August 1993, the New Mexico Environment Department (NMED) issued a draft permit for the Waste Isolation Pilot Plant (WIPP) to begin experiments with transuranic (TRU) mixed waste. Subsequently, the Department of Energy (DOE) decided to cancel the on-site test program, opting instead for laboratory testing. The Secretary of the NMED withdrew the draft permit in 1994, ordering the State's Hazardous and Radioactive Waste Bureau to work with the DOE on submittal of a revised permit application. Revision 5 of the WIPP's Resource Conservation and Recovery Act (RCRA) Part B Permit Application was submitted to the NMED in May 1995, focusing on disposal of 175,600 m 3 of TRU mixed waste over a 25 year span plus ten years for closure. A key portion of the application, the Waste Analysis Plan, shifted from requirements to characterize a relatively small volume of TRU mixed waste for on-site experiments, to describing a complete program that would apply to all DOE TRU waste generating facilities and meet the appropriate RCRA regulations. Waste characterization will be conducted on a waste stream basis, fitting into three broad categories: (1) homogeneous solids, (2) soil/gravel, and (3) debris wastes. Techniques used include radiography, visually examining waste from opened containers, radioassay, headspace gas sampling, physical sampling and analysis of homogeneous wastes, and review of documented acceptable knowledge. Acceptable knowledge of the original organics and metals used, and the operations that generated these waste streams is sufficient in most cases to determine if the waste has toxicity characteristics, hazardous constituents, polychlorinated biphenyls (PBCs), or RCRA regulated metals

  9. Leaching properties of solidified TRU waste forms

    International Nuclear Information System (INIS)

    Colombo, P.; Neilson, R.M. Jr.

    1979-01-01

    Safety analysis of waste forms requires an estimate of the ability of these forms to retain activity in the disposal environment. This program of leaching tests will determine the leaching properties of TRU contaminated incinerator ash waste forms using hydraulic cement, urea--formaldehyde, bitumen, and vinyl ester--styrene as solidification agents. Three types of leaching tests will be conducted, including both static and flow rate. Five generic groundwaters will be used. Equipment and procedures are described. Experiments have been conducted to determine plate out of 239 Pu, counter efficiency, and stability of counting samples

  10. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In

  11. Study on characteristics of spent PWR cladding hull for categorizing into Non-TRU waste

    International Nuclear Information System (INIS)

    Jung, In Ha; Kim, Jong Ho; Park, Jang Jin; Shin, Jin Myeong; Lee, Ho Hee; Yang, Myung Seung

    2005-01-01

    AFCI and GEN-IV programs aim for decreasing the high level radioactive wastes to be disposed. They also try to get valuable materials to recycle as resources such as uranium and plutonium. On the other hand, cladding hull expected to be one-thirds in volume of spent fuel assembly has not studied so much in the point view of recycling to reuse. Since traditional process of reprocessing was wet process, cladding hull generating through the reprocessing process was unavoidably contaminated with TRU by acid solvent during the process. Therefore, cladding hull has been classified into TRU wastes or high level wastes. According to the strategy for TRU high level radioactive wastes of USA as well as Korea, it regulates in two respects. One is activity and the other is heat generation. In respect of activity, TRU waste contains more than 100 nCi/kg of alpha emits with longer half life than 20 years and higher than 92 in atomic number. Also, wastes are categorized into TRU waste when it generates higher than 2kW/m3, in the respect of heat generation. Our results as well as literatures, almost all of TRU nuclides in the cladding hull are responsible for remained uranium and plutonium owing to pellet-cladding interaction. In addition, recoiled fission products on the surface of the cladding hull serve as heat generator. Up to now, decontamination of the cladding hull generating from the reprocessing of wet process is regarded as valueless and un-economic works owing to the amount of second waste produced

  12. Development of a safe TRU transportation system (STRUTS) for DOE's TRU waste

    International Nuclear Information System (INIS)

    Edling, D.A.; Hopkins, D.R.; Walls, H.C.

    1978-01-01

    Transportation, the link between TRU waste generation and WIPP (Waste Isolation Pilot Project) and a vital link in the overall TRU waste management program, must be addressed. The program must have many facets: ensuring public and carrier acceptance, formation of a functional and current transportation data base, systems integration, maximum utilization of existing technology, and effective implementation and integration of the transport system into current and planned operational systems

  13. In-situ vitrification of radioactively contaminated soils: summary paper

    International Nuclear Information System (INIS)

    Buelt, J.L.; Fitzpatrick, V.F.

    1987-01-01

    The in-situ vitrification (ISV) process is a new technology that has been developed from its conceptual phase through selected field-scale application tests during the last six years. In situ vitrification converts contaminated soils and waste inclusions into a durable glass and crystalline waste form by in-place melting. Electrodes are inserted into the soil to be treated and an electrical current is passed through the soil to be treated and an electrical current is passed through the soil to melt it. After cooling, the process fixes (TRU) and fission product radionuclides making them relatively nonleachable, resistant to intrusion, and nondispersible when intentionally disturbed. Another application considered for isolation of radioactively contaminated soils, but not yet developed, is the generation of impermeable barrier walls to prevent ground water seepage into a site. The barrier technique could also be used over the surface of an existing disposal site to deter plant and animal intrusion. The development units have been extensively tested with many types of soils and waste inclusions such as concrete, buried metals, sealed containers, organic chemicals with high boiling points such as polychlorinated biphenyls, and inorganic chemicals, including toxic heavy metals, nitrates, and sulfates. Nitrates and organics are destroyed, while heavy metals and fluorides are retained to a high percentage within the molten soil during processing. At $200 to $300/m 3 for radioactive waste, the process is economically competitive with many alternative remediation processes. The ISV process has been developed to the point where it is ready for large-scale field testing at an actual TRU-contaminated soil site. 5 references, 2 figures, 2 tables

  14. Melting of contaminated metallic waste

    International Nuclear Information System (INIS)

    Lee, Y.-S.; Cheng, S.-Y.; Kung, H.-T.; Lin, L.-F.

    2004-01-01

    Approximately 100 tons of contaminated metallic wastes were produced each year due to maintenance for each TPC's nuclear power reactor and it was roughly estimated that there will be 10,000 tons of metallic scraps resulted from decommissioning of each reactor in the future. One means of handling the contaminated metal is to melt it. Melting process owns not only volume reduction which saves the high cost of final disposal but also resource conservation and recycling benefits. Melting contaminated copper and aluminum scraps in the laboratory scale have been conducted at INER. A total of 546 kg copper condenser tubes with a specific activity of about 2.7 Bq/g was melted in a vacuum induction melting facility. Three types of products, ingot, slag and dust were derived from the melting process, with average activities of 0.10 Bq/g, 2.33 Bq/g and 84.3 Bq/g respectively. After the laboratory melting stage, a pilot plant with a 500 kg induction furnace is being designed to melt the increasingly produced contaminated metallic scraps from nuclear facilities and to investigate the behavior of different radionuclides during melting. (author)

  15. Thermal processing systems for TRU mixed waste

    International Nuclear Information System (INIS)

    Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

    1992-01-01

    This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended

  16. A study on decontamination of TRU, Co, and Mo using plasma surface etching technique

    International Nuclear Information System (INIS)

    Seo, Y.D.; Kim, Y.S.; Paek, S.H.; Lee, K.H.; Jung, C.H.; Oh, W.Z.

    2001-01-01

    Recently dry decontamination/surface-cleaning technology using plasma etching has been focused in the nuclear industry. In this study, the applicability and the effectiveness of this new dry processing technique are experimentally investigated by examining the etching reaction of UO 2 , Co, and Mo in r.f. plasma with the etchant gas of CF 4 /O 2 mixture. UO 2 is chosen as a representing material for uranium and TRU (TRans-Uranic) compounds and metallic Co and Mo are selected because they are the principal contaminants in the spent nuclear components such as valves and pipes made of stainless steel or INCONEL. Results show that in all cases maximum etching rate is achieved when the mole fraction of O 2 to CF 4 /O 2 mixture gas is 20 %, regardless of temperature and r.f. power. (author)

  17. Status of ERDA TRU waste packaging study

    International Nuclear Information System (INIS)

    Doty, J.W. Jr.

    1977-01-01

    This paper discusses the status of Task 3 of the TRU Waste Cyclone Drum Incinerator and Treatment System program. This task covers acceptable TRU packaging for interim storage and terminal isolation. The kind of TRU wastes generated by contractors and its transport are discussed. Both drum and box systems are desirable

  18. MCNP Modeling Results for Location of Buried TRU Waste Drums

    International Nuclear Information System (INIS)

    Steinman, D K; Schweitzer, J S

    2006-01-01

    In the 1960's, fifty-five gallon drums of TRU waste were buried in shallow pits on remote U.S. Government facilities such as the Idaho National Engineering Laboratory (now split into the Idaho National Laboratory and the Idaho Completion Project [ICP]). Subsequently, it was decided to remove the drums and the material that was in them from the burial pits and send the material to the Waste Isolation Pilot Plant in New Mexico. Several technologies have been tried to locate the drums non-intrusively with enough precision to minimize the chance for material to be spread into the environment. One of these technologies is the placement of steel probe holes in the pits into which wireline logging probes can be lowered to measure properties and concentrations of material surrounding the probe holes for evidence of TRU material. There is also a concern that large quantities of volatile organic compounds (VOC) are also present that would contaminate the environment during removal. In 2001, the Idaho National Engineering and Environmental Laboratory (INEEL) built two pulsed neutron wireline logging tools to measure TRU and VOC around the probe holes. The tools are the Prompt Fission Neutron (PFN) and the Pulsed Neutron Gamma (PNG), respectively. They were tested experimentally in surrogate test holes in 2003. The work reported here estimates the performance of the tools using Monte-Carlo modelling prior to field deployment. A MCNP model was constructed by INEEL personnel. It was modified by the authors to assess the ability of the tools to predict quantitatively the position and concentration of TRU and VOC materials disposed around the probe holes. The model was used to simulate the tools scanning the probe holes vertically in five centimetre increments. A drum was included in the model that could be placed near the probe hole and at other locations out to forty-five centimetres from the probe-hole in five centimetre increments. Scans were performed with no chlorine in the

  19. Decontamination method for radiation contaminated metal

    International Nuclear Information System (INIS)

    Enda, Masami; Hosaka, Katsumi; Sakai, Hitoshi.

    1997-01-01

    An organic acid solution is used as a decontamination liquid, and base materials of radiation contaminated metals are dissolved in the solution. The concentration of the organic acid is measured, and the organic acid is supplied by an amount corresponding to the lowering of the concentration. The decontamination liquid wastes generated during the decontamination step are decomposed, and metals leached in the organic acid solution are separated. With such procedures, contamination intruded into the inside of the mother materials of the metals can be removed, and radioactivity of the contaminated metals such as stainless steels and carbon steels can be eliminated, or the radiation level thereof can be reduced. In addition, the amount of secondary wastes generated along with the decontamination can be suppressed. (T.M.)

  20. Transuranic (TRU) Waste Phase I Retrieval Plan

    CERN Document Server

    McDonald, K M

    2000-01-01

    From 1970 to 1987, TRU and suspect TRU wastes at Hanford were placed in the SWBG. At the time of placement in the SWBG these wastes were not regulated under existing Resource Conservation and Recovery Act (RCRA) regulations, since they were generated and disposed of prior to the effective date of RCRA at the Hanford Site (1987). From the standpoint of DOE Order 5820.2A1, the TRU wastes are considered retrievably stored, and current plans are to retrieve these wastes for shipment to WIPP for disposal. This plan provides a strategy for the Phase I retrieval that meets the intent of TPA milestone M-91 and Project W-113, and incorporates the lessons learned during TRU retrieval campaigns at Hanford, LANL, and SRS. As in the original Project W-113 plans, the current plan calls for examination of approximately 10,000 suspect-TRU drums located in the 218-W-4C burial ground followed by the retrieval of those drums verified to contain TRU waste. Unlike the older plan, however, this plan proposes an open-air retrieval ...

  1. Decontamination method of contaminated metals

    International Nuclear Information System (INIS)

    Kawamura, Fumio; Ueda, Yoshihiro; Sato, Chikara; Komori, Itaru.

    1980-01-01

    Purpose: To effectively separate radioactive materials from molten metals in dry-processing method by heating metals contaminated with radioactive materials at a temperature below melting point to oxidize the surface thereof, then heating them to melt and include the radioactive materials into the oxides. Method: Metals contaminated with radioactive materials are heated at a temperature below the melting point thereof in an oxidizing atmosphere to oxidize the surface. Thereafter they are heated to melt at temperature above the melting point of the metals, and the molten metals are separated with the radioactive materials included in the oxides. For instance, radiation-contaminated aluminum pipe placed on the bed of an electrical heating furnace, and heated at 500 0 C which is lower than the melting point 660 0 C of aluminum for 1 - 2 hours while supplying air from an air pipe into the furnace, and an oxide film is formed on the surface of the aluminum pipe. Then, the furnace temperature is increased to 750 0 C wherein molten aluminum is flown down to a container and the oxide film is separated by floating it as the slug on the molten aluminum. (Horiuchi, T.)

  2. Characterization optimization for the National TRU waste system

    International Nuclear Information System (INIS)

    Basabilvazo, George T.; Countiss, S.; Moody, D.C.; Jennings, S.G.; Lott, S.A.

    2002-01-01

    On March 26, 1999, the Waste Isolation Pilot Plant (WIPP) received its first shipment of transuranic (TRU) waste. On November 26, 1999, the Hazardous Waste Facility Permit (HWFP) to receive mixed TRU waste at WIPP became effective. Having achieved these two milestones, facilitating and supporting the characterization, transportation, and disposal of TRU waste became the major challenges for the National TRU Waste Program. Significant challenges still remain in the scientific, engineering, regulatory, and political areas that need to be addressed. The National TRU Waste System Optimization Project has been established to identify, develop, and implement cost-effective system optimization strategies that address those significant challenges. Fundamental to these challenges is the balancing and prioritization of potential regulatory changes with potential technological solutions. This paper describes some of the efforts to optimize (to make as functional as possible) characterization activities for TRU waste.

  3. Catalytic extraction processing of contaminated scrap metal

    International Nuclear Information System (INIS)

    Griffin, T.P.; Johnston, J.E.

    1994-01-01

    The contract was conceived to establish the commercial capability of Catalytic Extraction Processing (CEP) to treat contaminated scrap metal in the DOE inventory. In so doing, Molten Metal Technology, Inc. (MMT), pursued the following objectives: demonstration of the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal can be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP will concentrate the radionuclides in a dense vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP will convert hazardous organics to valuable industrial gases, which can be used as feed gases for chemical synthesis or as an energy source; recovery volatile heavy metals--that CEP's off-gas treatment system will capture volatile heavy metals, such as mercury and lead; and establish that CEP is economical for processing contaminated scrap metal in the DOE inventory--that CEP is a more cost-effective and, complete treatment and recycling technology than competing technologies for processing contaminated scrap. The process and its performance are described

  4. Melting-decontamination method for radioactive contaminated metals

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Tsuchiya, Hiroyuki; Miura, Noboru; Iba, Hajime.

    1985-01-01

    Purpose: To eliminate uranium components remaining in metals even after the uranium-contaminated metals are melted. Method: Metal wastes contaminated with actinide element or its compound as nuclear fuel substance are melted in a crucible. Molten metals are fallen through a filter disposed at the bottom of the crucible into another receiving crucible. Uranium compounds are still left in the molten metal fallen in the receiving crucible. The residual uranium compounds are concentrated by utilizing the principle of the zone-refining process. That is, a displaceable local-heating heater is disposed to the receiving crucible, by which metals once solidified in the receiving crucible is again heated locally to transfer from solid to molten phase in a quasi-equibilized manner. In this way, by eliminating the end of the metal rod at which the uranium is segregated, the contaminating coefficient can be improved. (Ikeda, J.)

  5. Transuranic (TRU) Waste Phase I Retrieval Plan

    International Nuclear Information System (INIS)

    MCDONALD, K.M.

    1999-01-01

    From 1970 to 1987, TRU and suspect TRU wastes at Hanford were placed in the SWBG. At the time of placement in the SWBG these wastes were not regulated under existing Resource Conservation and Recovery Act (RCRA) regulations, since they were generated and disposed of prior to the effective date of RCRA at the Hanford Site (1987). From the standpoint of DOE Order 5820.2A', the TRU wastes are considered retrievably stored, and current plans are to retrieve these wastes for shipment to WIPP for disposal. This plan provides a strategy for the Phase I retrieval that meets the intent of TPA milestone M-91 and Project W-113, and incorporates the lessons learned during TRU retrieval campaigns at Hanford, LANL, and SRS. As in the original Project W-I13 plans, the current plan calls for examination of approximately 10,000 suspect-TRU drums located in the 218-W-4C burial ground followed by the retrieval of those drums verified to contain TRU waste. Unlike the older plan, however, this plan proposes an open-air retrieval scenario similar to those used for TRU drum retrieval at LANL and SRS. Phase I retrieval consists of the activities associated with the assessment of approximately 10,000 55-gallon drums of suspect TRU-waste in burial ground 218-W-4C and the retrieval of those drums verified to contain TRU waste. Four of the trenches in 218-W-4C (Trenches 1,4,20, and 29) are prime candidates for Phase I retrieval because they contain large numbers of suspect TRU drums, stacked from 2 to 5 drums high, on an asphalt pad. In fact, three of the trenches (Trenches 1,20, and 29) contain waste that has not been covered with soil, and about 1500 drums can be retrieved without excavation. The other three trenches in 218-W-4C (Trenches 7, 19, and 24) are not candidates for Phase I retrieval because they contain significant numbers of boxes. Drums will be retrieved from the four candidate trenches, checked for structural integrity, overpacked, if necessary, and assayed at the burial

  6. Transuranic (TRU) Waste Phase I Retrieval Plan

    International Nuclear Information System (INIS)

    MCDONALD, K.M.

    2000-01-01

    From 1970 to 1987, TRU and suspect TRU wastes at Hanford were placed in the SWBG. At the time of placement in the SWBG these wastes were not regulated under existing Resource Conservation and Recovery Act (RCRA) regulations, since they were generated and disposed of prior to the effective date of RCRA at the Hanford Site (1987). From the standpoint of DOE Order 5820.2A1, the TRU wastes are considered retrievably stored, and current plans are to retrieve these wastes for shipment to WIPP for disposal. This plan provides a strategy for the Phase I retrieval that meets the intent of TPA milestone M-91 and Project W-113, and incorporates the lessons learned during TRU retrieval campaigns at Hanford, LANL, and SRS. As in the original Project W-113 plans, the current plan calls for examination of approximately 10,000 suspect-TRU drums located in the 218-W-4C burial ground followed by the retrieval of those drums verified to contain TRU waste. Unlike the older plan, however, this plan proposes an open-air retrieval scenario similar to those used for TRU drum retrieval at LANL and SRS. Phase I retrieval consists of the activities associated with the assessment of approximately 10,000 55-gallon drums of suspect TRU-waste in burial ground 218-W-4C and the retrieval of those drums verified to contain TRU waste. Four of the trenches in 218-W-4C (Trenches 1, 4, 20, and 29) are prime candidates for Phase I retrieval because they contain large numbers of suspect TRU drums, stacked from 2 to 5 drums high, on an asphalt pad. In fact, three of the trenches (Trenches 1 , 20, and 29) contain waste that has not been covered with soil, and about 1500 drums can be retrieved without excavation. The other three trenches in 218-W-4C (Trenches 7, 19, and 24) are not candidates for Phase I retrieval because they contain significant numbers of boxes. Drums will be retrieved from the four candidate trenches, checked for structural integrity, overpacked, if necessary, and assayed at the burial

  7. Method of melting decontamination of radioactive contaminated metals

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Miura, Noboru; Tsuchiya, Hiroyuki.

    1984-01-01

    Purpose: To improve the transfer efficiency of radioactive materials into slags. Method: Contaminated metals are melt with adding slagging agent in order to transfer the radioactive materials into the slag, where the slagging agent holds less free energy than that of metal oxides contaminated with radioactive materials in order to promote the transfer of the contaminated materials into the slag layer. This effect can also be attained on metals or alloys other than iron contaminated with radioactive materials. In the case of alloy, the slagging agent is to containing such metal oxide that free energy is less than that of the oxide of metal being the main ingredient element of the alloy. The decontamination effect can further be improved by containing halogenide such as calcium fluoride together with the metal oxide into the slagging agent. (Ikeda, J.)

  8. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean M

    2011-04-29

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500ºC to 600ºC) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion • Design, fabricate, and assemble extrusion equipment • Extrusion database on DU metal • Extrusion database on U-10Zr alloys • Extrusion database on U-20xx-10Zr alloys • Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys • Design, fabricate, and assemble equipment • Sintering database on DU metal • Sintering database on U-10Zr alloys • Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich

  9. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    International Nuclear Information System (INIS)

    McDeavitt, Sean M.

    2011-01-01

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500 C to 600 C) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: (1) Hot working fabrication using mechanical alloying and extrusion - Design, fabricate, and assemble extrusion equipment - Extrusion database on DU metal - Extrusion database on U-10Zr alloys - Extrusion database on U-20xx-10Zr alloys - Evaluation and testing of tube sheath metals (2) Low-temperature sintering of U alloys - Design, fabricate, and assemble equipment - Sintering database on DU metal - Sintering database on U-10Zr alloys - Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research and Development (FCR and D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich outlining the

  10. Transuranic contaminated waste container characterization and data base. Revision I

    International Nuclear Information System (INIS)

    Kniazewycz, B.G.

    1980-05-01

    The Nuclear Regulatory Commission (NRC) is developing regulations governing the management, handling and disposal of transuranium (TRU) radioisotope contaminated wastes as part of the NRC's overall waste management program. In the development of such regulations, numerous subtasks have been identified which require completion before meaningful regulations can be proposed, their impact evaluated and the regulations implemented. This report was prepared to assist in the development of the technical data base necessary to support rule-making actions dealing with TRU-contaminated wastes. An earlier report presented the waste sources, characteristics and inventory of both Department of Energy (DOE) generated and commercially generated TRU waste. In this report a wide variety of waste sources as well as a large TRU inventory were identified. The purpose of this report is to identify the different packaging systems used and proposed for TRU waste and to document their characteristics. This document then serves as part of the data base necessary to complete preparation and initiate implementation of TRU waste container and packaging standards and criteria suitable for inclusion in the present TRU waste management program. It is the purpose of this report to serve as a working document which will be used as appropriate in the TRU Waste Management Program. This report, and those following, will be compatible not only in format, but also in reference material and direction

  11. TRU waste transportation -- The flammable gas generation problem

    International Nuclear Information System (INIS)

    Connolly, M.J.; Kosiewicz, S.T.

    1997-01-01

    The Nuclear Regulatory Commission (NRC) has imposed a flammable gas (i.e., hydrogen) concentration limit of 5% by volume on transuranic (TRU) waste containers to be shipped using the TRUPACT-II transporter. This concentration is the lower explosive limit (LEL) in air. This was done to minimize the potential for loss of containment during a hypothetical 60 day period. The amount of transuranic radionuclide that is permissible for shipment in TRU waste containers has been tabulated in the TRUPACT-II Safety Analysis Report for Packaging (SARP, 1) to conservatively prevent accumulation of hydrogen above this 5% limit. Based on the SARP limitations, approximately 35% of the TRU waste stored at the Idaho National Engineering and Environmental Lab (INEEL), Los Alamos National Lab (LANL), and Rocky Flats Environmental Technology Site (RFETS) cannot be shipped in the TRUPACT-II. An even larger percentage of the TRU waste drums at the Savannah River Site (SRS) cannot be shipped because of the much higher wattage loadings of TRU waste drums in that site's inventory. This paper presents an overview of an integrated, experimental program that has been initiated to increase the shippable portion of the Department of Energy (DOE) TRU waste inventory. In addition, the authors will estimate the anticipated expansion of the shippable portion of the inventory and associated cost savings. Such projection should provide the TRU waste generating sites a basis for developing their TRU waste workoff strategies within their Ten Year Plan budget horizons

  12. Waste Isolation Pilot Plant simulated RH TRU waste experiments: Data and interpretation pilot

    International Nuclear Information System (INIS)

    Molecke, M.A.; Argueello, G.J.; Beraun, R.

    1993-04-01

    The simulated, i.e., nonradioactive remote-handled transuranic waste (RH TRU) experiments being conducted underground in the Waste Isolation Pilot Plant (WIPP) were emplaced in mid-1986 and have been in heated test operation since 9/23/86. These experiments involve the in situ, waste package performance testing of eight full-size, reference RH TRU containers emplaced in horizontal, unlined test holes in the rock salt ribs (walls) of WIPP Room T. All of the test containers have internal electrical heaters; four of the test emplacements were filled with bentonite and silica sand backfill materials. We designed test conditions to be ''near-reference'' with respect to anticipated thermal outputs of RH TRU canisters and their geometrical spacing or layout in WIPP repository rooms, with RH TRU waste reference conditions current as of the start date of this test program. We also conducted some thermal overtest evaluations. This paper provides a: detailed test overview; comprehensive data update for the first 5 years of test operations; summary of experiment observations; initial data interpretations; and, several status; experimental objectives -- how these tests support WIPP TRU waste acceptance, performance assessment studies, underground operations, and the overall WIPP mission; and, in situ performance evaluations of RH TRU waste package materials plus design details and options. We provide instrument data and results for in situ waste container and borehole temperatures, pressures exerted on test containers through the backfill materials, and vertical and horizontal borehole-closure measurements and rates. The effects of heat on borehole closure, fracturing, and near-field materials (metals, backfills, rock salt, and intruding brine) interactions were closely monitored and are summarized, as are assorted test observations. Predictive 3-dimensional thermal and structural modeling studies of borehole and room closures and temperature fields were also performed

  13. Remediating sites contaminated with heavy metals

    International Nuclear Information System (INIS)

    Swartzbaugh, J.; Sturgill, J.; Cormier, B.; Williams, H.D.

    1992-01-01

    This article is intended to serve as a reference for decision makers who must choose an approach to remediate sites contaminated with heavy metals. Its purpose is to explain pertinent chemical and physical characteristics of heavy metals, how to use these characteristics to select remedial technologies, and how to interpret and use data from field investigations. Different metal species are typically associated with different industrial processes. The contaminant species behave differently in various media (i.e., groundwater, soils, air), and require different technologies for containment and treatment. We focus on the metals that are used in industries that generate regulated waste. These include steelmaking, paint and pigment manufacturing, metal finishing, leather tanning, papermaking, aluminum anodizing, and battery manufacturing. Heavy metals are also present in refinery wastes as well as in smelting wastes and drilling muds

  14. Method for electrolytic decontamination of radioactive contaminated metals

    International Nuclear Information System (INIS)

    Tanaka, Akio; Horita, Masami; Onuma, Tsutomu; Kato, Koji

    1991-01-01

    The invention relates to an electrolytic decontamination method for radioactive contaminated metals. The contaminated sections are eluted by electrolysis after the surface of a piece of equipment used with radioactive substances has been immersed in an electrolyte. Metal contaminated by radioactive substances acts as the anode

  15. Enhancing TRU burning and Am transmutation in Advanced Recycling Reactor

    International Nuclear Information System (INIS)

    Ikeda, Kazumi; Kochendarfer, Richard A.; Moriwaki, Hiroyuki; Kunishima, Shigeru

    2011-01-01

    Research highlights: → This ARR is an oxide fueled sodium cooled reactor based on innovative technologies to destruct TRU. → TRU burning core is designed to burn TRU at 28 kg/TW th h, adding moderator pins of B 4 C (Enriched B-11). → Am transmutation core can transmute Am at 34 kg/TW th h, adding uranium free AmN blanket to TRU burning core. → The TRU burning core improves TRU burning by 40-50% than the previous core. → The Am transmutation core can transmute Am effectively, keeping the void reactivity acceptable. - Abstract: This paper presents about conceptual designs of Advanced Recycling Reactor (ARR) focusing on enhancement in transuranics (TRU) burning and americium (Am) transmutation. The design has been conducted in the context of the Global Nuclear Energy Partnership (GNEP) seeking to close nuclear fuel cycle in ways that reduce proliferation risks, reduce the nuclear waste in the US and further improve global energy security. This study strives to enhance the TRU burning and the Am transmutation, assuming the development of related technologies in this study, while the ARR based on mature technologies was designed in the previous study. It has followed that the provided TRU burning core is designed to burn TRU at 28 kg/TW th h, by adding moderator pins of B 4 C (Enriched B-11) and the Am transmutation core will be able to transmute Am at 34 kg/TW th h, by locating Am blanket of AmN around the TRU burning core. It indicates that these concepts improve TRU burning by 40-50% than the previous core and can transmute Am effectively, keeping the void reactivity acceptable.

  16. Final Environmental Impact Statement for Treating Transuranic (TRU)/Alpha Low-level Waste at the Oak Ridge National Laboratory Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-06-30

    The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), the Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.

  17. Decontaminaion of metals containing plutonium and americium

    International Nuclear Information System (INIS)

    Seitz, M.G.; Gerding, T.J.; Steindler, M.J.

    1979-06-01

    Melt-slagging (melt-refining) techniques were evaluated as a decontamination and consolidation step for metals contaminated with oxides of plutonium and americium. Experiments were performed in which mild steel, stainless steel, and nickel contaminated with oxides of plutonium and americium were melted in the presence of silicate slags of various compositions. The metal products were low in contamination, with the plutonium and americium strongly fractionated to the slags. Partition coefficients (plutonium in slag/plutonium in steel) of 7 x 10 6 were measured with boro-silicate slag and of 3 x 10 6 with calcium, magnesium silicate slag. Decontamination of metals containing as much as 14,000 ppM plutonium appears to be as efficient as for metals with plutonium levels of 400 ppM. Staged extraction, that is, a remelting of processed metal with clean slag, results in further decontamination of the metal. The second extraction is effective with either resistance-furnace melting or electric-arc melting. Slag adhering to the metal ingots and in defects within the ingots is in the important contributors to plutonium retained in processed metals. If these sources of plutonium are controlled, the melt-refining process can be used on a large scale to convert highly contaminated metals to homogeneous and compact forms with very low concentrations of plutonium and americium. A conceptual design of a melt-refining process to decontaminate plutonium- and americium-contaminated metals is described. The process includes single-stage refining of contaminated metals to produce a metal product which would have less than 10 nCi/g of TRU-element contamination. Two plant sizes were considered. The smaller conceptual plant processes 77 kg of metal per 8-h period and may be portable.The larger one processes 140 kg of metal per 8-h period, is stationary, and may be near te maximum size that is practical for a metal decontamination process

  18. Review and evaluation of metallic TRU nuclear waste consolidation methods

    International Nuclear Information System (INIS)

    Montgomery, D.R.; Nesbitt, J.F.

    1983-08-01

    The US Department of Energy established the Commercial Waste Treatment Program to develop, demonstrate, and deploy waste treatment technology. In this report, viable methods are identified that could consolidate the volume of metallic wastes generated in a fuel reprocessing facility. The purpose of this study is to identify, evaluate, and rate processes that have been or could be used to reduce the volume of contaminated/irradiated metallic waste streams and to produce an acceptable waste form in a safe and cost-effective process. A technical comparative evaluation of various consolidation processes was conducted, and these processes were rated as to the feasibility and cost of producing a viable product from a remotely operated radioactive process facility. Out of the wide variety of melting concepts and consolidation systems that might be applicable for consolidating metallic nuclear wastes, the following processes were selected for evaluation: inductoslay melting, rotating nonconsumable electrode melting, plasma arc melting, electroslag melting with two nonconsumable electrodes, vacuum coreless induction melting, and cold compaction. Each process was evaluated and rated on the criteria of complexity of process, state and type of development required, safety, process requirements, and facility requirements. It was concluded that the vacuum coreless induction melting process is the most viable process to consolidate nuclear metallic wastes. 11 references

  19. Research on changes of nitrate by interactions with metals under the wastes disposal environment containing TRU nuclide

    International Nuclear Information System (INIS)

    Wada, Ryutaro; Nishimura, Tsutomu; Masuda, Kaoru; Fujiwara, Kazuo; Imakita, Tsuyoshi; Tateishi, Tsuyoshi

    2003-02-01

    There exists the waste including a nitrate ion as a salt in the TRU waste materials. This nitrate ion can transferred to the nitrite ion and/or ammonia by reducing materials such as metals in the waste disposal environment, and has the possibility to affect on the disposal environment and nuclide transfer parameters. Therefore, electrochemical tests were conducted to evaluate the reaction rate parameters of the nitrate ion and metals under the low oxygen environment. The long-term reaction test using the glass-seal vessel was also conducted to grasp precisely the nitrate ion transition reaction rate and the gas generation rate caused by the reaction of metal and the nitrate ion coexist solution. (1) Reaction rate constants under various environments were obtained performing the potentiostatic holding tests with the parameters of the solution pH, temperature, and the nitrate and nitrite ion concentrations. The formula of the nitrate ion transition reaction rate was also examined based on these obtained data. (2) Conducting the immersion tests under the environment of the low oxygen and high-pH rainfall underground water site, the long-term reaction rate data were obtained on the reaction products (ammonia, hydrogen gas etc.) of metals (carbon steel, stainless steel and zircaloy etc.) with nitrate ion. The tests under the same conditions as in the past were also conducted to evaluate the test accuracy and error range of the long-term reaction test with the glass-seal vessels. (author)

  20. An approach for the reasonable TRU waste management in NUCEF

    International Nuclear Information System (INIS)

    Mineo, H.; Dojiri, S.; Takeshita, I.; Tsujino, T.; Matsumura, T.; Nishizawa, I.; Sugikawa, S.

    1995-01-01

    The Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) has started its hot operation at the beginning of 1995, where TRU (transuranic) elements are used. The management of TRU waste arisen in the facility is very important issue. Liquid and solid wastes containing TRU elements are generated mainly from the Fuel Treatment System for critical experiments and from the researches of reprocessing process and TRU waste management for reprocessing plants using hot cells and glove-boxes. The TRU waste management in NUCEF is based on the classification of waste, and is to maximize the recycle of reagents and the reuse of TRU elements separated from the waste, as well as to reduce the waste volume and to lower the risk of waste by advanced separation and solidification. In the future, the separation and solidification of TRU elements in the tanks of liquid waste, and the classification and discrimination of solid wastes, will be carried out applying the outcomes of the development by the researches in NUCEF. (authors)

  1. Some Case Studies on Metal-Microbe Interactions to Remediate Heavy Metals- Contaminated Soils in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2015-04-01

    Conventional physicochemical technologies to remediate heavy metals-contaminated soil have many problems such as low efficiency, high cost and occurrence of byproducts. Recently bioremediation technology is getting more and more attention. Bioremediation is defined as the use of biological methods to remediate and/or restore the contaminated land. The objectives of bioremediation are to degrade hazardous organic contaminants and to convert hazardous inorganic contaminants to less toxic compounds of safe levels. The use of bioremediation in the treatment of heavy metals in soils is a relatively new concept. Bioremediation using microbes has been developed to remove toxic heavy metals from contaminated soils in laboratory scale to the contaminated field sites. Recently the application of cost-effective and environment-friendly bioremediation technology to the heavy metals-contaminated sites has been gradually realized in Korea. The merits of bioremediation include low cost, natural process, minimal exposure to the contaminants, and minimum amount of equipment. The limitations of bioremediation are length of remediation, long monitoring time, and, sometimes, toxicity of byproducts for especially organic contaminants. From now on, it is necessary to prove applicability of the technologies to contaminated sites and to establish highly effective, low-cost and easy bioremediation technology. Four categories of metal-microbe interactions are generally biosorption, bioreduction, biomineralization and bioleaching. In this paper, some case studies of the above metal-microbe interactions in author's lab which were published recently in domestic and international journals will be introduced and summarized.

  2. Environment, safety, health, and quality plan for the TRU- Contaminated Arid Soils Project of the Landfill Stabilization Focus Area Program

    International Nuclear Information System (INIS)

    Watson, L.R.

    1995-06-01

    The Landfill Stabilization Focus Area (LSFA) is a program funded by the US Department of Energy Office of Technology Development. LSFA supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The TRU-Contaminated Arid Soils project is being conducted under the auspices of the LSFA Program. This document describes the Environment, Safety, Health, and Quality requirements for conducting LSFA/Arid Soils activities at the Idaho National Engineering Laboratory. Topics discussed in this report, as they apply to LSFA/Arid Soils operations, include Federal, State of Idaho, and Environmental Protection Agency regulations, Health and Safety Plans, Quality Program, Data Quality Objectives, and training and job hazard analysis. Finally, a discussion is given on CERCLA criteria and system and performance audits as they apply to the LSFA Program

  3. History of metal contamination in Lake Illawarra, NSW, Australia.

    Science.gov (United States)

    Schneider, Larissa; Maher, William; Potts, Jaimie; Batley, Graeme; Taylor, Anne; Krikowa, Frank; Chariton, Anthony; Zawadzki, Atun; Heijnis, Henk; Gruber, Bernd

    2015-01-01

    Lake Illawarra has a long history of sediment contamination, particularly by metals, as a result of past and current industrial operations and land uses within the catchment. In this study, we examined the history of metal contamination in sediments using metal analysis and (210)Pb and (137)Cs dating. The distributions of copper, zinc, arsenic, selenium, cadmium and lead concentrations within sediment cores were in agreement with historical events in the lake, and indicated that metal contamination had been occurring since the start of industrial activities in Port Kembla in the late 1800 s. Most metal contamination, however, has occurred since the 1960s. Sedimentation rates were found to be 0.2 cm year(-1) in Griffins Bay and 0.3 cm year(-1) in the centre of the lake. Inputs from creeks bringing metals from Port Kembla in the northeast of the lake and a copper slag emplacement from a former copper refinery on the Windang Peninsula were the main sources of metal inputs to Lake Illawarra. The metals of highest concern were zinc and copper, which exceeded the Australian and New Zealand sediment quality guideline values at some sites. Results showed that while historical contamination persists, current management practices have resulted in reduced metal concentrations in surface sediments in the depositional zones in the centre of the lake. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Assessing the bioavailability and risk from metal-contaminated ...

    Science.gov (United States)

    Exposure to contaminated soil and dust is an important pathway in human health risk assessment. Physical and chemical characteristics, as well as biological factors, determine the bioaccessibility/bioavailability of soil and dust contaminants. Within a single sample, contamination may arise from multiple sources of toxic elements that may exist as different forms (species) which impact bioavailability. In turn, the bioaccessibility/bioavailability of soil and dust contaminants has a direct impact on human health risk assessment and risk management practices. Novel research efforts focusing on development and application of in vitro and in vivo methods to measure the bioaccessibility/bioavailability of metal contaminated soils have advanced in the past few years. The objective of this workshop was to focus on recent developments in assessing the bioaccessibility/bioavailability of arsenic contaminated soils, metal contamination in urban residences in Canada and potential children’s exposures to toxic elements in house dust, a community-based study known as the West Oakland Residential Lead Assessment , studies of the bioavailability of soil cadmium, chromium, nickel and mercury and human exposures to contaminated Brownfield soils. These presentations covered issues related to human health and bioavailability along with the most recent studies on community participation in assessing metal contamination, studies of exposures to residential contamination, and

  5. TRU waste form and package criteria meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-08-01

    The broad subject of the meeting is the overall ERDA TRU waste management program, although the discussions also cover performance criteria for the Waste Isolation Pilot Plant and their implications for the overall TRU program. Separate abstracts were prepared for all ten presentations. (DLC)

  6. A Metal Fuel Core Concept for 1000 MWt Advanced Burner Reactor

    International Nuclear Information System (INIS)

    Yang, W.S.; Kim, T.K.; Grandy, C.

    2007-01-01

    This paper describes the core design and performance characteristics of a metal fuel core concept for a 1000 MWt Advanced Burner Reactor. A ternary metal fuel form of U-TRU-Zr was assumed with weapons grade plutonium feed for the startup core and TRU recovered from LWR spent fuel for the recycled equilibrium core. A compact burner core was developed by trade-off between the burnup reactivity loss and TRU conversion ratio, with a fixed cycle length of one-year. In the startup core, the average TRU enrichment is 15.5%, the TRU conversion ratio is 0.81, and the burnup reactivity loss over a cycle is 3.6% Δk. The heavy metal and TRU inventories are 13.1 and 2.0 metric tons, respectively. The average discharge burnup is 93 MWd/kg, and the TRU consumption rate is 55.5 kg/year. For the recycled equilibrium core, the average TRU enrichment is 22.1 %, the TRU conversion ratio is 0.73, and the burnup reactivity loss is 2.2% Δk. The TRU inventory and consumption rate are 2.9 metric tons and 81.6 kg/year, respectively. The evaluated reactivity coefficients provide sufficient negative feedbacks. The control systems provide shutdown margins that are more than adequate. The integral reactivity parameters for quasi-static reactivity balance analysis indicate favorable passive safety features, although detailed safety analyses are required to verify passive safety behavior. (authors)

  7. TRU waste inventory collection and work-off plans for the centralization of TRU waste characterization at INL - on your mark - get set - 9410

    International Nuclear Information System (INIS)

    Mctaggert, Jerri Lynne; Lott, Sheila; Gadbury, Casey

    2009-01-01

    The U.S. Department of Energy (DOE) amended the Record of Decision (ROD) for the Waste Management Program: Treatment and Storage ofTransuranic Waste to centralize transuranic (TRU) waste characterization/certification from fourteen TRU waste sites. This centralization will allow for treatment, characterization and certification ofTRU waste from the fourteen sites, thirteen of which are sites with small quantities ofTRU waste, at the Idaho National Laboratory (INL) prior to shipping the waste to the Waste Isolation Pilot Plant (WIPP) for disposal. Centralization ofthis TRU waste will avoid the cost ofbuilding treatment, characterization, certification, and shipping capabilities at each ofthe small quantity sites that currently do not have existing facilities. Advanced Mixed Waste Treatment Project (AMWTP) and Idaho Nuclear Technology and Engineering Center (INTEC) will provide centralized shipping facilities, to WIPP, for all ofthe small quantity sites. Hanford, the one large quantity site identified in the ROD, has a large number ofwaste in containers that are overpacked into larger containers which are inefficient for shipment to and disposal at WIPP. The AMWTP at the INL will reduce the volume ofmuch of the CH waste and make it much more efficient to ship and dispose of at WIPP. In addition, the INTEC has a certified remote handled (RH) TRU waste characterization/certification program at INL to disposition TRU waste from the sites identified in the ROD.

  8. Final Report for Project ''Role of Metal Bioavailability in In Situ Bioremediation of Metal and Organic Co-Contaminated Sites''; FINAL

    International Nuclear Information System (INIS)

    Raina M. Maier

    2002-01-01

    A large proportion of hazardous waste sites are co-contaminated with organics and various metals. Such co-contaminated sites are difficult to bioremediate due to the nature of the mixed contaminants. Specifically, the presence of a co-contaminating metal imposes increased stress on indigenous populations already impacted by organic contaminant stress. The overall objective of this research is to investigate the effect of varying metal bioavailability on microbial populations and biodegradation of organics to allow a better understanding of how optimize remediation of co-contaminated sites. The hypothesis for this project is that metal bioavailability is not directly correlated with metal stress imposed on microbial populations that are degrading organics in soil and that further understanding of the relationship between metal bioavailability and metal stress is required for successful treatment of sites contaminated with mixtures of organics and metals. The specific objectives to be addressed to accomplish this goal are: (1) To determine the influence of metal bioavailability in soil microcosms co-contaminated with organics and metals on degradation of the organic contaminants and on mechanisms of metal resistance and (2) To determine the efficacy of different bioremediation strategies for co-contaminated soils based on metal bioavailability

  9. CH-TRU Waste Content Codes

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2008-01-16

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  10. Oral bioaccessibility of toxic metals in contaminated oysters and relationships with metal internal sequestration.

    Science.gov (United States)

    Gao, Shi; Wang, Wen-Xiong

    2014-12-01

    The Hong Kong oysters Crassostrea hongkongensis are widely farmed in the estuarine waters of Southern China, but they accumulate Cu and Zn to alarmingly high concentrations in the soft tissues. Health risks of seafood consumption are related to contaminants such as toxic metals which are bioaccessible to humans. In the present study, we investigated the oral bioaccessibility of five toxic metals (Ag, Pb, Cd, Cu and Zn) in contaminated oysters collected from different locations of a large estuary in southern China. In all oysters, total Zn concentration was the highest whereas total Pb concentration was the lowest. Among the five metals, Ag had the lowest oral bioaccessibility (38.9-60.8%), whereas Cu and Zn had the highest bioaccessibility (72.3-93.1%). Significant negative correlation was observed between metal bioaccessibility and metal concentration in the oysters for Ag, Cd, and Cu. We found that the oral bioaccessibility of the five metals was positively correlated with their trophically available metal fraction (TAM) in the oyster tissues, and negatively correlated with metal distribution in the cellular debris. Thus, metal partitioning in the TAM and cellular debris controlled the oral bioaccessibility to humans. Given the dependence of oral bioaccessibility on tissue metal contamination, bioaccessibility needs to be incorporated in the risk assessments of contaminated shellfish. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Phytoremediation of water bodies contaminated with radioactive heavy metal

    International Nuclear Information System (INIS)

    Yan Zhen; Yuan Shichao; Ling Hui; Xie Shuibo

    2012-01-01

    The sources of the radioactive heavy metal in the water bodies were analyzed. The factors that affect phyto remediation of water contaminated with radioactive heavy metal were discussed. The plant species, mechanism and major technology of phyto remediation of water contaminated with radioactive heavy metal were particularly introduced. The prospective study was remarked. (authors)

  12. Plans for Managing Hanford Remote Handled Transuranic (TRU) Waste

    International Nuclear Information System (INIS)

    MCKENNEY, D.E.

    2001-01-01

    The current Hanford Site baseline and life-cycle waste forecast predicts that approximately 1,000 cubic meters of remote-handled transuranic (RH-TRU) waste will be generated by waste management and environmental restoration activities at Hanford. These 1,000 cubic meters, comprised of both transuranic and mixed transuranic (TRUM) waste, represent a significant portion of the total estimated inventory of RH-TRU to be disposed of at the Waste Isolation Pilot Plant (WIPP). A systems engineering approach is being followed to develop a disposition plan for each RH-TRU/TRUM waste stream at Hanford. A number of significant decision-making efforts are underway to develop and finalize these disposition plans, including: development and approval of a RH-TRU/TRUM Waste Project Management Plan, revision of the Hanford Waste Management Strategic Plan, the Hanford Site Options Study (''Vision 2012''), the Canyon Disposal Initiative Record-of-Decision, and the Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (SW-EIS). Disposition plans may include variations of several options, including (1) sending most RH-TRU/TRUM wastes to WIPP, (2) deferrals of waste disposal decisions in the interest of both efficiency and integration with other planned decision dates and (3) disposition of some materials in place consistent with Department of Energy Orders and the regulations in the interest of safety, risk minimization, and cost. Although finalization of disposition paths must await completion of the aforementioned decision documents, significant activities in support of RH-TRU/TRUM waste disposition are proceeding, including Hanford participation in development of the RH TRU WIPP waste acceptance criteria, preparation of T Plant for interim storage of spent nuclear fuel sludge, sharing of technology information and development activities in cooperation with the Mixed Waste Focus Area, RH-TRU technology demonstrations and deployments, and

  13. TRU Waste Inventory Collection and Work-Off Plans for the Centralization of TRU Waste Characterization/Certification at INL - On Your Mark - Get Set

    International Nuclear Information System (INIS)

    McTaggart, J.; Lott, S.

    2009-01-01

    The U.S. Department of Energy (DOE) amended the Record of Decision (ROD) for the Waste Management Program: Treatment and Storage of Transuranic Waste to centralize transuranic (TRU) waste characterization/certification from fourteen TRU waste sites. This centralization will allow for treatment, characterization and certification of TRU waste from the fourteen sites, thirteen of which are sites with small quantities of TRU waste, at the Idaho National Laboratory (INL) prior to shipping the waste to the Waste Isolation Pilot Plant (WIPP) for disposal. Centralization of this TRU waste will avoid the cost of building treatment, characterization, certification, and shipping capabilities at each of the small quantity sites that currently do not have existing facilities. Advanced Mixed Waste Treatment Project (AMWTP) and Idaho Nuclear Technology and Engineering Center (INTEC) will provide centralized shipping facilities, to WIPP, for all of the small quantity sites. Hanford, the one large quantity site identified in the ROD, has a large number of waste in containers that are over-packed into larger containers which are inefficient for shipment to and disposal at WIPP. The AMWTP at the INL will reduce the volume of much of the CH waste and make it much more efficient to ship and dispose of at WIPP. In addition, the INTEC has a certified remote handled (RH) TRU waste characterization/certification program at INL to disposition TRU waste from the sites identified in the ROD. (authors)

  14. Comparison between TRU burning reactors and commercial fast reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Sanda, Toshio; Ogawa, Takashi

    2001-03-01

    Research and development for stabilizing or shortening the radioactive wastes including in spent nuclear fuel are widely conducted in view point of reducing the environmental impact. Especially it is effective way to irradiate and transmute long-lived TRU by fast reactors. Two types of loading way were previously proposed. The former is loading relatively small amount of TRU in all commercial fast reactors and the latter is loading large amount of TRU in a few TRU burning reactors. This study has been intended to contribute to the feasibility studies on commercialized fast reactor cycle system. The transmutation and nuclear characteristics of TRU burning reactors were evaluated and compared with those of conventional transmutation system using commercial type fast reactor based upon the investigation of technical information about TRU burning reactors. Major results are summarized as follows. (1) Investigation of technical information about TRU burning reactors. Based on published reports and papers, technical information about TRU burning reactor concepts transmutation system using convectional commercial type fast reactors were investigated. Transmutation and nuclear characteristics or R and D issue were investigated based on these results. Homogeneously loading of about 5 wt% MAs on core fuels in the conventional commercial type fast reactor may not cause significant impact on the nuclear core characteristics. Transmutation of MAs being produced in about five fast reactors generating the same output is feasible. The helium cooled MA burning fast reactor core concept propose by JAERI attains criticality using particle type nitride fuels which contain more than 60 wt% MA. This reactor could transmute MAs being produced in more than ten 1000 MWe-LWRs. Ultra-long life core concepts attaining more than 30 years operation without refueling by utilizing MA's nuclear characteristics as burnable absorber and fertile nuclides were proposed. Those were pointed out that

  15. Worker exposures from recycling surface contaminated radioactive scrap metal

    International Nuclear Information System (INIS)

    Kluk, A.; Phillips, J.W.; Culp, J.

    1996-01-01

    Current DOE policy permits release from DOE control of real property with residual levels of surficial radioactive contamination if the contamination is below approved guidelines. If the material contains contamination that is evenly distributed throughout its volume (referred to as volumetric contamination), then Departmental approval for release must be obtained in advance. Several DOE sites presently recycle surface contaminated metal, although the quantities are small relative to the quantities of metal processed by typical mini-mills, hence the potential radiation exposures to mill workers from processing DOE metals and the public from the processed metal are at present also a very small fraction of their potential value. The exposures calculated in this analysis are based on 100% of the scrap metal being processed at the maximum contamination levels and are therefore assumed to be maximum values and not likely to occur in actual practice. This paper examines the relationship between the surface contamination limits established under DOE Order 5400.5, open-quotes Radiation Protection of the Public and the Environment,close quotes and radiation exposures to workers involved in the scrap metal recycling process. The analysis is limited to surficial contamination at or below the guideline levels established in DOE Order 5400.5 at the time of release. Workers involved in the melting and subsequent fabrication of products are not considered radiation workers (no requirements for monitoring) and must be considered members of the public. The majority of the exposures calculated in this analysis range from tenths of a millirem per year (mrem/yr) to less than 5 mrem/yr. The incremental risk of cancer associated with these exposures ranges from 10 -8 cancers per year to 10 -6 cancers per year

  16. Major Components of the National TRU Waste System Optimization Project

    International Nuclear Information System (INIS)

    Moody, D.C.; Bennington, B.; Sharif, F.

    2002-01-01

    The National Transuranic (TRU) Program (NTP) is being optimized to allow for disposing of the legacy TRU waste at least 10 years earlier than originally planned. This acceleration will save the nation an estimated $713. The Department of Energy's (DOE'S) Carlsbad Field Office (CBFO) has initiated the National TRU Waste System Optimization Project to propose, and upon approvaI, implement activities that produce significant cost saving by improving efficiency, thereby accelerating the rate of TRU waste disposal without compromising safety. In its role as NTP agent of change, the National TRU Waste System Optimization Project (the Project) (1) interacts closely with all NTP activities. Three of the major components of the Project are the Central Characterization Project (CCP), the Central Confirmation Facility (CCF), and the MobiIe/Modular Deployment Program.

  17. Aromatic plant production on metal contaminated soils

    International Nuclear Information System (INIS)

    Zheljazkov, Valtcho D.; Craker, Lyle E.; Xing Baoshan; Nielsen, Niels E.; Wilcox, Andrew

    2008-01-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha -1 for Cd, 660 g ha -1 for Pb, 180 g ha -1 for Cu, 350 g ha -1 for Mn, and 205 g ha -1 for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 μm) particles, although there were larger particles (1-5 μm) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil

  18. Aromatic plant production on metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D. [Mississippi State, Department of Plant and Soil Sciences and North Mississippi Research and Extension Center, 5421 Highway 145 South, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Craker, Lyle E.; Xing Baoshan [Department of Plant and Soil Sciences, 12 Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Nielsen, Niels E. [Plant Nutrition and Soil Fertility Lab, Department of Agricultural Sciences, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK1871, Copenhagen (Denmark); Wilcox, Andrew [Harper Adams University College, Newport, Shropshire, TF10 8NB (United Kingdom)

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha{sup -1} for Cd, 660 g ha{sup -1} for Pb, 180 g ha{sup -1} for Cu, 350 g ha{sup -1} for Mn, and 205 g ha{sup -1} for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 {mu}m) particles, although there were larger particles (1-5 {mu}m) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.

  19. Electrochemical Decontamination of Painted and Heavily Corroded Metals

    International Nuclear Information System (INIS)

    Marczak, S.; Anderson, J.; Dziewinski, J.

    1998-01-01

    The radioactive metal wastes that are generated from nuclear fuel plants and radiochemical laboratories are mainly contaminated by the surface deposition of radioactive isotopes. There are presently several techniques used in removing surface contamination involving physical and chemical processes. However, there has been very little research done in the area of soiled, heavily oxidized, and painted metals. Researchers at Los Alamos National Laboratory have been developing electrochemical procedures for the decontamination of bare and painted metal objects. These methods have been found to be effective on highly corroded as well as relatively new metals. This study has been successful in decontaminating projectiles and shrapnel excavated during environmental restoration projects after 40+ years of exposure to the elements. Heavily corroded augers used in sampling activities throughout the area were also successfully decontaminated. This process has demonstrated its effectiveness and offers several advantages over the present metal decontamination practices of media blasting and chemical solvents. These advantages include the addition of no toxic or hazardous chemicals, low operating temperature and pressure, and easily scaleable equipment. It is in their future plans to use this process in the decontamination of gloveboxes destined for disposal as TRU waste

  20. Radiolytic decomposition of organic C-14 released from TRU waste

    International Nuclear Information System (INIS)

    Kani, Yuko; Noshita, Kenji; Kawasaki, Toru; Nishimura, Tsutomu; Sakuragi, Tomofumi; Asano, Hidekazu

    2007-01-01

    It has been found that metallic TRU waste releases considerable portions of C-14 in the form of organic molecules such as lower molecular weight organic acids, alcohols and aldehydes. Due to the low sorption ability of organic C-14, it is important to clarify the long-term behavior of organic forms under waste disposal conditions. From investigations on radiolytic decomposition of organic carbon molecules into inorganic carbonic acid, it is expected that radiation from TRU waste will decompose organic C-14 into inorganic carbonic acid that has higher adsorption ability into the engineering barriers. Hence we have studied the decomposition behavior of organic C-14 by gamma irradiation experiments under simulated disposal conditions. The results showed that organic C-14 reacted with OH radicals formed by radiolysis of water, to produce inorganic carbonic acid. We introduced the concept of 'decomposition efficiency' which expresses the percentage of OH radicals consumed for the decomposition reaction of organic molecules in order to analyze the experimental results. We estimated the effect of radiolytic decomposition on the concentration of organic C-14 in the simulated conditions of the TRU disposal system using the decomposition efficiency, and found that the concentration of organic C-14 in the waste package will be lowered when the decomposition of organic C-14 by radiolysis was taken into account, in comparison with the concentration of organic C-14 without radiolysis. Our prediction suggested that some amount of organic C-14 can be expected to be transformed into the inorganic form in the waste package in an actual system. (authors)

  1. TRU waste-assay instrumentation and application in nuclear-facility decommissioning

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1982-01-01

    The Los Alamos TRU waste assay program is developing measurement techniques for TRU and other radioactive waste materials generated by the nuclear industry, including decommissioning programs. Systems are now being fielded for test and evaluation purposes at DOE TRU waste generators. The transfer of this technology to other facilities and the commercial instrumentation sector is well in progress. 6 figures

  2. Transuranic (Tru) waste volume reduction operations at a plutonium facility

    Energy Technology Data Exchange (ETDEWEB)

    Cournoyer, Michael E [Los Alamos National Laboratory; Nixon, Archie E [Los Alamos National Laboratory; Dodge, Robert L [Los Alamos National Laboratory; Fife, Keith W [Los Alamos National Laboratory; Sandoval, Arnold M [Los Alamos National Laboratory; Garcia, Vincent E [Los Alamos National Laboratory

    2010-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos

  3. Transuranic (Tru) waste volume reduction operations at a plutonium facility

    International Nuclear Information System (INIS)

    Cournoyer, Michael E.; Nixon, Archie E.; Dodge, Robert L.; Fife, Keith W.; Sandoval, Arnold M.; Garcia, Vincent E.

    2010-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos National

  4. Transuranic (TRU) waste volume reduction operations at a plutonium facility

    International Nuclear Information System (INIS)

    Cournoyer, Michael E.; Nixon, Archie E.; Fife, Keith W.; Sandoval, Arnold M.; Garcia, Vincent E.; Dodge, Robert L.

    2011-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actinide Processing Group at TA-55 uses one-meter or longer glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glovebox as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste volume generation by almost 2½ times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos

  5. Microbial characterization of a radionuclide- and metal-contaminated waste site

    International Nuclear Information System (INIS)

    Bolton, H. Jr.; Lumppio, H.L.; Ainsworth, C.C.; Plymale, A.E.

    1993-04-01

    The operation of nuclear processing facilities and defense-related nuclear activities has resulted in contamination of near-surface and deep-subsurface sediments with both radionuclides and metals. The presence of mixed inorganic contaminants may result in undetectable microbial populations or microbial populations that are different from those present in uncontaminated sediments. To determine the impact of mixed radionuclide and metal contaminants on sediment microbial communities, we sampled a processing pond that was used from 1948 to 1975 for the disposal of radioactive and metal-contaminated wastewaters from laboratories and nuclear fuel fabrication facilities on the Hanford Site in Washington State. Because the Hanford Site is located in a semiarid environment with average rainfall of 159 mm/year, the pond dried and a settling basin remained after wastewater input into the pond ceased in 1975. This processing pond basin offered a unique opportunity to obtain near-surface sediments that had been contaminated with both radionuclides and metals for several decades. Our objectives were to determine the viable populations of microorganisms in the sediments and to test several hypotheses about how the addition of both radionuclides and metals influenced the microbial ecology of the sediments. Our first hypothesis was that viable populations of microorganisms would be lower in the more contaminated sediments. Second, we expected that long-term metal exposure would result in enhanced metal resistance. Finally, we hypothesized that microorganisms from the most radioactive sediments should have had enhanced radiation resistance

  6. Evaluation of some heavy metal contaminants in biscuits, fruit drinks ...

    African Journals Online (AJOL)

    Evaluation of some heavy metal contaminants in biscuits, fruit drinks, concentrates, ... effect in human due to continual consumption of food contaminated with heavy metals gotten from raw materials, manufacturing and packaging processes.

  7. Global cooperation and conceptual design toward GNEP. Enhanced TRU burning fast reactor

    International Nuclear Information System (INIS)

    Ikeda, Kazumi; Maddox, James W.; Nakazato, Wataru; Kunishima, Shigeru

    2008-01-01

    In support of the GNEP (Global Nuclear Energy Partnership) program, AREVA and Mitsubishi Heavy Industries, Ltd. (MHI) seek to develop an ARR (Advanced Recycling Reactor) in concern with a CFTC (Consolidated Fuel Treatment Facility). This report presents the examination of more effective transuranics (TRU) burning core. Therefore some innovative technologies have been examined under the safety requirements; MA bearing fuel with 50% TRU fraction, moderator pin, fuel of high Am fraction, and Am blanket. The function of moderator is to enhance TRU burning capability, while increasing the Doppler effect and reducing the positive sodium void effect. The aim of 50% TRU fraction is to increase TRU burning capability by curbing plutonium production. Both high Am fraction of fuel and Am blanket can promote Am transmutation. According to the detailed calculation of high TRU (MA 15%, Pu 35% average) contained oxide fueled core with moderator pins of 12% arranged driver fuel assemblies, TRU conversion ratio decreases down to 0.33 and TRU burning capability is improved to 67kg/TWeh. Deploying Am blanket which is oxide fuel with Am 50% and U 50%, the total of Am transmutation capability becomes 69 kg/TWeh. (author)

  8. Method of electrolytic decontamination of contaminated metal materials for radioactivity

    International Nuclear Information System (INIS)

    Harada, Yoshio; Ishibashi, Masaru; Matsumoto, Hiroyo.

    1985-01-01

    Purpose: To electrolytically eliminate radioactive materials from metal materials contaminated with radioactive materials, as well as efficiently remove metal ions leached out in an electrolyte. Method: In the case of anodic dissolution of metal materials contaminated with radioactivity in an electrolyte to eliminate radioactive contaminating materials on the surface of the metal materials, a portion of an electrolytic cell is defined with partition membranes capable of permeating metal ions therethrough. A cathode connected to a different power source is disposed to the inside of the partition membranes and fine particle of metals are suspended and floated in the electrolyte. By supplying an electric current between an insoluble anode disposed outside of the partition membranes and the cathode, metal ions permeating from the outside of the partition membranes are deposited on the fine metal particles. Accordingly, since metal ions in the electrolyte are removed, the electrolyte can always be kept clean. (Yoshihara, H.)

  9. Empātijas atšķirības improvizācijas teātru, amatierteātru un koru dalībniekiem

    OpenAIRE

    Nikolajeva, Inga

    2012-01-01

    Pētījuma mērķis ir noskaidrot empātijas atšķirības starp improvizācijas teātru, amatierteātru un koru dalībniekiem. Izlasi veido 106 respondenti, no tiem 41 improvizācijas teātru dalībnieks, 34 amatierteātru dalībnieki un 31 koru dalībnieks kā kontroles grupa – respondenti, kuriem tā ir brīvā laika aktivitāte ārpus darba. Dalībnieki ir 14 vīrieši un 92 sievietes vecumā no 18 līdz 30 gadiem, dalībnieku pieredzes ilgums aktiermākslā ir no 1 līdz 15 gadiem. Pētījumā tiek izmantota Saimona Barona...

  10. Remote Handled TRU Waste Status and Activities and Challenges at the Hanford Site

    International Nuclear Information System (INIS)

    MCKENNEY, D.E.

    2000-01-01

    A significant portion of the Department of Energy's forecast volume of remote-handled (RH) transuranic (TRU) waste will originate from the Hanford Site. The forecasted Hanford RH-TRU waste volume of over 2000 cubic meters may constitute over one-third of the forecast inventory of RH-TRU destined for disposal at the Waste Isolation Pilot Plant (WIPP). To date, the Hanford TRU waste program has focused on the retrieval, treatment and certification of the contact-handled transuranic (CH-TRU) wastes. This near-term focus on CH-TRU is consistent with the National TRU Program plans and capabilities. The first shipment of CH-TRU waste from Hanford to the WIPP is scheduled early in Calendar Year 2000. Shipments of RH-TRU from Hanford to the WIPP are scheduled to begin in Fiscal Year 2006 per the National TRU Waste Management Plan. This schedule has been incorporated into milestones within the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). These Tri-Party milestones (designated the ''M-91'' series of milestones) relate to development of project management plans, completion of design efforts, construction and contracting schedules, and initiation of process operations. The milestone allows for modification of an existing facility, construction of a new facility, and/or commercial contracting to provide the capabilities for processing and certification of RH-TRU wastes for disposal at the WIPP. The development of a Project Management Plan (PMP) for TRU waste is the first significant step in the development of a program for disposal of Hanford's RH-TRU waste. This PMP will address the path forward for disposition of waste streams that cannot be prepared for disposal in the Hanford Waste Receiving and Processing facility (a contact-handled, small container facility) or other Site facilities. The PMP development effort has been initiated, and the PMP will be provided to the regulators for their approval by June 30, 2000. This plan will detail the

  11. Process for treating waste water having low concentrations of metallic contaminants

    Science.gov (United States)

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  12. Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity.

    Science.gov (United States)

    Hamels, Fanny; Malevé, Jasmina; Sonnet, Philippe; Kleja, Dan Berggren; Smolders, Erik

    2014-11-01

    Soil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils. Nine soils contaminated with Zn or Cu by metal mining, smelting, or processing were collected. Uncontaminated reference soils with similar soil properties were sampled, and series of increasing contamination were created by mixing each with the corresponding soil. In addition, each reference soil was spiked with either ZnCl2 or CuCl2 at several concentrations. Total metal toxicity to barley seedling growth in the field-contaminated soils was up to 30 times lower than that in corresponding spiked soils. Total metal (aqua regia-soluble) toxicity thresholds of 50% effective concentrations (EC50) varied by factors up to 260 (Zn) or 6 (Cu) among soils. For Zn, variations in EC50 thresholds decreased as aqua regia > 0.43 M HNO3  > 0.05 M ethylenediamine tetraacetic acid (EDTA) > 1 M NH4 NO3  > cobaltihexamine > diffusive gradients in thin films (DGT) > 0.001 M CaCl2 , suggesting that the last extraction is the most robust phytotoxicity index for Zn. The EDTA extraction was the most robust for Cu-contaminated soils. The isotopically exchangeable fraction of the total soil metal in the field-contaminated soils markedly explained the lower toxicity compared with spiked soils. The isotope exchange method can be used to translate soil metal limits derived from soils spiked with metal salts to site-specific soil metal limits. © 2014 SETAC.

  13. An Advanced Sodium-Cooled Fast Reactor Core Concept Using Uranium-Free Metallic Fuels for Maximizing TRU Burning Rate

    Directory of Open Access Journals (Sweden)

    Wuseong You

    2017-12-01

    Full Text Available In this paper, we designed and analyzed advanced sodium-cooled fast reactor cores using uranium-free metallic fuels for maximizing burning rate of transuranics (TRU nuclides from PWR spent fuels. It is well known that the removal of fertile nuclides such as 238U from fuels in liquid metal cooled fast reactor leads to the degradation of important safety parameters such as the Doppler coefficient, coolant void worth, and delayed neutron fraction. To resolve the degradation of the Doppler coefficient, we considered adding resonant nuclides to the uranium-free metallic fuels. The analysis results showed that the cores using uranium-free fuels loaded with tungsten instead of uranium have a significantly lower burnup reactivity swing and more negative Doppler coefficients than the core using uranium-free fuels without resonant nuclides. In addition, we considered the use of axially central B4C absorber region and moderator rods to further improve safety parameters such as sodium void worth, burnup reactivity swing, and the Doppler coefficient. The results of the analysis showed that the final design core can consume ~353 kg per cycle and satisfies self-controllability under unprotected accidents. The fuel cycle analysis showed that the PWR–SFR coupling fuel cycle option drastically reduces the amount of waste going to repository and the SFR burner can consume the amount of TRUs discharged from 3.72 PWRs generating the same electricity.

  14. TRU Self-Recycling in a High Temperature Gas Cooled Reactor

    International Nuclear Information System (INIS)

    Jo, Chang Keun

    2013-01-01

    Conclusions: • Evaluated the core characteristics and performance for SR-HTR. • Self-recycling of self-generated TRUs is feasible and deep-burning of the self-generated TRU can be achieved in SR-HTR. • From the results, ⇒ TRU discharge burnup is over 60% and the uranium fuel can also be utilized very efficiently in the SR-HTR core. ⇒ In the case of separate TRU loading, the power fraction of the TRU fueled zone is substantially smaller (~10%) than that of the uranium fueled zone. ⇒ The transmutation of Pu-239 is nearly complete (~99%) in the SR-HTR core and that of Pu-241 is also extremely high. ⇒ The decay heat of SR-HTR core is evaluated to be similar to that of the 3-ring UO 2 -only loaded HTR core. • A TF-coupled analysis is required for a more concrete evaluation of TRU deep-burn in an SR-HTR

  15. Metal resistance in populations of red maple (Acer rubrum L.) and white birch (Betula papyrifera Marsh.) from a metal-contaminated region and neighbouring non-contaminated regions

    International Nuclear Information System (INIS)

    Kirkey, Fallon M.; Matthews, Jennifer; Ryser, Peter

    2012-01-01

    Metal resistance in populations of Acer rubrum and Betula papyrifera in the industrially contaminated region of Sudbury, Ontario, was compared with resistance in populations from neighbouring uncontaminated regions. In two one-season experiments, seedlings were grown outdoors on contaminated (mainly Cu, Ni) and uncontaminated substrates. Sudbury populations of both species responded less to contamination than populations from uncontaminated regions. In A. rubrum this difference was small. For both species, Sudbury plants were smaller when grown on uncontaminated substrate. B. papyrifera from Sudbury grew better on contaminated substrate than the other populations. There is indication of variation in metal resistance within the populations from the non-contaminated regions. The data shows that trees may develop adaptive resistance to heavy metals, but the low degree of resistance indicates that the development of such resistances are slower than observed for herbaceous species with shorter generation times. - Highlights: ► Metal resistance in trees from an industrially contaminated region was investigated. ► Both red maple and white birch have developed some degree of resistance. ► There is indication of a cost for resistance. ► Populations from non-contaminated regions show variation in response to contamination. - Adaptive metal resistance can also develop in trees with long generation times, but the degree of resistance is lower than for herbaceous species from the same region.

  16. Investigation of mangrove macroalgae as biomonitors of estuarine metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Melville, Felicity [Department of Environmental Sciences/Institute of Water and Environmental Resource Management, University of Technology, Sydney, PO Box 123, Broadway NSW 2007 (Australia)], E-mail: f.melville@cqu.edu.au; Pulkownik, Alex [Department of Environmental Sciences/Institute of Water and Environmental Resource Management, University of Technology, Sydney, PO Box 123, Broadway NSW 2007 (Australia)

    2007-11-15

    This study examined the potential use of macroalgae epiphytic on mangrove aerial roots as biomonitors of estuarine contamination. The metal concentrations of macroalgae were investigated in four estuaries in the vicinity of Sydney, Australia, and compared to water and sediment metal concentrations over three seasonal surveys. Macroalgal metal concentrations (copper, zinc, cadmium, chromium, lead, nickel, manganese and iron) appeared to be more associated with sediment metal concentrations than water concentrations, suggesting they may be useful biomonitors of estuarine sediment contamination. Algae in the more contaminated estuaries generally contained higher metal concentrations. However, concentrations of iron, nickel and manganese appeared to be similar in the algae despite the varying sediment concentrations, while accumulation of copper, zinc, lead and chromium appeared to be associated with ambient environmental concentrations. The uptake of metals also varied among the different species, suggesting that algal parameters, such as morphology, may also influence metal uptake and accumulation.

  17. CH-TRU Content Codes (CH-TRUCON)

    International Nuclear Information System (INIS)

    2005-01-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes 'shipping categories' that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the 'General Case,' which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for 'Close-Proximity Shipments' (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for 'Controlled Shipments

  18. CH-TRU Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-10-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  19. Advanced dust monitoring system applied to new TRU handling facility of JAERI

    International Nuclear Information System (INIS)

    Yabuta, H.; Shigeta, Y.; Sawahata, K.; Hasegawa, K.

    1993-01-01

    In JAERI, a large, scale multipurpose facility is under construction, which consists of a TRU waste management testing installation, a solution fuel treatment installation and critical assemblies with uranium and/or plutonium solution fuel. The facility is also equipped with a lot of gloveboxes for handling and treatment of solution fuel and hot cells for research on reprocessing process. As there may be a relatively high potential of air contamination, it is important to monitor air contamination effectively and efficiently. An advanced dust monitoring system was introduced for convenience of handling and automatical measurement of filter papers, by developing a filter-holder with an IC memory and a radioactivity measuring device with an automatic filter-holder changing mechanism as a part of a centralized monitoring system with a computer

  20. Current Program for the management of U.S. Department of Energy transuranic waste

    International Nuclear Information System (INIS)

    Harms, T.

    1994-01-01

    The existing inventory of TRU waste can be divided into tow distinct components: (1) retrievably stored TRU waste and (2) buried TRU waste. The distinction between open-quotes storedclose quotes and open-quotes buriedclose quotes TRU waste was established in 1970 when the Atomic Energy Commission (AEC) determined that TRU-contaminated waste, when disposed, should have more effective isolation from the environment than the confinement provided by burial in pits and trenches covered with soil. Buried TRU (and contaminated soils surrounding buried TRU) are the results of disposal operations carried out at DOE sites prior to the 1970 decision. The inventory of buried TRU is 190,600 m 3 . This waste is the responsibility of the Office of Environmental Restoration (EM-40). All TRU waste generated since 1970 has been placed in storage at six DOE sites. This storage was designed with a lifetime expected to be 20 years. The waste is stored in retrievable form for eventual shipment and disposal at a geologic repository. Currently, TRU waste is contained in a variety of packaging, including metal drums and wooden and metal boxes, and stored in earth-mounded berms, concrete culverts, or other facilities. At the end of 1991, there were approximately 64,000 m 3 of retrievably stored TRU waste. With the WIPP facility not becoming operational until the year 2000 or later, the DOE must effectively manage this waste in other manners. The issues regarding the management of TRU wastes is described

  1. Allowable residual contamination levels: transuranic advanced disposal systems for defense waste

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.

    1982-01-01

    An evaluation of advanced disposal systems for defense transuranic (TRU) wastes is being conducted using the Allowable Residual Contamination Level (ARCL) method. The ARCL method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. For defense TRU wastes at the Hanford Site near Richland, Washington, various advanced disposal techniques are being studied to determine their potential for application. This paper presents a discussion of the results of the first stage of the TRU advanced disposal systems project

  2. Sequential extraction of uranium metal contamination

    International Nuclear Information System (INIS)

    Murry, M.M.; Spitz, H.B.; Connick, W.B.

    2016-01-01

    Samples of uranium contaminated dirt collected from the dirt floor of an abandoned metal rolling mill were analyzed for uranium using a sequential extraction protocol involving a series of five increasingly aggressive solvents. The quantity of uranium extracted from the contaminated dirt by each reagent can aid in predicting the fate and transport of the uranium contamination in the environment. Uranium was separated from each fraction using anion exchange, electrodeposition and analyzed by alpha spectroscopy analysis. Results demonstrate that approximately 77 % of the uranium was extracted using NH 4 Ac in 25 % acetic acid. (author)

  3. Review on technical issues influencing the performance of chemical barriers of TRU waste repository

    International Nuclear Information System (INIS)

    Fujita, Tomonari; Sugiyama, Daisuke; Tsukamoto, Masaki; Yokoyama, Hayaichi

    1997-01-01

    Studies of technical issues influencing the performance assessment of TRU waste disposal which is occurred from the nuclear fuel reprocessing were reviewed in related to the development of safety analysis method. Especially, the chemical containment was investigated as a key barrier to radionuclide migration. TRU waste including long-lived radionuclides need long-term performance assessment which could be assumed only by the chemical barrier. The description of technical issues concerned with the performance of TRU waste repository has been divided into the following categories: long-term degradation of cementitious materials as engineered barrier for radionuclide migration, effect of colloids, organic macromolecules and organic degradation products on chemical behavior of radionuclides, gas generation by corrosion of metallic wastes, and effects of microbial activity. Preliminary performance assessment indicated that important factors affecting performance of chemical barriers in near-field were the distribution coefficient and the solubility of radionuclides in near-field groundwater. Therefore, it was identified that key issues associated with performance of chemical barrier were evaluation of (a) the long-term change of distribution coefficient of cementitious material through the degradation under repository condition and (b) chemical speciation change of radionuclides such as increase of solubility by the presence of colloidal-size materials. (author)

  4. The Advantages of Fixed Facilities in Characterizing TRU Wastes

    International Nuclear Information System (INIS)

    FRENCH, M.S.

    2000-01-01

    In May 1998 the Hanford Site started developing a program for characterization of transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. After less than two years, Hanford will have a program certified by the Carlsbad Area Office (CAO). By picking a simple waste stream, taking advantage of lessons learned at the other sites, as well as communicating effectively with the CAO, Hanford was able to achieve certification in record time. This effort was further simplified by having a centralized program centered on the Waste Receiving and Processing (WRAP) Facility that contains most of the equipment required to characterize TRU waste. The use of fixed facilities for the characterization of TRU waste at sites with a long-term clean-up mission can be cost effective for several reasons. These include the ability to control the environment in which sensitive instrumentation is required to operate and ensuring that calibrations and maintenance activities are scheduled and performed as an operating routine. Other factors contributing to cost effectiveness include providing approved procedures and facilities for handling hazardous materials and anticipated contingencies and performing essential evolutions, and regulating and smoothing the work load and environmental conditions to provide maximal efficiency and productivity. Another advantage is the ability to efficiently provide characterization services to other sites in the Department of Energy (DOE) Complex that do not have the same capabilities. The Waste Receiving and Processing (WRAP) Facility is a state-of-the-art facility designed to consolidate the operations necessary to inspect, process and ship waste to facilitate verification of contents for certification to established waste acceptance criteria. The WRAP facility inspects, characterizes, treats, and certifies transuranic (TRU), low-level and mixed waste at the Hanford Site in Washington state. Fluor Hanford operates the $89

  5. Thermal treatment for TRU waste sorting

    International Nuclear Information System (INIS)

    Sasaki, Toshiki; Aoyama, Yoshio; Yamashita, Toshiyuki

    2009-03-01

    A thermal treatment that can automatically unpack TRU waste and remove hazardous materials has been developed to reduce the risk of radiation exposure and save operation cost. The thermal treatment is a process of removing plastic wrapping and hazardous material from TRU waste by heating waste at 500 to 700degC. Plastic wrappings of simulated wastes were removed using a laboratory scale thermal treatment system. Celluloses and isoprene rubbers that must be removed from waste for disposal were pyrolyzed by the treatment. Although the thermal treatment can separate lead and aluminum from the waste, a further technical development is needed to separate lead and aluminum. A demonstration scale thermal treatment system that comprises a rotary kiln with a jacket water cooler and a rotating inner cage for lead and aluminum separation is discussed. A clogging prevention system against zinc chloride, a lead and aluminum accumulation system, and a detection system for spray cans that possibly cause explosion and fire are also discussed. Future technology development subjects for the TRU waste thermal treatment system are summarized. (author)

  6. Prospects for separating heavy metal from contaminated soil

    International Nuclear Information System (INIS)

    Langen, M.; Hoberg, H.; Hamacher, B.

    1994-01-01

    For decades, large quantities of organic and inorganic pollutants have been brought into the soil as a result of the industrial operations of smelting and coking plants. This paper reports on the prospects of separating heavy metals from soil contaminated by smelting and coking plants by means of a physical/chemical washing procedure. Besides the description of virgin soil characteristics, cleaning results and process parameters of calssification, density separation and flotation processes are presented. It is shown that heavy metal pollution of virgin soil can be reduced by the classical process stages of soil washing. The metal content of virgin soil are critically assessed whereby the limits of the physical-chimical washing process will also be entered into. Emphasis is placed on the significance of the determination of limiting values for inorganic contamination, especially for soil contaminated with both organic and inorganic pollution. (orig.) [de

  7. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility

  8. Disintegration and size reduction of slags and metals after melt refining of contaminated metallic wastes

    International Nuclear Information System (INIS)

    Heshmatpour, B.; Copeland, G.L.; Heestand, R.L.

    1981-04-01

    Melting under an oxidizing slag is an attractive method of decontaminating and reducing the volume of radioactively contaminated metal scrap. The contaminants are concentrated in a relatively small volume of slag, which leaves the metal essentially clean. A potential method of permanently disposing of the resulting slags (and metals if necessary) is emplacing them into deep shale by grout hydrofracture. Suspension in grout mixtures requires that the slag and metal be granular. The feasibility of size-reducing slags and disintegrating metals and subsequently incorporating both into grout mixtures was demonstrated. Various types of slags were crushed with a small jaw crusher into particles smaller than 3 mm. Several metals were also melted and water-blasted into coarse metal powder or shot ranging in size from 0.05 to 3 mm. A simple low-pressure water atomizer having a multiple nozzle with a converging-line jet stream was developed and used for this purpose. No significant slag dust and steam were generated during slag crushing and liquid-metal water-blasting tests, indicating that contamination can be well contained within the system. The crushed slags and the coarse metal powders were suspendable in group fluids, which indicates probable disposability by shale hydrofracture. The granulation of slags and metals facilitates their containment, transport, and storage

  9. Heavy metal movement in metal-contaminated soil profiles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhenbin; Shuman, L.M. [Univ. of Georgia, Griffin, GA (United States)

    1996-10-01

    Heavy metal movement in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. In this study, three metal-contaminated soil (Fuquay, Dothan, and Clarendon) were selected from cropland were a high-metal flue dust had been applied annually for 6 years to raise soil pH, with application ending 4 years before sampling. One uncontaminated soil (Tifton) from the same physiographic area was also sampled as a control. Soil samples were collected in 15-cm increments from the surface to 105 cm in depth. Total contents of Zn, Cd, and Pb in the soils samples were determined. To better understand metal movement in relation to metal fractions in the soil profile, soil samples were also extracted sequentially for exchangeable (EXC), organic matter (OM), Mn oxide (MNO), amorphous Fe oxide (AFEO), crystalline Fe oxide (CFEO), and residual (RES) fractions. 35 refs., 6 figs., 2 tabs.

  10. IMPROVEMENTS IN HANFORD TRANSURANIC (TRU) PROGRAM UTILIZING SYSTEMS MODELING AND ANALYSES

    International Nuclear Information System (INIS)

    UYTIOCO EM

    2007-01-01

    Hanford's Transuranic (TRU) Program is responsible for certifying contact-handled (CH) TRU waste and shipping the certified waste to the Waste Isolation Pilot Plant (WIPP). Hanford's CH TRU waste includes material that is in retrievable storage as well as above ground storage, and newly generated waste. Certifying a typical container entails retrieving and then characterizing it (Real-Time Radiography, Non-Destructive Assay, and Head Space Gas Sampling), validating records (data review and reconciliation), and designating the container for a payload. The certified payload is then shipped to WIPP. Systems modeling and analysis techniques were applied to Hanford's TRU Program to help streamline the certification process and increase shipping rates

  11. Metal contamination in environmental media in residential ...

    Science.gov (United States)

    Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary concern, but human exposure to soil contaminants either directly, via inhalation of airborne dust particles, or indirectly, via food chain (ingestion of animal products and/or vegetables grown in contaminated areas), is also, significant. In this research, we analyzed data collected in 2007, as part of a larger environmental study performed in the Rosia Montana area in Transylvania, to provide the Romanian governmental authorities with data on the levels of metal contamination in environmental media from this historical mining area. The data were also considered in policy decision to address mining-related environmental concerns in the area. We examined soil and water data collected from residential areas near the mining sites to determine relationships among metals analyzed in these different environmental media, using the correlation procedure in SAS statistical software. Results for residential soil and water analysis indicate that the average values for arsenic (As) (85 mg/kg), cadmium (Cd) (3.2 mg/kg), mercury (Hg) (2.3 mg/kg) and lead (Pb) (92 mg/kg) exceeded the Romanian regulatory exposure levels [the intervention thresholds for residential soil in case of As (25 mg/kg) and Hg

  12. Treatment of heavy metal contaminated soils by in situ vitrification

    International Nuclear Information System (INIS)

    Hansen, J.E.

    1991-01-01

    Contaminated soil site remediation objectives call for the destruction, removal, and/or immobilization of contaminant species. Destruction is applicable to hazardous compounds (e.g., hazardous organics such as PCBs; hazardous inorganics such as cyanide); however, it is not applicable to hazardous elements such as the heavy metals. Removal and/or immobilization are typical objectives for heavy metal contaminants present in soil. Many technologies have been developed specifically to meet these needs. One such technology is In Situ Vitrification (ISV), an innovative mobile, onsite, in situ solids remediation technology that has been available on a commercial basis for about two years. ISV holds potential for the safe and permanent treatment/remediation of previously disposed or current process solids waste (e.g., soil, sludge, sediment, tailings) contaminated with hazardous chemical and/or radioactive materials. This paper focuses on the application of ISV to heavy metal-contaminated soils

  13. Economic comparison of management modes for contaminated metal scrap

    International Nuclear Information System (INIS)

    Janberg, K.

    1987-01-01

    This report presents an economic study of the three following management modes for contaminated metal scrap: - decontamination of scrap metal followed by release, - direct melting of scrap metal, followed by release or restricted reuse, - super-compaction followed by disposal as radioactive waste. The present study, which refers to conditions prevailing in Germany, includes reviews of the contaminated scrap arisings, of experience with scrap management and of the licensing conditions for metal recycling. The results obtained during the treatment of more than 140 t of contaminated scrap metal show that: - super-compaction is the best procedure for all mixed metallic wastes of small dimensions and complex geometries, as decontamination is very costly in such a case and the melting would lead to undefined metallurgical products; - decontamination is recommendable for simple geometries and activities higher than the regulatory upper limit for melting in an industrial foundry (74 Bq/g); - direct melting for lower activity levels is gaining in competitiveness and has a good chance to be the best solution, in particular when the free use levels will be reduced below the currently accepted levels in Germany

  14. Algal-bacterial interactions in metal contaminated floodplain sediments

    International Nuclear Information System (INIS)

    Boivin, M.E.Y.; Greve, G.D.; Garcia-Meza, J.V.; Massieux, B.; Sprenger, W.; Kraak, M.H.S.; Breure, A.M.; Rutgers, M.; Admiraal, W.

    2007-01-01

    The aim of the present study was to investigate algal-bacterial interactions in a gradient of metal contaminated natural sediments. By means of multivariate techniques, we related the genetic structure (denaturing gradient gel electrophoresis, DGGE) and the physiological structure (community-level physiological profiling, CLPP) of the bacterial communities to the species composition of the algal communities and to the abiotic environmental variables, including metal contamination. The results revealed that genetic and physiological structure of the bacterial communities correlated with the species composition of the algal community, but hardly to the level of metal pollution. This must be interpreted as an indication for a strong and species-specific linkage of algal and bacterial species in floodplain sediments. Metals were, however, not proven to affect either the algal or the bacterial communities of the Dutch river floodplains. - Algal and bacterial communities in floodplain sediments are interlinked, but are not affected by metal pollution

  15. Low-cost bioremediation of heavy metals and radionuclides of contaminated soils

    International Nuclear Information System (INIS)

    Sathiyamoorthy, P.; Golan-Goldhrish, A.

    2005-01-01

    The environmental pollution by toxic metals, especially lead (Pb), mercury (Hg), cadmium (Cd), nickel (Ni), copper (Cu), selenium (Se), chromium (Cr) and radionuclides ( 137 Cs, 90 Sr, 238 Pu, 226 Ra) is a potential hazard to health and welfare of mankind. Rapid industrial revolution has left an international legacy of soil and water contaminated with a combination of toxic and potentially carcinogenic compounds and heavy metals. Many of the contaminated sites were abandoned due to high cost of traditional clean-up approaches. Various approaches are being practiced to decontaminate heavy metals and radionuclides from polluted-soil. Remediation of heavy metal and radionuclides contaminated soils poses a significant expense to many industries and government organizations. Remediation cost in the United States and European Union alone is expected to exceed US$20 billion annually. Bioremediation strategy depends on the limitations of technology, cost and nature of the contaminant in the soil. Certain higher plants are capable of accumulation of heavy metals (2-5 %) in roots and shoots to the level far exceeding those present in the soils, these are called hyper-accumulators. Using heavy metal hyper-accumulating higher plants for environmental clean-up of contaminated soil is a recently emerged technology known as 'phytoremediation'. Genetically engineered (Transgenic) plants have a remarkable potential to absorb heavy metals and show a new avenue for biotechnology technique in Phytoremediation. The cost-effective approach of using heavy metal and radionuclide hyper-accumulators in phytoremediation is discussed. (author)

  16. Recent developments for in situ treatment of metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Metals contamination is a common problem at hazardous waste sites. This report assists the remedy selection process by providing information on four in situ technologies for treating soil contaminated with metals. The four approaches are electrokinetic remediation, phytoremediation, soil flushing, and solidification/stabilization. Electrokinetic remediation separates contaminants from soil through selective migration upon application of an electric current. Phytoremediation is an emerging technology that uses plants to isolate or stabilize contaminants. Soil flushing techniques promote mobility and migration of metals by solubilizing contaminants so that they can be recovered. Two types of in situ solidification/stabilization (S/S) techniques are discussed, one based on addition of reagents and the other based on the use of energy. The report discusses different techniques currently in practice or under development, identifies vendors and summarizes performance data, and discusses technology attributes that should be considered during early screening of potential remedies. 8 refs., 9 figs., 9 tabs., 2 apps.

  17. Analysis of TRU waste for RCRA-listed elements

    International Nuclear Information System (INIS)

    Mahan, C.; Gerth, D.; Yoshida, T.

    1996-01-01

    Analytical methods for RCRA listed elements on Portland cement type waste have been employed using both microwave and open hot plate digestions with subsequent analysis by inductively coupled plasma atomic emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), graphite furnace atomic absorption (GFAA) and cold vapor atomic absorption and fluorescence (CVAA/CVAFS). Four different digestion procedures were evaluated including an open hot plate nitric acid digestion, EPA SW-846 Method 3051, and 2 methods using modifications to Method 3051. The open hot plate and the modified Method 3051, which used aqua regia for dissolution, were the only methods which resulted in acceptable data quality for all 14 RCRA-listed elements. Results for the nitric acid open hot plate digestion were used to qualify the analytical methods for TRU waste characterization, and resulted in a 99% passing score. Direct chemical analysis of TRU waste is being developed at Los Alamos National Laboratory in an attempt to circumvent the problems associated with strong acid digestion methods. Technology development includes laser induced breakdown spectroscopy (LIBS), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), dc arc CID atomic emission spectroscopy (DC-AES), and glow discharge mass spectrometry (GDMS). Analytical methods using the Portland cement matrix are currently being developed for each of the listed techniques. Upon completion of the development stage, blind samples will be distributed to each of the technology developers for RCRA metals characterization

  18. Environmental impact of ongoing sources of metal contamination on remediated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Knox, Anna Sophia, E-mail: anna.knox@srn.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Paller, Michael H., E-mail: michael.paller@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Milliken, Charles E., E-mail: charles.milliken@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Redder, Todd M., E-mail: tredder@limno.com [LimnoTech, Ann Arbor, Minnesota 48108 (United States); Wolfe, John R., E-mail: jwolfe@limno.com [LimnoTech, Ann Arbor, Minnesota 48108 (United States); Seaman, John, E-mail: seaman@srel.uga.edu [Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802 (United States)

    2016-09-01

    A challenge to all remedial approaches for contaminated sediments is the continued influx of contaminants from uncontrolled sources following remediation. We investigated the effects of ongoing contamination in mesocosms employing sediments remediated by different types of active and passive caps and in-situ treatment. Our hypothesis was that the sequestering agents used in active caps and in situ treatment will bind elements (arsenic, chromium, cadmium, cobalt, copper, nickel, lead, selenium, and zinc) from ongoing sources thereby reducing their bioavailability and protecting underlying remediated sediments from recontamination. Most element concentrations in surface water remained significantly lower in mesocosms with apatite and mixed amendment caps than in mesocosms with passive caps (sand), uncapped sediment, and spike solution throughout the 2520 h experiment. Element concentrations were significantly higher in Lumbriculus variegatus from untreated sediment than in Lumbriculus from most active caps. Pearson correlations between element concentrations in Lumbriculus and metal concentrations in the top 2.5 cm of sediment or cap measured by diffusive gradient in thin films (DGT) sediment probes were generally strong (as high as 0.98) and significant (p < 0.05) for almost all tested elements. Metal concentrations in both Lumbriculus and sediment/cap were lowest in apatite, mixed amendment, and activated carbon treatments. These findings show that some active caps can protect remediated sediments by reducing the bioavailable pool of metals/metalloids in ongoing sources of contamination. - Graphical abstract: Conventional methods of remediating contaminated sediments may be inadequate for the protection of benthic organisms when ongoing sources of contamination are present. However, sediment caps with chemically active sequestering agents have the ability to reduce the bioavailable pool of metals in ongoing sources of contamination (red dots), reduce toxicity to

  19. Environmental impact of ongoing sources of metal contamination on remediated sediments

    International Nuclear Information System (INIS)

    Knox, Anna Sophia; Paller, Michael H.; Milliken, Charles E.; Redder, Todd M.; Wolfe, John R.; Seaman, John

    2016-01-01

    A challenge to all remedial approaches for contaminated sediments is the continued influx of contaminants from uncontrolled sources following remediation. We investigated the effects of ongoing contamination in mesocosms employing sediments remediated by different types of active and passive caps and in-situ treatment. Our hypothesis was that the sequestering agents used in active caps and in situ treatment will bind elements (arsenic, chromium, cadmium, cobalt, copper, nickel, lead, selenium, and zinc) from ongoing sources thereby reducing their bioavailability and protecting underlying remediated sediments from recontamination. Most element concentrations in surface water remained significantly lower in mesocosms with apatite and mixed amendment caps than in mesocosms with passive caps (sand), uncapped sediment, and spike solution throughout the 2520 h experiment. Element concentrations were significantly higher in Lumbriculus variegatus from untreated sediment than in Lumbriculus from most active caps. Pearson correlations between element concentrations in Lumbriculus and metal concentrations in the top 2.5 cm of sediment or cap measured by diffusive gradient in thin films (DGT) sediment probes were generally strong (as high as 0.98) and significant (p < 0.05) for almost all tested elements. Metal concentrations in both Lumbriculus and sediment/cap were lowest in apatite, mixed amendment, and activated carbon treatments. These findings show that some active caps can protect remediated sediments by reducing the bioavailable pool of metals/metalloids in ongoing sources of contamination. - Graphical abstract: Conventional methods of remediating contaminated sediments may be inadequate for the protection of benthic organisms when ongoing sources of contamination are present. However, sediment caps with chemically active sequestering agents have the ability to reduce the bioavailable pool of metals in ongoing sources of contamination (red dots), reduce toxicity to

  20. A study for the safety evaluation of geological disposal of TRU waste and influence on disposal site design by change of amount of TRU waste (Joint research)

    International Nuclear Information System (INIS)

    Hasegawa, Makoto; Kondo, Hitoshi; Takahashi, Kuniaki; Funabashi, Hideaki; Kawatsuma, Shinji; Kamei, Gento; Hirano, Fumio; Mihara, Morihiro; Ueda, Hiroyoshi; Ohi, Takao; Hyodo, Hideaki

    2011-02-01

    In the safety evaluation of the geological disposal of the TRU waste, it is extremely important to share the information with the Research and development organization (JAEA: that is also the waste generator) by the waste disposal entrepreneur (NUMO). In 2009, NUMO and JAEA set up a technical commission to investigate the reasonable TRU waste disposal following a cooperation agreement between these two organizations. In this report, the calculation result of radionuclide transport for a TRU waste geological disposal system was described, by using the Tiger code and the GoldSim code at identical terms. Tiger code is developed to calculate a more realistic performance assessment by JAEA. On the other hand, GoldSim code is the general simulation software that is used for the computation modeling of NUMO TRU disposal site. Comparing the calculation result, a big difference was not seen. Therefore, the reliability of both codes was able to be confirmed. Moreover, the influence on the disposal site design (Capacity: 19,000m 3 ) was examined when 10% of the amount of TRU waste increased. As a result, it was confirmed that the influence of the site design was very little based on the concept of the Second Progress Report on Research and Development for TRU Waste Disposal in Japan. (author)

  1. TRU waste from the Superblock

    International Nuclear Information System (INIS)

    Coburn, T.T.

    1997-01-01

    This data analysis is to show that weapons grade plutonium is of uniform composition to the standards set by the Waste-Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Quality Assurance Program Plan (TRUW Characterization QAPP, Rev. 2, DOE, Carlsbad Area Office, November 15, 1996). The major portion of Superblock transuranic (TRU) waste is glove-box trash contaminated with weapons grade plutonium. This waste originates in the Building 332 (B332) radioactive-materials area (RMA). Because each plutonium batch brought into the B332 RMA is well characterized with regard to nature and quantity of transuranic nuclides present, waste also will be well characterized without further analytical work, provided the batches are quite similar. A sample data set was created by examining the 41 incoming samples analyzed by Ken Raschke (using a γ-ray spectrometer) for isotopic distribution and by Ted Midtaune (using a calorimeter) for mass of radionuclides. The 41 samples were from separate batches analyzed May 1993 through January 1997. All available weapons grade plutonium data in Midtaune's files were used. Alloys having greater than 50% transuranic material were included. The intention of this study is to use this sample data set to judge ''similarity.''

  2. Los Alamos Plutonium Facility newly generated TRU waste certification

    International Nuclear Information System (INIS)

    Gruetzmacher, K.; Montoya, A.; Sinkule, B.; Maez, M.

    1997-01-01

    This paper presents an overview of the activities being planned and implemented to certify newly generated contact handled transuranic (TRU) waste produced by Los Alamos National Laboratory's (LANL's) Plutonium Facility. Certifying waste at the point of generation is the most important cost and labor saving step in the WIPP certification process. The pedigree of a waste item is best known by the originator of the waste and frees a site from expensive characterization activities such as those associated with legacy waste. Through a cooperative agreement with LANLs Waste Management Facility and under the umbrella of LANLs WIPP-related certification and quality assurance documents, the Plutonium Facility will be certifying its own newly generated waste. Some of the challenges faced by the Plutonium Facility in preparing to certify TRU waste include the modification and addition of procedures to meet WIPP requirements, standardizing packaging for TRU waste, collecting processing documentation from operations which produce TRU waste, and developing ways to modify waste streams which are not certifiable in their present form

  3. Geospatial analyses in support of heavy metal contamination ...

    African Journals Online (AJOL)

    This paper presents an exploratory assessment of heavy metal contamination along the main highways in Mafikeng, and illustrates how spatial analyses of the contamination for environmental management purposes can be supported by GIS and Remote Sensing. Roadside soil and grass (Stenotaphrum sp.) samples were ...

  4. Optimization of TRU burnup in modular helium reactor

    International Nuclear Information System (INIS)

    Yonghee, Kim; Venneri, F.

    2007-01-01

    An optimization study of a single-pass TRU (transuranic) deep-burn (DB) has been performed for a block-type MHR (Modular Helium Reactor) proposed by General Atomics. Assuming a future equilibrium scenario of advanced LWRs, a high-burnup TRU vector is considered: 50 GWD/MTU and 5-year cooling. For 3-D equilibrium cores, the performance analysis is done by using a continuous energy Monte Carlo depletion code MCCARD. The core optimization is performed from the viewpoints of the core configuration, fuel management, TRISO fuel specification, and neutron spectrum. With regard to core configuration, two annular cores are investigated in terms of the neutron economy. A conventional radial shuffling scheme of fuel blocks is compared with an axial block shuffling strategy in terms of the fuel burnup and core power distributions. The impact of the kernel size of TRISO fuel is evaluated and a diluted kernel, instead of a conventional concentrated kernel, is introduced to maximize the TRU burnup by reducing the self-shielding effects of TRISO fuels. A higher graphite density is evaluated in terms of the fuel burnup. In addition, it is shown that the core power distribution can be effectively controlled by zoning of the packing fraction of TRISO fuels. We also have shown that a long-cycle DB-MHR core can be designed by using a small batch size for fuel reloading, at the expense of a marginal decrease of the TRU discharge burnup. Depending on the fuel management scheme, fuel specifications, and core parameters, the TRU burnup in an optimized DB-MHR core is over 60% in a single-pass irradiation campaign. (authors)

  5. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil

    International Nuclear Information System (INIS)

    Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi

    2015-01-01

    Highlights: • A novel metal-immobilizing organoclay (MIOC) synthesized and characterized. • MIOC immobilizes toxic metals and reduces metal bioavailability. • It enhances PAH-bioavailability to soil bacteria. • It improves microbial growth and activities in mixed-contaminated soils. • MIOC facilitates PAH-biodegradation in metal co-contaminated soils. - Abstract: Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad ® 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC > unmodified bentonite > Arquad–bentonite). The MIOC variably increased the microbial count (10–43%) as well as activities (respiration 3–44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils

  6. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Bhabananda; Sarkar, Binoy [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia); Mandal, Asit [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Division of Soil Biology, Indian Institute of Soil Science, Bhopal, Madhya Pradesh (India); Naidu, Ravi [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia)

    2015-11-15

    Highlights: • A novel metal-immobilizing organoclay (MIOC) synthesized and characterized. • MIOC immobilizes toxic metals and reduces metal bioavailability. • It enhances PAH-bioavailability to soil bacteria. • It improves microbial growth and activities in mixed-contaminated soils. • MIOC facilitates PAH-biodegradation in metal co-contaminated soils. - Abstract: Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad{sup ®} 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC > unmodified bentonite > Arquad–bentonite). The MIOC variably increased the microbial count (10–43%) as well as activities (respiration 3–44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils.

  7. Decontamination of transuranic contaminated metals by melt refining

    International Nuclear Information System (INIS)

    Heshmatpour, B.; Copeland, G.L.; Heestand, R.L.

    1983-01-01

    Melt refining of transuranic contaminated metals is a possible decontamination process with the potential advantages of producing metal for reuse and of simplifying chemical analyses. By routinely achieving the 10 nCi/g( about0.1ppm) level by melt refining, scrap metal can be removed from the transuranic waste category. (To demonstrate the effectiveness of this melt refining process, mild steel, stainless steel, nickel, and copper were contaminated with 500 ppm (μg/g) PuO 2 and melted with various fluxes. The solidified slags and metals were analyzed for their plutonium contents, and corresponding partition ratios for plutonium were calculated. Some metals were double refined in order to study the effect of secondary slag treatment. The initial weight of the slags was also varied to investigate the effect of slag weight on the degree of plutonium removal. In general, all four metals could be decontaminated below 1 ppm (μg/g) Pu ( about100 nCi/g) by a single slag treatment. Doubling the slag weight did not improve decontamination significantly; however, double slag treatment using 5 wt.% slag did decontaminate the metals to below 0.1 ppm (μg/g) Pu (10 nCi/g).)

  8. Microbial functional genes enriched in the Xiangjiang River sediments with heavy metal contamination.

    Science.gov (United States)

    Jie, Shiqi; Li, Mingming; Gan, Min; Zhu, Jianyu; Yin, Huaqun; Liu, Xueduan

    2016-08-08

    Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River. A total of 25595 functional genes involved in different biogeochemical processes have been detected in three sites, and different diversities and structures of microbial functional genes were observed. The analysis of gene overlapping, unique genes, and various diversity indices indicated a significant correlation between the level of heavy metal contamination and the functional diversity. Plentiful resistant genes related to various metal were detected, such as copper, arsenic, chromium and mercury. The results indicated a significantly higher abundance of genes involved in metal resistance including sulfate reduction genes (dsr) in studied site with most serious heavy metal contamination, such as cueo, mer, metc, merb, tehb and terc gene. With regard to the relationship between the environmental variables and microbial functional structure, S, Cu, Cd, Hg and Cr were the dominating factor shaping the microbial distribution pattern in three sites. This study suggests that high level of heavy metal contamination resulted in higher functional diversity and the abundance of metal resistant genes. These variation therefore significantly contribute to the resistance, resilience and stability of the microbial community subjected to the gradient of heavy metals contaminant in Xiangjiang River.

  9. CH-TRU Waste Content Codes (CH-TRUCON)

    International Nuclear Information System (INIS)

    2007-01-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes 'shipping categories' that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the 'General Case,' which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for 'Close-Proximity Shipments' (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for 'Controlled Shipments

  10. CH-TRU Waste Content Codes (CH-TRUCON)

    International Nuclear Information System (INIS)

    2006-01-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes 'shipping categories' that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the 'General Case,' which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for 'Close-Proximity Shipments' (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for 'Controlled Shipments

  11. CH-TRU Waste Content Codes (CH-TRUCON)

    International Nuclear Information System (INIS)

    2005-01-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes 'shipping categories' that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the 'General Case,' which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for 'Close-Proximity Shipments' (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for 'Controlled Shipments

  12. CH-TRU Waste Content Codes (CH-TRUCON)

    International Nuclear Information System (INIS)

    2004-01-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes 'shipping categories' that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the 'General Case,' which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for 'Close-Proximity Shipments' (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for 'Controlled Shipments

  13. CH-TRU Waste Content Codes (CH-TRUCON)

    International Nuclear Information System (INIS)

    2008-01-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes 'shipping categories' that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the 'General Case,' which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for 'Close-Proximity Shipments' (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for 'Controlled Shipments

  14. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-09-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  15. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-05-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  16. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2007-02-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  17. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  18. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  19. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-01-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codesand corresponding shipping categories for "Controlled Shipments

  20. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-12-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  1. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  2. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-01-18

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  3. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2004-10-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  4. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-03-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  5. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2007-09-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  6. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2007-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  7. CH-TRU Waste Content Codes (CH TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2004-12-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  8. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-11-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  9. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-12-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  10. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-01-30

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  11. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  12. CH-TRU Waste Content Codes (CH-TRUCON)

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2007-06-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  13. Metal resistance in populations of red maple (Acer rubrum L.) and white birch (Betula papyrifera Marsh.) from a metal-contaminated region and neighbouring non-contaminated regions.

    Science.gov (United States)

    Kirkey, Fallon M; Matthews, Jennifer; Ryser, Peter

    2012-05-01

    Metal resistance in populations of Acer rubrum and Betula papyrifera in the industrially contaminated region of Sudbury, Ontario, was compared with resistance in populations from neighbouring uncontaminated regions. In two one-season experiments, seedlings were grown outdoors on contaminated (mainly Cu, Ni) and uncontaminated substrates. Sudbury populations of both species responded less to contamination than populations from uncontaminated regions. In A. rubrum this difference was small. For both species, Sudbury plants were smaller when grown on uncontaminated substrate. B. papyrifera from Sudbury grew better on contaminated substrate than the other populations. There is indication of variation in metal resistance within the populations from the non-contaminated regions. The data shows that trees may develop adaptive resistance to heavy metals, but the low degree of resistance indicates that the development of such resistances are slower than observed for herbaceous species with shorter generation times. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.

    Science.gov (United States)

    Zhang, Xiaokai; Wang, Hailong; He, Lizhi; Lu, Kouping; Sarmah, Ajit; Li, Jianwu; Bolan, Nanthi S; Pei, Jianchuan; Huang, Huagang

    2013-12-01

    Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.

  15. Biomonitoring for metal contamination near two Superfund sites in Woburn, Massachusetts, using phytochelatins

    International Nuclear Information System (INIS)

    Gawel, James E.; Hemond, Harold F.

    2004-01-01

    Characterizing the spatial extent of groundwater metal contamination traditionally requires installing sampling wells, an expensive and time-consuming process in urban areas. Moreover, extrapolating biotic effects from metal concentrations alone is problematic, making ecological risk assessment difficult. Our study is the first to examine the use of phytochelatin measurements in tree leaves for delimiting biological metal stress in shallow, metal-contaminated groundwater systems. Three tree species (Rhamnus frangula, Acer platanoides, and Betula populifolia) growing above the shallow groundwater aquifer of the Aberjona River watershed in Woburn, Massachusetts, display a pattern of phytochelatin production consistent with known sources of metal contamination and groundwater flow direction near the Industri-Plex Superfund site. Results also suggest the existence of a second area of contaminated groundwater and elevated metal stress near the Wells G and H Superfund site downstream, in agreement with a recent EPA ecological risk assessment. Possible contamination pathways at this site are discussed

  16. Air separation of heavy metal contaminants from soil

    International Nuclear Information System (INIS)

    Nelson, M.E.; Harper, M.J.; Buckon, A.D.

    1995-01-01

    Several heavy metal separation techniques are currently being developed for soil remediation at various Department of Defense and Department of Energy (DOE) Facilities. The majority of these techniques involve a wet process using water, pH modifiers or other compounds. The US Naval Academy (USNA) has developed a dry process for heavy metal separation. The process uses air classification technology to concentrate the metal contaminant into a fraction of the soil. The advantages of this dry process are that it creates no contaminated byproduct and uses commercially available technology. The USNA process is based on using a Gayco-Reliance air classifier. Tests have been conducted with the system at the Naval Academy and the University of Nevada-Reno (UNR). The USNA tests used soil from the Nevada Test Site mixed with bismuth at a concentration of 500--1,000 ppm. The UNR tests used soil from four DOE sites mixed with uranium oxides and plutonium at an activity level of 100--700 pCi per gram. Concentration of activities and volume reduction percentages are presented for the various soils and contaminants tested

  17. Deep-Burn MHR Neutronic Analysis with a SiC-Gettered TRU Kernel

    International Nuclear Information System (INIS)

    Jo, Chang Keun; Noh, Jae Man; Kim, Yong Hee; Venneric, F.

    2010-01-01

    This paper is focused on the nuclear core design of a DB-MHR (Deep Burn-Modular Helium Reactor) core loaded with a SiC-gettered TRU fuel. The SiC oxygen getter is added to reduce the CO pressure in the buffer zone of TRISO. In the paper, the cycle length, reactivity swing, discharged burnup, and the burning rate of plutonium were calculated for the DB-MHR. Also, impacts of uranium addition to the TRU kernel were investigated. Recently, the decay heat of TRU fueled DB core was found to be highly dependent on the TRU loading: the higher the loading, the higher the decay heat. The high decay heat of TRU fuel may lead to unacceptably high peak fuel temperature during an LPCC (Low Pressure Conduction Cooling) accident. Thus, we tried to minimize the decay heat of the core for a minimal peak fuel temperature during LPCC

  18. Is metal contamination responsible for increasing aneuploidy levels in the Manila clam Ruditapes philippinarum?

    KAUST Repository

    Piló, D.

    2016-11-03

    The present study assessed the metal genotoxicity potential at chromosome-level in the bivalve Ruditapes philippinarum collected along different areas of the Tagus estuary. Higher levels of aneuploidy on gill cells were detected at the most sediment contaminated area both in May (31.7%) and October (36.0%) when compared to a less contaminated area over the same periods (20.3% and 29.0% respectively). Interestingly, metal bioaccumulation in gills was higher in the specimens collected at the least contaminated area with the exception of Pb. Indeed, the multivariate analysis revealed a stronger relation between aneuploidy and sediment contamination than between aneuploidy and the bioaccumulation of the metals. The temporal and spatial inconsistency found for the bioaccumulation of metals in R. philippinarum and the positive correlation between sediment contamination and aneuploidy at the most contaminated area suggest that these chromosome-level effects might be due to chronic metal contamination occurring in the Tagus estuary, rather than a direct result of the temporal variation of bioavailable contaminants. The vertical transmission phenomenon of bivalve aneuploidy levels may then be perpetuating those levels on clams from the most contaminated area. The present results shed light about the effect of metal toxicity at the chromosome-level in species inhabiting chronic contaminated areas and highlight the use of aneuploidy as an effective tool to identify persistent contamination in worldwide transitional waters.

  19. The Pseudomonas community in metal-contaminated sediments as revealed by quantitative PCR: a link with metal bioavailability.

    Science.gov (United States)

    Roosa, Stéphanie; Wauven, Corinne Vander; Billon, Gabriel; Matthijs, Sandra; Wattiez, Ruddy; Gillan, David C

    2014-10-01

    Pseudomonas bacteria are ubiquitous Gram-negative and aerobic microorganisms that are known to harbor metal resistance mechanisms such as efflux pumps and intracellular redox enzymes. Specific Pseudomonas bacteria have been quantified in some metal-contaminated environments, but the entire Pseudomonas population has been poorly investigated under these conditions, and the link with metal bioavailability was not previously examined. In the present study, quantitative PCR and cell cultivation were used to monitor and characterize the Pseudomonas population at 4 different sediment sites contaminated with various levels of metals. At the same time, total metals and metal bioavailability (as estimated using an HCl 1 m extraction) were measured. It was found that the total level of Pseudomonas, as determined by qPCR using two different genes (oprI and the 16S rRNA gene), was positively and significantly correlated with total and HCl-extractable Cu, Co, Ni, Pb and Zn, with high correlation coefficients (>0.8). Metal-contaminated sediments featured isolates of the Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas lutea and Pseudomonas aeruginosa groups, with other bacterial genera such as Mycobacterium, Klebsiella and Methylobacterium. It is concluded that Pseudomonas bacteria do proliferate in metal-contaminated sediments, but are still part of a complex community. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Heavy metal contamination of soil and sediment in Zambia

    African Journals Online (AJOL)

    USER

    Key words: Heavy metal, contamination, mining, soil, sediment. INTRODUCTION ... drinking water and inhaling air or soil contaminated by mining activities and the ..... indicates that copper waste discharged into the upper reaches of the Kafue ...

  1. Vitrification of TRU wastes at Rocky Flats Plant

    International Nuclear Information System (INIS)

    Williams, P.M.; Johnson, A.J.; Ledford, J.A.

    1979-01-01

    Immobilization of incinerator ash and various noncombustible TRU wastes was investigated. In three different research projects borosilicate glass proved to be the best candidate for TRU waste fixation. This glass has excellent chemical durability, long-term stability in the presence of radiation, and will withstand continuous temperatures up to 400 0 C without devitrification. In addition, wastes prepared in the form of glass will attain densities of approximately 2500 kg/m 3 (2.5 g/cc). The free forming method of producing glass buttons provides a very simple, consistent, low maintenance way of producing a final waste form for transporting and either retrievable or permanent storage for TRU waste. The vitrification process produces a durable glass from the low density ash generated by the fluidized bed incinerator process and provides volume and weight reductions that are superior to other fixation processes. This results in decreased transportation and storage costs

  2. Basis of the detection, assessment and cleaning up of sites contaminated with heavy metals

    International Nuclear Information System (INIS)

    Calmano, W.; Foerstner, U.

    1993-01-01

    The cleaning up of sites contaminated with heavy metals is still in its infancy. Depending on the type and extent of the contamination, new methods of treatment must be developed and matched to each situation. A survey is given of the groundwater contamination of soil heavy metals; the binding, availability and mobilisation of heavy metals; geo-chemical concepts for sites contaminated by heavy metals; judging the potential danger; safety measures; cleaning up processes and the reinstatement and renaturing of the soil. (orig.) [de

  3. Decontamination method for radiation-contaminated metal waste

    International Nuclear Information System (INIS)

    Suwa, Takeshi; Kuribayashi, Nobuhide; Yasumune, Taketoshi.

    1991-01-01

    In immersing radiation-contaminated metal wastes into a sulfuric acid solution thereby peeling and removing radioactive deposition cruds and dissolving the surface of the matrix metals to eliminate radioactive contaminants, when the potential of the sulfuric acid solution is shifted to a higher direction by more than a certain level due to the increase of the amount of metal ions leached from the cruds and the matrix material, the leached metal ions are electrolytically reduced to control the potential of the sulfuric acid solution to less than a predetermined potential level. Although the dissolving rate is increased as the concentration of the sulfuric acid solution is higher, it is preferably from 0.5 to 2 mol/l, since higher concentration increases the load on the waste liquid processing. Further, the temperature for solution is set to higher than a room temperature and, preferably from 50 to 90degC. Further, the potential level of the solution, although varies somewhat depending on the concentration of the leached metal ions and the temperature, is preferably controlled to less than 0.1 to 0.2 V. This can attain high decontaminating effect in a short period of time by using a sulfuric acid solution alone. (T.M.)

  4. Beyond the bed: Effects of metal contamination on recruitment to bedded sediments and overlying substrata

    International Nuclear Information System (INIS)

    Hill, Nicole A.; Simpson, Stuart L.; Johnston, Emma L.

    2013-01-01

    Metal-contaminated sediments pose a recognised threat to sediment-dwelling fauna. Re-mobilisation of contaminated sediments however, may impact more broadly on benthic ecosystems, including on diverse assemblages living on hard substrata patches immediately above sediments. We used manipulative field experiments to simultaneously test for the effects of metal contamination on recruitment to marine sediments and overlying hard substrata. Recruitment to sediments was strongly and negatively affected by metal contamination. However, while assemblage-level effects on hard-substratum fauna and flora were observed, most functional groups were unaffected or slightly enhanced by exposure to contaminated sediments. Diversity of hard-substratum fauna was also enhanced by metal contamination at one site. Metal-contaminated sediments appear to pose less of a hazard to hard-substratum than sediment-dwelling assemblages, perhaps due to a lower direct contaminant exposure or to indirect effects mediated by contaminant impacts on sediment fauna. Our results indicate that current sediment quality guidelines are protective of hard-substrata organisms. - Highlights: ► Potential for contaminated sediments to exert impacts beyond the sediment communities. ► We examine effects on recruitment to sediments and overlying hard substrata simultaneously. ► Metal-contaminated sediments had a strong negative impact on sediment fauna. ► Metal-contaminated sediments pose less of a hazard to hard-substratum fauna. ► Sediment quality guidelines are likely protective of hard-substrata organisms. - Under natural disturbance regimes, metal-contaminated sediments pose less of a direct risk to hard-substratum fauna than to sediment-dwelling fauna and SQG appear appropriate.

  5. Assessment of a mussel as a metal bioindicator of coastal contamination: Relationships between metal bioaccumulation and multiple biomarker responses

    International Nuclear Information System (INIS)

    Chandurvelan, Rathishri; Marsden, Islay D.; Glover, Chris N.; Gaw, Sally

    2015-01-01

    This is the first study to use a multiple biomarker approach on the green-lipped mussel, Perna canaliculus to test its feasibility as a bioindicator of coastal metal contamination in New Zealand (NZ). Mussels were collected from six low intertidal sites varying in terms of anthropogenic impacts, within two regions (West Coast and Nelson) of the South Island of NZ. Trace elements, including arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn), were measured in the gills, digestive gland, foot and mantle, and in the surface sediments from where mussels were collected. Metal levels in the sediment were relatively low and there was only one site (Mapua, Nelson) where a metal (Ni) exceeded the Australian and New Zealand Interim Sediment Quality Guideline values. Metal levels in the digestive gland were generally higher than those from the other tissues. A variety of biomarkers were assessed to ascertain mussel health. Clearance rate, a physiological endpoint, correlated with metal level in the tissues, and along with scope for growth, was reduced in the most contaminated site. Metallothionein-like protein content and catalase activity in the digestive gland, and catalase activity and lipid peroxidation in the gill, were also correlated to metal accumulation. Although there were few regional differences, the sampling sites were clearly distinguishable based on the metal contamination profiles and biomarker responses. P. canaliculus appears to be a useful bioindicator species for coastal habitats subject to metal contamination. In this study tissue and whole organism responses provided insight into the biological stress responses of mussels to metal contaminants, indicating that such measurements could be a useful addition to biomonitoring programmes in NZ. - Highlights: • Multiple biomarker responses were measured in mussels from 6 sites. • Metal content of mussel tissues correlated with specific biomarker responses. • Clearance rate

  6. Assessment of a mussel as a metal bioindicator of coastal contamination: Relationships between metal bioaccumulation and multiple biomarker responses

    Energy Technology Data Exchange (ETDEWEB)

    Chandurvelan, Rathishri, E-mail: rch118@uclive.ac.nz [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Marsden, Islay D., E-mail: islay.marsden@canterbury.ac.nz [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Glover, Chris N., E-mail: chris.glover@canterbury.ac.nz [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Gaw, Sally, E-mail: sally.gaw@canterbury.ac.nz [Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand)

    2015-04-01

    This is the first study to use a multiple biomarker approach on the green-lipped mussel, Perna canaliculus to test its feasibility as a bioindicator of coastal metal contamination in New Zealand (NZ). Mussels were collected from six low intertidal sites varying in terms of anthropogenic impacts, within two regions (West Coast and Nelson) of the South Island of NZ. Trace elements, including arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn), were measured in the gills, digestive gland, foot and mantle, and in the surface sediments from where mussels were collected. Metal levels in the sediment were relatively low and there was only one site (Mapua, Nelson) where a metal (Ni) exceeded the Australian and New Zealand Interim Sediment Quality Guideline values. Metal levels in the digestive gland were generally higher than those from the other tissues. A variety of biomarkers were assessed to ascertain mussel health. Clearance rate, a physiological endpoint, correlated with metal level in the tissues, and along with scope for growth, was reduced in the most contaminated site. Metallothionein-like protein content and catalase activity in the digestive gland, and catalase activity and lipid peroxidation in the gill, were also correlated to metal accumulation. Although there were few regional differences, the sampling sites were clearly distinguishable based on the metal contamination profiles and biomarker responses. P. canaliculus appears to be a useful bioindicator species for coastal habitats subject to metal contamination. In this study tissue and whole organism responses provided insight into the biological stress responses of mussels to metal contaminants, indicating that such measurements could be a useful addition to biomonitoring programmes in NZ. - Highlights: • Multiple biomarker responses were measured in mussels from 6 sites. • Metal content of mussel tissues correlated with specific biomarker responses. • Clearance rate

  7. Remediation of heavy metal contaminated ecosystem: an overview on technology advancement

    International Nuclear Information System (INIS)

    Singh, A.; Prasad, S. M.

    2015-01-01

    The issue of heavy metal pollution is very much concerned because of their toxicity for plant, animal and human beings and their lack of biodegradability. Excess concentrations of heavy metals have adverse effect on plant metabolic activities hence affect the food production, quantitatively and qualitatively. Heavy metal when reaches human tissues through various absorption pathways such as direct ingestion, dermal contact, diet through the soil-food chain, inhalation, and oral intake may seriously affect their health. Therefore, several management practices are being applied to minimize metal toxicity by attenuating the availability of metal to the plants. Some of the traditional methods are either extremely costly or they are simply applied to isolate contaminated site. The biology based technology like use of hyper metal accumulator plants occurring naturally or created by transgenic technology, in recent years draws great attention to remediate heavy metal contamination. Recently, applications of nanoparticle for metal remediation are also attracting great research interest due to their exceptional adsorption and mechanical properties and unique electrical property, highly chemical stability, and large specific surface area. Thus the present review deals with different management approaches to reduce level of metal contamination in soil and finally to the food chain

  8. Application of carbon nanotubes to immobilize heavy metals in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Martim P. S. R.; Correia, António Alberto S., E-mail: aalberto@dec.uc.pt [University of Coimbra, Department of Civil Engineering, CIEPQPF—Chemical Process Engineering and Forest Products Research Centre (Portugal); Rasteiro, Maria G. [University of Coimbra, Department of Chemical Engineering, CIEPQPF (Portugal)

    2017-04-15

    The contamination of soils with heavy metals is a growing concern in modern societies. To avoid the spread of contamination, soil stabilization techniques can be applied mixing materials with the soil in order to partially immobilize heavy metals. Carbon nanotubes (CNTs) are nanomaterials known for its exceptional properties, like high surface area and adsorption capacity. Due to these unique properties, the potential use of CNTs in heavy metal contaminated water has been studied, with very satisfactory results; however, their application in contaminated soils is practically unexplored. This experimental work is focused on studying the potential of using CNTs in soil remediation, especially to immobilize the heavy metals ions: lead (Pb{sup 2+}), copper (Cu{sup 2+}), nickel (Ni{sup 2+}), and zinc (Zn{sup 2+}), commonly present in contaminated soils. In order to avoid CNT agglomeration, which originates the loss of their beneficial properties, an aqueous suspension of CNTs was prepared using a non-ionic surfactant combined with ultrasonic energy to promote CNTs dispersion. Then, the soil, with and without the addition of CNTs, was subjected to adsorption tests to evaluate the CNT capacity to improve heavy metal immobilization. To validate the adsorption test results, permeability tests were executed, simulating the conditions of a real-case scenario. The results obtained led to the conclusion that the addition of a small amount of dispersed CNTs can successfully increase the adsorption capacity of the soil and consequently improve the immobilization of heavy metals in the soil matrix. The immobilization percentage varies with the different heavy metals under study.

  9. Application of carbon nanotubes to immobilize heavy metals in contaminated soils

    International Nuclear Information System (INIS)

    Matos, Martim P. S. R.; Correia, António Alberto S.; Rasteiro, Maria G.

    2017-01-01

    The contamination of soils with heavy metals is a growing concern in modern societies. To avoid the spread of contamination, soil stabilization techniques can be applied mixing materials with the soil in order to partially immobilize heavy metals. Carbon nanotubes (CNTs) are nanomaterials known for its exceptional properties, like high surface area and adsorption capacity. Due to these unique properties, the potential use of CNTs in heavy metal contaminated water has been studied, with very satisfactory results; however, their application in contaminated soils is practically unexplored. This experimental work is focused on studying the potential of using CNTs in soil remediation, especially to immobilize the heavy metals ions: lead (Pb"2"+), copper (Cu"2"+), nickel (Ni"2"+), and zinc (Zn"2"+), commonly present in contaminated soils. In order to avoid CNT agglomeration, which originates the loss of their beneficial properties, an aqueous suspension of CNTs was prepared using a non-ionic surfactant combined with ultrasonic energy to promote CNTs dispersion. Then, the soil, with and without the addition of CNTs, was subjected to adsorption tests to evaluate the CNT capacity to improve heavy metal immobilization. To validate the adsorption test results, permeability tests were executed, simulating the conditions of a real-case scenario. The results obtained led to the conclusion that the addition of a small amount of dispersed CNTs can successfully increase the adsorption capacity of the soil and consequently improve the immobilization of heavy metals in the soil matrix. The immobilization percentage varies with the different heavy metals under study.

  10. Application of carbon nanotubes to immobilize heavy metals in contaminated soils

    Science.gov (United States)

    Matos, Martim P. S. R.; Correia, António Alberto S.; Rasteiro, Maria G.

    2017-04-01

    The contamination of soils with heavy metals is a growing concern in modern societies. To avoid the spread of contamination, soil stabilization techniques can be applied mixing materials with the soil in order to partially immobilize heavy metals. Carbon nanotubes (CNTs) are nanomaterials known for its exceptional properties, like high surface area and adsorption capacity. Due to these unique properties, the potential use of CNTs in heavy metal contaminated water has been studied, with very satisfactory results; however, their application in contaminated soils is practically unexplored. This experimental work is focused on studying the potential of using CNTs in soil remediation, especially to immobilize the heavy metals ions: lead (Pb2+), copper (Cu2+), nickel (Ni2+), and zinc (Zn2+), commonly present in contaminated soils. In order to avoid CNT agglomeration, which originates the loss of their beneficial properties, an aqueous suspension of CNTs was prepared using a non-ionic surfactant combined with ultrasonic energy to promote CNTs dispersion. Then, the soil, with and without the addition of CNTs, was subjected to adsorption tests to evaluate the CNT capacity to improve heavy metal immobilization. To validate the adsorption test results, permeability tests were executed, simulating the conditions of a real-case scenario. The results obtained led to the conclusion that the addition of a small amount of dispersed CNTs can successfully increase the adsorption capacity of the soil and consequently improve the immobilization of heavy metals in the soil matrix. The immobilization percentage varies with the different heavy metals under study.

  11. Metal Hydride assited contamination on Ru/Si surfaces

    NARCIS (Netherlands)

    Pachecka, Malgorzata; Lee, Christopher James; Sturm, Jacobus Marinus; Bijkerk, Frederik

    2013-01-01

    In extreme ultraviolet lithography (EUVL) residual tin, in the form of particles, ions, and atoms, can be deposited on nearby EUV optics. During the EUV pulse, a reactive hydrogen plasma is formed, which may be able to react with metal contaminants, creating volatile and unstable metal hydrides that

  12. Risks from principal components and their daughter products in alpha-contaminated waste

    International Nuclear Information System (INIS)

    Rogers, V.

    1982-01-01

    This paper presents an overview on risk assessment, particularly as it applies to limits for alpha-contaminated waste. The general conclusions are: (1) no special characteristics of transuranic (TRU) waste justify its being a special category; (2) model calculations are largely subjective and can be influenced by the bias of the modeler; (3) ingrowth and concentration of TRU daughter products could be an important consideration in risk assessment. 13 figures

  13. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology.

    Science.gov (United States)

    Derakhshan Nejad, Zahra; Jung, Myung Chae; Kim, Ki-Hyun

    2018-06-01

    The major frequent contaminants in soil are heavy metals which may be responsible for detrimental health effects. The remediation of heavy metals in contaminated soils is considered as one of the most complicated tasks. Among different technologies, in situ immobilization of metals has received a great deal of attention and turned out to be a promising solution for soil remediation. In this review, remediation methods for removal of heavy metals in soil are explored with an emphasis on the in situ immobilization technique of metal(loid)s. Besides, the immobilization technique in contaminated soils is evaluated through the manipulation of the bioavailability of heavy metals using a range of soil amendment conditions. This technique is expected to efficiently alleviate the risk of groundwater contamination, plant uptake, and exposure to other living organisms. The efficacy of several amendments (e.g., red mud, biochar, phosphate rock) has been examined to emphasize the need for the simultaneous measurement of leaching and the phytoavailability of heavy metals. In addition, some amendments that are used in this technique are inexpensive and readily available in large quantities because they have been derived from bio-products or industrial by-products (e.g., biochar, red mud, and steel slag). Among different amendments, iron-rich compounds and biochars show high efficiency to remediate multi-metal contaminated soils. Thereupon, immobilization technique can be considered a preferable option as it is inexpensive and easily applicable to large quantities of contaminants derived from various sources.

  14. Remediation of heavy metal contaminated soils by using Solanum nigrum: A review.

    Science.gov (United States)

    Rehman, Muhammad Zia Ur; Rizwan, Muhammad; Ali, Shafaqat; Ok, Yong Sik; Ishaque, Wajid; Saifullah; Nawaz, Muhammad Farrakh; Akmal, Fatima; Waqar, Maqsooda

    2017-09-01

    Heavy metals are among the major environmental pollutants and the accumulation of these metals in soils is of great concern in agricultural production due to the toxic effects on crop growth and food quality. Phytoremediation is a promising technique which is being considered as an alternative and low-cost technology for the remediation of metal-contaminated soils. Solanum nigrum is widely studied for the remediation of heavy metal-contaminated soils owing to its ability for metal uptake and tolerance. S. nigrum can tolerate excess amount of certain metals through different mechanism including enhancing the activities of antioxidant enzymes and metal deposition in non-active parts of the plant. An overview of heavy metal uptake and tolerance in S. nigrum is given. Both endophytic and soil microorganisms can play a role in enhancing metal tolerance in S. nigrum. Additionally, optimization of soil management practices and exogenous application of amendments can also be used to enhance metal uptake and tolerance in this plant. The main objective of the present review is to highlight and discuss the recent progresses in using S. nigrum for remediation of metal contaminated soils. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Soil microbial effects of smelter induced heavy metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Nordgren, A

    1986-01-01

    The soil concentrations of Cu and Zn at the secondary smelter were 20 00 mu g/g dry soil. Close to the primary smelter the soil was contaminated with more than ten elements including Pb, Zn, Cu and As at levels ranging between 6000 and 1000 mu g/g dry soil. The correlations between the concentrations of the metals were high at both smelters. Soil respiration rate decreased by about 75% close to both smelters. Total and fluorescein diacetate stained mycelial lengths decrease with increasing heavy metal pollution at the secondary but not at the primary smelter. The fungal community structure was strongly affected by the contamination. General common in coniferous forest soils such as Penicillium and Oidiodendron virtually vanished, while less frequent species like Paecilomyces farinosus and Geomyces pannorum dominated the site close to the smelter. Colony forming units of a number of functional groups of bacteria were found to be very sensitive to metal contamination. The urease activity of the soil was inhibited. Multivariate statistical analyses showed that the metal contamination was the major environmental influence on the microbiotain the soils studied. A study of about 200 decomposition curves resulting from glutamic acid additions to the different soils produced four microbially related parameters: basal respiration rate, initial respiration rate after the addition of the glutamic acid, specific respiration rate during the exponential increase of the respiration rate and the lag time before the exponential phase. With 53 refs.

  16. Los Alamos controlled air incinerator upgrade for TRU/mixed waste operations

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Borduin, L.C.; Hutchins, D.A.; Warner, C.L.; Thompson, T.K.

    1989-01-01

    The Los Alamos Controlled Air Incinerator (CAI) is undergoing a major process upgrade to accept Laboratory-generated transuranic (TRU) and TRU mixed wastes on a production basis. In the interim,prior to the scheduled 1992 operation of a new on-site LLW/mixed waste incinerator, the CAI will also be accepting solid and liquid low-level mixed wastes. This paper describes major modifications that have been made to the process to enhance safety and ensure reliability for long-term, routine waste incineration operations. The regulatory requirements leading to operational status of the system are also briefly described. The CAI was developed in the mid-1970s as a demonstration system for volume reduction of TRU combustible solid wastes. It continues as a successful R and D system well into the 1980s during which incineration tests on a wide variety of radioactive and chemical waste forms were performed. In 1985, a DOE directive required Los Alamos to reduce the volume of its TRU waste prior to ultimate placement in the geological repository at the Waste Isolation Pilot Project (WIPP). With only minor modifications to the original process flowsheet, the Los Alamos CAI was judged capable of conversion to a TRU waste operations mode. 9 refs., 1 fig

  17. Arc melter demonstration baseline test results

    International Nuclear Information System (INIS)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; Oden, L.L.; O'Connor, W.K.; Turner, P.C.

    1994-07-01

    This report describes the test results and evaluation for the Phase 1 (baseline) arc melter vitrification test series conducted for the Buried Waste Integrated Demonstration program (BWID). Phase 1 tests were conducted on surrogate mixtures of as-incinerated wastes and soil. Some buried wastes, soils, and stored wastes at the INEL and other DOE sites, are contaminated with transuranic (TRU) radionuclides and hazardous organics and metals. The high temperature environment in an electric arc furnace may be used to process these wastes to produce materials suitable for final disposal. An electric arc furnace system can treat heterogeneous wastes and contaminated soils by (a) dissolving and retaining TRU elements and selected toxic metals as oxides in the slag phase, (b) destroying organic materials by dissociation, pyrolyzation, and combustion, and (c) capturing separated volatilized metals in the offgas system for further treatment. Structural metals in the waste may be melted and tapped separately for recycle or disposal, or these metals may be oxidized and dissolved into the slag. The molten slag, after cooling, will provide a glass/ceramic final waste form that is homogeneous, highly nonleachable, and extremely durable. These features make this waste form suitable for immobilization of TRU radionuclides and toxic metals for geologic timeframes. Further, the volume of contaminated wastes and soils will be substantially reduced in the process

  18. Hybrid Microwave Treatment of SRS TRU and Mixed Wastes

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1999-01-01

    A new process, using hybrid microwave energy, has been developed as part of the Strategic Research and Development program and successfully applied to treatment of a wide variety of non-radioactive materials, representative of SRS transuranic (TRU) and mixed wastes. Over 35 simulated (non-radioactive) TRU and mixed waste materials were processed individually, as well as in mixed batches, using hybrid microwave energy, a new technology now being patented by Westinghouse Savannah River Company (WSRC)

  19. Characterization of heavy-metal-contaminated sediment by using unsupervised multivariate techniques and health risk assessment.

    Science.gov (United States)

    Wang, Yeuh-Bin; Liu, Chen-Wuing; Wang, Sheng-Wei

    2015-03-01

    This study characterized the sediment quality of the severely contaminated Erjen River in Taiwan by using multivariate analysis methods-including factor analysis (FA), self-organizing maps (SOMs), and positive matrix factorization (PMF)-and health risk assessment. The SOMs classified the dataset with similar heavy-metal-contaminated sediment into five groups. FA extracted three major factors-traditional electroplating and metal-surface processing factor, nontraditional heavy-metal-industry factor, and natural geological factor-which accounted for 80.8% of the variance. The SOMs and FA revealed the heavy-metal-contaminated-sediment hotspots in the middle and upper reaches of the major tributary in the dry season. The hazardous index value for health risk via ingestion was 0.302. PMF further qualified the source apportionment, indicating that traditional electroplating and metal-surface-processing industries comprised 47% of the health risk posed by heavy-metal-contaminated sediment. Contaminants discharged from traditional electroplating and metal-surface-processing industries in the middle and upper reaches of the major tributary must be eliminated first to improve the sediment quality in Erjen River. The proposed assessment framework for heavy-metal-contaminated sediment can be applied to contaminated-sediment river sites in other regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Soil contamination of toxic metals from zinc carbon batteries inadequate disposal

    International Nuclear Information System (INIS)

    Gazano, Vanessa Santos Oliveira

    2006-01-01

    The aim of the present study was to determine the concentration of Zn, Mn, Pb, Cd, Cu, Cr, and Ni in an oxisol column contaminated with zinc-carbon batteries. Two control and two contaminated columns, and batteries alone were leached for a periods of six months and one year with aqueous solution of HNO3 and H2SO4 (1:1, pH 4,0) to simulate rainwater. The metal concentrations in effluent and soil were measured by means of ICP-OES technique. Results from the contaminated column showed enhanced concentrations in both effluent and soil (mainly zinc, manganese and lead). In addition, the total amount of metals in effluent and soil showed similar sequence order as observed for batteries alone (Zn > Mn > Pb > Cr > Cu > Ni > Cd) indicating that batteries can be considered the main source of contamination. We also observed migration of Zn and Mn from the top to the lower layers of the soil columns. The study gives further evidence that batteries can significantly contaminate the soil with metals like Zn, Mn and Pb, and maybe Cd too. This soil contamination combined with the enhanced concentrations found in the effluent can point out a probable groundwater contamination. (author)

  1. Functioning of metal contaminated garden soil after remediation

    International Nuclear Information System (INIS)

    Jelusic, Masa; Grcman, Helena; Vodnik, Dominik; Suhadolc, Metka; Lestan, Domen

    2013-01-01

    The effect of remediation using three EDTA doses (10, 30, 60 mmol kg −1 ) on soil functioning was assessed using column experiment and Brassica rapa. Soil washing removed up to 77, 29 and 72% of metals from soil contaminated with 1378, 578 and 8.5 mg kg −1 of Pb, Zn and Cd, respectively. Sequential extraction indicated removal from the carbonate soil fraction. Metal oral-accessibility from the stomach phase was reduced by up to 75 and from the small intestine by up to 79% (Pb). Part of metals (up to 0.8% Cd) was lost due to leaching from columns. Remediation reduced toxic metal soil-root transfer by up to 61% but did not prevent metal accumulation in leaves. The fitness of plants grown on EDTA washed soils (gas exchange, fluorescence) was not compromised. Remediation initially reduced the soil DNA content (up to 29%, 30 mmol kg −1 EDTA) and changed the structure of microbial population. -- Highlights: ► Toxic metals contaminated garden soil was remediated in a pilot-scale. ► EDTA washing reduced soil Pb, Zn and Cd content and bioavailability. ► Remediated soil preserved the function of plant and microbial substrate. ► Remediation didn't prevent the accumulation of toxic metals in the test plant. -- EDTA soil washing effectively removed toxic metals and reduced their transfer from the soil to plant roots but did not prevent their accumulation in leaves

  2. Metal release from contaminated coastal sediments under changing pH conditions: Implications for metal mobilization in acidified oceans.

    Science.gov (United States)

    Wang, Zaosheng; Wang, Yushao; Zhao, Peihong; Chen, Liuqin; Yan, Changzhou; Yan, Yijun; Chi, Qiaoqiao

    2015-12-30

    To investigate the impacts and processes of CO2-induced acidification on metal mobilization, laboratory-scale experiments were performed, simulating the scenarios where carbon dioxide was injected into sediment-seawater layers inside non-pressurized chambers. Coastal sediments were sampled from two sites with different contamination levels and subjected to pre-determined pH conditions. Sediment samples and overlying water were collected for metal analysis after 10-days. The results indicated that CO2-induced ocean acidification would provoke increased metal mobilization causing adverse side-effects on water quality. The mobility of metals from sediment to the overlying seawater was correlated with the reduction in pH. Results of sequential extractions of sediments illustrated that exchangeable metal forms were the dominant source of mobile metals. Collectively, our data revealed that high metal concentrations in overlying seawater released from contaminated sediments under acidic conditions may strengthen the existing contamination gradients in Maluan Bay and represent a potential risk to ecosystem health in coastal environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Potential Flammable Gas Explosion in the TRU Vent and Purge Machine

    International Nuclear Information System (INIS)

    Vincent, A

    2006-01-01

    The objective of the analysis was to determine the failure of the Vent and Purge (V and P) Machine due to potential explosion in the Transuranic (TRU) drum during its venting and/or subsequent explosion in the V and P machine from the flammable gases (e.g., hydrogen and Volatile Organic Compounds [VOCs]) vented into the V and P machine from the TRU drum. The analysis considers: (a) increase in the pressure in the V and P cabinet from the original deflagration in the TRU drum including lid ejection, (b) pressure wave impact from TRU drum failure, and (c) secondary burns or deflagrations resulting from excess, unburned gases in the cabinet area. A variety of cases were considered that maximized the pressure produced in the V and P cabinet. Also, cases were analyzed that maximized the shock wave pressure in the cabinet from TRU drum failure. The calculations were performed for various initial drum pressures (e.g., 1.5 and 6 psig) for 55 gallon TRU drum. The calculated peak cabinet pressures ranged from 16 psig to 50 psig for various flammable gas compositions. The blast on top of cabinet and in outlet duct ranged from 50 psig to 63 psig and 12 psig to 16 psig, respectively, for various flammable gas compositions. The failure pressures of the cabinet and the ducts calculated by structural analysis were higher than the pressure calculated from potential flammable gas deflagrations, thus, assuring that V and P cabinet would not fail during this event. National Fire Protection Association (NFPA) 68 calculations showed that for a failure pressure of 20 psig, the available vent area in the V and P cabinet is 1.7 to 2.6 times the required vent area depending on whether hydrogen or VOCs burn in the V and P cabinet. This analysis methodology could be used to design the process equipment needed for venting TRU waste containers at other sites across the Department of Energy (DOE) Complex

  4. Field tests on migration of TRU-nuclide, (1). General introduction

    International Nuclear Information System (INIS)

    Ogawa, Hiromichi; Tanaka, Tadao; Mukai, Masayuki

    2003-01-01

    The field migration test using TRU nuclide was carried out as a cooperative research project between JAERI (Japan Atomic Energy Research Institute) and CIRP (China Institute for Radiation Protection). This report introduced the out-line of the field migration test and described the outline of the series of 'Field Test on Migration of TRU-nuclide' and main results as a summary report. (author)

  5. Comparative assessment of disposal of TRU waste in a greater-confinement disposal facility

    International Nuclear Information System (INIS)

    Cohn, J.J.; Smith, C.F.; Ciminesi, F.J.; Dickman, P.T.; O'Neal, D.A.

    1982-11-01

    This study reviewed previous work that established generic limits for shallow land burial of TRU contaminated wastes and extended previous methodology to estimate approximate appropriate burial limits for TRU wastes in an arid zone greater confinement disposal facility (GCDF). An erosion scenario provided the limiting pathway in the previous determination of generic shallow land burial limits. Erosion removed the cover soil, exposing the waste mass to habitation and agriculture. For the deep burial concept (that is, burial at a depth greater than 10 m [33 ft]), the aquifer transport scenario was controlling. In both cases, the assumed site conditions were characteristic of a humid zone in which groundwater flows immediately below the waste deposit. In deriving limits for an arid site GCDF, either the erosion/reclaimer or the aquifer transport scenario could provide the controlling pathway, depending on the nuclide and the assumed burial depth. The derived limits were higher for the arid sited GCDF than those of the generic humid study. The physical processes that increase limits relative to the generic study include increased time during which radioactive decay occurs prior to release and increased dilution. Some nuclides were effectively unlimited in an arid zone GCDF, while others (notably Pu-239) were affected on a much smaller scale, primarily due to very long half-lives. As a final comment, the limit values derived in this report represent adjustments to the calculations of the Healy and Rodgers report (LA-UR-79-100). Those original calculations were very conservative, utilizing a worst case approach, but nevertheless involving significant levels of uncertainty in key assumptions. Consequently, the results are assumption dependent. Other approaches to such an analysis could, and should be used to develop site specific concentration limits for TRU wastes

  6. Considering bioavailability in the remediation of heavy metal contaminated sites

    Directory of Open Access Journals (Sweden)

    Leita L.

    2013-04-01

    Full Text Available Many years of research have demonstrated that instead of the total concentration of metals in soil, bioavailability is the key to understand the environmental risk derived by metals, since adverse effects are related only to the biologically available forms of these elements. The knowledge of bioavailability can decrease the uncertainties in evaluating exposure in human and ecological risk assessment. At the same time, the efficiency of remediation treatments could be greatly influenced by availability of the contaminants. Consideration of the bioavailability processes at contaminated sites could be useful in site-specific risk assessment: the fraction of mobile metals, instead of total content should be provided as estimates of metal exposure. Moreover, knowledge of the chemical forms of heavy metals in soils is a critical component in the evaluation of applicability of different remediation technologies such as phytoremdiation or soil washing.

  7. Heavy Metal Contamination Assessment and Partition for Industrial and Mining Gathering Areas

    Directory of Open Access Journals (Sweden)

    Yang Guan

    2014-07-01

    Full Text Available Industrial and mining activities have been recognized as the major sources of soil heavy metal contamination. This study introduced an improved Nemerow index method based on the Nemerow and geo-accumulation index. Taking a typical industrial and mining gathering area in Tianjin (China as example, this study then analyzed the contamination sources as well as the ecological and integrated risks. The spatial distribution of the contamination level and ecological risk were determined using Geographic Information Systems. The results are as follows: (1 Zinc showed the highest contaminant level in the study area; the contamination levels of the other seven heavy metals assessed were relatively lower. (2 The combustion of fossil fuels and emissions from industrial and mining activities were the main sources of contamination in the study area. (3 The overall contamination level of heavy metals in the study area ranged from heavily contaminated to extremely contaminated and showed an uneven distribution. (4 The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate. This study also emphasized the importance of partition in industrial and mining areas, the extensive application of spatial analysis methods, and the consideration of human health risks in future studies.

  8. Heavy Metal Contamination Assessment and Partition for Industrial and Mining Gathering Areas

    Science.gov (United States)

    Guan, Yang; Shao, Chaofeng; Ju, Meiting

    2014-01-01

    Industrial and mining activities have been recognized as the major sources of soil heavy metal contamination. This study introduced an improved Nemerow index method based on the Nemerow and geo-accumulation index. Taking a typical industrial and mining gathering area in Tianjin (China) as example, this study then analyzed the contamination sources as well as the ecological and integrated risks. The spatial distribution of the contamination level and ecological risk were determined using Geographic Information Systems. The results are as follows: (1) Zinc showed the highest contaminant level in the study area; the contamination levels of the other seven heavy metals assessed were relatively lower. (2) The combustion of fossil fuels and emissions from industrial and mining activities were the main sources of contamination in the study area. (3) The overall contamination level of heavy metals in the study area ranged from heavily contaminated to extremely contaminated and showed an uneven distribution. (4) The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate. This study also emphasized the importance of partition in industrial and mining areas, the extensive application of spatial analysis methods, and the consideration of human health risks in future studies. PMID:25032743

  9. Observed TRU data from nuclear utility waste streams

    International Nuclear Information System (INIS)

    Wessman, R.A.; Floyd, J.G.; Leventhal, L.

    1990-01-01

    TMA/Norcal has performed 10CFR61 analysis of radioactive waste streams from BWR's and PWR's since 1983. Many standard and non-routine sample types have been received for analysis from nuclear power plants nation-wide. In addition to the 10CFR61 Tables I and II analyses, we also have analyzed for many of the supplementary isotopes. As part of this program TRU analyses are required. As a result, have accumulated a significant amount of data for plutonium, americium, and curium in radioactive waste for many different sample matrices from many different waste streams. This paper will present our analytical program for 10CFR61 TRU. The laboratory methodology including chemical and radiometric procedures is discussed. The sensitivity of our measurements and ability to meet the lower limits of detection is also discussed. Secondly, a review of TRU data is presented. Scaling factors and their ranges from selected PWR stations are included. We discuss some features of, and limits to, interpretation of these data. 8 refs., 3 tabs

  10. A strategy for analysis of TRU waste characterization needs

    International Nuclear Information System (INIS)

    Leigh, C.D.; Chu, M.S.Y.; Arvizu, J.S.; Marcinkiewicz, C.J.

    1994-01-01

    Regulatory compliance and effective management of the nation's TRU waste requires knowledge about the constituents present in the waste. With limited resources, the DOE needs a cost-effective characterization program. In addition, the DOE needs a method for predicting the present and future analytical requirements for waste characterization. Thus, a strategy for predicting the present and future waste characterization needs that uses current knowledge of the TRU inventory and prioritization of the data needs is presented

  11. High temperature slagging incinerator for alpha contaminated wastes

    International Nuclear Information System (INIS)

    Van de Voorde, N.

    1985-01-01

    This report describes the experiences collected by the treatment of plutonium-contaminated wastes, in the High Temperature Slagging Incinerator at the C.E.N./S.C.K. at Mol, with the support of the Commission of the European Communities. The major objective of the exercise is to demonstrate the operability of this facility for the treatment of mixed transuranic (TRU) and beta-gamma solid waste material. The process will substantially reduce the TRU waste volume by burning the combustibles and converting the non-combustibles into a chemically inert and physically stable basalt-like slag product, suitable for safe transport and final disposal. (Auth.)

  12. W-026, transuranic waste (TRU) glovebox acceptance test report

    International Nuclear Information System (INIS)

    Leist, K.J.

    1998-01-01

    On July 18, 1997, the Transuranic (TRU) glovebox was tested using glovebox acceptance test procedure 13021A-86. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, sorting table, lidder/delidder device and the TRU empty drum compactor were also conducted. As of February 25, 1998, 10 of the 102 test exceptions that affect the TRU glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test exceptions are provided as appendices to this report

  13. An investigation of TRU recycling with various neutron spectrums

    International Nuclear Information System (INIS)

    Yong-Nam, Kim; Hong-Chul, Kim; Chi-Young, Han; Jong-Kyung, Kim; Won-Seok Park

    2003-01-01

    This study is intended to evaluate the dependency of TRU recycling characteristics on the neutron spectrum shift in a Pb-Bi cooled core. Considering two Pb-Bi cooled cores with the soft and the hard spectrum, respectively, various characteristics of the recycled core are carefully examined and compared with each other. Assuming very simplified fuel cycle management with the homogeneous and single batch fuel loading, the burn-up calculations are performed until the recycled core reached to the (quasi-) equilibrium state. The mechanism of TRU recycling toward the equilibrium is analysed in terms of burn-up reactivity and the isotopic compositions of TRU fuel. In the comparative analyses, the difference in the recycling behaviour between the two cores is clarified. In addition, the basic safety characteristics of the recycled core are also discussed in terms of the Doppler coefficient, the coolant loss reactivity coefficient, and the effective delayed neutron fraction. (author)

  14. Heavy metal contamination in an urban stream fed by contaminated air-conditioning and stormwater discharges.

    Science.gov (United States)

    O'Sullivan, Aisling; Wicke, Daniel; Cochrane, Tom

    2012-03-01

    Urban waterways are impacted by diffuse stormwater runoff, yet other discharges can unintentionally contaminate them. The Okeover stream in Christchurch, New Zealand, receives air-conditioning discharge, while its ephemeral reach relies on untreated stormwater flow. Despite rehabilitation efforts, the ecosystem is still highly disturbed. It was assumed that stormwater was the sole contamination source to the stream although water quality data were sparse. We therefore investigated its water and sediment quality and compared the data with appropriate ecotoxicological thresholds from all water sources. Concentrations of metals (Zn, Cu and Pb) in stream baseflow, stormwater runoff, air-conditioning discharge and stream-bed sediments were quantified along with flow regimes to ascertain annual contaminant loads. Metals were analysed by ICP-MS following accredited techniques. Zn, Cu and Pb concentrations from stormflow exceeded relevant guidelines for the protection of 90% of aquatic species by 18-, 9- and 5-fold, respectively, suggesting substantial ecotoxicity potential. Sporadic copper (Cu) inputs from roof runoff exceeded these levels up to 3,200-fold at >4,000 μg L⁻¹ while Cu in baseflow from air-conditioning inputs exceeded them 5.4-fold. There was an 11-fold greater annual Cu load to the stream from air-conditioning discharge compared to stormwater runoff. Most Zn and Cu were dissolved species possibly enhancing metal bioavailability. Elevated metal concentrations were also found throughout the stream sediments. Environmental investigations revealed unsuspected contamination from air-conditioning discharge that contributed greater Cu annual loads to an urban stream compared to stormwater inputs. This discovery helped reassess treatment strategies for regaining ecological integrity in the ecosystem.

  15. Design and testing of a unique active Compton-suppressed LaBr3(Ce) detector system for improved sensitivity assays of TRU in remote-handled TRU wastes

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Hartwell; M. E. McIlwain; J. A. Kulisek

    2007-10-01

    The US Department of Energy’s transuranic (TRU) waste inventory includes about 4,500 m3 of remote-handled TRU (RH-TRU) wastes composed of a variety of containerized waste forms having a contact surface dose rate that exceeds 2 mSv/hr (200 mrem/hr) containing waste materials with a total TRU concentration greater than 3700 Bq/g (100 nCi/g). As part of a research project to investigate the use of active Compton-suppressed room-temperature gamma-ray detectors for direct non-destructive quantification of the TRU content of these RH-TRU wastes, we have designed and purchased a unique detector system using a LaBr3(Ce) primary detector and a NaI(Tl) suppression mantle. The LaBr3(Ce) primary detector is a cylindrical unit ~25 mm in diameter by 76 mm long viewed by a 38 mm diameter photomultiplier. The NaI(Tl) suppression mantle (secondary detector) is 175 mm by 175 mm with a center well that accommodates the primary detector. An important feature of this arrangement is the lack of any “can” between the primary and secondary detectors. These primary and secondary detectors are optically isolated by a thin layer (.003") of aluminized kapton, but the hermetic seal and thus the aluminum can surrounds the outer boundary of the detector system envelope. The hermetic seal at the primary detector PMT is at the PMT wall. This arrangement virtually eliminates the “dead” material between the primary and secondary detectors, a feature that preliminary modeling indicated would substantially improve the Compton suppression capability of this device. This paper presents both the expected performance of this unit determined from modeling with MCNPX, and the performance measured in our laboratory with radioactive sources.

  16. Determination of heavy metal pollution in soils from selected potentially contaminated sites in Tema

    International Nuclear Information System (INIS)

    Nyaaba, A.K.L.

    2011-01-01

    The objective of the study was to assess the concentration and determine the level of pollution by harmful heavy metals in soils from selected potentially contaminated sites in Tema. The metals of interest include; mercury, lead, cadmium, cobalt zinc, arsenic, nickel, copper and chromium. A total of forty seven (47) samples comprising thirty eight sub-samples (38) and nine (9) composite samples were collected from nine (9) different locations. These included playgrounds, steel processing factories, used Lead Acid Battery (ULAB) recycling plant, mechanic workshops and the municipal waste disposal site. The samples were prepared after which the elemental concentrations were determined using energy dispersive X-ray fluorescence (EDXRF) with a secondary target excitation arrangement (5.9 keV). The analysis of the samples yielded the following mean heavy metal concentrations in mg/kg: 424.38 (Cr); 408.68 (Ni); 14427 (Cu); 4129.87 (Zn); 1580.68 (As); 647.48 (Hg); 73361.51 (Pb) and 1176.16 (Co). The mean concentrations of heavy metals in the soils were in the following order Pb>Zn>As>Co>Cu>Hg>Cr>Ni. Mercury was detected at only two of the sites. The average heavy metals in the soils from the sites were generally high since most of them exceeded the optimum and action values of the New Dutch List. The Enrichment Factor (EF) ratios show that the enrichment of the elements in the soils ranged from deficiently to extremely highly enriched. The contamination factor show that the contamination by the heavy metals were low at some of the sites and very high at others. The geoaccumulation indices indicated that the playground (PG) has not been contaminated by any of the metals, C8 is contaminated strongly by mercury only and the contamination at the remaining sites varied from moderately contaminated to extremely contaminated by the metals. The Igeo also indicated that the elements accounting for extreme contamination are lead, arsenic, copper, zinc mercury and chromium. Lead

  17. Catalytic extraction processing of contaminated scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, T.P.; Johnston, J.E.; Payea, B.M. [Molten Metal Technology, Inc., Waltham, MA (United States)] [and others

    1995-10-01

    The U.S. Department of Energy issued a Planned Research and Development Announcement (PRDA) in 1993, with the objective of identifying unique technologies which could be applied to the most hazardous waste streams at DOE sites. The combination of radioactive contamination with additional contamination by hazardous constituents such as those identified by the Resource Conservation and Recovery Act (RCRA) pose an especially challenging problem. Traditional remediation technologies are increasingly becoming less acceptable to stakeholders and regulators because of the risks they pose to public health and safety. Desirable recycling technologies were described by the DOE as: (1) easily installed, operated, and maintained; (2) exhibiting superior environmental performance; (3) protective of worker and public health and safety; (4) readily acceptable to a wide spectrum of evaluators; and (5) economically feasible. Molten Metal Technology, Inc. (MMT) was awarded a contract as a result of the PRDA initiative to demonstrate the applicability of Catalytic Extraction Processing (CEP), MMT`s proprietary elemental recycling technology, to DOE`s inventory of low level mixed waste. This includes DOE`s inventory of radioactively- and RCRA-contaminated scrap metal and other waste forms expected to be generated by the decontamination and decommissioning (D&D) of DOE sites.

  18. Catalytic extraction processing of contaminated scrap metal

    International Nuclear Information System (INIS)

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.

    1995-01-01

    The U.S. Department of Energy issued a Planned Research and Development Announcement (PRDA) in 1993, with the objective of identifying unique technologies which could be applied to the most hazardous waste streams at DOE sites. The combination of radioactive contamination with additional contamination by hazardous constituents such as those identified by the Resource Conservation and Recovery Act (RCRA) pose an especially challenging problem. Traditional remediation technologies are increasingly becoming less acceptable to stakeholders and regulators because of the risks they pose to public health and safety. Desirable recycling technologies were described by the DOE as: (1) easily installed, operated, and maintained; (2) exhibiting superior environmental performance; (3) protective of worker and public health and safety; (4) readily acceptable to a wide spectrum of evaluators; and (5) economically feasible. Molten Metal Technology, Inc. (MMT) was awarded a contract as a result of the PRDA initiative to demonstrate the applicability of Catalytic Extraction Processing (CEP), MMT's proprietary elemental recycling technology, to DOE's inventory of low level mixed waste. This includes DOE's inventory of radioactively- and RCRA-contaminated scrap metal and other waste forms expected to be generated by the decontamination and decommissioning (D ampersand D) of DOE sites

  19. Removal of trace metal contaminants from potable water by electrocoagulation

    Science.gov (United States)

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-06-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  20. Subcellular partitioning of metals in Aporrectodea caliginosa along a gradient of metal exposure in 31 field-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Beaumelle, Léa [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France); Gimbert, Frédéric [Laboratoire Chrono-Environnement, UMR 6249 University of Franche-Comté/CNRS Usc INRA, 16 route de Gray, 25030 Besançon Cedex (France); Hedde, Mickaël [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France); Guérin, Annie [INRA, US 0010 LAS Laboratoire d' analyses des sols, 273 rue de Cambrai, 62000 Arras (France); Lamy, Isabelle, E-mail: lamy@versailles.inra.fr [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France)

    2015-07-01

    Subcellular fractionation of metals in organisms was proposed as a better way to characterize metal bioaccumulation. Here we report the impact of a laboratory exposure to a wide range of field-metal contaminated soils on the subcellular partitioning of metals in the earthworm Aporrectodea caliginosa. Soils moderately contaminated were chosen to create a gradient of soil metal availability; covering ranges of both soil metal contents and of several soil parameters. Following exposure, Cd, Pb and Zn concentrations were determined both in total earthworm body and in three subcellular compartments: cytosolic, granular and debris fractions. Three distinct proxies of soil metal availability were investigated: CaCl{sub 2}-extractable content dissolved content predicted by a semi-mechanistic model and free ion concentration predicted by a geochemical speciation model. Subcellular partitionings of Cd and Pb were modified along the gradient of metal exposure, while stable Zn partitioning reflected regulation processes. Cd subcellular distribution responded more strongly to increasing soil Cd concentration than the total internal content, when Pb subcellular distribution and total internal content were similarly affected. Free ion concentrations were better descriptors of Cd and Pb subcellular distribution than CaCl{sub 2} extractable and dissolved metal concentrations. However, free ion concentrations and soil total metal contents were equivalent descriptors of the subcellular partitioning of Cd and Pb because they were highly correlated. Considering lowly contaminated soils, our results raise the question of the added value of three proxies of metal availability compared to soil total metal content in the assessment of metal bioavailability to earthworm. - Highlights: • Earthworms were exposed to a wide panel of historically contaminated soils • Subcellular partitioning of Cd, Pb and Zn was investigated in earthworms • Three proxies of soil metal availability were

  1. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    Science.gov (United States)

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  2. The remediation of heavy metals contaminated sediment.

    Science.gov (United States)

    Peng, Jian-Feng; Song, Yong-Hui; Yuan, Peng; Cui, Xiao-Yu; Qiu, Guang-Lei

    2009-01-30

    Heavy metal contamination has become a worldwide problem through disturbing the normal functions of rivers and lakes. Sediment, as the largest storage and resources of heavy metal, plays a rather important role in metal transformations. This paper provides a review on the geochemical forms, affecting factors and remediation technologies of heavy metal in sediment. The in situ remediation of sediment aims at increasing the stabilization of some metals such as the mobile and the exchangeable fractions; whereas, the ex situ remediation mainly aims at removing those potentially mobile metals, such as the Mn-oxides and the organic matter (OM) fraction. The pH and OM can directly change metals distribution in sediment; however oxidation-reduction potential (ORP), mainly through changing the pH values, indirectly alters metals distribution. Mainly ascribed to their simple operation mode, low costs and fast remediation effects, in situ remediation technologies, especially being fit for slight pollution sediment, are applied widely. However, for avoiding metal secondary pollution from sediment release, ex situ remediation should be the hot point in future research.

  3. Heavy metals contamination of topsoil and dispersion in the ...

    African Journals Online (AJOL)

    Growing concern about reclamation of auto-repair workshop areas for residential and agricultural purposes makes risk assessment of heavy metal contamination of the study area imperative. In addition, the study is aimed at ascertaining the dispersion of contaminated Zn, Ni, Cr, Hg, and Pb within the soil profile. A total of 75 ...

  4. Assessment of trace metal contamination of soils around Oluyole ...

    African Journals Online (AJOL)

    This study was carried out to determine the level of metals contamination of the soils around Oluyole industrial estate in Ibadan. Oluyole industrial estate has heavy concentration of manufacturing industries that generate a lot of waste products capable of introducing metals into the environment. Consequently, twenty-one ...

  5. Assessment of trace metals contamination of soils around some ...

    African Journals Online (AJOL)

    This study was carried out to determine the level of soil contamination by metals around some automobile mechanic workshops in Oyo town in order to assess their possible adverse health implications on man and his environment. Concentrations of metals above certain levels have been shown to impair man's health.

  6. Microbial and heavy metal contamination of pineapple products ...

    African Journals Online (AJOL)

    SAM

    Quantitative determination of heavy metals: zinc, iron, lead, copper, cadmium and aluminium ...... consumption of dairy products, fish/seafood and meat from Ismailia ... Contamination in Green Leafy Vegetables Grown in Bangalore Urban.

  7. A mine of information: Benthic algal communities as biomonitors of metal contamination from abandoned tailings

    International Nuclear Information System (INIS)

    Lavoie, Isabelle; Lavoie, Michel; Fortin, Claude

    2012-01-01

    Various biomonitoring approaches were tested in the field to assess the response of natural periphythic algal communities to chronic metal contamination downstream from an abandoned mine tailings site. The accumulation of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) as well as the production of phytochelatins, the presence of diatom taxa known to tolerate high metal concentrations, diatom diversity and the presence of teratologies were determined. We observed highly significant relationships between intracellular metal and calculated free metal ion concentrations. Such relationships are often observed in laboratory studies but have been rarely validated in field studies. These results suggest that the concentration of metal inside the field-collected periphyton, regardless of its species composition, is a good indicator of exposure and is an interesting proxy for bioavailable metal concentrations in natural waters. The presence of teratologies and metal-tolerant taxa at our contaminated sites provided a clear indication that diatom communities were responding to this metal stress. A multi-metric approach integrating various bioassessment methods could be used for the field monitoring of metal contamination and the quantification of its effects. Highlights: ► Various approaches for metal contamination biomonitoring were used in the field. ► Metal accumulation in periphyton is correlated to free ion concentration. ► Teratologies and metal-tolerant taxa provided a clear indication of metal stress. ► Stream periphyton shows great potential as a biomonitor of metal contamination.

  8. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review

    Energy Technology Data Exchange (ETDEWEB)

    Lebeau, Thierry [Equipe Depollution Biologique des Sols (EDBS), University of Haute-Alsace, 28, rue de Herrlisheim, BP 50 568, 68 008 Colmar Cedex (France)], E-mail: thierry.lebeau@uha.fr; Braud, Armelle; Jezequel, Karine [Equipe Depollution Biologique des Sols (EDBS), University of Haute-Alsace, 28, rue de Herrlisheim, BP 50 568, 68 008 Colmar Cedex (France)

    2008-06-15

    Bioaugmentation-assisted phytoextraction is a promising method for the cleaning-up of soils contaminated by metals. Bacteria mainly Plant Growth Promoting Rhizobacteria (PGPR) and fungi mainly Arbuscular Mycorrhizal Fungi (AMF) associated with hyperaccumulating or non-hyperaccumulating plants were analyzed on the basis of a bioprocess engineering approach (concentration and amount of metals extracted by plants, translocation and bioconcentration factor, and plant biomass). In average bioaugmentation increased metals accumulated by shoots by a factor of about 2 (metal concentration) and 5 (amount) without any obvious differences between bacteria and fungi. To optimize this process, new relevant microorganism-plant associations and field scale experiments are needed along with a common methodology for the comparison of all experiments on the same basis. Recommendations were suggested concerning both the microbial-plant selection and the implementation of bioaugmentation to enhance the microbial survival. The use of microbial consortia associated with plant was discussed notably for multi-contaminated soils. - Bioaugmentation-assisted plant improves the phytoextraction performances for soils contaminated by metals.

  9. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review

    International Nuclear Information System (INIS)

    Lebeau, Thierry; Braud, Armelle; Jezequel, Karine

    2008-01-01

    Bioaugmentation-assisted phytoextraction is a promising method for the cleaning-up of soils contaminated by metals. Bacteria mainly Plant Growth Promoting Rhizobacteria (PGPR) and fungi mainly Arbuscular Mycorrhizal Fungi (AMF) associated with hyperaccumulating or non-hyperaccumulating plants were analyzed on the basis of a bioprocess engineering approach (concentration and amount of metals extracted by plants, translocation and bioconcentration factor, and plant biomass). In average bioaugmentation increased metals accumulated by shoots by a factor of about 2 (metal concentration) and 5 (amount) without any obvious differences between bacteria and fungi. To optimize this process, new relevant microorganism-plant associations and field scale experiments are needed along with a common methodology for the comparison of all experiments on the same basis. Recommendations were suggested concerning both the microbial-plant selection and the implementation of bioaugmentation to enhance the microbial survival. The use of microbial consortia associated with plant was discussed notably for multi-contaminated soils. - Bioaugmentation-assisted plant improves the phytoextraction performances for soils contaminated by metals

  10. Status of metal levels and their potential sources of contamination in Southeast Asian rivers.

    Science.gov (United States)

    Chanpiwat, Penradee; Sthiannopkao, Suthipong

    2014-01-01

    To assess the concentration and status of metal contaminants in four major Southeast Asian river systems, water were collected from the Tonle Sap-Bassac Rivers (Cambodia), Citarum River (Indonesia), lower Chao Phraya River (Thailand), and Saigon River (Vietnam) in both dry and wet seasons. The target elements were Be, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Ba, Tl, and Pb and the concentrations exceeded the background metal concentrations by 1- to 88-fold. This distinctly indicates enrichment by human urban area activities. The results of a normalization technique used to distinguish natural from enriched metal concentrations confirmed contamination by Al, Cd, Co, Mn, Ni, Pb, and Zn. Cluster analysis revealed the probable source of metals contamination in most sampling sites on all rivers studied to be anthropogenic, including industrial, commercial, and residential activities. Stable lead isotopes analyses applied to track the sources and pathways of anthropogenic lead furthermore confirmed that anthropogenic sources of metal contaminated these rivers. Discharges of wastewater from both industrial and household activities were major contributors of Pb into the rivers. Non-point sources, especially road runoff and street dust, also contributed contamination from Pb and other metals.

  11. A model on valence state evaluation of TRU nuclides in reprocessing solutions

    International Nuclear Information System (INIS)

    Uchiyama, Gunzo; Fujine, Sachio; Yoshida, Zenko; Maeda, Mitsuru; Motoyama, Satoshi.

    1998-02-01

    A mathematical model was developed to evaluate the valence state of TRU nuclides in reprocessing process solutions. The model consists of mass balance equations, Nernst equations, reaction rate equations and electrically neutrality equations. The model is applicable for the valence state evaluation of TRU nuclides in both steady state and transient state conditions in redox equilibrium. The valence state which is difficult to measure under high radiation and multi component conditions is calculated by the model using experimentally measured data for the TRU nuclide concentrations, nitric acid and redox reagent concentrations, electrode potential and solution temperature. (author)

  12. Experimental Investigations into U/TRU Recovery using a Liquid Cadmium Cathode and Salt Containing High Rare Earth Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Shelly X. Li; Steven D. Herrmann; Michael F. Simpson

    2009-09-01

    Experimental Investigations into U/TRU Recovery using a Liquid Cadmium Cathode and Salt Containing High Rare Earth Concentrations Shelly X. Li, Steven D. Herrmann, and Michael F. Simpson Pyroprocessing Technology Department Idaho National Laboratory P.O. Box 1625, Idaho Falls, ID 83415 USA Abstract - A series of six bench-scale liquid cadmium cathode (LCC) tests was performed to obtain basic separation data with focus on the behavior of rare earth elements. The electrolyte used for the tests was a mixed salt from the Mk-IV and Mk-V electrorefiners, in which spent metal fuels from Experimental Breeder Reactor-II (EBR-II) had been processed. Rare earth (RE) chlorides, such as NdCl3, CeCl3, LaCl3, PrCl3, SmCl3, and YCl3, were spiked into the salt prior to the first test to create an extreme case for investigating rare earth contamination of the actinides collected by a LCC. For the first two LCC tests, an alloy with the nominal composition of 41U-30Pu-5Am-3Np-20Zr-1RE was loaded into the anode baskets as the feed material. The anode feed material for Runs 3 to 6 was spent ternary fuel (U-19Pu-10Zr). The Pu/U ratio in the salt varied from 0.6 to 1.3. Chemical and radiochemical analytical results confirmed that U and transuranics can be collected into the LCC as a group under the given run conditions. The RE contamination level in the LCC product was up to 6.7 wt% of the total metal collected. The detailed data for partitioning of actinides and REs in the salt and Cd phases are reported in the paper.

  13. Solidification of TRU wastes in a ceramic matrix

    International Nuclear Information System (INIS)

    Loida, A.; Schubert, G.

    1991-01-01

    Aluminumsilicate based ceramic materials have been evaluated as an alternative waste form for the incorporation of TRU wastes. These waste forms are free of water and - cannot generate hydrogen radiolyticly, - they show good compatibility between the compounds of the waste and the matrix, - they are resistent against aqueous solutions, heat and radiation. R and D-work has been performed to demonstrate the suitability of this waste form for the immobilization of TRU-wastes. Four kinds of original TRU-waste streams and a mixture of all of them have been immobilized by ceramization, using glove box and remote operation technique as well. Clay minerals, (kaolinite, bentonite) and reactive corundum were selected as ceramic raw materials (KAB 78) in an appropriate ratio yielding 78 wt% Al 2 O 3 and 22 wt%SiO 2 . The main process steps are (i) pretreatment of the liquid waste (concentration, denitration, neutralization, solid- liquid separation), (ii) mixing with ceramic raw materials and forming, (iii) heat treatment with T max. of 1300 0 C for 15 minutes. The waste load of the ceramic matrix has been increased gradually from 20 to 50, in some cases to 60 wt.%

  14. TRU drum corrosion task team report

    Energy Technology Data Exchange (ETDEWEB)

    Kooda, K.E.; Lavery, C.A.; Zeek, D.P.

    1996-05-01

    During routine inspections in March 1996, transuranic (TRU) waste drums stored at the Radioactive Waste Management Complex (RWMC) were found with pinholes and leaking fluid. These drums were overpacked, and further inspection discovered over 200 drums with similar corrosion. A task team was assigned to investigate the problem with four specific objectives: to identify any other drums in RWMC TRU storage with pinhole corrosion; to evaluate the adequacy of the RWMC inspection process; to determine the precise mechanism(s) generating the pinhole drum corrosion; and to assess the implications of this event for WIPP certifiability of waste drums. The task team investigations analyzed the source of the pinholes to be Hcl-induced localized pitting corrosion. Hcl formation is directly related to the polychlorinated hydrocarbon volatile organic compounds (VOCs) in the waste. Most of the drums showing pinhole corrosion are from Content Code-003 (CC-003) because they contain the highest amounts of polychlorinated VOCs as determined by headspace gas analysis. CC-001 drums represent the only other content code with a significant number of pinhole corrosion drums because their headspace gas VOC content, although significantly less than CC-003, is far greater than that of the other content codes. The exact mechanisms of Hcl formation could not be determined, but radiolytic and reductive dechlorination and direct reduction of halocarbons were analyzed as the likely operable reactions. The team considered the entire range of feasible options, ranked and prioritized the alternatives, and recommended the optimal solution that maximizes protection of worker and public safety while minimizing impacts on RWMC and TRU program operations.

  15. TRU drum corrosion task team report

    International Nuclear Information System (INIS)

    Kooda, K.E.; Lavery, C.A.; Zeek, D.P.

    1996-05-01

    During routine inspections in March 1996, transuranic (TRU) waste drums stored at the Radioactive Waste Management Complex (RWMC) were found with pinholes and leaking fluid. These drums were overpacked, and further inspection discovered over 200 drums with similar corrosion. A task team was assigned to investigate the problem with four specific objectives: to identify any other drums in RWMC TRU storage with pinhole corrosion; to evaluate the adequacy of the RWMC inspection process; to determine the precise mechanism(s) generating the pinhole drum corrosion; and to assess the implications of this event for WIPP certifiability of waste drums. The task team investigations analyzed the source of the pinholes to be Hcl-induced localized pitting corrosion. Hcl formation is directly related to the polychlorinated hydrocarbon volatile organic compounds (VOCs) in the waste. Most of the drums showing pinhole corrosion are from Content Code-003 (CC-003) because they contain the highest amounts of polychlorinated VOCs as determined by headspace gas analysis. CC-001 drums represent the only other content code with a significant number of pinhole corrosion drums because their headspace gas VOC content, although significantly less than CC-003, is far greater than that of the other content codes. The exact mechanisms of Hcl formation could not be determined, but radiolytic and reductive dechlorination and direct reduction of halocarbons were analyzed as the likely operable reactions. The team considered the entire range of feasible options, ranked and prioritized the alternatives, and recommended the optimal solution that maximizes protection of worker and public safety while minimizing impacts on RWMC and TRU program operations

  16. Effects of remediation train sequence on decontamination of heavy metal-contaminated soil containing mercury.

    Science.gov (United States)

    Hseu, Zeng-Yei; Huang, Yu-Tuan; Hsi, Hsing-Cheng

    2014-09-01

    When a contaminated site contains pollutants including both nonvolatile metals and Hg, one single remediation technology may not satisfactorily remove all contaminants. Therefore, in this study, chemical extraction and thermal treatment were combined as a remediation train to remove heavy metals, including Hg, from contaminated soil. A 0.2 M solution of ethylenediamine tetraacetic acid (EDTA) was shown to be the most effective reagent for extraction of considerable amounts of Cu, Pb, and Zn (> 50%). Hg removal was ineffective using 0.2 M EDTA, but thermogravimetric analysis suggested that heating to 550 degrees C with a heating rate of 5 degrees C/min for a duration of 1 hr appeared to be an effective approach for Hg removal. With the employment of thermal treatment, up to 99% of Hg could be removed. However executing thermal treatment prior to chemical extraction reduced the effectiveness of the subsequent EDTA extraction because nonvolatile heavy metals were immobilized in soil aggregates after the 550 degrees C treatment. The remediation train of chemical extraction followed by thermal treatment appears to remediate soils that have been contaminated by many nonvolatile heavy metals and Hg. Implications: A remediation train conjoining two or more techniques has been initialized to remove multiple metals. Better understandings of the impacts of treatment sequences, namely, which technique should be employed first on the soil properties and the decontamination efficiency, are in high demand. This study provides a strategy to remove multiple heavy metals including Hg from a contaminated soil. The interactions between thermal treatment and chemical extraction on repartitioning of heavy metals was revealed. The obtained results could offer an integrating strategy to remediate the soil contaminated with both heavy metals and volatile contaminants.

  17. Phytoremediation of heavy metal-contaminated water and sediment by eleocharis acicularis

    Energy Technology Data Exchange (ETDEWEB)

    Sakakibara, Masayuki; Ha, Nguyen Thi Hoang [Graduate School of Science and Engineering, Ehime University, Matsuyama (Japan); Ohmori, Yuko [Graduate School of Science and Engineering, Ehime University, Matsuyama (Japan); Taisei Kiso Sekkei Co., Ltd., Tokyo (Japan); Sano, Sakae [Faculty of Education, Ehime University, Matsuyama (Japan); Sera, Koichiro [Cyclotron Center, Iwate Medical University, Takizawa-mura (Japan)

    2011-08-15

    Phytoremediation is an environmental remediation technique that takes advantage of plant physiology and metabolism. The unique property of heavy metal hyperaccumulation by the macrophyte Eleocharis acicularis is of great significance in the phytoremediation of water and sediments contaminated by heavy metals at mine sites. In this study, a field cultivation experiment was performed to examine the applicability of E. acicularis to the remediation of water contaminated by heavy metals. The highest concentrations of heavy metals in the shoots of E. acicularis were 20 200 mg Cu/kg, 14 200 mg Zn/kg, 1740 mg As/kg, 894 mg Pb/kg, and 239 mg Cd/kg. The concentrations of Cu, Zn, As, Cd, and Pb in the shoots correlate with their concentrations in the soil in a log-linear fashion. The bioconcentration factor for these elements decreases log-linearly with increasing concentration in the soil. The results indicate the ability of E. acicularis to hyperaccumulate Cu, Zn, As, and Cd under natural conditions, making it a good candidate species for the phytoremediation of water contaminated by heavy metals. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Remediation of a heavy metal-contaminated soil by means of agglomeration.

    Science.gov (United States)

    Polettini, Alessandra; Pomi, Raffaella; Valente, Mattia

    2004-01-01

    The feasibility of treating a heavy metal-contaminated soil by means of a solidification/stabilization treatment consisting of a granulation process is discussed in the present article. The aim of the study was to attain contaminant immobilization within the agglomerated solid matrix. The soil under concern was characterized by varying levels of heavy metal contamination, ranging from 50 to 500 mg kg(-1) dry soil for chromium. from 300 to 2000 mg kg(-1) dry soil for lead and from 270 to 5000 mg kg(-1) dry soil for copper. An artificially contaminated soil with contaminant concentrations corresponding to the upper level of the mentioned ranges was prepared from a sample of uncontaminated soil by means of spiking experiments. Pure soluble species of chromium, copper and lead. namely CrCl3.6H2O, CuCl2.2H2O and Pb(NO3)2, were selected for the spiking experiments, which were arranged according to a 2(3) full factorial design. The solidification/stabilization treatment was based on an agglomeration process making use of hydraulic binders including Portland cement, hydrated lime and sodium methasilicate, which were selected on the basis of preliminary test runs. It was found that after 7 days of curing the applied treatment was able to efficiently immobilize the investigated heavy metals within the hydrated matrix. Good acid neutralization behavior was also observed, indicating improved matrix resistance to acid attack and decreased potential for metal leaching.

  19. Feasibility of re-melting NORM-contaminated scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Winters, S. J.; Smith, K. P.

    1999-10-26

    Naturally occurring radioactive materials (NORM) sometimes accumulate inside pieces of equipment associated with oil and gas production and processing activities. Typically, the NORM accumulates when radium that is present in solution in produced water precipitates out in scale and sludge deposits. Scrap equipment containing residual quantities of these NORM-bearing scales and sludges can present a waste management problem if the radium concentrations exceed regulatory limits or activate the alarms on radiation screening devices installed at most scrap metal recycling facilities. Although NORM-contaminated scrap metal currently is not disposed of by re-melting, this form of recycling could present a viable disposition option for this waste stream. Studies indicate that re-melting NORM-contaminated scrap metal is a viable recycling option from a risk-based perspective. However, a myriad of economic, regulatory, and policy issues have caused the recyclers to turn away virtually all radioactive scrap metal. Until these issues can be resolved, re-melting of the petroleum industry's NORM-impacted scrap metal is unlikely to be a widespread practice. This paper summarizes the issues associated with re-melting radioactive scrap so that the petroleum industry and its regulators will understand the obstacles. This paper was prepared as part of a report being prepared by the Interstate Oil and Gas Compact Commission's NORM Subcommittee.

  20. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater.

    Science.gov (United States)

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Arellano, Eduardo

    2014-03-01

    Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal-phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the

  1. Remediation of Steel Slag on Acidic Soil Contaminated by Heavy Metal

    OpenAIRE

    Gu, Haihong; Li, Fuping; Guan, Xiang; Li, Zhongwei; Yu, Qiang

    2013-01-01

    The technology of in situ immobilization with amendments is an important measure that remediates the soil contaminated by heavy metal, and selecting economical and effective modifier is the key. The effects and mechanism of steel slag, the silicon-rich alkaline by-product which can remediate acidic soil contaminated by heavy metal, are mainly introduced in this paper to provide theory inferences for future research. Firstly, the paper analyzes current research situation of in situ immobilizat...

  2. Chelant extraction of heavy metals from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W. [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    1999-04-23

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple

  3. Chelant extraction of heavy metals from contaminated soils

    International Nuclear Information System (INIS)

    Peters, R.W.

    1999-01-01

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple-stage batch extraction

  4. Los Alamos National Laboratory accelerated tru waste workoff strategies

    International Nuclear Information System (INIS)

    Kosiewicz, S.T.; Triay, I.R.; Rogers, P.Z.; Christensen, D.V.

    1997-01-01

    During 1996, the Los Alamos National Laboratory (LANL) developed two transuranic (TRU) waste workoff strategies that were estimated to save $270 - 340M through accelerated waste workoff and the elimination of a facility. The planning effort included a strategy to assure that LANL would have a significant quantity (3000+ drums) of TRU waste certified for shipment to the Waste Isolation Pilot Plant (WIPP) beginning in April of 1998, when WIPP was projected to open. One of the accelerated strategies can be completed in less than ten years through a Total Optimization of Parameters Scenario (open-quotes TOPSclose quotes). open-quotes TOPSclose quotes fully utilizes existing LANL facilities and capabilities. For this scenario, funding was estimated to be unconstrained at $23M annually to certify and ship the legacy inventory of TRU waste at LANL. With open-quotes TOPSclose quotes the inventory is worked off in about 8.5 years while shipping 5,000 drums per year at a total cost of $196M. This workoff includes retrieval from earthen cover and interim storage costs. The other scenario envisioned funding at the current level with some increase for TRUPACT II loading costs, which total $16M annually. At this funding level, LANL estimates it will require about 17 years to work off the LANL TRU legacy waste while shipping 2,500 drums per year to WIPP. The total cost will be $277M. This latter scenario decreases the time for workoff by about 19 years from previous estimates and saves an estimated $190M. In addition, the planning showed that a $70M facility for TRU waste characterization was not needed. After the first draft of the LANL strategies was written, Congress amended the WIPP Land Withdrawal Act (LWA) to accelerate the opening of WIPP to November 1997. Further, the No Migration Variance requirement for the WIPP was removed. This paper discusses the LANL strategies as they were originally developed. 1 ref., 3 figs., 2 tabs

  5. In Situ Evaluation of Crop Productivity and Bioaccumulation of Heavy Metals in Paddy Soils after Remediation of Metal-Contaminated Soils.

    Science.gov (United States)

    Kim, Shin Woong; Chae, Yooeun; Moon, Jongmin; Kim, Dokyung; Cui, Rongxue; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo

    2017-02-15

    Soils contaminated with heavy metals have been reused for agricultural, building, and industrial uses following remediation. This study assesses plant growth and bioaccumulation of heavy metals following remediation of industrially contaminated soil. The soil was collected from a field site near a nonferrous smelter and was subjected to laboratory- and field-scale studies. Soil from the contaminated site was remediated by washing with acid or mixed with soil taken from a distant uncontaminated site. The activities of various soil exoenzymes, the rate of plant growth, and the bioaccumulations of six heavy metals were measured to assess the efficacy of these bioremediation techniques. Growth of rice (Oryza sativa) was unaffected in acid-washed soil or the amended soil compared to untreated soil from the contaminated site. The levels of heavy metals in the rice kernels remained within safe limits in treated and untreated soils. Rice, sorghum (Sorghum bicolor), and wheat (Triticum aestivum) cultivated in the same soils in the laboratory showed similar growth rates. Soil exoenzyme activities and crop productivity were not affected by soil treatment in field experiments. In conclusion, treatment of industrially contaminated soil by acid washing or amendment did not adversely affect plant productivity or lead to increased bioaccumulation of heavy metals in rice.

  6. Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize?

    Science.gov (United States)

    Bolan, Nanthi; Kunhikrishnan, Anitha; Thangarajan, Ramya; Kumpiene, Jurate; Park, Jinhee; Makino, Tomoyuki; Kirkham, Mary Beth; Scheckel, Kirk

    2014-02-15

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy metal(loid) contaminated soils through manipulating their bioavailability using a range of soil amendments will be presented. Mobilizing amendments such as chelating and desorbing agents increase the bioavailability and mobility of metal(loid)s. Immobilizing amendments such of precipitating agents and sorbent materials decrease the bioavailabilty and mobility of metal(loid)s. Mobilizing agents can be used to enhance the removal of heavy metal(loid)s though plant uptake and soil washing. Immobilizing agents can be used to reduce the transfer to metal(loid)s to food chain via plant uptake and leaching to groundwater. One of the major limitations of mobilizing technique is susceptibility to leaching of the mobilized heavy metal(loid)s in the absence of active plant uptake. Similarly, in the case of the immobilization technique the long-term stability of the immobilized heavy metal(loid)s needs to be monitored. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Characterizing toxicity of metal-contaminated sediments from mining areas

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate communities can help document causal relationships between metal contamination and biological effects. Total or total-recoverable metal concentrations in sediments are the most common measure of metal contamination in sediments, but metal concentrations in labile sediment fractions (e.g., determined as part of selective sediment extraction protocols) may better represent metal bioavailability. Metals released by the weak-acid extraction

  8. Analisis Penerapan Metode Transmitter Receiver Unit (TRU Upgrading Untuk Mengatasi Traffic Congestion Jaringan GSM Pada BTS Area Purwokerto Kota

    Directory of Open Access Journals (Sweden)

    Alfin Hikmaturokhman

    2011-05-01

    Full Text Available Semakin banyaknya pengguna selular maka akan semakin banyak trafik yang akan tertampung. Trafik yang melebihi kapasitas kanal yang disediakan dapat menyebabkan kondisi Traffic Congestion. Untuk menanganinya diperlukan metode penambahan kapasitas kanal agar semua trafik dapat tertampung dengan baik. Metode ini disebut dengan TRU Upgrading. Transmitter Receiver Unit (TRU adalah hardware yang terletak pada Radio Base Station dalam BTS yang berisi slot-slot kanal sedangkan metode TRU Upgrading adalah metode dengan menambahkan/upgrade kapasitas kanal yang tersedia dari konfigurasi TRU yang telah ada sebelumnya, misalkan pada BTS Pabuaran memiliki konfigurasi 3x2x3 karena terjadi kejenuhan pelanggan maka konfigurasi TRU diupgrade menjadi 3x4x3. Perubahan konfigurasi TRU maka merubah konfigurasi BTS-nya serta menambah kapasitas kanalnya. Key Performance Indicator (KPI yang baik pada Indosat adalah menggunakan batas GoS 2%. Nilai GoS ini dikaitkan dengan tabel Erlang untuk mendapatkan sebuah nilai intensitas trafik. Jika nilai intensitas trafik konfigurasi TRU yang digunakan kurang dari nilai intensitas trafik pelanggan maka disebut traffic congestion. Sebagai akibat dari traffic congestion adalah kondisi blocking. TRU Upgrading ini dilakukan dengan harapan nilai blocking panggilan menjadi 0 %. Pada Purwokerto kota, diterapkan  TRU Upgrading untuk cell Grendeng 3, Pabuaran 2, dan Unsoed 1 karena trafik pelanggan yang terjadi melebihi nilai intensitas trafik dari konfigurasi TRU yang digunakan.   Untuk cell Unsoed 1 dan Grendeng 3 meski telah dilakukan TRU Upgrading menjadi 4 buah TRU tetap terjadi traffic congestion sebesar 8 sampai dengan 15 Erlang dikarenakan pada cell-cell ini mengcover area yang padat penduduk. Sedang untuk Pabuaran 2 penerapan TRU upgrading mencapai keefektifan sebesar 100%.

  9. System to control contamination during retrieval of buried TRU waste

    Science.gov (United States)

    Menkhaus, Daniel E.; Loomis, Guy G.; Mullen, Carlan K.; Scott, Donald W.; Feldman, Edgar M.; Meyer, Leroy C.

    1993-01-01

    A system to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

  10. Heavy metals contamination of Chrysichthys nigrodigitatus and ...

    African Journals Online (AJOL)

    This study investigates the presence of heavy metal contamination of Chrysichthys nigrodigitatus and Lates niloticus. Adult C. nigrodigitatus and L. niloticus were obtained from fishermen in Ikere Gorge, Oyo state, Nigeria. Water samples were also collected during the wet and dry seasons of the year in the same locality.

  11. A review of metal (Pb and Zn) sensitive and pH tolerant bioassay organisms for risk screening of metal-contaminated acidic soils

    International Nuclear Information System (INIS)

    Chapman, E.Emily V.; Dave, Göran; Murimboh, John D.

    2013-01-01

    To improve risk estimates at the screening stage of Ecological Risk Assessment (ERA), short duration bioassays tailored to undisturbed soil cores from the contaminated site could be useful. However, existing standardized bioassays use disturbed soil samples and often pH sensitive organisms. This is a problem as naturally acidic soils are widespread. Changing soil properties to suit the test organism may change metal bioavailability, leading to erroneous risk estimates. For bioassays in undisturbed soil cores to be effective, species able to withstand natural soil properties must be identified. This review presents a critical examination of bioassay species' tolerance of acidic soils and sensitivity to metal contaminants such as Pb and Zn. Promising organisms include; Dendrobaena octaedra, Folsomia candida, Caenorhabditis elegans, Oppia nitens, Brassica rapa, Trifolium pratense, Allium cepa, Quercus rubra and Acer rubrum. The MetSTICK test and the Bait lamina test were also identified as suitable microorganism tests. -- Highlights: •Risk screening of metal contaminated soils should consider metal bioavailability. •Metal bioavailability is dependent on soil properties such as pH. •Many standardized bioassay organisms are sensitive to acidic soils. •This review identifies acid tolerant and metal sensitive bioassays and species. •The identified tests can improve risk screening of acidic metal contaminated soil. -- This review identifies bioassay species able to withstand naturally acidic soils while being sensitive to metal contaminants

  12. Phytoremediation of Heavy Metals in Contaminated Water and Soil Using Miscanthus sp. Goedae-Uksae 1.

    Science.gov (United States)

    Bang, Jihye; Kamala-Kannan, Seralathan; Lee, Kui-Jae; Cho, Min; Kim, Chang-Hwan; Kim, Young-Jin; Bae, Jong-Hyang; Kim, Kyong-Ho; Myung, Hyun; Oh, Byung-Taek

    2015-01-01

    The aim of this study is to characterize the heavy metal phytoremediation potential of Miscanthus sp. Goedae-Uksae 1, a hybrid, perennial, bio-energy crop developed in South Korea. Six different metals (As, Cu, Pb, Ni, Cd, and Zn) were used for the study. The hybrid grass effectively absorbed all the metals from contaminated soil. The maximum removal was observed for As (97.7%), and minimum removal was observed for Zn (42.9%). Similarly, Goedae-Uksae 1 absorbed all the metals from contaminated water except As. Cd, Pb, and Zn were completely (100%) removed from contaminated water samples. Generally, the concentration of metals in roots was several folds higher than in shoots. Initial concentration of metals highly influenced the phytoremediation rate. The results of the bioconcentration factor, translocation factor, and enrichment coefficient tests indicate that Goedae-Uksae 1 could be used for phytoremediation in a marginally contaminated ecosystem.

  13. Heavy metal accumulation by poplar in calcareous soil with various degrees of multi-metal contamination: implications for phytoextraction and phytostabilization.

    Science.gov (United States)

    Hu, Yahu; Nan, Zhongren; Su, Jieqiong; Wang, Ning

    2013-10-01

    The object of this study was to assess the capacity of Populus alba L. var. pyramidalis Bunge for phytoremediation of heavy metals on calcareous soils contaminated with multiple metals. In a pot culture experiment, a multi-metal-contaminated calcareous soil was mixed at different ratios with an uncontaminated, but otherwise similar soil, to establish a gradient of soil metal contamination levels. In a field experiment, poplars with different stand ages (3, 5, and 7 years) were sampled randomly in a wastewater-irrigated field. The concentrations of cadmium (Cd), Cu, lead (Pb), and zinc (Zn) in the poplar tissues and soil were determined. The accumulation of Cd and Zn was greatest in the leaves of P. pyramidalis, while Cu and Pb mainly accumulated in the roots. In the pot experiment, the highest tissue concentrations of Cd (40.76 mg kg(-1)), Cu (8.21 mg kg(-1)), Pb (41.62 mg kg(-1)), and Zn (696 mg kg(-1)) were all noted in the multi-metal-contaminated soil. Although extremely high levels of Cd and Zn accumulated in the leaves, phytoextraction using P. pyramidalis may take at least 24 and 16 years for Cd and Zn, respectively. The foliar concentrations of Cu and Pb were always within the normal ranges and were never higher than 8 and 5 mg kg(-1), respectively. The field experiment also revealed that the concentrations of all four metals in the bark were significantly higher than that in the wood. In addition, the tissue metal concentrations, together with the NH4NO3-extractable concentrations of metals in the root zone, decreased as the stand age increased. P. pyramidalis is suitable for phytostabilization of calcareous soils contaminated with multiple metals, but collection of the litter fall would be necessary due to the relatively high foliar concentrations of Cd and Zn.

  14. Spatial assessment of soil contamination by heavy metals from informal electronic waste recycling in Agbogbloshie, Ghana.

    Science.gov (United States)

    Kyere, Vincent Nartey; Greve, Klaus; Atiemo, Sampson M

    2016-01-01

    This study examined the spatial distribution and the extent of soil contamination by heavy metals resulting from primitive, unconventional informal electronic waste recycling in the Agbogbloshie e-waste processing site (AEPS) in Ghana. A total of 132 samples were collected at 100 m intervals, with a handheld global position system used in taking the location data of the soil sample points. Observing all procedural and quality assurance measures, the samples were analyzed for barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn), using X-ray fluorescence. Using environmental risk indices of contamination factor and degree of contamination (C deg ), we analyzed the individual contribution of each heavy metal contamination and the overall C deg . We further used geostatistical techniques of spatial autocorrelation and variability to examine spatial distribution and extent of heavy metal contamination. Results from soil analysis showed that heavy metal concentrations were significantly higher than the Canadian Environmental Protection Agency and Dutch environmental standards. In an increasing order, Pb>Cd>Hg>Cu>Zn>Cr>Co>Ba>Ni contributed significantly to the overall C deg . Contamination was highest in the main working areas of burning and dismantling sites, indicating the influence of recycling activities. Geostatistical analysis also revealed that heavy metal contamination spreads beyond the main working areas to residential, recreational, farming, and commercial areas. Our results show that the studied heavy metals are ubiquitous within AEPS and the significantly high concentration of these metals reflect the contamination factor and C deg , indicating soil contamination in AEPS with the nine heavy metals studied.

  15. Development and application of new parameters for TRU transmutation effectiveness

    International Nuclear Information System (INIS)

    Han, Chi Young

    2005-02-01

    Four new parameters (incineration branching ratio, incineration rate, incineration time, and incineration buckling) have been developed to evaluate quantitatively the TRU transmutation effectiveness and applied to transmutation of uranium and TRU. From the incineration branching ratio, it is possible to analyze the main contributors to fission reaction for transmutation of a target nuclide. From the incineration rate, it is available to evaluate the transmutation effectiveness in the viewpoint of a relative incineration rate to incineration potential of a target nuclide and its family. This parameter is also used to calculate the incineration time and incineration buckling together with the incineration branching ratio. The incineration time makes it possible to discuss more practically the transmutation speed instead of the existing other parameters. The incineration buckling can be used to evaluate the time behavior of the incineration rate and also employed to support the results from the incineration time. Taking into account the transmutation effectiveness and potential of uranium and TRU derived by using the parameters and an existing neutron economy parameter, it was noted that the thermal neutron energy is very preferable from the transmutation effectiveness point of view, on the other hand the fast neutron energy is effective from the transmutation potential. Applying them to the typical critical and subcritical TRU burners, it is indicated that the critical reactor containing fertile uranium undergoes effectively the selective TRU transmutation on the present fast spectrum. It was also noted that the uranium-free subcritical reactor could be operated effectively on a little softer spectrum due to the larger neutron excess in the present spectrum. It is expected that the new parameters developed in this study and the results are directly applicable to practical transmutation reactor design, in particular accelerator-driven transmutation reactor

  16. Test Plan: WIPP bin-scale CH TRU waste tests

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1990-08-01

    This WIPP Bin-Scale CH TRU Waste Test program described herein will provide relevant composition and kinetic rate data on gas generation and consumption resulting from TRU waste degradation, as impacted by synergistic interactions due to multiple degradation modes, waste form preparation, long-term repository environmental effects, engineered barrier materials, and, possibly, engineered modifications to be developed. Similar data on waste-brine leachate compositions and potentially hazardous volatile organic compounds released by the wastes will also be provided. The quantitative data output from these tests and associated technical expertise are required by the WIPP Performance Assessment (PA) program studies, and for the scientific benefit of the overall WIPP project. This Test Plan describes the necessary scientific and technical aspects, justifications, and rational for successfully initiating and conducting the WIPP Bin-Scale CH TRU Waste Test program. This Test Plan is the controlling scientific design definition and overall requirements document for this WIPP in situ test, as defined by Sandia National Laboratories (SNL), scientific advisor to the US Department of Energy, WIPP Project Office (DOE/WPO). 55 refs., 16 figs., 19 tabs

  17. Heavy metals contamination and their risk assessment around the abandoned base metals and Au-Ag mines in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2017-04-01

    Heavy metals contamination in the areas of abandoned Au-Ag and base metal mines in Korea was investigated in order to assess the level of metal pollution, and to draw general summaries about the fate of toxic heavy metals in different environments. Efforts have been made to compare the level of heavy metals, chemical forms, and plant uptake of heavy metals in each mine site. In the base-metals mine areas, significant levels of Cd, Cu, Pb and Zn were found in mine dump soils developed over mine waste materials and tailings. Leafy vegetables tend to accumulate heavy metals(in particular, Cd and Zn) higher than other crop plants, and high metal concentrations in rice crops may affect the local residents' health. In the Au-Ag mining areas, arsenic would be the most characteristic contaminant in the nearby environment. Arsenic and heavy metals were found to be mainly associated with sulfide gangue minerals, and the mobility of these metals would be enhanced by the effect of continuing weathering and oxidation. According to the sequential extraction of metals in soils, most heavy metals were identified as non-residual chemical forms, and those are very susceptible to the change of ambient conditions of a nearby environment. The concept of pollution index(PI) of soils gives important information on the extent and degree of multi-element contamination, and can be applied to the evaluation of mine soils before their agricultural use and remediation. The risk assessment process comprising exposure assessment, dose-response assessment, and risk characterization was discussed, and the results of non-cancer risk of As, Cd, and Zn, and those of cancer risk of As were suggested.

  18. Trace metal contamination of Beaufort's Dyke, North Channel, Irish Sea: A legacy of ordnance disposal

    International Nuclear Information System (INIS)

    Callaway, Alexander; Quinn, Rory; Brown, Craig J.; Service, Matthew; Benetti, Sara

    2011-01-01

    Highlights: → Our samples are the first trace metal concentrations taken from the valley of Beaufort's Dyke. → There is no clear trend between concentrations of trace metals in Dyke and NMMP sediments. → Particle transport simulations show dispersal of trace metals from Beaufort's Dyke is possible. → Disposed ordnance may also contribute to contamination of surrounding areas. → These methods could help predict areas at risk of future trace metal contamination as a result of ordnance disposal. - Abstract: Beaufort's Dyke is a disused ordnance disposal ground within the North Channel of the Irish Sea. Over 1 million tonnes of ordnance were disposed of in the dyke over a 40 year period representing a substantial volume of trace metal pollutants introduced to the seabed. Utilising particle transport modelling software we simulated the potential transport of metal particles from Beaufort's Dyke over a 3 month period. This demonstrated that Beaufort's Dyke has the potential to act as a source for trace metal contamination to areas beyond the submarine valley. Trace metal analysis of sediments from the Dyke and surrounding National Marine Monitoring Programme areas demonstrate that the Dyke is not the most contaminated site in the region. Particle transport modelling enables the transport pathways of trace metal contaminants to be predicted. Implementation of the technique in other munitions disposal grounds will provide valuable information for the selection of monitoring stations.

  19. Metal contamination of Posidonia oceanica meadows along the Corsican coastline (Mediterranean)

    Energy Technology Data Exchange (ETDEWEB)

    Lafabrie, C. [University of Corsica, Faculty of Sciences, Equipe Ecosystemes Littoraux, BP 52, 20250 Corte (France)], E-mail: lafabrie@univ-corse.fr; Pergent-Martini, C.; Pergent, G. [University of Corsica, Faculty of Sciences, Equipe Ecosystemes Littoraux, BP 52, 20250 Corte (France)

    2008-01-15

    The aim of this study is to determine metal (Cd, Co, Cr, Hg, Ni, Pb) concentrations in Posidonia oceanica tissues along the Corsican coastline. The results show that except for Cr, all the metals are preferentially accumulated in the blades; this is particularly interesting as it means that future metal analyses may be carried out only on the blades avoiding thus the removal of the shoots. Moreover, they show that metal concentrations may reflect the 'background noise' of the Mediterranean Sea. Station 15 (Canari) can however be distinguished from the others due to its high Co, Cr and Ni concentrations. This result may be related to the presence of a previous asbestos mine, located near this station. Therefore, this study reinforces the usefulness and the relevance of Posidonia oceanica as a tracer of spatial metal contamination and as an interesting tool for water quality evaluation. - The seagrass Posidonia oceanica is a relevant tracer of spatial metal contamination and an interesting tool for water quality evaluation.

  20. Characteristics of Heavy Metals Contamination in Lotus Root in the Dongting Lake Area, China

    Directory of Open Access Journals (Sweden)

    LUO Man

    2016-11-01

    Full Text Available Heavy metal contamination in soils in the Dongting Lake areas has evoked widespread concerns about the excessive heavy metals in aquatic product. Based on the national standards of food contaminant limits and the method of comprehensive pollution index, heavy metals of Cd, Pb, Cu, Zn, Mn in lotus root were clarified through field investigation in the Dongting Lake area. Results showed that lotus root in the Dongting Lake area was contaminated seriously by heavy metals. Cd and Pb were two main pollutants and the single pollution indices were 5.70 and 8.35 respectively. According to the comprehensive pollution index of heavy metals, lotus root in Yueyanglou District and Yuanjiang City were classified into medium pollution and Junshan District, Huarong County, Nan County, and Datong District were classified into heavy pollution. Principal component analysis showed that planting areas of lotus root were clumped and medium and heavy pollution areas were separated significantly. Habitat contamination by heavy metals and decreasing area of lotus ponds were two main factors for excessive heavy metals in lotus root. Thus, some measurements, such as habit restoration, were proposed for local government to decrease heavy metals in planting areas and to promote the healthy development of lotus root industry in the Dongting Lake area.

  1. Electrokinetic In Situ Treatment of Metal-Contaminated Soil

    Science.gov (United States)

    Quinn, Jacqueline; Clausen, Christian A., III; Geiger, Cherie; Reinhart, Debra

    2004-01-01

    An electrokinetic technique has been developed as a means of in situ remediation of soils, sludges, and sediments that are contaminated with heavy metals. Examples of common metal contaminants that can be removed by this technique include cadmium, chromium, zinc, lead, mercury, and radionuclides. Some organic contaminants can also be removed by this technique. In the electrokinetic technique, a low-intensity direct current is applied between electrodes that have been implanted in the ground on each side of a contaminated soil mass. The electric current causes electro-osmosis and migration of ions, thereby moving aqueous-phase subsurface contaminants from one electrode to the other. The half reaction at the anode yields H+, thereby generating an acid front that travels from the anode toward the cathode. As this acid front passes through a given location, the local increase in acidity increases the solubility of cations that were previously adsorbed on soil particles. Ions are transported towards one electrode or the other which one depending on their respective electric charges. Upon arrival at the electrodes, the ionic contaminants can be allowed to become deposited on the electrodes or can be extracted to a recovery system. Surfactants and other reagents can be introduced at the electrodes to enhance rates of removal of contaminants. Placements of electrodes and concentrations and rates of pumping of reagents can be adjusted to maximize efficiency. The basic concept of electrokinetic treatment of soil is not new. What is new here are some of the details of application and the utilization of this technique as an alternative to other techniques (e.g., flushing or bioremediation) that are not suitable for treating soils of low hydraulic conductivity. Another novel aspect is the use of this technique as a less expensive alternative to excavation: The cost advantage over excavation is especially large in settings in which contaminated soil lies near and/or under

  2. Preliminary evaluation of heavy metal contamination in the Zarrin-Gol River sediments, Iran.

    Science.gov (United States)

    Malvandi, Hassan

    2017-04-15

    The major objectives of the study were to test the hypothesis of the Zarrin-Gol River as a reference site for ecotoxicological studies and to assess the contamination degree of heavy metals and metalloids in the river using four contamination indices. For these purposes, eleven heavy metal and metalloid concentrations were analyzed. The average concentrations (mgkg -1 ) in the sediments were: 37.67 (chromium) 286.28 (manganese), 13,751.04 (iron), 8.79 (cobalt), 12.39 (nickel), 32.68 (zinc), 21.91 (arsenic), 40.59 (selenium), 2923.86 (aluminum), ND (silver) and 785.96 (magnesium). Contamination factor, enrichment factor, pollution load index, and geoaccumulation index were calculated to evaluate the contamination degree and influence of human activities on heavy metal levels. The contamination indices of the sediment samples showed that arsenic and selenium were the highest pollutants. The results indicated that the Zarrin-Gol River could not be used as a reference site at least for arsenic and selenium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Characterisation of contaminated metals using an advanced statistical toolbox - Geostatistical characterisation of contaminated metals: methodology and illustrations

    International Nuclear Information System (INIS)

    Larsson, Arne; Lidar, Per; Desnoyers, Yvon

    2014-01-01

    Radiological characterisation plays an important role in the process to recycle contaminated or potentially contaminated metals. It is a platform for planning, identification of the extent and nature of contamination, assessing potential risk impacts, cost estimation, radiation protection, management of material arising from decommissioning as well as for the release of the materials as well as the disposal of the generated secondary waste as radioactive waste. Key issues in radiological characterisation are identification of objectives, development of a measurement and sampling strategy (probabilistic, judgmental or a combination thereof), knowledge management, traceability, recording and processing of obtained information. By applying advanced combination of statistical and geostatistical in the concept better performance can be achieved at a lower cost. This paper will describe the benefits with the usage of the available methods in the different stages of the characterisation, treatment and clearance processes aiming for reliable results in line with the data quality objectives. (authors)

  4. Remediation techniques for heavy-metals contamination in lakes: A Mini-Review

    Digital Repository Service at National Institute of Oceanography (India)

    Giripunje, M.D.; Fulke, A.B.; Meshram, P.U.

    Heavy-metals contamination in lakes has a negative impact on lake ecosystems This review provides an insight into possible heavy-metals remediation techniques for lake environments using different techniques, for example, physical, chemical...

  5. Hanford Site Transuranic (TRU) Waste Certification Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-09-09

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  6. Solubility of Heavy Metals/Metalloid on Multi-Metal Contaminated Soil Samples from a Gold Ore Processing Area: Effects of Humic Substances

    Directory of Open Access Journals (Sweden)

    Cácio Luiz Boechat

    2016-01-01

    Full Text Available ABSTRACT Bioavailability of heavy metals at contaminated sites is largely controlled by the physicochemical properties of the environmental media such as dissolved organic matter, hydroxides and clay colloids, pH, soil cation exchange capacity and oxidation-reduction potential. The aim of this study was to investigate soil pH and heavy metal solubility effect by levels of humic and fulvic acids applied in soil samples with different levels of contamination by heavy metals. The soil samples used in this study were collected in a known metal-contaminated site. Humic acid (HA and fulvic acid (FA were purchased as a commercially available liquid material extracted from Leonardite. The experiment was carried out in a factorial scheme of 4 × (4 + 1, with four contaminated soil samples and four treatments, comprised of two levels of HA, two levels of FA and a control. The HA treatments increased the solubility of Cu, Zn, Ni, Cr, Cd, Pb, As and Ba from soils, while FA treatments decreased, thus raising or not their availability and mobility in soil. Humic acid concentration did not influence soil pH and FA decreased soil pH until 0.7 units. The initial heavy metal concentration in soil affects the magnitude of the processes involving humic substances. The lower releases of heavy metals by FA verified the importance of the complexation properties of organic compounds. These results appear to encourage the use of HA for increased plant-availability of heavy metals in remediation projects and the use of FA for decreased plant-availability of heavy metals at contaminated sites with a risk of introducing metals into the food chain.

  7. Heavy metals contamination: implications for health and food safety

    Directory of Open Access Journals (Sweden)

    Yulieth C. Reyes

    2016-07-01

    Full Text Available Contamination by heavy metals in water resources, soil and air poses one of the most severe problems that compromise food safety and public health at global and local level. In this review, the specific problem of contamination by mercury (Hg, arsenic (As, cadmium (Cd and lead (Pb in the environment and food is presented. A description of the sources of contamination, exposure in living beings, accumulation and retention in food and consumer products is carried out. Study cases and results in some countries included Colombia are discussed.

  8. Status of SFR Metal Fuel Development

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Lee, Byoung Oon; Kim, Ki Hwan; Kim, Sung Ho

    2013-01-01

    Conclusion: • Metal fuel recycling in SFR: - Enhanced utilization of uranium resource; - Efficient transmutation of minor actinides; - Inherent passive reactor safety; - Proliferation resistance with pyro-electrochemical fuel recycling. • Demonstration of technical feasibility of recycling TRU metal fuel by 2020: - Remote fuel fabrication; - Irradiation performance up to high burnup

  9. STRONTIUM & TRANSURANIC (TRU) SEPARATION PROCESS IN THE DOUBLE SHELL TANK (DST) SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON; SWANSON; BOECHLER

    2005-06-10

    The supernatants stored in tanks 241-AN-102 (AN-102) and 241-AN-107 (AN-107) contain soluble strontium-90 ({sup 90}Sr) and transuranic (TRU) elements that require removal prior to vitrification to comply with the Waste Treatment and Immobilization Plant (WTP) immobilized low-activity waste (ILAW) specification and with the 1997 agreement with the Nuclear Regulatory Commission on incidental waste. A precipitation process has been developed and tested with tank waste samples and simulants using strontium nitrate (Sr(NO{sub 3}){sub 2}) and sodium permanganate (NaMnO{sub 4}) to separate {sup 90}Sr and TRU from these wastes. This report evaluates removing Sr/TRU from AN-102 and AN-107 supernates in the DST system before delivery to the WTP. The in-tank precipitation is a direct alternative to the baseline WTP process, using the same chemical separations. Implementing the Sr/TRU separation in the DST system beginning in 2012 provides {approx}6 month schedule advantage to the overall mission, without impacting the mission end date or planned SST retrievals.

  10. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP

  11. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth

    International Nuclear Information System (INIS)

    Li, Kefeng; Ramakrishna, Wusirika

    2011-01-01

    Naturally occurring bacteria play an important role in bioremediation of heavy metal pollutants in soil and wastewater. This study identified high levels of resistance to zinc, cesium, lead, arsenate and mercury in eight copper resistant Pseudomonas strains previously isolated from Torch Lake sediment. These strains showed variable susceptibility to different antibiotics. Furthermore, these metal resistant strains were capable of bioaccumulation of multiple metals and solubilization of copper. Bacterial strains TLC 3-3.5-1 and TLC 6-6.5-1 showed high bioaccumulation ability of Zn (up to 15.9 mg/g dry cell) and Pb (80.7 mg/g dry cell), respectively. All the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. The multiple metal-resistant bacterial isolates characterized in our study have potential applications for remediation of metal contaminated soils in combination with plants and metal contaminated water.

  12. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kefeng [Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Ramakrishna, Wusirika, E-mail: wusirika@mtu.edu [Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States)

    2011-05-15

    Naturally occurring bacteria play an important role in bioremediation of heavy metal pollutants in soil and wastewater. This study identified high levels of resistance to zinc, cesium, lead, arsenate and mercury in eight copper resistant Pseudomonas strains previously isolated from Torch Lake sediment. These strains showed variable susceptibility to different antibiotics. Furthermore, these metal resistant strains were capable of bioaccumulation of multiple metals and solubilization of copper. Bacterial strains TLC 3-3.5-1 and TLC 6-6.5-1 showed high bioaccumulation ability of Zn (up to 15.9 mg/g dry cell) and Pb (80.7 mg/g dry cell), respectively. All the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. The multiple metal-resistant bacterial isolates characterized in our study have potential applications for remediation of metal contaminated soils in combination with plants and metal contaminated water.

  13. Environmental Risk of Metal Mining Contaminated River Bank Sediment at Redox-Transitional Zones

    Directory of Open Access Journals (Sweden)

    Sarah F. L. Lynch

    2014-01-01

    Full Text Available Diffuse metal pollution from mining impacted sediment is widely recognised as a potential source of contamination to river systems and may significantly hinder the achievement of European Union Water Framework Directive objectives. Redox-transitional zones that form along metal contaminated river banks as a result of flood and drought cycles could cause biogeochemical changes that alter the behaviour of polyvalent metals iron and manganese and anions such as sulphur. Trace metals are often partitioned with iron, manganese and sulphur minerals in mining-contaminated sediment, therefore the dissolution and precipitation of these minerals may influence the mobility of potentially toxic trace metals. Research indicates that freshly precipitated metal oxides and sulphides may be more “reactive” (more adsorbent and prone to dissolution when conditions change than older crystalline forms. Fluctuations at the oxic-anoxic interface brought about through changes in the frequency and duration of flood and drought episodes may therefore influence the reactivity of secondary minerals that form in the sediment and the flux of dissolved trace metal release. UK climate change models predict longer dry periods for some regions, interspersed with higher magnitude flood events. If we are to fully comprehend the future environmental risk these climate change events pose to mining impacted river systems it is recommended that research efforts focus on identifying the primary controls on trace metal release at the oxic-anoxic interface for flood and drought cycles of different duration and frequency. This paper critically reviews the literature regarding biogeochemical processes that occur at different temporal scales during oxic, reducing and dry periods and focuses on how iron and sulphur based minerals may alter in form and reactivity and influence the mobility of trace metal contaminants. It is clear that changes in redox potential can alter the composition

  14. Reconstructing Early Industrial Contributions to Legacy Trace Metal Contamination in Southwestern Pennsylvania

    Science.gov (United States)

    Rossi, R.; Bain, D.; Hillman, A. L.; Pompeani, D. P.; Abbott, M. B.

    2015-12-01

    The remobilization of legacy contamination stored in floodplain sediments remains a threat to ecosystem and human health, particularly with potential changes in global precipitation patterns and flooding regimes. Vehicular and industrial emissions are often the dominant, recognized source of anthropogenic trace metal loadings to ecosystems today. However, loadings from early industrial activities are poorly characterized and potential sources of trace metal inputs. While potential trace metal contamination from these activities is recognized (e.g., the historical use of lead arsenate as a pesticide), the magnitude and distribution of legacy contamination is often unknown. This presentation reconstructs a lake sediment record of trace metal inputs from an oxbow lake in Southwestern Pennsylvania. Sediment cores were analyzed for major and trace metal chemistry, carbon to nitrogen ratios, bulk density, and magnetic susceptibility. Sediment trace metal chemistry in this approximately 250 year record (180 cm) record changes in land use and industry both in the 19th century and the 20th century. Of particular interest is early 19th century loadings of arsenic and calcium to the lake, likely attributable to pesticides and lime used in tanning processes near the lake. After this period of tanning dominated inputs, sediment barium concentrations rise, likely reflecting the onset of coal mining operations and resulting discharge of acid mine drainage to surface waters. In the 20th century portion of our record (70 -20 cm), patterns in sediment zinc, cadmium, and lead concentrations are dominated by the opening and closing of the nearby Donora Zinc Works and the American Steel & Wire Works, infamous facilities in the history of air quality regulation. The most recent sediment chemistry records periods include the enactment of air pollution legislation (~ 35 cm), and the phase out of tetraethyl leaded gasoline (~30 cm). Our study documents the impact of early industry in the

  15. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    Science.gov (United States)

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Guidelines for developing certification programs for newly generated TRU waste

    International Nuclear Information System (INIS)

    Whitty, W.J.; Ostenak, C.A.; Pillay, K.K.S.; Geoffrion, R.R.

    1983-05-01

    These guidelines were prepared with direction from the US Department of Energy (DOE) Transuranic (TRU) Waste Management Program in support of the DOE effort to certify that newly generated TRU wastes meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria. The guidelines provide instructions for generic Certification Program preparation for TRU-waste generators preparing site-specific Certification Programs in response to WIPP requirements. The guidelines address all major aspects of a Certification Program that are necessary to satisfy the WIPP Waste Acceptance Criteria and their associated Compliance Requirements and Certification Quality Assurance Requirements. The details of the major element of a Certification Program, namely, the Certification Plan, are described. The Certification Plan relies on supporting data and control documentation to provide a traceable, auditable account of certification activities. Examples of specific parts of the Certification Plan illustrate the recommended degree of detail. Also, a brief description of generic waste processes related to certification activities is included

  17. Assessment of Heavy Metal Contamination in Soils around Cassava ...

    African Journals Online (AJOL)

    The concentrations, contamination/pollution index, anthropogenic input and enrichment factors for metals in soil in the vicinity of cassava processing mills in sub-urban areas of Delta State of Nigeria were examined. The concentrations of metals in all sites and depths ranged from 0.1 to 383.2 mg kg-1 for Mn, 4.0 to 11.3 mg ...

  18. Utilization of grasses for potential biofuel production and phytoremediation of heavy metal contaminated soils.

    Science.gov (United States)

    Balsamo, Ronald A; Kelly, William J; Satrio, Justinus A; Ruiz-Felix, M Nydia; Fetterman, Marisa; Wynn, Rodd; Hagel, Kristen

    2015-01-01

    This research focuses on investigating the use of common biofuel grasses to assess their potential as agents of long-term remediation of contaminated soils using lead as a model heavy metal ion. We present evidence demonstrating that switch grass and Timothy grass may be potentially useful for long-term phytoremediation of heavy metal contaminated soils and describe novel techniques to track and remove contaminants from inception to useful product. Enzymatic digestion and thermochemical approaches are being used to convert this lignocellulosic feedstock into useful product (sugars, ethanol, biocrude oil+biochar). Preliminary studies on enzymatic hydrolysis and fast pyrolysis of the Switchgrass materials that were grown in heavy metal contaminated soil and non-contaminated soils show that the presence of lead in the Switchgrass material feedstock does not adversely affect the outcomes of the conversion processes. These results indicate that the modest levels of contaminant uptake allow these grass species to serve as phytoremediation agents as well as feedstocks for biofuel production in areas degraded by industrial pollution.

  19. Short communication Assessment of heavy metal contamination in ...

    African Journals Online (AJOL)

    2016-05-27

    May 27, 2016 ... Assessment of heavy metal contamination in raw milk for human consumption ... Long-term exposure to lower levels of Cd and Cr leads to stomach ... Toxicity by Pb can result in decreased performance, and damage to the ...

  20. A facility design for repackaging ORNL CH-TRU legacy waste in Building 3525

    International Nuclear Information System (INIS)

    Huxford, T.J.; Cooper, R.H. Jr.; Davis, L.E.; Fuller, A.B.; Gabbard, W.A.; Smith, R.B.; Guay, K.P.; Smith, L.C.

    1995-07-01

    For the last 25 years, the Oak Ridge National Laboratory (ORNL) has conducted operations which have generated solid, contact-handled transuranic (CH-TRU) waste. At present the CH-TRU waste inventory at ORNL is about 3400 55-gal drums retrievably stored in RCRA-permitted, aboveground facilities. Of the 3400 drums, approximately 2600 drums will need to be repackaged. The current US Department of Energy (DOE) strategy for disposal of these drums is to transport them to the Waste Isolation Pilot Plant (WIPP) in New Mexico which only accepts TRU waste that meets a very specific set of criteria documented in the WIPP-WAC (waste acceptance criteria). This report describes activities that were performed from January 1994 to May 1995 associated with the design and preparation of an existing facility for repackaging and certifying some or all of the CH-TRU drums at ORNL to meet the WIPP-WAC. For this study, the Irradiated Fuel Examination Laboratory (IFEL) in Building 3525 was selected as the reference facility for modification. These design activities were terminated in May 1995 as more attractive options for CH-TRU waste repackaging were considered to be available. As a result, this document serves as a final report of those design activities

  1. Modeling phytoextraction of heavy metals at multiply contaminated soils with hyperaccumulator plants

    OpenAIRE

    Khodaverdiloo, Habib

    2009-01-01

    Soils and waters contaminated with heavy metals pose a major environmental and human health problem that needs an effective and affordable technological solution. Phytoextraction offers a reasonable technology which uses plants to extract the heavy metals from soils. However, the effectiveness of this new method needs to be demonstrated by means of mathematical modeling. The phytoextraction models also are needed to manage the contaminated soils. A thorough literature review indic...

  2. Effects of metals on life cycle parameters of the earthworm Eisenia fetida exposed to field-contaminated, metal-polluted soils

    International Nuclear Information System (INIS)

    Nahmani, Johanne; Hodson, Mark E.; Black, Stuart

    2007-01-01

    Two control and eight field-contaminated, metal-polluted soils were inoculated with Eisenia fetida (Savigny, 1826). Three, 7, 14, 21, 28 and 42 days after inoculation, earthworm survival, body weight, cocoon production and hatching rate were measured. Seventeen metals were analysed in E. fetida tissue, bulk soil and soil solution. Soil organic carbon content, texture, pH and cation exchange capacity were also measured. Cocoon production and hatching rate were more sensitive to adverse conditions than survival or weight change. Soil properties other than metal concentration impacted toxicity. The most toxic soils were organic-poor (1-10 g C kg -1 ), sandy soils (c. 74% sand), with intermediate metal concentrations (e.g. 7150-13,100 mg Pb kg -1 , 2970-53,400 mg Zn kg -1 ). Significant relationships between soil properties and the life cycle parameters were determined. The best coefficients of correlation were generally found for texture, pH, Ag, Cd, Mg, Pb, Tl, and Zn both singularly and in multivariate regressions. Studies that use metal-amended artificial soils are not useful to predict toxicity of field multi-contaminated soils. - Soil pH, organic carbon content and texture can exert a greater influence on earthworm life cycle parameters than soil metal concentrations at metal-contaminated sites

  3. Effects of metals on life cycle parameters of the earthworm Eisenia fetida exposed to field-contaminated, metal-polluted soils

    Energy Technology Data Exchange (ETDEWEB)

    Nahmani, Johanne [Department of Soil Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DW (United Kingdom)]. E-mail: nahmani@univ-metz.fr; Hodson, Mark E. [Department of Soil Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DW (United Kingdom)]. E-mail: m.e.hodson@reading.ac.uk; Black, Stuart [Department of Archaeology, School of Human and Environmental Sciences, Whiteknights, University of Reading, Reading RG6 6DW (United Kingdom)

    2007-09-15

    Two control and eight field-contaminated, metal-polluted soils were inoculated with Eisenia fetida (Savigny, 1826). Three, 7, 14, 21, 28 and 42 days after inoculation, earthworm survival, body weight, cocoon production and hatching rate were measured. Seventeen metals were analysed in E. fetida tissue, bulk soil and soil solution. Soil organic carbon content, texture, pH and cation exchange capacity were also measured. Cocoon production and hatching rate were more sensitive to adverse conditions than survival or weight change. Soil properties other than metal concentration impacted toxicity. The most toxic soils were organic-poor (1-10 g C kg{sup -1}), sandy soils (c. 74% sand), with intermediate metal concentrations (e.g. 7150-13,100 mg Pb kg{sup -1}, 2970-53,400 mg Zn kg{sup -1}). Significant relationships between soil properties and the life cycle parameters were determined. The best coefficients of correlation were generally found for texture, pH, Ag, Cd, Mg, Pb, Tl, and Zn both singularly and in multivariate regressions. Studies that use metal-amended artificial soils are not useful to predict toxicity of field multi-contaminated soils. - Soil pH, organic carbon content and texture can exert a greater influence on earthworm life cycle parameters than soil metal concentrations at metal-contaminated sites.

  4. Partitioning of heavy metals in a soil contaminated by slag: A redistribution study

    International Nuclear Information System (INIS)

    Bunzl, K.; Trautmannsheimer, M.; Schramel, P.

    1999-01-01

    In order to interpret reasonably the partitioning of heavy metals in a contaminated soil as observed from applying a sequential extraction procedure, information on possible redistribution processes of the metals during the various extraction steps is essential. For this purpose, sequential extraction was used to study the chemical partitioning of Ag, Cu, Ni, Pb, and Zn in a soil contaminated wither by a slag from coal firing or by a slag from pyrite roasting. Through additional application of sequential extraction to the pure slags as well as to the uncontaminated soil, it was shown that during the various extraction steps applied to the soil/slag mixtures, substantial redistribution processes of the metals between the slag- and soil particles can occur. In many cases, metals ions released during the extraction with acid hydroxylamine or acid hydrogen peroxide are partially readsorbed by solid constituents of the mixture and will therefore be found in the subsequent fractions extracted. As a result, one has to realize that (1) it will be difficult to predict the chemical partitioning of these metals in contaminated soils by investigating pure slags only, and (2) information on the partitioning of a metal in a slag contaminated soil will not necessarily give any relevant information on the form of this metal in the slag or in the slag/soil mixture, because the redistribution processes during sequential extraction will not be the same as those occurring in the soil solution under natural conditions

  5. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil

    International Nuclear Information System (INIS)

    Brunner, Ivano; Luster, Joerg; Guenthardt-Goerg, Madeleine S.; Frey, Beat

    2008-01-01

    Root systems of Norway spruce (Picea abies) and poplar (Populus tremula) were long-term exposed to metal-contaminated soils in open-top chambers to investigate the accumulation of the heavy metals in the fine roots and to assess the plants suitability for phytostabilisation. The heavy metals from the contaminated soil accumulated in the fine roots about 10-20 times more than in the controls. The capacity to bind heavy metals already reached its maximum after the first vegetation period. Fine roots of spruce tend to accumulate more heavy metals than poplar. Copper and Zinc were mainly detected in the cell walls with larger values in the epidermis than in the cortex. The heavy metals accumulated in the fine roots made up 0.03-0.2% of the total amount in the soils. We conclude that tree fine roots adapt well to conditions with heavy metal contamination, but their phytostabilisation capabilities seem to be very low. - Long-term exposed fine roots of trees are well adapted to soils with high heavy metal contents, but their phytostabilisation capabilities are rather low

  6. Characterizing toxicity of metal-contaminated sediments from mining areas

    International Nuclear Information System (INIS)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    Highlights: • We review methods for testing toxicity of sediments affected by metals. • Toxicity testing provides site-specific assessment of impacts on resident biota. • Goals are to document extent of toxicity and associations with metal exposure. • Need to characterize bioavailability of metals in sediment and pore water. • Toxicity data is basis for guidelines used to predict hazards of metal toxicity. - Abstract: This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate

  7. Remediation of soils contaminated with heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Boni, M.R.; D' Aprile, L. [Univ. of Rome ' ' La Sapienza' ' , Dept. of Hydraulic Transportation and Roads (Italy)

    2001-07-01

    In December 1999 Italy issued the national regulation (DM 471/99) for the clean-up of contaminated sites. This regulation applies both to derelict and to still operating industrial plants and waste management facilities. Target concentration values for clean-up interventions are issued and the requirements for design and planning of technical operation are defined. The selection of the appropriate clean-up technology are based on the following main criteria: - reduce the concentration in environmental media and the migration of pollutants without removing soil off-site; - in order to reduce contaminated material removal and transportation, remedial actions of soil, subsoil and groundwater should preferably be based on in-situ treatments. In-situ technologies commonly applied in Italy to the remediation of soils contaminated by heavy metals (As, Cd, Cr, Hg, Pb) are: - containment (caps, vertical barriers); - soil flushing; - cement based solidification/stabilization. (orig.)

  8. Remediation of Heavy Metal(loid)s Contaminated Soils – To Mobilize or To Immobilize?

    Science.gov (United States)

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy ...

  9. Transboundary Movement of Radioactively Contaminated Scrap Metal - Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Nizamska, M., E-mail: m.nimzamska@bnra.bg [Emergency Planning and Preparedness Division, Bulgarian Nuclear Regulatory Agency, Sofia (Bulgaria)

    2011-07-15

    Starting in 1989, Bulgaria has undergone a comprehensive transformation of its economy and social conditions. Part of this process is related to the intensive privatization that started in 2001. This privatization included facilities, as well as sites that use radioactive material for different applications - industry, medicine, agriculture, science, etc. The rapid change of property ownership and, in some cases, the resulting bankruptcy, has caused difficulties in tracing and identifying radioactive sources and materials and a deterioration of the system of safety, physical protection, etc. of radioactive material. In some cases, radioactive sources were stolen because of the value of their protective containers and sold for scrap metal. This led to the occurrence of different types of radiation incidents, mainly related to the discovery of radioactive sources in scrap metal. The consequences of these incidents include the risk of radiation exposure of the workers at scrap metal yards or reprocessing facilities and of members of the public and, in addition, radioactive contamination of the environment. The Bulgarian Nuclear Regulatory Agency (BNRA) has been responding to these incidents and has carried out a series of measures to improve the control over materials (e.g. activated or surface contaminated materials) and radioactive sources and to strengthen the preventive, monitoring, emergency preparedness and mitigating measures at facility, national and transboundary levels. This paper presents an analysis of the lessons learned by the BNRA and of the control of the transboundary movement of radioactively contaminated scrap metal through the territory of Bulgaria. (author)

  10. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger

    International Nuclear Information System (INIS)

    Ren Wanxia; Li Peijun; Geng Yong; Li Xiaojun

    2009-01-01

    Bioleaching of heavy metals from a contaminated soil in an industrial area using metabolites, mainly weak organic acids, produced by a fungus Aspergillus niger was investigated. Batch experiments were performed to compare the leaching efficiencies of one-step and two-step processes and to determine the transformation of heavy metal chemical forms during the bioleaching process. After the one or two-step processes, the metal removals were compared using analysis of variance (ANOVA) and least-significance difference (LSD). A. niger exhibits a good potential in generating a variety of organic acids effective for metal solubilisation. Results showed that after the one-step process, maximum removals of 56%, 100%, 30% and 19% were achieved for copper, cadmium, lead and zinc, respectively. After the two-step process, highest removals of 97.5% Cu, 88.2% Cd, 26% Pb, and 14.5% Zn were obtained. Results of sequential extraction showed that organic acids produced by A. niger were effective in removing the exchangeable, carbonate, and Fe/Mn oxide fractions of Cu, Cd, Pb and Zn; and after both processes the metals remaining in the soil were mainly bound in stable fractions. Such a treatment procedure indicated that leaching of heavy metals from contaminated soil using A. niger has the potential for use in remediation of contaminated soils.

  11. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Ren Wanxia, E-mail: ren_laura@163.com [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Li Peijun, E-mail: lipeijun@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Geng Yong; Li Xiaojun [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2009-08-15

    Bioleaching of heavy metals from a contaminated soil in an industrial area using metabolites, mainly weak organic acids, produced by a fungus Aspergillus niger was investigated. Batch experiments were performed to compare the leaching efficiencies of one-step and two-step processes and to determine the transformation of heavy metal chemical forms during the bioleaching process. After the one or two-step processes, the metal removals were compared using analysis of variance (ANOVA) and least-significance difference (LSD). A. niger exhibits a good potential in generating a variety of organic acids effective for metal solubilisation. Results showed that after the one-step process, maximum removals of 56%, 100%, 30% and 19% were achieved for copper, cadmium, lead and zinc, respectively. After the two-step process, highest removals of 97.5% Cu, 88.2% Cd, 26% Pb, and 14.5% Zn were obtained. Results of sequential extraction showed that organic acids produced by A. niger were effective in removing the exchangeable, carbonate, and Fe/Mn oxide fractions of Cu, Cd, Pb and Zn; and after both processes the metals remaining in the soil were mainly bound in stable fractions. Such a treatment procedure indicated that leaching of heavy metals from contaminated soil using A. niger has the potential for use in remediation of contaminated soils.

  12. Eco-toxicity and metal contamination of paddy soil in an e-wastes recycling area

    International Nuclear Information System (INIS)

    Zhang Junhui; Hang Min

    2009-01-01

    Paddy soil samples taken from different sites in an old primitive electronic-waste (e-waste) processing region were examined for eco-toxicity and metal contamination. Using the environmental quality standard for soils (China, Grade II) as reference, soil samples of two sites were weakly contaminated with trace metal, but site G was heavily contaminated with Cd (6.37 mg kg -1 ), and weakly contaminated with Cu (256.36 mg kg -1 ) and Zn (209.85 mg kg -1 ). Zn appeared to be strongly bound in the residual fraction (72.24-77.86%), no matter the soil was metal contaminated or not. However, more than 9% Cd and 16% Cu was present in the non-residual fraction in the metal contaminated soils than in the uncontaminated soil, especially for site G and site F. Compared with that of the control soil, the micronucleus rates of site G and site F soil treatments increased by 2.7-fold and 1.7-fold, respectively. Low germination rates were observed in site C (50%) and site G (50%) soil extraction treated rice seeds. The shortest root length (0.2377 cm) was observed in site G soil treated groups, which is only 37.57% of that of the control soil treated groups. All of the micronucleus ratio of Vicia faba root cells, rice germination rate and root length after treatment of soil extraction indicate the eco-toxicity in site F and G soils although the three indexes are different in sensitivity to soil metal contamination.

  13. Synergistic effect of metal deactivator and antioxidant on oxidation stability of metal contaminated Jatropha biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Sarin, Amit [Department of Applied Sciences, Amritsar College of Engineering and Technology, Amritsar 143001 (India); Arora, Rajneesh; Singh, N.P. [Punjab Technical University, Jalandhar (India); Sarin, Rakesh; Malhotra, R.K. [Indian Oil Corporation Ltd., R and D Centre, Sector-13, Faridabad 121007 (India); Sharma, Meeta [Indian Oil Corporation Ltd., R and D Centre, Sector-13, Faridabad 121007 (India); University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Kashmere Gate, Delhi 110403 (India); Khan, Arif Ali [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Kashmere Gate, Delhi 110403 (India)

    2010-05-15

    Biodiesel is relatively unstable on storage and European biodiesel standard EN-14214 calls for determining oxidation stability at 110 C with a minimum induction time of 6 h by the Rancimat method (EN-14112). According to proposed National Mission on biodiesel in India, we have undertaken studies on stability of biodiesel from tree borne non-edible oil seeds Jatropha. Neat Jatropha biodiesel exhibited oxidation stability of 3.95 h. It is found possible to meet the desired EN specification for neat Jatropha biodiesel and metal contaminated Jatropha biodiesel by using antioxidants; it will have a cost implication, as antioxidants are costly chemicals. Research was conducted to increase the oxidation stability of metal contaminated Jatropha biodiesel by doping metal deactivator with antioxidant, with varying concentrations in order to meet the aforementioned standard required for oxidation stability. It was found that usage of antioxidant can be reduced by 30-50%, therefore the cost, even if very small amount of metal deactivator is doped in Jatropha biodiesel to meet EN-14112 specification. (author)

  14. Volume reduction of low-level contaminated metal waste by melting: selection of method and conceptual plan

    International Nuclear Information System (INIS)

    Copeland, G.L.; Heestand, R.L.; Mateer, R.S.

    1978-06-01

    A review of the literature and prior experience led to selection of induction melting as the most promising method for volume reduction of low-level transuranic contaminated metal waste. The literature indicates that melting with the appropriate slags significantly lowers the total contamination level of the metals by preferentially concentrating contaminants in the smaller volume of slag. Surface contamination not removed to the slag is diluted in the ingot and is contained uniformly in the metal. This dilution and decontamination offers the potential of lower cost disposal such as shallow burial rather than placement in a national repository. A processing plan is proposed as a model for economic analysis of the collection and volume reduction of contaminated metals. Further development is required to demonstrate feasibility of the plan

  15. Thermodynamic Modeling of Sr/TRU Removal

    International Nuclear Information System (INIS)

    Felmy, A.R.

    2000-01-01

    This report summarizes the development and application of a thermodynamic modeling capability designed to treat the Envelope C wastes containing organic complexants. A complete description of the model development is presented. In addition, the model was utilized to help gain insight into the chemical processes responsible for the observed levels of Sr, TRU, Fe, and Cr removal from the diluted feed from tank 241-AN-107 which had been treated with Sr and permanganate. Modeling results are presented for Sr, Nd(III)/Eu(III), Fe, Cr, Mn, and the major electrolyte components of the waste (i.e. NO 3 , NO 2 , F,...). On an overall basis the added Sr is predicted to precipitate as SrCO 3 (c) and the MnO 4 - reduced by the NO 2 - and precipitated as a Mn oxide. These effects result in only minor changes to the bulk electrolyte chemistry, specifically, decreases in NO 2 - and CO 3 2- , and increases in NO 3 - and OH - . All of these predictions are in agreement with the experimental observations. The modeling also indicates that the majority of the Sr, TRU's (or Nd(III)/Eu(III)) analogs, and Fe are tied up with the organic complexants. The Sr and permanganate additions are not predicted to effect these chelate complexes significantly owing to the precipitation of insoluble Mn oxides or SrCO 3 . These insoluble phases maintain low dissolved concentrations of Mn and Sr which do not affect any of the other components tied up with the complexants. It appears that the removal of the Fe and TRU'S during the treatment process is most likely as a result of adsorption or occlusion on/into the Mn oxides or SrCO 3 , not as direct displacement from the complexants into precipitates. Recommendations are made for further studies that are needed to help resolve these issues

  16. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil

    International Nuclear Information System (INIS)

    Clistenes do Nascimento, Williams A.; Amarasiriwardena, Dula; Xing, Baoshan

    2006-01-01

    Chemically assisted phytoremediation has been developing to induce accumulation of metals by high biomass plants. Synthetic chelates have shown high effectiveness to reach such a goal, but they pose serious drawbacks in field application due to the excessive amount of metals solubilized. We compared the performance of synthetic chelates with naturally occurring low molecular weight organic acids (LMWOA) in enhancing phytoextraction of metals by Indian mustard (Brassica juncea) from multi-metal contaminated soils. Gallic and citric acids were able to induce removal of Cd, Zn, Cu, and Ni from soil without increasing the leaching risk. Net removal of these metals caused by LMWOA can be as much as synthetic chelates. A major reason for this is the lower phytotoxicity of LMWOA. Furthermore, supplying appropriate mineral nutrients increased biomass and metal removal. - Organic acids can be as efficient as synthetic chelates for use in phytoextraction of multi-metal contaminated soils

  17. Spatial distribution of heavy metal contamination in soils near a primitive e-waste recycling site.

    Science.gov (United States)

    Quan, Sheng-Xiang; Yan, Bo; Yang, Fan; Li, Ning; Xiao, Xian-Ming; Fu, Jia-Mo

    2015-01-01

    The total concentrations of 12 heavy metals in surface soils (SS, 0-20 cm), middle soils (MS, 30-50 cm) and deep soils (DS, 60-80 cm) from an acid-leaching area, a deserted paddy field and a deserted area of Guiyu were measured. The results showed that the acid-leaching area was heavily contaminated with heavy metals, especially in SS. The mean concentrations of Ni, Cu, Zn, Cd, Sn, Sb and Pb in SS from the acid-leaching area were 278.4, 684.1, 572.8, 1.36, 3,472, 1,706 and 222.8 mg/kg, respectively. Heavy metal pollution in the deserted paddy field was mainly concentrated in SS and MS. The average values of Sb in SS and MS from the deserted paddy field were 16.3 and 20.2 mg/kg, respectively. However, heavy metal contamination of the deserted area was principally found in the DS. Extremely high concentrations of heavy metals were also observed at some special research sites, further confirming that the level of heavy metal pollution was very serious. The geoaccumulation index (Igeo) values revealed that the acid-leaching area was severely polluted with heavy metals in the order of Sb > Sn > Cu > Cd > Ni > Zn > Pb, while deserted paddy field was contaminated predominately by metals in the order of Sb > Sn > Cu. It was obvious that the concentrations of some uncommon contaminants, such as Sb and Sn, were higher than principal contaminants, such as Ni, Cu, Zn and Pb, suggesting that particular attention should be directed to Sn and Sb contamination in the future research of heavy metals in soils from e-waste-processing areas. Correlation analysis suggested that Li and Be in soils from the acid-leaching area and its surrounding environment might have originated from other industrial activities and from batteries, whereas Ni, Cu, Zn, Cd, Pb, Sn and Sb contamination was most likely caused by uncontrolled electronic waste (e-waste) processing. These results indicate the significant need for optimisation of e-waste-dismantling technologies and remediation of polluted soil

  18. Dietary toxicity of field-contaminated invertebrates to marine fish: effects of metal doses and subcellular metal distribution.

    Science.gov (United States)

    Dang, Fei; Rainbow, Philip S; Wang, Wen-Xiong

    2012-09-15

    There is growing awareness of the toxicological effects of metal-contaminated invertebrate diets on the health of fish populations in metal-contaminated habitats, yet the mechanisms underlying metal bioaccumulation and toxicity are complex. In the present study, marine fish Terapon jurbua terepon were fed a commercial diet supplemented with specimens of the polychaete Nereis diversicolor or the clam Scrobicularia plana, collected from four metal-impacted estuaries (Tavy, Restronguet Creek, West Looe, Gannel) in southwest England, as environmentally realistic metal sources. A comparative toxicological evaluation of both invertebrates showed that fish fed S. plana for 21 d exhibited evident mortality compared to those fed N. diversicolor. Furthermore, a spatial effect on mortality was observed. Differences in metal doses rather than subcellular metal distributions between N. diversicolor and S. plana appeared to be the cause of such different mortalities. Partial least squares regression was used to evaluate the statistical relationship between multiple-metal doses and fish mortality, revealing that Pb, Fe, Cd and Zn in field-collected invertebrates co-varied most strongly with the observed mortality. This study provides a step toward exploring the underlying mechanism of dietary toxicity and identifying the potential causality in complex metal mixture exposures in the field. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Environmental remediation through sequestration of airfall-derived metals contamination by selective revegetation strategies

    Science.gov (United States)

    Sahagian, D.; Peters, S.; Yasko, G.

    2006-12-01

    Industrial activities in the 20th century left a legacy of contaminated air, water, and soils. The relative environmental enlightenment of the 21st century has already led to reductions in pollution sources, and has improved air and surface water quality in many areas. However, the residence time of contaminants in soils can be lengthy, presenting a challenge to 21st century restoration of impacted ecosystems and communities. The present study is centered on the Borough of Palmerton, PA, and a broad region of adjacent communities that were affected by two zinc smelters that operated continuously for more than 80 years, emitting thousands of tons of heavy metals including zinc, cadmium, lead and arsenic. While the air quality has vastly improved since the closure of the zinc smelters, the community remains adversely affected by the ecological damage caused by the pollution. The north face of the Kittatiny ridge was completely denuded of vegetation from the high metals concentrations. The region suffers further due to the ongoing perception of contaminated soils and water, leaving the town and surrounding areas economically depressed. In this study, we are examining the impact of revegetation strategies, particularly those using warm season grasses to determine which species survive and indeed thrive in the metals-contaminated soils. Because of the large areal extent and locally steep slopes in the broad area of concern, removal of metals from the entire region is impractical. It is considered more effective to sequester the metals in the soil so that they do not leach into the rivers, or enter the food web. Vegetation that absorbs and transports the metals throughout its tissues would mobilize these pollutants into the food web as well as make the metals available to reach the river via leaves and other vegetative structures. In this study, we are monitoring the uptake of metals by test grasses and other plants that are colonizing the contaminated area, as well as

  20. Repackaging SRS Black Box TRU Waste

    International Nuclear Information System (INIS)

    Swale, D. J.; Stone, K.A.; Milner, T. N.

    2006-01-01

    Historically, large items of TRU Waste, which were too large to be packaged in drums for disposal have been packaged in various sizes of custom made plywood boxes at the Savannah River Site (SRS), for many years. These boxes were subsequently packaged into large steel ''Black Boxes'' for storage at SRS, pending availability of Characterization and Certification capability, to facilitate disposal of larger items of TRU Waste. There are approximately 107 Black Boxes in inventory at SRS, each measuring some 18' x 12' x 7', and weighing up to 45,000 lbs. These Black Boxes have been stored since the early 1980s. The project to repackage this waste into Standard Large Boxes (SLBs), Standard Waste Boxes (SWB) and Ten Drum Overpacks (TDOP), for subsequent characterization and WIPP disposal, commenced in FY04. To date, 10 Black Boxes have been repackaged, resulting in 40 SLB-2's, and 37 B25 overpack boxes, these B25's will be overpacked in SLB-2's prior to shipping to WIPP. This paper will describe experience to date from this project

  1. Documentation of TRU biological transport model (BIOTRAN)

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, A.F.; Garcia, B.J.; Sutton, C.M.

    1980-01-01

    Inclusive of Appendices, this document describes the purpose, rationale, construction, and operation of a biological transport model (BIOTRAN). This model is used to predict the flow of transuranic elements (TRU) through specified plant and animal environments using biomass as a vector. The appendices are: (A) Flows of moisture, biomass, and TRU; (B) Intermediate variables affecting flows; (C) Mnemonic equivalents (code) for variables; (D) Variable library (code); (E) BIOTRAN code (Fortran); (F) Plants simulated; (G) BIOTRAN code documentation; (H) Operating instructions for BIOTRAN code. The main text is presented with a specific format which uses a minimum of space, yet is adequate for tracking most relationships from their first appearance to their formulation in the code. Because relationships are treated individually in this manner, and rely heavily on Appendix material for understanding, it is advised that the reader familiarize himself with these materials before proceeding with the main text.

  2. Documentation of TRU biological transport model (BIOTRAN)

    International Nuclear Information System (INIS)

    Gallegos, A.F.; Garcia, B.J.; Sutton, C.M.

    1980-01-01

    Inclusive of Appendices, this document describes the purpose, rationale, construction, and operation of a biological transport model (BIOTRAN). This model is used to predict the flow of transuranic elements (TRU) through specified plant and animal environments using biomass as a vector. The appendices are: (A) Flows of moisture, biomass, and TRU; (B) Intermediate variables affecting flows; (C) Mnemonic equivalents (code) for variables; (D) Variable library (code); (E) BIOTRAN code (Fortran); (F) Plants simulated; (G) BIOTRAN code documentation; (H) Operating instructions for BIOTRAN code. The main text is presented with a specific format which uses a minimum of space, yet is adequate for tracking most relationships from their first appearance to their formulation in the code. Because relationships are treated individually in this manner, and rely heavily on Appendix material for understanding, it is advised that the reader familiarize himself with these materials before proceeding with the main text

  3. Effects of heavy-metal-contaminated soil on growth, phenology and biomass turnover of Hieracium piloselloides

    International Nuclear Information System (INIS)

    Ryser, Peter; Sauder, Wendy R.

    2006-01-01

    The effects of low levels of heavy metals on plant growth, biomass turnover and reproduction were investigated for Hieracium pilosella. Plants were grown for 12 weeks on substrates with different concentrations of heavy metals obtained by diluting contaminated soils with silica sand. To minimize effects of other soil factors, the substrates were limed, fertilized, and well watered. The more metal-contaminated soil the substrate contained, the lower the leaf production rate and the plant mass were, and the more the phenological development was delayed. Flowering phenology was very sensitive to metals. Leaf life span was reduced at the highest and the lowest metal levels, the latter being a result of advanced seed ripening. Even if the effect of low metal levels on plant growth may be small, the delayed and reduced reproduction may have large effects at population, community and ecosystem level, and contribute to rapid evolution of metal tolerance. - Flowering phenology shows a very sensitive response to heavy metal contamination of soils

  4. Decontamination of alpha contaminated metallic waste by cerium IV redox process

    International Nuclear Information System (INIS)

    Shah, J.G.; Dhami, P.S.; Gandhi, P.M.; Wattal, P.K.

    2012-01-01

    Decontamination of alpha contaminated metallic waste is an important aspect in the management of waste generated during dismantling and decommissioning of nuclear facilities. Present work on cerium redox process targets decontamination of alpha contaminated metallic waste till it qualifies for the non alpha waste category for disposal in near surface disposal facility. Recovery of the alpha radio nuclides and cerium from aqueous secondary waste streams was also studied deploying solvent extraction process and established. The alpha-lean secondary waste stream has been immobilised in cement based matrix for final disposal. (author)

  5. Remediation of metal-contaminated urban soil using flotation technique

    International Nuclear Information System (INIS)

    Dermont, G.; Bergeron, M.; Richer-Lafleche, M.; Mercier, G.

    2010-01-01

    A soil washing process using froth flotation technique was evaluated for the removal of arsenic, cadmium, copper, lead, and zinc from a highly contaminated urban soil (brownfield) after crushing of the particle-size fractions > 250 μm. The metal contaminants were in particulate forms and distributed in all the particle-size fractions. The particle-by-particle study with SEM-EDS showed that Zn was mainly present as sphalerite (ZnS), whereas Cu and Pb were mainly speciated as various oxide/carbonate compounds. The influence of surfactant collector type (non-ionic and anionic), collector dosage, pulp pH, a chemical activation step (sulfidization), particle size, and process time on metal removal efficiency and flotation selectivity was studied. Satisfactory results in metal recovery (42-52%), flotation selectivity (concentration factor > 2.5), and volume reduction (> 80%) were obtained with anionic collector (potassium amyl xanthate). The transportation mechanisms involved in the separation process (i.e., the true flotation and the mechanical entrainment) were evaluated by the pulp chemistry, the metal speciation, the metal distribution in the particle-size fractions, and the separation selectivity indices of Zn/Ca and Zn/Fe. The investigations showed that a great proportion of metal-containing particles were recovered in the froth layer by entrainment mechanism rather than by true flotation process. The non-selective entrainment mechanism of the fine particles ( 5 min) and when a high collector dose is used. The intermediate particle-size fraction (20-125 μm) showed the best flotation selectivity.

  6. Report of conceptual design for TRU solid waste facilities adjacent to 200H Area: Savannah River Plant

    International Nuclear Information System (INIS)

    1978-02-01

    Facilities for consolidating Savannah River Plant solid transuranic (TRU) waste and placing in long-term safe, retrievable storage have been designed conceptually. A venture guidance appraisal of cost for the facilities has been prepared. The proposed site of the new processing area is adjacent to existing H Area facilities. The scopes of work comprising the conceptual design describe facilities for: exhuming high-level TRU waste from buried and pad-stored locations in the plant burial ground; opening, emptying, and sorting waste containers and their contents within shielded, regulated enclosures; volume-reducing the noncombustibles by physical processes and decontaminating the metal waste; burning combustibles; fixing the consolidated waste forms in a concrete matrix within a double-walled steel container; placing product containers in a retrievable surface storage facility adjacent to the existing plant burial ground; and maintaining accountability of all special nuclear materials. Processing, administration, and auxiliary service buildings are to be located adjacent to existing H Area facilities where certain power and waste liquid services will be shared

  7. Use of Hydrophilic Insoluble Polymers in the Restoration of Metal-Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Guiwei Qu

    2009-01-01

    Full Text Available To develop cost-effective techniques that contribute to phytostabilization of severely metal-contaminated soils is a necessary task in environmental research. Hydrophilic insoluble polymers have been used for some time in diapers and other hygienic products and to increase the water-holding capacity of coarse-textured soils. These polymers contain groups, such as carboxyl groups, that are capable of forming bonds with metallic cations, thereby decreasing their bioavailability in soils. The use of polyacrylate polymers as soil amendments to restore metal-contaminated soils has been investigated in the Technical University of Lisbon since the late nineties. Plant growth and plant nutrients concentrations, extractable levels of metals in soil, and soil enzyme activities were used to monitor the improvement in soil quality following the application of these polymers. In contaminated soils, hydrophilic insoluble polymers can create microcosms that are rich in water and nutrients (counterions but only contain small concentrations of toxic elements; the conditions of these microenvironments are favorable to roots and microorganisms. In this paper we described the most relevant information available about this topic.

  8. Use of Hydrophilic Insoluble Polymers in the Restoration of Metal-Contaminated Soils

    International Nuclear Information System (INIS)

    Qu, G.; De Varennes, A.; Qu, G.

    2010-01-01

    To develop cost-effective techniques that contribute to phyto stabilization of severely metal-contaminated soils is a necessary task in environmental research. Hydrophilic insoluble polymers have been used for some time in diapers and other hygienic products and to increase the water-holding capacity of coarse-textured soils. These polymers contain groups, such as carboxyl groups, that are capable of forming bonds with metallic cations, thereby decreasing their bioavailability in soils. The use of polyacrylate polymers as soil amendments to restore metal-contaminated soils has been investigated in the Technical University of Lisbon since the late nineties. Plant growth and plant nutrients concentrations, extractable levels of metals in soil, and soil enzyme activities were used to monitor the improvement in soil quality following the application of these polymers. In contaminated soils, hydrophilic insoluble polymers can create microcosms that are rich in water and nutrients (counterions) but only contain small concentrations of toxic elements; the conditions of these micro environments are favorable to roots and microorganisms. In this paper we described the most relevant information available about this topic.

  9. Considerations in recycling contaminated scrap metal and rubble

    International Nuclear Information System (INIS)

    Kluk, A.F.; Hocking, E.K.

    1992-01-01

    Management options for the Department of Energy's increasing amounts of contaminated scrap metal and rubble include reuse as is, disposal, and recycling. Recycling, with its promise of resource recovery, virgin materials conservation, and land disposal minimization, emerges as a preferred management technique. Implementing a cost effective recycling program requires resolution of several issues including: establishing release limits for contaminants, controlling use of recycled materials creating effective public communication programs; developing economical, reliable assay technologies; managing secondary waste streams, expanding availability of unrestricted markets; and solving conflicting legal considerations

  10. TRU waste certification and TRUPACT-2 payload verification

    International Nuclear Information System (INIS)

    Hunter, E.K.; Johnson, J.E.

    1990-01-01

    The Waste Isolation Pilot Plant (WIPP) established a policy that requires each waste shipper to verify that all waste shipments meet the requirements of the Waste Acceptance Criteria (WAC) prior to being shipped. This verification provides assurance that transuranic (TRU) wastes meet the criteria while still retained in a facility where discrepancies can be immediately corrected. Each Department of Energy (DOE) TRU waste facility planning to ship waste to the Waste Isolation Pilot Plant (WIPP) is required to develop and implement a specific program including Quality Assurance (QA) provisions to verify that waste is in full compliance with WIPP's WAC. This program is audited by a composite DOE and contractor audit team prior to granting the facility permission to certify waste. During interaction with the Nuclear Regulatory Commission (NRC) on payload verification for shipping in TRUPACT-II, a similar system was established by DOE. The TRUPACT-II Safety Analysis Report (SAR) contains the technical requirements and physical and chemical limits that payloads must meet (like the WAC). All shippers must plan and implement a payload control program including independent QA provisions. A similar composite audit team will conduct preshipment audits, frequent subsequent audits, and operations inspections to verify that all TRU waste shipments in TRUPACT-II meet the requirements of the Certificate of Compliance issued by the NRC which invokes the SAR requirements. 1 fig

  11. TRU Waste Management Program. Cost/schedule optimization analysis

    International Nuclear Information System (INIS)

    Detamore, J.A.; Raudenbush, M.H.; Wolaver, R.W.; Hastings, G.A.

    1985-10-01

    This Current Year Work Plan presents in detail a description of the activities to be performed by the Joint Integration Office Rockwell International (JIO/RI) during FY86. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO/RI by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO/RI tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, task guidance development, task monitoring, task progress information gathering and reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of reports for DOE detailing program status. Program Analysis is performed by the JIO/RI to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. These analyses include short-term analyses in response to DOE information requests, along with performing an RH Cost/Schedule Optimization report. Systems models will be developed, updated, and upgraded as needed to enhance JIO/RI's capability to evaluate the adequacy of program efforts in various fields. A TRU program data base will be maintained and updated to provide DOE with timely responses to inventory related questions

  12. Radioactive contamination in metal recycling industry - an environmental issue

    International Nuclear Information System (INIS)

    Agarwal, S.P.

    2012-01-01

    Metal recycling has become an important industrial activity worldwide; it is seen as being socially and environmentally beneficial because it conserves natural ore resources and saves energy. However, there have been several accidents over the past decades involving orphan radioactive sources or other radioactive material that were inadvertently collected as metal scrap that was destined for recycling. The consequences of these accidents have been serious with regard to the protection of people and the environment from the harmful effects of ionizing radiation as well as from an economic point of view. India produces and exports steel products to various countries. In the recent years there were rejection and return of steel products as they were found to be contaminated with trace quantities of radioactive materials. During investigation of incidents of radioactive contamination in steel products exported from India, it was observed that steel products are contaminated with low level radioactivity. Though radioactivity level in steel products is found to be too low to pose any significant hazards to the handling personnel or to the users or the public at large, its presence is undesirable and need to be probed as to how it has entered in the steel products. Atomic Energy Regulatory Board (AERB) has investigated the incidents of such nature in the recent past and it is gathered that the steel products are made out of steel produced in a foundry where metal scrap containing radioactive material has been used. In this talk, incidents of radioactive contamination, its roots cause, and its radiological impact on person, property and environment, lessons learnt, remedial measures and international concerns will be discussed

  13. Strong links between metal contamination, habitat modification and estuarine larval fish distributions

    Energy Technology Data Exchange (ETDEWEB)

    McKinley, Andrew C., E-mail: andrew.mckinley@hotmail.com [Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052 (Australia); Miskiewicz, Anthony [Environment and Recreation, Wollongong City Council, 41 Burelli Street, Wollongong, New South Wales 2500 (Australia); Taylor, Matthew D.; Johnston, Emma L. [Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052 (Australia)

    2011-06-15

    Changes to larval fish assemblages may have far reaching ecological impacts. Correlations between habitat modification, contamination and marine larval fish communities have rarely been assessed in situ. We investigated links between the large-scale distribution of stressors and larval fish assemblages in estuarine environments. Larval fish communities were sampled using a benthic sled within the inner and outer zones of three heavily modified and three relatively unmodified estuaries. Larval abundances were significantly greater in modified estuaries, and there were trends towards greater diversity in these systems. Differences in larval community composition were strongly related to sediment metal levels and reduced seagrass cover. The differences observed were driven by two abundant species, Paedogobius kimurai and Ambassis jacksoniensis, which occurred in large numbers almost exclusively in highly contaminated and pristine locations respectively. These findings suggest that contamination and habitat alteration manifest in substantial differences in the composition of estuarine larval fish assemblages. - Highlights: > We examine contamination/habitat modification impacts on larval fish. > Larvae communities differ between modified/unmodified estuaries. > Larvae are more abundant/diverse in modified areas. > Trends are strongly related to sediment metals/seagrass cover. > Larval impacts have wider ecological importance. - We describe strong links between sediment metals contamination, habitat modification and substantial differences in the composition of the estuarine larval fish assemblage.

  14. Field-scale assessment of phytotreatment of soil contaminated with weathered hydrocarbons and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.R.T.; Koskinen, P.E.P.; Tuhkanen, T.A.; Puhakka, J.A. [Inst. of Environmental Engineering and Biotechnology, Tampere Univ. of Tech., Tampere (Finland); Pichtel, J. [Natural Resources and Environmental Management, Ball State Univ., Muncie, IN (United States); Vaajasaari, K. [Pirkanmaa Regional Environment Centre, Tampere (Finland); Joutti, A. [Finnish Environment Inst., Helsinki (Finland)

    2006-08-15

    Background, Aims, and Scope. Phytoremediation is remediation method which uses plants to remove, contain or detoxify environmental contaminants. Phytoremediation has successfully been applied for the removal of fresh hydrocarbon contamination, but removal of aged hydrocarbons has proven more difficult. Biodegradation of hydrocarbons in the subsurface can be enhanced by the presence of plant roots, i.e. the rhizosphere effect. Phytostabilization reduces heavy metal availability via immobilization in the rhizosphere. Soils contaminated by both hydrocarbons and heavy metals are abundant and may be difficult to treat. Heavy metal toxicity can inhibit the activity of hydrocarbon-degrading micro-organisms and decrease the metabolic diversity of soil bacteria. In this experiment, weathered hydrocarbon- and heavy metal-contaminated soil was treated using phytoremediation in a 39-month field study in attempts to achieve both hydrocarbon removal and heavy metal stabilization. Methods. A combination of hydrocarbon degradation and heavy metal stabilization was evaluated in a field-scale phytoremediation study of weathered contaminants. Soil had been contaminated over several years with hydrocarbons (11,400{+-}4,300 mg kg dry soil){sup -1} and heavy metals from bus maintenance activities and was geologically characterized as till. Concentrations of soil copper, lead and zinc were 170{+-}50 mgkg{sup -1}, 1,100{+-}1,500 mg kg{sup -1} and 390{+-} 340 mg kg{sup -1}, respectively. The effect of contaminants, plant species and soil amendment (NPK fertilizer or biowaste compost) on metabolic activity of soil microbiota was determined. Phytostabilization performance was investigated by analyses of metal concentrations in plants, soil and site leachate as well as acute toxicity to Vibrio fischeri and Enchtraeus albidus. Results. Over 39 months hydrocarbon concentrations did not decrease significantly (P=0.05) in non-amended soil, although 30% of initial hydrocarbon concentrations were

  15. Waste Isolation Pilot Plant RH TRU waste preoperational checkout: Final report

    International Nuclear Information System (INIS)

    1988-06-01

    This report documents the results of the Waste Isolation Pilot Plant (WIPP) Remote-Handled Transuranic (RH TRU) Waste Preoperational Checkout. The primary objective of this checkout was to demonstrate the process of handling RH TRU waste packages, from receipt through emplacement underground, using equipment, personnel, procedures, and methods to be used with actual waste packages. A further objective was to measure operational time lines to provide bases for confirming the WIPP design through put capability and for projecting operator radiation doses. Successful completion of this checkout is a prerequisite to the receipt of actual RH TRU waste. This checkout was witnessed in part by members of the Environmental Evaluation Group (EEG) of the state of New Mexico. Further, this report satisfies a key milestone contained in the Agreement for Consultation and Cooperation with the state of New Mexico. 4 refs., 26 figs., 4 tabs

  16. Overview of management programs for plutonium-contaminated solid waste in the U.S.A

    International Nuclear Information System (INIS)

    Ramsey, R.W. Jr.; Daly, G.H.

    1975-01-01

    Programs for transuranium-contaminated solid wastes (TRU) in the U.S.A. are emphasizing a reduction in waste generation and the development of appropriate treatments to reduce the volume of wastes requiring interim storage and final disposal. Research and Development is emphasizing the establishment of sufficient information on treatment, hazards and storage to adopt a standardized procedure for handling wastes during an interim retrievable period and for final disposal. Federal responsibility for TRU waste is being proposed except for minimum amounts acceptable for commercial burial

  17. MWIR-1995 DOE national mixed and TRU waste database users guide

    International Nuclear Information System (INIS)

    1995-11-01

    The Department of Energy (DOE) National 1995 Mixed Waste Inventory Report (MWIR-1995) Database Users Guide provides information on computer system requirements and describes installation, operation, and navigation through the database. The MWIR-1995 database contains a detailed, nationwide compilation of information on DOE mixed waste streams and treatment systems. In addition, the 1995 version includes data on non- mixed, transuranic (TRU) waste streams. These were added to the data set as a result of coordination of the 1995 update with the National Transuranic Program Office's (NTPO's) data needs to support the Waste Isolation Pilot Plant (WIPP) TRU Waste Baseline Inventory Report (WTWBIR). However, the information on the TRU waste streams is limited to that associated with the core mixed waste data requirements. The additional, non-core data on TRU streams collected specifically to support the WTWBIR is not included in the MWIR-1995 database. With respect to both the mixed and TRU waste stream data, the data set addresses open-quotes storedclose quotes streams. In this instance, open-quotes storedclose quotes streams are defined as (a) streams currently in storage at both EM-30 and EM-40 sites and (b) streams that have yet to be generated but are anticipated within the next five years from sources other than environmental restoration and decontamination and decommissioning (ER/D ampersand D) activities. Information on future ER/D ampersand D streams is maintained in the EM-40 core database. The MWIR-1995 database also contains limited information for both waste streams and treatment systems that have been removed or deleted since the 1994 MWIR. Data on these is maintained only through Section 2, Waste Stream Identification/Tracking/Source, to document the reason for removal from the data set

  18. DOE`s radioactively - contaminated metal recycling: The policy and its implementation

    Energy Technology Data Exchange (ETDEWEB)

    Warren, S.; Rizkalla, E.

    1997-02-01

    In 1994, the Department of Energy`s Office of Environmental Restoration initiated development of a recycling policy to minimize the amount of radioactively-contaminated metal being disposed of as waste. During the following two years, stakeholders (including DOE and contractor personnel, regulators, members of the public, and representatives of labor and industry) were invited to identify key issues of concern, and to provide input on the final policy. As a result of this process, a demonstration policy for recycling radioactively-contaminated carbon steel resulting from decommissioning activities within the Environmental Management program was signed on September 20, 1996. It specifically recognizes that the Office of Environmental Management has a tremendous opportunity to minimize the disposal of metals as waste by the use of disposal containers fabricated from contaminated steel. The policy further recognizes the program`s demand for disposal containers, and it`s role as the major generator of radioactively-contaminated steel.

  19. TRU waste transport economics: an overview

    International Nuclear Information System (INIS)

    Edling, D.A.; Hopkins, D.R.; Walls, H.C.

    1978-01-01

    There are currently three predominant methods used to transport transuranium contaminated waste. These are: (1) ATMX Railcars--500 and 600 series, (2) Super Tigers, and (3) Poly Panthers. Both the ATMX-500 and 600 series railcars are massive doubly walled steel railcars which provide the equivalent protection of a Type B package. In ATMX-600 the rapid loading and unloading of the 9 x 9 x 50 feet cargo space is achieved by prepackaging the TRU waste into standard 20-foot steel cargo containers. The ATMX-500 railcars are divided into three inside bays, having dimensions of 16 (l) x 9.25 (w) x 6.25 (h) feet. A typical load consists of 128 55-gallon drums (however, space can accommodate 192 drums), 12 fiberglass boxes (4 x 4 x 7), or a combination of palletized drums and boxes. A Super Tiger is an overpack authorized for Type A, Type B, and large quantities of radioactive materials having outside dimensions of 8 x 8 x 20 feet. Maximum payload is approximately 28,700 lb with a gross weight of 45,000 lb. The primary factors influencing transport costs are examined including freight rates of transport mode, effective cargo (weight and volume) management, effective utilization of available space (package design), transport mileage, and rental fees or initial capital outlay. Miscellaneous factors are also examined

  20. New Fuel Alloys Seeking Optimal Solidus and Phase Behavior for High Burnup and TRU Burning

    International Nuclear Information System (INIS)

    Blackwood, V.S.; Jones, Z.S.; Olson, D.L.; Mishra, B.; Mariani, R.D.; Porter, D.L.; Kennedy, J.R.; Hayes, S.L.

    2013-01-01

    Summary: • Pd will bind lanthanide fission products. • 2 wt% Pd in alloy is expected to allow 20 at% Heavy Metal burnup, 4 wt% Pd possibly 30-40 at% HM burnup. • For recycled fuel with some lanthanide carryover, palladium additive will also prevent premature FCCI. • Novel uranium alloy systems suitable for burning transuranics were identified. • U-Mo-Ti-Zr and U-W-Mo irradiations may perform comparably to U-10Zr, but the real tests needed must include Pu and Np for TRU burning. – Diffusion couples with alloys and Fe or cladding; – Irradiations

  1. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    Directory of Open Access Journals (Sweden)

    Amir Waseem

    2014-01-01

    Full Text Available Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water, soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.

  2. Metal pollution in a contaminated bay: Relationship between metal geochemical fractionation in sediments and accumulation in a polychaete

    International Nuclear Information System (INIS)

    Fan, Wenhong; Xu, Zhizhen; Wang, Wen-Xiong

    2014-01-01

    Jinzhou Bay in Northern China has been seriously contaminated with metals due to the impacts of smelting activities. In this study, we investigated the relationship between metal accumulation in a deposit-feeding polychaete Neanthes japonica and metal concentration and geochemical fractionation (Cd, Cu, Pb, Zn and Ni) in sediments of Jinzhou Bay. Compared with the historical data, metals in the more mobile geochemical fraction (exchangeable and carbonate fractions) were gradually partitioned into the more stable fraction (Fe–Mn oxides) over time. Metal concentration and geochemical fractionation in sediment significantly affected metal bioavailability and accumulation in polychaetes, except for Ni. Metal accumulation in polychaetes was significantly influenced by Fe or Mn content, and to a lesser degree by organic matter. Prediction of metal bioaccumulation in polychaetes was greatly improved by normalizing metal concentrations to Mn content in sediment. The geochemical fractionation of metals in sediments including the exchangeable, organic matter and Fe–Mn oxides were important in controlling the sediment metal bioavailability to polychaetes. - Highlights: • Metals in contaminated sediments gradually partitioned into the more stable phase over time. • Metal accumulation in polychaetes was more significantly influenced by Fe/Mn content than by organic matter. • Prediction of metal bioaccumulation greatly improved by normalizing metals to Mn content in sediment. • Metals in exchangeable, organic matter and Fe–Mn oxides were important in controlling their bioavailability. - Prediction of metal bioaccumulation in polychaetes was significantly improved by normalizing metal concentrations to Mn content in sediment

  3. Health hazards and heavy metals accumulation by summer squash (Cucurbita pepo L.) cultivated in contaminated soils.

    Science.gov (United States)

    Galal, Tarek M

    2016-07-01

    The present study was carried out to investigate the heavy metal concentration accumulated by summer squash cultivated in contaminated soil and their health hazards for public consumers at south Cairo Province, Egypt. Soil and plants were sampled from contaminated and reference farms, using 1 m(2) quadrats, for biomass estimation and nutrient analysis. The daily intake of metals (DIM) and health risk index (HRI) were estimated. Significant differences in soil variables (except As) between contaminated and reference sites were recognized. Summer squash showed remarkable reduction in fresh and dry biomass, fruit production, and photosynthetic pigments under pollution stress. The inorganic and organic nutrients in the aboveground and belowground parts showed significant reduction in contaminated site. In addition, higher concentrations of heavy metals were accumulated in the edible parts and roots more than shoots. The bioaccumulation factor of summer squash for investigated metals was greater than 1, while the translocation factor did not exceed unity in both contaminated and reference sites. The DIM for all investigated metals in the reference site and in the contaminated site (except Fe and Mn) did not exceed 1 in both adults and children. However, HRI of Ni and Mn in the reference site and Pb, Cd, Cu, Ni, Fe, Mn, and Zn in the contaminated one exceeded unity indicating great potential to pose health risk to the consumers. The author recommends that people living in the contaminated area should not eat large quantities of summer squash, so as to avoid excess accumulation of heavy metals in their bodies.

  4. Contamination features and health risk of soil heavy metals in China

    International Nuclear Information System (INIS)

    Chen, Haiyang; Teng, Yanguo; Lu, Sijin; Wang, Yeyao; Wang, Jinsheng

    2015-01-01

    China faces a big challenge of environmental deterioration amid its rapid economic development. To comprehensively identify the contamination characteristics of heavy metals in Chinese soils on a national scale, data set of the first national soil pollution survey was employed to evaluate the pollution levels using several pollution indicators (pollution index, geoaccumulation index and enrichment factor) and to quantify their exposure risks posed to human health with the risk assessment model recommended by the US Environmental Protection Agency. The results showed that, due to the drastically increased industrial operations and fast urban expansion, Chinese soils were contaminated by heavy metals in varying degrees. As a whole, the exposure risk levels of soil metals in China were tolerable or close to acceptable. Comparatively speaking, children and adult females were the relatively vulnerable populations for the non-carcinogenic and carcinogenic risks, respectively. Cadmium and mercury have been identified as the priority control metals due to their higher concentrations in soils or higher health risks posed to the public, as well as, arsenic, lead, chromium and nickel. Spatial distribution pattern analysis implied that the soil metal pollutions in southern provinces of China were relatively higher than that in other provinces, which would be related to the higher geochemical background in southwest regions and the increasing human activities in southeast areas. Meanwhile, it should be noticed that Beijing, the capital of China, also has been labeled as the priority control province for its higher mercury concentration. These results will provide basic information for the improvement of soil environment management and heavy metal pollution prevention and control in China. - Highlights: • Soil contamination with heavy metals in China was systematically studied. • Spatial distribution patterns of heavy metals in Chinese soils were identified. • Monte

  5. Contamination features and health risk of soil heavy metals in China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiyang [Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875 (China); College of Water Sciences, Beijing Normal University, Beijing 100875 (China); Teng, Yanguo, E-mail: Teng1974@163.com [Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875 (China); College of Water Sciences, Beijing Normal University, Beijing 100875 (China); Lu, Sijin; Wang, Yeyao [China National Environmental Monitoring Center, Beijing 100012 (China); Wang, Jinsheng [Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875 (China); College of Water Sciences, Beijing Normal University, Beijing 100875 (China)

    2015-04-15

    China faces a big challenge of environmental deterioration amid its rapid economic development. To comprehensively identify the contamination characteristics of heavy metals in Chinese soils on a national scale, data set of the first national soil pollution survey was employed to evaluate the pollution levels using several pollution indicators (pollution index, geoaccumulation index and enrichment factor) and to quantify their exposure risks posed to human health with the risk assessment model recommended by the US Environmental Protection Agency. The results showed that, due to the drastically increased industrial operations and fast urban expansion, Chinese soils were contaminated by heavy metals in varying degrees. As a whole, the exposure risk levels of soil metals in China were tolerable or close to acceptable. Comparatively speaking, children and adult females were the relatively vulnerable populations for the non-carcinogenic and carcinogenic risks, respectively. Cadmium and mercury have been identified as the priority control metals due to their higher concentrations in soils or higher health risks posed to the public, as well as, arsenic, lead, chromium and nickel. Spatial distribution pattern analysis implied that the soil metal pollutions in southern provinces of China were relatively higher than that in other provinces, which would be related to the higher geochemical background in southwest regions and the increasing human activities in southeast areas. Meanwhile, it should be noticed that Beijing, the capital of China, also has been labeled as the priority control province for its higher mercury concentration. These results will provide basic information for the improvement of soil environment management and heavy metal pollution prevention and control in China. - Highlights: • Soil contamination with heavy metals in China was systematically studied. • Spatial distribution patterns of heavy metals in Chinese soils were identified. • Monte

  6. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils.

    Science.gov (United States)

    Park, Jin Hee; Lamb, Dane; Paneerselvam, Periyasamy; Choppala, Girish; Bolan, Nanthi; Chung, Jae-Woo

    2011-01-30

    As land application becomes one of the important waste utilization and disposal practices, soil is increasingly being seen as a major source of metal(loid)s reaching food chain, mainly through plant uptake and animal transfer. With greater public awareness of the implications of contaminated soils on human and animal health there has been increasing interest in developing technologies to remediate contaminated sites. Bioremediation is a natural process which relies on soil microorganisms and higher plants to alter metal(loid) bioavailability and can be enhanced by addition of organic amendments to soils. Large quantities of organic amendments, such as manure compost, biosolid and municipal solid wastes are used as a source of nutrients and also as a conditioner to improve the physical properties and fertility of soils. These organic amendments that are low in metal(loid)s can be used as a sink for reducing the bioavailability of metal(loid)s in contaminated soils and sediments through their effect on the adsorption, complexation, reduction and volatilization of metal(loid)s. This review examines the mechanisms for the enhanced bioremediation of metal(loid)s by organic amendments and discusses the practical implications in relation to sequestration and bioavailability of metal(loid)s in soils. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Indices of soil contamination by heavy metals - methodology of calculation for pollution assessment (minireview).

    Science.gov (United States)

    Weissmannová, Helena Doležalová; Pavlovský, Jiří

    2017-11-07

    This article provides the assessment of heavy metal soil pollution with using the calculation of various pollution indices and contains also summarization of the sources of heavy metal soil pollution. Twenty described indices of the assessment of soil pollution consist of two groups: single indices and total complex indices of pollution or contamination with relevant classes of pollution. This minireview provides also the classification of pollution indices in terms of the complex assessment of soil quality. In addition, based on the comparison of metal concentrations in soil-selected sites of the world and used indices of pollution or contamination in soils, the concentration of heavy metal in contaminated soils varied widely, and pollution indices confirmed the significant contribution of soil pollution from anthropogenic activities mainly in urban and industrial areas.

  8. Risks to humans and wildlife from metal contamination in soils/sediments at CERCLA sites

    International Nuclear Information System (INIS)

    Hitch, J.P.; Hovatter, P.S.; Opresko, D.M.; Sample, B.; Young, R.A.

    1994-01-01

    A common problem that occurs at DOD and DOE CERCLA sites is metal contamination in soils and aquatic sediments and the protection of humans and wildlife from potential exposure to this contamination. Consequently, the authors have developed a site-specific reference dose for mercury in sediments at the Oak Ridge Reservation and site-specific cleanup levels for certain metals, including arsenic and nickel, in soils at an Army ammunition plant. Another concern during remediation of these sites is that limited data are available to determine the direct risks to indigenous wildlife. Therefore, the authors have developed toxicological benchmarks for certain metals and metal compounds to be used as screening tools to determine the potential hazard of a contaminant to representative mammalian and avian wildlife species. These values should enable the Army and DOE to more accurately determine the risks to humans and wildlife associated with exposure to these contaminated media at their sites in order to achieve a more effective remediation. This effort is ongoing at ORNL with toxicological benchmarks also being developed for metal compounds and other chemicals of concern to DOD and DOE in order to address the potential hazard to

  9. Metal contamination in zebra mussels (Dreissena polymorpha) along the St. Lawrence River.

    Science.gov (United States)

    Kwan, K H Michael; Chan, Hing Man; de Lafontaine, Yves

    2003-01-01

    In order to evaluate the use of zebra mussels as biomonitors for metal bioavailability in the St. Lawrence River, we tested the hypothesis that the concentrations of 11 metals in zebra mussels vary significantly between sites along the river and that the season of collection and body size affect metal bioaccumulation. Mussels were collected at 14 sites during June 1996 and at monthly intervals at one site. Specimens were grouped in three size classes and their soft tissue was analyzed for As, Ca, Cd, Cr, Hg, Mn, Ni, Pb, Se, and Zn. Significant size effects were found for Ca, Cd, Cr, Cu, Ni and Zn. Spatial and seasonal variations in bioconcentration were significant for all metals. Spatial patterns in contamination that corresponded to known point sources of pollution or hydrology of the river were identified by principal component analysis. Seasonal variations can be attributed to the reproductive cycle of mussels and hydrological variability of the river. In comparison with values reported for zebra mussels in other contaminated sites in North America and Europe, levels of metal in the St. Lawrence River are low or intermediate. Our results show that when controlled for size and seasonal effects, zebra mussels represent a useful biomonitor for metal availability in the river and may offer an interesting alternative to native mussels and fish for such a role. Local contamination by some toxic metals is still a cause for concern in the St. Lawrence River.

  10. Chelant extraction and REDOX manipulation for mobilization of heavy metals from contaminated soils

    International Nuclear Information System (INIS)

    Brewster, M.D.; Peters, R.W.; Miller, G.A.; Patton, T.L.; Martino, L.E.

    1994-01-01

    Was the result of open burning and open detonation of chemical agents and munitions in the Toxic Burning Pits area at J-Field, located in the Edgewood Area of Aberdeen Proving Ground in Harford County, Maryland, soils have been contaminated with heavy metals. Simultaneous extraction is complicated because of the multitude of contaminant forms that exist. This paper uses data from a treatability study performed at Argonne National Laboratory to discuss and compare several treatment methods that were evaluated for remediating metals-contaminated soils. J-Field soils were subjected to a series of treatability experiments designed to determine the feasibility of using soil washing/soil flushing, enhancements to soil washing/soil flushing, solidification/stabilization, and electrokinetics for remediating soils contaminated with metals. Chelating and mobilizing agents evaluated included ammonium acetate, ethylenediaminetetraacetic acid, citric acid, Citranox, gluconic acid, phosphoric acid, oxalic acid, and nitrilotriacetic acid, in addition to pH-adjusted water. REDOX manipulation can maximize solubilities, increase desorption, and promote removal of heavy metal contaminants. Reducing agents that were studied included sodium borohydride, sodium metabisulfite, and thiourea dioxide. The oxidants studied included hydrogen peroxide, sodium percarbonate, sodium hypochlorite, and potassium permanganate. This paper summaries the results from the physical/chemical characterization, soil washing/soil flushing, and enhancements to soil washing/soil flushing portions of the study

  11. CONCRETE CONTAINERS FOR LONG TERM STORAGE AND FINAL DISPOSAL OF TRU WASTE AND LONG LIVED ILW

    International Nuclear Information System (INIS)

    Sakamoto, H.; Asano, H.; Tunaboylu, K.; Mayer, G.; Klubertanz, G.; Kobayashi, S.; Komuro, T.; Wagner, E.

    2003-01-01

    Transuranic (TRU) waste packaging development has been conducted since 1998 by the Radioactive Waste Management Funding and Research Centre (RWMC) to support the TRU waste disposal concept in Japan. In this paper, the overview of development status of the reinforced concrete package is introduced. This package has been developed in order to satisfy the Japanese TRU waste disposal concept based on current technology and to provide a low cost package. Since 1998, the basic design work (safety evaluation, manufacturing and handling procedure, economic evaluation, elemental tests etc.) have been carried out. As a result, the basic specification of the package was decided. This report presents the concept as well as the results of basic design, focused on safety analysis and handling procedure of the package. Two types of the packages exist: - Package-A: for non-heat generating TRU waste from reprocessing in 200 l drums and - Package-B: for heat generating TRU-waste from reprocessing

  12. Automated, simple, and efficient influenza RNA extraction from clinical respiratory swabs using TruTip and epMotion.

    Science.gov (United States)

    Griesemer, Sara B; Holmberg, Rebecca; Cooney, Christopher G; Thakore, Nitu; Gindlesperger, Alissa; Knickerbocker, Christopher; Chandler, Darrell P; St George, Kirsten

    2013-09-01

    Rapid, simple and efficient influenza RNA purification from clinical samples is essential for sensitive molecular detection of influenza infection. Automation of the TruTip extraction method can increase sample throughput while maintaining performance. To automate TruTip influenza RNA extraction using an Eppendorf epMotion robotic liquid handler, and to compare its performance to the bioMerieux easyMAG and Qiagen QIAcube instruments. Extraction efficacy and reproducibility of the automated TruTip/epMotion protocol was assessed from influenza-negative respiratory samples spiked with influenza A and B viruses. Clinical extraction performance from 170 influenza A and B-positive respiratory swabs was also evaluated and compared using influenza A and B real-time RT-PCR assays. TruTip/epMotion extraction efficacy was 100% in influenza virus-spiked samples with at least 745 influenza A and 370 influenza B input gene copies per extraction, and exhibited high reproducibility over four log10 concentrations of virus (extraction were also positive following TruTip extraction. Overall Ct value differences obtained between TruTip/epMotion and easyMAG/QIAcube clinical extracts ranged from 1.24 to 1.91. Pairwise comparisons of Ct values showed a high correlation of the TruTip/epMotion protocol to the other methods (R2>0.90). The automated TruTip/epMotion protocol is a simple and rapid extraction method that reproducibly purifies influenza RNA from respiratory swabs, with comparable efficacy and efficiency to both the easyMAG and QIAcube instruments. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Development of an Alternative Treatment Scheme for Sr/TRU Removal: Permanganate Treatment of AN-107 Waste

    International Nuclear Information System (INIS)

    Hallen, R.T.; Bryan, S.A.; Hoopes, F.V.

    2000-01-01

    A number of Hanford tanks received waste containing organic complexants, which increase the volubility of Sr-90 and transuranic (TRU) elements. Wastes from these tanks require additional pretreatment to remove Sr-90 and TRU for immobilization as low activity waste (Waste Envelope C). The baseline pretreatment process for Sr/TRU removal was isotopic exchange and precipitation with added strontium and iron. However, studies at both Battelle and Savannah River Technology Center (SRTC) have shown that the Sr/Fe precipitates were very difficult to filter. This was a result of the formation of poor filtering iron solids. An alternate treatment technology was needed for Sr/TRU removal. Battelle had demonstrated that permanganate treatment was effective for decontaminating waste samples from Hanford Tank SY-101 and proposed that permanganate be examined as an alternative Sr/TRU removal scheme for complexant-containing tank wastes such as AW107. Battelle conducted preliminary small-scale experiments to determine the effectiveness of permanganate treatment with AN-107 waste samples that had been archived at Battelle from earlier studies. Three series of experiments were performed to evaluate conditions that provided adequate Sr/TRU decontamination using permanganate treatment. The final series included experiments with actual AN-107 diluted feed that had been obtained specifically for BNFL process testing. Conditions that provided adequate Sr/TRU decontamination were identified. A free hydroxide concentration of 0.5M provided adequate decontamination with added Sr of 0.05M and permanganate of 0.03M for archived AN-107. The best results were obtained when reagents were added in the sequence Sr followed by permanganate with the waste at ambient temperature. The reaction conditions for Sr/TRU removal will be further evaluated with a 1-L batch of archived AN-107, which will provide a large enough volume of waste to conduct crossflow filtration studies (Hallen et al. 2000a)

  14. Development of an Alternative Treatment Scheme for Sr/TRU Removal: Permanganate Treatment of AN-107 Waste

    Energy Technology Data Exchange (ETDEWEB)

    RT Hallen; SA Bryan; FV Hoopes

    2000-08-04

    A number of Hanford tanks received waste containing organic complexants, which increase the volubility of Sr-90 and transuranic (TRU) elements. Wastes from these tanks require additional pretreatment to remove Sr-90 and TRU for immobilization as low activity waste (Waste Envelope C). The baseline pretreatment process for Sr/TRU removal was isotopic exchange and precipitation with added strontium and iron. However, studies at both Battelle and Savannah River Technology Center (SRTC) have shown that the Sr/Fe precipitates were very difficult to filter. This was a result of the formation of poor filtering iron solids. An alternate treatment technology was needed for Sr/TRU removal. Battelle had demonstrated that permanganate treatment was effective for decontaminating waste samples from Hanford Tank SY-101 and proposed that permanganate be examined as an alternative Sr/TRU removal scheme for complexant-containing tank wastes such as AW107. Battelle conducted preliminary small-scale experiments to determine the effectiveness of permanganate treatment with AN-107 waste samples that had been archived at Battelle from earlier studies. Three series of experiments were performed to evaluate conditions that provided adequate Sr/TRU decontamination using permanganate treatment. The final series included experiments with actual AN-107 diluted feed that had been obtained specifically for BNFL process testing. Conditions that provided adequate Sr/TRU decontamination were identified. A free hydroxide concentration of 0.5M provided adequate decontamination with added Sr of 0.05M and permanganate of 0.03M for archived AN-107. The best results were obtained when reagents were added in the sequence Sr followed by permanganate with the waste at ambient temperature. The reaction conditions for Sr/TRU removal will be further evaluated with a 1-L batch of archived AN-107, which will provide a large enough volume of waste to conduct crossflow filtration studies (Hallen et al. 2000a).

  15. Sediment Metal Contamination in the Kafue River of Zambia and Ecological Risk Assessment.

    Science.gov (United States)

    M'kandawire, Ethel; Choongo, Kennedy; Yabe, John; Mwase, Maxwell; Saasa, Ngonda; Nakayama, Shouta M M; Bortey-Sam, Nesta; Blindauer, Claudia A

    2017-07-01

    Zambia's Kafue River receives wastes from various sources, resulting in metal pollution. This study determined the degree of contamination of 13 metals (Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Hg and Pb) in Kafue River sediment and the associated ecological risks at six sites in three different seasons. The level of contamination for most metals showed significant site and seasonal differences. The contamination factor and pollution load index indicated that concentrations of most metals particularly copper (Cu), cobalt (Co), manganese (Mn) and arsenic (As) were very high at sites within the Copperbelt mining area. The geoaccumulation index showed an absence of anthropogenic enrichment with Cd and Hg at all the study sites and extreme anthropogenic enrichment with Cu at sites in the Copperbelt mining area. Potential ecological risk showed that Cu and As were likely to cause adverse biological effects to aquatic organisms in the Copperbelt mining region of the Kafue River.

  16. Progress report on disposal concept for TRU waste in Japan

    International Nuclear Information System (INIS)

    2000-03-01

    The object of this report is to contribute towards establishing a national TRU waste disposal program by integrating the results of research and development work carried out by JNC and the electricity utilities and summarizing the findings concerning safe methods for TRU waste disposal. The report consists of 5 chapters: the first describes the boundary conditions for the review of the TRU waste disposal concept (including geological conditions) and the basic concept adopted; the second describes the generation and characteristics of TRU waste and the third outlines the disposal technology; the fourth gives the key of the safety assessment and the fifth presents the conclusions of the report and lists issues for future consideration. The geological environment of Japan is simply classified into crystalline and sedimentary rock types (in terms of groundwater flow properties and rock strength) and a set of target conditions/properties for each rock type is then established. Based on this, a case which represents the basis for performance assessment (the reference case) will be defined. Alternatives to the reference case are studied to investigate the flexibility of the disposal concept. Under the conditions assumed in this study, the perturbing events considered showed no significant effects on the dose at the 100 meter evaluation point, owing to the relatively high efficiency of the natural barrier. However, the significant effect of these events on nuclide from the EBS shows that, in the case of a less efficient natural barrier, their effects could influence resulting dose. (S.Y.)

  17. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90.

    Science.gov (United States)

    Yang, Zhihui; Zhang, Zhi; Chai, Liyuan; Wang, Yong; Liu, Yi; Xiao, Ruiyang

    2016-01-15

    Bioleaching is an environment-friendly and economical technology to remove heavy metals from contaminated soils. In this study, a biosurfactant-producing strain with capacity of alkaline production was isolated from cafeteria sewer sludge and its capability for removing Zn, Pb, Mn, Cd, Cu, and As was investigated. Phylogenetic analysis using 16S rDNA gene sequences confirmed that the strain belonged to Burkholderia sp. and named as Z-90. The biosurfactant was glycolipid confirmed by thin layer chromatography and Fourier-transform infrared spectroscopy. Z-90 broth was then used for bioleaching remediation of heavy metal-contaminated soils. The removal efficiency was 44.0% for Zn, 32.5% for Pb, 52.2% for Mn, 37.7% for Cd, 24.1% for Cu and 31.6% for As, respectively. Mn, Zn and Cd were more easily removed from soil than Cu, Pb and As, which was attributed to the presence of high acid-soluble fraction of Mn, Zn and Cd and high residual fraction of Cu, Pb and As. The heavy metal removal in soils was contributed to the adhesion of heavy metal-contaminated soil minerals with strain Z-90 and the formation of a metal complex with biosurfactant. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques.

    Directory of Open Access Journals (Sweden)

    Nsikak U Benson

    Full Text Available Trace metals (Cd, Cr, Cu, Ni and Pb concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria. The degree of contamination was assessed using the individual contamination factors (ICF and global contamination factor (GCF. Multivariate statistical approaches including principal component analysis (PCA, cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources.

  19. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review.

    Science.gov (United States)

    Mahar, Amanullah; Wang, Ping; Ali, Amjad; Awasthi, Mukesh Kumar; Lahori, Altaf Hussain; Wang, Quan; Li, Ronghua; Zhang, Zengqiang

    2016-04-01

    Mining operations, industrial production and domestic and agricultural use of metal and metal containing compound have resulted in the release of toxic metals into the environment. Metal pollution has serious implications for the human health and the environment. Few heavy metals are toxic and lethal in trace concentrations and can be teratogenic, mutagenic, endocrine disruptors while others can cause behavioral and neurological disorders among infants and children. Therefore, remediation of heavy metals contaminated soil could be the only effective option to reduce the negative effects on ecosystem health. Thus, keeping in view the above facts, an attempt has been made in this article to review the current status, challenges and opportunities in the phytoremediation for remediating heavy metals from contaminated soils. The prime focus is given to phytoextraction and phytostabilization as the most promising and alternative methods for soil reclamation. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Uptake of certain heavy metals from contaminated soil by mushroom--Galerina vittiformis.

    Science.gov (United States)

    Damodaran, Dilna; Vidya Shetty, K; Raj Mohan, B

    2014-06-01

    Remediation of soil contaminated with heavy metals has received considerable attention in recent years. In this study, the heavy metal uptake potential of the mushroom, Galerina vittiformis, was studied in soil artificially contaminated with Cu (II), Cd (II), Cr (VI), Pb (II) and Zn (II) at concentrations of 50 and 100mg/kg. G. vittiformis was found to be effective in removing the metals from soil within 30 days. The bioaccumulation factor (BAF) for both mycelia and fruiting bodies with respect to these heavy metals at 50mg/kg concentrations were found to be greater than one, indicating hyper accumulating nature by the mushroom. The metal removal rates by G. vittiformis was analyzed using different kinetic rate constants and found to follow the second order kinetic rate equation except for Cd (II), which followed the first order rate kinetics. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. assessment of trace metals contamination of soils around some ...

    African Journals Online (AJOL)

    ABSTRACT. This study was carried out to determine the level of soil contamination by metals around some automobile mechanic .... and this was done all through the sample preparation. ... shaking was done by a mechanical sieve shaker and.

  2. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques

    Directory of Open Access Journals (Sweden)

    Chao Su

    2014-06-01

    Full Text Available Heavy metals in the soil refers to some significant heavy metals of biological toxicity, including mercury (Hg, cadmium (Cd, lead (Pb, chromium (Cr, and arsenic (As, etc. With the development of the global economy, both type and content of heavy metals in the soil caused by human activities have gradually increased in recent years, which have resulted in serious environment deterioration. In present study we compared and analyzed soil contamination of heavy metals in various cities/countries, and reviewed background, impact and remediation methods of soil heavy metal contamination worldwide.

  3. Remediation of metal-contaminated urban soil using flotation technique

    Energy Technology Data Exchange (ETDEWEB)

    Dermont, G., E-mail: dermonge@gmail.com [Institut National de la Recherche Scientifique Eau Terre et Environnement (INRS-ETE), 490, rue de la Couronne, Quebec, QC, Canada G1K 9A9 (Canada); Bergeron, M.; Richer-Lafleche, M.; Mercier, G. [Institut National de la Recherche Scientifique Eau Terre et Environnement (INRS-ETE), 490, rue de la Couronne, Quebec, QC, Canada G1K 9A9 (Canada)

    2010-02-01

    A soil washing process using froth flotation technique was evaluated for the removal of arsenic, cadmium, copper, lead, and zinc from a highly contaminated urban soil (brownfield) after crushing of the particle-size fractions > 250 {mu}m. The metal contaminants were in particulate forms and distributed in all the particle-size fractions. The particle-by-particle study with SEM-EDS showed that Zn was mainly present as sphalerite (ZnS), whereas Cu and Pb were mainly speciated as various oxide/carbonate compounds. The influence of surfactant collector type (non-ionic and anionic), collector dosage, pulp pH, a chemical activation step (sulfidization), particle size, and process time on metal removal efficiency and flotation selectivity was studied. Satisfactory results in metal recovery (42-52%), flotation selectivity (concentration factor > 2.5), and volume reduction (> 80%) were obtained with anionic collector (potassium amyl xanthate). The transportation mechanisms involved in the separation process (i.e., the true flotation and the mechanical entrainment) were evaluated by the pulp chemistry, the metal speciation, the metal distribution in the particle-size fractions, and the separation selectivity indices of Zn/Ca and Zn/Fe. The investigations showed that a great proportion of metal-containing particles were recovered in the froth layer by entrainment mechanism rather than by true flotation process. The non-selective entrainment mechanism of the fine particles (< 20 {mu}m) caused a flotation selectivity drop, especially with a long flotation time (> 5 min) and when a high collector dose is used. The intermediate particle-size fraction (20-125 {mu}m) showed the best flotation selectivity.

  4. Remediation of metal-contaminated urban soil using flotation technique.

    Science.gov (United States)

    Dermont, G; Bergeron, M; Richer-Laflèche, M; Mercier, G

    2010-02-01

    A soil washing process using froth flotation technique was evaluated for the removal of arsenic, cadmium, copper, lead, and zinc from a highly contaminated urban soil (brownfield) after crushing of the particle-size fractions >250microm. The metal contaminants were in particulate forms and distributed in all the particle-size fractions. The particle-by-particle study with SEM-EDS showed that Zn was mainly present as sphalerite (ZnS), whereas Cu and Pb were mainly speciated as various oxide/carbonate compounds. The influence of surfactant collector type (non-ionic and anionic), collector dosage, pulp pH, a chemical activation step (sulfidization), particle size, and process time on metal removal efficiency and flotation selectivity was studied. Satisfactory results in metal recovery (42-52%), flotation selectivity (concentration factor>2.5), and volume reduction (>80%) were obtained with anionic collector (potassium amyl xanthate). The transportation mechanisms involved in the separation process (i.e., the true flotation and the mechanical entrainment) were evaluated by the pulp chemistry, the metal speciation, the metal distribution in the particle-size fractions, and the separation selectivity indices of Zn/Ca and Zn/Fe. The investigations showed that a great proportion of metal-containing particles were recovered in the froth layer by entrainment mechanism rather than by true flotation process. The non-selective entrainment mechanism of the fine particles (flotation selectivity drop, especially with a long flotation time (>5 min) and when a high collector dose is used. The intermediate particle-size fraction (20-125 microm) showed the best flotation selectivity. Copyright 2009 Elsevier B.V. All rights reserved.

  5. A comparative neutronic analysis of 150MWe TRU burner according to the coolant alteration

    International Nuclear Information System (INIS)

    Yoo, J. W.; Kim, S. J.; Kim, Y. I.

    2000-01-01

    A comparative neutronic analysis has been conducted for the small TRU burner according to their coolant material. The use of Pb-Bi coolant gave a low burnup reactivity swing and negative or less positive coolant void coefficient with harder neutron spectrum. By a lower burnup reactivity swing and higher conversion ratio of Pb-Bi cooled core, the total amount of TRU consumption was found to be small compared with Na cooled core despite of the higher MA consumption ratio of Pb-Bi cooled core. However, Pb-Bi cooled reactor have a lager margin in the coolant void coefficient, so that a variable MA composition can be loaded in the core. Accordingly, even though the Pb-Bi cooled TRU burner has not effectiveness on TRU burning in the same geometry and material condition, a flexible MA loading is envisaged to result in 10 times larger MA burning amount, still preserving a low coolant void worth

  6. In situ and laboratory bioassays with Chironomus riparius larvae to assess toxicity of metal contamination in rivers: the relative toxic effect of sediment versus water contamination.

    Science.gov (United States)

    Faria, Mafalda S; Lopes, Ricardo J; Nogueira, António J A; Soares, Amadeu M V M

    2007-09-01

    We used bioassays employing head capsule width and body length increase of Chironomus riparius larvae as end points to evaluate metal contamination in streams. Bioassays were performed in situ near an abandoned Portuguese goldmine in the spring of 2003 and 2004. Bioassays also were performed under laboratory conditions with water and sediment collected from each stream to verify if laboratory bioassays could detect in situ toxicity and to evaluate the relative contribution of sediment and water to overall toxicity. We used field sediments with control water and control sediments with field water to discriminate between metal contamination in water and sediment. Field water with dry and sieved, organic matter-free, and nontreated sediments was used to determine the toxicity of heavy metals that enter the organism through ingested material. In both in situ and laboratory bioassays, body length increase was significantly inhibited by metal contamination, whereas head capsule width was not affected. Body length increase was more affected by contaminated sediment compared to contaminated water. The lowest-effect level of heavy metals was observed in the dry and sieved sediment that prevented ingestion of sediment particles by larvae. These results suggest that body length increase of C. riparius larvae can be used to indicate the impact of metal contamination in rivers. Chironomus riparius larvae are more affected by heavy metals that enter the organism through ingested sediment than by heavy metals dissolved in the water column. Nevertheless, several factors, such as the particle size and organic matter of sediment, must be taken into account.

  7. MSFR TRU-burning potential and comparison with an SFR

    Energy Technology Data Exchange (ETDEWEB)

    Fiorina, C.; Cammi, A. [Politecnico di Milano: Via La Masa 34, 20136 Milan (Italy); Franceschini, F. [Westinghouse Electric Company LL: 1000 Westinghouse Dr., Cranberry Township, PA 16066 (United States); Krepel, J. [Paul Scherrer Institut - PSI WEST, 5234 Villigen (Switzerland)

    2013-07-01

    The objective of this work is to evaluate the Molten Salt Fast Reactor (MSFR) potential benefits in terms of transuranics (TRU) burning through a comparative analysis with a sodium-cooled FR. The comparison is based on TRU- and MA-burning rates, as well as on the in-core evolution of radiotoxicity and decay heat. Solubility issues limit the TRU-burning rate to 1/3 that achievable in traditional low-CR FRs (low-Conversion-Ratio Fast Reactors). The softer spectrum also determines notable radiotoxicity and decay heat of the equilibrium actinide inventory. On the other hand, the liquid fuel suggests the possibility of using a Pu-free feed composed only of Th and MA (Minor Actinides), thus maximizing the MA burning rate. This is generally not possible in traditional low-CR FRs due to safety deterioration and decay heat of reprocessed fuel. In addition, the high specific power and the lack of out-of-core cooling times foster a quick transition toward equilibrium, which improves the MSFR capability to burn an initial fissile loading, and makes the MSFR a promising system for a quick (i.e., in a reactor lifetime) transition from the current U-based fuel cycle to a novel closed Th cycle. (authors)

  8. Metal contamination in benthic macroinvertebrates in a sub-basin in the southeast of Brazil

    Directory of Open Access Journals (Sweden)

    WAC Chiba

    Full Text Available Benthic macroinvertebrates have many useful properties that make possible the use of these organisms as sentinel in biomonitoring programmes in freshwater. Combined with the characteristics of the water and sediment, benthic macroinvertebrates are potential indicators of environmental quality. Thus, the spatial occurrence of potentially toxic metals (Al, Zn, Cr, Co, Cu, Fe, Mn and Ni in the water, sediment and benthic macroinvertebrates samples were investigated in a sub-basin in the southeast of Brazil in the city of São Carlos, São Paulo state, with the aim of verifying the metals and environment interaction with benthic communities regarding bioaccumulation. Hypothetically, there can be contamination by metals in the aquatic environment in the city due to lack of industrial effluent treatment. All samples were analysed by the USEPA adapted method and processed in an atomic absorption spectrophotometer. The sub-basin studied is contaminated by toxic metals in superficial water, sediment and benthic macroinvertebrates. The Bioaccumulation Factor showed a tendency for metal bioaccumulation by the benthic organisms for almost all the metal species. The results show a potential human and ecosystem health risk, contributing to metal contamination studies in aquatic environments in urban areas.

  9. A comparison of technologies for remediation of heavy metal contaminated soils

    OpenAIRE

    Khalid , Sana; Shahid , Muhammad; Niazi , Nabeel Khan; Murtaza , Behzad; Bibi , Irshad; Dumat , Camille

    2016-01-01

    International audience; Soil contamination with persistent and potentially (eco)toxic heavy metal(loid)s is ubiquitous around the globe. Concentration of these heavy metal(loid)s in soil has increased drastically over the last three decades, thus posing risk to the environment and human health. Some technologies have long been in use to remediate the hazardous heavy metal(loid)s. Conventional remediation methods for heavy metal(loid)s are generally based on physical, chemical and biological a...

  10. A new cleaning process for the metallic contaminants on a post-CMP wafer's surface

    International Nuclear Information System (INIS)

    Gao Baohong; Liu Yuling; Wang Chenwei; Wang Shengli; Zhou Qiang; Tan Baimei; Zhu Yadong

    2010-01-01

    This paper presents a new cleaning process using boron-doped diamond (BDD) film anode electrochemical oxidation for metallic contaminants on polished silicon wafer surfaces. The BDD film anode electrochemical oxidation can efficiently prepare pyrophosphate peroxide, pyrophosphate peroxide can oxidize organic contaminants, and pyrophosphate peroxide is deoxidized into pyrophosphate. Pyrophosphate, a good complexing agent, can form a metal complex, which is a structure consisting of a copper ion, bonded to a surrounding array of two pyrophosphate anions. Three polished wafers were immersed in the 0.01 mol/L CuSO 4 solution for 2 h in order to make comparative experiments. The first one was cleaned by pyrophosphate peroxide, the second by RCA (Radio Corporation of America) cleaning, and the third by deionized (DI) water. The XPS measurement result shows that the metallic contaminants on wafers cleaned by the RCA method and by pyrophosphate peroxide is less than the XPS detection limits of 1 ppm. And the wafer's surface cleaned by pyrophosphate peroxide is more efficient in removing organic carbon residues than RCA cleaning. Therefore, BDD film anode electrochemical oxidation can be used for microelectronics cleaning, and it can effectively remove organic contaminants and metallic contaminants in one step. It also achieves energy saving and environmental protection. (semiconductor technology)

  11. Strong links between metal contamination, habitat modification and estuarine larval fish distributions

    International Nuclear Information System (INIS)

    McKinley, Andrew C.; Miskiewicz, Anthony; Taylor, Matthew D.; Johnston, Emma L.

    2011-01-01

    Changes to larval fish assemblages may have far reaching ecological impacts. Correlations between habitat modification, contamination and marine larval fish communities have rarely been assessed in situ. We investigated links between the large-scale distribution of stressors and larval fish assemblages in estuarine environments. Larval fish communities were sampled using a benthic sled within the inner and outer zones of three heavily modified and three relatively unmodified estuaries. Larval abundances were significantly greater in modified estuaries, and there were trends towards greater diversity in these systems. Differences in larval community composition were strongly related to sediment metal levels and reduced seagrass cover. The differences observed were driven by two abundant species, Paedogobius kimurai and Ambassis jacksoniensis, which occurred in large numbers almost exclusively in highly contaminated and pristine locations respectively. These findings suggest that contamination and habitat alteration manifest in substantial differences in the composition of estuarine larval fish assemblages. - Highlights: → We examine contamination/habitat modification impacts on larval fish. → Larvae communities differ between modified/unmodified estuaries. → Larvae are more abundant/diverse in modified areas. → Trends are strongly related to sediment metals/seagrass cover. → Larval impacts have wider ecological importance. - We describe strong links between sediment metals contamination, habitat modification and substantial differences in the composition of the estuarine larval fish assemblage.

  12. Post-CMP cleaning for metallic contaminant removal by using a remote plasma and UV/ozone

    International Nuclear Information System (INIS)

    Lim, Jong Min; Jeon, Bu Yong; Lee, Chong Mu

    2000-01-01

    For the chemical mechanical polishing (CMP) process to be successful, it is important to establish a good post-CMP cleaning process that will remove not only slurry and particles but also metallic impurities from the polished surface. The common metallic contaminants found after oxide CMP and Cu CMP include Cu, K, and Fe. Scrubbing, a popular method for post-CMP cleaning, is effective in removing particles, but removal of metallic contaminants using this method is not so effective. In this study, the removal of Fe metallic contaminants like Fe, which are commonly found on the wafer surface after CMP processes, was investigated using remote-hydrogen-plasma and UV/O 3 cleaning techniques. Our results show that metal contaminants, including Fe, can be effectively removed by using a hydrogen-plasma or UV/O 3 cleaning technique performed under optimal process conditions. In remote plasma H 2 cleaning, contaminant removal is enhanced with decreasing plasma exposure time and increasing rf-power. The optimal process condition for the removal of the Fe impurities existing on the wafer surface is an rf-power of 100 W. Plasma cleaning for 5 min or less is effective in removing Fe contaminants, but a plasma exposure time of 1 min is more appropriate than 5 min in view of the process time, The surface roughness decreased by 30∼50 % after remote-H 2 -plasma cleaning. On the other hand, the highest efficiency of Fe-impurity removal was achieved for an UV exposure time of 30 s. The removal mechanism for the Fe contaminants in the remote-H 2 -plasma and the UV/O 3 cleaning processes is considered to be the liftoff of Fe atoms when the SiO is removed by evaporation after the chemical or native SiO 2 formed underneath the metal atoms reacts with H + and e - to form SiO

  13. High-Tc SQUID Application for Roll to Roll Metallic Contaminant Detector

    International Nuclear Information System (INIS)

    Tanaka, S.; Kitamura, Y.; Uchida, Y.; Hatsukade, Y.; Ohtani, T.; Suzuki, S.

    2012-01-01

    A sensitive eight-channel high-Tc Superconducting Interference Device (SQUID) detection system for magnetic contaminant in a lithium ion battery anode was developed. Finding ultra-small metallic foreign matter is an important issue for a manufacturer because metallic contaminants carry the risk of an internal short. When contamination occurs, the manufacturer of the product suffers a great loss from recalling the tainted product. Metallic particles with outer dimensions smaller than 100 microns cannot be detected using a conventional X-ray imaging system. Therefore, a highly sensitive detection system for small foreign matter is required. We have already developed a detection system based on a single-channel SQUID gradiometer and horizontal magnetization. For practical use, the detection width of the system should be increased to at least 65 mm by employing multiple sensors. In this paper, we present an 8-ch high-Tc SQUID roll-to-roll system for inspecting a lithium-ion battery anode with a width of 65 mm. A special microscopic type of a cryostat was developed upon which eight SQUID gradiometers were mounted. As a result, small iron particles of 35 microns on a real lithium-ion battery anode with a width of 70 mm were successfully detected. This system is practical for the detection of contaminants in a lithium ion battery anode sheet.

  14. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil.

    Science.gov (United States)

    Sitte, Jana; Akob, Denise M; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E; Scheinost, Andreas C; Büchel, Georg; Küsel, Kirsten

    2010-05-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined uranium increased in carbon-amended treatments, reaching metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems.

  15. TRU-ART: A cost-effective prototypical neutron imaging technique for transuranic waste certification systems

    International Nuclear Information System (INIS)

    Horton, W.S.

    1989-01-01

    The certification of defense radioactive waste as either transuranic or low-level waste requires very sensitive and accurate assay instrumentation to determine the specific radioactivity within an individual waste package. An assay instrument that employs a new technique (TRU-ART), which can identify the location of the radioactive material within a waste package, was designed, fabricated, and tested to potentially enhance the certification of problem defense waste drums. In addition, the assay instrumentation has potential application in radioactive waste reprocessing and neutron tomography. The assay instrumentation uses optimized electronic signal responses from an array of boral- and cadmium-shielded polyethylene-moderated 3 H detector packages. Normally, thermal neutrons that are detected by 3 H detectors have very poor spatial dependency that may be used to determine the location of the radioactive material. However, these shielded-detector packages of the TRU-ART system maintain the spatial dependency of the radioactive material in that the point of fast neutron thermalization is immediately adjacent to the 3 H detector. The TRU-ART was used to determine the location of radioactive material within three mock-up drums (empty, peat moss, and concrete) and four actual waste drums. The TRU-ART technique is very analogous to emission tomography. The mock-up drum and actual waste drum data, which were collected by the TRU-ART, were directly input into a algebraic reconstruction code to produce three-dimensional isoplots. Finally, a comprehensive fabrication cost estimate of the fielded drum assay system and the TRU-ART system was determined, and, subsequently, these estimates were used in a cost-benefit analysis to compare the economic advantage of the respective systems

  16. Food safety of milk and dairy product of dairy cattle from heavy metal contamination

    Science.gov (United States)

    Harlia, E.; Rahmah, KN; Suryanto, D.

    2018-01-01

    Food safety of milk and dairy products is a prerequisite for consumption, which must be free from physical, biological and chemical contamination. Chemical contamination of heavy metals Pb (Plumbum/Lead) and Cd (Cadmium) is generally derived from the environment such as from water, grass, feed additives, medicines and farm equipment. The contamination of milk and dairy products can affect quality and food safety for human consumption. The aim of this research is to investigate contamination of heavy metals Pb and Cd on fresh milk, pasteurized milk, and dodol milk compared with the Maximum Residue Limits (MRL). The methods of this researched was through case study and data obtained analyzed descriptively. Milk samples were obtained from Bandung and surrounding areas. The number of samples used was 30 samples for each product: 30 samples of fresh milk directly obtained from dairy farm, 30 samples of pasteurized milk obtained from street vendors and 30 samples of dodol milk obtained from home industry. Parameters observed were heavy metal residues of Pb and Cd. The results showed that: 1) approximately 83% of fresh milk samples were contaminated by Pb which 57% samples were above MRL and 90% samples were contaminated by Cd above MRL; 2) 67% of pasteurized milk samples were contaminated by Pb below MRL; 3) 60% of dodol milk samples were contaminated by Pb and Cd above MRL.

  17. Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters via Reduction by Zero-Valent Metals

    International Nuclear Information System (INIS)

    Yarmoff, Jory A.; Amrhein, Christopher

    1999-01-01

    Contaminated groundwater and surface waters are a problem throughout the United States and the world. In many instances, the types of contamination can be directly attributed to man's actions. For instance, the burial of chemical wastes, casual disposal of solvents in unlined pits, and the development of irrigated agriculture have all contributed to groundwater and surface water contamination. The kinds of contaminants include chlorinated solvents and toxic trace elements (including radioisotopes) that are soluble and mobile in soils and aquifers. Oxyanions of uranium, selenium, chromium, arsenic, technetium, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. Uranium is a particularly widespread contaminant at most DOE sites including Oak Ridge, Rocky Flats, Hanford, Idaho (INEEL), and Fernald. The uranium contamination is associated with mining and milling of uranium ore (UMTRA sites), isotope separation and enrichment, and mixed waste and TRU waste burial. In addition, the careless disposal of halogenated solvents, such as carbon tetrachloride and trichloroethylene, has further contaminated many groundwaters at these sites. A potential remediation method for many of these oxyanions and chlorinated-solvents is to react the contaminated water with zero-valent iron. In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used on an experimental basis at many DOE sites. Both in situ reactive barriers and above-ground reactors are being developed for this purpose. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the contaminants and the iron surfaces. We are performing fundamental investigations of the interactions of the relevant chlorinated solvents and trace element-containing compounds with single- and poly-crystalline Fe surfaces. The aim of this work is to develop th e fundamental

  18. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination.

    Science.gov (United States)

    Li, Xiaoqi; Meng, Delong; Li, Juan; Yin, Huaqun; Liu, Hongwei; Liu, Xueduan; Cheng, Cheng; Xiao, Yunhua; Liu, Zhenghua; Yan, Mingli

    2017-12-01

    Due to the persistence of metals in the ecosystem and their threat to all living organisms, effects of heavy metal on soil microbial communities were widely studied. However, little was known about the interactions among microorganisms in heavy metal-contaminated soils. In the present study, microbial communities in Non (CON), moderately (CL) and severely (CH) contaminated soils were investigated through high-throughput Illumina sequencing of 16s rRNA gene amplicons, and networks were constructed to show the interactions among microbes. Results showed that the microbial community composition was significantly, while the microbial diversity was not significantly affected by heavy metal contamination. Bacteria showed various response to heavy metals. Bacteria that positively correlated with Cd, e.g. Acidobacteria_Gp and Proteobacteria_thiobacillus, had more links between nodes and more positive interactions among microbes in CL- and CH-networks, while bacteria that negatively correlated with Cd, e.g. Longilinea, Gp2 and Gp4 had fewer network links and more negative interactions in CL and CH-networks. Unlike bacteria, members of the archaeal domain, i.e. phyla Crenarchaeota and Euryarchaeota, class Thermoprotei and order Thermoplasmatales showed only positive correlation with Cd and had more network interactions in CH-networks. The present study indicated that (i) the microbial community composition, as well as network interactions was shift to strengthen adaptability of microorganisms to heavy metal contamination, (ii) archaea were resistant to heavy metal contamination and may contribute to the adaption to heavy metals. It was proposed that the contribution might be achieved either by improving environment conditions or by cooperative interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The new Japanese policy for TRU-waste management

    International Nuclear Information System (INIS)

    Yamamoto, M.

    1992-01-01

    In July 1991, the Advisory Committee on Radioactive Waste of the Japan Atomic Energy Commission announced its report on a new Japanese policy for TRU-waste management. The total volume of radioactive wastes which contain TRU nuclides has reached the equivalent of about 40,000,200-liter drums, and is expected to grow to about 300,000 drums by the year 2010. Further development is required to reduce the volume of the existing waste and to decrease the amount of waste being generated. Wastes with concentration levels exceeding a threshold limit of 1 Giga-Becquerel per ton will be disposed in an underground facility. Those wastes with lower activities will be sent to a shallow-land burial facility. The goal of research and development is the completion of the disposal system by the late 1990's. (author)

  20. Study of different environmental matrices to access the extension of metal contamination along highways.

    Science.gov (United States)

    Zanello, Sônia; Melo, Vander Freitas; Nagata, Noemi

    2018-02-01

    Metals are indicators of contamination by anthropic activities, such as road traffic. To assess the extent of the metal contamination, more comprehensive studies analyzing different environmental matrices, such as soils, dust, and plants, collected in different sites that are potential sources of these pollutants along the highways, must be prioritized. Samples of soils, dust, and plants were collected alongside the highways of Brazil at 20 sites selected in strategic locations of metal accumulation (Cr, Pb, Zn, As, and Sb) or different situations of the high ways during two rain conditions (wet and dry weeks of sampling): nearby gutters and water supplies, tolls, petrol stations, a federal road police station, and areas associated with agriculture (yearly culture planting upstream of the highway). The geoaccumulation index (metal concentration in the sample of interest/background) varied from 0 to 6, and the decreasing order of contamination by metals during the wet and dry periods were, respectively: Zn > As > Pb = Sb > Cr and Zn > As > Pb > Cr > Sb. In the soils near the highways, the highest concentrations of metals were as follows (mg kg -1 ): As = 15.6, Cr = 81.9, Pb = 39.7, Sb = 5.0, and Zn = 379.3. The highest amounts of these elements in the most superficial layer in soils indicated their addition through atmospheric emissions. The most prominent metal was Sb, whose concentration was greater than the quality limits for soils. The concentration of Sb in soils was higher in the wet week than in the dry week. The emissions from road traffic promoted the increase in metals in the dust on the track, especially Zn and Pb. The highest metal concentrations in grasses (Brachiaria) were found in the roots, except for Sb and Zn, which suggests leaf absorption of atmospheric deposition. Metal contamination was widespread in all studied matrices along the highways.

  1. The study of metal contamination in urban soils of Hong Kong using a GIS-based approach

    International Nuclear Information System (INIS)

    Li Xiangdong; Lee Siulan; Wong Szechung; Shi Wenzhong; Thornton, Iain

    2004-01-01

    The study of regional variations and the anthropogenic contamination by metals of soils is very important for environmental planning and monitoring in urban areas. An extensive survey was conducted in the highly urbanized Kowloon area (46.9 km 2 ) of Hong Kong, using a systematic sampling strategy with a sampling density of 3-5 composite soil samples (0-15 cm) per km 2 . Geochemical maps of 'total' metals (Cd, Cr, Cu, Ni, Pb and Zn) from strong acid extraction in the surface soils were produced based on geographical information system (GIS) technology. A significant spatial relationship was found for Ni, Cu, Pb and Zn in the soils using a GIS-based analysis, suggesting that these metal contaminants in the soils of the Kowloon area had common sources. Several hot-spot areas of metal contamination were identified from the composite metal geochemical map, mainly in the old industrial and residential areas. A further GIS analysis revealed that road junctions, major roads and industrial buildings were possible sources of heavy metals in the urban soils. The Pb isotope composition of the contaminated soils showed clear anthropogenic origins. - GIS can be used to identify soil contamination hot-spot areas and to assess potential pollutant sources in an urban community

  2. Repackaging of High Fissile TRU Waste at the Transuranic Waste Processing Center - 13240

    Energy Technology Data Exchange (ETDEWEB)

    Oakley, Brian; Heacker, Fred [WAI, TRU Waste Processing Center, 100 WIPP Road Lenoir City, TN 37771 (United States); McMillan, Bill [DOE, Oak Ridge Operations, Bldg. 2714, Oak Ridge, TN 37830 (United States)

    2013-07-01

    Twenty-six drums of high fissile transuranic (TRU) waste from Oak Ridge National Laboratory (ORNL) operations were declared waste in the mid-1980's and placed in storage with the legacy TRU waste inventory for future treatment and disposal at the Waste Isolation Pilot Plant (WIPP). Repackaging and treatment of the waste at the TRU Waste Packaging Center (TWPC) will require the installation of additional equipment and capabilities to address the hazards for handling and repackaging the waste compared to typical Contact Handled (CH) TRU waste that is processed at the TWPC, including potential hydrogen accumulation in legacy 6M/2R packaging configurations, potential presence of reactive plutonium hydrides, and significant low energy gamma radiation dose rates. All of the waste is anticipated to be repackaged at the TWPC and certified for disposal at WIPP. The waste is currently packaged in multiple layers of containers which presents additional challenges for repackaging activities due to the potential for the accumulation of hydrogen gas in the container headspace in quantities than could exceed the Lower Flammability Limit (LFL). The outer container for each waste package is a stainless steel 0.21 m{sup 3} (55-gal) drum which contains either a 0.04 m{sup 3} or 0.06 m{sup 3} (10-gal or 15-gal) 6M drum. The inner 2R container in each 6M drum is ∼12 cm (5 in) outside diameter x 30-36 cm (12-14 in) long and is considered to be a > 4 liter sealed container relative to TRU waste packaging criteria. Inside the 2R containers are multiple configurations of food pack cans, pipe nipples, and welded capsules. The waste contains significant quantities of high burn-up plutonium oxides and metals with a heavy weight percentage of higher atomic mass isotopes and the subsequent in-growth of significant quantities of americium. Significant low energy gamma radiation is expected to be present due to the americium in-growth. Radiation dose rates on inner containers are estimated

  3. Metal and nutrient dynamics in decomposing tree litter on a metal contaminated site

    International Nuclear Information System (INIS)

    Van Nevel, Lotte; Mertens, Jan; Demey, Andreas; De Schrijver, An; De Neve, Stefaan; Tack, Filip M.G.; Verheyen, Kris

    2014-01-01

    In a forest on sandy, metal polluted soil, we examined effects of six tree species on litter decomposition rates and accompanied changes in metal (Cd, Zn) and nutrient (base cations, N, C) amounts. Decomposition dynamics were studied by means of a litterbag experiment lasting for 30 months. The decomposition peak occurred within the first year for all tree species, except for aspen. During litter decomposition, high metal litter types released part of their accumulated metals, whereas low metal litter types were characterized by a metal enrichment. Base cations, N and C were released from all litter types. Metal release from contaminated litter might involve risks for metal dispersion towards the soil. On the other hand, metal enrichment of uncontaminated litter may be ecologically relevant as it can be easily transported or serve as food source. - Highlights: • Litter decomposition peak occurred within the first year for all tree species, except for aspen. • Base cations, N and C were released from all litter types during decomposition. • Cd and Zn were released from the high metal litter types. • Low metal litter types were characterized by a net Cd and Zn enrichment. • Metal and nutrient releases were reflected in topsoil characteristics. - Litter decomposition rates, as well as enrichment and release dynamics of metals and nutrients in decomposing litter were divergent under the different tree species

  4. Effect of biosludge and biofertilizer amendment on growth of Jatropha curcas in heavy metal contaminated soils.

    Science.gov (United States)

    Juwarkar, Asha Ashok; Yadav, Santosh Kumar; Kumar, Phani; Singh, Sanjeev Kumar

    2008-10-01

    The pot experiments were conducted to evaluate the effect of different concentrations of arsenic, chromium and zinc contaminated soils, amended with biosludge and biofertilizer on the growth of Jatropha curcas which is a biodiesel crop. The results further showed that biosludge alone and in combination with biofertilizer significantly improved the survival rates and enhanced the growth of the plant. With the amendments, the plant was able to grow and survive upto 500, 250 and 4,000 mg kg(-1) of As, Cr and Zn contaminated soils, respectively. The results also showed that zinc enhanced the growth of J. curcas more as compared to other metals contaminated soils. The heavy metal accumulation in plant increased with increasing concentrations of heavy metals in soil, where as a significant reduction in the metal uptake in plant was observed, when amended with biosludge and biofertilizer and biosludge alone. It seems that the organic matter present in the biosludge acted as metal chelator thereby reducing the toxicity of metals to the plant. Findings suggest that plantation of J. curcas may be promoted in metal contaminated soils, degraded soils or wasteland suitably after amending with organic waste.

  5. TRU assay system and measurements

    International Nuclear Information System (INIS)

    Brodzinski, R.L.

    1984-02-01

    The measurement of the transuranic content of nuclear products or process residues has become increasingly important for the recovery of fissionable material from spent fuel elements, the identification of commercial fuel elements which have not yet reached full burnup, the measurement and recovery of transuranics from discarded or stored waste materials, the determination of the transuranic content in high gamma activity waste material scheduled for disposal, compliance with 10CFR61 by land burial operators/shippers, and the satisfaction of accountability requirements. Active neutron interrogation techniques measure either the prompt neutrons or the beta delayed neutrons from fission products following induced fission. These techniques normally only measure fissile transuranics ( 235 U, 239 Pu, and 241 Pu) and are commonly applied only to contact handleable waste. Passive neutron interrogation techniques, on the other hand, are capable of measuring all transuranics except 235 U with adequate sensitivity and will work on both contact handleable and high gamma activity wastes. Since the passive techniques are senstitive to a wider spectrum of transuranic isotopes than the active techniques, substantially less complex and less expensive than the active systems, and they have proven techniques for measuring small quantities of TRU in high gamma activity packages, the passive neutron TRU assay technology was chosen for development into the instruments discussed in this paper

  6. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    International Nuclear Information System (INIS)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Zhang, Hao; Christie, Peter

    2014-01-01

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible. - Highlights: • Plant shoot Cd decreased in high-Cd acid soil and also plant Zn did in two acid soils. • Plant shoot Cd remained constant in low-Cd acid soil and also plant Zn did in alkaline soils. • Acidic soils showed much higher total metal removal efficiency than the alkaline soils. - Acid soil has high total metal phytoremediation efficiency while a strategy based on stripping of the bioavailable contaminant might be feasible for alkaline soil phytoremediation

  7. Assessment of metal contaminations leaching out from recycling plastic bottles upon treatments.

    Science.gov (United States)

    Cheng, Xiaoliang; Shi, Honglan; Adams, Craig D; Ma, Yinfa

    2010-08-01

    Heavy metal contaminants in environment, especially in drinking water, are always of great concern due to their health impact. Due to the use of heavy metals as catalysts during plastic syntheses, particularly antimony, human exposure to metal release from plastic bottles has been a serious concern in recent years. The aim and scope of this study were to assess metal contaminations leaching out from a series of recycling plastic bottles upon treatments. In this study, leaching concentrations of 16 metal elements were determined in 21 different types of plastic bottles from five commercial brands, which were made of recycling materials ranging from no. 1 to no. 7. Several sets of experiments were conducted to study the factors that could potentially affect the metal elements leaching from plastic bottles, which include cooling with frozen water, heating with boiling water, microwave, incubating with low-pH water, outdoor sunlight irradiation, and in-car storage. Heating and microwave can lead to a noticeable increase of antimony leaching relative to the controls in bottle samples A to G, and some even reached to a higher level than the maximum contamination level (MCL) of the US Environmental Protection Agency (USEPA) regulations. Incubation with low-pH water, outdoor sunlight irradiation, and in-car storage had no significant effect on antimony leaching relative to controls in bottle samples A to G, and the levels of antimony leaching detected were below 6 ppb which is the MCL of USEPA regulations. Cooling had almost no effect on antimony leaching based on our results. For the other interested 15 metal elements (Al, V, Cr, Mn, Co, Ni, Cu, As, Se, Mo, Ag, Cd, Ba, Tl, Pb), no significant leaching was detected or the level was far below the MCL of USEPA regulations in all bottle samples in this study. In addition, washing procedure did contribute to the antimony leaching concentration for polyethylene terephthalate (PET) bottles. The difference of antimony leaching

  8. Metal Contamination in the Republic of Armenia.

    Science.gov (United States)

    Kurkjian

    2000-05-01

    / Air, soil, and water samples were collected throughout the Republic of Armenia both before and after its independence from the Soviet Union in 1991. Reported analyses of those samples indicated that levels of several trace metal concentrations (Ag, Cd, Cr, Cu, Mo, Ni, Pb, Ti, and Zn) exceeded the maximum allowable concentrations established by the former Soviet Union (FSU) and subsequently adopted by Armenia. Although industrial production has declined by more than 80% since the 1980s, the economy is improving and there is potential for a significant increase in the generation of industrial metal emissions. These include automobile emissions, which are now considered to be the primary source of atmospheric lead. Historically, the Soviet Union did not strictly enforce environmental standards, and Armenia is now faced with the resulting environmental problems and the associated risks to public health. Since some trace metal concentrations may be at or near potentially toxic levels, there is a need to accurately assess the extent of metal contamination in order to devise cleanup plans and develop long-term environmental protection and public health strategies in Armenia.

  9. Proteomic analysis of Sydney Rock oysters (Saccostrea glomerata) exposed to metal contamination in the field

    International Nuclear Information System (INIS)

    Thompson, Emma L.; Taylor, Daisy A.; Nair, Sham V.; Birch, Gavin; Hose, Grant C.; Raftos, David A.

    2012-01-01

    This study used proteomics to assess the impacts of metal contamination in the field on Sydney Rock oysters. Oysters were transplanted into Lake Macquarie, NSW, for two weeks in both 2009 and 2010. Two-dimensional electrophoresis identified changes in protein expression profiles of oyster haemolymph between control and metal contaminated sites. There were unique protein expression profiles for each field trial. Principal components analysis attributed these differences in oyster proteomes to the different combinations and concentrations of metals and other environmental variables present during the three field trials. Identification of differentially expressed proteins showed that proteins associated with cytoskeletal activity and stress responses were the most commonly affected biological functions in the Sydney Rock oyster. Overall, the data show that proteomics combined with multivariate analysis has the potential to link the effects of contaminants with biological consequences. - Highlights: ► Sydney Rock oyster haemolymph was analysed by proteomics after metal exposure in 3 field trials. ► 2-DE analysis was used to compare protein profiles between control and contaminated sites. ► Different protein expression profiles were revealed per field trial. ► Principal components analysis attributed profiles to different suites of metals and environmental variables per trial. ► The study highlights the need to do multiple field trials and to combine proteomic and enviro. data. - This study used proteomics to analyse impacts of metal contamination on Sydney Rock oyster (Saccostrea glomerata) haemolymph in multiple field trials.

  10. Effectiveness of remediation of metal-contaminated mangrove sediments (Sydney estuary, Australia).

    Science.gov (United States)

    Birch, Gavin; Nath, Bibhash; Chaudhuri, Punarbasu

    2015-04-01

    Industrial activities and urbanization have had a major consequence for estuarine ecosystem health and water quality globally. Likewise, Sydney estuary has been significantly impacted by widespread, poor industrial practices in the past, and remediation of legacy contaminants have been undertaken in limited parts of this waterway. The objective of the present investigation was to determine the effectiveness of remediation of a former Pb-contaminated industrial site in Homebush Bay on Sydney estuary (Australia) through sampling of inter-tidal sediments and mangrove (Avicennia marina) tissue (fine nutritive roots, pneumatophores, and leaves). Results indicate that since remediation 6 years previously, Pb and other metals (Cu, Ni and Zn) in surficial sediment have increased to concentrations that approach pre-remediation levels and that they were considerably higher than pre-settlement levels (3-30 times), as well as at the reference site. Most metals were compartmentalized in fine nutritive roots with bio-concentration factors greater than unity, while tissues of pneumatophores and leaves contained low metal concentrations. Lead concentrations in fine nutritive root, pneumatophore, and leaf tissue of mangroves from the remediated site were similar to trees in un-remediated sites of the estuary and were substantially higher than plants at the reference site. The situation for Zn in fine nutritive root tissue was similar. The source of the metals was either surface/subsurface water from the catchment or more likely remobilized contaminated sediment from un-remediated parts of Homebush Bay. Results of this study demonstrate the problems facing management in attempting to reduce contamination in small parts of a large impacted area to concentrations below local base level.

  11. Autologous osteochondral mosaicplasty or TruFit plugs for cartilage repair.

    Science.gov (United States)

    Hindle, Paul; Hendry, Jane L; Keating, John F; Biant, Leela C

    2014-06-01

    Autologous osteochondral mosaicplasty and TruFit Bone graft substitute plugs are methods used to repair symptomatic articular cartilage defects in the adult knee. There have been no comparative studies of the two techniques. This retrospective study assessed functional outcome of patients using the EQ-5D, Knee Injury and Osteoarthritis Outcome Score (KOOS) and Modified Cincinnati scores at follow-up of 1-5 years. There were 66 patients in the study (35 TruFit and 31 Mosaicplasty): 44 males and 22 females with a mean age of 37.3 years (SD 12.6). The mean BMI was 26.8. Thirty-six articular cartilage lesions were due to trauma, twenty-six due to osteochondritis dissecans and three due to non-specific degenerative change or unknown. There was no difference between the two groups age (n.s.), sex (n.s.), BMI (n.s.), defect location (n.s.) or aetiology (n.s.). The median follow-up was 22 months for the TruFit cohort and 30 months for the mosaicplasty group. There was no significant difference in the requirement for re-operation (n.s). Patients undergoing autologous mosaicplasty had a higher rate of returning to sport (p = 0.006), lower EQ-5D pain scores (p = 0.048) and higher KOOS activities of daily living (p = 0.029) scores. Sub-group analysis showed no difference related to the number of cases the surgeon performed. Patients requiring re-operation had lower outcome scores regardless of their initial procedure. This study demonstrated significantly better outcomes using two validated outcome scores (KOOS, EQ-5D), and an ability to return to sport in those undergoing autologous mosaicplasty compared to those receiving TruFit plugs. IV.

  12. Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium.

    Science.gov (United States)

    Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2012-11-01

    Bioremediation of polyaromatic hydrocarbons (PAH) contaminated soils in the presence of heavy metals have proved to be difficult and often challenging due to the ability of toxic metals to inhibit PAH degradation by bacteria. In this study, a mixed bacterial culture designated as consortium-5 was isolated from a former manufactured gas plant (MGP) site. The ability of this consortium to utilise HMW PAHs such as pyrene and BaP as a sole carbon source in the presence of toxic metal Cd was demonstrated. Furthermore, this consortium has proven to be effective in degradation of HMW PAHs even from the real long term contaminated MGP soil. Thus, the results of this study demonstrate the great potential of this consortium for field scale bioremediation of PAHs in long term mix contaminated soils such as MGP sites. To our knowledge this is the first study to isolate and characterize metal tolerant HMW PAH degrading bacterial consortium which shows great potential in bioremediation of mixed contaminated soils such as MGP.

  13. Evaluation of Heavy Metal Contamination Ecological Risk in a Food-Producing Ecosystem

    Directory of Open Access Journals (Sweden)

    mohsen Mirzaei

    2017-09-01

    Full Text Available Introduction and purpose: The consumption of agricultural products cultivated in soils contaminated with heavy metals is very health-threatening. Therefore, the implementation of an inclusive and multilateral assessment of the heavy metal risk on the verge of their entrance to the food chain is a matter of fundamental importance. Regarding this, the present study was conducted with the aim of monitoring the concentration of heavy metals in the surface soil of grape gardens and zoning the area in terms of geoaccumulation index (Igeo, contamination factor, degree of contamination, modified degree of contamination (MDC, pollution load index (PLI, and ecological risk index (RI. Methods: For the purpose of the study, 31 grape gardens were selected in Gahru region (i.e., the main center of grape production through simple random sampling technique. The surface soil samples were transferred to the laboratory for the analysis of the concentration of cadmium, lead, chromium, copper, and zinc. Results: According to the results, the concentration of the metals in the region was Zn > Cu > Pb > Cr > Cd with the mean total concentrations of 74.87, 55.31, 22.32, 9.81, and 0.91 mg/kg, respectively. Based on the results of the PLI, six grape gardens were classified as insignificantly contaminated (1≤PLI≤2, and the remaining gardens were classified as noncontaminated (PLI300, medium (150metals and critical stations. Meanwhile, cadmium and copper caused the highest concern in some of the grape gardens of the investigated region. Therefore, it is suggested to prevent the entrance of larger amounts of cadmium in the area by training and raising the awareness of the gardeners about the amount of phosphate fertilizers and fungicide and encouraging them to use animal manures and take preventive

  14. Development of safety assessment model based on TRU-2 report using GoldSim

    International Nuclear Information System (INIS)

    Ebina, Takanori; Inagaki, Manabu; Kato, Tomoko

    2011-03-01

    The safety assessment model at 'Second Progress Report on Research and Development for TRU Waste Disposal in Japan'(TRU-2 report) was designed using the numerical code TIGER, that allows the physical and chemical properties within the system to vary with time. In the future, at the examination to optimize nuclear fuel cycle for geological disposal, it is expected that the analysis that has many cases like sensitivity analysis and uncertainty analysis are in demand. The numerical code TIGER is a calculation code that analyze engineered barrier system and geological barrier system, and its numerical model is verified with nuclide migration code for engineered barrier system MESHNOTE, and nuclide migration code for geosphere MATRICS. At the analysis using TIGER, the migration (i.e. Engineered barrier system, Host rock and Fault) have to be analysed independently at each region, consequently the huge number of complicated parameter setting have been required. On the other hand, by using numerical code GoldSim, all regions are analyzed synchronously and parameters can be defined at same model. So it makes quality control of parameters easier. Furthermore, analysis time by GoldSim is shorter than TIGER and GoldSim can calculate many number of Monte Carlo simulations among multiple computers. In future, Safety Analyses of TRU waste package disposal will be carried out according as study of an optimization of nuclear fuel cycle. Therefor, safety assessment model for TRU waste disposal using GoldSim was designed, and calculation results were verified by comparing with the result of TRU-2 report. (author)

  15. 49 Trace Metals' Contamination of Stream Water and Irrigated Crop ...

    African Journals Online (AJOL)

    ABUBAKAR AHMED

    human consumption as they pose serious health risks due to contamination with the metals. For environmental ... mining activities, industrial and domestic effluents, urban ... drinking and bathing water, irrigation, food, fuel and energy.

  16. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    Science.gov (United States)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Zhang, Hao; Christie, Peter

    2014-06-01

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Alpha contamination assessment for D ampersand D activities: Monitoring inside glove boxes and vessels

    International Nuclear Information System (INIS)

    Rawool-Sullivan, M.W.; Bolton, R.D.; Conaway, J.G.; MacArthur, D.W.

    1996-02-01

    We have developed a new approach to glove box monitoring that involves drawing air out of one glove port through a detection grid that collects ions created in the air inside the glove box by ionizing radiation, especially alpha radiation. The charge deposited on the detection grid by the ions is measured with a sensitive electrometer. The air can be circulated back to the glove box through the other glove port, preventing contamination from leaving the glove box and detector system. Initial experiments using a mock-up constructed of sheet metal indicate that this technology provides the measurement technique needed to perform a defensible, non-invasive measurement of alpha contamination inside glove boxes destined for waste disposal. This can result in an enormous cost savings if a given glove box can be shown to fall into the catagory of Low-Level Waste rather than Trans-Uranic Waste. Considering that hundreds of glove boxes contaminated with plutonium will be taken out of service at various nuclear facilities over the next few years, the potential cost savings associated with disposal as LLW rather than TRU waste are substantial

  18. Radiation protection aspects of the trafficking radionuclides contaminated metal scrap

    International Nuclear Information System (INIS)

    Prouza, Z.

    1999-01-01

    This paper covers the legal base of the release in the environment of radionuclides containing materials and the radiation protection aspects of trafficking in radionuclides contaminated materials. Materials, substance and objects containing radionuclides or contaminated by them may be released into the environment, if they do not exceed values authorized by SONS (State Office of Nuclear Safety). Legislative measures should be taken against illicit trafficking of the nuclear material in all the areas. The creation of a sophisticated system for the control and regulation of all important radionuclides released into the environment should be based on the radiation protection limits, constraints, reference and exemption levels which are introduced in the legislative documents; the strong supervision of producers and users of the sealed sources by SONS side, in addition to the requirements of the licensing process of their sources; a complete data-base and information exchange system related to illicit trafficking in contaminated material; in this system all the authorities with jurisdiction should be involved. The responsibilities of the persons involved in metal scrap trafficking should include arrangement of appropriate monitoring, rules for transport of the metal scrap, an adequate measuring system to monitor metal scrap including monitoring to prevent processing or smelting of the radioactive material, control measures, etc. All of the above items of legislation are an important challenge for the Czech Republic. (author)

  19. Geochemical cartography as a tool for assessing the degree of soil contamination with heavy metals in Poland

    Science.gov (United States)

    Szymon Borkowski, Andrzej; Kwiatkowska-Malina, Jolanta

    2016-04-01

    Spatial disposition of chemical elements including heavy metals in the soil environment is a very important information during preparation of the thematic maps for the environmental protection and/or spatial planning. This knowledge is also essential for the earth's surface and soil's monitoring, designation of areas requiring improvement including remediation. The main source of anthropogenic pollution of soil with heavy metals are industry related to the mining coal and liquid fuels, mining and metallurgy, chemical industry, energy production, waste management, agriculture and transport. The geochemical maps as a kind of specific thematic maps made on the basis of datasets obtained from the Polish Geological Institute's resources allow to get to know the spatial distribution of different chemical elements including heavy metals in soil. The results of the research carried out by the Polish Geological Institute showed strong contamination in some regions in Poland mainly with arsenic, cadmium, lead and nickel. For this reason it was the point to prepare geochemical maps showing contamination of soil with heavy metals, and determine main sources of contamination and zones where heavy metals concentration was higher than acceptable contents. It was also presented a summary map of soil contamination with heavy metals. Additionally, location of highly contaminated zones was compiled with predominant in those areas types of arable soils and then results were thoroughly analyzed. This information can provide a base for further detailed studies on the soil contamination with heavy metals.

  20. Distribution of metals and extent of contamination in sediments from the south-eastern Baltic Sea (Lithuanian zone

    Directory of Open Access Journals (Sweden)

    Nijolė Remeikaitė-Nikienė

    2018-04-01

    Full Text Available Summary: The distribution of metals (Pb, Cu, Cd, Ni, Cr, Zn in surface sediments and the potential pollution sources in the south-eastern part (SE of the Baltic Sea (Lithuanian zone were investigated in relation to the environmental characteristics (amount of fine-grained particles, TOC content in sediments, origin of sedimentary organic matter, salinity, water depth in 2011–2014. The higher metal concentrations were measured in sediments of the Curonian Lagoon and in the open waters. An approach using various environmental indices (enrichment factor EF, geoaccumulation index Igeo and contamination factor CF was used to quantitatively assess a contamination degree. The principal component analysis (PCA was applied in order to further scrutinize pollution from metal sources. The values of the contamination indices showed no/very low sediment contamination with Ni and Cr, minor–moderate contamination with Cu, Zn and Pb and moderate–considerable pollution with Cd. The strong relationships among metals suggested their similar distribution pattern and a combination of natural and anthropogenic sources. The higher metal concentrations coincided with an increasing amount of fine-grained fraction and organic carbon. In the territorial waters, the distribution of elements was related to the water depth. In addition, the binding of metals with insoluble iron sulphides might explain their high concentrations at the most remote and deepest stations. Keywords: Metals, Enrichment factor, Geoaccumulation index, Contamination factor, The Baltic Sea, The Curonian Lagoon

  1. Remediation of Cd-contaminated soil around metal sulfide mines

    Science.gov (United States)

    Lu, Xinzhe; Hu, Xuefeng; Kang, Zhanjun; Luo, Fan

    2017-04-01

    The mines of metal sulfides are widely distributed in the southwestern part of Zhejiang Province, Southeast China. The activities of mining, however, often lead to the severe pollution of heavy metals in soils, especially Cd contamination. According to our field investigations, the spatial distribution of Cd-contaminated soils is highly consistent with the presence of metal sulfide mines in the areas, further proving that the mining activities are responsible for Cd accumulation in the soils. To study the remediation of Cd-contaminated soils, a paddy field nearby large sulfide mines, with soil pH 6 and Cd more than 1.56 mg kg-1, five times higher than the national recommended threshold, was selected. Plastic boards were deeply inserted into soil to separate the field and make experimental plots, with each plot being 4 m×4 m. Six treatments, TK01˜TK06, were designed to study the effects of different experimental materials on remediating Cd-contaminated soils. The treatment of TK01 was the addition of 100 kg zeolites to the plot; TK02, 100 kg apatites; TK03, 100 kg humid manure; TK04, 50 kg zeolites + 50 kg apatites; TK05, 50 kg zeolites + 50 kg humid manure; TK06 was blank control (CK). One month after the treatments, soil samples at the plots were collected to study the possible change of chemical forms of Cd in the soils. The results indicated that these treatments reduced the content of available Cd in the soils effectively, by a decreasing sequence of TK04 (33%) > TK02 (25%) > TK01 (23%) > TK05 (22%) > TK03 (15%), on the basis of CK. Correspondingly, the treatments also reduced the content of Cd in rice grains significantly, by a similar decreasing sequence of TK04 (83%) > TK02 (77%) > TK05 (63%) > TK01 (47%) > TK03 (27%). The content of Cd in the rice grains was 0.071 mg kg-1, 0.094 mg kg-1, 0.159 mg kg-1, 0.22 mg kg-1 and 0.306 mg kg-1, respectively, compared with CK, 0.418 mg kg-1. This experiment suggested that the reduction of available Cd in the soils is

  2. How functional traits of estuarine macrobenthic assemblages respond to metal contamination?

    KAUST Repository

    Piló, D.

    2016-08-06

    The effects of metal contamination on estuarine macrobenthic communities were investigated using the Biological Traits Analysis (BTA). The study was carried out in the Tagus estuary (western Portugal). Samples of macrobenthic communities and associated environmental variables were taken in four surveys (September 2012, and February, May and October 2013) across the contamination gradient from three main zones: a slightly contaminated, a moderately contaminated and a highly contaminated zone. Functional traits for the most abundant species were assigned using seven categories based on “Feeding mode”, “Life span”, “Body size”, “Motility”, “Position in sediments”, “Larval type” and “AMBI ecological group”. To investigate whether the macroinvertebrate community structure was associated with the environmental parameters and biological traits an integrative multivariate analysis, combining the RLQ analysis and the fourth-corner method, was applied. Within this analysis, human-induced estuarine variables (metals) were rendered independent from natural ones (sediment fine particles) through partial correlations. Following this approach, it was possible to decouple the effects of two typically highly correlated environmental descriptors with different origins. Overall, the study identified significant relationships between sediment environmental descriptors and the functional traits of macrobenthic communities. Further, RLQ/Fourth-corner combined analysis successfully isolated the traits and corresponding species that were most correlated with the measured concentration of trace metals in sediments, supporting the knowledge that benthic organisms exhibit distinct responses to different levels of disturbance. A shift in species dominance occurred along the contamination gradient with epifaunal tolerant species with very small size, long life span, and crawling motility dominating the highest contaminated area. This area was also related with

  3. Challenges in the Management of Potentially Contaminated Scrap Metal

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, R.W., E-mail: meehanrw@em.doe.gov [US Department of Energy, National Nuclear Security Administration, Washington, DC (United States)

    2011-07-15

    This paper describes the background and current status of the management of potentially contaminated metals and materials at the US Department of Energy (DOE) sites across the USA. The current DOE policy prohibiting the release of metal scrap for recycling from radiation areas is explained. Finally, a potential path forward to competently assess, characterize and clear material from radiological control is proposed that uses a combination of administrative processes and empirical techniques that are valid irrespective of the standard used for clearance. (author)

  4. Development of HUMASORB trademark, a lignite derived humic acid for removal of metals and organic contaminants from groundwater

    International Nuclear Information System (INIS)

    Sanjay, H.G.; Srivastava, K.C.; Walia, D.S.

    1995-01-01

    Heavy metal and organic contamination of surface and groundwater systems is a major environmental concern. The contamination is primarily due to improperly disposed industrial wastes. The presence of toxic heavy metal ions, volatile organic compounds (VOCs) and pesticides in water is of great concern and could affect the safety of drinking water. Decontamination of surface and groundwater can be achieved using a broad spectrum of treatment options such as precipitation, ion-exchange, microbial digestion, membrane separation, activated carbon adsorption, etc. The state of the art technologies for treatment of contaminated water however, can in one pass remediate only one class of contaminants, i.e., either VOCs (activated carbon) or heavy metals (ion exchange). This would require the use of at a minimum, two different stepwise processes to remediate a site. The groundwater contamination at different Department of Energy (DOE) sites (e.g., Hanford) is due to the presence of both VOCs and heavy metals. The two-step approach increases the cost of remediation. To overcome the sequential treatment of contaminated streams to remove both organics and metals, a novel material having properties to remove both classes of contaminants in one step is being developed as part of this project

  5. Feasibility analysis of constant TRU feeding in waste transmutation system using accelerator-driven subcritical system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kun Jai; Cho, Nam Zin; Jo, Chang Keun; Park, Chang Je; Kim, Do Sam; Park, Jeong Hwan [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-03-01

    It is probable that the issue of nuclear spent fuel and high-level waste can have negative impact on the future expansion of nuclear power programs. Accelerator-driven nuclear waste transmutation with constant composition TRU feeding which satisfies non-proliferation condition will help establish the long-range nuclear waste disposal strategy. In this study, current status of accelerator-driven transmutation of waste technology, and feasibility analysis of constant composition TRU feeding system were investigated. We ascertained that solid system using constant composition TRU is feasible with the the capability of transmutation. (author). 13 refs., 53 figs., 20 tabs.

  6. Fast reactor core design studies to cope with TRU fuel composition changes in the LWR-to-FBR transition period

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Maruyama, Shuhei; Ohki, Shigeo; Mizuno, Tomoyasu

    2009-01-01

    As part of the Fast Reactor Cycle Technology Development Project (FaCT Project), sodium-cooled fast reactor core design efforts have been made to cope with the TRU fuel composition changes expected during LWR-to-FBR transition period, in which a various kind of TRU fuel compositions are available depending on the characteristics of the LWR spent fuels and a way of recycling them. A 750 MWe mixed-oxide fuel core is firstly defined as a FaCT medium-size reference core and its neutronics characteristics are determined. The core is a high internal conversion type and has an average burnup of 150 GWD/T. The reference TRU fuel composition is assumed to come from the FBR equilibrium state. Compared to the LWR-to-FBR transition period, the TRU fuels in the FBR equilibrium period are multi-recycled through fast reactors and have a different composition. An available TRU fuel composition is determined by fast reactor spent fuel multi-recycling scenarios. Then the FaCT core corresponding to the TRU fuel with different compositions is set according to the TRU fuel composition changes in LWR-to-FBR transition period, and the key core neutronics characteristics are assessed. It is shown that among the core neutronics characteristics, the burnup reactivity and the safety parameters such as sodium void reactivity and Doppler coefficient are significantly influenced by the TRU fuel composition changes. As a result, a general characteristic in the FaCT core design to cope with TRU fuel composition changes is grasped and the design envelopes are identified in terms of the burnup reactivity and the safety parameters. (author)

  7. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.

    Science.gov (United States)

    Ma, Ying; Oliveira, Rui S; Nai, Fengjiao; Rajkumar, Mani; Luo, Yongming; Rocha, Inês; Freitas, Helena

    2015-06-01

    Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multi-metal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizincicola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizincicola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water extractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas

  8. Sensitivity of Transmutation Capability to Recycling Scenarios in KALIMER-600 TRU Burner

    International Nuclear Information System (INIS)

    Lee, Yong Kyo; Kim, Myung Hyun

    2013-01-01

    The purpose of this study is to test transmutation and design feasibility of KALIMER burner caused from many limitations in recycling options; such as low recovery factors and external feed. Design impact from many recycling options will be tested as a sensitivity to various recycling process parameters under many recycling scenarios. Through this study, possibilities when Pyro-processing is realized with SFR can be expected in the recycling scenarios. For the development of sodium-cooled fast reactor(SFR) technology, prototype KALIMER plant is now under R and D stage in Korea. For the future application of SFR for waste transmutation, KALIMER core was designed for TRU burner by KAERI. Feasibility of TRU burner cannot be evaluated exactly because overall functional parameters in pyro-processing recycling process has not been verified yet. There is great possibility to accept undesirable process functions in pyro-processing. Only TRU nuclides composition a little differs between PWR SF and CANDU SF so first scenario has no problem operating SFR. In second scenario, the radiotoxicity of waste at 99% of TRU RF have to be confirmed whether it is proper level to reposit as Low and Intermediate Level Wastes or not. And the reactor safety at high RF of RE must be inspected. Not only third scenario but also several scenarios for good measure are being calculated and will be evaluated

  9. Partitioning of TRU elements from Chinese HLLW

    International Nuclear Information System (INIS)

    Song Chongli; Zhu Yongjun

    1994-04-01

    The partitioning of TRU elements from the Chinese HLLW is feasible. The required D.F. values for producing a waste suitable for land disposal are given. The TRPO process developed in China could be used for this purpose. The research and development of the TRPO process is summarized and the general flowsheet is given. The Chinese HLLW has very high salt concentration. It causes the formation of third phase when contacted with TRPO extractant. The third phase would disappear by diluting the Chinese HLLW to 2∼3 times before extraction. The preliminary experiment shows very attractive results. The separation of Sr and Cs from the Chinese HLLW is also possible. The process is being studied. The partitioning of TRU elements and long lived ratio-nuclides from the Chinese HLLW provides an alternative method for its disposal. The partitioning of the Chinese HLLW could greatly reduce the waste volume, that is needed to be vitrified and to be disposed in to the deep repository, and then would drastically save the overall waste disposal cost

  10. Bacterial contamination of fabric and metal-bead identity card lanyards: A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Thomas Pepper

    2014-11-01

    Full Text Available Summary: In healthcare, fabric or metal-bead lanyards are universally used for carrying identity cards. However there is little information on microbial contamination with potential pathogens that may readily re-contaminate disinfected hands. We examined 108 lanyards from hospital staff. Most grew skin flora but 7/108 (6% had potentially pathogenic bacteria: four grew methicillin-susceptible Staphylococcus aureus, and four grew probable fecal flora: 3 Clostridium perfringens and 1 Clostridium bifermentans (one lanyard grew both S. aureus and C. bifermentans. Unused (control lanyards had little or no such contamination. The median duration of lanyard wear was 12 months (interquartile range 3–36 months. 17/108 (16% of the lanyards had reportedly undergone decontamination including wiping with alcohol, chlorhexidine or chlorine dioxide; and washing with soap and water or by washing machine. Metal-bead lanyards had significantly lower median bacterial counts than those from fabric lanyards (1 vs. 4 CFU/cm2; Mann–Whitney U = 300.5; P < 0.001. 12/32 (38% of the metal-bead lanyards grew no bacteria, compared with 2/76 (3% of fabric lanyards. We recommend that an effective decontamination regimen be instituted by those who use fabric lanyards, or that fabric lanyards be discarded altogether in preference for metal-bead lanyards or clip-on identity cards. Keywords: Lanyard, Contamination, Identity card, Metal, Fabric

  11. TRU-waste decontamination and size reduction review, June 1983, US DOE/PNC technology exchange

    International Nuclear Information System (INIS)

    Becker, G.W. Jr.

    1983-01-01

    A review of transuranic (TRU) noncombustible waste decontamination and size reduction technology is presented. Electropolishing, vibratory cleaning, and spray decontamination processes developed at Battelle Pacific Northwest Laboratory (PNL) and Savannah River Laboratory (SRL) are highlighted. TRU waste size reduction processes at (PNL), Los Alamos National Laboratory (LANL), the Rocky Flats Plant (RFP), and SRL are also highlighted

  12. Assessment of the Mechanisms for Sr-90 and TRU Removal from Complexant-Containing Tank Wastes at Hanford

    International Nuclear Information System (INIS)

    Hallen, Richard T.; Geeting, John GH; Lilga, Michael A.; Hart, Todd R.; Hoopes, Francis V.

    2005-01-01

    Small-scale tests (∼20 mL) were conducted with samples from Hanford underground storage tanks AN-102 and AN-107 to assess the mechanisms for removing Sr-90 and transuranics (TRU) from the liquid (supernatant) portion of the waste. The Sr-90 and TRU must be removed (decontaminated), in addition to Cs-137 and the entrained solids, before the supernatant can be disposed of as low-activity waste. Experiments were conducted with various reagents and modified Sr/TRU removal process conditions to more fully understand the reaction mechanisms. The optimized treatment conditions--no added hydroxide, addition of Sr (0.02M target concentration) followed by sodium permanganate (0.02M target concentration) with mixing at ambient temperature--were used as a reference for comparison. The waste was initially two orders of magnitude undersaturated with Sr; the addition of nonradioactive Sr(NO?) ? saturated the supernatant, resulting in isotopic dilution and precipitation of Sr-90 as SrCO?. The reaction chemistry of Mn species relevant to the mechanism of TRU removal by permanganate treatment was evaluated, along with the importance of various mechanisms for decontamination, such as precipitation, absorption, ligand exchange, and oxidation of organic complexants. For TRU removal, permanganate addition generally gave the highest DF. The addition of Mn of lower oxidation states (II, IV, and VI) also resulted in good TRU removal, as did complexant oxidation with periodate and addition of Zr(IV) for ligand exchange. These results suggest that permanganate treatment leads to TRU removal by multiple routes

  13. Heavy metal contamination in canned foods

    International Nuclear Information System (INIS)

    Sand, W.A.; Flex, H.; Allan, K.F.; Mahmoud, R.M.; Abdel-Haleem, A.E.

    2001-01-01

    The work carried out in this paper aims to the study of contamination of different foodstuffs, that are consumed frequently in our daily life, such as tomatoes concentrate, jam, tuna, and bean, as a result of canning in glass or tin cans. The effect of the storage time on the contamination of the aforementioned foods with heavy metals was also investigated. The technique used for the simultaneous determination of these elements was the instrumental neutron activation analysis (INAA). This technique was selected due to its high accuracy, sensitivity and selectivity. In the light of the obtained results it was suggested that tin cans is the best choice for canning jam and it is suitable also for preserving tuna. On the other hand, glass utensils were found to be the most suitable for preserving tomatoes concentrate. detailed studies are needed to throw more light on the effect of canning material on the concentration level of both essential and toxic trace elements in bean

  14. Removal of trace metal contaminants from potable water by electrocoagulation

    OpenAIRE

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-01-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more...

  15. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability

    International Nuclear Information System (INIS)

    Turner, Andrew; Mawji, Edward

    2005-01-01

    The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D ow , ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant ( 3.3 -10 5.3 ml g -1 . The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision. - New approaches are presented for fractionating trace metals in natural waters

  16. Development of HUMASORB trademark, a lignite derived humic acid for removal of metals and organic contaminants from groundwater

    International Nuclear Information System (INIS)

    Sanjay, H.G.; Srivastave, K.C.; Walia, D.S.

    1995-01-01

    Heavy metal and organic contamination of surface and groundwater systems is a major environmental concern. The contamination is primarily due to improperly disposed industrial wastes. The presence of toxic heavy metal ions, volatile organic compounds (VOCs) and pesticides in water is of great concern and could affect the safety of drinking water. Decontamination of surface and groundwater can be achieved using a broad spectrum of treatment options such as precipitation, ion-exchange, microbial digestion, membrane separation, activated carbon adsorption, etc. The state of the art technologies for treatment of contaminated water however, can in one pass remediate only one class of contaminants, i.e., either VOCs (activated carbon) or heavy metals (ion exchange). This would require the use of at a minimum, two different stepwise processes to remediate a site. The groundwater contamination at different Department of Energy (DOE) sites (e.g., Hanford) is due to the presence of both VOCs and heavy metals. The two-step approach increases the cost of remediation. To overcome the sequential treatment of contaminated streams to remove both organics and metals, a novel material having properties to remove both classes of contaminants in one step is being developed as part of this project.The objective of this project is to develop a lignite-derived adsorbent, Humasorb TM to remove heavy metals and organics from ground water and surface water streams

  17. Effects of conversion ratio change on the core performances in medium to large TRU burning reactors

    International Nuclear Information System (INIS)

    Song, Hoon; Kim, Sang-Ji; Yoo, Jae-Woon; Kim, Yeong-Il

    2009-01-01

    Conceptual fast reactor core designs with sodium coolant are developed at 1,500, 3,000 and 4,500 MWt which are configured to transmute recycled transuranics (TRU) elements with external feeds consisting of LWR spent fuel. Even at each pre-determined power level, the performance parameters, reactivity coefficients and their implications on the safety analysis can be different when the target TRU conversion ratio changes. In order to address this aspect of design, a study on TRU conversion ratio change was performed. The results indicate that it is feasible to design a TRU burner core to accommodate a wide range of conversion ratios by employing different fuel cladding thicknesses. The TRU consumption rate is found to be proportional to the core power without any significant deterioration in the core performance at higher power levels. A low conversion ratio core has an increased TRU consumption rate and much faster burnup reactivity loss, which calls for appropriate means for reactivity compensation. As for the reactivity coefficients related with the conversion ratio change, the core with a low conversion ratio has a less negative Doppler coefficient, a more negative axial expansion coefficient, a more negative control rod worth per rod, a more negative radial expansion coefficient, a less positive sodium density coefficient and a less positive sodium void worth. A slight decrease in the delayed neutron fraction is also noted, reflecting the fertile U-238 fraction reduction. (author)

  18. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Andrew [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)]. E-mail: aturner@plymouth.ac.uk; Mawji, Edward [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2005-05-01

    The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D{sub ow}, ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant (<1%) to octanol extraction. Distribution coefficients defining the concentration ratio of octanol-soluble particle-bound metal to octanol-soluble dissolved metal were in the range 10{sup 3.3}-10{sup 5.3} ml g{sup -1}. The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision. - New approaches are presented for fractionating

  19. Assessment of sediment metal contamination in the Mar Menor coastal lagoon (SE Spain: Metal distribution, toxicity, bioaccumulation and benthic community structure

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available The Mar Menor coastal lagoon is one of the largest of the Mediterranean Sea. Ancient mining activities in the mountains near its southern basin have resulted in metal contamination in the sediment. The metal bioavailability of these sediments was determined through laboratory toxicity bioassays using three Mediterranean sea urchin species and two amphipod species, and by means of field bioaccumulation measurements involving the seagrass Cymodocea nodosa. The effect of sediment metal contamination on benthic communities was assessed through benthic infaunal analyses, applying classical descriptive parameters and multivariate techniques. The sediments affected by the mining activities presented high levels of toxicity and metals were also accumulated in the seagrass tissues, pointing to metal bioavailability. Although the classical benthic indices were not clear indicators of disturbance, the multivariate techniques applied provided more consistent conclusions.

  20. Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine.

    Science.gov (United States)

    Epelde, Lur; Lanzén, Anders; Blanco, Fernando; Urich, Tim; Garbisu, Carlos

    2015-01-01

    Toxicity of metals released from mine tailings may cause severe damage to ecosystems. A diversity of microorganisms, however, have successfully adapted to such sites. In this study, our objective was to advance the understanding of the indigenous microbial communities of mining-impacted soils. To this end, a metatranscriptomic approach was used to study a heavily metal-contaminated site along a metal concentration gradient (up to 3220 000 and 97 000 mg kg(-1) of Cd, Pb and Zn, respectively) resulting from previous mining. Metal concentration, soil pH and amount of clay were the most important factors determining the structure of soil microbial communities. Interestingly, evenness of the microbial communities, but not its richness, increased with contamination level. Taxa with high metabolic plasticity like Ktedonobacteria and Chloroflexi were found with higher relative abundance in more contaminated samples. However, several taxa belonging to the phyla Actinobacteria and Acidobacteria followed opposite trends in relation to metal pollution. Besides, functional transcripts related to transposition or transfer of genetic material and membrane transport, potentially involved in metal resistance mechanisms, had a higher expression in more contaminated samples. Our results provide an insight into microbial communities in long-term metal-contaminated environments and how they contrast to nearby sites with lower contamination. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Beneficial of Coriander Leaves (Coriandrum sativum L.) to Reduce Heavy Metals Contamination in Rod Shellfish

    Science.gov (United States)

    Winarti, S.; Pertiwi, C. N.; Hanani, A. Z.; Mujamil, S. I.; Putra, K. A.; Herlambang, K. C.

    2018-01-01

    Contamination of heavy metals in certain levels of food can disrupt human health. Heavy metals have toxic properties, cannot be overhauled or destroyed by living organisms, can accumulate in the body of organisms including humans, either directly or indirectly. Heavy metal Hg, Cd, Cr is a very toxic metals (can result in death or health problems that are not recovered in a short time), while heavy metal Co, Pb, Cu toxicity is moderate (can lead to both recoverable and non-recoverable health problems in a relatively long time). Hence the heavy metal contaminating the food must be eliminated or reduced to a safe level. One effort was use coriander leaves to reduce the contamination of heavy metals in fish/shellfish. The objective of the research was to prove the extract of coriander leaves can reduce heavy metal contamination of Pb, Hg and Cu in rod shellfish (lorjuk). The treatment of this research was long soaking in coriander leaves extract that were 0, 30, 60 and 90 minutes. The results showed that the longer time of soaking can decrease Pb level from 4.4 ± 0.424 ppb to 1.7 ± 0.5 ppb, Hg level from 4.11± 0.07 to 1.12± 0.6 ppb, and Cu level from 433.7 ± 0.1 ppb to 117 ± 0.78 ppb. Protein content not significant decrease in rod shellfish (lorjuk) after 90 minutes soaking time, that was from 28.56 ± 0.403% to 26,625 ± 0.19%.

  2. MANAGEING THE RETRIEVAL RISK OF BURIED TRANSURANIC (TRU) WASTE WITH UNIQUE CHARACTERISTICS

    International Nuclear Information System (INIS)

    WOJTASEK, R.D.; GREENWELL, R.D.

    2005-01-01

    United States-Department of Energy (DOE) sites that store transuranic (TRU) waste are almost certain to encounter waste packages with characteristics that are so unique as to warrant special precautions for retrieval. At the Hanford Site, a subgroup of stored TRU waste (12 drums) had special considerations due to the radioactive source content of plutonium oxide (PuO 2 ), and the potential for high heat generation, pressurization, criticality, and high radiation. These characteristics bear on the approach to safely retrieve, overpack, vent, store, and transport the waste package. Because of the potential risk to personnel, contingency planning for unexpected conditions played an effective roll in work planning and in preparing workers for the field inspection activity. As a result, the integrity inspections successfully confirmed waste package configuration and waste confinement without experiencing any perturbations due to unanticipated packaging conditions. This paper discusses the engineering and field approach to managing the risk of retrieving TRU waste with unique characteristics

  3. Remediation techniques for heavy metal-contaminated soils: Principles and applicability.

    Science.gov (United States)

    Liu, Lianwen; Li, Wei; Song, Weiping; Guo, Mingxin

    2018-08-15

    Globally there are over 20millionha of land contaminated by the heavy metal(loid)s As, Cd, Cr, Hg, Pb, Co, Cu, Ni, Zn, and Se, with the present soil concentrations higher than the geo-baseline or regulatory levels. In-situ and ex-situ remediation techniques have been developed to rectify the heavy metal-contaminated sites, including surface capping, encapsulation, landfilling, soil flushing, soil washing, electrokinetic extraction, stabilization, solidification, vitrification, phytoremediation, and bioremediation. These remediation techniques employ containment, extraction/removal, and immobilization mechanisms to reduce the contamination effects through physical, chemical, biological, electrical, and thermal remedy processes. These techniques demonstrate specific advantages, disadvantages, and applicability. In general, in-situ soil remediation is more cost-effective than ex-situ treatment, and contaminant removal/extraction is more favorable than immobilization and containment. Among the available soil remediation techniques, electrokinetic extraction, chemical stabilization, and phytoremediation are at the development stage, while the others have been practiced at full, field scales. Comprehensive assessment indicates that chemical stabilization serves as a temporary soil remediation technique, phytoremediation needs improvement in efficiency, surface capping and landfilling are applicable to small, serious-contamination sites, while solidification and vitrification are the last remediation option. The cost and duration of soil remediation are technique-dependent and site-specific, up to $500ton -1 soil (or $1500m -3 soil or $100m -2 land) and 15years. Treatability studies are crucial to selecting feasible techniques for a soil remediation project, with considerations of the type and degree of contamination, remediation goals, site characteristics, cost effectiveness, implementation time, and public acceptability. Copyright © 2018 Elsevier B.V. All rights

  4. Centralized processing of contact-handled TRU waste feasibility analysis

    International Nuclear Information System (INIS)

    1986-12-01

    This report presents work for the feasibility study of central processing of contact-handled TRU waste. Discussion of scenarios, transportation options, summary of cost estimates, and institutional issues are a few of the subjects discussed

  5. Use of composts in the remediation of heavy metal contaminated soil.

    Science.gov (United States)

    Farrell, Mark; Jones, Davey L

    2010-03-15

    High levels of heavy metals in soil can ultimately lead to pollution of drinking water and contamination of food. Consequently, sustainable remediation strategies for treating soil are required. The potential ameliorative effect of several composts derived from source-separated and mixed municipal wastes were evaluated in a highly acidic heavily contaminated soil (As, Cu, Pb, Zn) in the presence and absence of lime. Overall, PTE (potentially toxic element) amelioration was enhanced by compost whilst lime had little effect and even exacerbated PTE mobilization (e.g. As). All composts reduced soil solution PTE levels and raised soil pH and nutrient levels and are well suited to revegetation of contaminated sites. However, care must be taken to ensure correct pH management (pH 5-6) to optimize plant growth whilst minimizing PTE solubilization, particularly at high pH. In addition, 'metal excluder' species should be sown to minimize PTE entry into the food chain. (c) 2009 Elsevier B.V. All rights reserved.

  6. Savannah River Site Operating Experience with Transuranic (TRU) Waste Retrieval

    International Nuclear Information System (INIS)

    Stone, K.A.; Milner, T.N.

    2006-01-01

    Drums of TRU Waste have been stored at the Savannah River Site (SRS) on concrete pads from the 1970's through the 1980's. These drums were subsequently covered with tarpaulins and then mounded over with dirt. Between 1996 and 2000 SRS ran a successful retrieval campaign and removed some 8,800 drums, which were then available for venting and characterization for WIPP disposal. Additionally, a number of TRU Waste drums, which were higher in activity, were stored in concrete culverts, as required by the Safety Analysis for the Facility. Retrieval of drums from these culverts has been ongoing since 2002. This paper will describe the operating experience and lessons learned from the SRS retrieval activities. (authors)

  7. Bioaccessibility of metals in soils and dusts contaminated by marine antifouling paint particles

    International Nuclear Information System (INIS)

    Turner, Andrew; Singh, Nimisha; Richards, Jonathan P.

    2009-01-01

    Fragments of antifouling paint and environmental geosolids have been sampled from the island of Malta and analysed for total and bioaccessible metals. Total concentrations of Ba, Cd, Cu, Pb, Sn and Zn were two to three orders of magnitude higher in spent antifouling composites relative to respective values in background soils and road dusts. Paint fragments were visible in geosolids taken from the immediate vicinity of boat maintenance facilities and mass balance calculations, based on Ba as a paint tracer, suggested that the most contaminated soils, road dusts and boatyard dusts contained about 1%, 7% and 9%, respectively, of antifouling particles. Human bioaccessibilities of metals were evaluated in selected samples using a physiologically based extraction technique. Accessibilities of Cd, Cu, Pb and Zn in the most contaminated solids were sufficient to be cause for concern for individuals working in the boat repair industry and to the wider, local community. - Geosolids near boat maintenance facilities are contaminated by antifouling paint particles containing high concentrations of bioaccessible metals.

  8. Bioaccessibility of metals in soils and dusts contaminated by marine antifouling paint particles

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Andrew, E-mail: aturner@plymouth.ac.u [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Singh, Nimisha; Richards, Jonathan P. [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-05-15

    Fragments of antifouling paint and environmental geosolids have been sampled from the island of Malta and analysed for total and bioaccessible metals. Total concentrations of Ba, Cd, Cu, Pb, Sn and Zn were two to three orders of magnitude higher in spent antifouling composites relative to respective values in background soils and road dusts. Paint fragments were visible in geosolids taken from the immediate vicinity of boat maintenance facilities and mass balance calculations, based on Ba as a paint tracer, suggested that the most contaminated soils, road dusts and boatyard dusts contained about 1%, 7% and 9%, respectively, of antifouling particles. Human bioaccessibilities of metals were evaluated in selected samples using a physiologically based extraction technique. Accessibilities of Cd, Cu, Pb and Zn in the most contaminated solids were sufficient to be cause for concern for individuals working in the boat repair industry and to the wider, local community. - Geosolids near boat maintenance facilities are contaminated by antifouling paint particles containing high concentrations of bioaccessible metals.

  9. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability.

    Science.gov (United States)

    Turner, Andrew; Mawji, Edward

    2005-05-01

    The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D(ow), ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant (octanol extraction. Distribution coefficients defining the concentration ratio of octanol-soluble particle-bound metal to octanol-soluble dissolved metal were in the range 10(3.3)-10(5.3)mlg(-1). The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision.

  10. Adverse events associated with metal contamination of traditional chinese medicines in Korea: a clinical review.

    Science.gov (United States)

    Kim, Hyunah; Hughes, Peter J; Hawes, Emily M

    2014-09-01

    This study was performed to review studies carried out in Korea reporting toxic reactions to traditional Chinese medicines (TCMs) as a result of heavy metal contamination. PubMed (1966-August 2013) and International Pharmaceutical Abstracts (1965-August 2013) were searched using the medical subject heading terms of "Medicine, Chinese Traditional," "Medicine, Korean Traditional," "Medicine, Traditional," "Metals, Heavy," and "Drug Contamination". For Korean literature, Korea Med (http://www.koreamed.org), the Korean Medical Database (http://kmbase.medric.or.kr), National Discovery for Science Leaders (www.ndsl.kr), Research Information Sharing Service (http://www.riss.kr), and Google Scholar were searched using the terms "Chinese medicine," "Korean medicine," "herbal medicine," and "metallic contamination" in Korean. Bibliographies of case reports and case series, identified using secondary resources, were also utilized. Only literature describing cases or studies performed in Korea were included. Case reports identified clear issues with heavy metal, particularly lead, contamination of TCMs utilized in Korea. No international standardization guidelines for processing, manufacturing and marketing of herbal products exist. Unacceptably high levels of toxic metals can be present in TCM preparations. Health care providers and patients should be educated on the potential risks associated with TCMs. International advocacy for stricter standardization procedures for production of TCMs is warranted.

  11. Research on safety evaluation for TRU waste disposal

    International Nuclear Information System (INIS)

    Senoo, M.; Shirahashi, K.; Sakamoto, Y.; Moriyama, N.; Konishi, M.

    1989-01-01

    Studies on adsorption behavior of transuranic (TRU) elements have been performed from the view point of validating the data for safety assessment and investigating adsorption behavior of TRU elements. Distribution coefficient (Kd value) of plutonium between groundwater and soils sampled at the planning site of low level waste disposal facility were measured for safety assessment. Kd values measured were the order of 10 3 ml/g. For investigating adsorption behavior, pH dependency of Kd value of neptunium and Am for soils were studied. It was concluded that pH dependency of Kd value of neptunium was mainly owing to amount of surface charge of soils, on the other hand that of Am was due to chemical form of Am. Influence of carbonation of cement for adsorption behavior of neptunium and plutonium was also investigated and it was concluded that Kd value of carbonated cement was lower than that of fresh cement

  12. Biomonitoring of some heavy metal contaminations from a steel ...

    African Journals Online (AJOL)

    Soil and plants growing in the vicinity of industrial areas display increased concentrations of heavy metals and give an indication of the environmental quality. The contamination source for aluminum, iron, nickel and lead in the Botanical garden of Mobarakeh Steel Company was recognized by analyzing the leaves and ...

  13. Genotoxic endpoints in the earthworms sub-lethal assay to evaluate natural soils contaminated by metals and radionuclides

    International Nuclear Information System (INIS)

    Lourenco, Joana I.; Pereira, Ruth O.; Silva, Ana C.; Morgado, Jose M.; Carvalho, Fernando P.; Oliveira, Joao M.; Malta, Margarida P.; Paiva, Artur A.; Mendo, Sonia A.; Goncalves, Fernando J.

    2011-01-01

    Eisenia andrei was exposed, for 56 days, to a contaminated soil from an abandoned uranium mine and to the natural reference soil LUFA 2.2. The organisms were sampled after 0, 1, 2, 7, 14 and 56 days of exposure, to assess metals bioaccumulation, coelomocytes DNA integrity and cytotoxicity. Radionuclides bioaccumulation and growth were also determined at 0 h, 14 and 56 days of exposure. Results have shown the bioaccumulation of metals and radionuclides, as well as, growth reduction, DNA damages and cytotoxicity in earthworms exposed to contaminated soil. The usefulness of the comet assay and flow cytometry, to evaluate the toxicity of contaminants such as metals and radionuclides in earthworms are herein reported. We also demonstrated that DNA strand breakage and immune cells frequency are important endpoints to be employed in the earthworm reproduction assay, for the evaluation of soil geno and cytotoxicity, as part of the risk assessment of contaminated areas. This is the first study that integrates DNA damage and cytotoxicity evaluation, growth and bioaccumulation of metals and radionuclides in a sub lethal assay, for earthworms exposed to soil contaminated with metals and radionuclides.

  14. Genotoxic endpoints in the earthworms sub-lethal assay to evaluate natural soils contaminated by metals and radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Lourenco, Joana I., E-mail: joanalourenco@ua.pt [CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Pereira, Ruth O., E-mail: ruthp@ua.pt [CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Silva, Ana C., E-mail: ana.cmj@ua.pt [CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Morgado, Jose M., E-mail: jmtmorgado@gmail.com [Centro de Histocompatibilidade do Centro, Praceta Prof. Mota Pinto, Edificio S. Jeronimo, 4o piso, Apartado 9041, 3001-301 Coimbra (Portugal); Carvalho, Fernando P., E-mail: fernando.carvalho@itn.pt [Instituto Tecnologico Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Oliveira, Joao M., E-mail: joaomota@itn.pt [Instituto Tecnologico Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Malta, Margarida P., E-mail: margm@itn.pt [Instituto Tecnologico Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Paiva, Artur A., E-mail: apaiva@histocentro.min-saude.pt [Centro de Histocompatibilidade do Centro, Praceta Prof. Mota Pinto, Edificio S. Jeronimo, 4o piso, Apartado 9041, 3001-301 Coimbra (Portugal); Mendo, Sonia A., E-mail: smendo@ua.pt [CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Goncalves, Fernando J., E-mail: fjmg@ua.pt [CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal)

    2011-02-15

    Eisenia andrei was exposed, for 56 days, to a contaminated soil from an abandoned uranium mine and to the natural reference soil LUFA 2.2. The organisms were sampled after 0, 1, 2, 7, 14 and 56 days of exposure, to assess metals bioaccumulation, coelomocytes DNA integrity and cytotoxicity. Radionuclides bioaccumulation and growth were also determined at 0 h, 14 and 56 days of exposure. Results have shown the bioaccumulation of metals and radionuclides, as well as, growth reduction, DNA damages and cytotoxicity in earthworms exposed to contaminated soil. The usefulness of the comet assay and flow cytometry, to evaluate the toxicity of contaminants such as metals and radionuclides in earthworms are herein reported. We also demonstrated that DNA strand breakage and immune cells frequency are important endpoints to be employed in the earthworm reproduction assay, for the evaluation of soil geno and cytotoxicity, as part of the risk assessment of contaminated areas. This is the first study that integrates DNA damage and cytotoxicity evaluation, growth and bioaccumulation of metals and radionuclides in a sub lethal assay, for earthworms exposed to soil contaminated with metals and radionuclides.

  15. The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Komarek, Michael [Department of Agrochemistry and Plant Nutrition, Czech University of Agriculture in Prague, Kamycka 129, 165 21, Prague 6 (Czech Republic)], E-mail: komarek@af.czu.cz; Tlustos, Pavel [Department of Agrochemistry and Plant Nutrition, Czech University of Agriculture in Prague, Kamycka 129, 165 21, Prague 6 (Czech Republic)], E-mail: tlustos@af.czu.cz; Szakova, Jirina [Department of Agrochemistry and Plant Nutrition, Czech University of Agriculture in Prague, Kamycka 129, 165 21, Prague 6 (Czech Republic)], E-mail: szakova@af.czu.cz; Chrastny, Vladislav [Department of Applied Chemistry and Chemistry Teaching, University of South Bohemia, Studentska 13, 370 05, Ceske Budejovice (Czech Republic)], E-mail: vladislavchrastny@seznam.cz

    2008-01-15

    The efficiency of poplar (Populus nigra L. x Populus maximowiczii Henry.) was assessed during a two-year chemically enhanced phytoextraction of metals from contaminated soils. The tested metal mobilizing agents were EDTA (ethylenediaminetetraacetic acid) and NH{sub 4}Cl. EDTA was more efficient than chlorides in solubilizing metals (especially Pb) from the soil matrix. The application of chlorides only increased the solubility of Cd and Zn. However, the increased uptake of metals after the application of higher concentrations of mobilizing agents was associated with low biomass yields of the poplar plants and the extraction efficiencies after the two vegetation periods were thus comparable to the untreated plants. Additionally, the application of mobilizing agents led to phytotoxicity effects and increased mobility of metals. Higher phytoextraction efficiencies were observed for Cd and Zn compared to Pb and Cu. Poplars are therefore not suitable for chemically enhanced phytoextraction of metals from severely contaminated agricultural soils. - Application of mobilizing agents is not optimal during a two-year phytoextraction of metals from severely contaminated soils using poplars.

  16. The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils

    International Nuclear Information System (INIS)

    Komarek, Michael; Tlustos, Pavel; Szakova, Jirina; Chrastny, Vladislav

    2008-01-01

    The efficiency of poplar (Populus nigra L. x Populus maximowiczii Henry.) was assessed during a two-year chemically enhanced phytoextraction of metals from contaminated soils. The tested metal mobilizing agents were EDTA (ethylenediaminetetraacetic acid) and NH 4 Cl. EDTA was more efficient than chlorides in solubilizing metals (especially Pb) from the soil matrix. The application of chlorides only increased the solubility of Cd and Zn. However, the increased uptake of metals after the application of higher concentrations of mobilizing agents was associated with low biomass yields of the poplar plants and the extraction efficiencies after the two vegetation periods were thus comparable to the untreated plants. Additionally, the application of mobilizing agents led to phytotoxicity effects and increased mobility of metals. Higher phytoextraction efficiencies were observed for Cd and Zn compared to Pb and Cu. Poplars are therefore not suitable for chemically enhanced phytoextraction of metals from severely contaminated agricultural soils. - Application of mobilizing agents is not optimal during a two-year phytoextraction of metals from severely contaminated soils using poplars

  17. Characterization of soil and plant-associated bacteria on a metal contaminated site

    International Nuclear Information System (INIS)

    Boulet, J.; Weyens, N.; Barac, T.; Dupae, J.; Lelie, D. van der; Taghavi, S.; Vaqngronsveld, J.

    2009-01-01

    Conventional methods for the remediation of heavy metal contaminated soils and ground water are very expensive and often damaging to the environment. Complementary to these traditional methods, especially for sites with a diffuse contamination in relatively low concentrations, phyto extraction is proposed as a promising technology for effective and inexpensive radiation. (Author)

  18. Comparison of the ability of organic acids and EDTA to enhance the phytoextraction of metals from a multi-metal contaminated soil.

    Science.gov (United States)

    Kim, Sung-Hyun; Lee, In-Sook

    2010-02-01

    Chelates have been shown to enhance the phytoextraction of metal from contaminated soil. In this study, we evaluated the ability of chelates to enhance the phytoextraction of metals by barnyard grass (Echinochloa crus-galli) from soils contaminated with multiple metals. The results revealed that EDTA increased the ability of barnyard grass to take up Cd, Cu and Pb, but that it resulted in increased soil leaching. Conversely, citric acid induced the removal of Cd, Cu and Pb from soil without increasing the risk of leaching. Furthermore, E.crus-galli showed no signs of phytotoxicity in response to treatment with citric acid, whereas its shoot growth decreased in response to treatment with EDTA (p acid is a good agent for the enhancement of the phytoextraction of metals.

  19. Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils.

    Science.gov (United States)

    Sharma, Swati; Tiwari, Sakshi; Hasan, Abshar; Saxena, Varun; Pandey, Lalit M

    2018-04-01

    Remediation of heavy metal-contaminated soils has been drawing our attention toward it for quite some time now and a need for developing new methods toward reclamation has come up as the need of the hour. Conventional methods of heavy metal-contaminated soil remediation have been in use for decades and have shown great results, but they have their own setbacks. The chemical and physical techniques when used singularly generally generate by-products (toxic sludge or pollutants) and are not cost-effective, while the biological process is very slow and time-consuming. Hence to overcome them, an amalgamation of two or more techniques is being used. In view of the facts, new methods of biosorption, nanoremediation as well as microbial fuel cell techniques have been developed, which utilize the metabolic activities of microorganisms for bioremediation purpose. These are cost-effective and efficient methods of remediation, which are now becoming an integral part of all environmental and bioresource technology. In this contribution, we have highlighted various augmentations in physical, chemical, and biological methods for the remediation of heavy metal-contaminated soils, weighing up their pros and cons. Further, we have discussed the amalgamation of the above techniques such as physiochemical and physiobiological methods with recent literature for the removal of heavy metals from the contaminated soils. These combinations have showed synergetic effects with a many fold increase in removal efficiency of heavy metals along with economic feasibility.

  20. Bioavailability and toxicity of metals from a contaminated sediment by acid mine drainage: linking exposure-response relationships of the freshwater bivalve Corbicula fluminea to contaminated sediment.

    Science.gov (United States)

    Sarmiento, Aguasanta M; Bonnail, Estefanía; Nieto, José Miguel; DelValls, Ángel

    2016-11-01

    Streams and rivers strongly affected by acid mine drainage (AMD) have legal vacuum in terms of assessing the water toxicity, since the use of conventional environmental quality biomarkers is not possible due to the absence of macroinvertebrate organisms. The Asian clam Corbicula fluminea has been widely used as a biomonitor of metal contamination by AMD in freshwater systems. However, these clams are considered an invasive species in Spain and the transplantation in the field study is not allowed by the Environmental Protection Agency. To evaluate the use of the freshwater bivalve C. fluminea as a potential biomonitor for sediments contaminated by AMD, the metal bioavailability and toxicity were investigated in laboratory by exposure of clams to polluted sediments for 14 days. The studied sediments were classified as slightly contaminated with As, Cr, and Ni; moderately contaminated with Co; considerably contaminated with Pb; and heavily contaminated with Cd, Zn, and specially Cu, being reported as very toxic to Microtox. On the fourth day of the exposure, the clams exhibited an increase in concentration of Ga, Ba, Sb, and Bi (more than 100 %), followed by Co, Ni, and Pb (more than 60 %). After the fourth day, a decrease in concentration was observed for almost all metals studied except Ni. An allometric function was used to determine the relationship between the increases in metal concentration in soft tissue and the increasing bioavailable metal concentrations in sediments.

  1. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake.

    Science.gov (United States)

    Janssen, Jolien; Weyens, Nele; Croes, Sarah; Beckers, Bram; Meiresonne, Linda; Van Peteghem, Pierre; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.

  2. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China

    International Nuclear Information System (INIS)

    Shi Guitao; Chen Zhenlou; Xu Shiyuan; Zhang Ju; Wang Li; Bi Chunjuan; Teng Jiyan

    2008-01-01

    A detailed investigation was conducted to understand the contamination characteristics of a selected set of potentially toxic metals in Shanghai. The amount of Pb, Zn, Cu, Cr, Cd and Ni were determined from 273 soil/dust samples collected within urban area. The results indicated that concentration of all metals except Ni in soils was significant, and metal pollution was even severer in roadside dust. A series of metal spatial distribution maps were created through geostatistical analysis, and the pollution hotspots tended to associate with city core area, major road junctions, and the regions close to industrial zones. In attempt of identifying the source of metals through geostatistical and multivariate statistical analyses, it was concluded as follows: Pb, Zn and Cu mainly originated from traffic contaminants; soil Ni was associated with natural concentration; Cd largely came from point-sourced industrial pollution; and Cr, Ni in dust were mainly related to atmospheric deposition. - Human activities have led to high accumulation of potentially toxic metals in urban soils and roadside dust of Shanghai

  3. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China

    Energy Technology Data Exchange (ETDEWEB)

    Shi Guitao [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Chen Zhenlou [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China)], E-mail: gt_shi@163.com; Xu Shiyuan [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Zhang Ju [School of Environment and Planning, Liaocheng University, Liaocheng 252059 (China); Wang Li; Bi Chunjuan [Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai 200062 (China); Teng Jiyan [Shanghai Chongming Dongtan National Nature Reserve, Shanghai 202183 (China)

    2008-11-15

    A detailed investigation was conducted to understand the contamination characteristics of a selected set of potentially toxic metals in Shanghai. The amount of Pb, Zn, Cu, Cr, Cd and Ni were determined from 273 soil/dust samples collected within urban area. The results indicated that concentration of all metals except Ni in soils was significant, and metal pollution was even severer in roadside dust. A series of metal spatial distribution maps were created through geostatistical analysis, and the pollution hotspots tended to associate with city core area, major road junctions, and the regions close to industrial zones. In attempt of identifying the source of metals through geostatistical and multivariate statistical analyses, it was concluded as follows: Pb, Zn and Cu mainly originated from traffic contaminants; soil Ni was associated with natural concentration; Cd largely came from point-sourced industrial pollution; and Cr, Ni in dust were mainly related to atmospheric deposition. - Human activities have led to high accumulation of potentially toxic metals in urban soils and roadside dust of Shanghai.

  4. TRU waste certification and TRUPACT-II payload verification

    International Nuclear Information System (INIS)

    Hunter, E.K.; Johnson, J.E.

    1990-01-01

    The Waste Isolation Pilot Plant (WIPP) established a policy (subsequently confirmed and required by DOE Order 5820.2A, Radioactive Waste Management, September 1988) that requires each waste shipper to verify that all waste shipments meet the requirements of the Waste Acceptance Criteria (WAC) prior to being shipped. This verification provides assurance that transuranic (TRU) wastes meet the criteria while still retained in a facility where discrepancies can be immediately corrected. In this manner, problems that would arise if WAC violations were discovered at the receiver, where corrective facilities are not available, are avoided. Each Department of Energy (DOE) TRU waste facility planning to ship waste to the Waste Isolation Pilot Plant (WIPP) is required to develop and implement a specific program including Quality Assurance (QA) provisions to verify that waste is in full compliance with WIPP's WAC. This program is audited by a composite DOE and contractor audit team prior to granting the facility permission to certify waste. During interaction with the Nuclear Regulatory Commission (NRC) on payload verification for shipping in TRUPACT-II, a similar system was established by DOE. The TRUPACT-II Safety Analysis Report (SAR) contains the technical requirements and physical and chemical limits that payloads must meet (like the WAC). All shippers must plan and implement a payload control program including independent QA provisions. A similar composite audit team will conduct preshipment audits, frequent subsequent audits, and operations inspections to verify that all TRU waste shipments in TRUPACT-II meet the requirements of the Certificate of Compliance (C of C) issued by the NRC which invokes the SAR requirements. 1 fig

  5. DEVELOPMENT OF THE TRU WASTE TRANSPORTATION FLEET--A SUCCESS STORY

    International Nuclear Information System (INIS)

    Devarakonda, Murthy; Morrison, Cindy; Brown, Mike

    2003-01-01

    Since March 1999, the Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, has been operated by the U.S. Department of Energy (DOE), Carlsbad Field Office (CBFO), as a repository for the permanent disposal of defense-related transuranic (TRU) waste. More than 1,450 shipments of TRU waste for WIPP disposal have been completed, and the WIPP is currently receiving 12 to 16 shipments per week from five DOE sites around the nation. One of the largest fleets of Type B packagings supports the transportation of TRU waste to WIPP. This paper discusses the development of this fleet since the original Certificate of Compliance (C of C) for the Transuranic Package Transporter-II (TRUPACT-II) was issued by the U.S. Nuclear Regulatory Commission (NRC) in 1989. Evolving site programs, closure schedules of major sites, and the TRU waste inventory at the various DOE sites have directed the sizing and packaging mix of this fleet. This paper discusses the key issues that guided this fleet development, including the following: While the average weight of a 55-gallon drum packaging debris could be less than 300 pounds (lbs.), drums containing sludge waste or compacted waste could approach the maximum allowable weight of 1,000 lbs. A TRUPACT-II shipment may consist of three TRUPACT-II packages, each of which is limited to a total weight of 19,250 lbs. Payload assembly weights dictated by ''as-built'' TRUPACT-II weights limit each drum to an average weight of 312 lbs when three TRUPACT-IIs are shipped. To optimize the shipment of heavier drums, the HalfPACT packaging was designed as a shorter and lighter version of the TRUPACT-II to accommodate a heavier load. Additional packaging concepts are currently under development, including the ''TRUPACT-III'' packaging being designed to address ''oversized'' boxes that are currently not shippable in the TRUPACT-II or HalfPACT due to size constraints. Shipment optimization is applicable not only to the addition of new

  6. Effects of incubation on solubility and mobility of trace metals in two contaminated soils

    International Nuclear Information System (INIS)

    Ma, Lena Q.; Dong Yan

    2004-01-01

    Much research has focused on changes in solubility and mobility of trace metals in soils under incubation. In this experiment, changes in solubility and mobility of trace metals (Pb, Cu and As) and Fe in two contaminated soils from Tampa, Florida and Montreal, Canada were examined. Soils of 30 g were packed in columns and were incubated for 3-80 days under water-flooding incubation. Following incubation, metal concentrations in pore water (water soluble) and in 0.01 M CaCl 2 leachates (exchangeable+water soluble) were determined. While both soils were contaminated with Pb (1600-2500 mg kg -1 ), Tampa soil was also contaminated with As (230 mg kg -1 ). Contrast to the low pH (3.8) of Tampa soil, Montreal soil had an alkaline pH of 7.7 and high Ca of 1.6%. Concentrations of Fe(II) increased with incubation time in the Tampa soil mainly due to reductive Fe dissolution, but decreased in the Montreal soil possibly due to formation of FeCO 3 . The inverse relationship between concentrations of Pb and Fe(II) in pore water coupled with the fact that Fe(II) concentrations were much greater than those of Pb in pore water may suggest the importance of Fe(II) in controlling Pb solubility in soils. However, changes in concentrations of Fe(II), Pb, Cu and As in pore water with incubation time were similar to those in leachate, i.e. water soluble metals were positively related to exchangeable metals in the two contaminated soils. This research suggests the importance of Fe in controlling metal solubility and mobility in soils under water-flooded incubation. - Iron is important in controlling metal solubility and mobility in flooded soils

  7. Surfactant-induced mobilisation of trace metals from estuarine sediment: Implications for contaminant bioaccessibility and remediation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anu [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Turner, Andrew [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: aturner@plymouth.ac.uk

    2009-02-15

    The mobilisation of metals (Al, Fe, Cd, Cu, Mn, Ni, Pb, Sn, Zn) from contaminated estuarine sediment has been examined using commercially available surfactants. Metal release by the anionic surfactant, sodium dodecyl sulphate (SDS), increased with increasing amphiphile concentration up to and above its critical micelle concentration (CMC). Metal mobilisation by the bile acid salt, sodium taurocholate, and the nonionic surfactant, Triton X-100, however, did not vary with amphiphile concentration. SDS was the most efficient surfactant in mobilising metals from the sample, and Cd, Cu and Ni were released to the greatest extents (12-18% of total metal at [SDS] > CMC). Metal mobilisation appeared to proceed via complexation with anionic amphiphiles and denudation of hydrophobic host phases. Surfactants may play an important role in the solubilisation of metals in the digestive environment of deposit-feeding animals and, potentially, in the remediation of metal-contaminated soil and sediment. - Significant quantities of metals are mobilised from estuarine sediment by commercially available surfactants.

  8. Deciphering heavy metal contamination zones in soils of a granitic ...

    Indian Academy of Sciences (India)

    ., Ba, Cr, Cu,. Ni, Pb, Rb, Sr ... metal contamination in soils of different regions. The study ... in the Hyderabad city. ... A network of first and second order streams ... In this case, redun- ...... strategy for developing countries; In: Lead, mercury, cad-.

  9. Application of Metal Oxide Heterostructures in Arsenic Removal from Contaminated Water

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2014-01-01

    Full Text Available It has become one of the major environmental problems for people worldwide to be exposed to high arsenic concentrations through contaminated drinking water, and even the long-term intake of small doses of arsenic has a carcinogenic effect. As an efficient and economic approach for the purification of arsenic-containing water, the adsorbents in adsorption processes have been widely studied. Among a variety of adsorbents reported, the metal oxide heterostructures with high surface area and specific affinity for arsenic adsorption from aqueous systems have demonstrated a promising performance in practical applications. This review paper aims to summarize briefly the metal oxide heterostructures in arsenic removal from contaminated water, so as to provide efficient, economic, and robust solutions for water purification.

  10. Neutron spectrum effects on TRU recycling in Pb-Bi cooled fast reactor core

    International Nuclear Information System (INIS)

    Kim, Yong Nam; Kim, Jong Kyung; Park, Won Seok

    2003-01-01

    This study is intended to evaluate the dependency of TRU recycling characteristics on the neutron spectrum shift in a Pb-Bi cooled core. Considering two Pb-Bi cooled cores with the soft and the hard spectrum, respectively, various characteristics of the recycled core are carefully examined and compared with each other. Assuming very simplified fuel cycle management with the homogeneous and single region fuel loading, the burnup calculations are performed until the recycled core reached to the (quasi-) equilibrium state. The mechanism of TRU recycling toward the equilibrium is analyzed in terms of burnup reactivity and the isotopic compositions of TRU fuel. In the comparative analyses, the difference in the recycling behavior between the two cores is clarified. In addition, the basic safety characteristics of the recycled core are also discussed in terms of the Doppler coefficient, the coolant loss reactivity coefficient, and the effective delayed neutron fraction

  11. Biópsia hepática com agulha tru-cut guiada por videolaparoscopia em caprinos Videolaparoscopic guided hepatic biopsy with tru-cut needle in goats

    Directory of Open Access Journals (Sweden)

    A.L.L. Duarte

    2009-02-01

    Full Text Available Descreve-se a técnica de biópsia hepática com agulha tru-cut guiada por videolaparoscopia em 12 caprinos machos, castrados, hígidos, sem raça definida, distribuídos em dois grupos (G: G1, com cinco animais de 12 meses e G2, com sete de seis meses de idade. O procedimento foi realizado sob anestesia geral intravenosa com o animal em decúbito lateral esquerdo. O pneumoperitônio e a laparoscopia foram procedidos no flanco direito, aproximadamente a 10cm ventral aos processos transversos das vértebras lombares. A agulha tru-cut foi introduzida no 11º espaço intercostal direito, a aproximadamente 12cm ventral à coluna vertebral, para punção e remoção de fragmento do lobo hepático direito. O tempo operatório médio foi de 23 minutos e cinco segundos. A hemorragia causada pela perfuração hepática cessou em dois minutos em 75% dos animais e em três minutos, nos 25% restantes. Nas avaliações clínicas feitas no pré-jejum e às 24, 48 e 72 horas após a biópsia, não foram observadas alterações (P>0,05 da temperatura retal, das frequências cardíaca e respiratória e dos movimentos rumenais nos dois grupos. A biópsia hepática com agulha tru-cut guiada por videolaparoscopia foi considerada eficaz para uso em caprinos, permitindo a obtenção de fragmentos hepáticos suficientes para exame histológico.The videolaparoscopic guided hepatic biopsy with tru-cut needle is described in 12 healthy, no defined breed, castrated male goats. Animals were distributed in two groups: G1 (n=5 12-month-old animals; and G2 (n=7 six-month-old animals. The procedure was performed with the animal in left lateral recumbency and under total intravenous anesthesia. Pneumoperitoneum and laparoscopy were performed in the right flank, approximately 10cm ventral to the transverse processes of the lumbar vertebrae. The tru-cut needle was inserted into the right eleventh intercostal space, around 12cm ventral to the spinal column, for punching and

  12. The TRUEX [TRansUranium EXtraction] process and the management of liquid TRU [transuranic] waste

    International Nuclear Information System (INIS)

    Schulz, W.W.; Horwitz, E.P.

    1987-01-01

    The TRUEX process is a new generic liquid-liquid extraction process for removal of all actinides from acidic nitrate or chloride nuclear waste solutions. Because of its high efficiency and great flexibility, the TRUEX process appears destined to be widely used in the US and possibly in other countries for cost-effective management and disposal of transuranic (TRU) wastes. In the US, TRU wastes are those that contain ≥3.7 x 10 6 Bq/kg) of TRU elements with half-lives greater than 20 y. This paper gives a brief review of the relevant chemistry and summarizes the current status of development and deployment of the TRUEX (TRansUranium EXtraction) process flowsheets to treat specific acidic waste solutions at several US Department of Energy sites. 19 refs., 4 figs., 4 tabs

  13. Review on utilization of biochar for metal-contaminated soil and sediment remediation.

    Science.gov (United States)

    Wang, Mingming; Zhu, Yi; Cheng, Lirong; Andserson, Bruce; Zhao, Xiaohui; Wang, Dayang; Ding, Aizhong

    2018-01-01

    Biochar is a carbon-neutral or even carbon-negative material produced through thermal decomposition of plant- and animal-based biomass under oxygen-limited conditions. Recently, there has been an increasing interest in the application of biochar as an adsorbent, soil ameliorant and climate mitigation approach in many types of applications. Metal-contaminated soil remediation using biochar has been intensively investigated in small-scale and pilot-scale trials with obtained beneficial results and multifaceted effects. But so far, the study and application of biochar in contaminated sediment management has been very limited, and this is also a worldwide problem. Nonetheless, there is reason to believe that the same multiple benefits can also be realized with these sediments due to similar mechanisms for stabilizing contaminants. This paper provides a review on current biochar properties and its use as a sorbent/amendment for metal-contaminated soil/sediment remediation and its effect on plant growth, fauna habits as well as microorganism communities. In addition, the use of biochar as a potential strategy for contaminated sediment management is also discussed, especially as regards in-situ planning. Finally, we highlight the possibility of biochar application as an effective amendment and propose further research directions to ensure the safe and sustainable use of biochar as an amendment for remediation of contaminated soil and sediment. Copyright © 2017. Published by Elsevier B.V.

  14. METAL TOLERANCE ANALYSIS OF MICROFUNGI ISOLATED FROM METAL CONTAMINATED SOIL AND WASTE WATER

    Directory of Open Access Journals (Sweden)

    Mathan Jayaraman

    2014-08-01

    Full Text Available The influence of Cr6+, Pb2+, Cu2+, Ni2+, Zn2+ and Cd2+ on the development of 24 fungi was investigated for Metal Tolerance Index (MTI at 1mg ml-1 Cr6+, Pb2+, Cu2+, Ni2+, Zn2+ and Cd2+ concentrations and also for Minimum Inhibitory Concentration (MIC. The MIC ranged from 0.5 to 1.5 mg ml-1 depending on the isolate Aspergillus, Fusarium and Penicillium sp. were tested for their metal tolerance index. Out of these Aspergillus flavus (ED4 shows a better tolerance index of 0.80 Cr6+, 0.72 for Pb2+ , 0.63 for Cu2+, 0.58 for Ni2+, 0.46 for Zn2+ and 0.60 Cd2+ for MIC value for the removal of heavy metals from contaminated soil and wastewaters.

  15. Heavy metals in contaminated environment: Destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants.

    Science.gov (United States)

    Asgari Lajayer, Behnam; Ghorbanpour, Mansour; Nikabadi, Shahab

    2017-11-01

    Contamination of soils, water and air with toxic heavy metals by various human activities is a crucial environmental problem in both developing and developed countries. Heavy metals could be introduced into medicinal plant products through contaminated environment (soil, water and air resources) and/or poor production practices. Growing of medicinal plants in heavy metal polluted environments may eventually affect the biosynthesis of secondary metabolites, causing significant changes in the quantity and quality of these compounds. Certain medicinal and aromatic plants can absorb and accumulate metal contaminants in the harvestable foliage and, therefore, considered to be a feasible alternative for remediation of polluted sites without any contamination of essential oils. Plants use different strategies and complex arrays of enzymatic and non-enzymatic anti-oxidative defense systems to cope with overproduction of ROS causes from the heavy metals entered their cells through foliar and/or root systems. This review summarizes the reports of recent investigations involving heavy metal accumulation by medicinal plants and its effects on elicitation of secondary metabolites, toxicity and detoxification pathways, international standards regarding in plants and plant-based products, and human health risk assessment of heavy metals in soil-medicinal plants systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Potential of Sunflower (Helianthus annuus L.) for Phytoremediation of Soils Contaminated with Heavy Metals

    OpenAIRE

    Violina R. Angelova; Mariana N. Perifanova-Nemska; Galina P. Uzunova; Krasimir I. Ivanov; Huu Q. Lee

    2016-01-01

    A field study was conducted to evaluate the efficacy of the sunflower (Helianthus annuus L.) for phytoremediation of contaminated soils. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. Field experiments with a randomized, complete block design with five treatments (control, compost amendments added at 20 and 40 t/daa, and vemicompost amendments added at 20 and 40 t/daa) were carried out. The accumulation of heavy metals...

  17. Multivariate analysis of heavy metal contaminations in seawater and sediments from a heavily industrialized harbor in Southern Taiwan

    International Nuclear Information System (INIS)

    Lin, Yung-Chang; Chang-Chien, Guo-Ping; Chiang, Pen-Chi; Chen, Wei-Hsiang; Lin, Yuan-Chung

    2013-01-01

    Highlights: • Kaohsiung Harbor is the largest international commercial port in Taiwan. • The metal distributions in the seawater and sediments were investigated. • Many metals exhibited higher levels of enrichment inside the harbor. • Multivariate statistical analysis was used to characterize the metal pollutions. • Two complex arrays of contamination behaviors exist inside and outside the harbor. -- Abstract: Heavy metal pollution, including chromium, zinc, arsenic, cadmium, mercury, copper, lead, and aluminum, in the largest industrial harbor in southern Taiwan was investigated. Increasing metal contamination was observed by monitoring heavy metal concentrations in seawater and sediments and estimating the enrichment factors, particularly those inside the harbor. Compared to other metal-polluted harbors worldwide, the presence of chromium in the sediments was relatively high. Excluding the background contribution, the harbor area was polluted by outflows from river mouths, wastewater discharging pipes, and point sources near industrial activities within the harbor. It is shown by principal component and cluster analyses that metal contamination was affected by a wide range of different and complex contamination mechanisms inside and outside the harbor, suggesting managing the pollution using straightforward strategies, i.e., solutions that only consider a single source or single pathway of metal emissions, is problematic

  18. Effect of leaf and soil contaminations on heavy metals content in spring wheat crops

    International Nuclear Information System (INIS)

    Weber, R.; Hrynczuk, B.

    2000-01-01

    Glass house experiments were carried out in Wagner pots containing 6 kg of soil. The amounts were compared of Zn, Pb and Cd taken up by the crop of spring wheat from contamination introduced into the soil or upon leaves. The heavy metals were labelled with the radioactive isotopes 65 Zn, 210 Pb and 115 Cd. The experiment was performed as a series of independent analyses in four replications. The dynamics of the labelled heavy metals translocation from contaminations sprayed on the upper or bottom side of the flag leaf was also tested. The highest concentration of 65 Zn was found in the straw and gain of wheat. much higher amounts of the metals appeared to have been taken up by the plants from leaf contamination than from soil. The highest dynamics of translocation from leaves to other vegetative and generative organs of plants was that of zinc. (author)

  19. Heavy metal contamination in bats in Britain

    Energy Technology Data Exchange (ETDEWEB)

    Walker, L.A. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Simpson, V.R. [Wildlife Veterinary Investigation Centre, Jollys Bottom Farm, Chacewater, Truro, Cornwall TR4 8PB (United Kingdom); Rockett, L. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Wienburg, C.L. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Shore, R.F. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom)]. E-mail: rfs@ceh.ac.uk

    2007-07-15

    Toxic metals are bioaccumulated by insectivorous mammals but few studies (none from Britain) have quantified residues in bats. We measured renal mercury (Hg), lead (Pb) and cadmium (Cd) concentrations in bats from south-west England to determine how they varied with species, sex, age, and over time, and if they were likely to cause adverse effects. Residues were generally highest in whiskered bats (Myotis mystacinus). Compared with other species, pipistrelle (Pipistrellus spp) and Natterer's bats (Myotis nattereri) had significantly lower kidney Hg and Pb concentrations, respectively. Renal Hg increased over time in pipistrelles but the contributory sources are unknown. Kidney Pb did not decrease over time despite concurrent declines in atmospheric Pb. Overall, median renal metal concentrations were similar to those in bats from mainland Europe and 6- to 10-fold below those associated with clinical effect, although 5% of pipistrelles had kidney Pb residues diagnostic of acute lead poisoning. - Heavy metal contamination has been quantified in bats from Britain for the first time and indicates increased accumulation of Hg and no reduction in Pb.

  20. Heavy metal contamination in bats in Britain

    International Nuclear Information System (INIS)

    Walker, L.A.; Simpson, V.R.; Rockett, L.; Wienburg, C.L.; Shore, R.F.

    2007-01-01

    Toxic metals are bioaccumulated by insectivorous mammals but few studies (none from Britain) have quantified residues in bats. We measured renal mercury (Hg), lead (Pb) and cadmium (Cd) concentrations in bats from south-west England to determine how they varied with species, sex, age, and over time, and if they were likely to cause adverse effects. Residues were generally highest in whiskered bats (Myotis mystacinus). Compared with other species, pipistrelle (Pipistrellus spp) and Natterer's bats (Myotis nattereri) had significantly lower kidney Hg and Pb concentrations, respectively. Renal Hg increased over time in pipistrelles but the contributory sources are unknown. Kidney Pb did not decrease over time despite concurrent declines in atmospheric Pb. Overall, median renal metal concentrations were similar to those in bats from mainland Europe and 6- to 10-fold below those associated with clinical effect, although 5% of pipistrelles had kidney Pb residues diagnostic of acute lead poisoning. - Heavy metal contamination has been quantified in bats from Britain for the first time and indicates increased accumulation of Hg and no reduction in Pb

  1. Korea’s Experience on the Development of TRU Deep-Burn Concept Using HTGR

    International Nuclear Information System (INIS)

    Jo, Chang Keun

    2013-01-01

    From the results of the LPCC analysis, • Key design characteristics of the DB-HTR core are more fuel rings (five fuel-rings), less central reflectors (three rings) and the decay power curves due to the TRU fuel compositions that are different from the UO 2 fueled HTR core. • For a 0.2% UO 2 mixed or a 30% UO 2 mixed TRU, the reduced decay power obtained by removing the initial Am isotopes and by reducing the PF decreases the peak fuel temperature. However, the peak fuel temperatures are still higher than 1600 °C due to the lack of heat absorber volume in the central reflector. (600MW th DB-HTR case); • The 450MW th DB-HTR core is suggested as the optimization core design, which has the allowable maximum power reactor of a 450 MW th to the accident fuel design limit for 0.2%UO2 mixed TRU (PF=6.9%) or 30%UO 2 mixed TRU (PF=8.0%) using the mixed burnable poison of B 4 C and Er 2 O 3 . • Based on JAEA method, the effect of graphite annealing on the peak fuel temperature is small. The GA method indicates a much larger impact. In addition, it shows that the impact of the FB end-flux-peaking on the peak fuel temperature is not significant

  2. The Research of Nanoparticle and Microparticle Hydroxyapatite Amendment in Multiple Heavy Metals Contaminated Soil Remediation

    Directory of Open Access Journals (Sweden)

    Zhangwei Li

    2014-01-01

    Full Text Available It was believed that when hydroxyapatite (HAP was used to remediate heavy metal-contaminated soils, its effectiveness seemed likely to be affected by its particle size. In this study, a pot trial was conducted to evaluate the efficiency of two particle sizes of HAP: nanometer particle size of HAP (nHAP and micrometer particle size of HAP (mHAP induced metal immobilization in soils. Both mHAP and nHAP were assessed for their ability to reduce lead (Pb, zinc (Zn, copper (Cu, and chromium (Cr bioavailability in an artificially metal-contaminated soil. The pakchoi (Brassica chinensis L. uptake and soil sequential extraction method were used to determine the immobilization and bioavailability of Pb, Zn, Cu, and Cr. The results indicated that both mHAP and nHAP had significant effect on reducing the uptake of Pb, Zn, Cu, and Cr by pakchoi. Furthermore, both mHAP and nHAP were efficient in covering Pb, Zn, Cu, and Cr from nonresidual into residual forms. However, mHAP was superior to nHAP in immobilization of Pb, Zn, Cu, and Cr in metal-contaminated soil and reducing the Pb, Zn, Cu, and Cr utilized by pakchoi. The results suggested that mHAP had the better effect on remediation multiple metal-contaminated soils than nHAP and was more suitable for applying in in situ remediation technology.

  3. Cleanup operations at the Oak Ridge Gaseous Diffusion Plant contaminated metal scrapyard

    International Nuclear Information System (INIS)

    Williams, L.C.

    1987-01-01

    Cleanup operations at the contaminated metal storage yard located at the Oak Ridge, Tennessee, Gaseous Diffusion Plant have been completed. The storage yard, in existence since the early 1970s, contained an estimated 35,000 tons of mixed-type metals spread over an area of roughly 30 acres. The overall cleanup program required removing the metal from the storage yard, sorting by specific metal types, and size reduction of specific types for future processing. This paper explains the methods and procedures used to accomplish this task

  4. Feasibility study of X-ray K-edge analysis of RCRA heavy metal contamination of sludge packaged in drums

    International Nuclear Information System (INIS)

    Jensen, T.

    1999-01-01

    A study has been completed to assess the capabilities of X-ray K-edge analysis in the measurement of RCRA metal contamination of sludge packaged in drums. Results were obtained for mercury and lead contamination. It was not possible to measure cadmium contamination using this technique. No false positive signals were observed. In cases where uniformity of the sludge can be assumed, this analysis can provide a quick, accurate measurement of heavy-metal contamination

  5. Phytoremediation trials on metal- and arsenic-contaminated pyrite wastes (Torviscosa, Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Vamerali, Teofilo [Department of Environmental Sciences, University of Parma, Viale G.P. Usberti 11/A, 43100 Parma (Italy)], E-mail: teofilo.vamerali@unipd.it; Bandiera, Marianna; Coletto, Lucia; Zanetti, Federica [Department of Environmental Agronomy and Crop Sciences, University of Padova, Viale dell' Universita 16, 35020 Legnaro - Padova (Italy); Dickinson, Nicholas M. [Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF (United Kingdom); Mosca, Giuliano [Department of Environmental Agronomy and Crop Sciences, University of Padova, Viale dell' Universita 16, 35020 Legnaro - Padova (Italy)

    2009-03-15

    At a site in Udine, Italy, a 0.7 m layer of As, Co, Cu, Pb and Zn contaminated wastes derived from mineral roasting for sulphur extraction had been covered with an unpolluted 0.15 m layer of gravelly soil. This study investigates whether woody biomass phytoremediation is a realistic management option. Comparing ploughing and subsoiling (0.35 m depth), the growth of Populus and Salix and trace element uptake were investigated in both pot and field trials. Species differences were marginal and species selection was not critical. Impaired above-ground productivity and low translocation of trace elements showed that bioavailable contaminant stripping was not feasible. The most significant finding was of coarse and fine roots proliferation in surface layers that provided a significant sink for trace elements. We conclude that phytostabilisation and effective immobilisation of metals and As could be achieved at the site by soil amelioration combined with woody species establishment. Confidence to achieve a long-term and sustainable remediation requires a more complete quantification of root dynamics and a better understanding of rhizosphere processes. - In As- and metal-contaminated pyrite wastes, contaminant stripping is not feasible, and root foraging and quantification of root dynamics holds the key to stabilisation in woody species.

  6. Phytoremediation trials on metal- and arsenic-contaminated pyrite wastes (Torviscosa, Italy)

    International Nuclear Information System (INIS)

    Vamerali, Teofilo; Bandiera, Marianna; Coletto, Lucia; Zanetti, Federica; Dickinson, Nicholas M.; Mosca, Giuliano

    2009-01-01

    At a site in Udine, Italy, a 0.7 m layer of As, Co, Cu, Pb and Zn contaminated wastes derived from mineral roasting for sulphur extraction had been covered with an unpolluted 0.15 m layer of gravelly soil. This study investigates whether woody biomass phytoremediation is a realistic management option. Comparing ploughing and subsoiling (0.35 m depth), the growth of Populus and Salix and trace element uptake were investigated in both pot and field trials. Species differences were marginal and species selection was not critical. Impaired above-ground productivity and low translocation of trace elements showed that bioavailable contaminant stripping was not feasible. The most significant finding was of coarse and fine roots proliferation in surface layers that provided a significant sink for trace elements. We conclude that phytostabilisation and effective immobilisation of metals and As could be achieved at the site by soil amelioration combined with woody species establishment. Confidence to achieve a long-term and sustainable remediation requires a more complete quantification of root dynamics and a better understanding of rhizosphere processes. - In As- and metal-contaminated pyrite wastes, contaminant stripping is not feasible, and root foraging and quantification of root dynamics holds the key to stabilisation in woody species

  7. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil

    DEFF Research Database (Denmark)

    Sitte, Jana; Akob, Denise M.; Kaufmann, Christian

    2010-01-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils...... from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the 35SO42– radiotracer method, was restricted to reduced soil horizons with rates of 142 ± 20 nmol cm–3 day–1. Concentrations...... of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone...

  8. Effects of heavy metal contamination on the macrobenthic fauna in estuaries: The case of the Seine estuary

    International Nuclear Information System (INIS)

    Dauvin, Jean-Claude

    2008-01-01

    Heavy metal contamination levels are generally higher in estuaries than in the open sea. Some estuaries, the Seine estuary for example, have particularly high pollution levels of metals, yet continue to support a very high benthic biomass and remain quite productive. Measurements of sediment contamination are highly variable due to diverse chemical analysis methods, sediments origin and sources of contaminants found in the estuaries. Salinity appears to be the principal factor controlling contaminant distribution in the sediment and the overlying and/or interstitial waters; it also affects the bioavailability of contaminants in estuarine sediments. Of course, the response to contaminants varies greatly among species and assemblages. Trace metals explain only a small part of the variation in benthic community structure. Some species, such as the shrimp Crangon crangon, appears vulnerable to metal pollution, while other species, such as Scrobicularia plana, are able to tolerate quite high levels of cadmium in their tissue. This paper demonstrates the wide variability of benthic responses to contamination, which is probably due to the high spatio-temporal heterogeneity of the estuary. To reduce the problems due the heterogeneity and variability observed to date in the available results, it will be necessary to encourage integrated estuarine studies, in which sedimentologists, chemists, and biologists work together on the same campaigns at the same sites

  9. Integrated risk analysis of a heavy-metal-contaminated site in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Ching-Tsan Tsai [China Medical College, Taichung (Taiwan, Province of China); Wang, J.H.C. [National Science Council, Taipei (Taiwan, Province of China)

    1996-12-31

    The Love Canal episode began the long battle on hazardous wastes in the United States. Obviously, the potential danger of hazardous wastes is one of the hottest issues among environmental professionals as well as the public. The problems of hazardous wastes in economically booming Taiwan are also alarming. Several farmlands in northern Taiwan were contaminated heavily by industrial effluents containing heavy metals (cadmium and lead) in the early 1980s. Regardless of the many studies that have been conducted about these polluted farmlands, there has not been any remediation - just a passive abandonment of farming activities with minimal compensation. This paper addresses a heavy-metal-contaminated fanning area. A pollution profile across time is delineated using information from the abundance of reports, and the contamination is modeled mathematically. The past, the present, and future exposures are also modeled. The results are presented in terms of societal impacts and health effects. Reasonable soil guidelines for cleanup are estimated, and recommendations for rational mitigation solutions are presented. The current strategies for cleanup actions are also described. 23 refs., 4 figs., 5 tabs.

  10. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China

    International Nuclear Information System (INIS)

    Khan, S.; Cao, Q.; Zheng, Y.M.; Huang, Y.Z.; Zhu, Y.G.

    2008-01-01

    Consumption of food crops contaminated with heavy metals is a major food chain route for human exposure. We studied the health risks of heavy metals in contaminated food crops irrigated with wastewater. Results indicate that there is a substantial buildup of heavy metals in wastewater-irrigated soils, collected from Beijing, China. Heavy metal concentrations in plants grown in wastewater-irrigated soils were significantly higher (P ≤ 0.001) than in plants grown in the reference soil, and exceeded the permissible limits set by the State Environmental Protection Administration (SEPA) in China and the World Health Organization (WHO). Furthermore, this study highlights that both adults and children consuming food crops grown in wastewater-irrigated soils ingest significant amount of the metals studied. However, health risk index values of less than 1 indicate a relative absence of health risks associated with the ingestion of contaminated vegetables. - Long-term wastewater irrigation leads to buildup of heavy metals in soils and food crops

  11. Utilization of plants for stabilization and cleaning up of metal contaminated soil and water

    Directory of Open Access Journals (Sweden)

    Miroslav Štofko

    2006-06-01

    Full Text Available Phytoremediation has been defined as the use of green plants and their associated rhizospheric microorganisms to remove, degrade, or contain contaminants located in soisl, sediments, groundwater, surface water, and even the atmosphere. Categories of phytoremediation include - phytoextraction or phytoaccumulation, phytotransformation, phytostimulation or plant-assisted bioremediation, phytovolatilization, rhizofiltration, pump and tree, phytostabilization, and hydraulic control. Phytoremediation of heavy metal contaminated soils basically includes phytostabilization, phytoextraction, rhizofiltration and phytovolatilization. Selection of plants for phytoremediation of metals depends on a particular application.

  12. Metal contamination disturbs biochemical and microbial properties of calcareous agricultural soils of the Mediterranean area.

    Science.gov (United States)

    de Santiago-Martín, Ana; Cheviron, Natalie; Quintana, Jose R; González, Concepción; Lafuente, Antonio L; Mougin, Christian

    2013-04-01

    Mediterranean climate characteristics and carbonate are key factors governing soil heavy-metal accumulation, and low organic matter (OM) content could limit the ability of microbial populations to cope with resulting stress. We studied the effects of metal contamination on a combination of biological parameters in soils having these characteristics. With this aim, soils were spiked with a mixture of cadmium, copper, lead, and zinc, at the two limit values proposed by current European legislation, and incubated for ≤12 months. Then we measured biochemical (phosphatase, urease, β-galactosidase, arylsulfatase, and dehydrogenase activities) and microbial (fungal and bacterial DNA concentration by quantitative polymerase chain reaction) parameters. All of the enzyme activities were strongly affected by metal contamination and showed the following inhibition sequence: phosphatase (30-64 %) soils was attributed to the different proportion of fine mineral fraction, OM, crystalline iron oxides, and divalent cations in soil solution. The decrease of fungal DNA concentration in metal-spiked soils was negligible, whereas the decrease of bacterial DNA was ~1-54 % at the lowest level and 2-69 % at the highest level of contamination. The lowest bacterial DNA decrease occurred in soils with the highest OM, clay, and carbonate contents. Finally, regarding the strong inhibition of the biological parameters measured and the alteration of the fungal/bacterial DNA ratio, we provide strong evidence that disturbance on the system, even within the limiting values of contamination proposed by the current European Directive, could alter key soil processes. These limiting values should be established according to soil characteristics and/or revised when contamination is produced by a mixture of heavy metals.

  13. Review in Strengthening Technology for Phytoremediation of Soil Contaminated by Heavy Metals

    Science.gov (United States)

    Wu, Chishan; Zhang, Xingfeng; Deng, Yang

    2017-07-01

    In view of current problems of phytoremediation technology, this paper summarizes research progress for phytoremediation technology of heavy metal contaminated soil. When the efficiency of phytoremediation may not meet the demand in practice of contaminated soil or water. Effective measures should be taken to improve the plant uptake and translocation. This paper focuses on strengthening technology mechanism, which can not only increase the biomass of plant and hyperaccumulators, but also enhance the tolerance and resistance to heavy metals, and application effect of phytoremediation, including agronomic methods, earthworm bioremediation and chemical induction technology. In the end of paper, deficiencies of each methods also be discussed, methods of strengthening technology for phytoremediation need further research.

  14. Evidence for groundwater contamination by heavy metals through soil passage under acidifying conditions

    NARCIS (Netherlands)

    Wilkens, B.J.

    1995-01-01

    The research reported here is aimed at improving the knowledge of the mobility of the heavy metals cadmium and zinc in vulnerable soil types. We use the term vulnerable with reference to vulnerability of groundwater for contamination by soil leaching. At diffuse soil immissions of heavy metals,

  15. SITE demonstration of the Dynaphore/Forager Sponge technology to remove dissolved metals from contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, C.R. [Environmental Protection Agency, Edison, NJ (United States); Vaccaro, G. [Science Applications International Corp., Hackensack, NJ (United States)

    1995-10-01

    A Superfund Innovative Technology Evaluation (SITE) demonstration was conducted of the Dynaphore/Forager Sponge technology during the week of April 3, 1994 at the N.L. Industries Superfund Site in Pedricktown, New Jersey. The Forager Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that selectively absorbs dissolved heavy metals in both cationic and anionic states. This technology is a volume reduction technology in which heavy metal contaminants from an aqueous medium are concentrated into a smaller volume for facilitated disposal. The developer states that the technology can be used to remove heavy metals from a wide variety of aqueous media, such as groundwater, surface waters and process waters. The sponge matrix can be directly disposed, or regenerated with chemical solutions. For this demonstration the sponge was set up as a mobile pump-and-treat system which treated groundwater contaminated with heavy metals. The demonstration focused on the system`s ability to remove lead, cadmium, chromium and copper from the contaminated groundwater over a continuous 72-hour test. The removal of heavy metals proceeded in the presence of significantly higher concentrations of innocuous cations such as calcium, magnesium, sodium, potassium and aluminum.

  16. The effect of vibration on alpha radiolysis of transuranic (TRU) waste

    International Nuclear Information System (INIS)

    Zerwekh, A.; Kosiewicz, S.; Warren, J.

    1993-01-01

    This paper reports on previously unpublished scoping work related to the potential for vibration to redistribute radionuclides on transuranic (TRU) waste. If this were to happen, the amount of gases generated, including hydrogen, could be increased above the undisturbed levels. This could be an important consideration for transport of TRU wastes either at DOE sites or from them to a future repository, e.g., the Waste Isolation Pilot Plant (WIPP). These preliminary data on drums of real waste seem to suggest that radionuclide redistribution does not occur. However improvements in the experimental methodology are suggested to enhance safety of future experiments on real wastes as well as to provide more rigorous data

  17. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Dermatas, D.; Meng, X. [Stevens Inst. of Technology, Hoboken, NJ (United States)

    1995-12-01

    Pozzolanic-based stabilization/solidification (S/S) is an effective, yet economic technological alternative to immobilize heavy metals in contaminated soils and sludges. Fly ash waste materials were used along with quicklime (CaO) to immobilize lead, trivalent and hexavalent chromium present in contaminated clayey sand soils. The degree of heavy metal immobilization was evaluated using the Toxicity Characteristic Leaching Procedure (TCLP) as well as controlled extraction experiments. These leaching test results along with X-ray diffraction (XRD), scanning electron microscope and energy dispersive x-ray (SEM-EDX) analyses were also implemented to elucidate the mechanisms responsible for immobilization of the heavy metals under study. Finally, the reusability of the stabilized waste forms in construction applications was also investigated by performing unconfined compressive strength and swell tests. Results suggest that the controlling mechanism for both lead and hexavalent chromium immobilization is surface adsorption, whereas for trivalent chromium it is hydroxide precipitation. Addition of fly ash to the contaminated soils effectively reduced heavy metal leachability well below the non-hazardous regulatory limits. However, quicklime addition was necessary in order to attain satisfactory immobilization levels. Overall, fly ash addition increases the immobilization pH region for all heavy metals tested, and significantly improves the stress-strain properties of the treated solids, thus allowing their reuse as readily available construction materials. The only potential problem associated with this quicklime/fly ash treatment is the excessive formation of the pozzolanic product ettringite in the presence of sulfates. Ettringite, when brought in contact with water, may cause significant swelling and subsequent deterioration of the stabilized matrix. Addition of minimum amounts of barium hydroxide was shown to effectively eliminate ettringite formation.

  18. Risk-Based Approach for Thermal Treatment of Soils Contaminated with Heavy Metals

    Directory of Open Access Journals (Sweden)

    Cocârţă D. M.

    2013-04-01

    Full Text Available In the actual context of limited soil resources and the significant degree of environmental pollution, public administrations and authorities are interested in restoring contaminated sites paying attention to the impact of these soils on human health. This paper aims to present the efficiency of the the incineration as a method for treatment of the contaminated soils t based on human health risk assessment. Through various experimentations, the following metals have been studied: Zn, Cu, Fe, Mn, Ni, Pb, Cr, Co, Cd, Hg, As and Be. The most important and interesting results concerning both thermal treatment removal efficiency and associated human health risk assessments were achieved concerning Cd, Pb and Ni contaminants. The behavior of Cadmium (Cd, Lead (Pb and Nickel (Ni concentrations from heavy metals incineration soil has been analyzed for three incineration temperatures (600°C, 800°C and 1000°C and two resident times of soil within the incineration reactor (30 min. and 60 min.. In this case, the level of contaminants in the treated soil can be reduced but not enough to ensure an acceptable risk for human health.

  19. Determination of H2 Diffusion Rates through Various Closures on TRU Waste Bag-Out Bags

    International Nuclear Information System (INIS)

    Noll, Phillip D. Jr.; Callis, E. Larry; Norman, Kirsten M.

    1999-01-01

    The amount of H 2 diffusion through twist and tape (horse-tail), wire tie, plastic tie, and heat sealed closures on transuranic (TRU) waste bag-out bags has been determined. H 2 diffusion through wire and plastic tie closures on TRU waste bag-out bags has not been previously characterized and, as such, TRU waste drums containing bags with these closures cannot be certified and/or shipped to the Waste Isolation Pilot Plant (WIPP). Since wire ties have been used at Los Alamos National Laboratory (LANL) from 1980 to 1991 and the plastic ties from 1991 to the present, there are currently thousands of waste drums that cannot be shipped to the WIPP site. Repackaging the waste would be prohibitively expensive. Diffusion experiments performed on the above mentioned closures show that the diffusion rates of plastic tie and horse-tail closures are greater than the accepted value presented in the TRU-PACT 11 Safety Analysis Report (SAR). Diffusion rates for wire tie closures are not statistically different from the SAR value. Thus, drums containing bags with these closures can now potentially be certified which would allow for their consequent shipment to WIPP

  20. Metal-resistant rhizobacteria isolates improve Mucuna deeringiana phytoextraction capacity in multi-metal contaminated soils from a gold mining area.

    Science.gov (United States)

    Boechat, Cácio Luiz; Giovanella, Patricia; Amorim, Magno Batista; de Sá, Enilson Luiz Saccol; de Oliveira Camargo, Flávio Anastácio

    2017-01-01

    Phytoremediation consists of biological techniques for heavy metal remediation, which include exploring the genetic package of vegetable species to remove heavy metals from the environment. The goals of this study were to investigate heavy metal and bioaugmentation effects on growth and nutrient uptake by Mucuna deeringiana; to determine the metal translocation factor and bioconcentration factor and provide insight for using native bacteria to enhance heavy metal accumulation. The experiment was conducted under greenhouse conditions using a 2 × 4 factorial scheme with highly and slightly contaminated soil samples and inoculating M. deeringiana with three highly lead (Pb +2 )-resistant bacteria Kluyvera intermedia (Ki), Klebsiella oxytoca (Ko), and Citrobacter murliniae (Cm) isolated from the rhizosphere of native plants identified as Senecio brasiliensis (Spreng.) Less., Senecio leptolobus DC., and Baccharis trimera (Less) DC., respectively. The increased heavy metal concentrations in soil samples do not decrease the root dry mass of M. deeringiana, concerning the number and dry weight of nodules. The shoot dry mass is reduced by the increasing concentration of heavy metals in soil associated with Kluyvera intermedia and Klebsiella oxytoca bacteria. The number of nodules is affected by heavy metals associated with Citrobacter murliniae bacteria. The bacteria K. intermedia, C. murliniae, and K. oxytoca increase the lead and cadmium available in the soil and enhanced metal uptake by Mucuna deeringiana. The M. deeringiana specie has characteristics that make it hyperaccumulate copper and zinc. The translocation and bioconcentration factors for M. deeringiana characterize it as a promising candidate to phytostabilize multi-metal contaminated soils.

  1. Bioleaching of arsenic in contaminated soil using metal-reducing bacteria

    Science.gov (United States)

    Lee, So-Ra; Lee, Jong-Un; Chon, Hyo-Taek

    2014-05-01

    A study on the extraction of arsenic in the contaminated soil collected from an old smelting site in Korea was carried out using metal-reducing bacteria. Two types of batch-type experiments, biostimulation and bioaugmentation, were conducted for 28 days under anaerobic conditions. The biostimulation experiments were performed through activation of indigenous bacteria by supply with glucose or lactate as a carbon source. The contaminated, autoclaved soil was inoculated with metal-reducing bacteria, Shewanella oneidensis MR-1 and S. algae BrY, in the bioaugmentation experiments. The results indicated that the maximum concentration of the extracted As was 11.2 mg/L at 4 days from the onset of the experiment when 20 mM glucose was supplied and the extraction efficiency of As ranged 60~63% in the biostimulation experiments. In the case of bioaugmentation, the highest dissolved As concentration was 24.4 mg/L at 2 days, though it dramatically decreased over time through re-adsorption onto soil particles. After both treatments, mode of As occurrence in the soil appeared to be changed to readily extractable fractions. This novel technique of bioleaching may be practically applied for remediation of As-contaminated soil after determination of optimum operational conditions such as operation time and proper carbon source and its concentration.

  2. Predicting the phytoextraction duration to remediate heavy metal contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Römkens, P.F.A.M.; Song, J.; Temminghoff, E.J.M.; Japenga, J.

    2007-01-01

    The applicability of phytoextraction to remediate soils contaminated with heavy metals (HMs) depends on, amongst others, the duration before remediation is completed. The impact of changes in the HM content in soil occurring during remediation on plant uptake has to be considered in order to obtain

  3. Human impact on fluvial sediments: distinguishing regional and local sources of heavy metals contamination

    Science.gov (United States)

    Novakova, T.; Matys Grygar, T.; Bábek, O.; Faměra, M.; Mihaljevič, M.; Strnad, L.

    2012-04-01

    Industrial pollution can provide a useful tool to study spatiotemporal distribution of modern floodplain sediments, trace their provenance, and allow their dating. Regional contamination of southern Moravia (the south-eastern part of the Czech Republic) by heavy metals during the 20th century was determined in fluvial sediments of the Morava River by means of enrichment factors. The influence of local sources and sampling sites heterogeneity were studied in overbank fines with different lithology and facies. For this purpose, samples were obtained from hand-drilled cores from regulated channel banks, with well-defined local sources of contamination (factories in Zlín and Otrokovice) and also from near naturally inundated floodplains in two nature protected areas (at 30 km distance). The analyses were performed by X-ray fluorescence spectroscopy (ED XRF), ICP MS (EDXRF samples calibration, 206Pb/207Pb ratio), magnetic susceptibility, cation exchange capacity (CEC), and 137Cs and 210Pb activities. Enrichment factors (EF) of heavy metals (Pb, Zn, Cu and Cr) and magnetic susceptibility of overbank fines in near-naturally (near annually) inundated areas allowed us to reconstruct historical contamination by heavy metals in the entire study area independently on lithofacies. Measured lithological background values were then used for calculation of EFs in the channel sediments and in floodplain sediments deposited within narrow part of a former floodplain which is now reduced to about one quarter of its original width by flood defences. Sediments from regulated channel banks were found stratigraphically and lithologically "erratic", unreliable for quantification of regional contamination due to a high variability of sedimentary environment. On the other hand, these sediments are very sensitive to the nearby local sources of heavy metals. For a practical work one must first choose whether large scale, i.e. a really averaged regional contamination should be reconstructed

  4. Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites.

    Science.gov (United States)

    Moreira, Fátima M S; Lange, Anderson; Klauberg-Filho, Osmar; Siqueira, José O; Nóbrega, Rafaela S A; Lima, Adriana S

    2008-12-01

    This work aimed to evaluate density of associative diazotrophic bacteria populations in soil and grass root samples from heavy metal contaminated sites, and to characterize isolates from these populations, both, phenotypically (Zinc, Cadmium and NaCl tolerance in vitro, and protein profiles) and genotypically (16S rDNA sequencing), as compared to type strains of known diazotrophic species. Densities were evaluated by using NFb, Fam and JNFb media, commonly used for enrichment cultures of diazotrophic bacteria. Bacterial densities found in soil and grass root samples from contaminated sites were similar to those reported for agricultural soils. Azospirillum spp. isolates from contaminated sites and type strains from non-contaminated sites varied substantially in their in vitro tolerance to Zn+2 and Cd+2, being Cd+2 more toxic than Zn+2. Among the most tolerant isolates (UFLA 1S, 1R, S181, S34 and S22), some (1R, S34 and S22) were more tolerant to heavy metals than rhizobia from tropical and temperate soils. The majority of the isolates tolerant to heavy metals were also tolerant to salt stress as indicated by their ability to grow in solid medium supplemented with 30 g L(-1) NaCl. Five isolates exhibited high dissimilarity in protein profiles, and the 16S rDNA sequence analysis of two of them revealed new sequences for Azospirillum.

  5. Influence of dams on sediment continuity: A study case of a natural metallic contamination.

    Science.gov (United States)

    Frémion, Franck; Bordas, François; Mourier, Brice; Lenain, Jean-François; Kestens, Tim; Courtin-Nomade, Alexandra

    2016-03-15

    Sediments play an important role on the quality of aquatic ecosystems, notably in the reservoir areas where they can either be a sink or a source of contaminants, depending on the management and hydrological conditions. The physicochemical properties of 25 surface sediments samples of a reservoir catchment (Vaussaire, Cantal, France) were studied. Results show a strong influence of dam presence, notably on the grain size and organic matter (OM) contents. The concentrations of trace metals and metalloids (As, Cd, Cr, Cu, Ni, Pb and Zn) were also measured and compared with worldwide reservoir concentrations and international sediment quality guideline levels in order to assess the intensity of the metallic contamination. Cr and Ni are the trace elements presenting the significantly highest values at the catchment scale. Enrichment Factors (EF), calculated using both local and national backgrounds, show that metals have mainly a natural origin, explaining especially the Cr and Ni values, linked with the composition of parental rocks. Unexpectedly, all the observed metal concentrations are lower in the reservoir than upstream and downstream, which might be related to the high fresh OM inputs in the reservoir, diluting the global metallic contamination. Multivariate statistical analyses, carried out in order to identify the relationship between the studied metals and sediment characteristics, tend to support this hypothesis, confirming the unusually low influence of such poorly-degraded OM on trace element accumulation in the reservoir. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Geostatistical exploration of dataset assessing the heavy metal contamination in Ewekoro limestone, Southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Kehinde D. Oyeyemi

    2017-10-01

    Full Text Available The dataset for this article contains geostatistical analysis of heavy metals contamination from limestone samples collected from Ewekoro Formation in the eastern Dahomey basin, Ogun State Nigeria. The samples were manually collected and analysed using Microwave Plasma Atomic Absorption Spectrometer (MPAS. Analysis of the twenty different samples showed different levels of heavy metals concentration. The analysed nine elements are Arsenic, Mercury, Cadmium, Cobalt, Chromium, Nickel, Lead, Vanadium and Zinc. Descriptive statistics was used to explore the heavy metal concentrations individually. Pearson, Kendall tau and Spearman rho correlation coefficients was used to establish the relationships among the elements and the analysis of variance showed that there is a significant difference in the mean distribution of the heavy metals concentration within and between the groups of the 20 samples analysed. The dataset can provide insights into the health implications of the contaminants especially when the mean concentration levels of the heavy metals are compared with recommended regulatory limit concentration.

  7. Application of biowaste materials for the sorption of heavy metals in contaminated aqueous medium

    International Nuclear Information System (INIS)

    Saeed, A.; Iqbal, M.; Akhtar, M.W.

    2002-01-01

    Biowaste materials were evaluated as metal ion adsorbents in aqueous medium. The biowaste used were black gram husk, wheat bran, sheesham (dalbergia sissoo) sawdust pea pod, rice husk and cotton and mustard seed cakes. All these biosorbents, except pea pod and rice husk, exhibited good adsorption potential for Cd, Pb, Cu, Zn and Ni. Black gram husk (bgh) was found to have the highest sorption capacity with 100, 99.4, 95.7, 98.2 and 93.1% removal of Cd, Pb, Cu, Zn and Ni, respectively. The metal ions adsorbed by bgh desorbed with 0.1 M HCl and the regenerated biosorbent was reused successfully for sorption of metal ions in the next cycle. Concentration of the tested metals achieved at equilibrium in the contaminated aqueous medium was well below the maximum limits recommended by UNEP for sewage discharge. The study indicates the potential of bgh as a new, inexpensive and efficient biosorbent for the treatment of water contaminated with heavy metals. (author)

  8. Contamination by heavy metals and petroleum hydrocarbons: a threat to mangroves

    Directory of Open Access Journals (Sweden)

    Thaís dos Santos Alencar

    2016-12-01

    Full Text Available The mangrove ecosystem is one of the most productive ecosystems on the planet with relevant ecological importance. It offers several services such as protection of the coastal region, immobilization of contaminants, as it is a food source and refuge for various organisms. However, mangroves are threatened by human activities. Oil spills in areas close to mangroves, for example, are potential sources for the entry of contaminants such as heavy metals and hydrocarbons. Among other sources of threat, we list industrial waste and sewage, mining and fertilizer use. When they reach the mangroves, these contaminants may cause several negative effects and affect its balance.

  9. Assessment of biochar and iron filing amendments for the remediation of a metal, arsenic and phenanthrene co-contaminated spoil

    International Nuclear Information System (INIS)

    Sneath, Helen E.; Hutchings, Tony R.; Leij, Frans A.A.M. de

    2013-01-01

    Sites contaminated with mixtures of metals, metalloids and organics are difficult to remediate as each contaminant type may require a different treatment. Biochar, with high metal sorption capacity, used singly and in combination with iron filings, is investigated in microcosm trials to immobilise metal(loid)s within a contaminated spoil, thereby enabling revegetation and degradation of organic pollutants. A mine spoil, contaminated with heavy metals, arsenic and spiked with phenanthrene was treated with either 1%w/w biochar, 5%w/w iron or their combination, enhancing phenanthrene degradation by 44–65%. Biochar treatment reduced Cu leaching and enabled sunflower growth, but had no significant effect on As mobility. Iron treatment reduced Cu and As leaching but negatively impacted soil structure and released high levels of Fe causing sunflower plant mortality. The combined treatment reduced both Cu and As leaching and enabled sunflower growth suggesting this could be a useful approach for treating co-contaminated sites. -- Highlights: ► 56 day microcosm trials examine biochar for remediation of co-contaminated sites. ► Biochar reduces leachable Cu concentrations but phytotoxicity remains. ► Iron filings are investigated as a co-amendment with biochar to reduce As leaching. ► Removal of metal toxicity stimulates phenanthrene degradation. ► Biochar could enable revegetation of contaminated sites. -- Biochar and iron filings incorporated into contaminated spoils reduce Cu and As leaching and stimulate phenanthrene degradation, but do not prevent phytotoxicity to sunflowers

  10. Air-borne heavy metal contamination to dietary vegetables: a case study from India.

    Science.gov (United States)

    Pandey, J; Pandey, Richa; Shubhashish, K

    2009-12-01

    Contamination of edible parts of three dietary vegetables, Spinach (Spinacia oleracea L.), Radish (Raphanus sativus L.), and Tomato (Lycopersicon esculentum Mill.) by air-borne cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), and lead (Pb) was determined using pot culture experiments at three sites in the city of Varanasi, India. The data revealed that although Cr and Cu in vegetables remained below their safe limits, about 68% of the total samples contained Cd, Ni, and Pb above their respective safe limits of 1.5, 1.5, and 2.5 μg g(-1). Site wise synchrony and air accumulation factor (AAF) indicated that atmospheric deposition was the main contributor of metal contamination to vegetables. The study suggests that if the present trends of atmospheric deposition are continued, air-borne heavy metals will contaminate the agricultural produce with long-term health implications.

  11. MINE WASTE TECHNOLOGY PROGRAM; PHOSPHATE STABILIZATION OF HEAVY METALS CONTAMINATED MINE WASTE YARD SOILS, JOPLIN, MISSOURI NPL SITE

    Science.gov (United States)

    This document summarizes the results of Mine Waste Technology Project 22-Phosphate Stabilization of Heavy Metals-Contaminated Mine Waste Yard Soils. Mining, milling, and smelting of ores near Joplin, Missouri, have resulted in heavy metal contamination of the area. The Joplin s...

  12. Heavy Metals Contamination in Coastal Sediments of Karachi, Pakistan

    Science.gov (United States)

    Siddique, A.; Mumtaz, M.; Zaigham, N. A.; Mallick, K. A.; Saied, S.; Khwaja, H. A.

    2008-12-01

    Toxic compounds such as heavy metals exert chronic and lethal effects in animals, plants, and human health. With the rapid industrialization, urbanization, and economic development in Karachi, heavy metals are continuing to be introduced to estuarine and coastal environment through rivers, runoff and land-based point sources. Pollution in the Karachi coastal region (167 km long) is mainly attributed to Lyari and Malir Rivers flowing through the city of Karachi. Both rivers are served by various channels of domestic and industrial wastes carrying more than 300 million gallons per day untreated effluent of 6000 industries and ultimately drain into the beaches of Arabian Sea. Concentrations of selected heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in surface sediments from eighty-eight sites in Karachi coastal region were studied in order to understand metal contamination due to industrialization, urbanization, and economic development in Karachi. Sediment samples were collected in 2005 and 2006. We have found that heavy metal concentrations in surface sediments varied from 0.006 to 24.3 ug/g for Cd, 5.1 to 95 ug/g for Co, 2.9 to 571 ug/g for Cr, 6.9 to 272 ug/g for Cu, 0.55 to 6.5% for Fe, 1.2 to 318 ug/g for Mn, 7.5 to 75 ug/g for Ni, 6.3 to 121 ug/g for Pb, and 3.3 to 389 ug/g for Zn. Enrichment factors (EFs) were calculated to assess whether the concentrations observed represent background or contaminated levels. The highest levels of metals were found to be at the confluence of the Lyari and Malir River streams at the Arabian Sea, indicating the impact of the effluents of the highly urbanized and industrialized city of Karachi. Furthermore, this study assessed heavy metal toxicity risk with the application of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM). Results indicated that the potential toxicity of marine environment can cause adverse biological effects to the biota directly and the human health

  13. Heavy metal contamination and risk assessment in water, paddy soil, and rice around an electroplating plant.

    Science.gov (United States)

    Liu, Jie; Zhang, Xue-Hong; Tran, Henry; Wang, Dun-Qiu; Zhu, Yi-Nian

    2011-11-01

    The objective of this paper is to assess the impact of long-term electroplating industrial activities on heavy metal contamination in agricultural soils and potential health risks for local residents. Water, soil, and rice samples were collected from sites upstream (control) and downstream of the electroplating wastewater outlet. The concentrations of heavy metals were determined by an atomic absorption spectrophotometer. Fractionation and risk assessment code (RAC) were used to evaluate the environmental risks of heavy metals in soils. The health risk index (HRI) and hazard index (HI) were calculated to assess potential health risks to local populations through rice consumption. Hazardous levels of Cu, Cr, and Ni were observed in water and paddy soils at sites near the plant. According to the RAC analysis, the soils showed a high risk for Ni and a medium risk for Cu and Cr at certain sites. The rice samples were primarily contaminated with Ni, followed by Cr and Cu. HRI values >1 were not found for any heavy metal. However, HI values for adults and children were 2.075 and 1.808, respectively. Water, paddy soil, and rice from the studied area have been contaminated by Cu, Cr, and Ni. The contamination of these elements is related to the electroplating wastewater. Although no single metal poses health risks for local residents through rice consumption, the combination of several metals may threaten the health of local residents. Cu and Ni are the key components contributing to the potential health risks.

  14. Metal contamination of agricultural soils in the copper mining areas of Singhbhum shear zone in India

    Science.gov (United States)

    Giri, Soma; Singh, Abhay Kumar; Mahato, Mukesh Kumar

    2017-06-01

    The study was intended to investigate the heavy metal contamination in the agricultural soils of the copper mining areas in Singhbhum shear zone, India. The total concentrations of the metals were determined by inductively coupled plasma-mass spectrometer (ICPMS). Pollution levels were assessed by calculating enrichment factor (EF), geo-accumulation index (I_geo), contamination factors (CF), pollution load index ( PLI), Nemerow index and ecological risk index (RI). The metal concentrations in the soil samples exceeded the average shale values for almost all the metals. Principal component analysis resulted in extraction of three factors explaining 82.6% of the data variability and indicated anthropogenic contribution of Cu, Ni, Co, Cr, Mn and Pb. The EF and I_geo values indicated very high contamination with respect to Cu followed by As and Zn in the agricultural soils. The values of PLI, RI and Nemerow index, which considered the overall effect of all the studied metals on the soils, revealed that 50% of the locations were highly polluted with respect to metals. The pollution levels varied with the proximity to the copper mining and processing units. Consequently, the results advocate the necessity of periodic monitoring of the agricultural soils of the area and development of proper management strategies to reduce the metal pollution.

  15. Assessment of Hanford burial grounds and interim TRU storage

    International Nuclear Information System (INIS)

    Geiger, J.F.; Brown, D.J.; Isaacson, R.E.

    1977-08-01

    A review and assessment is made of the Hanford low level solid radioactive waste management sites and facilities. Site factors considered favorable for waste storage and disposal are (1) limited precipitation, (2) a high deficiency of moisture in the underlying sediments (3) great depth to water table, all of which minimize radionuclide migration by water transport, and (4) high sorbtive capacity of the sediments. Facilities are in place for 20 year retrievable storage of transuranic (TRU) wastes and for disposal of nontransuranic radioactive wastes. Auxiliary facilities and services (utilities, roads, fire protection, shops, etc.) are considered adequate. Support staffs such as engineering, radiation monitoring, personnel services, etc., are available and are shared with other operational programs. The site and associated facilities are considered well suited for solid radioactive waste storage operations. However, recommendations are made for study programs to improve containment, waste package storage life, land use economy, retrievability and security of TRU wastes

  16. Simulation of heavy metal contamination of fresh water bodies: toxic ...

    African Journals Online (AJOL)

    Michael Horsfall

    www.bioline.org.br/ja. Simulation of heavy metal contamination of fresh water bodies: toxic effects in the ... 96 hours (though sampling was done at the 48th hour). Biochemical markers of ... silver, while enhancing the bioavailability of mercury in Ceriodaphnia ..... Biochemical and molecular disorders of bilirubin metabolism.

  17. Study of the trace metal ion influence on the turnover of soil organic matter in cultivated contaminated soils

    International Nuclear Information System (INIS)

    Dumat, C.; Quenea, K.; Bermond, A.; Toinen, S.; Benedetti, M.F.

    2006-01-01

    The role of metals in the behaviour of soil organic matter (SOM) is not well documented. Therefore, we investigated the influence of metals (Pb, Zn, Cu and Cd) on the dynamic of SOM in contaminated soils where maize (C 4 plant) replaced C 3 cultures. Three pseudogley brown leached soil profiles under maize with a decreasing gradient in metals concentrations were sampled. On size fractions, stable carbon isotopic ratio (δ 13 C), metals, organic carbon and nitrogen concentrations were measured in function of depth. The determined sequence for the amount of C 4 organic matter in the bulk fractions: M 3 (0.9) > M 2 (0.4) > M 1 (0.3) is in agreement with a significant influence of metals on the SOM turnover. New C 4 SOM, mainly present in the labile coarser fractions and less contaminated by metals than the stabilised C 3 SOM of the clay fraction, is more easily degraded by microorganisms. - Measure of δ 13 C and total metal concentrations in size fractions of contaminated soils suggests an influence of metals on the soil organic matter dynamic

  18. Modeling the dark current histogram induced by gold contamination in complementary-metal-oxide-semiconductor image sensors

    Energy Technology Data Exchange (ETDEWEB)

    Domengie, F., E-mail: florian.domengie@st.com; Morin, P. [STMicroelectronics Crolles 2 (SAS), 850 Rue Jean Monnet, 38926 Crolles Cedex (France); Bauza, D. [CNRS, IMEP-LAHC - Grenoble INP, Minatec: 3, rue Parvis Louis Néel, CS 50257, 38016 Grenoble Cedex 1 (France)

    2015-07-14

    We propose a model for dark current induced by metallic contamination in a CMOS image sensor. Based on Shockley-Read-Hall kinetics, the expression of dark current proposed accounts for the electric field enhanced emission factor due to the Poole-Frenkel barrier lowering and phonon-assisted tunneling mechanisms. To that aim, we considered the distribution of the electric field magnitude and metal atoms in the depth of the pixel. Poisson statistics were used to estimate the random distribution of metal atoms in each pixel for a given contamination dose. Then, we performed a Monte-Carlo-based simulation for each pixel to set the number of metal atoms the pixel contained and the enhancement factor each atom underwent, and obtained a histogram of the number of pixels versus dark current for the full sensor. Excellent agreement with the dark current histogram measured on an ion-implanted gold-contaminated imager has been achieved, in particular, for the description of the distribution tails due to the pixel regions in which the contaminant atoms undergo a large electric field. The agreement remains very good when increasing the temperature by 15 °C. We demonstrated that the amplification of the dark current generated for the typical electric fields encountered in the CMOS image sensors, which depends on the nature of the metal contaminant, may become very large at high electric field. The electron and hole emissions and the resulting enhancement factor are described as a function of the trap characteristics, electric field, and temperature.

  19. Impact of heavy metal contamination on oxidative stress of Eisenia andrei and bacterial community structure in Tunisian mine soil.

    Science.gov (United States)

    Boughattas, Iteb; Hattab, Sabrine; Boussetta, Hamadi; Banni, Mohamed; Navarro, Elisabeth

    2017-08-01

    The aims of this work were firstly to study the effect of heavy metal-polluted soils from Tunisian mine on earthworm biochemical biomarkers and on bacterial communities and therefore to analyze the interaction between earth worms and bacterial communities in these contaminated soils. For this purpose, we had introduced earthworm Eisenia andrei in six soils: one from mine spoils and five from agricultural soils, establishing a gradient of contamination. The response of worms to the presence of heavy metal was analyzed at the biochemical and transcriptional levels. In a second time, the impact of worm on bacterial community structure was investigated using automated ribosomal intergenic spacer analysis (ARISA) fingerprinting. An impact of heavy metal-contaminated soils on the oxidative status of E. andrei was observed, but this effect was dependent of the level of heavy metal contamination. Moreover, our results demonstrate that the introduction of earthworms E. andrei has an impact on bacterial community; however, the major change was observed in the less contaminated site. Furthermore, a significant correlation between earthworm oxidative status biomarkers and bacterial community structure was observed, mainly in the mine spoils. Therefore, we contribute to a better understanding of the relationships between epigenic earthworms and bacterial communities in heavy metal-contaminated soils.

  20. Magnetic characteristics of sediment grains concurrently contaminated with TBT and metals near a shipyard in Busan, Korea.

    Science.gov (United States)

    Choi, Jin Young; Hong, Gi Hoon; Ra, Kongtae; Kim, Kyung-Tae; Kim, Kyoungrean

    2014-08-30

    Bottom sediments near shipyards are often susceptible to receiving accidental spills of TBT and metals or their degradation products from hull scraping of antifouling system paints applied prior to 2008, when the AFS Convention 2001 was not in force. We investigated TBT and metal contamination of sediments near the shipyards of a small marina located in Busan, Korea and found that they were highly contaminated with TBT, Cu, and Zn. To better understand the environmental impacts and to make an optimal remediation plan, we characterized individual antifouling fragments in terms of metal and TBT contents, magnetic properties, and grain-size. Coarse-sized individual antifouling fragments exhibited simultaneously high levels of TBT, metals and high magnetic susceptibility, and appeared to be a major source of pollution in the sediment. Therefore, magnetic separation in combination with size-separation appears to be a cost-effective remediation method to remove the TBT and metals from contaminated shipyard sediments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Assessment of Heavy Metals Contamination in Reclaimed Mine Soil and their Accumulation and Distribution in Eucalyptus Hybrid.

    Science.gov (United States)

    Maiti, Subodh Kumar; Rana, Vivek

    2017-01-01

    The metal contamination in reclaimed mine soil (RMS) of Jharia coal field, Dhanbad (India) using various contamination indices and their accumulation in tissues of Eucalyptus hybrid were assessed. In RMS, metal concentrations were found higher (202%-533%) than control soil (CS) with major contribution of Co and Mn followed by Zn, Cu and Pb. Principal component analysis (PCA) of metals present in RMS was carried out to assess their origin in RMS. The contamination factor (CF) values in RMS indicated moderate to very high level of pollution (ranged between 2.02 and 5.33). Higher accumulation of Pb in barks (three times), Zn in leaves (4.5 times), Mn in leaves (19 times), and Cu in roots (1.4 times) was found in trees growing on RMS than CS. The study concluded that different tree tissues accumulate varied concentration of heavy metals in RMS and thus for biomonitoring of metals, specific tissues has to be selected.

  2. Heavy metals in soils along unpaved roads in south west Cameroon: Contamination levels and health risks.

    Science.gov (United States)

    Ngole-Jeme, Veronica M

    2016-04-01

    Soils enriched with heavy metals from vehicular emission present a significant exposure route of heavy metals to individuals using unpaved roads. This study assessed the extent of Cd, Cr, Co, Cu, Ni, Pb and Zn contamination of soils along unpaved roads in Cameroon, and the health risks presented by incidental ingestion and dermal contact with the soils using metal contamination factor (CF) pollution load index, hazard quotients (HQ) and chronic hazard index (CHI). CF values obtained (0.9-12.2) indicate moderate to high contamination levels. HQ values for Cr, Cd and Pb exceeded the reference doses. Moderate health hazard exists for road users in the areas with intense anthropogenic activities and high average daily traffic (ADT) volume according to CHI values (1-4) obtained. The economy and quality of life in cities with unpaved roads could be threatened by health challenges resulting from long-term exposure to heavy metal derived from high ADT volumes.

  3. Modeling Adsorption Kinetics (Bio-remediation of Heavy Metal Contaminated Water)

    Science.gov (United States)

    McCarthy, Chris

    My talk will focus on modeling the kinetics of the adsorption and filtering process using differential equations, stochastic methods, and recursive functions. The models have been developed in support of our interdisciplinary lab group which is conducting research into bio-remediation of heavy metal contaminated water via filtration through biomass such as spent tea leaves. The spent tea leaves are available in large quantities as a result of the industrial production of tea beverages. The heavy metals bond with the surfaces of the tea leaves (adsorption). Funding: CUNY Collaborative Incentive Research Grant.

  4. TruFit Plug for Repair of Osteochondral Defects-Where Is the Evidence? Systematic Review of Literature.

    Science.gov (United States)

    Verhaegen, J; Clockaerts, S; Van Osch, G J V M; Somville, J; Verdonk, P; Mertens, P

    2015-01-01

    Treatment of osteochondral defects remains a challenge in orthopedic surgery. The TruFit plug has been investigated as a potential treatment method for osteochondral defects. This is a biphasic scaffold designed to stimulate cartilage and subchondral bone formation. The aim of this study is to investigate clinical, radiological, and histological efficacy of the TruFit plug in restoring osteochondral defects in the joint. We performed a systematic search in five databases for clinical trials in which patients were treated with a TruFit plug for osteochondral defects. Studies had to report clinical, radiological, or histological outcome data. Quality of the included studies was assessed. Five studies describe clinical results, all indicating improvement at follow-up of 12 months compared to preoperative status. However, two studies reporting longer follow-up show deterioration of early improvement. Radiological evaluation indicates favorable MRI findings regarding filling of the defect and incorporation with adjacent cartilage at 24 months follow-up, but conflicting evidence exists on the properties of the newly formed overlying cartilage surface. None of the included studies showed evidence for bone ingrowth. The few histological data available confirmed these results. There are no data available that support superiority or equality of TruFit compared to conservative treatment or mosaicplasty/microfracture. Further investigation is needed to improve synthetic biphasic implants as therapy for osteochondral lesions. Randomized controlled clinical trials comparing TruFit plugs with an established treatment method are needed before further clinical use can be supported.

  5. Immobilization of metals in contaminated soils using natural polymer-based stabilizers.

    Science.gov (United States)

    Tao, Xue; Li, Aimin; Yang, Hu

    2017-03-01

    Three low-cost natural polymer materials, namely, lignin (Ln), carboxymethyl cellulose, and sodium alginate, were used for soil amendment to immobilize lead and cadmium in two contaminated soil samples collected from a mining area in Nanjing, China. The remediation effects of the aforementioned natural polymers were evaluated by toxicity characteristic leaching procedure (TCLP) and sequential extractions. The stabilizers could lower the bioavailability of Pb and Cd in the contaminated soils, and the amount of the exchangeable forms of the aforementioned two metals were reduced evidently. TCLP results showed that the leaching concentrations of Pb and Cd were decreased by 5.46%-71.1% and 4.25%-49.6%, respectively, in the treated soils. The contents of the organic forms of the two metals both increased with the increase in stabilizer dose on the basis of the redistribution of metal forms by sequential extractions. These findings were due to the fact that the abundant oxygen-containing groups on the polymeric amendments were effective in chelating and immobilizing Pb and Cd, which have been further confirmed from the metal adsorptions in aqueous solutions. Moreover, Ln achieved the greatest effect among the three polymers under study because of the former's distinct three-dimensional molecular structure, showing the preferential immobilization of Pb over Cd in soils also. Thus, the above-mentioned natural polymers hold great application potentials for reducing metal ion entry into the food chain at a field scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Design and Development of a Continuous-Flow Countercurrent Metal Extraction System to Remove Heavy Metals from Contaminated Soils

    National Research Council Canada - National Science Library

    Neale, Christopher M. U

    1997-01-01

    .... The research focused on eight contaminated soils from Army installations and the metal extraction capabilities of eight extracting agents including HNO3, HCI, fluorosilicic acid, citric acid, EDTA, DTPA, NTA, and NaOH...

  7. Heavy metal accumulation in trees growing on contaminated sites in Central Europe

    International Nuclear Information System (INIS)

    Unterbrunner, R.; Puschenreiter, M.; Sommer, P.; Wieshammer, G.; Tlustos, P.; Zupan, M.; Wenzel, W.W.

    2007-01-01

    Metal-accumulating woody species have been considered for phytoextraction of metal-contaminated sites. We investigated Zn and Cd accumulation in tissues of adult trees and associated herbaceous species collected from contaminated areas in Central Europe. We found considerable Cd and Zn accumulation in various willow, poplar and birch species with up to 116 mg Cd kg -1 and 4680 mg Zn kg -1 in leaves of Salix caprea. Annual variation of Cd and Zn concentrations in leaves of Salix caprea were small, indicating that data obtained in different years can be compared. Metal concentrations in leaves were not related to total (aqua regia) or labile (1 M NH 4 NO 3 extract) concentrations in soil but the accumulation factors (leaf concentration: soil concentration) for Cd and Zn followed an inverse log type function. Metal partitioning between tissues showed a minimum in the wood, with increasing concentrations of Cd and Zn towards the leaves and fine roots. - Adult field-grown Salix caprea, Populus tremula and other tree species accumulate up to 4680 mg Zn kg -1 and 116 mg Cd kg -1 in their leaves

  8. Heavy metal accumulation in trees growing on contaminated sites in Central Europe

    Energy Technology Data Exchange (ETDEWEB)

    Unterbrunner, R. [University of Natural Resources and Applied Life Sciences, Vienna - BOKU, Department of Forest and Soil Sciences, Peter Jordan Strasse 82, A-1190 Vienna (Austria); Puschenreiter, M. [University of Natural Resources and Applied Life Sciences, Vienna - BOKU, Department of Forest and Soil Sciences, Peter Jordan Strasse 82, A-1190 Vienna (Austria)]. E-mail: markus.puschenreiter@boku.ac.at; Sommer, P. [University of Natural Resources and Applied Life Sciences, Vienna - BOKU, Department of Forest and Soil Sciences, Peter Jordan Strasse 82, A-1190 Vienna (Austria); Wieshammer, G. [University of Natural Resources and Applied Life Sciences, Vienna - BOKU, Department of Forest and Soil Sciences, Peter Jordan Strasse 82, A-1190 Vienna (Austria); Tlustos, P. [Czech University of Agriculture Prague, 165 21 Praha 6-Suchdol (Czech Republic); Zupan, M. [University of Ljubljana, Biotechnical Faculty, Agronomy department, Jamnikarjeva 101, 1000 Ljubljana (Slovenia); Wenzel, W.W. [University of Natural Resources and Applied Life Sciences, Vienna - BOKU, Department of Forest and Soil Sciences, Peter Jordan Strasse 82, A-1190 Vienna (Austria)

    2007-07-15

    Metal-accumulating woody species have been considered for phytoextraction of metal-contaminated sites. We investigated Zn and Cd accumulation in tissues of adult trees and associated herbaceous species collected from contaminated areas in Central Europe. We found considerable Cd and Zn accumulation in various willow, poplar and birch species with up to 116 mg Cd kg{sup -1} and 4680 mg Zn kg{sup -1} in leaves of Salix caprea. Annual variation of Cd and Zn concentrations in leaves of Salix caprea were small, indicating that data obtained in different years can be compared. Metal concentrations in leaves were not related to total (aqua regia) or labile (1 M NH{sub 4}NO{sub 3} extract) concentrations in soil but the accumulation factors (leaf concentration: soil concentration) for Cd and Zn followed an inverse log type function. Metal partitioning between tissues showed a minimum in the wood, with increasing concentrations of Cd and Zn towards the leaves and fine roots. - Adult field-grown Salix caprea, Populus tremula and other tree species accumulate up to 4680 mg Zn kg{sup -1} and 116 mg Cd kg{sup -1} in their leaves.

  9. Sources of heavy metal contamination in Swedish wood waste used for combustion

    International Nuclear Information System (INIS)

    Krook, J.; Martensson, A.; Eklund, M.

    2006-01-01

    In this paper, wood waste (RWW) recovered for heat production in Sweden was studied. Previous research has concluded that RWW contains elevated amounts of heavy metals, causing environmental problems during waste management. This study extends previous work on RWW by analysing which pollution sources cause this contamination. Using existing data on the metal contents in various materials, and the amounts of these materials in RWW, the share of the elevated amounts of metals in RWW that these materials explain was quantified. Six different materials occurring in RWW were studied and the results show that they explain from 70% to 100% of the amounts of arsenic, chromium, lead, copper and zinc in RWW. The most important materials contributing to contamination of RWW are surface-treated wood, industrial preservative-treated wood, plastic and galvanised fastening systems. These findings enable the development and evaluation of strategies aiming to decrease pollution and resource loss from handling RWW. It is argued that source separation and measures taken further downstream from the generation site, such as treatment, need to be combined to substantially decrease the amount of heavy metals in RWW

  10. Heavy metal contamination in stream water and sediments of gold ...

    African Journals Online (AJOL)

    This study assessed the seasonal variation in heavy metal contamination of stream water and sediments in the gold mining area of Atakunmosa West local Government, Osun State, Nigeria. Twelve villages of prominence in illegal gold mining were selected for the study covering dry and wet seasons of 2012. Stream water ...

  11. heavy metal fixation in contaminated soil using non-toxic agents

    African Journals Online (AJOL)

    USER

    2013-05-08

    May 8, 2013 ... agricultural ecosystems (Chukwuka and Omotayo,. 2008), as well as remediation of former industrial sites which have been exposed to diffuse pollution by toxic heavy metals (Finžgar et al., 2006; Belviso et al., 2010). Among the remediation technologies available for contaminated sites, in situ (in place) ...

  12. Design comparisons of TRU burner cores with similar sodium void worth

    International Nuclear Information System (INIS)

    Sang Ji, Kim; Young Il, Kim; Young Jin, Kim; Nam Zin, Cho

    2001-01-01

    This study summarizes the neutronic performance and fuel cycle behavior of five geometrically-different transuranic (TRU) burner cores with similar low sodium void reactivity. The conceptual cores encompass core geometries for annular, two-region homogeneous, dual pin type, pan-shaped and H-shaped cores. They have been designed with the same assembly specifications and managed to have similar end-of-cycle sodium void reactivities and beginning-of-cycle peak power densities through the changes in the core size and configuration. The requirement of low sodium void reactivity is shown to lead each design concept to characteristic neutronics performance and fuel cycle behavior. The H-/pan-shaped cores allow the core compaction as well as higher rate of TRU burning. (author)

  13. Research and development for treatment and disposal technologies of TRU waste

    International Nuclear Information System (INIS)

    Kamei, Gento; Honda, Akira; Mihara, Morihiro; Oda, Chie; Murakami, Hiroshi; Masuda, Kenta; Yamaguchi, Kohei; Nakanishi, Hiroshi; Sasaki, Ryoichi; Ichige, Satoru; Takahashi, Kuniaki; Meguro, Yoshihiro; Yamaguchi, Hiromi; Aoyama, Yoshio

    2007-09-01

    After the publication of the 2nd progress report of geological disposal of TRU waste in Japan, policy and general scheme of future study for the waste disposal in Japan was published by ANRE and JAEA. This annual report summarized aim and progress of individual problem, which was assigned into JAEA in the published policy and general scheme. The problems are as follows; characteristics of TRU waste and its geologic disposal, treatment and waste production, quality control and inspection methodology for waste, mechanical analysis of near-field, data acquisition and preparation on radionuclides migration, cementitious material transition, bentonite and rock alteration in alkaline solution, nitrate effect, performance assessment of the disposal system and decomposition of nitrate as an alternative technology. (author)

  14. Removal of contaminated asphalt layers by using heat generating powder metallic systems

    International Nuclear Information System (INIS)

    Barinov, A.S.; Karlina, O.K.; Ojovan, M.I.

    1996-01-01

    Heat generating systems on the base of powder metallic fuel were used for the removal of contaminated asphalt layers. Decontamination of spots which had complex geometric form was performed. Asphalt layers with deep contamination were removed essentially all radionuclides being retained in asphalt residue. Only a small part (1 - 2 %) of radionuclides could pass to combustion slag. No radionuclides were detected in aerosol-gas phase during decontamination process

  15. Effects of metal-contaminated soil on the performance of young trees growing in model ecosystems under field conditions

    International Nuclear Information System (INIS)

    Hermle, Sandra; Guenthardt-Goerg, Madeleine S.; Schulin, Rainer

    2006-01-01

    Young Populus tremula, Salix viminalis, Betula pendula and Picea abies trees were grown together in large open-top chambers. The treatments were: without or with (Cu/Zn/Cd/Pb = 640/3000/10/90 mg kg -1 ) metal contamination in the topsoil, irrigation pH 3.5 or 5.5, and acidic or calcareous subsoil. Growth, metal allocation to foliage and wood, as well as leaf gas exchange were measured. Biomass was reduced in P. tremula and B. pendula by the metal-contaminated topsoil relative to uncontaminated topsoil, whereas in P. tremula photosynthesis and transpiration were decreased. These effects were related to the elevated foliar Zn accumulation in P. tremula. S. viminalis showed a significant reduction in growth and an increased Zn and Cd accumulation on acidic vs. calcareous subsoil. Acidic irrigation produced only a few significant effects. P. abies showed the lowest metal uptake and no growth response to metal contamination. - Four tree species had different responses to metal treatments

  16. Induction melting for volume reduction of metallic TRU wastes

    International Nuclear Information System (INIS)

    Westsik, J.H. Jr.; Montgomery, D.R.; Katayama, Y.B.; Ross, W.A.

    1986-01-01

    Volume reduction of metallic transuranic wastes offers economic and safety incentives for treatment of wastes generated at a hypothetical commercial fuel reprocessing facility. Induction melting has been identified as the preferred process for volume reduction of spent fuel hulls, fuel assembly hardware, and failed equipment from a reprocessing plant. Bench-scale melting of Zircaloy and stainless steel mixtures has been successfully conducted in a graphite crucible inside a large vacuum chamber. A low-melting-temperature alloy forms that has demonstrated excellent leach resistance. The alloy can be used to encapsulate other metallic wastes that cannot be melted using the existing equipment design

  17. A 12-Month Study of Food Crops Contaminated by Heavy Metals, Lusaka, Zambia

    Science.gov (United States)

    Holden, J. A.; Malamud, B. D.; Chishala, B. H.; Kapungwe, E.; Volk, J.; Harpp, K. S.

    2009-04-01

    We investigate heavy-metal contamination of irrigation water used for urban agriculture and subsequent contamination of food crops in Chunga, NW Lusaka, the capital of Zambia. Inhabitants of the Chunga area rely on urban agriculture as both a major source of income and food. From August 2004 to July 2005, monthly samples of irrigation water used and edible portions of food crops were taken from a farmer's plot at Chunga. The food crops (cabbage, Chinese cabbage, pumpkin leaves, rape, sweet potato leaves and tomatoes) are grown using irrigation throughout the year. Irrigation water samples and digested food crop samples were analysed using ICP-MS at the Department of Geology, Colgate University, USA for Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Ba, Hg, Tl, Pb, and U. We find heavy-metal concentrations present in both irrigation water and food crop samples. Zambian sample concentrations were compared to Zambian and international legislative and guideline limits for concentrations of heavy metals in industrial effluent, heavy metals in irrigation water and heavy metals in foods. In irrigation water samples recommended national and/or international legislative limits for Al, Cr, Mn, Fe, Cu, Hg, Pb and U were exceeded. Limits for Hg were exceeded by up to 130 times. There were heavy-metal concentrations above recommended limits in food crops for Cr, Fe, Ni, Cu, Zn, Cd, Hg and Pb throughout the different food crops grown and throughout the year. In all 14 samples recommended limits for Cr, Fe and Hg were exceeded. Zambian legislated limits for food crops were exceeded by up to 16 times for Pb and 58 times for Hg. The results of this study show that heavy metal contamination is present in irrigation water used and food crops grown in urban agriculture in Chunga, Lusaka, Zambia. Recommended maximum limits for heavy metals in irrigation water and food are exceeded in some samples indicating there may be a risk to health.

  18. Heavy Metal Contamination and Health Risk Assessment in the Vicinity of a Tailing Pond in Guangdong, China

    Science.gov (United States)

    Liang, Yaya; Yi, Xiaoyun; Dang, Zhi; Wang, Qin; Luo, Houmei; Tang, Jie

    2017-01-01

    The purpose of this study was to assess heavy metal contamination and health risks for residents in the vicinity of a tailing pond in Guangdong, southern China. Water, soil, rice, and vegetable samples were collected from the area in the vicinity of the tailing pond. Results showed that surface water was just polluted by Ni and As, while groundwater was not contaminated by heavy metals. The concentrations of Pb, Zn, Cu, Cd, Ni, and As in the paddy soil exceeded the standard values but not those of Cr. In vegetable soils, the concentration of heavy metals was above the standard values except for Ni and As. Soil heavy metal concentrations generally decreased with increasing distance from the polluting source. Leafy vegetables were contaminated by Pb, Cr, Cd, and Ni, while the non-leafy vegetables were contaminated only by Cr. There was a significant difference in heavy metal concentrations between leafy vegetables and non-leafy vegetables. Almost all the rice was polluted by heavy metals. Diet was the most significant contributor to non-carcinogenic risk, which was significantly higher than the safe level of 1. The total cancer risk was also beyond the safe range (10−6–10−4). Results revealed that there is a risk of potential health problems to residents in the vicinity of the tailing pond. PMID:29231884

  19. Heavy Metal Contamination and Health Risk Assessment in the Vicinity of a Tailing Pond in Guangdong, China.

    Science.gov (United States)

    Liang, Yaya; Yi, Xiaoyun; Dang, Zhi; Wang, Qin; Luo, Houmei; Tang, Jie

    2017-12-12

    The purpose of this study was to assess heavy metal contamination and health risks for residents in the vicinity of a tailing pond in Guangdong, southern China. Water, soil, rice, and vegetable samples were collected from the area in the vicinity of the tailing pond. Results showed that surface water was just polluted by Ni and As, while groundwater was not contaminated by heavy metals. The concentrations of Pb, Zn, Cu, Cd, Ni, and As in the paddy soil exceeded the standard values but not those of Cr. In vegetable soils, the concentration of heavy metals was above the standard values except for Ni and As. Soil heavy metal concentrations generally decreased with increasing distance from the polluting source. Leafy vegetables were contaminated by Pb, Cr, Cd, and Ni, while the non-leafy vegetables were contaminated only by Cr. There was a significant difference in heavy metal concentrations between leafy vegetables and non-leafy vegetables. Almost all the rice was polluted by heavy metals. Diet was the most significant contributor to non-carcinogenic risk, which was significantly higher than the safe level of 1. The total cancer risk was also beyond the safe range (10 -6 -10 -4 ). Results revealed that there is a risk of potential health problems to residents in the vicinity of the tailing pond.

  20. Software documentation for TRU certification program

    International Nuclear Information System (INIS)

    CLINTON, R.

    1999-01-01

    The document provides validation information for software used to support TRU operational activities. Calculations were performed using a spreadsheet application. This document provides information about the usage of the software application, Microsoft(reg s ign) Excel. Microsoft(reg s ign) Excel spreadsheets were used to perform specific calculations to determine the amount of containers to visually examine and to perform analyses on container head-gas data. Contained in this document are definitions of formulas and variables with relation to the Excel codes used. Also, a demonstration is provided using predetermined values to obtain predetermined results