WorldWideScience

Sample records for trp channel structure

  1. Application of amphipols for structure-functional analysis of TRP channels.

    Science.gov (United States)

    Huynh, Kevin W; Cohen, Matthew R; Moiseenkova-Bell, Vera Y

    2014-10-01

    Amphipathic polymers (amphipols), such as A8-35 and SApol, are a new tool for stabilizing integral membrane proteins in detergent-free conditions for structural and functional studies. Transient receptor potential (TRP) ion channels function as tetrameric protein complexes in a diverse range of cellular processes including sensory transduction. Mammalian TRP channels share ~20 % sequence similarity and are categorized into six subfamilies: TRPC (canonical), TRPV (vanilloid), TRPA (ankyrin), TRPM (melastatin), TRPP (polycystin), and TRPML (mucolipin). Due to the inherent difficulties in purifying eukaryotic membrane proteins, structural studies of TRP channels have been limited. Recently, A8-35 was essential in resolving the molecular architecture of the nociceptor TRPA1 and led to the determination of a high-resolution structure of the thermosensitive TRPV1 channel by cryo-EM. Newly developed maltose-neopentyl glycol (MNG) detergents have also proven to be useful in stabilizing TRP channels for structural analysis. In this review, we will discuss the impacts of amphipols and MNG detergents on structural studies of TRP channels by cryo-EM. We will compare how A8-35 and MNG detergents interact with the hydrophobic transmembrane domains of TRP channels. In addition, we will discuss what these cryo-EM studies reveal on the importance of screening different types of surfactants toward determining high-resolution structures of TRP channels.

  2. A structural view of ligand-dependent activation in thermoTRP channels

    Directory of Open Access Journals (Sweden)

    Ximena eSteinberg

    2014-05-01

    Full Text Available Transient Receptor Potential (TRP proteins are a large family of ion channels, grouped intoseven sub-families. Although great advances have been made regarding the activation andmodulation of TRP channel activity, detailed molecular mechanisms governing TRPchannel gating are still needed. Sensitive to electric, chemical, mechanical, and thermalcues, TRP channels are tightly associated with the detection and integration of sensoryinput, emerging as a model to study the polymodal activation of ion channel proteins.Among TRP channels, the temperature-activated kind constitute a subgroup by itself,formed by Vanilloid receptors 1-4, Melastatin receptors 2, 4, 5 and 8, TRPC5, and TRPA1.Some of the so-called thermoTRP channels participate in the detection of noxious stimulimaking them an interesting pharmacological target for the treatment of pain. However, thepoor specificity of the compounds available in the market represents an important obstacleto overcome. Understanding the molecular mechanics underlying ligand-dependentmodulation of TRP channels may help with the rational design of novel syntheticanalgesics. The present review focuses on the structural basis of ligand-dependentactivation of TRPV1 and TRPM8 channels. Special attention is drawn to the dissection ofligand-binding sites within TRPV1, PIP 2 -dependent modulation of TRP channels, and thestructure of natural and synthetic ligands.

  3. TRP channels: an overview

    DEFF Research Database (Denmark)

    Pedersen, Stine Falsig; Owsianik, Grzegorz; Nilius, Bernd

    2005-01-01

    The TRP ("transient receptor potential") family of ion channels now comprises more than 30 cation channels, most of which are permeable for Ca2+, and some also for Mg2+. On the basis of sequence homology, the TRP family can be divided in seven main subfamilies: the TRPC ('Canonical') family......, the TRPV ('Vanilloid') family, the TRPM ('Melastatin') family, the TRPP ('Polycystin') family, the TRPML ('Mucolipin') family, the TRPA ('Ankyrin') family, and the TRPN ('NOMPC') family. The cloning and characterization of members of this cation channel family has exploded during recent years, leading...... to a plethora of data on the roles of TRPs in a variety of tissues and species, including mammals, insects, and yeast. The present review summarizes the most pertinent recent evidence regarding the structural and functional properties of TRP channels, focusing on the regulation and physiology of mammalian TRPs....

  4. Role of TRP Channels in Dinoflagellate Mechanotransduction.

    Science.gov (United States)

    Lindström, J B; Pierce, N T; Latz, M I

    2017-10-01

    Transient receptor potential (TRP) ion channels are common components of mechanosensing pathways, mainly described in mammals and other multicellular organisms. To gain insight into the evolutionary origins of eukaryotic mechanosensory proteins, we investigated the involvement of TRP channels in mechanosensing in a unicellular eukaryotic protist, the dinoflagellate Lingulodinium polyedra. BLASTP analysis of the protein sequences predicted from the L. polyedra transcriptome revealed six sequences with high similarity to human TRPM2, TRPM8, TRPML2, TRPP1, and TRPP2; and characteristic TRP domains were identified in all sequences. In a phylogenetic tree including all mammalian TRP subfamilies and TRP channel sequences from unicellular and multicellular organisms, the L. polyedra sequences grouped with the TRPM, TPPML, and TRPP clades. In pharmacological experiments, we used the intrinsic bioluminescence of L. polyedra as a reporter of mechanoresponsivity. Capsaicin and RN1734, agonists of mammalian TRPV, and arachidonic acid, an agonist of mammalian TRPV, TRPA, TRPM, and Drosophila TRP, all stimulated bioluminescence in L. polyedra. Mechanical stimulation of bioluminescence, but not capsaicin-stimulated bioluminescence, was inhibited by gadolinium (Gd 3+ ), a general inhibitor of mechanosensitive ion channels, and the phospholipase C (PLC) inhibitor U73122. These pharmacological results are consistent with the involvement of TRP-like channels in mechanosensing by L. polyedra. The TRP channels do not appear to be mechanoreceptors but rather are components of the mechanotransduction signaling pathway and may be activated via a PLC-dependent mechanism. The presence and function of TRP channels in a dinoflagellate emphasize the evolutionary conservation of both the channel structures and their functions.

  5. TRP channels in kidney disease.

    NARCIS (Netherlands)

    Hsu, Y.J.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2007-01-01

    Mammalian TRP channel proteins form six-transmembrane cation-permeable channels that may be grouped into six subfamilies on the basis of amino acid sequence homology (TRPC, TRPV, TRPM, TRPA, TRPP, and TRPML). Recent studies of TRP channels indicate that they are involved in numerous fundamental cell

  6. TRP channel proteins and signal transduction.

    Science.gov (United States)

    Minke, Baruch; Cook, Boaz

    2002-04-01

    TRP channel proteins constitute a large and diverse family of proteins that are expressed in many tissues and cell types. This family was designated TRP because of a spontaneously occurring Drosophila mutant lacking TRP that responded to a continuous light with a transient receptor potential (hence TRP). In addition to responses to light, TRPs mediate responses to nerve growth factor, pheromones, olfaction, mechanical, chemical, temperature, pH, osmolarity, vasorelaxation of blood vessels, and metabolic stress. Furthermore, mutations in several members of TRP-related channel proteins are responsible for several diseases, such as several tumors and neurodegenerative disorders. TRP-related channel proteins are found in a variety of organisms, tissues, and cell types, including nonexcitable, smooth muscle, and neuronal cells. The large functional diversity of TRPs is also reflected in their diverse permeability to ions, although, in general, they are classified as nonselective cationic channels. The molecular domains that are conserved in all members of the TRP family constitute parts of the transmembrane domains and in most members also the ankyrin-like repeats at the NH2 terminal of the protein and a "TRP domain" at the COOH terminal, which is a highly conserved 25-amino acid stretch with still unknown function. All of the above features suggest that members of the TRP family are "special assignment" channels, which are recruited to diverse signaling pathways. The channels' roles and characteristics such as gating mechanism, regulation, and permeability are determined by evolution according to the specific functional requirements.

  7. Structural domains required for channel function of the mouse transient receptor potential protein homologue TRP1beta.

    Science.gov (United States)

    Engelke, Michael; Friedrich, Olaf; Budde, Petra; Schäfer, Christina; Niemann, Ursula; Zitt, Christof; Jüngling, Eberhard; Rocks, Oliver; Lückhoff, Andreas; Frey, Jürgen

    2002-07-17

    Transient receptor potential proteins (TRP) are supposed to participate in the formation of store-operated Ca(2+) influx channels by co-assembly. However, little is known which domains facilitate the interaction of subunits. Contribution of the N-terminal coiled-coil domain and ankyrin-like repeats and the putative pore region of the mouse TRP1beta (mTRP1beta) variant to the formation of functional cation channels were analyzed following overexpression in HEK293 (human embryonic kidney) cells. MTRP1beta expressing cells exhibited enhanced Ca(2+) influx and enhanced whole-cell membrane currents compared to mTRP1beta deletion mutants. Using a yeast two-hybrid assay only the coiled-coil domain facilitated homodimerization of the N-terminus. These results suggest that the N-terminus of mTRP1beta is required for structural organization thus forming functional channels.

  8. Role of TRP channels in the cardiovascular system.

    Science.gov (United States)

    Yue, Zhichao; Xie, Jia; Yu, Albert S; Stock, Jonathan; Du, Jianyang; Yue, Lixia

    2015-02-01

    The transient receptor potential (TRP) superfamily consists of a large number of nonselective cation channels with variable degree of Ca(2+)-permeability. The 28 mammalian TRP channel proteins can be grouped into six subfamilies: canonical, vanilloid, melastatin, ankyrin, polycystic, and mucolipin TRPs. The majority of these TRP channels are expressed in different cell types including both excitable and nonexcitable cells of the cardiovascular system. Unlike voltage-gated ion channels, TRP channels do not have a typical voltage sensor, but instead can sense a variety of other stimuli including pressure, shear stress, mechanical stretch, oxidative stress, lipid environment alterations, hypertrophic signals, and inflammation products. By integrating multiple stimuli and transducing their activity to downstream cellular signal pathways via Ca(2+) entry and/or membrane depolarization, TRP channels play an essential role in regulating fundamental cell functions such as contraction, relaxation, proliferation, differentiation, and cell death. With the use of targeted deletion and transgenic mouse models, recent studies have revealed that TRP channels are involved in numerous cellular functions and play an important role in the pathophysiology of many diseases in the cardiovascular system. Moreover, several TRP channels are involved in inherited diseases of the cardiovascular system. This review presents an overview of current knowledge concerning the physiological functions of TRP channels in the cardiovascular system and their contributions to cardiovascular diseases. Ultimately, TRP channels may become potential therapeutic targets for cardiovascular diseases. Copyright © 2015 the American Physiological Society.

  9. Post-Translational Modifications of TRP Channels

    Directory of Open Access Journals (Sweden)

    Olaf Voolstra

    2014-04-01

    Full Text Available Transient receptor potential (TRP channels constitute an ancient family of cation channels that have been found in many eukaryotic organisms from yeast to human. TRP channels exert a multitude of physiological functions ranging from Ca2+ homeostasis in the kidney to pain reception and vision. These channels are activated by a wide range of stimuli and undergo covalent post-translational modifications that affect and modulate their subcellular targeting, their biophysical properties, or channel gating. These modifications include N-linked glycosylation, protein phosphorylation, and covalent attachment of chemicals that reversibly bind to specific cysteine residues. The latter modification represents an unusual activation mechanism of ligand-gated ion channels that is in contrast to the lock-and-key paradigm of receptor activation by its agonists. In this review, we summarize the post-translational modifications identified on TRP channels and, when available, explain their physiological role.

  10. TRP Channels in Human Prostate

    Directory of Open Access Journals (Sweden)

    Carl Van Haute

    2010-01-01

    Full Text Available This review gives an overview of morphological and functional characteristics in the human prostate. It will focus on the current knowledge about transient receptor potential (TRP channels expressed in the human prostate, and their putative role in normal physiology and prostate carcinogenesis. Controversial data regarding the expression pattern and the potential impact of TRP channels in prostate function, and their involvement in prostate cancer and other prostate diseases, will be discussed.

  11. Evolutionary conservation and changes in insect TRP channels.

    Science.gov (United States)

    Matsuura, Hironori; Sokabe, Takaaki; Kohno, Keigo; Tominaga, Makoto; Kadowaki, Tatsuhiko

    2009-09-10

    TRP (Transient Receptor Potential) channels respond to diverse stimuli and thus function as the primary integrators of varied sensory information. They are also activated by various compounds and secondary messengers to mediate cell-cell interactions as well as to detect changes in the local environment. Their physiological roles have been primarily characterized only in mice and fruit flies, and evolutionary studies are limited. To understand the evolution of insect TRP channels and the mechanisms of integrating sensory inputs in insects, we have identified and compared TRP channel genes in Drosophila melanogaster, Bombyx mori, Tribolium castaneum, Apis mellifera, Nasonia vitripennis, and Pediculus humanus genomes as part of genome sequencing efforts. All the insects examined have 2 TRPV, 1 TRPN, 1 TRPM, 3 TRPC, and 1 TRPML subfamily members, demonstrating that these channels have the ancient origins in insects. The common pattern also suggests that the mechanisms for detecting mechanical and visual stimuli and maintaining lysosomal functions may be evolutionarily well conserved in insects. However, a TRPP channel, the most ancient TRP channel, is missing in B. mori, A. mellifera, and N. vitripennis. Although P. humanus and D. melanogaster contain 4 TRPA subfamily members, the other insects have 5 TRPA subfamily members. T. castaneum, A. mellifera, and N. vitripennis contain TRPA5 channels, which have been specifically retained or gained in Coleoptera and Hymenoptera. Furthermore, TRPA1, which functions for thermotaxis in Drosophila, is missing in A. mellifera and N. vitripennis; however, they have other Hymenoptera-specific TRPA channels (AmHsTRPA and NvHsTRPA). NvHsTRPA expressed in HEK293 cells is activated by temperature increase, demonstrating that HsTRPAs function as novel thermal sensors in Hymenoptera. The total number of insect TRP family members is 13-14, approximately half that of mammalian TRP family members. As shown for mammalian TRP channels, this

  12. Evolutionary conservation and changes in insect TRP channels

    Directory of Open Access Journals (Sweden)

    Tominaga Makoto

    2009-09-01

    Full Text Available Abstract Background TRP (Transient Receptor Potential channels respond to diverse stimuli and thus function as the primary integrators of varied sensory information. They are also activated by various compounds and secondary messengers to mediate cell-cell interactions as well as to detect changes in the local environment. Their physiological roles have been primarily characterized only in mice and fruit flies, and evolutionary studies are limited. To understand the evolution of insect TRP channels and the mechanisms of integrating sensory inputs in insects, we have identified and compared TRP channel genes in Drosophila melanogaster, Bombyx mori, Tribolium castaneum, Apis mellifera, Nasonia vitripennis, and Pediculus humanus genomes as part of genome sequencing efforts. Results All the insects examined have 2 TRPV, 1 TRPN, 1 TRPM, 3 TRPC, and 1 TRPML subfamily members, demonstrating that these channels have the ancient origins in insects. The common pattern also suggests that the mechanisms for detecting mechanical and visual stimuli and maintaining lysosomal functions may be evolutionarily well conserved in insects. However, a TRPP channel, the most ancient TRP channel, is missing in B. mori, A. mellifera, and N. vitripennis. Although P. humanus and D. melanogaster contain 4 TRPA subfamily members, the other insects have 5 TRPA subfamily members. T. castaneum, A. mellifera, and N. vitripennis contain TRPA5 channels, which have been specifically retained or gained in Coleoptera and Hymenoptera. Furthermore, TRPA1, which functions for thermotaxis in Drosophila, is missing in A. mellifera and N. vitripennis; however, they have other Hymenoptera-specific TRPA channels (AmHsTRPA and NvHsTRPA. NvHsTRPA expressed in HEK293 cells is activated by temperature increase, demonstrating that HsTRPAs function as novel thermal sensors in Hymenoptera. Conclusion The total number of insect TRP family members is 13-14, approximately half that of mammalian TRP

  13. Sub-cellular distribution and translocation of TRP channels.

    Science.gov (United States)

    Toro, Carlos A; Arias, Luis A; Brauchi, Sebastian

    2011-01-01

    Cellular electrical activity is the result of a highly complex processes that involve the activation of ion channel proteins. Ion channels make pores on cell membranes that rapidly transit between conductive and non-conductive states, allowing different ions to flow down their electrochemical gradients across cell membranes. In the case of neuronal cells, ion channel activity orchestrates action potentials traveling through axons, enabling electrical communication between cells in distant parts of the body. Somatic sensation -our ability to feel touch, temperature and noxious stimuli- require ion channels able to sense and respond to our peripheral environment. Sensory integration involves the summing of various environmental cues and their conversion into electrical signals. Members of the Transient Receptor Potential (TRP) family of ion channels have emerged as important mediators of both cellular sensing and sensory integration. The regulation of the spatial and temporal distribution of membrane receptors is recognized as an important mechanism for controlling the magnitude of the cellular response and the time scale on which cellular signaling occurs. Several studies have shown that this mechanism is also used by TRP channels to modulate cellular response and ultimately fulfill their physiological function as sensors. However, the inner-working of this mode of control for TRP channels remains poorly understood. The question of whether TRPs intrinsically regulate their own vesicular trafficking or weather the dynamic regulation of TRP channel residence on the cell surface is caused by extrinsic changes in the rates of vesicle insertion or retrieval remain open. This review will examine the evidence that sub-cellular redistribution of TRP channels plays an important role in regulating their activity and explore the mechanisms that control the trafficking of vesicles containing TRP channels.

  14. Nociceptive TRP Channels: Sensory Detectors and Transducers in Multiple Pain Pathologies

    Directory of Open Access Journals (Sweden)

    Aaron D. Mickle

    2016-11-01

    Full Text Available Specialized receptors belonging to the transient receptor potential (TRP family of ligand-gated ion channels constitute the critical detectors and transducers of pain-causing stimuli. Nociceptive TRP channels are predominantly expressed by distinct subsets of sensory neurons of the peripheral nervous system. Several of these TRP channels are also expressed in neurons of the central nervous system, and in non-neuronal cells that communicate with sensory nerves. Nociceptive TRPs are activated by specific physico-chemical stimuli to provide the excitatory trigger in neurons. In addition, decades of research has identified a large number of immune and neuromodulators as mediators of nociceptive TRP channel activation during injury, inflammatory and other pathological conditions. These findings have led to aggressive targeting of TRP channels for the development of new-generation analgesics. This review summarizes the complex activation and/or modulation of nociceptive TRP channels under pathophysiological conditions, and how these changes underlie acute and chronic pain conditions. Furthermore, development of small-molecule antagonists for several TRP channels as analgesics, and the positive and negative outcomes of these drugs in clinical trials are discussed. Understanding the diverse functional and modulatory properties of nociceptive TRP channels is critical to function-based drug targeting for the development of evidence-based and efficacious new generation analgesics.

  15. Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2).

    Science.gov (United States)

    Grieben, Mariana; Pike, Ashley C W; Shintre, Chitra A; Venturi, Elisa; El-Ajouz, Sam; Tessitore, Annamaria; Shrestha, Leela; Mukhopadhyay, Shubhashish; Mahajan, Pravin; Chalk, Rod; Burgess-Brown, Nicola A; Sitsapesan, Rebecca; Huiskonen, Juha T; Carpenter, Elisabeth P

    2017-02-01

    Mutations in either polycystin-1 (PC1 or PKD1) or polycystin-2 (PC2, PKD2 or TRPP1) cause autosomal-dominant polycystic kidney disease (ADPKD) through unknown mechanisms. Here we present the structure of human PC2 in a closed conformation, solved by electron cryomicroscopy at 4.2-Å resolution. The structure reveals a novel polycystin-specific 'tetragonal opening for polycystins' (TOP) domain tightly bound to the top of a classic transient receptor potential (TRP) channel structure. The TOP domain is formed from two extensions to the voltage-sensor-like domain (VSLD); it covers the channel's endoplasmic reticulum lumen or extracellular surface and encloses an upper vestibule, above the pore filter, without blocking the ion-conduction pathway. The TOP-domain fold is conserved among the polycystins, including the homologous channel-like region of PC1, and is the site of a cluster of ADPKD-associated missense variants. Extensive contacts among the TOP-domain subunits, the pore and the VSLD provide ample scope for regulation through physical and chemical stimuli.

  16. TRP Channels as Therapeutic Targets in Diabetes and Obesity

    Directory of Open Access Journals (Sweden)

    Andrea Zsombok

    2016-08-01

    Full Text Available During the last three to four decades the prevalence of obesity and diabetes mellitus has greatly increased worldwide, including in the United States. Both the short- and long-term forecasts predict serious consequences for the near future, and encourage the development of solutions for the prevention and management of obesity and diabetes mellitus. Transient receptor potential (TRP channels were identified in tissues and organs important for the control of whole body metabolism. A variety of TRP channels has been shown to play a role in the regulation of hormone release, energy expenditure, pancreatic function, and neurotransmitter release in control, obese and/or diabetic conditions. Moreover, dietary supplementation of natural ligands of TRP channels has been shown to have potential beneficial effects in obese and diabetic conditions. These findings raised the interest and likelihood for potential drug development. In this mini-review, we discuss possibilities for better management of obesity and diabetes mellitus based on TRP-dependent mechanisms.

  17. Properties of the intracellular transient receptor potential (TRP) channel in yeast, Yvc1.

    Science.gov (United States)

    Chang, Yiming; Schlenstedt, Gabriel; Flockerzi, Veit; Beck, Andreas

    2010-05-17

    Transient receptor potential (TRP) channels are found among mammals, flies, worms, ciliates, Chlamydomonas, and yeast but are absent in plants. These channels are believed to be tetramers of proteins containing six transmembrane domains (TMs). Their primary structures are diverse with sequence similarities only in some short amino acid sequence motifs mainly within sequences covering TM5, TM6, and adjacent domains. In the yeast genome, there is one gene encoding a TRP-like sequence. This protein forms an ion channel in the vacuolar membrane and is therefore called Yvc1 for yeast vacuolar conductance 1. In the following we summarize its prominent features. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. TRP channel functions in the gastrointestinal tract.

    Science.gov (United States)

    Yu, Xiaoyun; Yu, Mingran; Liu, Yingzhe; Yu, Shaoyong

    2016-05-01

    Transient receptor potential (TRP) channels are predominantly distributed in both somatic and visceral sensory nervous systems and play a crucial role in sensory transduction. As the largest visceral organ system, the gastrointestinal (GI) tract frequently accommodates external inputs, which stimulate sensory nerves to initiate and coordinate sensory and motor functions in order to digest and absorb nutrients. Meanwhile, the sensory nerves in the GI tract are also able to detect potential tissue damage by responding to noxious irritants. This nocifensive function is mediated through specific ion channels and receptors expressed in a subpopulation of spinal and vagal afferent nerve called nociceptor. In the last 18 years, our understanding of TRP channel expression and function in GI sensory nervous system has been continuously improved. In this review, we focus on the expressions and functions of TRPV1, TRPA1, and TRPM8 in primary extrinsic afferent nerves innervated in the esophagus, stomach, intestine, and colon and briefly discuss their potential roles in relevant GI disorders.

  19. Immunolocalization and distribution of functional temperature-sensitive TRP channels in salivary glands.

    Science.gov (United States)

    Sobhan, Ubaidus; Sato, Masaki; Shinomiya, Takashi; Okubo, Migiwa; Tsumura, Maki; Muramatsu, Takashi; Kawaguchi, Mitsuru; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2013-11-01

    Transient receptor potential (TRP) cation channels are unique cellular sensors involved in multiple cellular functions. Their role in salivary secretion remains to be elucidated. The expression and localization of temperature-sensitive TRP channels in salivary (submandibular, sublingual and parotid) glands were analyzed by immunohistochemistry and quantitative real-time reverse transcription plus the polymerase chain reaction (RT-PCR). The effects of various TRP channel agonists on carbachol (CCh)-induced salivary secretion in the submandibular gland and on the intracellular Ca(2+) concentration ([Ca(2+)]i) in a submandibular epithelial cell line were also investigated. Immunohistochemistry revealed the expression of TRP-melastatin subfamily member 8 (TRPM8) and TRP-ankyrin subfamily member 1 (TRPA1) in myoepithelial, acinar and ductal cells in the sublingual, submandibular and parotid glands. In addition, TRP-vanilloid subfamily member 1 (TRPV1), TRPV3 and TRPV4 were also expressed in myoepithelial, acinar and ductal cells in all three types of gland. Quantitative real-time RT-PCR results demonstrated the mRNA expression of TRPV1, TRPV3, TRPV4, TRPM8 and TRPA1 in acinar and ductal cells in these salivary glands. Perfusion of the entire submandibular gland with the TRPV1 agonist capsaicin (1 μM) via the submandibular artery significantly increased CCh-induced salivation, whereas perfusion with TRPM8 and TRPA1 agonists (0.5 μM WS12 and 100 μM allyl isothiocyanate) decreased it. Application of agonists for each of the thermosensitive TRP channels increased [Ca(2+)]i in a submandibular epithelial cell line. These results indicate that temperature-sensitive TRP channels are localized and distributed in acinar, ductal and myoepithelial cells in salivary glands and that they play a functional role in the regulation and/or modulation of salivary secretion.

  20. Thermo-sensitive TRP channels in peripheral nerve injury: a review of their role in cold intolerance.

    Science.gov (United States)

    Kambiz, S; Duraku, L S; Holstege, J C; Hovius, S E R; Ruigrok, T J H; Walbeehm, E T

    2014-05-01

    One of the sensory complications of traumatic peripheral nerve injury is thermal intolerance, which manifests in humans mainly as cold intolerance. It has a major effect on the quality of life, and adequate therapy is not yet available. In order to better understand the pathophysiological background of thermal intolerance, we focus first on the various transient receptor potential (TRP) channels that are involved in temperature sensation, including their presence in peripheral nerves and in keratinocytes. Second, the role of thermo-sensitive TRP channels in cold and heat intolerance is described showing three different mechanisms that contribute to thermal intolerance in the skin: (a) an increased expression of TRP channels on nerve fibres and on keratinocytes, (b) a lower activation threshold of TRP channels and (c) the sprouting of non-injured nerve fibres. Finally, the data that are available on the effects of TRP channel agonists and antagonists and their clinical use are discussed. In conclusion, TRP channels play a major role in temperature sensation and in cold and heat intolerance. Unfortunately, the available pharmaceutical agents that successfully target TRP channels and counteract thermal intolerance are still very limited. Yet, our focus should remain on TRP channels since it is difficult to imagine a reliable treatment for thermal intolerance that will not involve TRP channels. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  1. Evolutionary conservation and changes in insect TRP channels

    OpenAIRE

    Tominaga Makoto; Kohno Keigo; Sokabe Takaaki; Matsuura Hironori; Kadowaki Tatsuhiko

    2009-01-01

    Abstract Background TRP (Transient Receptor Potential) channels respond to diverse stimuli and thus function as the primary integrators of varied sensory information. They are also activated by various compounds and secondary messengers to mediate cell-cell interactions as well as to detect changes in the local environment. Their physiological roles have been primarily characterized only in mice and fruit flies, and evolutionary studies are limited. To understand the evolution of insect TRP c...

  2. Significance of the Centrally Expressed TRP Channel "Painless" in "Drosophila" Courtship Memory

    Science.gov (United States)

    Sakai, Takaomi; Sato, Shoma; Ishimoto, Hiroshi; Kitamoto, Toshihiro

    2013-01-01

    Considerable evidence has demonstrated that transient receptor potential (TRP) channels play vital roles in sensory neurons, mediating responses to various environmental stimuli. In contrast, relatively little is known about how TRP channels exert their effects in the central nervous system to control complex behaviors. This is also true for the…

  3. Modulation of TRP channels by resveratrol and other stilbenoids

    Directory of Open Access Journals (Sweden)

    Yu Lina

    2013-02-01

    Full Text Available Abstract Background Resveratrol (3,5,4’ - trihydroxy-trans-stilbene, a widely distributed natural stilbenoid, was proposed to account for the unique effects of red wine on life span and health. It has been reported to possess various biological and pharmacological activities, such as anti-oxidant, anti-inflammatory, and anti-carcinogenic effects. Here, using whole-cell patch-clamp techniques and behavioral analyses, we investigated whether resveratrol and other stilbenoids can modulate TRP channels in sensory neurons in vitro, and have analgesic effects in vivo. Results We found that resveratrol dose-dependently suppressed the allyl isothiocyanate (AITC-induced currents (IAITC in HEK293 cells that express TRPA1, as well as in rat dorsal root ganglion (DRG neurons. Instead, pinosylvin methyl ether (PME, another derivate of stilbene which has a similar structure to resveratrol, dose-dependently blocked the capsaicin-induced currents (ICAP in HEK293 cells that express TRPV1 as well as in DRG neurons. Interestingly, resveratrol had no inhibitory effect on the ICAP, and PME had no effect on the IAITC. Otherwise, trans-stilbene showed no any effect on IAITC or ICAP. The concentration response curve of AITC showed that resveratrol inhibited the action of TRPA1 not by changing the EC50, but by suppressing the AITC-induced maximum response. By contrast, the inhibition of TRPV1 by PME did not change the capsaicin-induced maximum response but did cause a right shift of the EC50. Moreover, pre-administration of resveratrol suppressed intraplantar injections of AITC-evoked nocifensive behaviors, as well as that PME suppressed capsaicin-evoked one. Conclusions These data suggest that resveratrol and other stilbenoids may have an inhibitory effect on TRP channels. In addition, these stilbenoids modulate TRP channel activity in different ways.

  4. The transient receptor potential, TRP4, cation channel is a novel member of the family of calmodulin binding proteins.

    OpenAIRE

    Trost, C; Bergs, C; Himmerkus, N; Flockerzi, V

    2001-01-01

    The mammalian gene products, transient receptor potential (trp)1 to trp7, are related to the Drosophila TRP and TRP-like ion channels, and are candidate proteins underlying agonist-activated Ca(2+)-permeable ion channels. Recently, the TRP4 protein has been shown to be part of native store-operated Ca(2+)-permeable channels. These channels, most likely, are composed of other proteins in addition to TRP4. In the present paper we report the direct interaction of TRP4 and calmodulin (CaM) by: (1...

  5. A polycystin-type transient receptor potential (Trp channel that is activated by ATP

    Directory of Open Access Journals (Sweden)

    David Traynor

    2017-02-01

    Full Text Available ATP and ADP are ancient extra-cellular signalling molecules that in Dictyostelium amoebae cause rapid, transient increases in cytosolic calcium due to an influx through the plasma membrane. This response is independent of hetero-trimeric G-proteins, the putative IP3 receptor IplA and all P2X channels. We show, unexpectedly, that it is abolished in mutants of the polycystin-type transient receptor potential channel, TrpP. Responses to the chemoattractants cyclic-AMP and folic acid are unaffected in TrpP mutants. We report that the DIF morphogens, cyclic-di-GMP, GABA, glutamate and adenosine all induce strong cytoplasmic calcium responses, likewise independently of TrpP. Thus, TrpP is dedicated to purinergic signalling. ATP treatment causes cell blebbing within seconds but this does not require TrpP, implicating a separate purinergic receptor. We could detect no effect of ATP on chemotaxis and TrpP mutants grow, chemotax and develop almost normally in standard conditions. No gating ligand is known for the human homologue of TrpP, polycystin-2, which causes polycystic kidney disease. Our results now show that TrpP mediates purinergic signalling in Dictyostelium and is directly or indirectly gated by ATP.

  6. Membrane-tethered peptides patterned after the TRP domain (TRPducins) selectively inhibit TRPV1 channel activity.

    Science.gov (United States)

    Valente, Pierluigi; Fernández-Carvajal, Asia; Camprubí-Robles, María; Gomis, Ana; Quirce, Susana; Viana, Félix; Fernández-Ballester, Gregorio; González-Ros, José M; Belmonte, Carlos; Planells-Cases, Rosa; Ferrer-Montiel, Antonio

    2011-05-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is a thermosensory receptor implicated in diverse physiological and pathological processes. The TRP domain, a highly conserved region in the C terminus adjacent to the internal channel gate, is critical for subunit tetramerization and channel gating. Here, we show that cell-penetrating, membrane-anchored peptides patterned after this protein domain are moderate and selective TRPV1 antagonists both in vitro and in vivo, blocking receptor activity in intact rat primary sensory neurons and their peripheral axons with mean decline time of 30 min. The most potent lipopeptide, TRP-p5, blocked all modes of TRPV1 gating with micromolar efficacy (IC(50)100 μM). TRP-p5 did not affect the capsaicin sensitivity of the vanilloid receptor. Our data suggest that TRP-p5 interferes with protein-protein interactions at the level of the TRP domain that are essential for the "conformational" change that leads to gate opening. Therefore, these palmitoylated peptides, which we termed TRPducins, are noncompetitive, voltage-independent, sequence-specific TRPV1 blockers. Our findings indicate that TRPducin-like peptides may embody a novel molecular strategy that can be exploited to generate a selective pharmacological arsenal for the TRP superfamily of ion channels.

  7. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system

    Science.gov (United States)

    Holzer, Peter

    2011-01-01

    Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca2+ and Mg2+, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential. PMID:21420431

  8. A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels.

    Science.gov (United States)

    Clapham, David E; Miller, Christopher

    2011-12-06

    The exceptionally high temperature sensitivity of certain transient receptor potential (TRP) family ion channels is the molecular basis of hot and cold sensation in sensory neurons. The laws of thermodynamics dictate that opening of these specialized TRP channels must involve an unusually large conformational standard-state enthalpy, ΔH(o): positive ΔH(o) for heat-activated and negative ΔH(o) for cold-activated TRPs. However, the molecular source of such high-enthalpy changes has eluded neurobiologists and biophysicists. Here we offer a general, unifying mechanism for both hot and cold activation that recalls long-appreciated principles of protein folding. We suggest that TRP channel gating is accompanied by large changes in molar heat capacity, ΔC(P). This postulate, along with the laws of thermodynamics and independent of mechanistic detail, leads to the conclusion that hot- and cold-sensing TRPs operate by identical conformational changes.

  9. Direct Binding between Pre-S1 and TRP-like Domains in TRPP Channels Mediates Gating and Functional Regulation by PIP2

    OpenAIRE

    Wang Zheng; Ruiqi Cai; Laura Hofmann; Vasyl Nesin; Qiaolin Hu; Wentong Long; Mohammad Fatehi; Xiong Liu; Shaimaa Hussein; Tim Kong; Jingru Li; Peter E. Light; Jingfeng Tang; Veit Flockerzi; Leonidas Tsiokas

    2018-01-01

    Transient receptor potential (TRP) channels are regulated by diverse stimuli comprising thermal, chemical, and mechanical modalities. They are also commonly regulated by phosphatidylinositol-4,5-bisphosphate (PIP2), with underlying mechanisms largely unknown. We here revealed an intramolecular interaction of the TRPP3 N and C termini (N-C) that is functionally essential. The interaction was mediated by aromatic Trp81 in pre-S1 domain and cationic Lys568 in TRP-like domain. Structure-function ...

  10. Functional TRP and ASIC-like channels in cultured urothelial cells from the rat.

    Science.gov (United States)

    Kullmann, F Aura; Shah, M A; Birder, L A; de Groat, W C

    2009-04-01

    Transient receptor potential (TRP) and acid-sensing ion channels (ASIC) are molecular detectors of chemical, mechanical, thermal, and nociceptive stimuli in sensory neurons. They have been identified in the urothelium, a tissue considered part of bladder sensory pathways, where they might play a role in bladder function. This study investigated functional properties of TRP and ASIC channels in cultured urothelial cells from the rat using patch-clamp and fura 2 Ca(2+) imaging techniques. The TRPV4 agonist 4alpha-phorbol-12,13 didecanoate (4alpha-PDD; 1-5 microM) and the TRPA1/TRPM8 agonist icilin (50-100 microM) elicited transient currents in a high percentage of cells (>70%). 4alpha-PDD responses were suppressed by the TRPV4 antagonist HC-010961 (10 microM). The TRPV1 agonist capsaicin (1-100 microM) and the TRPA1/TRPM8 agonist menthol (5-200 microM) elicited transient currents in a moderate percentage of cells ( approximately 25%). All of these agonists increased intracellular calcium concentration ([Ca(2+)](i)). Most cells responded to more than one TRP agonist (e.g., capsaicin and 4alpha-PDD), indicating coexpression of different TRP channels. In the presence of the TRPV1 antagonist capsazepine (10 microM), changes in pH induced by HCl elicited ionic currents (pH 5.5) and increased [Ca(2+)](i) (pH 6.5) in approximately 50% of cells. Changes in pH using acetic acid (pH 5.5) elicited biphasic-like currents. Responses induced by acid were sensitive to amiloride (10 microM). In summary, urothelial cells express multiple TRP and ASIC channels, whose activation elicits ionic currents and Ca(2+) influx. These "neuron-like" properties might be involved in transmitter release, such as ATP, that can act on afferent nerves or smooth muscle to modulate their responses to different stimuli.

  11. Direct Binding between Pre-S1 and TRP-like Domains in TRPP Channels Mediates Gating and Functional Regulation by PIP2

    Directory of Open Access Journals (Sweden)

    Wang Zheng

    2018-02-01

    Full Text Available Transient receptor potential (TRP channels are regulated by diverse stimuli comprising thermal, chemical, and mechanical modalities. They are also commonly regulated by phosphatidylinositol-4,5-bisphosphate (PIP2, with underlying mechanisms largely unknown. We here revealed an intramolecular interaction of the TRPP3 N and C termini (N-C that is functionally essential. The interaction was mediated by aromatic Trp81 in pre-S1 domain and cationic Lys568 in TRP-like domain. Structure-function analyses revealed similar N-C interaction in TRPP2 as well as TRPM8/-V1/-C4 via highly conserved tryptophan and lysine/arginine residues. PIP2 bound to cationic residues in TRPP3, including K568, thereby disrupting the N-C interaction and negatively regulating TRPP3. PIP2 had similar negative effects on TRPP2. Interestingly, we found that PIP2 facilitates the N-C interaction in TRPM8/-V1, resulting in channel potentiation. The intramolecular N-C interaction might represent a shared mechanism underlying the gating and PIP2 regulation of TRP channels.

  12. Structure of the TRPV1 ion channel determined by electron cryo-microscopy.

    Science.gov (United States)

    Liao, Maofu; Cao, Erhu; Julius, David; Cheng, Yifan

    2013-12-05

    Transient receptor potential (TRP) channels are sensors for a wide range of cellular and environmental signals, but elucidating how these channels respond to physical and chemical stimuli has been hampered by a lack of detailed structural information. Here we exploit advances in electron cryo-microscopy to determine the structure of a mammalian TRP channel, TRPV1, at 3.4 Å resolution, breaking the side-chain resolution barrier for membrane proteins without crystallization. Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central ion pathway formed by transmembrane segments 5-6 (S5-S6) and the intervening pore loop, which is flanked by S1-S4 voltage-sensor-like domains. TRPV1 has a wide extracellular 'mouth' with a short selectivity filter. The conserved 'TRP domain' interacts with the S4-S5 linker, consistent with its contribution to allosteric modulation. Subunit organization is facilitated by interactions among cytoplasmic domains, including amino-terminal ankyrin repeats. These observations provide a structural blueprint for understanding unique aspects of TRP channel function.

  13. Systematic and quantitative mRNA expression analysis of TRP channel genes at the single trigeminal and dorsal root ganglion level in mouse

    Directory of Open Access Journals (Sweden)

    Vandewauw Ine

    2013-02-01

    Full Text Available Abstract Background Somatosensory nerve fibres arising from cell bodies within the trigeminal ganglia (TG in the head and from a string of dorsal root ganglia (DRG located lateral to the spinal cord convey endogenous and environmental stimuli to the central nervous system. Although several members of the transient receptor potential (TRP superfamily of cation channels have been implicated in somatosensation, the expression levels of TRP channel genes in the individual sensory ganglia have never been systematically studied. Results Here, we used quantitative real-time PCR to analyse and compare mRNA expression of all TRP channels in TG and individual DRGs from 27 anatomically defined segments of the spinal cord of the mouse. At the mRNA level, 17 of the 28 TRP channel genes, TRPA1, TRPC1, TRPC3, TRPC4, TRPC5, TRPM2, TRPM3, TRPM4, TRPM5, TRPM6, TRPM7, TRPM8, TRPV1, TRPV2, TRPV4, TRPML1 and TRPP2, were detectable in every tested ganglion. Notably, four TRP channels, TRPC4, TRPM4, TRPM8 and TRPV1, showed statistically significant variation in mRNA levels between DRGs from different segments, suggesting ganglion-specific regulation of TRP channel gene expression. These ganglion-to-ganglion differences in TRP channel transcript levels may contribute to the variability in sensory responses in functional studies. Conclusions We developed, compared and refined techniques to quantitatively analyse the relative mRNA expression of all TRP channel genes at the single ganglion level. This study also provides for the first time a comparative mRNA distribution profile in TG and DRG along the entire vertebral column for the mammalian TRP channel family.

  14. Direct Binding between Pre-S1 and TRP-like Domains in TRPP Channels Mediates Gating and Functional Regulation by PIP2.

    Science.gov (United States)

    Zheng, Wang; Cai, Ruiqi; Hofmann, Laura; Nesin, Vasyl; Hu, Qiaolin; Long, Wentong; Fatehi, Mohammad; Liu, Xiong; Hussein, Shaimaa; Kong, Tim; Li, Jingru; Light, Peter E; Tang, Jingfeng; Flockerzi, Veit; Tsiokas, Leonidas; Chen, Xing-Zhen

    2018-02-06

    Transient receptor potential (TRP) channels are regulated by diverse stimuli comprising thermal, chemical, and mechanical modalities. They are also commonly regulated by phosphatidylinositol-4,5-bisphosphate (PIP2), with underlying mechanisms largely unknown. We here revealed an intramolecular interaction of the TRPP3 N and C termini (N-C) that is functionally essential. The interaction was mediated by aromatic Trp81 in pre-S1 domain and cationic Lys568 in TRP-like domain. Structure-function analyses revealed similar N-C interaction in TRPP2 as well as TRPM8/-V1/-C4 via highly conserved tryptophan and lysine/arginine residues. PIP2 bound to cationic residues in TRPP3, including K568, thereby disrupting the N-C interaction and negatively regulating TRPP3. PIP2 had similar negative effects on TRPP2. Interestingly, we found that PIP2 facilitates the N-C interaction in TRPM8/-V1, resulting in channel potentiation. The intramolecular N-C interaction might represent a shared mechanism underlying the gating and PIP2 regulation of TRP channels. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Opportunistic activation of TRP receptors by endogenous lipids: exploiting lipidomics to understand TRP receptor cellular communication.

    Science.gov (United States)

    Bradshaw, Heather B; Raboune, Siham; Hollis, Jennifer L

    2013-03-19

    Transient receptor potential channels (TRPs) form a large family of ubiquitous non-selective cation channels that function as cellular sensors and in many cases regulate intracellular calcium. Identification of the endogenous ligands that activate these TRP receptors is still under intense investigation with the majority of these channels still remaining "orphans." That these channels respond to a variety of external stimuli (e.g. plant-derived lipids, changes in temperature, and changes in pH) provides a framework for their abilities as cellular sensors, however, the mechanism of direct activation is still under much debate and research. In the cases where endogenous ligands (predominately lipids) have shown direct activation of a channel, multiple ligands have been shown to activate the same channel suggesting that these receptors are "promiscuous" in nature. Lipidomics of a growing class of endogenous lipids, N-acyl amides, the most famous of which is N-arachidonoyl ethanolamine (the endogenous cannabinoid, Anandamide) is providing a novel set of ligands that have been shown to activate some members of the TRP family and have the potential to deorphanize many more. Here it is argued that activation of TRPV receptors, a subset of the larger family of TRPs, by multiple endogenous lipids that are structurally analogous is a model system to drive our understanding that many TRP receptors are not promiscuous, but are more characteristically "opportunistic" in nature; exploiting the structural similarity and biosynthesis of a narrow range of analogous endogenous lipids. In addition, this manuscript will compare the activation properties of TRPC5 to the activity profile of an "orphan" lipid, N-palmitoyl glycine; further demonstrating that lipidomics aimed at expanding our knowledge of the family of N-acyl amides has the potential to provide novel avenues of research for TRP receptors. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Modulation of innate and learned sexual behaviors by the TRP channel Painless expressed in the fruit fly brain: behavioral genetic analysis and its implications

    Directory of Open Access Journals (Sweden)

    Shoma eSato

    2014-12-01

    Full Text Available Transient receptor potential (TRP channels have attracted considerable attention because of their vital roles in primary sensory neurons, mediating responses to a wide variety of external environmental stimuli. However, much less is known about how TRP channels in the brain respond to intrinsic signals and are involved in neurophysiological processes that control complex behaviors. Painless (Pain is the Drosophila TRP channel that was initially identified as a molecular sensor responsible for detecting noxious thermal and mechanical stimuli. Here, we review recent behavioral genetic studies demonstrating that Pain expressed in the brain plays a critical role in both innate and learned aspects of sexual behaviors. Several members of the TRP channel superfamily play evolutionarily conserved roles in sensory neurons as well as in other peripheral tissues. It is thus expected that brain TRP channels in vertebrates and invertebrates would have some common physiological functions. Studies of Pain in the Drosophila brain using a unique combination of genetics and physiological techniques should provide valuable insights into the fundamental principles concerning TRP channels expressed in the vertebrate and invertebrate brains.

  17. Expression and distribution of transient receptor potential (TRP) channels in bladder epithelium.

    Science.gov (United States)

    Yu, Weiqun; Hill, Warren G; Apodaca, Gerard; Zeidel, Mark L

    2011-01-01

    The urothelium is proposed to be a sensory tissue that responds to mechanical stress by undergoing dynamic membrane trafficking and neurotransmitter release; however, the molecular basis of this function is poorly understood. Transient receptor potential (TRP) channels are ideal candidates to fulfill such a role as they can sense changes in temperature, osmolarity, and mechanical stimuli, and several are reported to be expressed in the bladder epithelium. However, their complete expression profile is unknown and their cellular localization is largely undefined. We analyzed expression of all 33 TRP family members in mouse bladder and urothelium by RT-PCR and found 22 specifically expressed in the urothelium. Of the latter, 10 were chosen for closer investigation based on their known mechanosensory or membrane trafficking functions in other cell types. Western blots confirmed urothelial expression of TRPC1, TRPC4, TRPV1, TRPV2, TRPV4, TRPM4, TRPM7, TRPML1, and polycystins 1 and 2 (PKD1 and PKD2) proteins. We further defined the cellular and subcellular localization of all 10 TRP channels. TRPV2 and TRPM4 were prominently localized to the umbrella cell apical membrane, while TRPC4 and TRPV4 were identified on their abluminal surfaces. TRPC1, TRPM7, and TRPML1 were localized to the cytoplasm, while PKD1 and PKD2 were expressed on the apical and basolateral membranes of umbrella cells as well as in the cytoplasm. The cellular location of TRPV1 in the bladder has been debated, but colocalization with neuronal marker calcitonin gene-related peptide indicated clearly that it is present on afferent neurons that extend into the urothelium, but may not be expressed by the urothelium itself. These findings are consistent with the hypothesis that the urothelium acts as a sentinel and by expressing multiple TRP channels it is likely it can detect and presumably respond to a diversity of external stimuli and suggest that it plays an important role in urothelial signal

  18. Stimulation of Drosophila TrpL by capacitative Ca2+ entry.

    OpenAIRE

    Estacion, M; Sinkins, W G; Schilling, W P

    1999-01-01

    Trp-like protein (TrpL, where Trp is transient receptor-potential protein) of Drosophila, a non-selective cation channel activated in photoreceptor cells by a phospholipase C-dependent mechanism, is thought to be a prototypical receptor-activated channel. Our previous studies showed that TrpL channels are not activated by depletion of internal Ca2+ stores when expressed in Sf9 cells. Using fura-2 to measure cation influx via TrpL, and cell-attached patch recordings to monitor TrpL single-chan...

  19. Crystal structure of the epithelial calcium channel TRPV6.

    Science.gov (United States)

    Saotome, Kei; Singh, Appu K; Yelshanskaya, Maria V; Sobolevsky, Alexander I

    2016-06-23

    Precise regulation of calcium homeostasis is essential for many physiological functions. The Ca(2+)-selective transient receptor potential (TRP) channels TRPV5 and TRPV6 play vital roles in calcium homeostasis as Ca(2+) uptake channels in epithelial tissues. Detailed structural bases for their assembly and Ca(2+) permeation remain obscure. Here we report the crystal structure of rat TRPV6 at 3.25 Å resolution. The overall architecture of TRPV6 reveals shared and unique features compared with other TRP channels. Intracellular domains engage in extensive interactions to form an intracellular 'skirt' involved in allosteric modulation. In the K(+) channel-like transmembrane domain, Ca(2+) selectivity is determined by direct coordination of Ca(2+) by a ring of aspartate side chains in the selectivity filter. On the basis of crystallographically identified cation-binding sites at the pore axis and extracellular vestibule, we propose a Ca(2+) permeation mechanism. Our results provide a structural foundation for understanding the regulation of epithelial Ca(2+) uptake and its role in pathophysiology.

  20. The Transient Receptor Potential (TRP) Channel Family in Colletotrichum graminicola: A Molecular and Physiological Analysis.

    Science.gov (United States)

    Lange, Mario; Weihmann, Fabian; Schliebner, Ivo; Horbach, Ralf; Deising, Holger B; Wirsel, Stefan G R; Peiter, Edgar

    2016-01-01

    Calcium (Ca2+) is a universal second messenger in all higher organisms and centrally involved in the launch of responses to environmental stimuli. Ca2+ signals in the cytosol are initiated by the activation of Ca2+ channels in the plasma membrane and/or in endomembranes. Yeast (Saccharomyces cerevisiae) contains a Ca2+-permeable channel of the TRP family, TRPY1, which is localized in the vacuolar membrane and contributes to cytosolic free Ca2+ ([Ca2+]cyt) elevations, for example in response to osmotic upshock. A TRPY1 homologue in the rice blast fungus is known to be important for growth and pathogenicity. To determine the role of the TRP channel family in the maize pathogen Colletotrichum graminicola, proteins homologous to TRPY1 were searched. This identified not one, but four genes in the C. graminicola genome, which had putative orthologs in other fungi, and which we named CgTRPF1 through 4. The topology of the CgTRPF proteins resembled that of TRPY1, albeit with a variable number of transmembrane (TM) domains additional to the six-TM-domain core and a diverse arrangement of putatively Ca2+-binding acidic motifs. All CgTRPF genes were expressed in axenic culture and throughout the infection of maize. Like TRPY1, all TRPF proteins of C. graminicola were localized intracellularly, albeit three of them were found not in large vacuoles, but co-localized in vesicular structures. Deletion strains for the CgTRPF genes were not altered in processes thought to involve Ca2+ release from internal stores, i.e. spore germination, the utilization of complex carbon sources, and the generation of tip-focussed [Ca2+]cyt spikes. Heterologous expression of CgTRPF1 through 4 in a tryp1Δ yeast mutant revealed that none of the channels mediated the release of Ca2+ in response to osmotic upshock. Accordingly, aequorin-based [Ca2+]cyt measurements of C. graminicola showed that in this fungus, osmotic upshock-triggered [Ca2+]cyt elevations were generated entirely by influx of Ca2

  1. The Transient Receptor Potential (TRP Channel Family in Colletotrichum graminicola: A Molecular and Physiological Analysis.

    Directory of Open Access Journals (Sweden)

    Mario Lange

    Full Text Available Calcium (Ca2+ is a universal second messenger in all higher organisms and centrally involved in the launch of responses to environmental stimuli. Ca2+ signals in the cytosol are initiated by the activation of Ca2+ channels in the plasma membrane and/or in endomembranes. Yeast (Saccharomyces cerevisiae contains a Ca2+-permeable channel of the TRP family, TRPY1, which is localized in the vacuolar membrane and contributes to cytosolic free Ca2+ ([Ca2+]cyt elevations, for example in response to osmotic upshock. A TRPY1 homologue in the rice blast fungus is known to be important for growth and pathogenicity. To determine the role of the TRP channel family in the maize pathogen Colletotrichum graminicola, proteins homologous to TRPY1 were searched. This identified not one, but four genes in the C. graminicola genome, which had putative orthologs in other fungi, and which we named CgTRPF1 through 4. The topology of the CgTRPF proteins resembled that of TRPY1, albeit with a variable number of transmembrane (TM domains additional to the six-TM-domain core and a diverse arrangement of putatively Ca2+-binding acidic motifs. All CgTRPF genes were expressed in axenic culture and throughout the infection of maize. Like TRPY1, all TRPF proteins of C. graminicola were localized intracellularly, albeit three of them were found not in large vacuoles, but co-localized in vesicular structures. Deletion strains for the CgTRPF genes were not altered in processes thought to involve Ca2+ release from internal stores, i.e. spore germination, the utilization of complex carbon sources, and the generation of tip-focussed [Ca2+]cyt spikes. Heterologous expression of CgTRPF1 through 4 in a tryp1Δ yeast mutant revealed that none of the channels mediated the release of Ca2+ in response to osmotic upshock. Accordingly, aequorin-based [Ca2+]cyt measurements of C. graminicola showed that in this fungus, osmotic upshock-triggered [Ca2+]cyt elevations were generated entirely by

  2. Extracts and compounds active on TRP ion channels from Waldheimia glabra, a ritual medicinal plant from Himalaya.

    Science.gov (United States)

    Giorgi, Annamaria; Bassoli, Angela; Borgonovo, Gigliola; Panseri, Sara; Manzo, Alessandra; Pentimalli, Daniela; Schiano Moriello, Aniello; De Petrocellis, Luciano

    2017-08-15

    Waldheimia glabra (Decne.) Regel is a wild plant from the Himalayan Mountains, commonly known as Smooth Ground Daisy. This plant is traditionally used by local populations in religious rituals (incense) or in traditional herbal medicine to treat skin diseases, headache, joint pain and fever. In literature few data are available on the investigation of this aromatic plant. The present work aims at deepening knowledge about the chemical composition of W. glabra extracts and incense, as well as its activity on TRP ion channels. Extracts and incense of W. glabra were analyzed by using HS-SPME GC/MS, GC/MS and NMR analysis. Tests on the activity of W. glabra extracts and isolated compounds (+)-ludartin 1 and B-ring-homo-tonghaosu 2 on TRP channels were also performed. Some extracts and pure compounds from W. glabra showed an interesting activity in terms of efficacy and potency on rat TRPA1, an ion channel involved in several sensory mechanisms, including pungency, environmental irritation and pain perception. Activity is discussed and compared with that of other known TRPA1 natural agonists with different chemical structures. All compounds showed only a negligible inhibition activity on rat TRPM8 ion channel. Our findings demonstrate that W. glabra is involved in the receptor activation mechanism and therefore represents a new natural product potentially useful in pharmaceutical and agrifood research. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. TRP channels and traffic-related environmental pollution-induced pulmonary disease.

    Science.gov (United States)

    Akopian, Armen N; Fanick, E Robert; Brooks, Edward G

    2016-05-01

    Environmental pollutant exposures are major risk factors for adverse health outcomes, with increased morbidity and mortality in humans. Diesel exhaust (DE) is one of the major harmful components of traffic-related air pollution. Exposure to DE affects several physiological systems, including the airways, and pulmonary diseases are increased in highly populated urban areas. Hence, there are urgent needs to (1) create newer and lesser polluting fuels, (2) improve exhaust aftertreatments and reduce emissions, and (3) understand mechanisms of actions for toxic effects of both conventional and cleaner diesel fuels on the lungs. These steps could aid the development of diagnostics and interventions to prevent the negative impact of traffic-related air pollution on the pulmonary system. Exhaust from conventional, and to a lesser extent, clean fuels, contains particulate matter (PM) and more than 400 additional chemical constituents. The major toxic constituents are nitrogen oxides (NOx) and polycyclic aromatic hydrocarbons (PAHs). PM and PAHs could potentially act via transient receptor potential (TRP) channels. In this review, we will first discuss the associations between DE from conventional as well as clean fuel technologies and acute and chronic airway inflammation. We will then review possible activation and/or potentiation of TRP vanilloid type 1 (TRPV1) and ankyrin 1 (TRPA1) channels by PM and PAHs. Finally, we will discuss and summarize recent findings on the mechanisms whereby TRPs could control the link between DE and airway inflammation, which is a primary determinant leading to pulmonary disease.

  4. Mutation of I696 and W697 in the TRP box of vanilloid receptor subtype I modulates allosteric channel activation.

    Science.gov (United States)

    Gregorio-Teruel, Lucia; Valente, Pierluigi; González-Ros, José Manuel; Fernández-Ballester, Gregorio; Ferrer-Montiel, Antonio

    2014-03-01

    The transient receptor potential vanilloid receptor subtype I (TRPV1) channel acts as a polymodal sensory receptor gated by chemical and physical stimuli. Like other TRP channels, TRPV1 contains in its C terminus a short, conserved domain called the TRP box, which is necessary for channel gating. Substitution of two TRP box residues-I696 and W697-with Ala markedly affects TRPV1's response to all activating stimuli, which indicates that these two residues play a crucial role in channel gating. We systematically replaced I696 and W697 with 18 native l-amino acids (excluding cysteine) and evaluated the effect on voltage- and capsaicin-dependent gating. Mutation of I696 decreased channel activation by either voltage or capsaicin; furthermore, gating was only observed with substitution of hydrophobic amino acids. Substitution of W697 with any of the 18 amino acids abolished gating in response to depolarization alone, shifting the threshold to unreachable voltages, but not capsaicin-mediated gating. Moreover, vanilloid-activated responses of W697X mutants showed voltage-dependent gating along with a strong voltage-independent component. Analysis of the data using an allosteric model of activation indicates that mutation of I696 and W697 primarily affects the allosteric coupling constants of the ligand and voltage sensors to the channel pore. Together, our findings substantiate the notion that inter- and/or intrasubunit interactions at the level of the TRP box are critical for efficient coupling of stimulus sensing and gate opening. Perturbation of these interactions markedly reduces the efficacy and potency of the activating stimuli. Furthermore, our results identify these interactions as potential sites for pharmacological intervention.

  5. "TRP inflammation" relationship in cardiovascular system.

    Science.gov (United States)

    Numata, Tomohiro; Takahashi, Kiriko; Inoue, Ryuji

    2016-05-01

    Despite considerable advances in the research and treatment, the precise relationship between inflammation and cardiovascular (CV) disease remains incompletely understood. Therefore, understanding the immunoinflammatory processes underlying the initiation, progression, and exacerbation of many cardiovascular diseases is of prime importance. The innate immune system has an ancient origin and is well conserved across species. Its activation occurs in response to pathogens or tissue injury. Recent studies suggest that altered ionic balance, and production of noxious gaseous mediators link to immune and inflammatory responses with altered ion channel expression and function. Among plausible candidates for this are transient receptor potential (TRP) channels that function as polymodal sensors and scaffolding proteins involved in many physiological and pathological processes. In this review, we will first focus on the relevance of TRP channel to both exogenous and endogenous factors related to innate immune response and transcription factors related to sustained inflammatory status. The emerging role of inflammasome to regulate innate immunity and its possible connection to TRP channels will also be discussed. Secondly, we will discuss about the linkage of TRP channels to inflammatory CV diseases, from a viewpoint of inflammation in a general sense which is not restricted to the innate immunity. These knowledge may serve to provide new insights into the pathogenesis of various inflammatory CV diseases and their novel therapeutic strategies.

  6. TRP channels in brown and white adipogenesis from human progenitors : new therapeutic targets and the caveats associated with the common antibiotic, streptomycin

    NARCIS (Netherlands)

    Goralczyk, A.; van Vijven, M.; Koch, M.; Badowski, C.; Yassin, M.S.; Toh, S.A.; Shabbir, A.; Franco-Obregón, A.; Raghunath, M.

    2017-01-01

    Transient receptor potential (TRP) channels are polymodal cell sensors responding to diverse stimuli and widely implicated in the developmental programs of numerous tissues. The evidence for an involvement of TRP family members in adipogenesis, however, is scant. We present the first comprehensive

  7. The role of transient receptor potential channels in joint diseases.

    Science.gov (United States)

    Krupkova, O; Zvick, J; Wuertz-Kozak, K

    2017-10-10

    Transient receptor potential channels (TRP channels) are cation selective transmembrane receptors with diverse structures, activation mechanisms and physiological functions. TRP channels act as cellular sensors for a plethora of stimuli, including temperature, membrane voltage, oxidative stress, mechanical stimuli, pH and endogenous, as well as, exogenous ligands, thereby illustrating their versatility. As such, TRP channels regulate various functions in both excitable and non-excitable cells, mainly by mediating Ca2+ homeostasis. Dysregulation of TRP channels is implicated in many pathologies, including cardiovascular diseases, muscular dystrophies and hyperalgesia. However, the importance of TRP channel expression, physiological function and regulation in chondrocytes and intervertebral disc (IVD) cells is largely unexplored. Osteoarthritis (OA) and degenerative disc disease (DDD) are chronic age-related disorders that significantly affect the quality of life by causing pain, activity limitation and disability. Furthermore, currently available therapies cannot effectively slow-down or stop progression of these diseases. Both OA and DDD are characterised by reduced tissue cellularity, enhanced inflammatory responses and molecular, structural and mechanical alterations of the extracellular matrix, hence affecting load distribution and reducing joint flexibility. However, knowledge on how chondrocytes and IVD cells sense their microenvironment and respond to its changes is still limited. In this review, we introduced six families of mammalian TRP channels, their mechanisms of activation, as well as, activation-driven cellular consequences. We summarised the current knowledge on TRP channel expression and activity in chondrocytes and IVD cells, as well as, the significance of TRP channels as therapeutic targets for the treatment of OA and DDD.

  8. The role of transient receptor potential channels in joint diseases

    Directory of Open Access Journals (Sweden)

    O Krupkova

    2017-10-01

    Full Text Available ransient receptor potential channels (TRP channels are cation selective transmembrane receptors with diverse structures, activation mechanisms and physiological functions. TRP channels act as cellular sensors for a plethora of stimuli, including temperature, membrane voltage, oxidative stress, mechanical stimuli, pH and endogenous, as well as, exogenous ligands, thereby illustrating their versatility. As such, TRP channels regulate various functions in both excitable and non-excitable cells, mainly by mediating Ca2+ homeostasis. Dysregulation of TRP channels is implicated in many pathologies, including cardiovascular diseases, muscular dystrophies and hyperalgesia. However, the importance of TRP channel expression, physiological function and regulation in chondrocytes and intervertebral disc (IVD cells is largely unexplored. Osteoarthritis (OA and degenerative disc disease (DDD are chronic age-related disorders that significantly affect the quality of life by causing pain, activity limitation and disability. Furthermore, currently available therapies cannot effectively slow-down or stop progression of these diseases. Both OA and DDD are characterised by reduced tissue cellularity, enhanced inflammatory responses and molecular, structural and mechanical alterations of the extracellular matrix, hence affecting load distribution and reducing joint flexibility. However, knowledge on how chondrocytes and IVD cells sense their microenvironment and respond to its changes is still limited. In this review, we introduced six families of mammalian TRP channels, their mechanisms of activation, as well as, activation-driven cellular consequences. We summarised the current knowledge on TRP channel expression and activity in chondrocytes and IVD cells, as well as, the significance of TRP channels as therapeutic targets for the treatment of OA and DDD.

  9. Transient Receptor Potential channels: What's happening? Reflections in the wake of the 2009 TRP Meeting, Karolinska Institutet, Stockholm.

    Science.gov (United States)

    Goswami, Chandan; Islam, Md Shahidul

    2010-01-01

    More than 150 participants from 25 countries gathered in Stockholm during 25(th) to 27(th) Sept 2009 to attend the meeting "TRP channels: from sensory signaling to human disease" and enjoyed an international, intensive and vibrant meeting. This meeting shed lights on the recent advances made in this field of research in different sectors of biology, and identified directions for future research and the areas where TRP channels could be used as potential targets for prevention and treatment of human diseases. The participants of this meeting shared their recent largely unpublished data, state-of-the-art techniques and their critical views which would push research in this field forward in the new decade. Another major outcome of this meeting was the realization that extensive work remains to be done to develop the necessary tools and enhance the quality of research in this area so that the prevailing controversies can be resolved. In this report we summarize the latest scientific excitements, some critical issues, as well as some future directions for research that were addressed and discussed in this meeting.

  10. TRP channels in brown and white adipogenesis from human progenitors: new therapeutic targets and the caveats associated with the common antibiotic, streptomycin.

    Science.gov (United States)

    Goralczyk, Anna; van Vijven, Marc; Koch, Mathilde; Badowski, Cedric; Yassin, M Shabeer; Toh, Sue-Anne; Shabbir, Asim; Franco-Obregón, Alfredo; Raghunath, Michael

    2017-08-01

    Transient receptor potential (TRP) channels are polymodal cell sensors responding to diverse stimuli and widely implicated in the developmental programs of numerous tissues. The evidence for an involvement of TRP family members in adipogenesis, however, is scant. We present the first comprehensive expression profile of all known 27 human TRP genes in mesenchymal progenitors cells during white or brown adipogenesis. Using positive trilineage differentiation as an exclusion criterion, TRP polycystic (P)3, and TPR melastatin (M)8 were found to be uniquely adipospecific. Knockdown of TRPP3 repressed the expression of the brown fat signature genes uncoupling protein (UCP)-1 and peroxisome proliferator-activated receptor γ coactivator (PGC)-1α as well as attenuated forskolin-stimulated uncoupled respiration. However, indices of generalized adipogenesis, such as lipid droplet morphology and fatty acid binding protein (FAPB)-4 expression, were not affected, indicating a principal mitochondrial role of TRPP3. Conversely, activating TRPM8 with menthol up-regulated UCP-1 expression and augmented uncoupled respiration predominantly in white adipocytes (browning), whereas streptomycin antagonized TRPM8-mediated calcium entry, downregulated UCP-1 expression, and mitigated uncoupled respiration; menthol was less capable of augmenting uncoupled respiration (thermogenesis) in brown adipocytes. TRPP3 and TRPM8 hence appear to be involved in the priming of mitochondria to perform uncoupled respiration downstream of adenylate cyclase. Our results also underscore the developmental caveats of using antibiotics in adipogenic studies.-Goralczyk, A., van Vijven, M., Koch, M., Badowski, C., Yassin, M. S., Toh, S.-A., Shabbir, A., Franco-Obregón, A., Raghunath, M. TRP channels in brown and white adipogenesis from human progenitors: new therapeutic targets and the caveats associated with the common antibiotic, streptomycin. © FASEB.

  11. The core domain as the force sensor of the yeast mechanosensitive TRP channel.

    Science.gov (United States)

    Su, Zhenwei; Anishkin, Andriy; Kung, Ching; Saimi, Yoshiro

    2011-12-01

    Stretch-activated conductances are commonly encountered in careful electric recordings. Those of known proteins (TRP, MscL, MscS, K(2p), Kv, etc.) all share a core, which houses the ion pathway and the gate, but no recognizable force-sensing domain. Like animal TRPs, the yeast TRPY1 is polymodal, activated by stretch force, Ca(2+), etc. To test whether its S5-S6 core senses the stretch force, we tried to uncouple it from the peripheral domains by strategic peptide insertions to block the covalent core-periphery interactions. Insertion of long unstructured peptides should distort, if not disrupt, protein structures that transmit force. Such insertions between S6 and the C-terminal tail largely removed Ca(2+) activation, showing their effectiveness. However, such insertions as well as those between S5 and the N-terminal region, which includes S1-S4, did not significantly alter mechanosensitivity. Even insertions at both locations flanking the S5-S6 core did not much alter mechanosensitivity. Tryptophan scanning mutations in S5 were also constructed to perturb possible noncovalent core-periphery contacts. The testable tryptophan mutations also have little or no effects on mechanosensitivity. Boltzmann fits of the wild-type force-response curves agree with a structural homology model for a stretch-induced core expansion of ~2 nm(2) upon opening. We hypothesize that membrane tension pulls on S5-S6, expanding the core and opening the TRPY1 gate. The core being the major force sensor offers the simplest, though not the only, explanation of why so many channels of disparate designs are mechanically sensitive. Compared with the bacterial MscL, TRPY1 is much less sensitive to force, befitting a polymodal channel that relies on multiple stimuli.

  12. Evidence for the functional involvement of members of the TRP channel family in the uptake of Na(+) and NH4 (+) by the ruminal epithelium.

    Science.gov (United States)

    Rosendahl, Julia; Braun, Hannah S; Schrapers, Katharina T; Martens, Holger; Stumpff, Friederike

    2016-08-01

    Large quantities of protein are degraded in the fermentative parts of the gut to ammonia, which is absorbed, detoxified to urea, and excreted, leading to formation of nitrogenous compounds such as N2O that are associated with global warming. In ruminants, channel-mediated uptake of NH4 (+) from the rumen predominates. The molecular identity of these channels remains to be clarified. Ruminal cells and epithelia from cows and sheep were investigated using patch clamp, Ussing chamber, microelectrode techniques, and qPCR. In patch clamp experiments, bovine ruminal epithelial cells expressed a conductance for NH4 (+) that could be blocked in a voltage-dependent manner by divalent cations. In the native epithelium, NH4 (+) depolarized the apical potential, acidified the cytosol and induced a rise in short-circuit current (I sc) that persisted after the removal of Na(+), was blocked by verapamil, enhanced by the removal of divalent cations, and was sensitive to certain transient receptor potential (TRP) channel modulators. Menthol or thymol stimulated the I sc in Na(+) or NH4 (+) containing solutions in a dose-dependent manner and modulated transepithelial Ca(2+) fluxes. On the level of messenger RNA (mRNA), ovine and bovine ruminal epithelium expressed TRPA1, TRPV3, TRPV4, TRPM6, and TRPM7, with any expression of TRPV6 marginal. No bands were detected for TRPV1, TRPV5, or TRPM8. Functional and molecular biological data suggest that the transport of NH4 (+), Na(+), and Ca(2+) across the rumen involves TRP channels, with TRPV3 and TRPA1 emerging as prime candidate genes. TRP channels may also contribute to the transport of NH4 (+) across other epithelia.

  13. Influence of the ionic liquid [C4mpy][Tf2N] on the structure of the miniprotein Trp-cage.

    Science.gov (United States)

    Baker, Joseph L; Furbish, Jeffrey; Lindberg, Gerrick E

    2015-11-01

    We examine the effect of the ionic liquid [C4mpy][Tf2N] on the structure of the miniprotein Trp-cage and contrast these results with the behavior of Trp-cage in water. We find the ionic liquid has a dramatic effect on Trp-cage, though many similarities with aqueous Trp-cage are observed. We assess Trp-cage folding by monitoring root mean square deviation from the crystallographic structure, radius of gyration, proline cis/trans isomerization state, protein secondary structure, amino acid contact formation and distance, and native and non-native contact formation. Starting from an unfolded configuration, Trp-cage folds in water at 298 K in less than 500 ns of simulation, but has very little mobility in the ionic liquid at the same temperature, which can be ascribed to the higher ionic liquid viscosity. At 365 K, the mobility of the ionic liquid is increased and initial stages of Trp-cage folding are observed, however Trp-cage does not reach the native folded state in 2 μs of simulation in the ionic liquid. Therefore, in addition to conventional molecular dynamics, we also employ scaled molecular dynamics to expedite sampling, and we demonstrate that Trp-cage in the ionic liquid does closely approach the aqueous folded state. Interestingly, while the reduced mobility of the ionic liquid is found to restrict Trp-cage motion, the ionic liquid does facilitate proline cis/trans isomerization events that are not seen in our aqueous simulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Structure-activity relationship of Trp-containing analogs of the antimicrobial peptide gomesin.

    Science.gov (United States)

    Domingues, Tatiana M; Buri, Marcus V; Daffre, Sirlei; Campana, Patricia T; Riske, Karin A; Miranda, Antonio

    2014-06-01

    Gomesin (Gm) has a broad antimicrobial activity making it of great interest for development of drugs. In this study, we analyzed three Gm analogs, [Trp(1) ]-Gm, [Trp(7) ]-Gm, and [Trp(9) ]-Gm, in an attempt to gain insight into the contributions of different regions of the peptide sequence to its activity. The incorporation of the tryptophan residue in different positions has no effect on the antimicrobial and hemolytic activities of the Gm analogs in relation to Gm. Spectroscopic studies (circular dichroism, fluorescence and absorbance) of Gm and its analogs were performed in the presence of SDS, below and above its critical micelle concentration (CMC) (~8 mM), in order to monitor structural changes induced by the interaction with this anionic surfactant (0-15 mM). Interestingly, we found that the analogs interact more strongly with SDS at low concentrations (0.3-6.0 mM) than close to or above its CMC. This suggests that SDS monomers are able to cover the whole peptide, forming large detergent-peptide aggregates. On the other hand, the peptides interact differently with SDS micelles, inserting partially into the micelle core. Among the peptides, Trp in position 1 becomes more motionally-restricted in the presence of SDS, probably because this residue is located at the N-terminal region, which presents higher conformational freedom to interact stronger with SDS molecules. Trp residues in positions 7 and 9, close to and in the region of the turn of the molecule, respectively, induced a more constrained structure and the compounds cannot insert deeper into the micelle core or be completely buried by SDS monomers. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  15. Revisiting the Role of TRP, Orai, and ASIC Channels in the Pulmonary Arterial Response to Hypoxia

    Directory of Open Access Journals (Sweden)

    Roberto V. Reyes

    2018-05-01

    Full Text Available The pulmonary arteries are exquisitely responsive to oxygen changes. They rapidly and proportionally contract as arterial PO2 decrease, and they relax as arterial PO2 is re-established. The hypoxic pulmonary vasoconstriction (HPV is intrinsic since it does not require neural or endocrine factors, as evidenced in isolated vessels. On the other hand, pulmonary arteries also respond to sustained hypoxia with structural and functional remodeling, involving growth of smooth muscle medial layer and later recruitment of adventitial fibroblasts, secreted mitogens from endothelium and changes in the response to vasoconstrictor and vasodilator stimuli. Hypoxic pulmonary arterial vasoconstriction and remodeling are relevant biological responses both under physiological and pathological conditions, to explain matching between ventilation and perfusion, fetal to neonatal transition of pulmonary circulation and pulmonary artery over-constriction and thickening in pulmonary hypertension. Store operated channels (SOC and receptor operated channels (ROC are plasma membrane cationic channels that mediate calcium influx in response to depletion of internal calcium stores or receptor activation, respectively. They are involved in both HPV and pathological remodeling since their pharmacological blockade or genetic suppression of several of the Stim, Orai, TRP, or ASIC proteins in SOC or ROC complexes attenuate the calcium increase, the tension development, the pulmonary artery smooth muscle proliferation, and pulmonary arterial hypertension. In this Mini Review, we discussed the evidence obtained in in vivo animal models, at the level of isolated organ or cells of pulmonary arteries, and we identified and discussed the questions for future research needed to validate these signaling complexes as targets against pulmonary hypertension.

  16. TRP channels in calcium homeostasis: from hormonal control to structure-function relationship of TRPV5 and TRPV6.

    Science.gov (United States)

    van Goor, Mark K C; Hoenderop, Joost G J; van der Wijst, Jenny

    2017-06-01

    Maintaining plasma calcium levels within a narrow range is of vital importance for many physiological functions. Therefore, calcium transport processes in the intestine, bone and kidney are tightly regulated to fine-tune the rate of absorption, storage and excretion. The TRPV5 and TRPV6 calcium channels are viewed as the gatekeepers of epithelial calcium transport. Several calciotropic hormones control the channels at the level of transcription, membrane expression, and function. Recent technological advances have provided the first near-atomic resolution structural models of several TRPV channels, allowing insight into their architecture. While this field is still in its infancy, it has increased our understanding of molecular channel regulation and holds great promise for future structure-function studies of these ion channels. This review will summarize the mechanisms that control the systemic calcium balance, as well as extrapolate structural views to the molecular functioning of TRPV5/6 channels in epithelial calcium transport. Copyright © 2016. Published by Elsevier B.V.

  17. Broad-range TRP channel inhibitors (2-APB, flufenamic acid, SKF-96365) affect differently contraction of resistance and conduit femoral arteries of rat

    Czech Academy of Sciences Publication Activity Database

    Bencze, Michal; Behuliak, Michal; Vavřínová, Anna; Zicha, Josef

    2015-01-01

    Roč. 765, Oct 15 (2015), s. 533-540 ISSN 0014-2999 R&D Projects: GA ČR(CZ) GAP304/12/0259 Institutional support: RVO:67985823 Keywords : femoral artery * TRP channel * 2-APB * flufenamic acid * SKF-96365 * vascular contraction Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.730, year: 2015

  18. Structure of the cold- and menthol-sensing ion channel TRPM8.

    Science.gov (United States)

    Yin, Ying; Wu, Mengyu; Zubcevic, Lejla; Borschel, William F; Lander, Gabriel C; Lee, Seok-Yong

    2018-01-12

    Transient receptor potential melastatin (TRPM) cation channels are polymodal sensors that are involved in a variety of physiological processes. Within the TRPM family, member 8 (TRPM8) is the primary cold and menthol sensor in humans. We determined the cryo-electron microscopy structure of the full-length TRPM8 from the collared flycatcher at an overall resolution of ~4.1 ångstroms. Our TRPM8 structure reveals a three-layered architecture. The amino-terminal domain with a fold distinct among known TRP structures, together with the carboxyl-terminal region, forms a large two-layered cytosolic ring that extensively interacts with the transmembrane channel layer. The structure suggests that the menthol-binding site is located within the voltage-sensor-like domain and thus provides a structural glimpse of the design principle of the molecular transducer for cold and menthol sensation. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Copper-induced activation of TRP channels promotes extracellular calcium entry and activation of CaMs and CDPKs leading to copper entry and membrane depolarization in Ulva compressa

    Directory of Open Access Journals (Sweden)

    Melissa eGómez

    2015-03-01

    Full Text Available In order to identify channels involved in membrane depolarization, Ulva compressa was incubated with agonists of TRP channels C5, A1 and V1 and the level of intracellular calcium was detected. Agonists of TRPC5, A1 and V1 induced increases in intracellular calcium at 4, 9 and 12 min of exposure, respectively, and antagonists of TRPC5, A1 and V1 corresponding to SKF-96365 (SKF, HC-030031 (HC and capsazepin (CPZ, respectively, inhibited calcium increases indicating that functional TRPs exist in U. compressa. In addition, copper excess induced increases in intracellular calcium at 4, 9 and 12 min which were inhibited by SKF, HC and CPZ, respectively, indicating that copper activate TRPC5, A1 and V1 channels. Moreover, copper-induced calcium increases were inhibited by EGTA, a non-permeable calcium chelating agent, but not by thapsigargin, an inhibitor of endoplasmic reticulum (ER calcium ATPase, indicating that activation of TRPs leads to extracellular calcium entry. Furthermore, copper-induced calcium increases were not inhibited by W-7, an inhibitor of CaMs, and staurosporine, an inhibitor of CDPKs, indicating that extracellular calcium entry did not require CaMs and CDPKs activation. In addition, copper induced membrane depolarization events at 4, 8 and 11 min and these events were inhibited by SKF, HC, CPZ and bathocuproine, a specific copper chelating agent, indicating copper entry through TRP channels leading to membrane depolarization. Moreover, membrane depolarization events were inhibited by W-7 and staurosporine, indicating that CaMs and CDPKs are required in order to activate TRPs to allow copper entry. Thus, light-dependent copper-induced activation TRPC5, A1 and V1 promotes extracellular calcium entry leading to activation of CaMs and CDPKs which, in turn, promotes copper entry through these TRP channels leading to membrane depolarization.

  20. Phytochemicals from Ruta graveolens Activate TAS2R Bitter Taste Receptors and TRP Channels Involved in Gustation and Nociception.

    Science.gov (United States)

    Mancuso, Giuseppe; Borgonovo, Gigliola; Scaglioni, Leonardo; Bassoli, Angela

    2015-10-16

    Ruta graveolens (rue) is a spontaneous plant in the Mediterranean area with a strong aroma and a very intense bitter taste, used in gastronomy and in folk medicine. From the leaves, stems and fruits of rue, we isolated rutin, rutamarin, three furanocoumarins, two quinolinic alkaloids, a dicoumarin and two long chain ketones. Bitter taste and chemesthetic properties have been evaluated by in vitro assays with twenty receptors of the TAS2R family and four TRP ion channels involved in gustation and nociception. Among the alkaloids, skimmianine was active as a specific agonist of T2R14, whereas kokusaginin did not activate any of the tested receptors. The furanocoumarins activates TAS2R10, 14, and 49 with different degrees of selectivity, as well as the TRPA1 somatosensory ion channel. Rutamarin is an agonist of TRPM5 and TRPV1 and a strong antagonist of TRPM8 ion channels.

  1. The preference of tryptophan for membrane interfaces: insights from N-methylation of tryptophans in gramicidin channels.

    Science.gov (United States)

    Sun, Haiyan; Greathouse, Denise V; Andersen, Olaf S; Koeppe, Roger E

    2008-08-08

    To better understand the structural and functional roles of tryptophan at the membrane/water interface in membrane proteins, we examined the structural and functional consequences of Trp --> 1-methyl-tryptophan substitutions in membrane-spanning gramicidin A channels. Gramicidin A channels are miniproteins that are anchored to the interface by four Trps near the C terminus of each subunit in a membrane-spanning dimer. We masked the hydrogen bonding ability of individual or multiple Trps by 1-methylation of the indole ring and examined the structural and functional changes using circular dichroism spectroscopy, size exclusion chromatography, solid state (2)H NMR spectroscopy, and single channel analysis. N-Methylation causes distinct changes in the subunit conformational preference, channel-forming propensity, single channel conductance and lifetime, and average indole ring orientations within the membrane-spanning channels. The extent of the local ring dynamic wobble does not increase, and may decrease slightly, when the indole NH is replaced by the non-hydrogen-bonding and more bulky and hydrophobic N-CH(3) group. The changes in conformational preference, which are associated with a shift in the distribution of the aromatic residues across the bilayer, are similar to those observed previously with Trp --> Phe substitutions. We conclude that indole N-H hydrogen bonding is of major importance for the folding of gramicidin channels. The changes in ion permeability, however, are quite different for Trp --> Phe and Trp --> 1-methyl-tryptophan substitutions, indicating that the indole dipole moment and perhaps also ring size and are important for ion permeation through these channels.

  2. Phytochemicals from Ruta graveolens Activate TAS2R Bitter Taste Receptors and TRP Channels Involved in Gustation and Nociception

    Directory of Open Access Journals (Sweden)

    Giuseppe Mancuso

    2015-10-01

    Full Text Available Ruta graveolens (rue is a spontaneous plant in the Mediterranean area with a strong aroma and a very intense bitter taste, used in gastronomy and in folk medicine. From the leaves, stems and fruits of rue, we isolated rutin, rutamarin, three furanocoumarins, two quinolinic alkaloids, a dicoumarin and two long chain ketones. Bitter taste and chemesthetic properties have been evaluated by in vitro assays with twenty receptors of the TAS2R family and four TRP ion channels involved in gustation and nociception. Among the alkaloids, skimmianine was active as a specific agonist of T2R14, whereas kokusaginin did not activate any of the tested receptors. The furanocoumarins activates TAS2R10, 14, and 49 with different degrees of selectivity, as well as the TRPA1 somatosensory ion channel. Rutamarin is an agonist of TRPM5 and TRPV1 and a strong antagonist of TRPM8 ion channels.

  3. Fluorescence kinetics of Trp-Trp dipeptide and its derivatives in water via ultrafast fluorescence spectroscopy.

    Science.gov (United States)

    Jia, Menghui; Yi, Hua; Chang, Mengfang; Cao, Xiaodan; Li, Lei; Zhou, Zhongneng; Pan, Haifeng; Chen, Yan; Zhang, Sanjun; Xu, Jianhua

    2015-08-01

    Ultrafast fluorescence dynamics of Tryptophan-Tryptophan (Trp-Trp/Trp2) dipeptide and its derivatives in water have been investigated using a picosecond resolved time correlated single photon counting (TCSPC) apparatus together with a femtosecond resolved upconversion spectrophotofluorometer. The fluorescence decay profiles at multiple wavelengths were fitted by a global analysis technique. Nanosecond fluorescence kinetics of Trp2, N-tert-butyl carbonyl oxygen-N'-aldehyde group-l-tryptophan-l-tryptophan (NBTrp2), l-tryptophan-l-tryptophan methyl ester (Trp2Me), and N-acetyl-l-tryptophan-l-tryptophan methyl ester (NATrp2Me) exhibit multi-exponential decays with the average lifetimes of 1.99, 3.04, 0.72 and 1.22ns, respectively. Due to the intramolecular interaction between two Trp residues, the "water relaxation" lifetime was observed around 4ps, and it is noticed that Trp2 and its derivatives also exhibit a new decay with a lifetime of ∼100ps, while single-Trp fluorescence decay in dipeptides/proteins shows 20-30ps. The intramolecular interaction lifetime constants of Trp2, NBTrp2, Trp2Me and NATrp2Me were then calculated to be 3.64, 0.93, 11.52 and 2.40ns, respectively. Candidate mechanisms (including heterogeneity, solvent relaxation, quasi static self-quenching or ET/PT quenching) have been discussed. Copyright © 2015. Published by Elsevier B.V.

  4. Direct Interaction between the Voltage Sensors Produces Cooperative Sustained Deactivation in Voltage-gated H+ Channel Dimers*

    OpenAIRE

    Okuda, Hiroko; Yonezawa, Yasushige; Takano, Yu; Okamura, Yasushi; Fujiwara, Yuichiro

    2016-01-01

    The voltage-gated H+ channel (Hv) is a voltage sensor domain-like protein consisting of four transmembrane segments (S1?S4). The native Hv structure is a homodimer, with the two channel subunits functioning cooperatively. Here we show that the two voltage sensor S4 helices within the dimer directly cooperate via a ?-stacking interaction between Trp residues at the middle of each segment. Scanning mutagenesis showed that Trp situated around the original position provides the slow gating kineti...

  5. A direct comparison of protein structure in the gas and solution phase: the Trp-cage

    DEFF Research Database (Denmark)

    Patriksson, Alexandra; Adams, Christopher M; Kjeldsen, Frank

    2007-01-01

    Molecular dynamics simulations of zwitterions of the Trp-cage protein in the gas phase show that the most stable ion in vacuo has preserved the charge locations acquired in solution. A direct comparison of the gas and solution-phase structures reveals that, despite the similarity in charge location...

  6. Structural analyses of the Ankyrin Repeat Domain of TRPV6 and related TRPV ion channels†‡

    OpenAIRE

    Phelps, Christopher B.; Huang, Robert J.; Lishko, Polina V.; Wang, Ruiqi R.; Gaudet, Rachelle

    2008-01-01

    Transient Receptor Potential (TRP) proteins are cation channels composed of a transmembrane domain flanked by large N- and C-terminal cytoplasmic domains. All members of the vanilloid family of TRP channels (TRPV) possess an N-terminal ankyrin repeat domain (ARD). The ARD of mammalian TRPV6, an important regulator of calcium uptake and homeostasis, is essential for channel assembly and regulation. The 1.7 Å crystal structure of the TRPV6-ARD reveals conserved structural elements unique to the...

  7. Atomic basis for therapeutic activation of neuronal potassium channels

    DEFF Research Database (Denmark)

    Kim, Robin Y; Yau, Michael C; Galpin, Jason D

    2015-01-01

    Retigabine is a recently approved anticonvulsant that acts by potentiating neuronal M-current generated by KCNQ2-5 channels, interacting with a conserved Trp residue in the channel pore domain. Using unnatural amino-acid mutagenesis, we subtly altered the properties of this Trp to reveal specific...

  8. Activation of TRPM7 channels by small molecules under physiological conditions.

    Science.gov (United States)

    Hofmann, T; Schäfer, S; Linseisen, M; Sytik, L; Gudermann, T; Chubanov, V

    2014-12-01

    Transient receptor potential cation channel, subfamily M, member 7 (TRPM7) is a cation channel covalently linked to a protein kinase domain. TRPM7 is ubiquitously expressed and regulates key cellular processes such as Mg(2+) homeostasis, motility, and proliferation. TRPM7 is involved in anoxic neuronal death, cardiac fibrosis, and tumor growth. The goal of this work was to identify small molecule activators of the TRPM7 channel and investigate their mechanism of action. We used an aequorin bioluminescence-based assay to screen for activators of the TRPM7 channel. Valid candidates were further characterized using patch clamp electrophysiology. We identified 20 drug-like compounds with various structural backbones that can activate the TRPM7 channel. Among them, the δ opioid antagonist naltriben was studied in greater detail. Naltriben's action was selective among the TRP channels tested. Naltriben activates TRPM7 currents without prior depletion of intracellular Mg(2+) even under conditions of low PIP2. Moreover, naltriben interfered with the effect of the TRPM7 inhibitor NS8593. Finally, our experiments with TRPM7 variants carrying mutations in the pore, TRP, and kinase domains indicate that the site of TRPM7 activation by this small-molecule ligand is most likely located in or near the TRP domain. In conclusion, we identified the first organic small-molecule activators of TRPM7 channels, thus providing new experimental tools to study TRPM7 function in native cellular environments.

  9. A Lys-Trp cation-π interaction mediates the dimerization and function of the chloride intracellular channel protein 1 transmembrane domain.

    Science.gov (United States)

    Peter, Bradley; Polyansky, Anton A; Fanucchi, Sylvia; Dirr, Heini W

    2014-01-14

    Chloride intracellular channel protein 1 (CLIC1) is a dual-state protein that can exist either as a soluble monomer or in an integral membrane form. The oligomerization of the transmembrane domain (TMD) remains speculative despite it being implicated in pore formation. The extent to which electrostatic and van der Waals interactions drive folding and association of the dimorphic TMD is unknown and is complicated by the requirement of interactions favorable in both aqueous and membrane environments. Here we report a putative Lys37-Trp35 cation-π interaction and show that it stabilizes the dimeric form of the CLIC1 TMD in membranes. A synthetic 30-mer peptide comprising a K37M TMD mutant was examined in 2,2,2-trifluoroethanol, sodium dodecyl sulfate micelles, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes using far-ultraviolet (UV) circular dichroism, fluorescence, and UV absorbance spectroscopy. Our data suggest that Lys37 is not implicated in the folding, stability, or membrane insertion of the TMD peptide. However, removal of this residue impairs the formation of dimers and higher-order oligomers. This is accompanied by a 30-fold loss of chloride influx activity, suggesting that dimerization modulates the rate of chloride conductance. We propose that, within membranes, individual TMD helices associate via a Lys37-mediated cation-π interaction to form active dimers. The latter findings are also supported by results of modeling a putative TMD dimer conformation in which Lys37 and Trp35 form cation-π pairs at the dimer interface. Dimeric helix bundles may then associate to form fully active ion channels. Thus, within a membrane-like environment, aromatic interactions involving a polar lysine side chain provide a thermodynamic driving force for helix-helix association.

  10. Cryo-electron microscopy structure of the lysosomal calcium-permeable channel TRPML3.

    Science.gov (United States)

    Hirschi, Marscha; Herzik, Mark A; Wie, Jinhong; Suo, Yang; Borschel, William F; Ren, Dejian; Lander, Gabriel C; Lee, Seok-Yong

    2017-10-19

    The modulation of ion channel activity by lipids is increasingly recognized as a fundamental component of cellular signalling. The transient receptor potential mucolipin (TRPML) channel family belongs to the TRP superfamily and is composed of three members: TRPML1-TRPML3. TRPMLs are the major Ca 2+ -permeable channels on late endosomes and lysosomes (LEL). They regulate the release of Ca 2+ from organelles, which is important for various physiological processes, including organelle trafficking and fusion. Loss-of-function mutations in the MCOLN1 gene, which encodes TRPML1, cause the neurodegenerative lysosomal storage disorder mucolipidosis type IV, and a gain-of-function mutation (Ala419Pro) in TRPML3 gives rise to the varitint-waddler (Va) mouse phenotype. Notably, TRPML channels are activated by the low-abundance and LEL-enriched signalling lipid phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P 2 ), whereas other phosphoinositides such as PtdIns(4,5)P 2 , which is enriched in plasma membranes, inhibit TRPMLs. Conserved basic residues at the N terminus of the channel are important for activation by PtdIns(3,5)P 2 and inhibition by PtdIns(4,5)P 2 . However, owing to a lack of structural information, the mechanism by which TRPML channels recognize PtdIns(3,5)P 2 and increase their Ca 2+ conductance remains unclear. Here we present the cryo-electron microscopy (cryo-EM) structure of a full-length TRPML3 channel from the common marmoset (Callithrix jacchus) at an overall resolution of 2.9 Å. Our structure reveals not only the molecular basis of ion conduction but also the unique architecture of TRPMLs, wherein the voltage sensor-like domain is linked to the pore via a cytosolic domain that we term the mucolipin domain. Combined with functional studies, these data suggest that the mucolipin domain is responsible for PtdIns(3,5)P 2 binding and subsequent channel activation, and that it acts as a 'gating pulley' for lipid-dependent TRPML gating.

  11. Cryo-EM structure of the polycystic kidney disease-like channel PKD2L1.

    Science.gov (United States)

    Su, Qiang; Hu, Feizhuo; Liu, Yuxia; Ge, Xiaofei; Mei, Changlin; Yu, Shengqiang; Shen, Aiwen; Zhou, Qiang; Yan, Chuangye; Lei, Jianlin; Zhang, Yanqing; Liu, Xiaodong; Wang, Tingliang

    2018-03-22

    PKD2L1, also termed TRPP3 from the TRPP subfamily (polycystic TRP channels), is involved in the sour sensation and other pH-dependent processes. PKD2L1 is believed to be a nonselective cation channel that can be regulated by voltage, protons, and calcium. Despite its considerable importance, the molecular mechanisms underlying PKD2L1 regulations are largely unknown. Here, we determine the PKD2L1 atomic structure at 3.38 Å resolution by cryo-electron microscopy, whereby side chains of nearly all residues are assigned. Unlike its ortholog PKD2, the pore helix (PH) and transmembrane segment 6 (S6) of PKD2L1, which are involved in upper and lower-gate opening, adopt an open conformation. Structural comparisons of PKD2L1 with a PKD2-based homologous model indicate that the pore domain dilation is coupled to conformational changes of voltage-sensing domains (VSDs) via a series of π-π interactions, suggesting a potential PKD2L1 gating mechanism.

  12. Is TrpM5 a reliable marker for chemosensory cells? Multiple types of microvillous cells in the main olfactory epithelium of mice

    Directory of Open Access Journals (Sweden)

    Finger Thomas E

    2008-12-01

    Full Text Available Abstract Background In the past, ciliated receptor neurons, basal cells, and supporting cells were considered the principal components of the main olfactory epithelium. Several studies reported the presence of microvillous cells but their function is unknown. A recent report showed cells in the main olfactory epithelium that express the transient receptor potential channel TrpM5 claiming that these cells are chemosensory and that TrpM5 is an intrinsic signaling component of mammalian chemosensory organs. We asked whether the TrpM5-positive cells in the olfactory epithelium are microvillous and whether they belong to a chemosensory system, i.e. are olfactory neurons or trigeminally-innervated solitary chemosensory cells. Results We investigated the main olfactory epithelium of mice at the light and electron microscopic level and describe several subpopulations of microvillous cells. The ultrastructure of the microvillous cells reveals at least three morphologically different types two of which express the TrpM5 channel. None of these cells have an axon that projects to the olfactory bulb. Tests with a large panel of cell markers indicate that the TrpM5-positive cells are not sensory since they express neither neuronal markers nor are contacted by trigeminal nerve fibers. Conclusion We conclude that TrpM5 is not a reliable marker for chemosensory cells. The TrpM5-positive cells of the olfactory epithelium are microvillous and may be chemoresponsive albeit not part of the sensory apparatus. Activity of these microvillous cells may however influence functionality of local elements of the olfactory system.

  13. A Gate Hinge Controls the Epithelial Calcium Channel TRPV5

    OpenAIRE

    van der Wijst, Jenny; Leunissen, Elizabeth H.; Blanchard, Maxime G.; Venselaar, Hanka; Verkaart, Sjoerd; Paulsen, Candice E.; Bindels, Ren? J.; Hoenderop, Joost G.

    2017-01-01

    TRPV5 is unique within the large TRP channel family for displaying a high Ca2+ selectivity together with Ca2+-dependent inactivation. Our study aims to uncover novel insights into channel gating through in-depth structure-function analysis. We identify an exceptional tryptophan (W583) at the terminus of the intracellular pore that is unique for TRPV5 (and TRPV6). A combination of site-directed mutagenesis, biochemical and electrophysiological analysis, together with homology modeling, demonst...

  14. Review article: transient receptor potential channels as possible therapeutic targets in irritable bowel syndrome.

    Science.gov (United States)

    Beckers, A B; Weerts, Z Z R M; Helyes, Z; Masclee, A A M; Keszthelyi, D

    2017-11-01

    Abdominal pain in irritable bowel syndrome (IBS) remains challenging to treat effectively. Researchers have attempted to elucidate visceral nociceptive processes in order to guide treatment development. Transient receptor potential (TRP) channels have been implied in the generation (TRPV1, TRPV4, TRPA1) and inhibition (TRPM8) of visceral pain signals. Pathological changes in their functioning have been demonstrated in inflammatory conditions, and appear to be present in IBS as well. To provide a comprehensive review of the current literature on TRP channels involved in visceral nociception. In particular, we emphasise the clinical implications of these nociceptors in the treatment of IBS. Evidence to support this review was obtained from an electronic database search via PubMed using the search terms "visceral nociception," "visceral hypersensitivity," "irritable bowel syndrome" and "transient receptor potential channels." After screening the abstracts the articles deemed relevant were cross-referenced for additional manuscripts. Recent studies have resulted in significant advances in our understanding of TRP channel mediated visceral nociception. The diversity of TRP channel sensitization pathways is increasingly recognised. Endogenous TRP agonists, including poly-unsaturated fatty acid metabolites and hydrogen sulphide, have been implied in augmented visceral pain generation in IBS. New potential targets for treatment development have been identified (TRPA1 and TRPV4,) and alternative means of affecting TRP channel signalling (partial antagonists, downstream targeting and RNA-based therapy) are currently being explored. The improved understanding of mechanisms involved in visceral nociception provides a solid basis for the development of new treatment strategies for abdominal pain in IBS. © 2017 John Wiley & Sons Ltd.

  15. Phosphoinositide-interacting regulator of TRP (PIRT) has opposing effects on human and mouse TRPM8 ion channels.

    Science.gov (United States)

    Hilton, Jacob K; Salehpour, Taraneh; Sisco, Nicholas J; Rath, Parthasarathi; Van Horn, Wade D

    2018-05-03

    Transient receptor potential melastatin 8 (TRPM8) is a cold-sensitive ion channel with diverse physiological roles. TRPM8 activity is modulated by many mechanisms, including an interaction with the small membrane protein phosphoinositide-interacting regulator of TRP (PIRT). Here, using comparative electrophysiology experiments, we identified species-dependent differences between the human and mouse TRPM8-PIRT complexes. We found that human PIRT attenuated human TPRM8 conductance, unlike mouse PIRT, which enhanced mouse TRPM8 conductance. Quantitative western blot analysis demonstrates that this effect does not arise from decreased trafficking of TRPM8 to the plasma membrane. Chimeric human/mouse TRPM8 channels were generated to probe the molecular basis of the PIRT modulation, and the effect was recapitulated in a pore domain chimera, demonstrating the importance of this region for PIRT-mediated regulation of TRPM8. Moreover, recombinantly expressed and purified human TRPM8 S1-S4 domain (comprising transmembrane helices S1-S4, also known as the sensing domain, ligand-sensing domain, or voltage sensing-like domain) and full-length human PIRT were used to investigate binding between the proteins. NMR experiments, supported by a pulldown assay, indicated that PIRT binds directly and specifically to the TRPM8 S1-S4 domain. Binding became saturated as the S1-S4:PIRT mole ratio approached 1. Our results have uncovered species-specific TRPM8 modulation by PIRT. They provide evidence for a direct interaction between PIRT and the TRPM8 S1-S4 domain with a 1:1 binding stoichiometry, suggesting that a functional tetrameric TRPM8 channel has four PIRT-binding sites. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Cryo-EM structures of the mammalian endo-lysosomal TRPML1 channel elucidate the combined regulation mechanism

    Directory of Open Access Journals (Sweden)

    Sensen Zhang

    2017-09-01

    Full Text Available Abstract TRPML1 channel is a non-selective group-2 transient receptor potential (TRP channel with Ca2+ permeability. Located mainly in late endosome and lysosome of all mammalian cell types, TRPML1 is indispensable in the processes of endocytosis, membrane trafficking, and lysosome biogenesis. Mutations of TRPML1 cause a severe lysosomal storage disorder called mucolipidosis type IV (MLIV. In the present study, we determined the cryo-electron microscopy (cryo-EM structures of Mus musculus TRPML1 (mTRPML1 in lipid nanodiscs and Amphipols. Two distinct states of mTRPML1 in Amphipols are added to the closed state, on which could represent two different confirmations upon activation and regulation. The polycystin-mucolipin domain (PMD may sense the luminal/extracellular stimuli and undergo a “move upward” motion during endocytosis, thus triggering the overall conformational change in TRPML1. Based on the structural comparisons, we propose TRPML1 is regulated by pH, Ca2+, and phosphoinositides in a combined manner so as to accommodate the dynamic endocytosis process.

  17. Interaction of a peptide derived from C-terminus of human TRPA1 channel with model membranes mimicking the inner leaflet of the plasma membrane.

    Science.gov (United States)

    Witschas, Katja; Jobin, Marie-Lise; Korkut, Dursun Nizam; Vladan, Maria Magdalena; Salgado, Gilmar; Lecomte, Sophie; Vlachova, Viktorie; Alves, Isabel D

    2015-05-01

    The transient receptor potential ankyrin 1 channel (TRPA1) belongs to the TRP cation channel superfamily that responds to a panoply of stimuli such as changes in temperature, calcium levels, reactive oxygen and nitrogen species and lipid mediators among others. The TRP superfamily has been implicated in diverse pathological states including neurodegenerative disorders, kidney diseases, inflammation, pain and cancer. The intracellular C-terminus is an important regulator of TRP channel activity. Studies with this and other TRP superfamily members have shown that the C-terminus association with lipid bilayer alters channel sensitivity and activation, especially interactions occurring through basic residues. Nevertheless, it is not yet clear how this process takes place and which regions in the C-terminus would be responsible for such membrane recognition. With that in mind, herein the first putative membrane interacting region of the C-terminus of human TRPA1, (corresponding to a 29 residue peptide, IAEVQKHASLKRIAMQVELHTSLEKKLPL) named H1 due to its potential helical character was chosen for studies of membrane interaction. The affinity of H1 to lipid membranes, H1 structural changes occurring upon this interaction as well as effects of this interaction in lipid organization and integrity were investigated using a biophysical approach. Lipid models systems composed of zwitterionic and anionic lipids, namely those present in the lipid membrane inner leaflet, where H1 is prone to interact, where used. The study reveals a strong interaction and affinity of H1 as well as peptide structuration especially with membranes containing anionic lipids. Moreover, the interactions and peptide structure adoption are headgroup specific. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Structure-activity relationship studies on a Trp dendrimer with dual activities against HIV and enterovirus A71. Modifications on the amino acid.

    Science.gov (United States)

    Martínez-Gualda, Belén; Sun, Liang; Rivero-Buceta, Eva; Flores, Aida; Quesada, Ernesto; Balzarini, Jan; Noppen, Sam; Liekens, Sandra; Schols, Dominique; Neyts, Johan; Leyssen, Pieter; Mirabelli, Carmen; Camarasa, María-José; San-Félix, Ana

    2017-03-01

    We have recently described a new class of dendrimers with tryptophan (Trp) on the surface that show dual antiviral activities against HIV and EV71 enterovirus. The prototype compound of this family is a pentaerythritol derivative with 12 Trps on the periphery. Here we complete the structure-activity relationship studies of this family to identify key features that might be significant for the antiviral activity. With this aim, novel dendrimers containing different amino acids (aromatic and non-aromatic), tryptamine (a "decarboxylated" analogue of Trp) and N-methyl Trp on the periphery have been prepared. Dendrimer with N-Methyl Trp was the most active against HIV-1 and HIV-2 while dendrimer with tyrosine was endowed with the most potent antiviral activity against EV71. This tyrosine dendrimer proved to inhibit a large panel of EV71 clinical isolates (belonging to different clusters) in the low nanomolar/high picomolar range. In addition, a new synthetic procedure (convergent approach) has been developed for the synthesis of the prototype and some other dendrimers. This convergent approach proved more efficient (higher yields, easier purification) than the divergent approach previously reported. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. TRP and ASIC channels mediate the antinociceptive effect of citronellyl acetate.

    Science.gov (United States)

    Rios, Emiliano Ricardo Vasconcelos; Rocha, Nayrton Flávio Moura; Carvalho, Alyne Mara Rodrigues; Vasconcelos, Leonardo Freire; Dias, Marília Leite; de Sousa, Damião Pergentino; de Sousa, Francisca Cléa Florenço; Fonteles, Marta Maria de França

    2013-05-25

    Citronellyl acetate (CAT), a monoterpene product of the secondary metabolism of plants, has been shown in the literature to possess several different biological activities. However, no antinociceptive abilities have yet been discussed. Here, we used acute pain animal models to describe the antinociceptive action of CAT. The acetic acid-induced writhing test and the paw-licking test, in which paw licking was induced by glutamate and formalin, were performed to evaluate the antinociceptive action of CAT and to determine the involvement of PKC, PKA, TRPV1, TRPA1, TRPM8 and ASIC in its antinociceptive mechanism. To do so, we induced paw-linking using agonists. CAT was administered intragastrically (25, 50, 75, 100 and 200 mg/kg), and the two higher doses caused antinociceptive effects in the acetic acid model; the highest dose reduced pain for 4h after it was administered (200 mg/kg). In the formalin test, two doses of CAT promoted antinociception in both the early and later phases of the test. The glutamate test showed that its receptors are involved in the antinociceptive mechanism of CAT. Pretreatment with CAT did not alter locomotor activity or motor coordination. In an investigation into the participation of TRP channels and ASICs in CAT's antinociceptive mechanism, we used capsaicin (2.2 μg/paw), cinnamaldehyde (10 mmol/paw), menthol (1.2 mmol/paw) and acidified saline (2% acetic acid, pH 1.98). The results showed that TRPV1, TRPM8 and ASIC, but not TRPA1, are involved in the antinociceptive mechanism. Finally, the involvement of PKC and PKA was also studied, and we showed that both play a role in the antinociceptive mechanism of CAT. The results of this work contribute information regarding the antinociceptive properties of CAT on acute pain and show that, at least in part, TRPV1, TRPM8, ASIC, glutamate receptors, PKC and PKA participate in CAT's antinociceptive mechanism. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. A conserved residue cluster that governs kinetics of ATP-dependent gating of Kir6.2 potassium channels

    DEFF Research Database (Denmark)

    Zhang, Roger S; Wright, Jordan; Pless, Stephan Alexander

    2015-01-01

    modest effects on gating kinetics despite significant changes in ATP sensitivity and open probability. However, we identified a pair of highly conserved neighboring amino acids (Trp68, Lys170) that control the rate of channel opening and inhibition in response to ATP. Paradoxically, mutations of Trp68...... or Lys170 markedly slow the kinetics of channel opening (500 ms and 700 ms for Trp68Leu and Lys170Asn, respectively), while increasing channel open probability. Examining the functional effects of these residues using phi-value analysis revealed a steep negative slope. This finding implies...

  1. Are Trp53 rescue of Brca1 embryonic lethality and Trp53/Brca1 breast cancer association related?

    International Nuclear Information System (INIS)

    McAllister, Kimberly A; Wiseman, Roger W

    2002-01-01

    Brca1 is involved in multiple biological pathways including DNA damage repair, transcriptional regulation, and cell-cycle progression. A complex pattern of interactions of Brca1 with Trp53 has also emerged. Xu and coworkers found that haploid loss of Trp53 significantly reduces the embryonic lethality observed in mice with a homozygous in-frame deletion of Brca1 exon 11. They report that widespread apoptosis correlates with the embryonic lethality resulting from this homozygous Δ11 Brca1 mutation. A mechanism responsible for Brca1-associated carcinogenesis is proposed. These experiments extend our knowledge of a complex Brca1/Trp53 relationship. However, the precise mechanisms through which Brca1 interacts with Trp53 to suppress mammary tumor formation have yet to be elucidated

  2. Structure-activity relationship of linear peptide Bu-His6-DPhe7-Arg8-Trp9-Gly10-NH2 at the human melanocortin-1 and -4 receptors: DPhe7 and Trp9 substitution.

    Science.gov (United States)

    Danho, Waleed; Swistok, Joseph; Cheung, Adrian Wai-Hing; Kurylko, Grazyna; Franco, Lucia; Chu, Xin-Jie; Chen, Li; Yagaloff, Keith

    2003-02-24

    A series of pentapeptides, based on hMC4R pentapeptide agonist (Bu-His(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2)), was prepared in which either DPhe(7) or Trp(9) residue was systematically substituted. A number of interesting DPhe surrogates (D-Thi, D-3-CF(3)Phe, D-2-Nal and D-3,4-diClPhe) as well as Trp surrogates (2-Nal and Bta) were identified in this study.

  3. Development of Chemically Defined Media to Express Trp-Analog-Labeled Proteins in a Lactococcus lactis Trp Auxotroph.

    Science.gov (United States)

    Shao, Jinfeng; Marcondes, Marcelo F M; Oliveira, Vitor; Broos, Jaap

    2016-01-01

    Chemically defined media for growth of Lactococcus lactis strains contain about 50 components, making them laborious and expensive growth media. However, they are crucial for metabolism studies as well as for expression of heterologous proteins labeled with unnatural amino acids. In particular, the L. lactis Trp auxotroph PA1002, overexpressing the tryptophanyl tRNA synthetase enzyme of L. lactis, is very suitable for the biosynthetic incorporation of Trp analogs in proteins because of its most relaxed substrate specificity reported towards Trp analogs. Here we present two much simpler defined media for L. lactis, which consist of only 24 or 31 components, respectively, and with which the L. lactis Trp auxotroph shows similar growth characteristics as with a 50-component chemically defined medium. Importantly, the expression levels of two recombinant proteins used for evaluation were up to 2-3 times higher in these new media than in the 50-component medium, without affecting the Trp analog incorporation efficiency. Taken together, the simplest chemically defined media reported so far for L. lactis are presented. Since L. lactis also shows auxotrophy for Arg, His, Ile, Leu Val, and Met, our simplified media may also be useful for the biosynthetic incorporation of analogs of these five amino acids. © 2016 The Author(s) Published by S. Karger AG, Basel.

  4. Safety evaluation of Tokai reprocessing plant (TRP). Report of safety evaluation of Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Yamauchi, Takamichi; Maki, Akira; Nojiri, Ichiro

    1999-02-01

    The fire and explosion incident of the bituminization facility happened in March 1997 although JNC had taken enough care of the safety of TRP. JNC reflected on it and decided to evaluate the safety of TRP voluntarily. This evaluation has included five activities, that is, (1) confirmation of the structure and organization of TRP, (2) research of the data for operation, radiation and maintenance of TRP, (3) research of reflection of the accidents and troubles which have happened at the past, (4) evaluation on the prevention system, (5) evaluation on the mitigation system. We publish this report to contribute to inheritance of accumulated knowledge and techniques from generation to generation, and remind us of lesson from the fire and explosion incident of the bituminization. (author)

  5. Trp-cage: Folding free energy landscape in explicit water

    Science.gov (United States)

    Zhou, Ruhong

    2003-11-01

    Trp-cage is a 20-residue miniprotein, which is believed to be the fastest folder known so far. In this study, the folding free energy landscape of Trp-cage has been explored in explicit solvent by using an OPLSAA force field with periodic boundary condition. A highly parallel replica exchange molecular dynamics method is used for the conformation space sampling, with the help of a recently developed efficient molecular dynamics algorithm P3ME/RESPA (particle-particle particle-mesh Ewald/reference system propagator algorithm). A two-step folding mechanism is proposed that involves an intermediate state where two correctly formed partial hydrophobic cores are separated by an essential salt-bridge between residues Asp-9 and Arg-16 near the center of the peptide. This metastable intermediate state provides an explanation for the superfast folding process. The free energy landscape is found to be rugged at low temperatures, and then becomes smooth and funnel-like above 340 K. The lowest free energy structure at 300 K is only 1.50 Å C-RMSD (C-rms deviation) from the NMR structures. The simulated nuclear Overhauser effect pair distances are in excellent agreement with the raw NMR data. The temperature dependence of the Trp-cage population, however, is found to be significantly different from experiment, with a much higher melting transition temperature above 400 K (experimental 315 K), indicating that the current force fields, parameterized at room temperature, need to be improved to correctly predict the temperature dependence.

  6. Oral treatment with essential oil of Hyptis spicigera Lam. (Lamiaceae) reduces acute pain and inflammation in mice: Potential interactions with transient receptor potential (TRP) ion channels.

    Science.gov (United States)

    Simões, Róli Rodrigues; Coelho, Igor Dos Santos; Junqueira, Stella Célio; Pigatto, Glauce Regina; Salvador, Marcos José; Santos, Adair Roberto Soares; de Faria, Felipe Meira

    2017-03-22

    The genus Hyptis comprehends almost 400 species widespread in tropical and temperate regions of America. The use of Hyptis spicigera Lam. (Lamiaceae) is reported in traditional medicine due to its gastroprotective, anti-inflammatory and analgesic properties. The rationale of this study was to investigate the potential use of the essential oil of H. spicigera (EOHs) as analgesic. The antinociceptive effect of EOHs was verified analyzing acute nocifensive behavior of mice induced by chemical noxious stimuli [i.e., formalin and transient receptor potential (TRP) channels agonists]. We also verified the effects of EOHs on locomotor activity and motor performance in mice. Finally, we investigate the involvement of central afferent C-fibers with EOHs analgesic effect. EOHs presented antinociceptive effect at 300 and 1000mg/kg on formalin-induced pain behavior model, presenting 50% and 72% of inhibition during the first phase (ED 50 =292mg/kg), and 85% and 100% during de second phase (ED 50 =205mg/kg), respectively. Temperature of the hind paw was reduced by EOHs treatment in a dose-dependent manner; oedema was diminished only by EOHs 1000mg/kg. EOHs does not impaired locomotor activity or motor performance. For mice injected with capsaicin, a TRPV1 activator, EOHs (1000mg/kg, ED 50 =660mg/kg) showed decreased (63%) nociceptive behavior. When injected with cinnamaldehyde (TRPA1 activator), mice treated with EOHs showed 23%, 43% and 66% inhibition on nociceptive behavior (100, 300 and 1000mg/kg, respectively; ED 50 402mg/kg). When mice were injected with menthol (TRPM8 activator), EOHs showed 29%, 59% and 98% inhibition of nociceptive behavior (100, 300 and 1000mg/kg, respectively; with ED 50 =198mg/kg. Finally, when desensitized mice were injected with menthol, EOHs (300mg/kg) does not show antinociceptive effect. This study demonstrated the efficacy of EOHs on experimental models of nociception. We have found the involvement of TRP channels V1, A1 and M8 with EOHs

  7. TRPM7 and TRPM8 Ion Channels in Pancreatic Adenocarcinoma: Potential Roles as Cancer Biomarkers and Targets

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2012-01-01

    Full Text Available Transient receptor potential (TRP ion channels are essential for normal functions and health by acting as molecular sensors and transducing various stimuli into cellular and physiological responses. Growing evidence has revealed that TRP ion channels play important roles in a wide range of human diseases, including malignancies. In light of recent discoveries, it has been found that TRP melastatin-subfamily members, TRPM7 and TRPM8, are required for normal and cancerous development of exocrine pancreas. We are currently investigating the mechanisms which mediate the functional roles of TRPM7 and TRPM8 and attempting to develop these ion channels as clinical biomarkers and therapeutic targets for achieving the goal of personalized therapy in pancreatic cancer.

  8. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons.

    Science.gov (United States)

    Stotz, Stephanie C; Vriens, Joris; Martyn, Derek; Clardy, Jon; Clapham, David E

    2008-05-07

    Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.

  9. Characterization of two trpE genes encoding anthranilate synthase α-subunit in Azospirillum brasilense

    International Nuclear Information System (INIS)

    Ge Shimei; Xie Baoen; Chen Sanfeng

    2006-01-01

    The previous report from our laboratory has recently identified a new trpE gene (termed trpE 2 ) which exists independently in Azospirillum brasilense Yu62. In this study, amplification of trpE(G) (termed trpE 1 (G) here) confirmed that there are two copies of trpE gene, one trpE being fused into trpG while the other trpE existed independently. This is First report to suggest that two copies of the trpE gene exist in this bacterium. Comparison of the nucleotide sequence demonstrated that putative leader peptide, terminator, and anti-terminator were found upstream of trpE 1 (G) while these sequence features did not exist in front of trpE 2 . The β-galactosidase activity of an A. brasilense strain carrying a trpE 2 -lacZ fusion remained constant at different tryptophan concentrations, but the β-galactosidase activity of the same strain carrying a trpE 1 (G)-lacZ fusion decreased as the tryptophan concentration increased. These data suggest that the expression of trpE 1 (G) is regulated at the transcriptional level by attenuation while trpE 2 is constantly expressed. The anthranilate synthase assays with trpE 1 (G) - and trpE 2 - mutants demonstrated that TrpE 1 (G) fusion protein is feedback inhibited by tryptophan while TrpE 2 protein is not. We also found that both trpE 1 (G) and trpE 2 gene products were involved in IAA synthesis

  10. Citral Sensing by TRANSient Receptor Potential Channels in Dorsal Root Ganglion Neurons

    Science.gov (United States)

    Stotz, Stephanie C.; Vriens, Joris; Martyn, Derek; Clardy, Jon; Clapham, David E.

    2008-01-01

    Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1–3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin. PMID:18461159

  11. Structure-activity relationships of the unique and potent agouti-related protein (AGRP)-melanocortin chimeric Tyr-c[beta-Asp-His-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH2 peptide template.

    Science.gov (United States)

    Wilczynski, Andrzej; Wilson, Krista R; Scott, Joseph W; Edison, Arthur S; Haskell-Luevano, Carrie

    2005-04-21

    The melanocortin receptor system consists of endogenous agonists, antagonists, G-protein coupled receptors, and auxiliary proteins that are involved in the regulation of complex physiological functions such as energy and weight homeostasis, feeding behavior, inflammation, sexual function, pigmentation, and exocrine gland function. Herein, we report the structure-activity relationship (SAR) of a new chimeric hAGRP-melanocortin agonist peptide template Tyr-c[beta-Asp-His-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) that was characterized using amino acids previously reported in other melanocortin agonist templates. Twenty peptides were examined in this study, and six peptides were selected for (1)H NMR and computer-assisted molecular modeling structural analysis. The most notable results include the identification that modification of the chimeric template at the His position with Pro and Phe resulted in ligands that were nM mouse melanocortin-3 receptor (mMC3R) antagonists and nM mouse melanocortin-4 receptor (mMC4R) agonists. The peptides Tyr-c[beta-Asp-His-DPhe-Ala-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) and Tyr-c[beta-Asp-His-DNal(1')-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) resulted in 730- and 560-fold, respectively, mMC4R versus mMC3R selective agonists that also possessed nM agonist potency at the mMC1R and mMC5R. Structural studies identified a reverse turn occurring in the His-DPhe-Arg-Trp domain, with subtle differences observed that may account for the differences in melanocortin receptor pharmacology. Specifically, a gamma-turn secondary structure involving the DPhe(4) in the central position of the Tyr-c[beta-Asp-Phe-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) peptide may differentiate the mixed mMC3R antagonist and mMC4R agonist pharmacology.

  12. TRPV1, TRPA1, and TRPM8 channels in inflammation, energy redirection, and water retention: role in chronic inflammatory diseases with an evolutionary perspective.

    Science.gov (United States)

    Straub, Rainer H

    2014-09-01

    Chronic inflammatory diseases are accompanied by a systemic response of the body, necessary to redirect energy-rich fuels to the activated immune system and to induce volume expansion. The systemic response is switched on by two major pathways: (a) circulating cytokines enter the brain, and (b) signals via sensory nerve fibers are transmitted to the brain. Concerning item b, sensory nerve terminals are equipped with a multitude of receptors that sense temperature, inflammation, osmolality, and pain. Thus, they can be important to inform the brain about peripheral inflammation. Central to these sensory modalities are transient receptor potential channels (TRP channels) on sensory nerve endings. For example, TRP vanilloid 1 (TRPV1) can be activated by heat, inflammatory factors (e.g., protons, bradykinin, anandamide), hyperosmolality, pungent irritants, and others. TRP channels are multimodal switches that transmit peripheral signals to the brain, thereby inducing a systemic response. It is demonstrated how and why these TRP channels (TRPV1, TRP ankyrin type 1 (TRPA1), and TRP melastatin type 8 (TRPM8)) are important to start up a systemic response of energy expenditure, energy allocation, and water retention and how this is linked to a continuously activated immune system in chronic inflammatory diseases.

  13. Epithelial calcium channels: from identification to function and regulation.

    NARCIS (Netherlands)

    Hoenderop, J.G.J.; Nilius, B.; Bindels, R.J.M.

    2003-01-01

    The epithelial calcium channels TRPV5 and TRPV6 have been studied extensively in the epithelial tissues controlling Ca(2+) homeostasis and exhibit a range of distinctive properties that distinguish them from other transient receptor potential (TRP) channels. These two novel members of the

  14. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Stephanie C Stotz

    2008-05-01

    Full Text Available Transient receptor potential (TRP ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1, and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate, consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.

  15. Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation.

    Science.gov (United States)

    De Petrocellis, L; Orlando, P; Moriello, A Schiano; Aviello, G; Stott, C; Izzo, A A; Di Marzo, V

    2012-02-01

    Plant cannabinoids, like Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD), activate/desensitize thermosensitive transient receptor potential (TRP) channels of vanilloid type-1 or -2 (TRPV1 or TRPV2). We investigated whether cannabinoids also activate/desensitize two other 'thermo-TRP's', the TRP channels of vanilloid type-3 or -4 (TRPV3 or TRPV4), and if the TRPV-inactive cannabichromene (CBC) modifies the expression of TRPV1-4 channels in the gastrointestinal tract. TRP activity was assessed by evaluating elevation of [Ca(2+)](i) in rat recombinant TRPV3- and TRPV4-expressing HEK-293 cells. TRP channel mRNA expression was measured by quantitative RT-PCR in the jejunum and ileum of mice treated with vehicle or the pro-inflammatory agent croton oil. (i) CBD and tetrahydrocannabivarin (THCV) stimulated TRPV3-mediated [Ca(2+)](i) with high efficacy (50-70% of the effect of ionomycin) and potency (EC(50∼) 3.7 μm), whereas cannabigerovarin (CBGV) and cannabigerolic acid (CBGA) were significantly more efficacious at desensitizing this channel to the action of carvacrol than at activating it; (ii) cannabidivarin and THCV stimulated TRPV4-mediated [Ca(2+)](i) with moderate-high efficacy (30-60% of the effect of ionomycin) and potency (EC(50) 0.9-6.4 μm), whereas CBGA, CBGV, cannabinol and cannabigerol were significantly more efficacious at desensitizing this channel to the action of 4-α-phorbol 12,13-didecanoate (4α-PDD) than at activating it; (iii) CBC reduced TRPV1β, TRPV3 and TRPV4 mRNA in the jejunum, and TRPV3 and TRPV4 mRNA in the ileum of croton oil-treated mice. Cannabinoids can affect both the activity and the expression of TRPV1-4 channels, with various potential therapeutic applications, including in the gastrointestinal tract. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  16. A kinetic model of trp-cage folding from multiple biased molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Fabrizio Marinelli

    2009-08-01

    Full Text Available Trp-cage is a designed 20-residue polypeptide that, in spite of its size, shares several features with larger globular proteins.Although the system has been intensively investigated experimentally and theoretically, its folding mechanism is not yet fully understood. Indeed, some experiments suggest a two-state behavior, while others point to the presence of intermediates. In this work we show that the results of a bias-exchange metadynamics simulation can be used for constructing a detailed thermodynamic and kinetic model of the system. The model, although constructed from a biased simulation, has a quality similar to those extracted from the analysis of long unbiased molecular dynamics trajectories. This is demonstrated by a careful benchmark of the approach on a smaller system, the solvated Ace-Ala3-Nme peptide. For theTrp-cage folding, the model predicts that the relaxation time of 3100 ns observed experimentally is due to the presence of a compact molten globule-like conformation. This state has an occupancy of only 3% at 300 K, but acts as a kinetic trap.Instead, non-compact structures relax to the folded state on the sub-microsecond timescale. The model also predicts the presence of a state at Calpha-RMSD of 4.4 A from the NMR structure in which the Trp strongly interacts with Pro12. This state can explain the abnormal temperature dependence of the Pro12-delta3 and Gly11-alpha3 chemical shifts. The structures of the two most stable misfolded intermediates are in agreement with NMR experiments on the unfolded protein. Our work shows that, using biased molecular dynamics trajectories, it is possible to construct a model describing in detail the Trp-cage folding kinetics and thermodynamics in agreement with experimental data.

  17. Human Digital Meissner Corpuscles Display Immunoreactivity for the Multifunctional Ion Channels Trpc6 and Trpv4.

    Science.gov (United States)

    Alonso-González, Paula; Cabo, Roberto; San José, Isabel; Gago, Angel; Suazo, Iván C; García-Suárez, Olivia; Cobo, Juan; Vega, José A

    2017-06-01

    Ion channels are at the basis of the sensory processes including mechanosensing. Some members of the transient receptor potential (TRP) ion channel superfamily have been proposed as mechanosensors, but their putative role in mechanotransduction is controversial. Among them there are TRP canonical 6 (TRPC6) and TRP vanilloid 4 (TRPV4) ion channels, which are known to cooperate in mechanical hyperalgesia. Here, we investigated the occurrence, distribution, and possible colocalization of TRPC6 and TRPV4 in human digital Meissner sensory corpuscles using immunohistochemistry and double immunofluorescence (associate with markers for specific corpuscular constituents). TRPC6 immunoreactivity was restricted to the axon of Meissner corpuscles, whereas TRPV4 was detected in the axon but also in the lamellar cells. Moreover, axonal colocalization of TRPV4 and TRPC6 was found in the digital Meissner corpuscles. Present results demonstrate for the first time the occurrence and colocalization of two ion channels candidates to mechanosensors in human cutaneous mechanoreceptors. The functional significance of these ion channels in that place remains to be clarified, but should be related to different properties of mechanosensitivity. Anat Rec, 300:1022-1031, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. The TRP Channels Pkd2, NompC, and Trpm Act in Cold-Sensing Neurons to Mediate Unique Aversive Behaviors to Noxious Cold in Drosophila.

    Science.gov (United States)

    Turner, Heather N; Armengol, Kevin; Patel, Atit A; Himmel, Nathaniel J; Sullivan, Luis; Iyer, Srividya Chandramouli; Bhattacharya, Surajit; Iyer, Eswar Prasad R; Landry, Christian; Galko, Michael J; Cox, Daniel N

    2016-12-05

    The basic mechanisms underlying noxious cold perception are not well understood. We developed Drosophila assays for noxious cold responses. Larvae respond to near-freezing temperatures via a mutually exclusive set of singular behaviors-in particular, a full-body contraction (CT). Class III (CIII) multidendritic sensory neurons are specifically activated by cold and optogenetic activation of these neurons elicits CT. Blocking synaptic transmission in CIII neurons inhibits CT. Genetically, the transient receptor potential (TRP) channels Trpm, NompC, and Polycystic kidney disease 2 (Pkd2) are expressed in CIII neurons, where each is required for CT. Misexpression of Pkd2 is sufficient to confer cold responsiveness. The optogenetic activation level of multimodal CIII neurons determines behavioral output, and visualization of neuronal activity supports this conclusion. Coactivation of cold- and heat-responsive sensory neurons suggests that the cold-evoked response circuitry is dominant. Our Drosophila model will enable a sophisticated molecular genetic dissection of cold nociceptive genes and circuits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Maitotoxin Is a Potential Selective Activator of the Endogenous Transient Receptor Potential Canonical Type 1 Channel in Xenopus laevis Oocytes

    Directory of Open Access Journals (Sweden)

    Pedro L. Flores

    2017-06-01

    Full Text Available Maitotoxin (MTX is the most potent marine toxin known to date. It is responsible for a particular human intoxication syndrome called ciguatera fish poisoning (CFP. Several reports indicate that MTX is an activator of non-selective cation channels (NSCC in different cell types. The molecular identity of these channels is still an unresolved topic, and it has been proposed that the transient receptor potential (TRP channels are involved in this effect. In Xenopus laevis oocytes, MTX at picomolar (pM concentrations induces the activation of NSCC with functional and pharmacological properties that resemble the activity of TRP channels. The purpose of this study was to characterize the molecular identity of the TRP channel involved in the MTX response, using the small interference RNA (siRNA approach and the two-electrode voltage-clamp technique (TEVC. The injection of a specifically designed siRNA to silence the transient receptor potential canonical type 1 (TRPC1 protein expression abolished the MTX response. MTX had no effect on oocytes, even at doses 20-fold higher compared to cells without injection. Total mRNA and protein levels of TRPC1 were notably diminished. The TRPC4 siRNA did not change the MTX effect, even though it was important to note that the protein level was reduced by the silencing of TRPC4. Our results suggest that MTX could be a selective activator of TRPC1 channels in X. laevis oocytes and a useful pharmacological tool for further studies on these TRP channels.

  20. Mechanisms underlying stage-1 TRPL channel translocation in Drosophila photoreceptors.

    Directory of Open Access Journals (Sweden)

    Minh-Ha Lieu

    Full Text Available TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling compartment of the cell (the rhabdomere, TRPL localization is regulated by light. TRPL channels translocate out of the rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying this trafficking of TRPL channels.We first examine the involvement of de novo protein synthesis in TRPL translocation. We feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content.Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protein transport, and not degradation/re-synthesis. Re-localization from each stage to the rhabdomere likely involves different strategies. Since TRPL channels can translocate to stage-1 in the absence of ATP, with no major requirement of the cytoskeleton, we suggest that stage-1 translocation involves simple diffusion through the apical membrane, which may be regulated by release of a light-dependent anchor in the rhabdomere.

  1. Expression of the benign HEXA mutations, Arg247Trp and Arg249Trp, associated with beta-hexosaminidase A pseudodeficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Z.; Petroulakis, E.; Salo, T. [Univ. of Manitoba (Canada)] [and others

    1994-09-01

    {beta}-Hexosaminidase (Hex A) is a heterodimer of {alpha} and {beta} subunits encoded by the HEXA and HEXB genes, respectively. Mutations in the HEXA gene typically cause Tay-Sachs disease or less severe forms of G{sub M2} gangliosidosis. However, two benign mutations (Arg247Trp and Arg249Trp) in the {alpha}-subunit of Hex A account for Hex A deficiency in {approximately}36% of non-Jewish enzyme-defined Tay-Sachs disease carriers. These mutations do not result in any apparent clinical phenotype in individuals who are genetic compounds with a second disease-causing mutation. We expressed the {alpha}-subunit harboring each of the benign mutations separately to study activity toward the synthetic substrate, 4-MUGS, for comparison to activity from enzymes containing mutations associated with other forms of G{sub M2} gangliosidosis. The C739T (Arg247Trp;benign), C745T (Arg 249Trp; benign), G805A (Gly269Ser; adult-onset), G749A (Gly250Asp; juvenile), and C508T (Arg170Trp; infantile) mutations were introduced into the {alpha}-subunit cDNA. These were transfected alone, or with the {beta}-subunit cDNA, to generate Hex S ({alpha}{alpha}) or Hex A ({alpha}{beta}), respectively. The activities were monitored using 4-MUGS, and the levels of {alpha}-subunit protein were assessed by Western blotting. Repeated experiments show that the benign mutations produce approximately 35% of normal Hex S and 40% of normal Hex A activity. This level is much higher than that of Hex A harbouring the Gly169Ser adult-onset mutation (12%). A sequential decrease in expressed Hex A activity is observed as mutations associated with more severe phenotypes are expressed. The benign mutations also result in lower levels of mature {alpha}-subunit protein compared to normal, and slightly reduced levels of {alpha}-subunit precursor protein. The Hex A deficiency resulting from benign mutations is not as great as that associated with disease-causing mutations.

  2. High-Temperature unfolding of a trp-Cage mini-protein: a molecular dynamics simulation study

    Directory of Open Access Journals (Sweden)

    Seshasayee Aswin Sai Narain

    2005-03-01

    Full Text Available Abstract Background Trp cage is a recently-constructed fast-folding miniprotein. It consists of a short helix, a 3,10 helix and a C-terminal poly-proline that packs against a Trp in the alpha helix. It is known to fold within 4 ns. Results High-temperature unfolding molecular dynamics simulations of the Trp cage miniprotein have been carried out in explicit water using the OPLS-AA force-field incorporated in the program GROMACS. The radius of gyration (Rg and Root Mean Square Deviation (RMSD have been used as order parameters to follow the unfolding process. Distributions of Rg were used to identify ensembles. Conclusion Three ensembles could be identified. While the native-state ensemble shows an Rg distribution that is slightly skewed, the second ensemble, which is presumably the Transition State Ensemble (TSE, shows an excellent fit. The denatured ensemble shows large fluctuations, but a Gaussian curve could be fitted. This means that the unfolding process is two-state. Representative structures from each of these ensembles are presented here.

  3. Structure-activity relationship of linear peptide Bu-His-DPhe-Arg-Trp-Gly-NH(2) at the human melanocortin-1 and -4 receptors: histidine substitution.

    Science.gov (United States)

    Cheung, Adrian Wai-Hing; Danho, Waleed; Swistok, Joseph; Qi, Lida; Kurylko, Grazyna; Rowan, Karen; Yeon, Mitch; Franco, Lucia; Chu, Xin-Jie; Chen, Li; Yagaloff, Keith

    2003-01-06

    Systematic substitution of His(6) residue using non-selective hMC4R pentapeptide agonist (Bu-His(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2)) as the template led to the identification of Bu-Atc(6)(2-aminotetraline-2-carboxylic acid)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2) which showed moderate selectivity towards hMC4R over hMC1R. Further SAR studies resulted in the discovery of Penta-5-BrAtc(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2) and Penta-5-Me(2)NAtc(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2) which are potent hMC4R agonists and are inactive in hMC1R, hMC3R and hMC5R agonist assays.

  4. The role of transient receptor potential channels in metabolic syndrome

    DEFF Research Database (Denmark)

    Liu, Daoyan; Zhu, Zhiming; Tepel, Martin

    2008-01-01

    Metabolic syndrome is correlated with increased cardiovascular risk and characterized by several factors, including visceral obesity, hypertension, insulin resistance, and dyslipidemia. Several members of a large family of nonselective cation entry channels, e.g., transient receptor potential (TRP...

  5. Antioxidant and antiglycation activities of the synthesised dipeptide, Asn-Trp, derived from computer-aided simulation of yam dioscorin hydrolysis and its analogue, Gln-Trp.

    Science.gov (United States)

    Han, Chuan-Hsiao; Lin, Yin-Shiou; Lin, Shyr-Yi; Hou, Wen-Chi

    2014-03-15

    Previous studies have shown that the Trp residue contributes to a high oxygen radical absorbance capacity (ORAC). Therefore, in this study, a Trp-containing dipeptide derived from a computer-aided simulation of pepsin hydrolysis of the yam tuber, dioscorin-namely, Asn-Trp (NW), and its analogue, Gln-Trp (QW)-were synthesised to compare their antioxidant and antiglycation activities with carnosine, homocarnosine, or glutathione (GSH). The antioxidant assays included hydroxyl radical-scavenging activity, anti-AAPH-induced hemolysis, and ORAC activity. NW had a significantly higher antioxidant activity than had QW and performed much better than carnosine, homocarnosine, or GSH. Using bovine serum albumin (BSA)/galactose or BSA/glucose as experimental models, NW had better antiglycation effects than had QW, as detected by an anti-N(ε)-(carboxymethyl)lysine (anti-CML) antibody. Moreover, NW and QW (50-200 μM) showed protection against methylglyoxal-induced cell deaths in human umbilical vein endothelial cells. These results suggest that NW, derived from computer-aided simulation of dioscorin hydrolysis, exhibits antioxidant and antiglycation activities, which thus shows the benefits of the yam tuber as an antioxidant-rich food. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Cryo-EM structure of the cytoplasmic domain of murine transient receptor potential cation channel subfamily C member 6 (TRPC6).

    Science.gov (United States)

    Azumaya, Caleigh M; Sierra-Valdez, Francisco; Cordero-Morales, Julio F; Nakagawa, Terunaga

    2018-05-11

    The kidney maintains the internal milieu by regulating the retention and excretion of proteins, ions, and small molecules. The glomerular podocyte forms the slit diaphragm of the ultrafiltration filter, whose damage leads to progressive kidney failure and focal segmental glomerulosclerosis (FSGS). The canonical transient receptor potential 6 (TRPC6) ion channel is expressed in the podocyte and mutations in its cytoplasmic domain cause FSGS in humans. In vitro evaluation of disease-causing mutations in TRPC6 has revealed that these genetic alterations result in abnormal ion channel gating. However, the mechanism whereby the cytoplasmic domain modulates TRPC6 function is largely unknown. Here we report a cryoEM structure of the cytoplasmic domain of murine TRPC6 at 3.8Å resolution. The cytoplasmic fold of TRPC6 is characterized by an inverted dome-like chamber pierced by four radial horizontal helices that converge into a vertical coiled-coil at the central axis. Unlike in other TRP channels, TRPC6 displays a unique domain swap that occurs at the junction of the horizontal helices and coiled-coil. Multiple FSGS mutations converge at the buried interface between the vertical coiled-coil and the ankyrin repeats, which form the dome, suggesting these regions are critical for allosteric gating modulation. This functionally critical interface is a potential target for drug design. Importantly, dysfunction in other family members leads to learning deficits (TRPC1/4/5) and ataxia (TRPC3). Our data provide a structural framework for the mechanistic investigation of the TRPC family. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Relative transmembrane segment rearrangements during BK channel activation resolved by structurally assigned fluorophore–quencher pairing

    Science.gov (United States)

    Pantazis, Antonios

    2012-01-01

    Voltage-activated proteins can sense, and respond to, changes in the electric field pervading the cell membrane by virtue of a transmembrane helix bundle, the voltage-sensing domain (VSD). Canonical VSDs consist of four transmembrane helices (S1–S4) of which S4 is considered a principal component because it possesses charged residues immersed in the electric field. Membrane depolarization compels the charges, and by extension S4, to rearrange with respect to the field. The VSD of large-conductance voltage- and Ca-activated K+ (BK) channels exhibits two salient inconsistencies from the canonical VSD model: (1) the BK channel VSD possesses an additional nonconserved transmembrane helix (S0); and (2) it exhibits a “decentralized” distribution of voltage-sensing charges, in helices S2 and S3, in addition to S4. Considering these unique features, the voltage-dependent rearrangements of the BK VSD could differ significantly from the standard model of VSD operation. To understand the mode of operation of this unique VSD, we have optically tracked the relative motions of the BK VSD transmembrane helices during activation, by manipulating the quenching environment of site-directed fluorescent labels with native and introduced Trp residues. Having previously reported that S0 and S4 diverge during activation, in this work we demonstrate that S4 also diverges from S1 and S2, whereas S2, compelled by its voltage-sensing charged residues, moves closer to S1. This information contributes spatial constraints for understanding the BK channel voltage-sensing process, revealing the structural rearrangements in a non-canonical VSD. PMID:22802360

  8. (Patho)physiological implications of the novel epithelial Ca2+ channels TRPV5 and TRPV6.

    NARCIS (Netherlands)

    Nijenhuis, T.; Hoenderop, J.G.J.; Nilius, B.; Bindels, R.J.M.

    2003-01-01

    The epithelial Ca(2+) channels TRPV5 and TRPV6 constitute the apical Ca(2+) entry mechanism in active Ca(2+) (re)absorption. These two members of the superfamily of transient receptor potential (TRP) channels were cloned from the vitamin-D-responsive epithelia of kidney and small intestine and

  9. The Pyrexia transient receptor potential channel mediates circadian clock synchronization to low temperature cycles in Drosophila melanogaster.

    Science.gov (United States)

    Wolfgang, Werner; Simoni, Alekos; Gentile, Carla; Stanewsky, Ralf

    2013-10-07

    Circadian clocks are endogenous approximately 24 h oscillators that temporally regulate many physiological and behavioural processes. In order to be beneficial for the organism, these clocks must be synchronized with the environmental cycles on a daily basis. Both light : dark and the concomitant daily temperature cycles (TCs) function as Zeitgeber ('time giver') and efficiently entrain circadian clocks. The temperature receptors mediating this synchronization have not been identified. Transient receptor potential (TRP) channels function as thermo-receptors in animals, and here we show that the Pyrexia (Pyx) TRP channel mediates temperature synchronization in Drosophila melanogaster. Pyx is expressed in peripheral sensory organs (chordotonal organs), which previously have been implicated in temperature synchronization. Flies deficient for Pyx function fail to synchronize their behaviour to TCs in the lower range (16-20°C), and this deficit can be partially rescued by introducing a wild-type copy of the pyx gene. Synchronization to higher TCs is not affected, demonstrating a specific role for Pyx at lower temperatures. In addition, pyx mutants speed up their clock after being exposed to TCs. Our results identify the first TRP channel involved in temperature synchronization of circadian clocks.

  10. Spontaneous calcium transients in human neural progenitor cells mediated by transient receptor potential channels.

    Science.gov (United States)

    Morgan, Peter J; Hübner, Rayk; Rolfs, Arndt; Frech, Moritz J

    2013-09-15

    Calcium signals affect many developmental processes, including proliferation, migration, survival, and apoptosis, processes that are of particular importance in stem cells intended for cell replacement therapies. The mechanisms underlying Ca(2+) signals, therefore, have a role in determining how stem cells respond to their environment, and how these responses might be controlled in vitro. In this study, we examined the spontaneous Ca(2+) activity in human neural progenitor cells during proliferation and differentiation. Pharmacological characterization indicates that in proliferating cells, most activity is the result of transient receptor potential (TRP) channels that are sensitive to Gd(3+) and La(3+), with the more subtype selective antagonist Ruthenium red also reducing activity, suggesting the involvement of transient receptor potential vanilloid (TRPV) channels. In differentiating cells, Gd(3+) and La(3+)-sensitive TRP channels also appear to underlie the spontaneous activity; however, no sub-type-specific antagonists had any effect. Protein levels of TRPV2 and TRPV3 decreased in differentiated cells, which is demonstrated by western blot. Thus, it appears that TRP channels represent the main route of Ca(2+) entry in human neural progenitor cells (hNPCs), but the responsible channel types are subject to substitution under differentiating conditions. The level of spontaneous activity could be increased and decreased by lowering and raising the extracellular K(+) concentration. Proliferating cells in low K(+) slowed the cell cycle, with a disproportionate increased percentage of cells in G1 phase and a reduction in S phase. Taken together, these results suggest a link between external K(+) concentration, spontaneous Ca(2+) transients, and cell cycle distribution, which is able to influence the fate of stem and progenitor cells.

  11. Two-channel dansyl/tryptophan emitters with a cholic acid bridge as reporters for local hydrophobicity within supramolecular systems based on bile salts.

    Science.gov (United States)

    Gomez-Mendoza, M; Marin, M Luisa; Miranda, Miguel A

    2014-11-14

    The aim of the present work is to develop two-channel emitters to probe local hydrophobicity by means of fluorescence quenching within different biomimetic supramolecular environments. To achieve this goal, the dansyl (Dns) and tryptophan (Trp) fluorophores have been covalently attached to cholic acid (CA) in order to ensure simultaneous incorporation of the two emitting units into the same compartment. In principle, the two fluorophores of the synthesized Dns-CA-Trp probes could either exhibit an orthogonal behavior or display excited state interactions. The fluorescence spectra of 3β-Dns-CA-Trp showed a residual Trp emission band at ca. 350 nm and an enhanced Dns maximum in the 500-550 nm region. This reveals a partial intramolecular energy transfer, which is consistent with the Dns and Trp singlet energies. Thus, the two photoactive units are not orthogonal; nevertheless, 3β-Dns-CA-Trp seems appropriate as a two-channel reporter for the supramolecular systems of interest. Fluorescence quenching of 3β-Dns-CA-Trp by iodide (which remains essentially in bulk water) was examined within sodium cholate, sodium taurocholate, sodium deoxycholate and mixed micelles. Interestingly, a decrease in the emission intensity of the two bands was observed with increasing iodide concentrations. The most remarkable effect was observed for mixed micelles, where the quenching rate constants were one order of magnitude lower than in solution. As anticipated, the quenching efficiency by iodide decreased with increasing hydrophobicity of the microenvironment, a trend that can be correlated with the relative accessibility of the probe to the ionic quencher.

  12. Pulse radiolysis studies of intramolecular electron transfer in model peptides and proteins. 7. Trp -> TyrO radical transformation in hen egg-white lysozyme. Effects of pH, temperature, Trp62 oxidation and inhibitor binding

    DEFF Research Database (Denmark)

    Bobrowski, K.; Holcman, J.; Poznanski, J.

    1997-01-01

    Intramolecular long-range electron transfer (LRET) in hen egg-white lysozyme (HEWL) accompanying Trp --> TyrO radical transformation was investigated in aqueous solution by pulse radiolysis as a function of pH (5.2-7.4) and temperature (283-328K). The reaction was induced by highly selective...... below its denaturation temperature. Selective oxidation by ozone of the Trp62 indole side-chain in HEWL to N'-formylkynurenine (NFKyn62-HEWL) caused a large drop in the initial yield of Trp(.) radicals, G(Trp(.))(i). This was accompanied by a relatively small decrease in k(5) but selective oxidation...

  13. UV-induced tandem double mutations in the trpA gene of E. coli

    International Nuclear Information System (INIS)

    Piechocki, R.; Langhammer, R.

    1980-01-01

    The ultraviolet light induction of tandem double mutations in a reverse mutation system was shown using trpA mutants which are characterized by the codon sequences GAA and AAG in codon position 211. Among 597 Trp + independent revertants of the trpA (AAG211) strain 3 full revertants were detected arising from UV-induced tandem double base exchanges. In the codon unit 211 full revertants due to single base exchanges are at least 20 times as frequent as full revertants due to tandem double base exchanges. (author)

  14. Alternative SAIL-Trp for robust aromatic signal assignment and determination of the χ2 conformation by intra-residue NOEs

    International Nuclear Information System (INIS)

    Miyanoiri, Yohei; Takeda, Mitsuhiro; Jee, JunGoo; Ono, Akira M.; Okuma, Kosuke; Terauchi, Tsutomu; Kainosho, Masatsune

    2011-01-01

    Tryptophan (Trp) residues are frequently found in the hydrophobic cores of proteins, and therefore, their side-chain conformations, especially the precise locations of the bulky indole rings, are critical for determining structures by NMR. However, when analyzing [U– 13 C, 15 N]-proteins, the observation and assignment of the ring signals are often hampered by excessive overlaps and tight spin couplings. These difficulties have been greatly alleviated by using stereo-array isotope labeled (SAIL) proteins, which are composed of isotope-labeled amino acids optimized for unambiguous side-chain NMR assignment, exclusively through the 13 C– 13 C and 13 C– 1 H spin coupling networks (Kainosho et al. in Nature 440:52–57, 2006). In this paper, we propose an alternative type of SAIL-Trp with the [ζ2,ζ3- 2 H 2 ; δ1,ε3,η2- 13 C 3 ; ε1- 15 N]-indole ring ([ 12 C γ, 12 C ε2 ] SAIL-Trp), which provides a more robust way to correlate the 1 H β , 1 H α , and 1 H N to the 1 H δ1 and 1 H ε3 through the intra-residue NOEs. The assignment of the 1 H δ1 / 13 C δ1 and 1 H ε3 / 13 C ε3 signals can thus be transferred to the 1 H ε1 / 15 N ε1 and 1 H η2 / 13 C η2 signals, as with the previous type of SAIL-Trp, which has an extra 13 C at the C γ of the ring. By taking advantage of the stereospecific deuteration of one of the prochiral β-methylene protons, which was 1 H β2 in this experiment, one can determine the side-chain conformation of the Trp residue including the χ 2 angle, which is especially important for Trp residues, as they can adopt three preferred conformations. We demonstrated the usefulness of [ 12 C γ , 12 C ε2 ] SAIL-Trp for the 12 kDa DNA binding domain of mouse c-Myb protein (Myb-R2R3), which contains six Trp residues.

  15. Alternative SAIL-Trp for robust aromatic signal assignment and determination of the χ(2) conformation by intra-residue NOEs.

    Science.gov (United States)

    Miyanoiri, Yohei; Takeda, Mitsuhiro; Jee, JunGoo; Ono, Akira M; Okuma, Kosuke; Terauchi, Tsutomu; Kainosho, Masatsune

    2011-12-01

    Tryptophan (Trp) residues are frequently found in the hydrophobic cores of proteins, and therefore, their side-chain conformations, especially the precise locations of the bulky indole rings, are critical for determining structures by NMR. However, when analyzing [U-(13)C,(15)N]-proteins, the observation and assignment of the ring signals are often hampered by excessive overlaps and tight spin couplings. These difficulties have been greatly alleviated by using stereo-array isotope labeled (SAIL) proteins, which are composed of isotope-labeled amino acids optimized for unambiguous side-chain NMR assignment, exclusively through the (13)C-(13)C and (13)C-(1)H spin coupling networks (Kainosho et al. in Nature 440:52-57, 2006). In this paper, we propose an alternative type of SAIL-Trp with the [ζ2,ζ3-(2)H(2); δ1,ε3,η2-(13)C(3); ε1-(15)N]-indole ring ([(12)C (γ,) ( 12) C(ε2)] SAIL-Trp), which provides a more robust way to correlate the (1)H(β), (1)H(α), and (1)H(N) to the (1)H(δ1) and (1)H(ε3) through the intra-residue NOEs. The assignment of the (1)H(δ1)/(13)C(δ1) and (1)H(ε3)/(13)C(ε3) signals can thus be transferred to the (1)H(ε1)/(15)N(ε1) and (1)H(η2)/(13)C(η2) signals, as with the previous type of SAIL-Trp, which has an extra (13)C at the C(γ) of the ring. By taking advantage of the stereospecific deuteration of one of the prochiral β-methylene protons, which was (1)H(β2) in this experiment, one can determine the side-chain conformation of the Trp residue including the χ(2) angle, which is especially important for Trp residues, as they can adopt three preferred conformations. We demonstrated the usefulness of [(12)C(γ),(12)C(ε2)] SAIL-Trp for the 12 kDa DNA binding domain of mouse c-Myb protein (Myb-R2R3), which contains six Trp residues.

  16. The human transient receptor potential vanilloid 3 channel is sensitized via the ERK pathway

    Czech Academy of Sciences Publication Activity Database

    Vyklická, Lenka; Boukalová, Štěpána; Mačíková, Lucie; Chvojka, Štěpán; Vlachová, Viktorie

    2017-01-01

    Roč. 292, č. 51 (2017), s. 21083-21091 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GA15-15839S Institutional support: RVO:67985823 Keywords : epidermal growth factor receptor (EGFR) * extracellular-signal-regulated kinase (ERK) * keratinocyte * phosphorylation * transient receptor potential channels * TRP channels Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 4.125, year: 2016

  17. Localization of transient receptor potential ion channels in primary and motile cilia of the female murine reproductive organs

    DEFF Research Database (Denmark)

    Teilmann, Stefan C.; Byskov, Anne Grete; Pedersen, Per Amstrup

    2005-01-01

    We have examined the subcellular localization of transient receptor potential (TRP) ion channels and the potential sensory role of cilia in murine female reproductive organs using confocal laser scanning microscopy analysis on ovary and oviduct tissue sections as well as on primary cultures...... of follicular granulosa cells. We show that the Ca2+ permeable cation channel, polycystin-2, as well as polycystin-1, a receptor that forms a functional protein complex with polycystin 2, distinctively localize to primary cilia emerging from granulosa cells of antral follicles in vivo and in vitro. Both...... polycystins are localized to motile oviduct cilia and this localization is greatly increased upon ovulatory gonadotropic stimulation. Further, the Ca2+ permeable cation channel, TRP vaniloid 4 (TRPV4), localizes to a sub-population of motile cilia on the epithelial cells of the ampulla and isthmus with high...

  18. Differential Effects of TRPA and TRPV Channels on Behaviors of

    Directory of Open Access Journals (Sweden)

    Jennifer Thies

    2016-01-01

    Full Text Available TRPA and TRPV ion channels are members of the transient receptor potential (TRP cation channel superfamily, which mediates various sensory transductions. In Caenorhabditis elegans , the TRPV channels are known to affect chemosensation, while the TRPA-1 channel is associated with thermosensation and mechanosensation. We examined thermosensation, chemosensation, and osmosensation in strains lacking TRPA-1 or TRPV channels. We found that TRPV channel knockout worms exhibited similar behavioral deficits associated with thermotaxis as the TRPA-1 channel knockout, suggesting a dual role for TRPV channels. In contrast, chemosensation responses, assessed by both avoidance reversal behavior and NaCl osmosensation, were dependent on TRPV channels but seemed independent of TRPA-1 channel. Our findings suggest that, in addition to TRPA-1 channel, TRPV channels are necessary for thermotaxis and may activate, or modulate, the function of TRPA-1 channels. In contrast, TRPA-1 channels do not have a dual responsibility, as they have no functional role in odorant avoidance or osmosensation.

  19. Identification of a tetrameric assembly domain in the C terminus of heat-activated TRPV1 channels.

    Science.gov (United States)

    Zhang, Feng; Liu, Shuang; Yang, Fan; Zheng, Jie; Wang, KeWei

    2011-04-29

    Transient receptor potential (TRP) channels as cellular sensors are thought to function as tetramers. Yet, the molecular determinants governing channel multimerization remain largely elusive. Here we report the identification of a segment comprising 21 amino acids (residues 752-772 of mouse TRPV1) after the known TRP-like domain in the channel C terminus that functions as a tetrameric assembly domain (TAD). Purified recombinant C-terminal proteins of TRPV1-4, but not the N terminus, mediated the protein-protein interaction in an in vitro pulldown assay. Western blot analysis combined with electrophysiology and calcium imaging demonstrated that TAD exerted a robust dominant-negative effect on wild-type TRPV1. When fused with the membrane-tethered peptide Gap43, the TAD blocked the formation of stable homomultimers. Calcium imaging and current recordings showed that deletion of the TAD in a poreless TRPV1 mutant subunit suppressed its dominant-negative phenotype, confirming the involvement of the TAD in assembly of functional channels. Our findings suggest that the C-terminal TAD in TRPV1 channels functions as a domain that is conserved among TRPV1-4 and mediates a direct subunit-subunit interaction for tetrameric assembly.

  20. Replica exchange simulation of reversible folding/unfolding of the Trp-cage miniprotein in explicit solvent: on the structure and possible role of internal water.

    Science.gov (United States)

    Paschek, Dietmar; Nymeyer, Hugh; García, Angel E

    2007-03-01

    We simulate the folding/unfolding equilibrium of the 20-residue miniprotein Trp-cage. We use replica exchange molecular dynamics simulations of the AMBER94 atomic detail model of the protein explicitly solvated by water, starting from a completely unfolded configuration. We employ a total of 40 replicas, covering the temperature range between 280 and 538 K. Individual simulation lengths of 100 ns sum up to a total simulation time of about 4 micros. Without any bias, we observe the folding of the protein into the native state with an unfolding-transition temperature of about 440 K. The native state is characterized by a distribution of root mean square distances (RMSD) from the NMR data that peaks at 1.8A, and is as low as 0.4A. We show that equilibration times of about 40 ns are required to yield convergence. A folded configuration in the entire extended ensemble is found to have a lifetime of about 31 ns. In a clamp-like motion, the Trp-cage opens up during thermal denaturation. In line with fluorescence quenching experiments, the Trp-residue sidechain gets hydrated when the protein opens up, roughly doubling the number of water molecules in the first solvation shell. We find the helical propensity of the helical domain of Trp-cage rather well preserved even at very high temperatures. In the folded state, we can identify states with one and two buried internal water molecules interconnecting parts of the Trp-cage molecule by hydrogen bonds. The loss of hydrogen bonds of these buried water molecules in the folded state with increasing temperature is likely to destabilize the folded state at elevated temperatures.

  1. Histidine 352 (His352 and tryptophan 355 (Trp355 are essential for flax UGT74S1 glucosylation activity toward secoisolariciresinol.

    Directory of Open Access Journals (Sweden)

    Kaushik Ghose

    Full Text Available Flax secoisolariciresinol diglucoside (SDG lignan is a natural phytoestrogen for which a positive role in metabolic diseases is emerging. Until recently however, much less was known about SDG and its monoglucoside (SMG biosynthesis. Lately, flax UGT74S1 was identified and characterized as an enzyme sequentially glucosylating secoisolariciresinol (SECO into SMG and SDG when expressed in yeast. However, the amino acids critical for UGT74S1 glucosyltransferase activity were unknown. A 3D structural modeling and docking, site-directed mutagenesis of five amino acids in the plant secondary product glycosyltransferase (PSPG motif, and enzyme assays were conducted. UGT74S1 appeared to be structurally similar to the Arabidopsis thaliana UGT72B1 model. The ligand docking predicted Ser357 and Trp355 as binding to the phosphate and hydroxyl groups of UDP-glucose, whereas Cys335, Gln337 and Trp355 were predicted to bind the 7-OH, 2-OCH3 and 17-OCH3 of SECO. Site-directed mutagenesis of Cys335, Gln337, His352, Trp355 and Ser357, and enzyme assays revealed an alteration of these binding sites and a significant reduction of UGT74S1 glucosyltransferase catalytic activity towards SECO and UDP-glucose in all mutants. A complete abolition of UGT74S1 activity was observed when Trp355 was substituted to Ala355 and Gly355 or when changing His352 to Asp352, and an altered metabolite profile was observed in Cys335Ala, Gln337Ala, and Ser357Ala mutants. This study provided for the first time evidence that Trp355 and His352 are critical for UGT74S1's glucosylation activity toward SECO and suggested the possibility for SMG production in vitro.

  2. Chemical Excitation and Inactivation in Photoreceptors of the Fly Mutants trp and nss

    NARCIS (Netherlands)

    Suss, E.; Barash, S.; Stavenga, D.G.; Stieve, H.; Selinger, Z.; Minke, B.

    1989-01-01

    The Drosophila and Lucilia photoreceptor mutants, trp and nss, respond like wild-type flies to a short pulse of intense light or prolonged dim light; however, upon continuous intense illumination, the trp and nss mutants are unable to maintain persistent excitation. This defect manifests itself by a

  3. Spectroscopic evidence for an engineered, catalytically active Trp radical that creates the unique reactivity of lignin peroxidase.

    Science.gov (United States)

    Smith, Andrew T; Doyle, Wendy A; Dorlet, Pierre; Ivancich, Anabella

    2009-09-22

    The surface oxidation site (Trp-171) in lignin peroxidase (LiP) required for the reaction with veratryl alcohol a high-redox-potential (1.4 V) substrate, was engineered into Coprinus cinereus peroxidase (CiP) by introducing a Trp residue into a heme peroxidase that has similar protein fold but lacks this activity. To create the catalytic activity toward veratryl alcohol in CiP, it was necessary to reproduce the Trp site and its negatively charged microenvironment by means of a triple mutation. The resulting D179W+R258E+R272D variant was characterized by multifrequency EPR spectroscopy. The spectra unequivocally showed that a new Trp radical [g values of g(x) = 2.0035(5), g(y) = 2.0027(5), and g(z) = 2.0022(1)] was formed after the [Fe(IV)=O Por(*+)] intermediate, as a result of intramolecular electron transfer between Trp-179 and the porphyrin. Also, the EPR characterization crucially showed that [Fe(IV)=O Trp-179(*)] was the reactive intermediate with veratryl alcohol. Accordingly, our work shows that it is necessary to take into account the physicochemical properties of the radical, fine-tuned by the microenvironment, as well as those of the preceding [Fe(IV)=O Por(*+)] intermediate to engineer a catalytically competent Trp site for a given substrate. Manipulation of the microenvironment of the Trp-171 site in LiP allowed the detection by EPR spectroscopy of the Trp-171(*), for which direct evidence has been missing so far. Our work also highlights the role of Trp residues as tunable redox-active cofactors for enzyme catalysis in the context of peroxidases with a unique reactivity toward recalcitrant substrates that require oxidation potentials not realized at the heme site.

  4. Design of a new peptidomimetic agonist for the melanocortin receptors based on the solution structure of the peptide ligand, Ac-Nle-cyclo[Asp-Pro-DPhe-Arg-Trp-Lys]-NH(2).

    Science.gov (United States)

    Fotsch, Christopher; Smith, Duncan M; Adams, Jeffrey A; Cheetham, Janet; Croghan, Michael; Doherty, Elizabeth M; Hale, Clarence; Jarosinski, Mark A; Kelly, Michael G; Norman, Mark H; Tamayo, Nuria A; Xi, Ning; Baumgartner, James W

    2003-07-21

    The solution structure of a potent melanocortin receptor agonist, Ac-Nle-cyclo[Asp-Pro-DPhe-Arg-Trp-Lys]-NH(2) (1) was calculated using distance restraints determined from 1H NMR spectroscopy. Eight of the lowest energy conformations from this study were used to identify non-peptide cores that mimic the spatial arrangement of the critical tripeptide region, DPhe-Arg-Trp, found in 1. From these studies, compound 2a, containing the cis-cyclohexyl core, was identified as a functional agonist of the melanocortin-4 receptor (MC4R) with an IC(50) and EC(50) below 10 nM. Compound 2a also showed 36- and 7-fold selectivity over MC3R and MC1R, respectively, in the binding assays. Subtle changes in cyclohexane stereochemistry and removal of functional groups led to analogues with lower affinity for the MC receptors.

  5. Channel flow structure measurements using particle image velocimetry

    International Nuclear Information System (INIS)

    Norazizi Mohamed; Noraeini Mokhtar; Aziz Ibrahim; Ramli Abu Hassan

    1996-01-01

    Two different flow structures in a laboratory channel were examined using a flow visualization technique, known as Particle Image Velocimetry (PIV). The first channel flow structure was that of a steady flow over a horizontal channel bottom. Photographs of particle displacements were taken in the boundary layer in a plane parallel to the flow. These photographs were analyzed to give simultaneous measurements of two components of the velocity at hundreds of points in the plane. Averaging these photographs gave the velocity profile a few millimeters from the bottom of the channel to the water surface. The results gave good agreement with the known boundary layer theory. This technique is extended to the study of the structure under a progressive wave in the channel. A wavelength of the propagating wave is divided into sections by photographing it continously for a number of frames. Each frame is analyzed and a velocity field under this wave at various phase points were produced with their respective directions. The results show that velocity vectors in a plane under the wave could be achieved instantaneously and in good agreement with the small amplitude wave theory

  6. Alternative SAIL-Trp for robust aromatic signal assignment and determination of the {chi}{sub 2} conformation by intra-residue NOEs

    Energy Technology Data Exchange (ETDEWEB)

    Miyanoiri, Yohei; Takeda, Mitsuhiro [Nagoya University, Graduate School of Science, Structural Biology Research Center (Japan); Jee, JunGoo; Ono, Akira M.; Okuma, Kosuke; Terauchi, Tsutomu [Tokyo Metropolitan University, Center for Priority Areas (Japan); Kainosho, Masatsune, E-mail: kainosho@nagoya-u.jp [Nagoya University, Graduate School of Science, Structural Biology Research Center (Japan)

    2011-12-15

    Tryptophan (Trp) residues are frequently found in the hydrophobic cores of proteins, and therefore, their side-chain conformations, especially the precise locations of the bulky indole rings, are critical for determining structures by NMR. However, when analyzing [U-{sup 13}C,{sup 15}N]-proteins, the observation and assignment of the ring signals are often hampered by excessive overlaps and tight spin couplings. These difficulties have been greatly alleviated by using stereo-array isotope labeled (SAIL) proteins, which are composed of isotope-labeled amino acids optimized for unambiguous side-chain NMR assignment, exclusively through the {sup 13}C-{sup 13}C and {sup 13}C-{sup 1}H spin coupling networks (Kainosho et al. in Nature 440:52-57, 2006). In this paper, we propose an alternative type of SAIL-Trp with the [{zeta}2,{zeta}3-{sup 2}H{sub 2}; {delta}1,{epsilon}3,{eta}2-{sup 13}C{sub 3}; {epsilon}1-{sup 15}N]-indole ring ([{sup 12}C{sub {gamma},}{sup 12}C{sub {epsilon}2}] SAIL-Trp), which provides a more robust way to correlate the {sup 1}H{sub {beta}}, {sup 1}H{sub {alpha}}, and {sup 1}H{sub N} to the {sup 1}H{sub {delta}1} and {sup 1}H{sub {epsilon}3} through the intra-residue NOEs. The assignment of the {sup 1}H{sub {delta}1}/{sup 13}C{sub {delta}1} and {sup 1}H{sub {epsilon}3}/{sup 13}C{sub {epsilon}3} signals can thus be transferred to the {sup 1}H{sub {epsilon}1}/{sup 15}N{sub {epsilon}1} and {sup 1}H{sub {eta}2}/{sup 13}C{sub {eta}2} signals, as with the previous type of SAIL-Trp, which has an extra {sup 13}C at the C{sub {gamma}} of the ring. By taking advantage of the stereospecific deuteration of one of the prochiral {beta}-methylene protons, which was {sup 1}H{sub {beta}2} in this experiment, one can determine the side-chain conformation of the Trp residue including the {chi}{sub 2} angle, which is especially important for Trp residues, as they can adopt three preferred conformations. We demonstrated the usefulness of [{sup 12}C{sub {gamma}},{sup 12}C

  7. Simple Ion Channels: From Structure to Electrophysiology and Back

    Science.gov (United States)

    Pohorille, Andrzej

    2018-01-01

    A reliable way to establish whether our understanding of a channel is satisfactory is to reproduce its measured ionic conductance over a broad range of applied voltages in computer simulations. In molecular dynamics (MD), this can be done by way of applying an external electric field to the system and counting the number of ions that traverse the channel per unit time. Since this approach is computationally very expensive, we have developed a markedly more efficient alternative in which MD is combined with the electrodiffusion (ED) equation. In this approach, the assumptions of the ED equation can be rigorously tested, and the precision and consistency of the calculated conductance can be determined. We have demonstrated that the full current/voltage dependence and the underlying free energy profile for a simple channel can be reliably calculated from equilibrium or non-equilibrium MD simulations at a single voltage. To carry out MD simulations, a structural model of a channel has to be assumed, which is an important constraint, considering that high-resolution structures are available for only very few simple channels. If the comparison of calculated ionic conductance with electrophysiological data is satisfactory, it greatly increases our confidence that the structure and the function are described sufficiently accurately. We examined the validity of the ED for several channels embedded in phospholipid membranes - four naturally occurring channels: trichotoxin, alamethicin, p7 from hepatitis C virus (HCV) and Vpu from the HIV-1 virus, and a synthetic, hexameric channel, formed by a 21-residue peptide that contains only leucine and serine. All these channels mediate transport of potassium and chloride ions. It was found that the ED equation is satisfactory for these systems. In some of them experimental and calculated electrophysiological properties are in good agreement, whereas in others there are strong indications that the structural models are incorrect.

  8. TrpA1 activation in peripheral sensory neurons underlies the ionic basis of pain hypersensitivity in response to vinca alkaloids.

    Directory of Open Access Journals (Sweden)

    Nina Boiko

    Full Text Available Chemotherapy induced peripheral neuropathy (CIPN, a side effect of many anti-cancer drugs including the vinca alkaloids, is characterized by a severe pain syndrome that compromises treatment in many patients. Currently there are no effective treatments for this pain syndrome except for the reduction of anti-cancer drug dose. Existing data supports the model that the pain associated with CIPN is the result of anti-cancer drugs augmenting the function of the peripheral sensory nociceptors but the cellular mechanisms underlying the effects of anti-cancer drugs on sensory neuron function are not well described. Studies from animal models have suggested a number of disease etiologies including mitotoxicity, axonal degeneration, immune signaling, and reduced sensory innervations but these outcomes are the result of prolonged treatment paradigms and do not necessarily represent the early formative events associated with CIPN. Here we show that acute exposure to vinca alkaloids results in an immediate pain syndrome in both flies and mice. Furthermore, we demonstrate that exposure of isolated sensory neurons to vinca alkaloids results in the generation of an inward sodium current capable of depolarizing these neurons to threshold resulting in neuronal firing. These neuronal effects of vinca alkaloids require the transient receptor potential ankyrin-1 (TrpA1 channel, and the hypersensitization to painful stimuli in response to the acute exposure to vinca alkaloids is reduced in TrpA1 mutant flies and mice. These findings demonstrate the direct excitation of sensory neurons by CIPN-causing chemotherapy drugs, and identify TrpA1 as an important target during the pathogenesis of CIPN.

  9. Acid-base titration of melanocortin peptides: evidence of Trp rotational conformers interconversion.

    Science.gov (United States)

    Fernandez, Roberto M; Vieira, Renata F F; Nakaie, Clóvis R; Lamy, M Teresa; Ito, Amando S

    2005-01-01

    Tryptophantime-resolved fluorescence was used to monitor acid-base titration properties of alpha-melanocyte stimulating hormone (alpha-MSH) and the biologically more potent analog [Nle4, D-Phe7]alpha -MSH (NDP-MSH), labeled or not with the paramagnetic amino acid probe 2,2,6,6-tetramthylpiperidine-N-oxyl-4-amino-4-carboxylic acid (Toac). Global analysis of fluorescence decay profiles measured in the pH range between 2.0 and 11.0 showed that, for each peptide, the data could be well fitted to three lifetimes whose values remained constant. The less populated short lifetime component changed little with pH and was ascribed to Trp g+ chi1 rotamer, in which electron transfer deactivation predominates over fluorescence. The long and intermediate lifetime preexponential factors interconverted along that pH interval and the result was interpreted as due to interconversion between Trp g- and trans chi1 rotamers, driven by conformational changes promoted by modifications in the ionization state of side-chain residues. The differences in the extent of interconversion in alpha-MSH and NDP-MSH are indicative of structural differences between the peptides, while titration curves suggest structural similarities between each peptide and its Toac-labeled species, in aqueous solution. Though less sensitive than fluorescence, the Toac electron spin resonance (ESR) isotropic hyperfine splitting parameter can also monitor the titration of side-chain residues located relatively far from the probe. Copyright (c) 2005 Wiley Periodicals, Inc.

  10. Regulation of Substantia Nigra Pars Reticulata GABAergic Neuron Activity by H2O2 via Flufenamic Acid-Sensitive Channels and KATP Channels

    Science.gov (United States)

    Lee, Christian R.; Witkovsky, Paul; Rice, Margaret E.

    2011-01-01

    Substantia nigra pars reticulata (SNr) GABAergic neurons are key output neurons of the basal ganglia. Given the role of these neurons in motor control, it is important to understand factors that regulate their firing rate and pattern. One potential regulator is hydrogen peroxide (H2O2), a reactive oxygen species that is increasingly recognized as a neuromodulator. We used whole-cell current clamp recordings of SNr GABAergic neurons in guinea-pig midbrain slices to determine how H2O2 affects the activity of these neurons and to explore the classes of ion channels underlying those effects. Elevation of H2O2 levels caused an increase in the spontaneous firing rate of SNr GABAergic neurons, whether by application of exogenous H2O2 or amplification of endogenous H2O2 through inhibition of glutathione peroxidase with mercaptosuccinate. This effect was reversed by flufenamic acid (FFA), implicating transient receptor potential (TRP) channels. Conversely, depletion of endogenous H2O2 by catalase, a peroxidase enzyme, decreased spontaneous firing rate and firing precision of SNr neurons, demonstrating tonic control of firing rate by H2O2. Elevation of H2O2 in the presence of FFA revealed an inhibition of tonic firing that was prevented by blockade of ATP-sensitive K+ (KATP) channels with glibenclamide. In contrast to guinea-pig SNr neurons, the dominant effect of H2O2 elevation in mouse SNr GABAergic neurons was hyperpolarization, indicating a species difference in H2O2-dependent regulation. Thus, H2O2 is an endogenous modulator of SNr GABAergic neurons, acting primarily through presumed TRP channels in guinea-pig SNr, with additional modulation via KATP channels to regulate SNr output. PMID:21503158

  11. BAX and tumor suppressor TRP53 are important in regulating mutagenesis in spermatogenic cells in mice.

    Science.gov (United States)

    Xu, Guogang; Vogel, Kristine S; McMahan, C Alex; Herbert, Damon C; Walter, Christi A

    2010-12-01

    During the first wave of spermatogenesis, and in response to ionizing radiation, elevated mutant frequencies are reduced to a low level by unidentified mechanisms. Apoptosis is occurring in the same time frame that the mutant frequency declines. We examined the role of apoptosis in regulating mutant frequency during spermatogenesis. Apoptosis and mutant frequencies were determined in spermatogenic cells obtained from Bax-null or Trp53-null mice. The results showed that spermatogenic lineage apoptosis was markedly decreased in Bax-null mice and was accompanied by a significantly increased spontaneous mutant frequency in seminiferous tubule cells compared to that of wild-type mice. Apoptosis profiles in the seminiferous tubules for Trp53-null were similar to control mice. Spontaneous mutant frequencies in pachytene spermatocytes and in round spermatids from Trp53-null mice were not significantly different from those of wild-type mice. However, epididymal spermatozoa from Trp53-null mice displayed a greater spontaneous mutant frequency compared to that from wild-type mice. A greater proportion of spontaneous transversions and a greater proportion of insertions/deletions 15 days after ionizing radiation were observed in Trp53-null mice compared to wild-type mice. Base excision repair activity in mixed germ cell nuclear extracts prepared from Trp53-null mice was significantly lower than that for wild-type controls. These data indicate that BAX-mediated apoptosis plays a significant role in regulating spontaneous mutagenesis in seminiferous tubule cells obtained from neonatal mice, whereas tumor suppressor TRP53 plays a significant role in regulating spontaneous mutagenesis between postmeiotic round spermatid and epididymal spermatozoon stages of spermiogenesis.

  12. A survey on the biochemical parameters in serum of the Azarbaijan buffaloes with TRP

    Directory of Open Access Journals (Sweden)

    Gh. Mousavi

    2010-02-01

    Full Text Available TRP disease is one of the prevalent disease in cows and buffaloes that most common in dairy cows feed by prepared foods but cases occur infrequently in buffaloes, beef cattle, sheep and goats. In this research 15 Azerbaijan buffaloes with TRP were studied. Firstly affected buffaloes were diagnosed based on clinical signs. The blood samples were obtained from the related animals and after separation blood serum by centrifuging, the biochemical tests, such as sodium, potassium, Glucose, phosphorus, albumin and calcium levels in serum were measured. The mean levels of sodium, potassium, Glucose, phosphorus, albumin and calcium in buffaloes with TRP were 112 mEq/Lit, 3.11 mEq/Lit, 42.29 mg/dl, 3.84 mg/dl, 544 mg/dl, 8.60 mg/dl. In this study the mean levels of sodium, potassium, phosphorus in buffaloes with TRP was less than the normal buffaloes and the mean levels of calcium, Glucose as such as the normal animals and the mean levels of albumin was higher than the normal buffaloes.

  13. Voltage-Gated Potassium Channels: A Structural Examination of Selectivity and Gating

    Science.gov (United States)

    Kim, Dorothy M.; Nimigean, Crina M.

    2016-01-01

    Voltage-gated potassium channels play a fundamental role in the generation and propagation of the action potential. The discovery of these channels began with predictions made by early pioneers, and has culminated in their extensive functional and structural characterization by electrophysiological, spectroscopic, and crystallographic studies. With the aid of a variety of crystal structures of these channels, a highly detailed picture emerges of how the voltage-sensing domain reports changes in the membrane electric field and couples this to conformational changes in the activation gate. In addition, high-resolution structural and functional studies of K+ channel pores, such as KcsA and MthK, offer a comprehensive picture on how selectivity is achieved in K+ channels. Here, we illustrate the remarkable features of voltage-gated potassium channels and explain the mechanisms used by these machines with experimental data. PMID:27141052

  14. TRP channel blamed for burning cold after a tropical fish meal

    Science.gov (United States)

    Voets, Thomas

    2012-01-01

    EMBO J (2012) 31 19, 3795–3808 doi:10.1038/emboj.2012.207; published online 07312012 Ciguatera is one of the most common forms of food poisoning, occurring after consumption of fish contaminated with ciguatoxins. New work by Vetter et al (2012) reveals the key molecular players that underlie the altered temperature sensation associated with ciguatera. In particular, they show that ciguatoxins act on sensory neurons that express TRPA1, an ion channel implicated in the detection of noxious cold. PMID:22960637

  15. Improved Synthesis of 4-Cyanotryptophan and Other Tryptophan Analogues in Aqueous Solvent Using Variants of TrpB from Thermotoga maritima.

    Science.gov (United States)

    Boville, Christina E; Romney, David K; Almhjell, Patrick J; Sieben, Michaela; Arnold, Frances H

    2018-04-27

    The use of enzymes has become increasingly widespread in synthesis as chemists strive to reduce their reliance on organic solvents in favor of more environmentally benign aqueous media. With this in mind, we previously endeavored to engineer the tryptophan synthase β-subunit (TrpB) for production of noncanonical amino acids that had previously been synthesized through multistep routes involving water-sensitive reagents. This enzymatic platform proved effective for the synthesis of analogues of the amino acid tryptophan (Trp), which are frequently used in pharmaceutical synthesis as well as chemical biology. However, certain valuable compounds, such as the blue fluorescent amino acid 4-cyanotryptophan (4-CN-Trp), could only be made in low yield, even at elevated temperature (75 °C). Here, we describe the engineering of TrpB from Thermotoga maritima that improved synthesis of 4-CN-Trp from 24% to 78% yield. Remarkably, although the final enzyme maintains high thermostability ( T 50 = 93 °C), its temperature profile is shifted such that high reactivity is observed at ∼37 °C (76% yield), creating the possibility for in vivo 4-CN-Trp production. The improvements are not specific to 4-CN-Trp; a boost in activity at lower temperature is also demonstrated for other Trp analogues.

  16. Pricing Decision under Dual-Channel Structure considering Fairness and Free-Riding Behavior

    Directory of Open Access Journals (Sweden)

    Yongmei Liu

    2014-01-01

    Full Text Available Under dual-channel structure, the free-riding behavior based on different service levels between online channel and offline channel cannot be avoided, which would lead to channel unfairness. This study implies that the dual-channel supply chain is built up by online channel controlled by manufacturer and traditional channel controlled by retailer, respectively. Under this channel structure, we rebuild the linear demand function considering free-riding behavior and modify the pricing model based on channel fairness. Then the influences of fair factor and free-riding behavior on manufacturer and retailer pricing and performance are discussed. Finally, we propose some numerical analysis to provide some valuable recommendations for manufacturer and retailer improving channel management performance.

  17. Trp53 activity is repressed in radio-adapted cultured murine limb bud cells

    International Nuclear Information System (INIS)

    Vares, Guillaume; Wang, Bing; Tanaka, Kaoru; Shang, Yi; Fujita, Kazuko; Hayata, Isamu; Nenoi, Mitsuru

    2011-01-01

    Understanding the effects of ionizing radiation (IR) at low dose in fetal models is of great importance, because the fetus is considered to be at the most radiosensitive stage of the development and prenatal radiation might influence subsequent development. We previously demonstrated the existence of an adaptive response (AR) in murine fetuses after pre-exposure to low doses of X-rays. Trp53-dependent apoptosis was suggested to be responsible for the teratogenic effects of IR; decreased apoptosis was observed in adapted animals. In this study, in order to investigate the role of Trp53 in AR, we developed a new model of irradiated micromass culture of fetal limb bud cells, which replicated proliferation, differentiation and response to IR in murine embryos. Murine fetuses were exposed to whole-body priming irradiation of 0.3 Gy or 0.5 Gy at embryonic day 11 (E11). Limb bud cells (collected from digital ray areas exhibiting radiation-induced apoptosis) were cultured and exposed to a challenging dose of 4 Gy at E12 equivalent. The levels of Trp53 protein and its phosphorylated form at Ser18 were investigated. Our results suggested that the induction of AR in mouse embryos was correlated with a repression of Trp53 activity. (author)

  18. Structure-based assessment of disease-related mutations in human voltage-gated sodium channels

    Directory of Open Access Journals (Sweden)

    Weiyun Huang

    2017-02-01

    Full Text Available ABSTRACT Voltage-gated sodium (Nav channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Nav channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Nav channels, with Nav1.1 and Nav1.5 each harboring more than 400 mutations. Nav channels represent major targets for a wide array of neurotoxins and drugs. Atomic structures of Nav channels are required to understand their function and disease mechanisms. The recently determined atomic structure of the rabbit voltage-gated calcium (Cav channel Cav1.1 provides a template for homology-based structural modeling of the evolutionarily related Nav channels. In this Resource article, we summarized all the reported disease-related mutations in human Nav channels, generated a homologous model of human Nav1.7, and structurally mapped disease-associated mutations. Before the determination of structures of human Nav channels, the analysis presented here serves as the base framework for mechanistic investigation of Nav channelopathies and for potential structure-based drug discovery.

  19. Structure-based assessment of disease-related mutations in human voltage-gated sodium channels.

    Science.gov (United States)

    Huang, Weiyun; Liu, Minhao; Yan, S Frank; Yan, Nieng

    2017-06-01

    Voltage-gated sodium (Na v ) channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Na v channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Na v channels, with Na v 1.1 and Na v 1.5 each harboring more than 400 mutations. Na v channels represent major targets for a wide array of neurotoxins and drugs. Atomic structures of Na v channels are required to understand their function and disease mechanisms. The recently determined atomic structure of the rabbit voltage-gated calcium (Ca v ) channel Ca v 1.1 provides a template for homology-based structural modeling of the evolutionarily related Na v channels. In this Resource article, we summarized all the reported disease-related mutations in human Na v channels, generated a homologous model of human Na v 1.7, and structurally mapped disease-associated mutations. Before the determination of structures of human Na v channels, the analysis presented here serves as the base framework for mechanistic investigation of Na v channelopathies and for potential structure-based drug discovery.

  20. TRPV6 channels.

    Science.gov (United States)

    Fecher-Trost, Claudia; Weissgerber, Petra; Wissenbach, Ulrich

    2014-01-01

    TRPV6 (former synonyms ECAC2, CaT1, CaT-like) displays several specific features which makes it unique among the members of the mammalian Trp gene family (1) TRPV6 (and its closest relative, TRPV5) are the only highly Ca(2+)-selective channels of the entire TRP superfamily (Peng et al. 1999; Wissenbach et al. 2001; Voets et al. 2004). (2) Translation of Trpv6 initiates at a non-AUG codon, at ACG, located upstream of the annotated AUG, which is not used for initiation (Fecher-Trost et al. 2013). The ACG codon is nevertheless decoded by methionine. Not only a very rare event in eukaryotic biology, the full-length TRPV6 protein existing in vivo comprises an amino terminus extended by 40 amino acid residues compared to the annotated truncated TRPV6 protein which has been used in most studies on TRPV6 channel activity so far. (In the following numbering occurs according to this full-length protein, with the numbers of the so far annotated truncated protein in brackets). (3) Only in humans a coupled polymorphism of Trpv6 exists causing three amino acid exchanges and resulting in an ancestral Trpv6 haplotype and a so-called derived Trpv6 haplotype (Wissenbach et al. 2001). The ancestral allele encodes the amino acid residues C197(157), M418(378) and M721(681) and the derived alleles R197(157), V418(378) and T721(681). The ancestral haplotype is found in all species, the derived Trpv6 haplotype has only been identified in humans, and its frequency increases with the distance to the African continent. Apparently the Trpv6 gene has been a strong target for selection in humans, and its derived variant is one of the few examples showing consistently differences to the orthologues genes of other primates (Akey et al. 2004, 2006; Stajich and Hahn 2005; Hughes et al. 2008). (4) The Trpv6 gene expression is significantly upregulated in several human malignancies including the most common cancers, prostate and breast cancer (Wissenbach et al. 2001; Zhuang et al. 2002; Fixemer et al

  1. The Challenge of Interpreting Glutamate-Receptor Ion-Channel Structures.

    Science.gov (United States)

    Mayer, Mark L

    2017-11-21

    Ion channels activated by glutamate mediate excitatory synaptic transmission in the central nervous system. Similar to other ligand-gated ion channels, their gating cycle begins with transitions from a ligand-free closed state to glutamate-bound active and desensitized states. In an attempt to reveal the molecular mechanisms underlying gating, numerous structures for glutamate receptors have been solved in complexes with agonists, antagonists, allosteric modulators, and auxiliary proteins. The embarrassingly rich library of structures emerging from this work reveals very dynamic molecules with a more complex conformational spectrum than anticipated from functional studies. Unanticipated conformations solved for complexes with competitive antagonists and a lack of understanding of the structural basis for ion channel subconductance states further highlight challenges that have yet to be addressed. Published by Elsevier Inc.

  2. Prostaglandin H synthase-mediated bioactivation of the amino acid pyrolysate product Trp P-2

    Energy Technology Data Exchange (ETDEWEB)

    Petry, T.W.; Krauss, R.S.; Eling, T.E.

    1986-08-01

    We report evidence that the mutagen and carcinogen 3-amino-1-methyl-5H pyrido(4,3b)indole (Trp P-2) is a substrate for co-oxidation by prostaglandin H synthase (PHS) in ram seminal vesicle (RSV) microsomes. Trp P-2 serves as a reducing cofactor for the hydroperoxidase activity of PHS as shown by the concentration-dependent inhibition of the hydroperoxidase catalyzed incorporation of molecular oxygen into phenylbutazone. Spectral data suggest that this metabolism results in disruption of the double bond conjugation within the nucleus of the molecule. A single metabolite peak which was dependent upon arachidonic acid and substrate concentration was separated from the parent compound by h.p.l.c. following incubation with RSV microsomes. Co-oxidation of Trp P-2 produced reactive intermediates which bound covalently to microsomal protein (9 nmol/mg) and to calf thymus DNA (475 pmol/mg). Binding was inhibited by indomethacin, and supported by substitution of hydrogen peroxide for arachidonic acid. These data suggest a possible role for PHS in the in situ activation of Trp P-2 to its ultimate carcinogenic form in tissues which contain PHS.

  3. Trp[superscript 2313]-His[superscript 2315] of Factor VIII C2 Domain Is Involved in Membrane Binding Structure of a Complex Between the C[subscript 2] Domain and an Inhibitor of Membrane Binding

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhuo; Lin, Lin; Yuan, Cai; Nicolaes, Gerry A.F.; Chen, Liqing; Meehan, Edward J.; Furie, Bruce; Furie, Barbara; Huang, Mingdong (Harvard-Med); (UAH); (Maastricht); (Chinese Aca. Sci.)

    2010-11-03

    Factor VIII (FVIII) plays a critical role in blood coagulation by forming the tenase complex with factor IXa and calcium ions on a membrane surface containing negatively charged phospholipids. The tenase complex activates factor X during blood coagulation. The carboxyl-terminal C2 domain of FVIII is the main membrane-binding and von Willebrand factor-binding region of the protein. Mutations of FVIII cause hemophilia A, whereas elevation of FVIII activity is a risk factor for thromboembolic diseases. The C2 domain-membrane interaction has been proposed as a target of intervention for regulation of blood coagulation. A number of molecules that interrupt FVIII or factor V (FV) binding to cell membranes have been identified through high throughput screening or structure-based design. We report crystal structures of the FVIII C2 domain under three new crystallization conditions, and a high resolution (1.15 {angstrom}) crystal structure of the FVIII C2 domain bound to a small molecular inhibitor. The latter structure shows that the inhibitor binds to the surface of an exposed {beta}-strand of the C2 domain, Trp{sup 2313}-His{sup 2315}. This result indicates that the Trp{sup 2313}-His{sup 2315} segment is an important constituent of the membrane-binding motif and provides a model to understand the molecular mechanism of the C2 domain membrane interaction.

  4. Ehrlichia chaffeensis TRP120 Activates Canonical Notch Signaling To Downregulate TLR2/4 Expression and Promote Intracellular Survival

    OpenAIRE

    Lina, Taslima T.; Dunphy, Paige S.; Luo, Tian; McBride, Jere W.

    2016-01-01

    ABSTRACT Ehrlichia chaffeensis preferentially targets mononuclear phagocytes and survives through a strategy of subverting innate immune defenses, but the mechanisms are unknown. We have shown E.?chaffeensis type 1 secreted tandem repeat protein (TRP) effectors are involved in diverse molecular pathogen-host interactions, such as the TRP120 interaction with the Notch receptor-cleaving metalloprotease ADAM17. In the present study, we demonstrate E.?chaffeensis, via the TRP120 effector, activat...

  5. TrpC5 Mediates Acute Leptin and Serotonin Effects via Pomc Neurons

    Directory of Open Access Journals (Sweden)

    Yong Gao

    2017-01-01

    Full Text Available The molecular mechanisms underlying acute leptin and serotonin 2C receptor-induced hypophagia remain unclear. Here, we show that neuronal and pro-opiomelanocortin (Pomc-specific loss of transient receptor potential cation 5 (TrpC5 subunits is sufficient to decrease energy expenditure and increase food intake resulting in elevated body weight. Deficiency of Trpc5 subunits in Pomc neurons is also sufficient to block the anorexigenic effects of leptin and serotonin 2C receptor (Ht2Cr agonists. The loss of acute anorexigenic effects of these receptors is concomitant with a blunted electrophysiological response to both leptin and Ht2Cr agonists in arcuate Pomc neurons. We also demonstrate that the Ht2Cr agonist lorcaserin-induced improvements in glucose and insulin tolerance are blocked by TrpC5 deficiency in Pomc neurons. Together, our results link TrpC5 subunits in the brain with leptin- and serotonin 2C receptor-dependent changes in neuronal activity, as well as energy balance, feeding behavior, and glucose metabolism.

  6. Meta-analysis of the association between the Trp64Arg polymorphism of the beta-3 adrenergic receptor and susceptibility to gestational diabetes mellitus.

    Science.gov (United States)

    Guan, Lianyue; Cui, Xiaofeng; Zhou, Hui

    2018-02-01

    The study aimed to explore the associations between Trp64Arg polymorphism of Beta-3 Adrenergic receptor (ADRB3) and susceptibility to gestational diabetes mellitus (GDM). Relevant studies till December 2013 were identified through searching electronic databases. A meta-analysis was conducted on associations between Trp64Arg polymorphism in ADRB3 and susceptibility to GDM. We found no association between Trp64Arg polymorphism in ADRB3 and susceptibility to GDM in overall population (Arg vs. Trp: OR = 1.20, 95%CI = 0.99-1.47, p = .16; Trp/Arg + Arg/Arg vs. Trp/Trp: OR = 1.22, 95%CI = 0.99-1.50, p = .11). In subgroup analysis on European Caucasian population, Trp64Arg in ADRB3 was associated with susceptibility to GDM. Trp64Arg polymorphism in ADRB3 had certain association with susceptibility to GDM in the European Caucasian population. Impact statement What is already known on this subject: Gestational diabetes mellitus (GDM) is recognised as carbohydrate intolerance of varied severity that begins or is first recognised during pregnancy. A missense mutation in the codon 64 of the Beta-3 adrenergic receptor (ADRB3), Trp64Arg, leads to the substitution of tryptophan by arginine in the first intracellular loop of the ADRB3 receptor. Trp64Arg Polymorphism has also been reportedly associated with increased body weight, type 2 diabetes mellitus, insulin resistance and obesity. However, other investigators have found that the Trp64Arg polymorphism of ADRB3 has no effect on insulin resistance, obesity or type 2 diabetes mellitus. What the results of the study add: Our present meta-analysis demonstrated that Trp64Arg polymorphism in ADRB3 was associated with susceptibility to GDM in the European Caucasian population. Trp64Arg polymorphism in ADRB3 may be able to predict the occurrence of GDM and used for the diagnosis of it in clinic. What the implications are of these findings for clinical practice and future research: The findings in this study

  7. Interaction of H2S with Calcium Permeable Channels and Transporters

    Directory of Open Access Journals (Sweden)

    Weihua Zhang

    2015-01-01

    Full Text Available A growing amount of evidence has suggested that hydrogen sulfide (H2S, as a gasotransmitter, is involved in intensive physiological and pathological processes. More and more research groups have found that H2S mediates diverse cellular biological functions related to regulating intracellular calcium concentration. These groups have demonstrated the reciprocal interaction between H2S and calcium ion channels and transporters, such as L-type calcium channels (LTCC, T-type calcium channels (TTCC, sodium/calcium exchangers (NCX, transient receptor potential (TRP channels, β-adrenergic receptors, and N-methyl-D-aspartate receptors (NMDAR in different cells. However, the understanding of the molecular targets and mechanisms is incomplete. Recently, some research groups demonstrated that H2S modulates the activity of calcium ion channels through protein S-sulfhydration and polysulfide reactions. In this review, we elucidate that H2S controls intracellular calcium homeostasis and the underlying mechanisms.

  8. Improving liquid chromatography efficiency: channels structured with micro-pillars

    NARCIS (Netherlands)

    De Pra, Mauro; Kok, Wim Th.; Gardeniers, Johannes G.E.; Desmet, Gert; Schoenmakers, Peter J.; Jensen, K.F; Han, J.; Harrison, D.J.; Voldman, J.

    2005-01-01

    Band dispersion has been measured in micromachined separation channels structured with orderly disposed cylindrical micropillars. It was found that with an optimal channel design the band broadening could be lower by a factor of 3 than in packed columns with a comparable particle size. The

  9. Functional Annotation of Ion Channel Structures by Molecular Simulation.

    Science.gov (United States)

    Trick, Jemma L; Chelvaniththilan, Sivapalan; Klesse, Gianni; Aryal, Prafulla; Wallace, E Jayne; Tucker, Stephen J; Sansom, Mark S P

    2016-12-06

    Ion channels play key roles in cell membranes, and recent advances are yielding an increasing number of structures. However, their functional relevance is often unclear and better tools are required for their functional annotation. In sub-nanometer pores such as ion channels, hydrophobic gating has been shown to promote dewetting to produce a functionally closed (i.e., non-conductive) state. Using the serotonin receptor (5-HT 3 R) structure as an example, we demonstrate the use of molecular dynamics to aid the functional annotation of channel structures via simulation of the behavior of water within the pore. Three increasingly complex simulation analyses are described: water equilibrium densities; single-ion free-energy profiles; and computational electrophysiology. All three approaches correctly predict the 5-HT 3 R crystal structure to represent a functionally closed (i.e., non-conductive) state. We also illustrate the application of water equilibrium density simulations to annotate different conformational states of a glycine receptor. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Structural Determinants of Specific Lipid Binding to Potassium Channels

    NARCIS (Netherlands)

    Weingarth, M.H.|info:eu-repo/dai/nl/330985655; Prokofyev, A.; van der Cruijsen, E.A.W.|info:eu-repo/dai/nl/330826743; Nand, D.|info:eu-repo/dai/nl/337731403; Bonvin, A.M.J.J.|info:eu-repo/dai/nl/113691238; Pongs, O.; Baldus, M.|info:eu-repo/dai/nl/314410864

    2013-01-01

    We have investigated specific lipid binding to the pore domain of potassium channels KcsA and chimeric KcsAKv1.3 on the structural and functional level using extensive coarse-grained and atomistic molecular dynamics simulations, solid-state NMR, and single channel measurements. We show that, while

  11. Involvement of TRPV3 and TRPM8 ion channel proteins in induction of mammalian cold-inducible proteins.

    Science.gov (United States)

    Fujita, Takanori; Liu, Yu; Higashitsuji, Hiroaki; Itoh, Katsuhiko; Shibasaki, Koji; Fujita, Jun; Nishiyama, Hiroyuki

    2018-01-01

    Cold-inducible RNA-binding protein (CIRP), RNA-binding motif protein 3 (RBM3) and serine and arginine rich splicing factor 5 (SRSF5) are RNA-binding proteins that are transcriptionally upregulated in response to moderately low temperatures and a variety of cellular stresses in mammalian cells. Induction of these cold-inducible proteins (CIPs) is dependent on transient receptor potential (TRP) V4 channel protein, but seems independent of its ion channel activity. We herein report that in addition to TRPV4, TRPV3 and TRPM8 are necessary for the induction of CIPs. We established cell lines from the lung of TRPV4-knockout (KO) mouse, and observed induction of CIPs in them by western blot analysis. A TRPV4 antagonist RN1734 suppressed the induction in wild-type mouse cells, but not in TRPV4-KO cells. A TRPV3 channel blocker S408271 and a TRPM8 channel blocker AMTB as well as siRNAs against TRPV3 and TRPM8 suppressed the CIP induction in mouse TRPV4-KO cells and human U-2 OS cells. A TRPV3 channel agonist 2-APB induced CIP expression, but camphor did not. Neither did a TRPM8 channel agonist WS-12. These results suggest that TRPV4, TRPV3 and TRPM8 proteins, but not their ion channel activities are necessary for the induction of CIPs at 32 °C. Identification of proteins that differentially interact with these TRP channels at 37 °C and 32 °C would help elucidate the underlying mechanisms of CIP induction by hypothermia. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Loss of Cdh1 and Trp53 in the uterus induces chronic inflammation with modification of tumor microenvironment

    OpenAIRE

    Stodden, Genna R.; Lindberg, Mallory E.; King, Mandy L.; Paquet, Maril?ne; MacLean, James A.; Mann, Jordan L.; DeMayo, Francesco J.; Lydon, John P.; Hayashi, Kanako

    2014-01-01

    Type II endometrial carcinomas are estrogen independent, poorly differentiated tumors that behave in an aggressive manner. Since TP53 mutation and CDH1 inactivation occur in 80% of human endometrial type II carcinomas, we hypothesized that mouse uteri lacking both Trp53 and Cdh1 would exhibit a phenotype indicative of neoplastic transformation. Mice with conditional ablation of Cdh1 and Trp53 (Cdh1d/dTrp53d/d ) clearly demonstrate architectural features characteristic of type II endometrial c...

  13. Loss of Cdh1 and Trp53 in the uterus induces chronic inflammation with modification of tumor microenvironment.

    Science.gov (United States)

    Stodden, G R; Lindberg, M E; King, M L; Paquet, M; MacLean, J A; Mann, J L; DeMayo, F J; Lydon, J P; Hayashi, K

    2015-05-07

    Type II endometrial carcinomas (ECs) are estrogen independent, poorly differentiated tumors that behave in an aggressive manner. As TP53 mutation and CDH1 inactivation occur in 80% of human endometrial type II carcinomas, we hypothesized that mouse uteri lacking both Trp53 and Cdh1 would exhibit a phenotype indicative of neoplastic transformation. Mice with conditional ablation of Cdh1 and Trp53 (Cdh1(d/d)Trp53(d/d)) clearly demonstrate architectural features characteristic of type II ECs, including focal areas of papillary differentiation, protruding cytoplasm into the lumen (hobnailing) and severe nuclear atypia at 6 months of age. Further, Cdh1(d/d)Trp53(d/d) tumors in 12-month-old mice were highly aggressive, and metastasized to nearby and distant organs within the peritoneal cavity, such as abdominal lymph nodes, mesentery and peri-intestinal adipose tissues, demonstrating that tumorigenesis in this model proceeds through the universally recognized morphological intermediates associated with type II endometrial neoplasia. We also observed abundant cell proliferation and complex angiogenesis in the uteri of Cdh1(d/d)Trp53(d/d) mice. Our microarray analysis found that most of the genes differentially regulated in the uteri of Cdh1(d/d)Trp53(d/d) mice were involved in inflammatory responses. CD163 and Arg1, markers for tumor-associated macrophages, were also detected and increased in the uteri of Cdh1(d/d)Trp53(d/d) mice, suggesting that an inflammatory tumor microenvironment with immune cell recruitment is augmenting tumor development in Cdh1(d/d)Trp53(d/d) uteri. Further, inflammatory mediators secreted from CDH1-negative, TP53 mutant endometrial cancer cells induced normal macrophages to express inflammatory-related genes through activation of nuclear factor-κB signaling. These results indicate that absence of CDH1 and TP53 in endometrial cells initiates chronic inflammation, promotes tumor microenvironment development following the recruitment of macrophages

  14. Activation of the Chemosensory Ion Channels TRPA1 and TRPV1 by Hydroalcohol Extract of Kalopanax pictus Leaves.

    Science.gov (United States)

    Son, Hee Jin; Kim, Yiseul; Misaka, Takumi; Noh, Bong Soo; Rhyu, Mee-Ra

    2012-11-01

    TRPA1 and TRPV1 are members of the TRP superfamily of structurally related, nonselective cation channels. TRPA1 and TRPV1 are often co-expressed in sensory neurons and play an important role in somatosense such as cold, pain, and irritants. The first leaves of Kalopanax pictus Nakai (Araliaceae) have long been used as a culinary ingredient in Korea because of their unique chemesthetic flavor. In this study, we observed the intracellular Ca(2+) response to cultured cells expressing human TRPA1 (hTRPA1) and human TRPV1 (hTRPV1) by Ca(2+) imaging analysis to investigate the ability of the first leaves of K. pictus to activate the hTRPA1 and hTRPV1. An 80% ethanol extract of K. pictus (KPEx) increased intracellular Ca(2+) influx in a response time- and concentration-dependent manner via either hTRPA1 or hTRPV1. KPEx-induced response to hTRPA1 was markedly attenuated by ruthenium red, a general blocker of TRP channels, and HC-030031, a specific antagonist of TRPA1. In addition, the intracellular Ca(2+) influx attained with KPEx to hTRPV1 was mostly blocked by ruthenium red, and capsazepine, a specific antagonist of TRPV1. These results indicate that KPEx selectively activates both hTRPA1 and hTRPV1, which may provide evidence that the first leaves of K. pictus primarily activate TRPA1 and TRPV1 to induce their unique chemesthetic sense.

  15. River channel morphology and hydraulics properties due to introduction of plant basket hydraulic structures for river channel management

    Science.gov (United States)

    Kałuża, Tomasz; Radecki-Pawlik, Artur; Plesiński, Karol; Walczak, Natalia; Szoszkiewicz, Krzysztof; Radecki-Pawlik, Bartosz

    2016-04-01

    In the present time integrated water management is directly connected with management and direct works in river channels themselves which are taking into account morphological processes in rivers and improve flow conditions. Our work focused on the hydraulic and hydrodynamic consequences upon the introduction of the concept of the improvement of the hydromorphological conditions of the Flinta River in a given reach following river channel management concept. Based on a comprehensive study of the hydromorphological state of the river, four sections were selected where restoration measures can efficiently improve river habitat conditions in the river. For each section a set of technical and biological measures were proposed and implemented in practice. One of the proposed solutions was to construct plant basket hydraulic structures (PBHS) within the river channel, which are essentially plant barriers working as sediment traps, changing river channel morphology and are in line with concepts of Water Framework Directive. These relatively small structures work as crested weirs and unquestionably change the channel morphology. Along our work we show the results of three-year long (2013-2015) systematic measurements that provided information on the morphological consequences of introducing such structures into a river channel. Our main conclusions are as follows: 1. Plant basket hydraulic structures cause changes in hydrodynamic conditions and result in sediment accumulation and the formation of river backwaters upstream and downstream the obstacle; 2. The introduced plant basket hydraulic structures cause plant debris accumulation which influences the hydrodynamic flow conditions; 3. The installation of plant basket hydraulic structures on the river bed changes flow pattern as well as flow hydrodynamic conditions causing river braiding process; 4. The erosion rate below the plant basket hydraulic structures is due to the hydraulic work conditions of the PBHS and its

  16. Structure of the CLC-1 chloride channel from Homo sapiens.

    Science.gov (United States)

    Park, Eunyong; MacKinnon, Roderick

    2018-05-29

    CLC channels mediate passive Cl - conduction, while CLC transporters mediate active Cl - transport coupled to H + transport in the opposite direction. The distinction between CLC-0/1/2 channels and CLC transporters seems undetectable by amino acid sequence. To understand why they are different functionally we determined the structure of the human CLC-1 channel. Its 'glutamate gate' residue, known to mediate proton transfer in CLC transporters, adopts a location in the structure that appears to preclude it from its transport function. Furthermore, smaller side chains produce a wider pore near the intracellular surface, potentially reducing a kinetic barrier for Cl - conduction. When the corresponding residues are mutated in a transporter, it is converted to a channel. Finally, Cl - at key sites in the pore appear to interact with reduced affinity compared to transporters. Thus, subtle differences in glutamate gate conformation, internal pore diameter and Cl - affinity distinguish CLC channels and transporters. © 2018, Park & MacKinnon.

  17. Structure-activity relationship of cyclic peptide penta-c[Asp-His(6)-DPhe(7)-Arg(8)-Trp(9)-Lys]-NH(2) at the human melanocortin-1 and -4 receptors: His(6) substitution.

    Science.gov (United States)

    Cheung, Adrian Wai-Hing; Danho, Waleed; Swistok, Joseph; Qi, Lida; Kurylko, Grazyna; Rowan, Karen; Yeon, Mitch; Franco, Lucia; Chu, Xin-Jie; Chen, Li; Yagaloff, Keith

    2003-04-07

    A series of MT-II related cyclic peptides, based on potent but non-selective hMC4R agonist (Penta-c[Asp-His(6)-DPhe(7)-Arg(8)-Trp(9)-Lys]-NH(2)) was prepared in which His(6) residue was systematically substituted. Two of the most interesting peptides identified in this study are Penta-c[Asp-5-ClAtc-DPhe-Arg-Trp-Lys]-NH(2) and Penta-c[Asp-5-ClAtc-DPhe-Cit-Trp-Lys]-NH(2) which are potent hMC4R agonists and are either inactive or weak partial agonists (not tested for their antagonist activities) in hMC1R, hMC3R and hMC5R agonist assays.

  18. Aminotryptophan-containing barstar: structure--function tradeoff in protein design and engineering with an expanded genetic code.

    Science.gov (United States)

    Rubini, Marina; Lepthien, Sandra; Golbik, Ralph; Budisa, Nediljko

    2006-07-01

    The indole ring of the canonical amino acid tryptophan (Trp) possesses distinguished features, such as sterical bulk, hydrophobicity and the nitrogen atom which is capable of acting as a hydrogen bond donor. The introduction of an amino group into the indole moiety of Trp yields the structural analogs 4-aminotryptophan ((4-NH(2))Trp) and 5-aminotryptophan ((5-NH(2))Trp). Their hydrophobicity and spectral properties are substantially different when compared to those of Trp. They resemble the purine bases of DNA and share their capacity for pH-sensitive intramolecular charge transfer. The Trp --> aminotryptophan substitution in proteins during ribosomal translation is expected to result in related protein variants that acquire these features. These expectations have been fulfilled by incorporating (4-NH(2))Trp and (5-NH(2))Trp into barstar, an intracellular inhibitor of the ribonuclease barnase from Bacillus amyloliquefaciens. The crystal structure of (4-NH(2))Trp-barstar is similar to that of the parent protein, whereas its spectral and thermodynamic behavior is found to be remarkably different. The T(m) value of (4-NH(2))Trp- and (5-NH(2))Trp-barstar is lowered by about 20 degrees Celsius, and they exhibit a strongly reduced unfolding cooperativity and substantial loss of free energy in folding. Furthermore, folding kinetic study of (4-NH(2))Trp-barstar revealed that the denatured state is even preferred over native one. The combination of structural and thermodynamic analyses clearly shows how structures of substituted barstar display a typical structure-function tradeoff: the acquirement of unique pH-sensitive charge transfer as a novel function is achieved at the expense of protein stability. These findings provide a new insight into the evolution of the amino acid repertoire of the universal genetic code and highlight possible problems regarding protein engineering and design by using an expanded genetic code.

  19. Online channel operation mode: Game theoretical analysis from the supply chain power structure

    Directory of Open Access Journals (Sweden)

    Song Huang

    2015-11-01

    Full Text Available Purpose: Dual-channels have been widely used in practice, and the pricing decisions and the online channel operation mode choice have been the core problems in dual-channel supply chain management. This paper focuses on the online channel operation mode choice from the supply chain power structures based on game theoretical analysis. Design/methodology/approach: This paper utilizes three kinds of game theoretical models to analyze the impact of supply chain power structures on the optimal pricing and online channel operation mode choice. Findings: Results derived in this paper indicate that when the self-price elasticity is large, the power structures have no direct impact on the decisions. However, when the self-price elasticity is small and customers’ preference for the online channel is low, then in the MS market, it is better for the retailer to operate the online channel, while in the RS market or in the VN market, it is better for the manufacturer to operate the online channel. Research limitations/implications: In this paper, we do not consider stochastic demand and asymmetric information, which may not well suit the reality. Originality/value: This paper provides a different perspective to analyze the impact of supply chain power structures on the pricing decisions and online channel operation mode choice. The comparison of these two online channel operation modes in this paper is also a unique point.

  20. Evolution of vertebrate transient receptor potential vanilloid 3 channels: opposite temperature sensitivity between mammals and western clawed frogs.

    Directory of Open Access Journals (Sweden)

    Shigeru Saito

    2011-04-01

    Full Text Available Transient Receptor Potential (TRP channels serve as temperature receptors in a wide variety of animals and must have played crucial roles in thermal adaptation. The TRP vanilloid (TRPV subfamily contains several temperature receptors with different temperature sensitivities. The TRPV3 channel is known to be highly expressed in skin, where it is activated by warm temperatures and serves as a sensor to detect ambient temperatures near the body temperature of homeothermic animals such as mammals. Here we performed comprehensive comparative analyses of the TRPV subfamily in order to understand the evolutionary process; we identified novel TRPV genes and also characterized the evolutionary flexibility of TRPV3 during vertebrate evolution. We cloned the TRPV3 channel from the western clawed frog Xenopus tropicalis to understand the functional evolution of the TRPV3 channel. The amino acid sequences of the N- and C-terminal regions of the TRPV3 channel were highly diversified from those of other terrestrial vertebrate TRPV3 channels, although central portions were well conserved. In a heterologous expression system, several mammalian TRPV3 agonists did not activate the TRPV3 channel of the western clawed frog. Moreover, the frog TRPV3 channel did not respond to heat stimuli, instead it was activated by cold temperatures. Temperature thresholds for activation were about 16 °C, slightly below the lower temperature limit for the western clawed frog. Given that the TRPV3 channel is expressed in skin, its likely role is to detect noxious cold temperatures. Thus, the western clawed frog and mammals acquired opposite temperature sensitivity of the TRPV3 channel in order to detect environmental temperatures suitable for their respective species, indicating that temperature receptors can dynamically change properties to adapt to different thermal environments during evolution.

  1. Structure-activity relationship of linear tetrapeptides Tic-DPhe-Arg-Trp-NH2 at the human melanocortin-4 receptor and effects on feeding behaviors in rat.

    Science.gov (United States)

    Ye, Zhixiong; MacNeil, Tanya; Weinberg, David H; Kalyani, Rubana N; Tang, Rui; Strack, Alison M; Murphy, Beth A; Mosley, Ralph T; Euan MacIntyre, D; Van der Ploeg, Lex H T; Patchett, Arthur A; Wyvratt, Matthew J; Nargund, Ravi P

    2005-10-01

    The melanocortin subtype-4 receptor (MC4R) has been implicated in the control of feeding behavior and body weight regulation. A series of tetrapeptides, based on Tic-DPhe-Arg-Trp-NH2-a mimic of the putative message sequence "His-Phe-Arg-Trp" and modified at the DPhe position, were prepared and pharmacologically characterized for potency and selectivity. Substitution of His with Tic gave peptides with significant increases in selectivity. The effects of the substitution pattern of DPhe were investigated and it has significant influences on potency and the level of the maximum cAMP accumulation. Intracerebroventricular administration of peptide 10 induced significant inhibition of cumulative overnight food intake and feeding duration in rats.

  2. Arg753gln and Arg677 Trp Polymorphisms of Toll-Like Receptor 2 In Acute Apical Abscess.

    Science.gov (United States)

    Miri-Moghaddam, Ebrahim; Farhad Mollashahi, Narges; Naghibi, Nava; Garme, Yasaman; Bazi, Ali

    2018-06-01

    Genetic polymorphisms can alter immunity response against pathogens, which in turn influence individuals' susceptibility to certain infections. Our aim was to determine the association of Arg753Gln (rs5743708) and Arg677Trp (rs12191786) polymorphisms of toll like receptor-2 gene with the two clinical forms of apical periodontitis: acute apical abscess (AAA) and asymptomatic apical periodontitis (AAP). There were 50 patients with AAA as case group and 50 with AAP as control group. Genotyping was done using Tetra-ARMS (amplification refractory mutation system) PCR. Heterozygous genotype of Arg677Trp polymorphism was associated with risk of AAA (OR=1.9, 95% CI: 0.7-5.5, p = 0.05). Although statistically insignificant, Arg677Trp polymorphism promoted the risk of AAA in dominant model (OR=2.1, 95% CI: 0.7-5.9, p > 0.05). The frequency of mutant allele (T) of Arg677Trp polymorphism was higher in AAA (14%) than AAP (7%) subjects (OR=1.7, 95% CI: 0.6-4.7). For Arg753Gln polymorphism, wild homozygous (GG) represented the dominant genotype in both cases (96%) and controls (100%). Variant allele (A) of Arg753Gln polymorphism was identified in 2% of AAA, while no individual represented with this allele in AAP subjects. Individuals with Arg753Gln; Arg677Trp (GG; TC) combination showed an elevated risk of AAA (OR=1.6, 95% CI: 0.5- 4.2, p > 0.05). Arg677Trp polymorphism of TLR-2 rendered a higher risk for the development of abscesses in apical periodontitis. It is recommended to explore role of this polymorphism in other populations.

  3. Shear and shearless Lagrangian structures in compound channels

    Science.gov (United States)

    Enrile, F.; Besio, G.; Stocchino, A.

    2018-03-01

    Transport processes in a physical model of a natural stream with a composite cross-section (compound channel) are investigated by means of a Lagrangian analysis based on nonlinear dynamical system theory. Two-dimensional free surface Eulerian experimental velocity fields of a uniform flow in a compound channel form the basis for the identification of the so-called Lagrangian Coherent Structures. Lagrangian structures are recognized as the key features that govern particle trajectories. We seek for two particular class of Lagrangian structures: Shear and shearless structures. The former are generated whenever the shear dominates the flow whereas the latter behave as jet-cores. These two type of structures are detected as ridges and trenches of the Finite-Time Lyapunov Exponents fields, respectively. Besides, shearlines computed applying the geodesic theory of transport barriers mark Shear Lagrangian Coherent Structures. So far, the detection of these structures in real experimental flows has not been deeply investigated. Indeed, the present results obtained in a wide range of the controlling parameters clearly show a different behaviour depending on the shallowness of the flow. Shear and Shearless Lagrangian Structures detected from laboratory experiments clearly appear as the flow develops in shallow conditions. The presence of these Lagrangian Structures tends to fade in deep flow conditions.

  4. Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system.

    Science.gov (United States)

    Zimmermann, Katharina; Lennerz, Jochen K; Hein, Alexander; Link, Andrea S; Kaczmarek, J Stefan; Delling, Markus; Uysal, Serdar; Pfeifer, John D; Riccio, Antonio; Clapham, David E

    2011-11-01

    Detection and adaptation to cold temperature is crucial to survival. Cold sensing in the innocuous range of cold (>10-15 °C) in the mammalian peripheral nervous system is thought to rely primarily on transient receptor potential (TRP) ion channels, most notably the menthol receptor, TRPM8. Here we report that TRP cation channel, subfamily C member 5 (TRPC5), but not TRPC1/TRPC5 heteromeric channels, are highly cold sensitive in the temperature range 37-25 °C. We found that TRPC5 is present in mouse and human sensory neurons of dorsal root ganglia, a substantial number of peripheral nerves including intraepithelial endings, and in the dorsal lamina of the spinal cord that receives sensory input from the skin, consistent with a potential TRPC5 function as an innocuous cold transducer in nociceptive and thermosensory nerve endings. Although deletion of TRPC5 in 129S1/SvImJ mice resulted in no temperature-sensitive behavioral changes, TRPM8 and/or other menthol-sensitive channels appear to underpin a much larger component of noxious cold sensing after TRPC5 deletion and a shift in mechanosensitive C-fiber subtypes. These findings demonstrate that highly cold-sensitive TRPC5 channels are a molecular component for detection and regional adaptation to cold temperatures in the peripheral nervous system that is distinct from noxious cold sensing.

  5. Mutations in the voltage-sensing domain affect the alternative ion permeation pathway in the TRPM3 channel.

    Science.gov (United States)

    Held, Katharina; Gruss, Fabian; Aloi, Vincenzo Davide; Janssens, Annelies; Ulens, Chris; Voets, Thomas; Vriens, Joris

    2018-03-31

    Mutagenesis at positively charged amino acids (arginines and lysines) (R1-R4) in the voltage-sensor domain (transmembrane segment (S) 4) of voltage-gated Na + , K + and Ca 2+ channels can lead to an alternative ion permeation pathway distinct from the central pore. Recently, a non-canonical ion permeation pathway was described in TRPM3, a member of the transient receptor potential (TRP) superfamily. The non-canonical pore exists in the native TRPM3 channel and can be activated by co-stimulation of the endogenous agonist pregnenolone sulphate and the antifungal drug clotrimazole or by stimulation of the synthetic agonist CIM0216. Alignment of the voltage sensor of Shaker K + channels with the entire TRPM3 sequence revealed the highest degree of similarity in the putative S4 region of TRPM3, and suggested that only one single gating charge arginine (R2) in the putative S4 region is conserved. Mutagenesis studies in the voltage-sensing domain of TRPM3 revealed several residues in the voltage sensor (S4) as well as in S1 and S3 that are crucial for the occurrence of the non-canonical inward currents. In conclusion, this study provides evidence for the involvement of the voltage-sensing domain of TRPM3 in the formation of an alternative ion permeation pathway. Transient receptor potential (TRP) channels are cationic channels involved in a broad array of functions, including homeostasis, motility and sensory functions. TRP channel subunits consist of six transmembrane segments (S1-S6), and form tetrameric channels with a central pore formed by the region encompassing S5 and S6. Recently, evidence was provided for the existence of an alternative ion permeation pathway in TRPM3, which allows large inward currents upon hyperpolarization independently of the central pore. However, very little knowledge is available concerning the localization of this alternative pathway in the native TRPM3 channel protein. Guided by sequence homology with Shaker K + channels, in which

  6. Structural mechanism underlying capsaicin binding and activation of TRPV1 ion channel

    OpenAIRE

    Yang, Fan; Xiao, Xian; Cheng, Wei; Yang, Wei; Yu, Peilin; Song, Zhenzhen; Yarov-Yarovoy, Vladimir; Zheng, Jie

    2015-01-01

    Capsaicin bestows spiciness by activating TRPV1 channel with exquisite potency and selectivity. Capsaicin-bound channel structure was previously resolved by cryo-EM at 4.2-to-4.5 ? resolution, however important details required for mechanistic understandings are unavailable: capsaicin was registered as a small electron density, reflecting neither its chemical structure nor specific ligand-channel interactions. We obtained the missing atomic-level details by iterative computation, which were c...

  7. The Growth Opportunity Channel of Debt Structure

    NARCIS (Netherlands)

    Giambona, E.; Golec, J.

    2013-01-01

    This paper studies the importance of growth opportunities for debt structure decisions. High growth firms use more unsecured debt to preserve financial flexibility (in the form of untapped secured debt capacity) in connection with future growth opportunities: the growth opportunity channel of debt

  8. Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura

    Science.gov (United States)

    2012-01-01

    Background Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the “headache circuit”. Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP) family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons. Methods We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide immunoreactivity (CGRP-ir) and isolectin B4 (IB4) binding as markers, respectively. Using immunohistochemistry, we compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total trigeminal ganglion (TG) neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from a TRPM8 locus. We used nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons expressing TRPA1 or TRPM8 channels in the TG. Results and conclusions We report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent neurons. Interestingly, TRPM

  9. Folding Dynamics of the Trp-Cage Miniprotein: Evidence for a Native-Like Intermediate from Combined Time-Resolved Vibrational Spectroscopy and Molecular Dynamics Simulations

    NARCIS (Netherlands)

    Meuzelaar, H.; Marino, K.A.; Huerta-Viga, A.; Panman, M.R.; Smeenk, L.E.J.; Kettelarij, A.J.; van Maarseveen, J.H.; Timmerman, P.; Bolhuis, P.G.; Woutersen, S.

    2013-01-01

    Trp-cage is a synthetic 20-residue miniprotein which folds rapidly and spontaneously to a well-defined globular structure more typical of larger proteins. Due to its small size and fast folding, it is an ideal model system for experimental and theoretical investigations of protein folding

  10. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds.

    Science.gov (United States)

    Levanti, M; Randazzo, B; Viña, E; Montalbano, G; Garcia-Suarez, O; Germanà, A; Vega, J A; Abbate, F

    2016-09-01

    Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Regulation of His-dTrp-Ala-Trp-dPhe-Lys-NH2 (GHRP-6)-induced GH secretion in the rat.

    Science.gov (United States)

    Mallo, F; Alvarez, C V; Benitez, L; Burguera, B; Coya, R; Casanueva, F F; Dieguez, C

    1993-01-01

    His-dTrp-Ala-Trp-dPhe,Lys-NH2(GHRP-6) is a synthetic compound that releases GH in a dose-response and specific manner in several species and that may well be related to an endogenous compound of similar structure. The aim of this study was to investigate the in vivo GH responses to GHRP-6 in pentobarbital anesthetized rats. Specifically and in order to avoid the influence of endogenous GHRH and somatostatin secretion we studied the GH responses to GHRP-6 in animals with surgical ablation of the hypothalamus, confirmed by histological assessment, as well as in hypophysectomyzed-transplanted rats bearing two hypophyses under the renal capsule. Since it has been previously reported that rats pretreated with GHRH (10 micrograms/kg i.p. every 12 h for 15 days) rather than saline-treated rats have greater GH responses to acutely administered GHRH, we compared the self-potentiating effect of chronic GH pretreatment with GHRP-6 (10 micrograms/kg i.p. every 12 h). Furthermore we also studied the influence of estrogens, glucocorticoids, free fatty acids (FFA) and bombesin on somatotroph responsiveness to GHRP-6 in intact rats. We found a greater GH response to GHRP-6 in rats that underwent a surgical ablation of the hypothalamus 36 h prior to the test than in sham-operated rats. A direct stimulatory effect of GHRP-6 on in vivo GH secretion was demonstrated by a clear GH response to GHRP-6 in hypophysectomyzed-transplanted rats. In addition, we found a similar response whether the animals were pretreated with GHRH or GHRP-6 over the previous 2 weeks. Finally, we found that both estrogen- and testosterone-treated rats have greater GH responses to GHRP-6 than untreated rats. On the other hand, chronic dexamethasone administration, acute elevation of circulating FFA levels and bombesin administration markedly inhibited GH responses to GHRP-6. In contrast to the effects exerted on GH responses to GHRP-6 estrogen administration led to a decrease in GH responses to GHRH while

  12. Radiolabelled neurotensin analogues. I. Solid phase synthesis and biological characterization of [Trp11]-neurotensin precursor of an ionidated ligand

    International Nuclear Information System (INIS)

    Labbe-Jullie, C.; Granier, C.; Van Rietschoten, J.; Kitabgi, P.; Vincent, J.P.

    1983-01-01

    In order to generate highly labelled neurotensin analogues, synthesis has been performed of two types of precursors, one for iodination and one for tritiation. Iodination of native neurotensin occurs on both tyrosines in position 3 and 11 and thus affects greatly its binding capacities. Synthesis and chemical characterization of [Trp 11 ]-neurotensin are described which can be iodinated without loss of activity. Synthesis was by solid phase procedure on an experimental support, Pab-resin, α-(4-chloromethylphenylacetamido)-benzyl copoly (styrene 1 per cent divinylbenzene). The homogeneity of [Trp 11 ]-neurotensin was assessed by amino acid analysis, high voltage paper electrophoresis and high pressure liquid chromatography. Iodination by the lactoperoxydase method gave iodo-[Trp 11 ]-neurotensin iodinated on the Tyr 3 . Compared to neurotensin, potency of [Trp 11 ]-neurotensin and of iodo-[Trp 11 ]-neurotensin in competitive inhibition of tritiated neurotensin binding to rat brain synaptic membranes was respectively 93 per cent and 80 per cent, but in the biological test on the contractility of isolated longitudinal smooth muscle strips of guinea pig the relative activity for the two analogues was of 10 per cent [fr

  13. Interaction between the Gly460Trp alpha-adducin gene variant and diuretics on the risk of myocardial infarction

    NARCIS (Netherlands)

    van Wieren-de Wijer, Diane B M A; Maitland-van der Zee, Anke-Hilse; de Boer, Anthonius; Kroon, Abraham A; de Leeuw, Peter W; Schiffers, Paul; Janssen, Rob G J H; Psaty, Bruce M; van Duijn, Cornelia M; Stricker, Bruno H Ch; Klungel, Olaf H

    INTRODUCTION: The Gly460Trp variant of the alpha-adducin gene has been associated with the salt-sensitive and diuretic responsive form of hypertension. OBJECTIVE: The aim of the study was to determine whether the alpha-adducin 460Trp variant allele modifies the risk-lowering effect of diuretics on

  14. Structural implications of hERG K+ channel block by a high-affinity minimally structured blocker

    Science.gov (United States)

    Helliwell, Matthew V.; Zhang, Yihong; El Harchi, Aziza; Du, Chunyun; Hancox, Jules C.; Dempsey, Christopher E.

    2018-01-01

    Cardiac potassium channels encoded by human ether-à-go-go–related gene (hERG) are major targets for structurally diverse drugs associated with acquired long QT syndrome. This study characterized hERG channel inhibition by a minimally structured high-affinity hERG inhibitor, Cavalli-2, composed of three phenyl groups linked by polymethylene spacers around a central amino group, chosen to probe the spatial arrangement of side chain groups in the high-affinity drug-binding site of the hERG pore. hERG current (IhERG) recorded at physiological temperature from HEK293 cells was inhibited with an IC50 of 35.6 nm with time and voltage dependence characteristic of blockade contingent upon channel gating. Potency of Cavalli-2 action was markedly reduced for attenuated inactivation mutants located near (S620T; 54-fold) and remote from (N588K; 15-fold) the channel pore. The S6 Y652A and F656A mutations decreased inhibitory potency 17- and 75-fold, respectively, whereas T623A and S624A at the base of the selectivity filter also decreased potency (16- and 7-fold, respectively). The S5 helix F557L mutation decreased potency 10-fold, and both F557L and Y652A mutations eliminated voltage dependence of inhibition. Computational docking using the recent cryo-EM structure of an open channel hERG construct could only partially recapitulate experimental data, and the high dependence of Cavalli-2 block on Phe-656 is not readily explainable in that structure. A small clockwise rotation of the inner (S6) helix of the hERG pore from its configuration in the cryo-EM structure may be required to optimize Phe-656 side chain orientations compatible with high-affinity block. PMID:29545312

  15. Covariance-based Spatial Channel Structure Emulation for MIMO OTA Testing

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki; Alrabadi, Osama; Fan, Wei

    2014-01-01

    The paper presents a general framework for recreating the spatial channel structure in a MIMO over-the-air (OTA) multiprobe anechoic chamber testing setup. The idea is to find the power weights of the spatial taps (antenna probes) that minimize a certain distance between the spatial channel covar...

  16. Structural and population-based evaluations of TBC1D1 p.Arg125Trp.

    Directory of Open Access Journals (Sweden)

    Tom G Richardson

    Full Text Available Obesity is now a leading cause of preventable death in the industrialised world. Understanding its genetic influences can enhance insight into molecular pathogenesis and potential therapeutic targets. A non-synonymous polymorphism (rs35859249, p.Arg125Trp in the N-terminal TBC1D1 phosphotyrosine-binding (PTB domain has shown a replicated association with familial obesity in women. We investigated these findings in the Avon Longitudinal Study of Parents and Children (ALSPAC, a large European birth cohort of mothers and offspring, and by generating a predicted model of the structure of this domain. Structural prediction involved the use of three separate algorithms; Robetta, HHpred/MODELLER and I-TASSER. We used the transmission disequilibrium test (TDT to investigate familial association in the ALSPAC study cohort (N = 2,292 mother-offspring pairs. Linear regression models were used to examine the association of genotype with mean measurements of adiposity (Body Mass Index (BMI, waist circumference and Dual-energy X-ray absorptiometry (DXA assessed fat mass, and logistic regression was used to examine the association with odds of obesity. Modelling showed that the R125W mutation occurs in a location of the TBC1D1 PTB domain that is predicted to have a function in a putative protein:protein interaction. We did not detect an association between R125W and BMI (mean per allele difference 0.27 kg/m(2 (95% Confidence Interval: 0.00, 0.53 P = 0.05 or obesity (odds ratio 1.01 (95% Confidence Interval: 0.77, 1.31, P = 0.96 in offspring after adjusting for multiple comparisons. Furthermore, there was no evidence to suggest that there was familial association between R125W and obesity (χ(2 = 0.06, P = 0.80. Our analysis suggests that R125W in TBC1D1 plays a role in the binding of an effector protein, but we find no evidence that the R125W variant is related to mean BMI or odds of obesity in a general population sample.

  17. Novel CLCNKB mutations causing Bartter syndrome affect channel surface expression.

    Science.gov (United States)

    Keck, Mathilde; Andrini, Olga; Lahuna, Olivier; Burgos, Johanna; Cid, L Pablo; Sepúlveda, Francisco V; L'hoste, Sébastien; Blanchard, Anne; Vargas-Poussou, Rosa; Lourdel, Stéphane; Teulon, Jacques

    2013-09-01

    Mutations in the CLCNKB gene encoding the ClC-Kb Cl(-) channel cause Bartter syndrome, which is a salt-losing renal tubulopathy. Here, we investigate the functional consequences of seven mutations. When expressed in Xenopus laevis oocytes, four mutants carried no current (c.736G>C, p.Gly246Arg; c.1271G>A, p.Gly424Glu; c.1313G>A, p.Arg438His; c.1316T>C, p.Leu439Pro), whereas others displayed a 30%-60% reduction in conductance as compared with wild-type ClC-Kb (c.242T>C, p.Leu81Pro; c.274C>T, p.Arg92Trp; c.1052G>C, p.Arg351Pro). Anion selectivity and sensitivity to external Ca(2+) and H(+), typical of the ClC-Kb channel, were not modified in the partially active mutants. In oocytes, we found that all the mutations reduced surface expression with a profile similar to that observed for currents. In HEK293 cells, the currents in the mutants had similar profiles to those obtained in oocytes, except for p.Leu81Pro, which produced no current. Furthermore, p.Arg92Trp and p.Arg351Pro mutations did not modify the unit-conductance of closely related ClC-K1. Western blot analysis in HEK293 cells showed that ClC-Kb protein abundance was lower for the nonconducting mutants but similar to wild-type for other mutants. Overall, two classes of mutants can be distinguished: nonconducting mutants associated with low total protein expression, and partially conducting mutants with unaltered channel properties and ClC-Kb protein abundance. © 2013 WILEY PERIODICALS, INC.

  18. XRCC1 Arg194Trp and Arg399Gln polymorphisms and arsenic methylation capacity are associated with urothelial carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chien-I [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Huang, Ya-Li [Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Chen, Wei-Jen [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Shiue, Horng-Sheng [Department of Chinese Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Huang, Chao-Yuan; Pu, Yeong-Shiau [Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Lin, Ying-Chin [Department of Family Medicine, Shung Ho Hospital, Taipei Medical University, New Taipei, Taiwan (China); Department of Health Examination, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan (China); Division of Family Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2014-09-15

    The association between DNA repair gene polymorphisms and bladder cancer has been widely studied. However, few studies have examined the correlation between urothelial carcinoma (UC) and arsenic or its metabolites. The aim of this study was to examine the association between polymorphisms of the DNA repair genes, XRCC1 Arg194Trp, XRCC1 Arg399Gln, XRCC3 Thr241Met, and XPD Lys751Gln, with urinary arsenic profiles and UC. To this end, we conducted a hospital-based case–control study with 324 UC patients and 647 age- and gender-matched non-cancer controls. Genomic DNA was used to examine the genotype of XRCC1 Arg194Trp, XRCC1 Arg399Gln, XRCC3 Thr241Met, and XPD Lys751Gln by PCR-restriction fragment length polymorphism analysis (PCR-RFLP). Urinary arsenic profiles were measured by high performance liquid chromatography (HPLC) linked with hydride generator and atomic absorption spectrometry. The XRCC1 399 Gln/Gln and 194 Arg/Trp and Trp/Trp genotypes were significantly related to UC, and the odds ratio (OR) and 95% confidence interval (95%CI) were 1.68 (1.03–2.75) and 0.66 (0.48–0.90), respectively. Participants with higher total urinary arsenic levels, a higher percentage of inorganic arsenic (InAs%) and a lower percentage of dimethylarsinic acid (DMA%) had a higher OR of UC. Participants carrying XRCC1 risk diplotypes G-C/G-C, A-C/A-C, and A-T/G-T, and who had higher total arsenic levels, higher InAs%, or lower DMA% compared to those with other XRCC1 diplotypes had a higher OR of UC. Our results suggest that the XRCC1 399 Gln/Gln and 194 Arg/Arg DNA repair genes play an important role in poor arsenic methylation capacity, thereby increasing the risk of UC in non-obvious arsenic exposure areas. - Highlights: • The XRCC1 399Gln/Gln genotype was significantly associated with increased OR of UC. • The XRCC1 194 Arg/Trp and Trp/Trp genotype had a significantly decreased OR of UC. • Combined effect of the XRCC1 genotypes and poor arsenic methylation capacity on

  19. Structural Insights into l-Tryptophan Dehydrogenase from a Photoautotrophic Cyanobacterium, Nostoc punctiforme.

    Science.gov (United States)

    Wakamatsu, Taisuke; Sakuraba, Haruhiko; Kitamura, Megumi; Hakumai, Yuichi; Fukui, Kenji; Ohnishi, Kouhei; Ashiuchi, Makoto; Ohshima, Toshihisa

    2017-01-15

    l-Tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH), despite exhibiting high amino acid sequence identity (>30%)/homology (>50%) with NAD(P) + -dependent l-Glu/l-Leu/l-Phe/l-Val dehydrogenases, exclusively catalyzes reversible oxidative deamination of l-Trp to 3-indolepyruvate in the presence of NAD + Here, we determined the crystal structure of the apo form of NpTrpDH. The structure of the NpTrpDH monomer, which exhibited high similarity to that of l-Glu/l-Leu/l-Phe dehydrogenases, consisted of a substrate-binding domain (domain I, residues 3 to 133 and 328 to 343) and an NAD + /NADH-binding domain (domain II, residues 142 to 327) separated by a deep cleft. The apo-NpTrpDH existed in an open conformation, where domains I and II were apart from each other. The subunits dimerized themselves mainly through interactions between amino acid residues around the β-1 strand of each subunit, as was observed in the case of l-Phe dehydrogenase. The binding site for the substrate l-Trp was predicted by a molecular docking simulation and validated by site-directed mutagenesis. Several hydrophobic residues, which were located in the active site of NpTrpDH and possibly interacted with the side chain of the substrate l-Trp, were arranged similarly to that found in l-Leu/l-Phe dehydrogenases but fairly different from that of an l-Glu dehydrogenase. Our crystal structure revealed that Met-40, Ala-69, Ile-74, Ile-110, Leu-288, Ile-289, and Tyr-292 formed a hydrophobic cluster around the active site. The results of the site-directed mutagenesis experiments suggested that the hydrophobic cluster plays critical roles in protein folding, l-Trp recognition, and catalysis. Our results provide critical information for further characterization and engineering of this enzyme. In this study, we determined the three-dimensional structure of l-Trp dehydrogenase, analyzed its various site-directed substitution mutants at residues located in the active site, and obtained the

  20. TrpA1 Regulates Defecation of Food-Borne Pathogens under the Control of the Duox Pathway.

    Directory of Open Access Journals (Sweden)

    Eun Jo Du

    2016-01-01

    Full Text Available Pathogen expulsion from the gut is an important defense strategy against infection, but little is known about how interaction between the intestinal microbiome and host immunity modulates defecation. In Drosophila melanogaster, dual oxidase (Duox kills pathogenic microbes by generating the microbicidal reactive oxygen species (ROS, hypochlorous acid (HOCl in response to bacterially excreted uracil. The physiological function of enzymatically generated HOCl in the gut is, however, unknown aside from its anti-microbial activity. Drosophila TRPA1 is an evolutionarily conserved receptor for reactive chemicals like HOCl, but a role for this molecule in mediating responses to gut microbial content has not been described. Here we identify a molecular mechanism through which bacteria-produced uracil facilitates pathogen-clearing defecation. Ingestion of uracil increases defecation frequency, requiring the Duox pathway and TrpA1. The TrpA1(A transcript spliced with exon10b (TrpA1(A10b that is present in a subset of midgut enteroendocrine cells (EECs is critical for uracil-dependent defecation. TRPA1(A10b heterologously expressed in Xenopus oocytes is an excellent HOCl receptor characterized with elevated sensitivity and fast activation kinetics of macroscopic HOCl-evoked currents compared to those of the alternative TRPA1(A10a isoform. Consistent with TrpA1's role in defecation, uracil-excreting Erwinia carotovora showed higher persistence in TrpA1-deficient guts. Taken together, our results propose that the uracil/Duox pathway promotes bacteria expulsion from the gut through the HOCl-sensitive receptor, TRPA1(A10b, thereby minimizing the chances that bacteria adapt to survive host defense systems.

  1. An Allelic Series of Trp63 Mutations Defines TAp63 as a Modifier of EEC Syndrome

    Science.gov (United States)

    Lindahl, Emma Vernersson; Garcia, Elvin L.; Mills, Alea A.

    2014-01-01

    Human Ectrodactyly, Ectodermal dysplasia, Clefting (EEC) syndrome is an autosomal dominant developmental disorder defined by limb deformities, skin defects, and craniofacial clefting. Although associated with heterozygous missense mutations in TP63, the genetic basis underlying the variable expressivity and incomplete penetrance of EEC is unknown. Here we show that mice heterozygous for an allele encoding the Trp63 p.Arg318His mutation, which corresponds to the human TP63 p.Arg279His mutation found in patients with EEC, have features of human EEC. Using an allelic series, we discovered that whereas clefting and skin defects are caused by loss of Trp63 function, limb anomalies are due to gain- and/or dominant-negative effects of Trp63. Furthermore, we identify TAp63 as a strong modifier of EEC-associated phenotypes with regard to both penetrance and expressivity. PMID:23775923

  2. The GTP- and Phospholipid-Binding Protein TTD14 Regulates Trafficking of the TRPL Ion Channel in Drosophila Photoreceptor Cells

    Science.gov (United States)

    Cerny, Alexander C.; Altendorfer, André; Schopf, Krystina; Baltner, Karla; Maag, Nathalie; Sehn, Elisabeth; Wolfrum, Uwe; Huber, Armin

    2015-01-01

    Recycling of signaling proteins is a common phenomenon in diverse signaling pathways. In photoreceptors of Drosophila, light absorption by rhodopsin triggers a phospholipase Cβ-mediated opening of the ion channels transient receptor potential (TRP) and TRP-like (TRPL) and generates the visual response. The signaling proteins are located in a plasma membrane compartment called rhabdomere. The major rhodopsin (Rh1) and TRP are predominantly localized in the rhabdomere in light and darkness. In contrast, TRPL translocates between the rhabdomeral plasma membrane in the dark and a storage compartment in the cell body in the light, from where it can be recycled to the plasma membrane upon subsequent dark adaptation. Here, we identified the gene mutated in trpl translocation defective 14 (ttd14), which is required for both TRPL internalization from the rhabdomere in the light and recycling of TRPL back to the rhabdomere in the dark. TTD14 is highly conserved in invertebrates and binds GTP in vitro. The ttd14 mutation alters a conserved proline residue (P75L) in the GTP-binding domain and abolishes binding to GTP. This indicates that GTP binding is essential for TTD14 function. TTD14 is a cytosolic protein and binds to PtdIns(3)P, a lipid enriched in early endosome membranes, and to phosphatidic acid. In contrast to TRPL, rhabdomeral localization of the membrane proteins Rh1 and TRP is not affected in the ttd14 P75L mutant. The ttd14 P75L mutation results in Rh1-independent photoreceptor degeneration and larval lethality suggesting that other processes are also affected by the ttd14 P75L mutation. In conclusion, TTD14 is a novel regulator of TRPL trafficking, involved in internalization and subsequent sorting of TRPL into the recycling pathway that enables this ion channel to return to the plasma membrane. PMID:26509977

  3. The GTP- and Phospholipid-Binding Protein TTD14 Regulates Trafficking of the TRPL Ion Channel in Drosophila Photoreceptor Cells.

    Directory of Open Access Journals (Sweden)

    Alexander C Cerny

    2015-10-01

    Full Text Available Recycling of signaling proteins is a common phenomenon in diverse signaling pathways. In photoreceptors of Drosophila, light absorption by rhodopsin triggers a phospholipase Cβ-mediated opening of the ion channels transient receptor potential (TRP and TRP-like (TRPL and generates the visual response. The signaling proteins are located in a plasma membrane compartment called rhabdomere. The major rhodopsin (Rh1 and TRP are predominantly localized in the rhabdomere in light and darkness. In contrast, TRPL translocates between the rhabdomeral plasma membrane in the dark and a storage compartment in the cell body in the light, from where it can be recycled to the plasma membrane upon subsequent dark adaptation. Here, we identified the gene mutated in trpl translocation defective 14 (ttd14, which is required for both TRPL internalization from the rhabdomere in the light and recycling of TRPL back to the rhabdomere in the dark. TTD14 is highly conserved in invertebrates and binds GTP in vitro. The ttd14 mutation alters a conserved proline residue (P75L in the GTP-binding domain and abolishes binding to GTP. This indicates that GTP binding is essential for TTD14 function. TTD14 is a cytosolic protein and binds to PtdIns(3P, a lipid enriched in early endosome membranes, and to phosphatidic acid. In contrast to TRPL, rhabdomeral localization of the membrane proteins Rh1 and TRP is not affected in the ttd14P75L mutant. The ttd14P75L mutation results in Rh1-independent photoreceptor degeneration and larval lethality suggesting that other processes are also affected by the ttd14P75L mutation. In conclusion, TTD14 is a novel regulator of TRPL trafficking, involved in internalization and subsequent sorting of TRPL into the recycling pathway that enables this ion channel to return to the plasma membrane.

  4. Role of tryptophan 95 in substrate specificity and structural stability of Sulfolobus solfataricus alcohol dehydrogenase.

    Science.gov (United States)

    Pennacchio, Angela; Esposito, Luciana; Zagari, Adriana; Rossi, Mosè; Raia, Carlo A

    2009-09-01

    A mutant of the thermostable NAD(+)-dependent (S)-stereospecific alcohol dehydrogenase from Sulfolobus solfataricus (SsADH) which has a single substitution, Trp95Leu, located at the substrate binding pocket, was fully characterized to ascertain the role of Trp95 in discriminating between chiral secondary alcohols suggested by the wild-type SsADH crystallographic structure. The Trp95Leu mutant displays no apparent activity with short-chain primary and secondary alcohols and poor activity with aromatic substrates and coenzyme. Moreover, the Trp --> Leu substitution affects the structural stability of the archaeal ADH, decreasing its thermal stability without relevant changes in secondary structure. The double mutant Trp95Leu/Asn249Tyr was also purified to assist in crystallographic analysis. This mutant exhibits higher activity but decreased affinity toward aliphatic alcohols, aldehydes as well as NAD(+) and NADH compared to the wild-type enzyme. The crystal structure of the Trp95Leu/Asn249Tyr mutant apo form, determined at 2.0 A resolution, reveals a large local rearrangement of the substrate site with dramatic consequences. The Leu95 side-chain conformation points away from the catalytic metal center and the widening of the substrate site is partially counteracted by a concomitant change of Trp117 side chain conformation. Structural changes at the active site are consistent with the reduced activity on substrates and decreased coenzyme binding.

  5. A second tyrosinase-related protein, TRP-2, maps to and is mutated at the mouse slaty locus.

    OpenAIRE

    Jackson, I J; Chambers, D M; Tsukamoto, K; Copeland, N G; Gilbert, D J; Jenkins, N A; Hearing, V

    1992-01-01

    We have cloned and sequenced mouse cDNAs corresponding to a third member of a family of melanocyte-specific mRNAs, which encode tyrosinase and related proteins. This new member, tyrosinase-related protein-2 (TRP-2), has approximately 40% amino acid identity with the two other proteins in the family and has the same structural features including two copper binding sites, two cysteine-rich regions, a signal peptide and a transmembrane domain. We now show that one of the cysteine-rich regions in...

  6. Field Investigation of Flow Structure and Channel Morphology at Confluent-Meander Bends

    Science.gov (United States)

    Riley, J. D.; Rhoads, B. L.

    2007-12-01

    The movement of water and sediment through drainage networks is inevitably influenced by the convergence of streams and rivers at channel confluences. These focal components of fluvial systems produce a complex hydrodynamic environment, where rapid changes in flow structure and sediment transport occur to accommodate the merging of separate channel flows. The inherent geometric and hydraulic change at confluences also initiates the development of distinct geomorphic features, reflected in the bedform and shape of the channel. An underlying assumption of previous experimental and theoretical models of confluence dynamics has been that converging streams have straight channels with angular configurations. This generalized conceptualization was necessary to establish confluence planform as symmetrical or asymmetrical and to describe subsequent flow structure and geomorphic features at confluences. However, natural channels, particularly those of meandering rivers, curve and bend. This property and observation of channel curvature at natural junctions have led to the hypothesis that natural stream and river confluences tend to occur on the concave outer bank of meander bends. The resulting confluence planform, referred to as a confluent-meander bend, was observed over a century ago but has received little scientific attention. This paper examines preliminary data on three-dimensional flow structure and channel morphology at two natural confluent-meander bends of varying size and with differing tributary entrance locations. The large river confluence of the Vermilion River and Wabash River in west central Indiana and the comparatively small junction of the Little Wabash River and Big Muddy Creek in southeastern Illinois are the location of study sites for field investigation. Measurements of time-averaged three-dimensional velocity components were obtained at these confluences with an acoustic Doppler current profiler for flow events with differing momentum ratios. Bed

  7. Oxidizing reagent copper-o-phenanthroline is an open channel blocker of the vanilloid receptor TRPV1

    Czech Academy of Sciences Publication Activity Database

    Toušová, Karolina; Sušánková, Klára; Teisinger, Jan; Vyklický st., Ladislav; Vlachová, Viktorie

    2004-01-01

    Roč. 47, č. 2 (2004), s. 273-285 ISSN 0028-3908 R&D Projects: GA ČR GA305/03/0802; GA ČR GA309/02/1479; GA MŠk LN00B122 Institutional research plan: CEZ:AV0Z5011922 Keywords : vanilloid receptor * TRP channels * capsaicin Subject RIV: ED - Physiology Impact factor: 3.734, year: 2004

  8. Ehrlichia chaffeensis TRP120 Activates Canonical Notch Signaling To Downregulate TLR2/4 Expression and Promote Intracellular Survival

    Directory of Open Access Journals (Sweden)

    Taslima T. Lina

    2016-07-01

    Full Text Available Ehrlichia chaffeensis preferentially targets mononuclear phagocytes and survives through a strategy of subverting innate immune defenses, but the mechanisms are unknown. We have shown E. chaffeensis type 1 secreted tandem repeat protein (TRP effectors are involved in diverse molecular pathogen-host interactions, such as the TRP120 interaction with the Notch receptor-cleaving metalloprotease ADAM17. In the present study, we demonstrate E. chaffeensis, via the TRP120 effector, activates the canonical Notch signaling pathway to promote intracellular survival. We found that nuclear translocation of the transcriptionally active Notch intracellular domain (NICD occurs in response to E. chaffeensis or recombinant TRP120, resulting in upregulation of Notch signaling pathway components and target genes notch1, adam17, hes, and hey. Significant differences in canonical Notch signaling gene expression levels (>40% were observed during early and late stages of infection, indicating activation of the Notch pathway. We linked Notch pathway activation specifically to the TRP120 effector, which directly interacts with the Notch metalloprotease ADAM17. Using pharmacological inhibitors and small interfering RNAs (siRNAs against γ-secretase enzyme, Notch transcription factor complex, Notch1, and ADAM17, we demonstrated that Notch signaling is required for ehrlichial survival. We studied the downstream effects and found that E. chaffeensis TRP120-mediated activation of the Notch pathway causes inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2 and p38 mitogen-activated protein kinase (MAPK pathways required for PU.1 and subsequent Toll-like receptor 2/4 (TLR2/4 expression. This investigation reveals a novel mechanism whereby E. chaffeensis exploits the Notch pathway to evade the host innate immune response for intracellular survival.

  9. Distribution and expression of non-neuronal transient receptor potential (TRPV) ion channels in rosacea.

    Science.gov (United States)

    Sulk, Mathias; Seeliger, Stephan; Aubert, Jerome; Schwab, Verena D; Cevikbas, Ferda; Rivier, Michel; Nowak, Pawel; Voegel, Johannes J; Buddenkotte, Jörg; Steinhoff, Martin

    2012-04-01

    Rosacea is a frequent chronic inflammatory skin disease of unknown etiology. Because early rosacea reveals all characteristics of neurogenic inflammation, a central role of sensory nerves in its pathophysiology has been discussed. Neuroinflammatory mediators and their receptors involved in rosacea are poorly defined. Good candidates may be transient receptor potential (TRP) ion channels of vanilloid type (TRPV), which can be activated by many trigger factors of rosacea. Interestingly, TRPV2, TRPV3, and TRPV4 are expressed by both neuronal and non-neuronal cells. Here, we analyzed the expression and distribution of TRPV receptors in the various subtypes of rosacea on non-neuronal cells using immunohistochemistry, morphometry, double immunoflourescence, and quantitative real-time PCR (qRT-PCR) as compared with healthy skin and lupus erythematosus. Our results show that dermal immunolabeling of TRPV2 and TRPV3 and gene expression of TRPV1 is significantly increased in erythematotelangiectatic rosacea (ETR). Papulopustular rosacea (PPR) displayed an enhanced immunoreactivity for TRPV2, TRPV4, and also of TRPV2 gene expression. In phymatous rosacea (PhR)-affected skin, dermal immunostaining of TRPV3 and TRPV4 and gene expression of TRPV1 and TRPV3 was enhanced, whereas epidermal TRPV2 staining was decreased. Thus, dysregulation of TRPV channels also expressed by non-neuronal cells may be critically involved in the initiation and/or development of rosacea. TRP ion channels may be targets for the treatment of rosacea.

  10. Urea and Guanidinium Induced Denaturation of a Trp-Cage Miniprotein

    Czech Academy of Sciences Publication Activity Database

    Heyda, Jan; Kožíšek, Milan; Bednárová, Lucie; Thompson, G.; Konvalinka, Jan; Vondrášek, Jiří; Jungwirth, Pavel

    2011-01-01

    Roč. 115, č. 28 (2011), s. 8910-8924 ISSN 1520-6106 R&D Projects: GA MŠk LC512; GA ČR GA203/08/0114 Institutional research plan: CEZ:AV0Z40550506 Keywords : trp-cage denaturation * urea * guanidinium * molecular dynamics Subject RIV: CC - Organic Chemistry Impact factor: 3.696, year: 2011

  11. Flow Structure and Channel Morphology at a Confluent-Meander Bend

    Science.gov (United States)

    Riley, J. D.; Rhoads, B. L.

    2009-12-01

    Flow structure and channel morphology in meander bends have been well documented. Channel curvature subjects flow through a bend to centrifugal acceleration, inducing a counterbalancing pressure-gradient force that initiates secondary circulation. Transverse variations in boundary shear stress and bedload transport parallel cross-stream movement of high velocity flow and determine spatial patterns of erosion along the outer bank and deposition along the inner bank. Laboratory experiments and numerical modeling of confluent-meander bends, a junction planform that develops when a tributary joins a meandering river along the outer bank of a bend, suggest that flow and channel morphology in such bends deviate from typical patterns. The purpose of this study is to examine three-dimensional (3-D) flow structure and channel morphology at a natural confluent-meander bend. Field data were collected in southeastern Illinois where Big Muddy Creek joins the Little Wabash River near a local maximum of curvature along an elongated meander loop. Measurements of 3-D velocity components were obtained with an acoustic Doppler current profiler (ADCP) for two flow events with differing momentum ratios. Channel bathymetry was also resolved from the four-beam depths of the ADCP. Analysis of velocity data reveals a distinct shear layer flanked by dual helical cells within the bend immediately downstream of the confluence. Flow from the tributary confines flow from the main channel along the inner part of the channel cross section, displacing the thalweg inward, limiting the downstream extent of the point bar, protecting the outer bank from erosion and enabling bar-building along this bank. Overall, this pattern of flow and channel morphology is quite different from typical patterns in meander bends, but is consistent with a conceptual model derived from laboratory experiments and numerical modeling.

  12. Photosensitive TRPs.

    Science.gov (United States)

    Hardie, Roger C

    2014-01-01

    The Drosophila "transient receptor potential" channel is the prototypical TRP channel, belonging to and defining the TRPC subfamily. Together with a second TRPC channel, trp-like (TRPL), TRP mediates the transducer current in the fly's photoreceptors. TRP and TRPL are also implicated in olfaction and Malpighian tubule function. In photoreceptors, TRP and TRPL are localised in the ~30,000 packed microvilli that form the photosensitive "rhabdomere"-a light-guiding rod, housing rhodopsin and the rest of the phototransduction machinery. TRP (but not TRPL) is assembled into multimolecular signalling complexes by a PDZ-domain scaffolding protein (INAD). TRPL (but not TRP) undergoes light-regulated translocation between cell body and rhabdomere. TRP and TRPL are also found in photoreceptor synapses where they may play a role in synaptic transmission. Like other TRPC channels, TRP and TRPL are activated by a G protein-coupled phospholipase C (PLCβ4) cascade. Although still debated, recent evidence indicates the channels can be activated by a combination of PIP2 depletion and protons released by the PLC reaction. PIP2 depletion may act mechanically as membrane area is reduced by cleavage of PIP2's bulky inositol headgroup. TRP, which dominates the light-sensitive current, is Ca(2+) selective (P Ca:P Cs >50:1), whilst TRPL has a modest Ca(2+) permeability (P Ca:P Cs ~5:1). Ca(2+) influx via the channels has profound positive and negative feedback roles, required for the rapid response kinetics, with Ca(2+) rapidly facilitating TRP (but not TRPL) and also inhibiting both channels. In trp mutants, stimulation by light results in rapid depletion of microvillar PIP2 due to lack of Ca(2+) influx required to inhibit PLC. This accounts for the "transient receptor potential" phenotype that gives the family its name and, over a period of days, leads to light-dependent retinal degeneration. Gain-of-function trp mutants with uncontrolled Ca(2+) influx also undergo retinal degeneration

  13. Sampling the equilibrium kinetic network of Trp-cage in explicit solvent

    NARCIS (Netherlands)

    Du, W.; Bolhuis, P.G.

    2014-01-01

    We employed the single replica multiple state transition interface sampling (MSTIS) approach to sample the kinetic (un) folding network of Trp-cage mini-protein in explicit water. Cluster analysis yielded 14 important metastable states in the network. The MSTIS simulation thus resulted in a full 14

  14. Novel role for the transient potential receptor melastatin 4 channel in guinea pig detrusor smooth muscle physiology

    Science.gov (United States)

    Smith, Amy C.; Hristov, Kiril L.; Cheng, Qiuping; Xin, Wenkuan; Parajuli, Shankar P.; Earley, Scott; Malysz, John

    2013-01-01

    Members of the transient receptor potential (TRP) channel superfamily, including the Ca2+-activated monovalent cation-selective TRP melastatin 4 (TRPM4) channel, have been recently identified in the urinary bladder. However, their expression and function at the level of detrusor smooth muscle (DSM) remain largely unexplored. In this study, for the first time we investigated the role of TRPM4 channels in guinea pig DSM excitation-contraction coupling using a multidisciplinary approach encompassing protein detection, electrophysiology, live-cell Ca2+ imaging, DSM contractility, and 9-phenanthrol, a recently characterized selective inhibitor of the TRPM4 channel. Western blot and immunocytochemistry experiments demonstrated the expression of the TRPM4 channel in whole DSM tissue and freshly isolated DSM cells with specific localization on the plasma membrane. Perforated whole cell patch-clamp recordings and real-time Ca2+ imaging experiments with fura 2-AM, both using freshly isolated DSM cells, revealed that 9-phenanthrol (30 μM) significantly reduced the cation current and decreased intracellular Ca2+ levels. 9-Phenanthrol (0.1–30 μM) significantly inhibited spontaneous, 0.1 μM carbachol-induced, 20 mM KCl-induced, and nerve-evoked contractions in guinea pig DSM-isolated strips with IC50 values of 1–7 μM and 70–80% maximum inhibition. 9-Phenanthrol also reduced nerve-evoked contraction amplitude induced by continuous repetitive electrical field stimulation of 10-Hz frequency and shifted the frequency-response curve (0.5–50 Hz) relative to the control. Collectively, our data demonstrate the novel finding that TRPM4 channels are expressed in guinea pig DSM and reveal their critical role in the regulation of guinea pig DSM excitation-contraction coupling. PMID:23302778

  15. Trp64Arg polymorphism of the ADRB3 gene associated with maximal fat oxidation and LDL-C levels in non-obese adolescents.

    Science.gov (United States)

    Jesus, Íncare Correa de; Alle, Lupe Furtado; Munhoz, Eva Cantalejo; Silva, Larissa Rosa da; Lopes, Wendell Arthur; Tureck, Luciane Viater; Purim, Katia Sheylla Malta; Titski, Ana Claudia Kapp; Leite, Neiva

    2017-09-21

    To analyze the association between the Trp64Arg polymorphism of the ADRB3 gene, maximal fat oxidation rates and the lipid profile levels in non-obese adolescents. 72 schoolchildren, of both genders, aged between 11 and 17 years, participated in the study. The anthropometric and body composition variables, in addition to total cholesterol, HDL-c, LDL-c, triglycerides, insulin, and basal glycemia, were evaluated. The sample was divided into two groups according to the presence or absence of the polymorphism: non-carriers of the Arg64 allele, i.e., homozygous (Trp64Trp: n=54), and carriers of the Arg64 allele (Trp64Arg+Arg64Arg: n=18), in which the frequency of the Arg64 allele was 15.2%. The maximal oxygen uptake and peak of oxygen uptake during exercise were obtained through the symptom-limited, submaximal treadmill test. Maximal fat oxidation was determined according to the ventilatory ratio proposed in Lusk's table. Adolescents carrying the less frequent allele (Trp64Arg and Arg64Arg) had higher LDL-c levels (p=0.031) and lower maximal fat oxidation rates (p=0.038) when compared with non-carriers (Trp64Trp). Although the physiological processes related to lipolysis and lipid metabolism are complex, the presence of the Arg 64 allele was associated with lower rates of FATMAX during aerobic exercise, as well as with higher levels of LDL-c in adolescents. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  16. Signal-dependent hydrolysis of phosphatidylinositol 4,5-bisphosphate without activation of phospholipase C: implications on gating of Drosophila TRPL (transient receptor potential-like) channel.

    Science.gov (United States)

    Lev, Shaya; Katz, Ben; Tzarfaty, Vered; Minke, Baruch

    2012-01-06

    In Drosophila, a phospholipase C (PLC)-mediated signaling cascade, couples photo-excitation of rhodopsin to the opening of the transient receptor potential (TRP) and TRP-like (TRPL) channels. A lipid product of PLC, diacylglycerol (DAG), and its metabolites, polyunsaturated fatty acids (PUFAs) may function as second messengers of channel activation. However, how can one separate between the increase in putative second messengers, change in pH, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) depletion when exploring the TRPL gating mechanism? To answer this question we co-expressed the TRPL channels together with the muscarinic (M1) receptor, enabling the openings of TRPL channels via G-protein activation of PLC. To dissect PLC activation of TRPL into its molecular components, we used a powerful method that reduced plasma membrane-associated PI(4,5)P(2) in HEK cells within seconds without activating PLC. Upon the addition of a dimerizing drug, PI(4,5)P(2) was selectively hydrolyzed in the cell membrane without producing DAG, inositol trisphosphate, or calcium signals. We show that PI(4,5)P(2) is not an inhibitor of TRPL channel activation. PI(4,5)P(2) hydrolysis combined with either acidification or application of DAG analogs failed to activate the channels, whereas PUFA did activate the channels. Moreover, a reduction in PI(4,5)P(2) levels or inhibition of DAG lipase during PLC activity suppressed the PLC-activated TRPL current. This suggests that PI(4,5)P(2) is a crucial substrate for PLC-mediated activation of the channels, whereas PUFA may function as the channel activator. Together, this study defines a narrow range of possible mechanisms for TRPL gating.

  17. Development and installation of solution measurement and monitoring system (SMMS) at TRP

    International Nuclear Information System (INIS)

    Satoh, Takehiko; Yamanaka, Atsushi; Kashimura, Takao; Yamamoto, Tokuhiro

    2001-01-01

    The IAEA proposed TRP safeguard improvement plants in 1995 for closer and more efficient safeguards of TRP. Development of Solution Measurement and Monitoring System (SMMS) is one item of the plans and has been carried out under the JASPAS program as JA-6. Following to the IAEA's acceptance test, after the installation of the SMMS in 1999, field test of this system has been carried out. The main purpose of the SMMS is to establish the IAEA's independent monitoring system. Besides input and output accountability tanks, seven Pu storage tanks and a pot attached to the Pu storage tanks are monitored continuously, and solution level, density and temperature data of these tanks are recorded by the SMMS. Authentication of the SMMS, confirmed by the IAEA at the acceptance test, is kept by failure detection and recording functions of the system. (author)

  18. Structural organization of intercellular channels II. Amino terminal domain of the connexins: sequence, functional roles, and structure.

    Science.gov (United States)

    Beyer, Eric C; Lipkind, Gregory M; Kyle, John W; Berthoud, Viviana M

    2012-08-01

    The amino terminal domain (NT) of the connexins consists of their first 22-23 amino acids. Site-directed mutagenesis studies have demonstrated that NT amino acids are determinants of gap junction channel properties including unitary conductance, permeability/selectivity, and gating in response to transjunctional voltage. The importance of this region has also been emphasized by the identification of multiple disease-associated connexin mutants affecting amino acid residues in the NT region. The first part of the NT is α-helical. The structure of the Cx26 gap junction channel shows that the NT α-helix localizes within the channel, and lines the wall of the pore. Interactions of the amino acid residues in the NT with those in the transmembrane helices may be critical for holding the channel open. The predicted sites of these interactions and the applicability of the Cx26 structure to the NT of other connexins are considered. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics. Copyright © 2011. Published by Elsevier B.V.

  19. Endolysosomal Cation Channels and Cancer—A Link with Great Potential

    Science.gov (United States)

    Grimm, Christian; Bartel, Karin; Vollmar, Angelika M.; Biel, Martin

    2018-01-01

    The endolysosomal system (ES) consists of lysosomes; early, late, and recycling endosomes; and autophagosomes. It is a key regulator not only of macromolecule degradation and recycling, plasma membrane repair, homeostasis, and lipid storage, but also of antigen presentation, immune defense, cell motility, cell death signaling, tumor growth, and cancer progression. In addition, it plays a critical role in autophagy, and the autophagy-lysosome pathway is intimately associated with the hallmarks of cancer, such as escaping cell death pathways, evading immune surveillance, and deregulating metabolism. The function of endolysosomes is critically dependent on both soluble and endolysosomal membrane proteins such as ion channels and transporters. Cation channels found in the ES include members of the TRP (transient receptor potential) channel superfamily, namely TRPML channels (mucolipins) as well as two-pore channels (TPCs). In recent studies, these channels have been found to play crucial roles in endolysosomal trafficking, lysosomal exocytosis, and autophagy. Mutation or loss of these channel proteins can impact multiple endolysosomal trafficking pathways. A role for TPCs in cancer cell migration and metastasis, linked to distinct defects in endolysosomal trafficking such as integrin trafficking, has been recently established. In this review, we give an overview on the function of lysosomes in cancer with a particular focus on the roles which TPCs and TRPML channels play in the ES and how this can affect cancer cells. PMID:29303993

  20. Endolysosomal Cation Channels and Cancer-A Link with Great Potential.

    Science.gov (United States)

    Grimm, Christian; Bartel, Karin; Vollmar, Angelika M; Biel, Martin

    2018-01-05

    The endolysosomal system (ES) consists of lysosomes; early, late, and recycling endosomes; and autophagosomes. It is a key regulator not only of macromolecule degradation and recycling, plasma membrane repair, homeostasis, and lipid storage, but also of antigen presentation, immune defense, cell motility, cell death signaling, tumor growth, and cancer progression. In addition, it plays a critical role in autophagy, and the autophagy-lysosome pathway is intimately associated with the hallmarks of cancer, such as escaping cell death pathways, evading immune surveillance, and deregulating metabolism. The function of endolysosomes is critically dependent on both soluble and endolysosomal membrane proteins such as ion channels and transporters. Cation channels found in the ES include members of the TRP (transient receptor potential) channel superfamily, namely TRPML channels (mucolipins) as well as two-pore channels (TPCs). In recent studies, these channels have been found to play crucial roles in endolysosomal trafficking, lysosomal exocytosis, and autophagy. Mutation or loss of these channel proteins can impact multiple endolysosomal trafficking pathways. A role for TPCs in cancer cell migration and metastasis, linked to distinct defects in endolysosomal trafficking such as integrin trafficking, has been recently established. In this review, we give an overview on the function of lysosomes in cancer with a particular focus on the roles which TPCs and TRPML channels play in the ES and how this can affect cancer cells.

  1. The specificity of Av3 sea anemone toxin for arthropods is determined at linker DI/SS2-S6 in the pore module of target sodium channels.

    Science.gov (United States)

    Gur Barzilai, Maya; Kahn, Roy; Regev, Noa; Gordon, Dalia; Moran, Yehu; Gurevitz, Michael

    2014-10-15

    Av3 is a peptide neurotoxin from the sea anemone Anemonia viridis that shows specificity for arthropod voltage-gated sodium channels (Navs). Interestingly, Av3 competes with a scorpion α-toxin on binding to insect Navs and similarly inhibits the inactivation process, and thus has been classified as 'receptor site-3 toxin', although the two peptides are structurally unrelated. This raises questions as to commonalities and differences in the way both toxins interact with Navs. Recently, site-3 was partly resolved for scorpion α-toxins highlighting S1-S2 and S3-S4 external linkers at the DIV voltage-sensor module and the juxtaposed external linkers at the DI pore module. To uncover channel determinants involved in Av3 specificity for arthropods, the toxin was examined on channel chimaeras constructed with the external linkers of the mammalian brain Nav1.2a, which is insensitive to Av3, in the background of the Drosophila DmNav1. This approach highlighted the role of linker DI/SS2-S6, adjacent to the channel pore, in determining Av3 specificity. Point mutagenesis at DI/SS2-S6 accompanied by functional assays highlighted Trp404 and His405 as a putative point of Av3 interaction with DmNav1. His405 conservation in arthropod Navs compared with tyrosine in vertebrate Navs may represent an ancient substitution that explains the contemporary selectivity of Av3. Trp404 and His405 localization near the membrane surface and the hydrophobic bioactive surface of Av3 suggest that the toxin possibly binds at a cleft by DI/S6. A partial overlap in receptor site-3 of both toxins nearby DI/S6 may explain their binding competition capabilities.

  2. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels

    DEFF Research Database (Denmark)

    Gopal, Sandeep; Søgaard, Pernille; Multhaupt, Hinke A B

    2015-01-01

    show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7...... with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan-TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement...

  3. Horticultural marketing channels in Kenya : structure and development

    NARCIS (Netherlands)

    Dijkstra, T.

    1997-01-01

    This study analyses the structure and development of horticultural marketing channels in Kenya. It is based primarily on a farm survey among some 500 farmers in Nyandarua, Kisii and Taita Taveta Districts and a trade survey of about 750 horticultural traders in 18 different market places.

  4. Imaging and structural studies of DNA–protein complexes and membrane ion channels

    KAUST Repository

    Marini, Monica; Limongi, Tania; Falqui, Andrea; Genovese, Alessandro; Allione, Marco; Moretti, Manola; Lopatin, Sergei; Tirinato, Luca; Das, Gobind; Torre, Bruno; Giugni, Andrea; Cesca, F.; Benfenati, F.; Di Fabrizio, Enzo M.

    2017-01-01

    In bio-imaging by electron microscopy, damage of the sample and limited contrast are the two main hurdles for reaching high image quality. We extend a new preparation method based on nanofabrication and super-hydrophobicity to the imaging and structural studies of nucleic acids, nucleic acid-protein complexes (DNA/Rad51 repair protein complex) and neuronal ion channels (gap-junction, K+ and GABA(A) channels) as paradigms of biological significance and increasing complexity. The preparation method is based on the liquid phase and is compatible with physiological conditions. Only in the very last stage, samples are dried for TEM analysis. Conventional TEM and high-resolution TEM (HRTEM) were used to achieve a resolution of 3.3 and 1.5 angstrom, respectively. The EM dataset quality allows the determination of relevant structural and metrological information on the DNA structure, DNA-protein interactions and ion channels, allowing the identification of specific macromolecules and their structure.

  5. Imaging and structural studies of DNA–protein complexes and membrane ion channels

    KAUST Repository

    Marini, Monica

    2017-01-17

    In bio-imaging by electron microscopy, damage of the sample and limited contrast are the two main hurdles for reaching high image quality. We extend a new preparation method based on nanofabrication and super-hydrophobicity to the imaging and structural studies of nucleic acids, nucleic acid-protein complexes (DNA/Rad51 repair protein complex) and neuronal ion channels (gap-junction, K+ and GABA(A) channels) as paradigms of biological significance and increasing complexity. The preparation method is based on the liquid phase and is compatible with physiological conditions. Only in the very last stage, samples are dried for TEM analysis. Conventional TEM and high-resolution TEM (HRTEM) were used to achieve a resolution of 3.3 and 1.5 angstrom, respectively. The EM dataset quality allows the determination of relevant structural and metrological information on the DNA structure, DNA-protein interactions and ion channels, allowing the identification of specific macromolecules and their structure.

  6. ADRB3 Gene Trp64Arg Polymorphism and Essential Hypertension: A Meta-Analysis Including 9,555 Subjects.

    Science.gov (United States)

    Li, Yan-Yan; Lu, Xin-Zheng; Wang, Hui; Zhou, Yan-Hong; Yang, Xin-Xing; Geng, Hong-Yu; Gong, Ge; Kim, Hyun Jun

    2018-01-01

    Background: Presence of the β 3-Adrenergic receptor (ADRB3) gene Trp64Arg (T64A) polymorphism may be associated with an increased susceptibility for essential hypertension (EH). A clear consensus, however, has yet to be reached. Objective and methods: To further elucidate the relationship between the ADRB3 gene Trp64Arg polymorphism and EH, a meta-analysis of 9,555 subjects aggregated from 16 individual studies was performed. The combined odds ratios (ORs) and their corresponding 95% confidence intervals (CI) were evaluated using either a random or fixed effect model. Results: We found a marginally significant association between ADRB3 gene Trp64Arg polymorphism and EH in the whole population under the additive genetic model (OR: 1.200, 95% CI: 1.00-1.43, P = 0.049). Association within the Chinese subgroup, however, was significant under allelic (OR: 1.150, 95% CI: 1.002-1.320, P = 0.046), dominant (OR: 1.213, 95% CI: 1.005-1.464, P = 0.044), heterozygous (OR: 1.430, 95% CI:1.040-1.970, P = 0.03), and additive genetic models (OR: 1.280, 95% CI: 1.030-1.580, P = 0.02). A significant association was also found in the Caucasian subgroup under allelic (OR: 1.850, 95% CI: 1. 260-2.720, P = 0.002), dominant (OR: 2.004, 95% CI: 1.316-3.052, P = 0.001), heterozygous (OR: 2.220, 95% CI: 1.450-3.400, P = 0.0002), and additive genetic models (OR: 2.000, 95% CI: 1. 330-3.010, P = 0.0009). Conclusions: The presence of the ADRB3 gene Trp64Arg polymorphism is positively associated with EH, especially in the Chinese and Caucasian population. The Arg allele carriers of ADRB3 gene Trp64Arg polymorphism may be at an increased risk for developing EH.

  7. A ligand channel through the G protein coupled receptor opsin.

    Directory of Open Access Journals (Sweden)

    Peter W Hildebrand

    Full Text Available The G protein coupled receptor rhodopsin contains a pocket within its seven-transmembrane helix (TM structure, which bears the inactivating 11-cis-retinal bound by a protonated Schiff-base to Lys296 in TM7. Light-induced 11-cis-/all-trans-isomerization leads to the Schiff-base deprotonated active Meta II intermediate. With Meta II decay, the Schiff-base bond is hydrolyzed, all-trans-retinal is released from the pocket, and the apoprotein opsin reloaded with new 11-cis-retinal. The crystal structure of opsin in its active Ops* conformation provides the basis for computational modeling of retinal release and uptake. The ligand-free 7TM bundle of opsin opens into the hydrophobic membrane layer through openings A (between TM1 and 7, and B (between TM5 and 6, respectively. Using skeleton search and molecular docking, we find a continuous channel through the protein that connects these two openings and comprises in its central part the retinal binding pocket. The channel traverses the receptor over a distance of ca. 70 A and is between 11.6 and 3.2 A wide. Both openings are lined with aromatic residues, while the central part is highly polar. Four constrictions within the channel are so narrow that they must stretch to allow passage of the retinal beta-ionone-ring. Constrictions are at openings A and B, respectively, and at Trp265 and Lys296 within the retinal pocket. The lysine enforces a 90 degrees elbow-like kink in the channel which limits retinal passage. With a favorable Lys side chain conformation, 11-cis-retinal can take the turn, whereas passage of the all-trans isomer would require more global conformational changes. We discuss possible scenarios for the uptake of 11-cis- and release of all-trans-retinal. If the uptake gate of 11-cis-retinal is assigned to opening B, all-trans is likely to leave through the same gate. The unidirectional passage proposed previously requires uptake of 11-cis-retinal through A and release of photolyzed all

  8. Rate constant and reaction coordinate of Trp-cage folding in explicit water

    NARCIS (Netherlands)

    Juraszek, J.; Bolhuis, P.G.

    2008-01-01

    We report rate constant calculations and a reaction coordinate analysis of the rate-limiting folding and unfolding process of the Trp-cage mini-protein in explicit solvent using transition interface sampling. Previous transition path sampling simulations revealed that in this (un)folding process the

  9. Alpha-adducin Gly460Trp polymorphism and renal hemodynamics in essential hypertension

    NARCIS (Netherlands)

    Beeks, Esther; van der Klauw, Melanie M; Kroon, Abraham A; Spiering, Wilko; Fuss-Lejeune, Monique J M J; de Leeuw, Peter W

    2004-01-01

    Previous studies have shown an association between the alpha-adducin Gly460Trp polymorphism and salt-sensitive hypertension. Not much is known about the effects of the variants of this polymorphism on renal hemodynamics and function. Therefore, we performed the present study to investigate the

  10. Defective channels lead to an impaired skin barrier.

    Science.gov (United States)

    Blaydon, Diana C; Kelsell, David P

    2014-10-15

    Channels are integral membrane proteins that form a pore, allowing the passive movement of ions or molecules across a membrane (along a gradient), either between compartments within a cell, between intracellular and extracellular environments or between adjacent cells. The ability of cells to communicate with one another and with their environment is a crucial part of the normal physiology of a tissue that allows it to carry out its function. Cell communication is particularly important during keratinocyte differentiation and formation of the skin barrier. Keratinocytes in the skin epidermis undergo a programme of apoptosis-driven terminal differentiation, whereby proliferating keratinocytes in the basal (deepest) layer of the epidermis stop proliferating, exit the basal layer and move up through the spinous and granular layers of the epidermis to form the stratum corneum, the external barrier. Genes encoding different families of channel proteins have been found to harbour mutations linked to a variety of rare inherited monogenic skin diseases. In this Commentary, we discuss how human genetic findings in aquaporin (AQP) and transient receptor potential (TRP) channels reveal different mechanisms by which these channel proteins function to ensure the proper formation and maintenance of the skin barrier. © 2014. Published by The Company of Biologists Ltd.

  11. Improved vertical MOSFET performance using an epitaxial channel and a stacked silicon-insulator structure

    International Nuclear Information System (INIS)

    Uchino, T; Gili, E; Ashburn, P; Tan, L; Buiu, O; Hall, S

    2012-01-01

    A vertical MOSFET (VMOST) incorporating an epitaxial channel and a drain junction in a stacked silicon-insulator structure is presented. In this device structure, an oxide layer near the drain junction edge (referred to as a junction stop) acts as a dopant diffusion barrier and consequently a shallow drain junction is formed to suppress short channel effects. To investigate the scalability of this device, a simulation study in the sub-100 nm regime calibrated to measured results on the fabricated devices is carried out. The use of an epitaxial channel delivers 50% higher drive current due to the higher mobility of the retrograde channel and the junction stop structure delivers improvements of threshold voltage roll-off and drain-induced barrier lowering compared with a conventional VMOST. (fast track communication)

  12. A Direct in Vivo Comparison of the Melanocortin Monovalent Agonist Ac-His-DPhe-Arg-Trp-NH2 versus the Bivalent Agonist Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-NH2: A Bivalent Advantage.

    Science.gov (United States)

    Lensing, Cody J; Adank, Danielle N; Wilber, Stacey L; Freeman, Katie T; Schnell, Sathya M; Speth, Robert C; Zarth, Adam T; Haskell-Luevano, Carrie

    2017-06-21

    Bivalent ligands targeting putative melanocortin receptor dimers have been developed and characterized in vitro; however, studies of their functional in vivo effects have been limited. The current report compares the effects of homobivalent ligand CJL-1-87, Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-NH 2 , to monovalent ligand CJL-1-14, Ac-His-DPhe-Arg-Trp-NH 2 , on energy homeostasis in mice after central intracerebroventricular (ICV) administration into the lateral ventricle of the brain. Bivalent ligand CJL-1-87 had noteworthy advantages as an antiobesity probe over CJL-1-14 in a fasting-refeeding in vivo paradigm. Treatment with CJL-1-87 significantly decreased food intake compared to CJL-1-14 or saline (50% less intake 2-8 h after treatment). Furthermore, CJL-1-87 treatment decreased the respiratory exchange ratio (RER) without changing the energy expenditure indicating that fats were being burned as the primary fuel source. Additionally, CJL-1-87 treatment significantly lowered body fat mass percentage 6 h after administration (p < 0.05) without changing the lean mass percentage. The bivalent ligand significantly decreased insulin, C-peptide, leptin, GIP, and resistin plasma levels compared to levels after CJL-1-14 or saline treatments. Alternatively, ghrelin plasma levels were significantly increased. Serum stability of CJL-1-87 and CJL-1-14 (T 1/2 = 6.0 and 16.8 h, respectively) was sufficient to permit physiological effects. The differences in binding affinity of CJL-1-14 compared to CJL-1-87 are speculated as a possible mechanism for the bivalent ligand's unique effects. We also provide in vitro evidence for the formation of a MC3R-MC4R heterodimer complex, for the first time to our knowledge, that may be an unexploited neuronal molecular target. Regardless of the exact mechanism, the advantageous ability of CJL-1-87 compared to CJL-1-14 to increase in vitro binding affinity, increase the duration of action in spite of decreased serum stability, decrease

  13. The structure of a conserved Piezo channel domain reveals a novel beta sandwich fold

    Science.gov (United States)

    Kamajaya, Aron; Kaiser, Jens; Lee, Jonas; Reid, Michelle; Rees, Douglas C.

    2014-01-01

    Summary Piezo has recently been identified as a family of eukaryotic mechanosensitive channels composed of subunits containing over 2000 amino acids, without recognizable sequence similarity to other channels. Here, we present the crystal structure of a large, conserved extramembrane domain located just before the last predicted transmembrane helix of C. elegans PIEZO, which adopts a novel beta sandwich fold. The structure was also determined of a point mutation located on a conserved surface at the position equivalent to the human PIEZO1 mutation found in Dehydrated Hereditary Stomatocytosis (DHS) patients (M2225R). While the point mutation does not change the overall domain structure, it does alter the surface electrostatic potential that may perturb interactions with a yet-to-be identified ligand or protein. The lack of structural similarity between this domain and any previously characterized fold, including those of eukaryotic and bacterial channels, highlights the distinctive nature of the Piezo family of eukaryotic mechanosensitive channels. PMID:25242456

  14. Structure of Voltage-gated Two-pore Channel TPC1 from Arabidopsis thaliana

    Science.gov (United States)

    Guo, Jiangtao; Zeng, Weizhong; Chen, Qingfeng; Lee, Changkeun; Chen, Liping; Yang, Yi; Cang, Chunlei; Ren, Dejian; Jiang, Youxing

    2015-01-01

    Two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in both animals and plants as organellar cation channels. Here, we present the first crystal structure of a vacuolar two-pore channel from Arabidopsis thaliana, AtTPC1, which functions as a homodimer. AtTPC1 activation requires both voltage and cytosolic Ca2+. Ca2+ binding to the cytosolic EF-hand domain triggers conformational changes coupled to the pair of pore-lining inner helices (IS6 helices) from the first 6-TM domains, whereas membrane potential only activates the second voltage-sensing domain (VSD2) whose conformational changes are coupled to the pair of inner helices (IIS6 helices) from the second 6-TM domains. Luminal Ca2+ or Ba2+ can modulate voltage activation by stabilizing VSD2 in the resting state and shifts voltage activation towards more positive potentials. Our Ba2+ bound AtTPC1 structure reveals a voltage sensor in the resting state, providing hitherto unseen structural insight into the general voltage-gating mechanism among voltage-gated channels. PMID:26689363

  15. Structural determinants of PIP(2) regulation of inward rectifier K(ATP) channels.

    Science.gov (United States)

    Shyng, S L; Cukras, C A; Harwood, J; Nichols, C G

    2000-11-01

    Phosphatidylinositol 4,5-bisphosphate (PIP(2)) activates K(ATP) and other inward rectifier (Kir) channels. To determine residues important for PIP(2) regulation, we have systematically mutated each positive charge in the COOH terminus of Kir6.2 to alanine. The effects of these mutations on channel function were examined using (86)Rb efflux assays on intact cells and inside-out patch-clamp methods. Both methods identify essentially the same basic residues in two narrow regions (176-222 and 301-314) in the COOH terminus that are important for the maintenance of channel function and interaction with PIP(2). Only one residue (R201A) simultaneously affected ATP and PIP(2) sensitivity, which is consistent with the notion that these ligands, while functionally competitive, are unlikely to bind to identical sites. Strikingly, none of 13 basic residues in the terminal portion (residues 315-390) of the COOH terminus affected channel function when neutralized. The data help to define the structural requirements for PIP(2) sensitivity of K(ATP) channels. Moreover, the regions and residues defined in this study parallel those uncovered in recent studies of PIP(2) sensitivity in other inward rectifier channels, indicating a common structural basis for PIP(2) regulation.

  16. Modular Organization of the NusA- and NusG-Stimulated RNA Polymerase Pause Signal That Participates in the Bacillus subtilis trp Operon Attenuation Mechanism.

    Science.gov (United States)

    Mondal, Smarajit; Yakhnin, Alexander V; Babitzke, Paul

    2017-07-15

    The Bacillus subtilis trpEDCFBA operon is regulated by a transcription attenuation mechanism in which tryptophan-activated TRAP binds to the nascent transcript and blocks the formation of an antiterminator structure such that the formation of an overlapping intrinsic terminator causes termination in the 5' untranslated region (5' UTR). In the absence of bound TRAP, the antiterminator forms and transcription continues into the trp genes. RNA polymerase pauses at positions U107 and U144 in the 5' UTR. The general transcription elongation factors NusA and NusG stimulate pausing at both positions. NusG-stimulated pausing at U144 requires sequence-specific contacts with a T tract in the nontemplate DNA (ntDNA) strand within the paused transcription bubble. Pausing at U144 participates in a trpE translation repression mechanism. Since U107 just precedes the critical overlap between the antiterminator and terminator structures, pausing at this position is thought to participate in attenuation. Here we carried out in vitro pausing and termination experiments to identify components of the U107 pause signal and to determine whether pausing affects the termination efficiency in the 5' UTR. We determined that the U107 and U144 pause signals are organized in a modular fashion containing distinct RNA hairpin, U-tract, and T-tract components. NusA-stimulated pausing was affected by hairpin strength and the U-tract sequence, whereas NusG-stimulated pausing was affected by hairpin strength and the T-tract sequence. We also determined that pausing at U107 results in increased TRAP-dependent termination in the 5' UTR, implying that NusA- and NusG-stimulated pausing participates in the trp operon attenuation mechanism by providing additional time for TRAP binding. IMPORTANCE The expression of several bacterial operons is controlled by regulated termination in the 5' untranslated region (5' UTR). Transcription attenuation is defined as situations in which the binding of a regulatory

  17. A new crystal lattice structure of Helicobacter pylori neutrophil-activating protein (HP-NAP)

    International Nuclear Information System (INIS)

    Tsuruta, Osamu; Yokoyama, Hideshi; Fujii, Satoshi

    2012-01-01

    A new crystal lattice structure of H. pylori neutrophil-activating protein has been determined. Iron loading causes a series of conformational changes at the ferroxidase centre. A new crystal lattice structure of Helicobacter pylori neutrophil-activating protein (HP-NAP) has been determined in two forms: the native state (Apo) at 2.20 Å resolution and an iron-loaded form (Fe-load) at 2.50 Å resolution. The highly solvated packing of the dodecameric shell is suitable for crystallographic study of the metal ion-uptake pathway. Like other bacterioferritins, HP-NAP forms a spherical dodecamer with 23 symmetry including two kinds of channels. Iron loading causes a series of conformational changes of amino-acid residues (Trp26, Asp52 and Glu56) at the ferroxidase centre

  18. Structural mechanism underlying capsaicin binding and activation of TRPV1 ion channel

    Science.gov (United States)

    Cheng, Wei; Yang, Wei; Yu, Peilin; Song, Zhenzhen; Yarov-Yarovoy, Vladimir; Zheng, Jie

    2015-01-01

    Capsaicin bestows spiciness by activating TRPV1 channel with exquisite potency and selectivity. Capsaicin-bound channel structure was previously resolved by cryo-EM at 4.2-to-4.5 Å resolution, however important details required for mechanistic understandings are unavailable: capsaicin was registered as a small electron density, reflecting neither its chemical structure nor specific ligand-channel interactions. We obtained the missing atomic-level details by iterative computation, which were confirmed by systematic site-specific functional tests. We observed that the bound capsaicin takes “tail-up, head-down” configurations. The vanillyl and amide groups form specific interactions to anchor its bound position, while the aliphatic tail may sample a range of conformations, making it invisible in cryo-EM images. Capsaicin stabilizes the open state by “pull-and-contact” interactions between the vanillyl group and the S4-S5 linker. Our study provided a structural mechanism for the agonistic function of capsaicin and its analogs, and demonstrated an effective approach to obtain atomic level information from cryo-EM structures. PMID:26053297

  19. Monetary Channels in Brazil through the Lens of a Semi-Structural Model

    OpenAIRE

    André Minella; Nelson F. Souza-Sobrinho

    2009-01-01

    We develop and estimate a medium-size, semi-structural model for Brazil's economy during the inflation targeting period. The model captures key features of the economy, and allows us to investigate the transmission mechanisms of monetary policy. We decompose the monetary channels into household interest rate, firm interest rate, and exchange rate channels. We find that the household interest rate channel plays the most important role in explaining output dynamics after a monetary policy shock...

  20. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.; Wang, Zhenwei; Anjum, Dalaver H.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured

  1. A numerical study of the complex flow structure in a compound meandering channel

    Science.gov (United States)

    Moncho-Esteve, Ignacio J.; García-Villalba, Manuel; Muto, Yasu; Shiono, Koji; Palau-Salvador, Guillermo

    2018-06-01

    In this study, we report large eddy simulations of turbulent flow in a periodic compound meandering channel for three different depth conditions: one in-bank and two overbank conditions. The flow configuration corresponds to the experiments of Shiono and Muto (1998). The predicted mean streamwise velocities, mean secondary motions, velocity fluctuations, turbulent kinetic energy as well as mean flood flow angle to meandering channel are in good agreement with the experimental measurements. We have analyzed the flow structure as a function of the inundation level, with particular emphasis on the development of the secondary motions due to the interaction between the main channel and the floodplain flow. Bed shear stresses have been also estimated in the simulations. Floodplain flow has a significant impact on the flow structure leading to significantly different bed shear stress patterns within the main meandering channel. The implications of these results for natural compound meandering channels are also discussed.

  2. Wetting properties of hybrid structure with hydrophilic ridges and hydrophobic channels

    Science.gov (United States)

    Lee, Dong-Ki; Choi, Su Young; Park, Min Soo; Cho, Young Hak

    2018-02-01

    In the present study, we fabricated a hybrid structure where the upper surface of the ridge is hydrophilic and the inner surface of the channel is hydrophobic. Laser-induced backside wet etching (LIBWE) process was performed to machine the hybrid structure on a Pyrex glass substrate. Wetting properties were evaluated from static contact angles (CAs) measurement in parallel and orthogonal directions. The water droplet on the hybrid structure was in the Cassie-Baxter state and showed anisotropic wetting property along groove lines. Moisture condensation studies under humid condition indicated that water droplets grew and coalesced on the ridge with hydrophilicity. Furthermore, water-oil separation was tested using a microfluidic chip with the developed hybrid structure. In case of hybrid microfluidic chip, the water could not flow into channel but the hexadecane could flow due to the capillary pressure difference.

  3. Channel Control Structures for Souris River, Minot, North Dakota. Hydraulic Model Investigation.

    Science.gov (United States)

    1981-04-01

    in good agreement with other broad - and sharp - crested weirs . 19. Early testing of the typical type I structure indicated that the size of the riprap...III structure (Figure 4) will consist of a concrete weir with a crest lo- cated 10.0 ft above the channel bottom with a 1-ft-high end sill at the end...to the channel, was effective in preventing significant head differ- ential and damage to the strucLure with overbank flow conditions. The weir crest

  4. TRPV3, a thermosensitive channel is expressed in mouse distal colon epithelium

    International Nuclear Information System (INIS)

    Ueda, Takashi; Yamada, Takahiro; Ugawa, Shinya; Ishida, Yusuke; Shimada, Shoichi

    2009-01-01

    The thermo-transient receptor potential (thermoTRP) subfamily is composed of channels that are important in nociception and thermo-sensing. Here, we show a selective expression of TRPV3 channel in the distal colon throughout the gastrointestinal tract. Expression analyses clearly revealed that TRPV3 mRNA and proteins were expressed in the superficial epithelial cells of the distal colon, but not in those of the stomach, duodenum or proximal colon. In a subset of primary epithelial cells cultured from the distal colon, carvacrol, an agonist for TRPV3, elevated cytosolic Ca 2+ concentration in a concentration-dependent manner. This response was inhibited by ruthenium red, a TRPV channel antagonist. Organotypic culture supported that the carvacrol-responsive cells were present in superficial epithelial cells. Moreover, application of carvacrol evoked ATP release in primary colonic epithelial cells. We conclude that TRPV3 is present in absorptive cells in the distal colon and may be involved in a variety of cellular functions.

  5. Cryo-EM structures of the TMEM16A calcium-activated chloride channel.

    Science.gov (United States)

    Dang, Shangyu; Feng, Shengjie; Tien, Jason; Peters, Christian J; Bulkley, David; Lolicato, Marco; Zhao, Jianhua; Zuberbühler, Kathrin; Ye, Wenlei; Qi, Lijun; Chen, Tingxu; Craik, Charles S; Jan, Yuh Nung; Minor, Daniel L; Cheng, Yifan; Jan, Lily Yeh

    2017-12-21

    Calcium-activated chloride channels (CaCCs) encoded by TMEM16A control neuronal signalling, smooth muscle contraction, airway and exocrine gland secretion, and rhythmic movements of the gastrointestinal system. To understand how CaCCs mediate and control anion permeation to fulfil these physiological functions, knowledge of the mammalian TMEM16A structure and identification of its pore-lining residues are essential. TMEM16A forms a dimer with two pores. Previous CaCC structural analyses have relied on homology modelling of a homologue (nhTMEM16) from the fungus Nectria haematococca that functions primarily as a lipid scramblase, as well as subnanometre-resolution electron cryo-microscopy. Here we present de novo atomic structures of the transmembrane domains of mouse TMEM16A in nanodiscs and in lauryl maltose neopentyl glycol as determined by single-particle electron cryo-microscopy. These structures reveal the ion permeation pore and represent different functional states. The structure in lauryl maltose neopentyl glycol has one Ca 2+ ion resolved within each monomer with a constricted pore; this is likely to correspond to a closed state, because a CaCC with a single Ca 2+ occupancy requires membrane depolarization in order to open (C.J.P. et al., manuscript submitted). The structure in nanodiscs has two Ca 2+ ions per monomer and its pore is in a closed conformation; this probably reflects channel rundown, which is the gradual loss of channel activity that follows prolonged CaCC activation in 1 mM Ca 2+ . Our mutagenesis and electrophysiological studies, prompted by analyses of the structures, identified ten residues distributed along the pore that interact with permeant anions and affect anion selectivity, as well as seven pore-lining residues that cluster near pore constrictions and regulate channel gating. Together, these results clarify the basis of CaCC anion conduction.

  6. Influence of thymine starvation on UV mutability of Escherichia coli B/r Hcr/sup +/ thy/sup -/ trp/sup -/

    Energy Technology Data Exchange (ETDEWEB)

    Balgavy, P; Turek, R [Slovenska Akademia Vied, Bratislava (Czechoslovakia). Vyskumny Ustav Onkologicky

    1976-01-01

    Escherichia coli B/r Hcr/sup +/ thy/sup -/ trp/sup -/ cells were cultivated in a synthetic glucose medium supplemented with 2 ..mu..g/ml thymine and 14 ..mu..g/ml tryptophan until the beginning of the exponential growth phase. After filtration and washing the cells were thymine starved for different periods of time. During short-term starvation (about 40 minutes) the cells did not die and the frequency of Trp/sup +/ revertants as determined on the synthetic glucose medium supplemented with 2 ..mu..g/ml thymine and 0.75 ..mu..g/ml tryptophan solidified with agar did not increase. From the 45th min of starvation cells died exponentially and at the same time the fraction of Trp/sup +/ revertants in the population increased. During short-term starvation the sensitivity of cells to ultraviolet radiation become enhanced, at the same time one could see an increase of frequency of ''mutation-frequency-decline''-stable ultraviolet induced Trp/sup +/ revertants. Is is supposed that short-term thymine starvation affects the coordination of the rec/sup +/ and polAl/sup +/ systems participating in the uvr/sup +/ dependent DNA repair synthesis in favour of the rec/sup +/ system, incidentally starvation may affect the error-free postreplication repair in which the products of the uvr/sup +/ and rec/sup +/ genes participate.

  7. Protective effects of D-Trp6-luteinising hormone-releasing hormone microcapsules against cyclophosphamide-induced gonadotoxicity in female rats.

    Science.gov (United States)

    Bokser, L; Szende, B; Schally, A V

    1990-06-01

    The possible protective effect of an agonist of luteinising hormone-releasing hormone (LH-RH) against the ovarian damage caused by cyclophosphamide was investigated in rats. D-Trp6-LH-RH microcapsules were injected once a month for 3 months, in a dose calculated to release 25 micrograms day-1. Control animals received the injection vehicle. Sixty days after the first injection of microcapsules, cyclophosphamide was given at a loading dose of 50 mg kg-1 followed by 5 mg kg-1 day-1 for 30 days, while the treatment with D-Trp6-LH-RH was continued. When the ovaries were examined 3 months and 5 months after discontinuation of treatment, a significant reduction in the total number of follicles (P less than 0.01) was found in non-pretreated animals given cyclophosphamide. This reduction affected mainly follicles larger than 100 microns. An irreversible disintegration and destruction of granulosa cells was also observed in this group. In animals pretreated with D-Trp6-LH-RH, administration of cyclophosphamide caused no reduction in the number and diameter of follicles. Thus, the treatment with D-Trp6-LH-RH microcapsules before and during chemotherapy prevented the ovarian injury inflicted by cyclophosphamide. The suppression of gonadal function by LH-RH analogues could be possibly utilised for the protection of the ovaries against damage caused by cytotoxic drugs.

  8. Structure and inhibition of the SARS coronavirus envelope protein ion channel.

    Directory of Open Access Journals (Sweden)

    Konstantin Pervushin

    2009-07-01

    Full Text Available The envelope (E protein from coronaviruses is a small polypeptide that contains at least one alpha-helical transmembrane domain. Absence, or inactivation, of E protein results in attenuated viruses, due to alterations in either virion morphology or tropism. Apart from its morphogenetic properties, protein E has been reported to have membrane permeabilizing activity. Further, the drug hexamethylene amiloride (HMA, but not amiloride, inhibited in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication. We have previously shown for the coronavirus species responsible for severe acute respiratory syndrome (SARS-CoV that the transmembrane domain of E protein (ETM forms pentameric alpha-helical bundles that are likely responsible for the observed channel activity. Herein, using solution NMR in dodecylphosphatidylcholine micelles and energy minimization, we have obtained a model of this channel which features regular alpha-helices that form a pentameric left-handed parallel bundle. The drug HMA was found to bind inside the lumen of the channel, at both the C-terminal and the N-terminal openings, and, in contrast to amiloride, induced additional chemical shifts in ETM. Full length SARS-CoV E displayed channel activity when transiently expressed in human embryonic kidney 293 (HEK-293 cells in a whole-cell patch clamp set-up. This activity was significantly reduced by hexamethylene amiloride (HMA, but not by amiloride. The channel structure presented herein provides a possible rationale for inhibition, and a platform for future structure-based drug design of this potential pharmacological target.

  9. Channel characteristics and coordination in three-echelon dual-channel supply chain

    Science.gov (United States)

    Saha, Subrata

    2016-02-01

    We explore the impact of channel structure on the manufacturer, the distributer, the retailer and the entire supply chain by considering three different channel structures in radiance of with and without coordination. These structures include a traditional retail channel and two manufacturer direct channels with and without consistent pricing. By comparing the performance of the manufacturer, the distributer and the retailer, and the entire supply chain in three different supply chain structures, it is established analytically that, under some conditions, a dual channel can outperform a single retail channel; as a consequence, a coordination mechanism is developed that not only coordinates the dual channel but also outperforms the non-cooperative single retail channel. All the analytical results are further analysed through numerical examples.

  10. Meta-analyses of KIF6 Trp719Arg in coronary heart disease and statin therapeutic effect.

    Directory of Open Access Journals (Sweden)

    Ping Peng

    Full Text Available The goal of our study is to assess the contribution of KIF6 Trp719Arg to both the risk of CHD and the efficacy of statin therapy in CHD patients.Meta-analysis of 8 prospective studies among 77,400 Caucasians provides evidence that 719Arg increases the risk of CHD (P<0.001, HR = 1.27, 95% CI = 1.15-1.41. However, another meta-analysis of 7 case-control studies among 65,200 individuals fails to find a significant relationship between Trp719Arg and the risk of CHD (P = 0.642, OR = 1.02, 95% CI = 0.95-1.08. This suggests that the contribution of Trp719Arg to CHD varies in different ethnic groups. Additional meta-analysis also shows that statin therapy only benefit the vascular patients carry 719Arg allele (P<0.001, relative ratio (RR = 0.60, 95% CI = 0.54-0.67. To examine the role of this genetic variant in CHD risk in Han Chinese, we have conducted a case-control study with 289 CHD cases, 193 non-CHD controls, and 329 unrelated healthy volunteers as healthy controls. On post hoc analysis, significant allele frequency difference of 719Arg is observed between female CHD cases and female total controls under the dominant model (P = 0.04, χ(2 = 4.228, df = 1, odd ratio (OR = 1.979, 95% confidence interval (CI = 1.023-3.828. Similar trends are observed for post hoc analysis between female CHD cases and female healthy controls (dominant model: P = 0.04, χ(2 = 4.231, df = 1, OR = 2.015, 95% CI = 1.024-3.964. Non-genetic CHD risk factors are not controlled in these analyses.Our meta-analysis demonstrates the role of Trp719Arg of KIF6 gene in the risk of CHD in Caucasians. The meta-analysis also suggests the role of this variant in statin therapeutic response in vascular diseases. Our case-control study suggests that Trp719Arg of KIF6 gene is associated with CHD in female Han Chinese through a post hoc analysis.

  11. Análisis preliminar de la estructura primaria y secundaria del ARNtTrp en tortugas marinas

    Directory of Open Access Journals (Sweden)

    Harvey Infante-Rojas

    2015-06-01

    Full Text Available Actualmente existen siete especies de tortugas marinas, todas amenazadas o en riesgo inminente de extinción. Los estudios con ADN mitocondrial han permitido hacer acercamientos sobre filogenia, evolución, rutas migratorias y centros de dispersión, además para la identificación de polimorfismos y haplotipos, siendo base para planes de manejo y conservación. El presente estudio representa la primera descripción comparada de la estructura primaria y secundaria del ARNtTrp mitocondrial en tortugas marinas. Se realizó un alineamiento múltiple de 26 secuencias del gen que codifica para el ARNtTrp y se propuso la estructura secundaria utilizando el programa ARWEN. Se identificaron potenciales interacciones terciarias por homología comparada con el ARNtTrp de mamíferos. Los resultados mostraron una secuencia consenso de 76 bases con siete regiones conservadas que representan el 76 % de la molécula. Se identificaron polimorfismos que representan tres haplotipos para C. caretta, dos para C. mydas y uno para cada una de las demás especies. Las estructuras secundarias mostraron cambios nucleotídicos puntuales para cada especie y también mostraron que el tallo aceptor, el brazo TψC y el bucle anticodón son motivos conservados en el ARNtTrp de las tortugas marinas. Se encontró un enlace no canónico tipo A-A en el tallo DHU que podría considerarse característico de tortugas marinas. Además, se obtuvo una estructura secundaria consenso en donde se identificaron las siete regiones conservadas, seis posibles interacciones terciarias y el bucle DHU como región variable.

  12. Inhibition of pituitary-gonadal axis in mice by long-term administration of D-Trp-6-LHRH microcapsules.

    Science.gov (United States)

    Bokser, L; Zalatnai, A; Schally, A V

    1989-03-01

    Female mice were injected, every 30 days for 5 months, with a long-acting formulation of microcapsules liberating 2.5 micrograms D-Trp-6-LHRH/day. The control group was injected with vehicle only. At 30 days after the last injection mice were killed, ovaries, uteri and adrenals were weighed and fixed in formalin for histological studies. LH and oestradiol concentrations were measured by RIA. In the D-Trp-6-LHRH-treated group, the weights of the ovaries and uterus (P less than 0.01 and P less than 0.05, respectively), and LH and oestradiol values (P less than 0.02 and P less than 0.01, respectively) were reduced compared to controls. Histologically, the ovaries contained a large number of degenerated, atretic follicles, and corpora lutea had almost completely disappeared. These results indicate, contrary to the prevailing opinion, that mice are sensitive to inhibitory effects of LHRH agonists and that a suppression of the pituitary-gonadal axis can be obtained with long-term administration of D-Trp-6-LHRH microcapsules.

  13. D-TRP(8-γMSH Prevents the Effects of Endotoxin in Rat Skeletal Muscle Cells through TNFα/NF-KB Signalling Pathway.

    Directory of Open Access Journals (Sweden)

    Ana Belén Gómez-SanMiguel

    Full Text Available Sepsis induces anorexia and muscle wasting secondary to an increase in muscle proteolysis. Melanocyte stimulating hormones (MSH is a family of peptides that have potent anti-inflammatory effects. Melanocortin receptor-3 (MC3-R has been reported as the predominant anti-inflammatory receptor for melanocortins. The aim of this work was to analyse whether activation of MC3-R, by administration of its agonist D-Trp(8-γMSH, is able to modify the response of skeletal muscle to inflammation induced by lipopolysaccharide endotoxin (LPS or TNFα. Adult male rats were injected with 250 μg/kg LPS and/or 500 μg/kg D-Trp(8-γMSH 17:00 h and at 8:00 h the following day, and euthanized 4 hours afterwards. D-Trp(8-γMSH decreased LPS-induced anorexia and prevented the stimulatory effect of LPS on hypothalamic IL-1β, COX-2 and CRH as well as on serum ACTH and corticosterone. Serum IGF-I and its expression in liver and gastrocnemius were decreased in rats injected with LPS, but not in those that also received D-Trp(8-γMSH. However, D-Trp(8-γMSH was unable to modify the effect of LPS on IGFBP-3. In the gastrocnemius D-Trp(8-γMSH blocked LPS-induced decrease in pAkt, pmTOR, MHC I and MCH II, as well as the increase in pNF-κB(p65, FoxO1, FoxO3, LC3b, Bnip-3, Gabarap1, atrogin-1, MuRF1 and in LC3a/b lipidation. In L6 myotube cultures, D-Trp(8-γMSH was able to prevent TNFα-induced increase of NF-κB(p65 phosphorylation and decrease of Akt phosphorylation as well as of IGF-I and MHC I expression. These data suggest that MC3-R activation prevents the effect of endotoxin on skeletal wasting by modifying inflammation, corticosterone and IGF-I responses and also by directly acting on muscle cells through the TNFα/NF-κB(p65 pathway.

  14. Insight into DEG/ENaC channel gating from genetics and structure.

    Science.gov (United States)

    Eastwood, Amy L; Goodman, Miriam B

    2012-10-01

    The founding members of the superfamily of DEG/ENaC ion channel proteins are C. elegans proteins that form mechanosensitive channels in touch and pain receptors. For more than a decade, the research community has used mutagenesis to identify motifs that regulate gating. This review integrates insight derived from unbiased in vivo mutagenesis screens with recent crystal structures to develop new models for activation of mechanically gated DEGs.

  15. [Synopsis about the hypothesis of "information channel" of channel-collateral system].

    Science.gov (United States)

    Chang, Xi-Lang

    2008-10-01

    The author of the present paper founded a theorem about the "incompleteness of single channel structure" (nerve, blood vessel, lymphatic, interspace, aperture, etc.) through quantitative and qualitative analysis about the economic information channel in the human body, which eliminates the probability of single channel structure in the information channel of channel (meridian)-collateral system. After comprehensive analysis on the current researches, the author puts forward a neodoxy, i.e., the body "information channel" structure of the channel-collateral system, mainly follows the distribution regularity of systemic statistics, and is not a single specific entity; various layers of the information channel in the main stems of the channel-collaterals are composed of optimized structure tissues. Hence, the structure of this information channel of channel-collateral system is an overall-optimized, sequential and compatible systemic structure. From this neodoxy, the author brings forward a working principle of channel-collaterals, which is supported theoretically by bio-auxology. The longitudinal distribution of the main stems of meridian-collaterals is considered to result from that in the process of the animal evolution, in the animals moving forward, the microscopic complicated movement of intracorporeal information and energy molecules is related to the forward macroscopic and non-uniform movement of organism in trans-measure. Its impulse and kinetic momentum forms a main vector in the longitudinal direction of the body (the direction of the main stem of channel-collaterals). In order to adapt to and utilize natural regularities, the main stems of the channel-collaterals gradually differentiate and evolve in the living organism, forming a whole system. The "hypothesis of biological origin of channel-collateral system" and "that of information channel of the channel-collaterals in the body" constitute a relatively complete theoretical system framework.

  16. The structure of a conserved piezo channel domain reveals a topologically distinct β sandwich fold.

    Science.gov (United States)

    Kamajaya, Aron; Kaiser, Jens T; Lee, Jonas; Reid, Michelle; Rees, Douglas C

    2014-10-07

    Piezo has recently been identified as a family of eukaryotic mechanosensitive channels composed of subunits containing over 2,000 amino acids, without recognizable sequence similarity to other channels. Here, we present the crystal structure of a large, conserved extramembrane domain located just before the last predicted transmembrane helix of C. elegans PIEZO, which adopts a topologically distinct β sandwich fold. The structure was also determined of a point mutation located on a conserved surface at the position equivalent to the human PIEZO1 mutation found in dehydrated hereditary stomatocytosis patients (M2225R). While the point mutation does not change the overall domain structure, it does alter the surface electrostatic potential that may perturb interactions with a yet-to-be-identified ligand or protein. The lack of structural similarity between this domain and any previously characterized fold, including those of eukaryotic and bacterial channels, highlights the distinctive nature of the Piezo family of eukaryotic mechanosensitive channels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Spatial Diversity in Composition and Structure of Nekton in Ngenep Spring and its Channels, Karangploso - Malang

    Directory of Open Access Journals (Sweden)

    Lia Hapsari

    2014-04-01

    Full Text Available Water springs and its channel degradation due to anthropogenic pollution may alter the community structure of aquatic organisms. Water spring degradation tehrefore affect the quality of water as tourism resources. This study aims to investigate the changes in community structure of nekton  and determine the relationships between water quality characteristics to the diversity of nekton.  The field survey was set up in Ngenep spring and its channels. Results showed that nekton species found in Ngenep spring and its channels consists of 4 classes, 4 orders, 6 families, and 7 species with total 627 nekton samples. It is comprises of fishes, shrimp, frogs and waterstriders. Nekton diversity index (H’ in the spring and irrigation channel were in moderate level (1channel was low (0,67. Evenness values of nekton ranged 0,24 – 0,53, whereas dominancy index of nekton ranged 0,41 – 0,74. Evenness value in settlement channel was very low (0, 24 with high dominancy index (0, 74; it indicates that nekton species were spread not evenly in the channel, it dominated by fish Rasbora sp. (highest IVI, 184,95. There were spatial variations of  physico-chemical water qualitiy parameters in Ngenep springs and its channels (temperature, stream velocity, turbidity, conductivity, pH, DO, BOD and TOM which affected to nekton diversity and community structure. Clustering analyses and PCA result shows correlation pattern between nekton distribution with physico-chemical water quality parameters. However, physico-chemical water quality parameters in Ngenep springs and its channel were still optimum as nekton habitat (PP No. 82/ 2001. Keywords: Community structure, Nekton, Spatial diversity, Spring, Water channel

  18. Transcriptome analysis and RNA interference of cockroach phototransduction indicate three opsins and suggest a major role for TRPL channels

    Directory of Open Access Journals (Sweden)

    Andrew S French

    2015-07-01

    Full Text Available Our current understanding of insect phototransduction is based on a small number of species, but insects occupy many different visual environments. We created the retinal transcriptome of a nocturnal insect, the cockroach, Periplaneta americana to identify proteins involved in the earliest stages of compound eye phototransduction, and test the hypothesis that different visual environments are reflected in different molecular contributions to function. We assembled five novel mRNAs: two green opsins, one UV opsin, and one each TRP and TRPL ion channel homologs. One green opsin mRNA (pGO1 was 100-1000 times more abundant than the other opsins (pGO2 and pUVO, while pTRPL mRNA was 10 times more abundant than pTRP, estimated by transcriptome analysis or quantitative PCR (qPCR. Electroretinograms were used to record photoreceptor responses. Gene-specific in vivo RNA interference (RNAi was achieved by injecting long (596-708 bp double-stranded RNA into head hemolymph, and verified by qPCR. RNAi of the most abundant green opsin reduced both green opsins by more than 97% without affecting UV opsin, and gave a maximal reduction of 75% in ERG amplitude seven days after injection that persisted for at least 19 days. RNAi of pTRP and pTRPL genes each specifically reduced the corresponding mRNA by 90%. Electroretinogram reduction by pTRPL RNAi was slower than for opsin, reaching 75% attenuation by 21 days, without recovery at 29 days. pTRP RNAi attenuated ERG much less; only 30% after 21 days. Combined pTRP plus pTRPL RNAi gave only weak evidence of any cooperative interactions. We conclude that silencing retinal genes by in vivo RNAi using long dsRNA is effective, that visible light transduction in Periplaneta is dominated by pGO1, and that pTRPL plays a major role in cockroach phototransduction.

  19. Structure of conducting channel of lightning

    International Nuclear Information System (INIS)

    Alanakyan, Yu. R.

    2013-01-01

    The spatial distribution of the plasma density in a lightning channel is studied theoretically. It is shown that the electric-field double layer is formed at the channel boundary. In this case, the electron temperature changes abruptly and ions are accelerated by the electric field of the double layer. The ion momentum flux density is close to the surrounding gas pressure. Cleaning of the channel from heavy particles occurs in particle-exchange processes between the plasma channel and the surrounding air. Hydrogen ions are accumulated inside the expanding channel from the surrounding air, which is enriched by hydrogen-contained molecules. In this case, the plasma channel is unstable and splits to a chain of equidistant bunches of plasma. The hydrogen-enrich bunches burn diffusely after recombination exhibiting the bead lightning behavior

  20. Investigation of Short Channel Effect on Vertical Structures in Nanoscale MOSFET

    Directory of Open Access Journals (Sweden)

    Munawar A. Riyadi

    2009-12-01

    Full Text Available The recent development of MOSFET demands innovative approach to maintain the scaling into nanoscale dimension. This paper focuses on the physical nature of vertical MOSFET in nanoscale regime. Vertical structure is one of the promising devices in further scaling, with relaxed-lithography feature in the manufacture. The comparison of vertical and lateral MOSFET performance for nanoscale channel length (Lch is demonstrated with the help of numerical tools. The evaluation of short channel effect (SCE parameters, i.e. threshold voltage roll-off, subthreshold swing (SS, drain induced barrier lowering (DIBL and leakage current shows the considerable advantages as well as its thread-off in implementing the structure, in particular for nanoscale regime.

  1. Relationship between ADD1 Gly460Trp gene polymorphism and essential hypertension in Madeira Island.

    Science.gov (United States)

    Sousa, Ana Célia; Palma Dos Reis, Roberto; Pereira, Andreia; Borges, Sofia; Freitas, Ana Isabel; Guerra, Graça; Góis, Teresa; Rodrigues, Mariana; Henriques, Eva; Freitas, Sónia; Ornelas, Ilídio; Pereira, Décio; Brehm, António; Mendonça, Maria Isabel

    2017-10-01

    Essential hypertension (EH) is a complex disease in which physiological, environmental, and genetic factors are involved in its genesis. The genetic variant of the alpha-adducin gene (ADD1) has been described as a risk factor for EH, but with controversial results.The objective of this study was to evaluate the association of ADD1 (Gly460Trp) gene polymorphism with the EH risk in a population from Madeira Island.A case-control study with 1614 individuals of Caucasian origin was performed, including 817 individuals with EH and 797 controls. Cases and controls were matched for sex and age, by frequency-matching method. All participants collected blood for biochemical and genotypic analysis for the Gly460Trp polymorphism. We further investigated which variables were independently associated to EH, and, consequently, analyzed their interactions.In our study, we found a significant association between the ADD1 gene polymorphism and EH (odds ratio 2.484, P = .01). This association remained statistically significant after the multivariate analysis (odds ratio 2.548, P = .02).The ADD1 Gly460Trp gene polymorphism is significantly and independently associated with EH risk in our population. The knowledge of genetic polymorphisms associated with EH is of paramount importance because it leads to a better understanding of the etiology and pathophysiology of this pathology.

  2. Biochemical and structural analysis of the hyperpolarization-activated K(+) channel MVP.

    Science.gov (United States)

    Randich, Amelia M; Cuello, Luis G; Wanderling, Sherry S; Perozo, Eduardo

    2014-03-18

    In contrast to the majority of voltage-gated ion channels, hyperpolarization-activated channels remain closed at depolarizing potentials and are activated at hyperpolarizing potentials. The basis for this reverse polarity is thought to be a result of differences in the way the voltage-sensing domain (VSD) couples to the pore domain. In the absence of structural data, the molecular mechanism of this reverse polarity coupling remains poorly characterized. Here we report the characterization of the structure and local dynamics of the closed activation gate (lower S6 region) of MVP, a hyperpolarization-activated potassium channel from Methanococcus jannaschii, by electron paramagnetic resonance (EPR) spectroscopy. We show that a codon-optimized version of MVP has high expression levels in Escherichia coli, is purified as a stable tetramer, and exhibits expected voltage-dependent activity when reconstituted in liposomes. EPR analysis of the mid to lower S6 region revealed positions exhibiting strong spin-spin coupling, indicating that the activation gate of MVP is closed at 0 mV. A comparison of local environmental parameters along the activation gate for MVP and KcsA indicates that MVP adopts a different closed conformation. These structural details set the stage for future evaluations of reverse electromechanical coupling in MVP.

  3. Biochemical and Structural Analysis of the Hyperpolarization-Activated K+ Channel MVP

    Science.gov (United States)

    2015-01-01

    In contrast to the majority of voltage-gated ion channels, hyperpolarization-activated channels remain closed at depolarizing potentials and are activated at hyperpolarizing potentials. The basis for this reverse polarity is thought to be a result of differences in the way the voltage-sensing domain (VSD) couples to the pore domain. In the absence of structural data, the molecular mechanism of this reverse polarity coupling remains poorly characterized. Here we report the characterization of the structure and local dynamics of the closed activation gate (lower S6 region) of MVP, a hyperpolarization-activated potassium channel from Methanococcus jannaschii, by electron paramagnetic resonance (EPR) spectroscopy. We show that a codon-optimized version of MVP has high expression levels in Escherichia coli, is purified as a stable tetramer, and exhibits expected voltage-dependent activity when reconstituted in liposomes. EPR analysis of the mid to lower S6 region revealed positions exhibiting strong spin–spin coupling, indicating that the activation gate of MVP is closed at 0 mV. A comparison of local environmental parameters along the activation gate for MVP and KcsA indicates that MVP adopts a different closed conformation. These structural details set the stage for future evaluations of reverse electromechanical coupling in MVP. PMID:24490868

  4. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease.

    Science.gov (United States)

    Jentsch, Thomas J; Pusch, Michael

    2018-07-01

    CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl - channels, whereas ClC-3 through ClC-7 are 2Cl - /H + -exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl - channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.

  5. Manipulation of cells' position across a microfluidic channel using a series of continuously varying herringbone structures

    Science.gov (United States)

    Jung, Yugyung; Hyun, Ji-chul; Choi, Jongchan; Atajanov, Arslan; Yang, Sung

    2017-12-01

    Controlling cells' movement is an important technique in biological analysis that is performed within a microfluidic system. Many external forces are utilized for manipulation of cells, including their position in the channel. These forces can effectively control cells in a desired manner. Most of techniques used to manipulate cells require sophisticated set-ups and equipment to generate desired effect. The exception to this is the use of hydrodynamic force. In this study, a series of continuously varying herringbone structures is proposed for positioning cells in a microfluidic channel using hydrodynamic force. This structure was experimentally developed by changing parameters, such as the length of the herringbone's apex, the length of the herringbone's base and the ratio of the height of the flat channel to the height of the herringbone structure. Results of this study, have demonstrated that the length of the herringbone's apex and the ratio of the heights of the flat channel and the herringbone structure were crucial parameters influencing positioning of cells at 100 μl/h flow rate. The final design was fixed at 170 and 80 μm for the length of herringbone's apex and the length of herringbone's base, respectively. The average position of cells in this device was 34 μm away from the side wall in a 200 μm wide channel. Finally, to substantiate a practical application of the herringbone structure for positioning, cells were randomly introduced into a microfluidic device, containing an array of trapping structures together with a series of herringbone structures along the channel. The cells were moved toward the trapping structure by the herringbone structure and the trapping efficiency was increased. Therefore, it is anticipated that this device will be utilized to continuously control cells' position without application of external forces.

  6. Development of NUPREP PC Version and Input Structures for NUCIRC Single Channel Analyses

    International Nuclear Information System (INIS)

    Yoon, Churl; Jun, Ji Su; Park, Joo Hwan

    2007-12-01

    The input file for a steady-state thermal-hydraulic code NUCIRC consists of common channel input data and specific channel input data in a case of single channel analysis. Even when all the data is ready for the 380 channels' single channel analyses, it takes long time and requires enormous effort to compose an input file by hand-editing. The automatic pre-processor for this tedious job is a NUPREP code. In this study, a NUPREP PC version has been developed from the source list in the program manual of NUCIRC-MOD2.000 that is imported in a form of an execution file. In this procedure, some errors found in PC executions and lost statements are fixed accordingly. It is confirmed that the developed NUPREP code produces input file correctly for the CANDU-6 single channel analysis. Additionally, the NUCIRC input structure and data format are summarized for a single channel analysis and the input CARDs required for the creep information of aged channels are listed

  7. Towards a Structural View of Drug Binding to hERG K+ Channels.

    Science.gov (United States)

    Vandenberg, Jamie I; Perozo, Eduardo; Allen, Toby W

    2017-10-01

    The human ether-a-go-go-related gene (hERG) K + channel is of great medical and pharmaceutical relevance. Inherited mutations in hERG result in congenital long-QT syndrome which is associated with a markedly increased risk of cardiac arrhythmia and sudden death. hERG K + channels are also remarkably susceptible to block by a wide range of drugs, which in turn can cause drug-induced long-QT syndrome and an increased risk of sudden death. The recent determination of the near-atomic resolution structure of the hERG K + channel, using single-particle cryo-electron microscopy (cryo-EM), provides tremendous insights into how these channels work. It also suggests a way forward in our quest to understand why these channels are so promiscuous with respect to drug binding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Solution NMR structure of the V27A drug resistant mutant of influenza A M2 channel

    Energy Technology Data Exchange (ETDEWEB)

    Pielak, Rafal M. [Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 (United States); Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115 (United States); Chou, James J., E-mail: chou@cmcd.hms.harvard.edu [Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 (United States)

    2010-10-08

    Research highlights: {yields} This paper reports the structure of the V27A drug resistant mutant of the M2 channel of influenza A virus. {yields} High quality NMR data allowed a better-defined structure for the C-terminal region of the M2 channel. {yields} Using the structure, we propose a proton transfer pathway during M2 proton conduction. {yields} Structural comparison between the wildtype, V27A and S31N variants allowed an in-depth analysis of possible modes of drug resistance. {yields} Distinct feature of the V27A channel pore also provides an explanation for its faster rate of proton conduction. -- Abstract: The M2 protein of influenza A virus forms a proton-selective channel that is required for viral replication. It is the target of the anti-influenza drugs, amantadine and rimantadine. Widespread drug resistant mutants, however, has greatly compromised the effectiveness of these drugs. Here, we report the solution NMR structure of the highly pathogenic, drug resistant mutant V27A. The structure reveals subtle structural differences from wildtype that maybe linked to drug resistance. The V27A mutation significantly decreases hydrophobic packing between the N-terminal ends of the transmembrane helices, which explains the looser, more dynamic tetrameric assembly. The weakened channel assembly can resist drug binding either by destabilizing the rimantadine-binding pocket at Asp44, in the case of the allosteric inhibition model, or by reducing hydrophobic contacts with amantadine in the pore, in the case of the pore-blocking model. Moreover, the V27A structure shows a substantially increased channel opening at the N-terminal end, which may explain the faster proton conduction observed for this mutant. Furthermore, due to the high quality NMR data recorded for the V27A mutant, we were able to determine the structured region connecting the channel domain to the C-terminal amphipathic helices that was not determined in the wildtype structure. The new structural

  9. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation.

    Science.gov (United States)

    Minor, Daniel L; Findeisen, Felix

    2010-01-01

    Voltage-gated calcium channels (CaVs) are large, transmembrane multiprotein complexes that couple membrane depolarization to cellular calcium entry. These channels are central to cardiac action potential propagation, neurotransmitter and hormone release, muscle contraction, and calcium-dependent gene transcription. Over the past six years, the advent of high-resolution structural studies of CaV components from different isoforms and CaV modulators has begun to reveal the architecture that underlies the exceptionally rich feedback modulation that controls CaV action. These descriptions of CaV molecular anatomy have provided new, structure-based insights into the mechanisms by which particular channel elements affect voltage-dependent inactivation (VDI), calcium‑dependent inactivation (CDI), and calcium‑dependent facilitation (CDF). The initial successes have been achieved through structural studies of soluble channel domains and modulator proteins and have proven most powerful when paired with biochemical and functional studies that validate ideas inspired by the structures. Here, we review the progress in this growing area and highlight some key open challenges for future efforts.

  10. Impaired 8-Hydroxyguanine Repair Activity of MUTYH Variant p.Arg109Trp Found in a Japanese Patient with Early-Onset Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Kazuya Shinmura

    2014-01-01

    Full Text Available Purpose. The biallelic inactivation of the 8-hydroxyguanine repair gene MUTYH leads to MUTYH-associated polyposis (MAP, which is characterized by colorectal multiple polyps and carcinoma(s. However, only limited information regarding MAP in the Japanese population is presently available. Since early-onset colorectal cancer (CRC is a characteristic of MAP and might be caused by the inactivation of another 8-hydroxyguanine repair gene, OGG1, we investigated whether germline MUTYH and OGG1 mutations are involved in early-onset CRC in Japanese patients. Methods. Thirty-four Japanese patients with early-onset CRC were examined for germline MUTYH and OGG1 mutations using sequencing. Results. Biallelic pathogenic mutations were not found in any of the patients; however, a heterozygous p.Arg19*  MUTYH variant and a heterozygous p.Arg109Trp MUTYH variant were detected in one patient each. The p.Arg19* and p.Arg109Trp corresponded to p.Arg5* and p.Arg81Trp, respectively, in the type 2 nuclear-form protein. The defective DNA repair activity of p.Arg5* is apparent, while that of p.Arg81Trp has been demonstrated using DNA cleavage and supF forward mutation assays. Conclusion. These results suggest that biallelic MUTYH or OGG1 pathogenic mutations are rare in Japanese patients with early-onset CRC; however, the p.Arg19* and p.Arg109Trp MUTYH variants are associated with functional impairments.

  11. Study of the structure of the particles of channel black of phase-contrasting electron microscopy of high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Varlakov, V.P.; Fialkov, A.S.; Smirnov, B.N.

    1981-01-01

    The structure of channel black, DG-100, in the initial and graphitized states has been studied by phase-contrasting electron microscopy with a direct resolution of the carbon layers. An individual carbon layer is the main structural element of carbon black. The structure of channel black in the graphitized state looks like a hollow closed polyhedron made up of bundles of continuous carbon layers which can bend and become deformed to a great extent, testifying to the polymeric nature of the structure of channel black. The authors give an interpretation of the roentgen values of the 'dimensions of crystallites' in channel black.

  12. Structure resonances due to space charge in periodic focusing channels

    Science.gov (United States)

    Li, Chao; Jameson, R. A.

    2018-02-01

    The Vlasov-Poisson model is one of the most effective methods to study the space charge dominated beam evolution self-consistently in a periodic focusing channel. Since the approach to get the solution with this model is not trivial, previous studies are limited in degenerated conditions, either in smoothed channel (constant focusing) [I. Hofmann, Phys. Rev. E 57, 4713 (1998)] or in alternating gradient focusing channel with equal initial beam emittance condition in the degrees of freedom [I. Hofmann et al., Part. Accel. 13, 145 (1983); Chao Li et al., THOBA02, IPAC2016]. To establish a basis, we intentionally limit this article to the study of the pure transverse periodic focusing lattice with arbitrary initial beam condition, and the same lattice structure in both degrees of freedom, but with possibility of different focusing strengths. This will show the extension of the existing work. The full Hamiltonian is invoked for a pure transverse focusing lattice in various initial beam conditions, revealing different mode structure and additional modes beyond those of the degenerated cases. Application of the extended method to realistic lattices (including longitudinal accelerating elements) and further details will then reveal many new insights, and will be presented in later work.

  13. Intracellular long-chain acyl CoAs activate TRPV1 channels.

    Directory of Open Access Journals (Sweden)

    Yi Yu

    Full Text Available TRPV1 channels are an important class of membrane proteins that play an integral role in the regulation of intracellular cations such as calcium in many different tissue types. The anionic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2 is a known positive modulator of TRPV1 channels and the negatively charged phosphate groups interact with several basic amino acid residues in the proximal C-terminal TRP domain of the TRPV1 channel. We and other groups have shown that physiological sub-micromolar levels of long-chain acyl CoAs (LC-CoAs, another ubiquitous anionic lipid, can also act as positive modulators of ion channels and exchangers. Therefore, we investigated whether TRPV1 channel activity is similarly regulated by LC-CoAs. Our results show that LC-CoAs are potent activators of the TRPV1 channel and interact with the same PIP2-binding residues in TRPV1. In contrast to PIP2, LC-CoA modulation of TRPV1 is independent of Ca2+i, acting in an acyl side-chain saturation and chain-length dependent manner. Elevation of LC-CoAs in intact Jurkat T-cells leads to significant increases in agonist-induced Ca2+i levels. Our novel findings indicate that LC-CoAs represent a new fundamental mechanism for regulation of TRPV1 channel activity that may play a role in diverse cell types under physiological and pathophysiological conditions that alter fatty acid transport and metabolism such as obesity and diabetes.

  14. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels.

    Science.gov (United States)

    Shaya, David; Findeisen, Felix; Abderemane-Ali, Fayal; Arrigoni, Cristina; Wong, Stephanie; Nurva, Shailika Reddy; Loussouarn, Gildas; Minor, Daniel L

    2014-01-23

    Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail "neck", are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the "outer ion" site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies, shows that this site forms a previously unknown determinant of CaV high-affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily. © 2013. Published by Elsevier Ltd. All rights reserved.

  15. Structure of the Cyanuric Acid Hydrolase TrzD Reveals Product Exit Channel.

    Science.gov (United States)

    Bera, Asim K; Aukema, Kelly G; Elias, Mikael; Wackett, Lawrence P

    2017-03-27

    Cyanuric acid hydrolases are of industrial importance because of their use in aquatic recreational facilities to remove cyanuric acid, a stabilizer for the chlorine. Degradation of excess cyanuric acid is necessary to maintain chlorine disinfection in the waters. Cyanuric acid hydrolase opens the cyanuric acid ring hydrolytically and subsequent decarboxylation produces carbon dioxide and biuret. In the present study, we report the X-ray structure of TrzD, a cyanuric acid hydrolase from Acidovorax citrulli. The crystal structure at 2.19 Å resolution shows a large displacement of the catalytic lysine (Lys163) in domain 2 away from the active site core, whereas the two other active site lysines from the two other domains are not able to move. The lysine displacement is proposed here to open up a channel for product release. Consistent with that, the structure also showed two molecules of the co-product, carbon dioxide, one in the active site and another trapped in the proposed exit channel. Previous data indicated that the domain 2 lysine residue plays a role in activating an adjacent serine residue carrying out nucleophilic attack, opening the cyanuric acid ring, and the mobile lysine guides products through the exit channel.

  16. Synthesis and Pharmacology of α/β(3)-Peptides Based on the Melanocortin Agonist Ac-His-dPhe-Arg-Trp-NH2 Sequence.

    Science.gov (United States)

    Singh, Anamika; Tala, Srinivasa R; Flores, Viktor; Freeman, Katie; Haskell-Luevano, Carrie

    2015-05-14

    The melanocortin-3 and -4 receptors are expressed in the brain and play key roles in regulating feeding behavior, metabolism, and energy homeostasis. In the present study, incorporation of β(3)-amino acids into a melanocortin tetrapeptide template was investigated. Four linear α/β(3)-hybrid tetrapeptides were designed with the modifications at the Phe, Arg, and Trp residues in the agonist sequence Ac-His-dPhe-Arg-Trp-NH2. The most potent mouse melanocortin-4 receptor (mMC4R) agonist, Ac-His-dPhe-Arg-β(3)hTrp-NH2 (8) showed 35-fold selectivity versus the mMC3R. The study presented here has identified a new template with heterogeneous backbone for designing potent and selective melanocortin receptor ligands.

  17. Synthesis and Pharmacology of α/β3-Peptides Based on the Melanocortin Agonist Ac-His-dPhe-Arg-Trp-NH2 Sequence

    Science.gov (United States)

    2015-01-01

    The melanocortin-3 and -4 receptors are expressed in the brain and play key roles in regulating feeding behavior, metabolism, and energy homeostasis. In the present study, incorporation of β3-amino acids into a melanocortin tetrapeptide template was investigated. Four linear α/β3-hybrid tetrapeptides were designed with the modifications at the Phe, Arg, and Trp residues in the agonist sequence Ac-His-dPhe-Arg-Trp-NH2. The most potent mouse melanocortin-4 receptor (mMC4R) agonist, Ac-His-dPhe-Arg-β3hTrp-NH2 (8) showed 35-fold selectivity versus the mMC3R. The study presented here has identified a new template with heterogeneous backbone for designing potent and selective melanocortin receptor ligands. PMID:26005535

  18. ASIC and ENaC type sodium channels: conformational states and the structures of the ion selectivity filters.

    Science.gov (United States)

    Hanukoglu, Israel

    2017-02-01

    The acid-sensing ion channels (ASICs) and epithelial sodium channels (ENaC) are members of a superfamily of channels that play critical roles in mechanosensation, chemosensation, nociception, and regulation of blood volume and pressure. These channels look and function like a tripartite funnel that directs the flow of Na + ions into the cytoplasm via the channel pore in the membrane. The subunits that form these channels share a common structure with two transmembrane segments (TM1 and TM2) and a large extracellular part. In most vertebrates, there are five paralogous genes that code for ASICs (ASIC1-ASIC5), and four for ENaC subunits alpha, beta, gamma, and delta (α, β, γ, and δ). While ASICs can form functional channels as a homo- or heterotrimer, ENaC functions as an obligate heterotrimer composed of α-β-γ or β-γ-δ subunits. The structure of ASIC has been determined in several conformations, including desensitized and open states. This review presents a comparison of the structures of these states using easy-to-understand molecular models of the full complex, the central tunnel that includes an outer vestibule, the channel pore, and ion selectivity filter. The differences in the secondary, tertiary, and quaternary structures of the states are summarized to pinpoint the conformational changes responsible for channel opening. Results of site-directed mutagenesis studies of ENaC subunits are examined in light of ASIC1 models. Based on these comparisons, a molecular model for the selectivity filter of ENaC is built by in silico mutagenesis of an ASIC1 structure. These models suggest that Na + ions pass through the filter in a hydrated state. © 2016 Federation of European Biochemical Societies.

  19. Development of NUPREP PC Version and Input Structures for NUCIRC Single Channel Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Churl; Jun, Ji Su; Park, Joo Hwan

    2007-12-15

    The input file for a steady-state thermal-hydraulic code NUCIRC consists of common channel input data and specific channel input data in a case of single channel analysis. Even when all the data is ready for the 380 channels' single channel analyses, it takes long time and requires enormous effort to compose an input file by hand-editing. The automatic pre-processor for this tedious job is a NUPREP code. In this study, a NUPREP PC version has been developed from the source list in the program manual of NUCIRC-MOD2.000 that is imported in a form of an execution file. In this procedure, some errors found in PC executions and lost statements are fixed accordingly. It is confirmed that the developed NUPREP code produces input file correctly for the CANDU-6 single channel analysis. Additionally, the NUCIRC input structure and data format are summarized for a single channel analysis and the input CARDs required for the creep information of aged channels are listed.

  20. Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution.

    Science.gov (United States)

    Shen, Huaizong; Zhou, Qiang; Pan, Xiaojing; Li, Zhangqiang; Wu, Jianping; Yan, Nieng

    2017-03-03

    Voltage-gated sodium (Na v ) channels are responsible for the initiation and propagation of action potentials. They are associated with a variety of channelopathies and are targeted by multiple pharmaceutical drugs and natural toxins. Here, we report the cryogenic electron microscopy structure of a putative Na v channel from American cockroach (designated Na v PaS) at 3.8 angstrom resolution. The voltage-sensing domains (VSDs) of the four repeats exhibit distinct conformations. The entrance to the asymmetric selectivity filter vestibule is guarded by heavily glycosylated and disulfide bond-stabilized extracellular loops. On the cytoplasmic side, a conserved amino-terminal domain is placed below VSD I , and a carboxy-terminal domain binds to the III-IV linker. The structure of Na v PaS establishes an important foundation for understanding function and disease mechanism of Na v and related voltage-gated calcium channels. Copyright © 2017, American Association for the Advancement of Science.

  1. The tumor suppressor gene Trp53 protects the mouse lens against posterior subcapsular cataracts and the BMP receptor Acvr1 acts as a tumor suppressor in the lens

    Directory of Open Access Journals (Sweden)

    Luke A. Wiley

    2011-07-01

    We previously found that lenses lacking the Acvr1 gene, which encodes a bone morphogenetic protein (BMP receptor, had abnormal proliferation and cell death in epithelial and cortical fiber cells. We tested whether the tumor suppressor protein p53 (encoded by Trp53 affected this phenotype. Acvr1 conditional knockout (Acvr1CKO mouse fiber cells had increased numbers of nuclei that stained for p53 phosphorylated on serine 15, an indicator of p53 stabilization and activation. Deletion of Trp53 rescued the Acvr1CKO cell death phenotype in embryos and reduced Acvr1-dependent apoptosis in postnatal lenses. However, deletion of Trp53 alone increased the number of fiber cells that failed to withdraw from the cell cycle. Trp53CKO and Acvr1;Trp53DCKO (double conditional knockout, but not Acvr1CKO, lenses developed abnormal collections of cells at the posterior of the lens that resembled posterior subcapsular cataracts. Cells from human posterior subcapsular cataracts had morphological and molecular characteristics similar to the cells at the posterior of mouse lenses lacking Trp53. In Trp53CKO lenses, cells in the posterior plaques did not proliferate but, in Acvr1;Trp53DCKO lenses, many cells in the posterior plaques continued to proliferate, eventually forming vascularized tumor-like masses at the posterior of the lens. We conclude that p53 protects the lens against posterior subcapsular cataract formation by suppressing the proliferation of fiber cells and promoting the death of any fiber cells that enter the cell cycle. Acvr1 acts as a tumor suppressor in the lens. Enhancing p53 function in the lens could contribute to the prevention of steroid- and radiation-induced posterior subcapsular cataracts.

  2. The First Extracellular Linker Is Important for Several Aspects of the Gating Mechanism of Human TRPA1 Channel

    Czech Academy of Sciences Publication Activity Database

    Maršáková, Lenka; Barvík, I.; Zíma, V.; Zímová, Lucie; Vlachová, Viktorie

    2017-01-01

    Roč. 10, Jan 31 (2017), č. článku 16. ISSN 1662-5099 R&D Projects: GA ČR(CZ) GA15-15839S; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : TRP channel * S1-S2 linker * allyl isothiocynate * sensor module Subject RIV: FH - Neurology OBOR OECD: Neuroscience s (including psychophysiology Impact factor: 5.076, year: 2016

  3. KCNQ channels show conserved ethanol block and function in ethanol behaviour.

    Directory of Open Access Journals (Sweden)

    Sonia Cavaliere

    Full Text Available In humans, KCNQ2/3 channels form an M-current that regulates neuronal excitability, with mutations in these channels causing benign neonatal familial convulsions. The M-current is important in mechanisms of neural plasticity underlying associative memory and in the response to ethanol, with KCNQ controlling the release of dopamine after ethanol exposure. We show that dKCNQ is broadly expressed in the nervous system, with targeted reduction in neuronal KCNQ increasing neural excitability and KCNQ overexpression decreasing excitability and calcium signalling, consistent with KCNQ regulating the resting membrane potential and neural release as in mammalian neurons. We show that the single KCNQ channel in Drosophila (dKCNQ has similar electrophysiological properties to neuronal KCNQ2/3, including conserved acute sensitivity to ethanol block, with the fly channel (IC(50 = 19.8 mM being more sensitive than its mammalian ortholog (IC(50 = 42.1 mM. This suggests that the role of KCNQ in alcohol behaviour can be determined for the first time by using Drosophila. We present evidence that loss of KCNQ function in Drosophila increased sensitivity and tolerance to the sedative effects of ethanol. Acute activation of dopaminergic neurons by heat-activated TRP channel or KCNQ-RNAi expression produced ethanol hypersensitivity, suggesting that both act via a common mechanism involving membrane depolarisation and increased dopamine signalling leading to ethanol sedation.

  4. Functional validation of Ca2+-binding residues from the crystal structure of the BK ion channel.

    Science.gov (United States)

    Kshatri, Aravind S; Gonzalez-Hernandez, Alberto J; Giraldez, Teresa

    2018-04-01

    BK channels are dually regulated by voltage and Ca 2+ , providing a cellular mechanism to couple electrical and chemical signalling. Intracellular Ca 2+ concentration is sensed by a large cytoplasmic region in the channel known as "gating ring", which is formed by four tandems of regulator of conductance for K + (RCK1 and RCK2) domains. The recent crystal structure of the full-length BK channel from Aplysia californica has provided new information about the residues involved in Ca 2+ coordination at the high-affinity binding sites located in the RCK1 and RCK2 domains, as well as their cooperativity. Some of these residues have not been previously studied in the human BK channel. In this work we have investigated, through site directed mutagenesis and electrophysiology, the effects of these residues on channel activation by voltage and Ca 2+ . Our results demonstrate that the side chains of two non-conserved residues proposed to coordinate Ca 2+ in the A. californica structure (G523 and E591) have no apparent functional role in the human BK Ca 2+ sensing mechanism. Consistent with the crystal structure, our data indicate that in the human channel the conserved residue R514 participates in Ca 2+ coordination in the RCK1 binding site. Additionally, this study provides functional evidence indicating that R514 also interacts with residues E902 and Y904 connected to the Ca 2+ binding site in RCK2. Interestingly, it has been proposed that this interaction may constitute a structural correlate underlying the cooperative interactions between the two high-affinity Ca 2+ binding sites regulating the Ca 2+ dependent gating of the BK channel. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Can the Society for Assisted Reproductive Technology Clinic Outcome Reporting System (SART CORS) be used to accurately report clinic total reproductive potential (TRP)?

    Science.gov (United States)

    Stern, Judy E; Hickman, Timothy N; Kinzer, Donna; Penzias, Alan S; Ball, G David; Gibbons, William E

    2012-04-01

    To assess whether total reproductive potential (TRP), the chance of a live birth from each fresh cycle (fresh cycle plus frozen transfers), could be calculated from the national Society for Assisted Reproductive Technology Clinic Outcome Reporting System (SART CORS) database and whether information not available in SART CORS resulted in significant changes to the TRP calculation. Retrospective study using SART CORS and clinic data. Three assisted reproductive technology clinics. Women undergoing ART. None. Two- and three-year TRPs for 2005 and 2006 were calculated according to patient age at cycle start by linking fresh to frozen cycles up to first live birth. Clinic records were used to adjust for (remove) frozen cycles that used more than one fresh cycle as a source of embryos and for any embryos donated to other patients or research or shipped to another facility before a live birth. TRP was higher than fresh per-cycle rates for most ages at all clinics, although accuracy was compromised when there were fewer than 20 cycles per category. Two- and 3-year TRPs differed in only 2 of 24 calculations. Adjusted TRPs differed less than three percentage points from unadjusted TRPs when volume was sufficient. Clinic TRP can be calculated from SART CORS. Data suggest that calculations of clinic TRP from the national dataset would be meaningful. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Acupuncture Alleviates Colorectal Hypersensitivity and Correlates with the Regulatory Mechanism of TrpV1 and p-ERK

    Directory of Open Access Journals (Sweden)

    Shao-Jun Wang

    2012-01-01

    Full Text Available Here we used a mouse model of zymosan-induced colorectal hypersensitivity, a similar model of IBS in our previous work, to evaluate the effectiveness of the different number of times of acupuncture and elucidate its potential mechanism of EA treatment. Colorectal distension (CRD tests show that intracolonic zymosan injection does, while saline injection does not, induce a typical colorectal hypersensitivity. EA treatment at classical acupoints Zusanli (ST36 and Shangjuxu (ST37 in both hind limbs for 15 min slightly attenuated and significantly blunted the hypersensitive responses after first and fifth acupunctures, respectively, to colorectal distention in zymosan treatment mice, but not in saline treatment mice. Western blot results indicated that ion channel and TrpV1 expression in colorectum as well as ERK1/2 MAPK pathway activation in peripheral and central nerve system might be involved in this process. Hence, we conclude that EA is a potential therapeutic tool in the treatment and alleviation of chronic abdominal pain, and the effectiveness of acupuncture analgesia is accumulative with increased number of times of acupuncture when compared to that of a single time of acupuncture.

  7. Identification of a tetramerization domain in the C terminus of the vanilloid receptor.

    Science.gov (United States)

    García-Sanz, Nuria; Fernández-Carvajal, Asia; Morenilla-Palao, Cruz; Planells-Cases, Rosa; Fajardo-Sánchez, Emmanuel; Fernández-Ballester, Gregorio; Ferrer-Montiel, Antonio

    2004-06-09

    TRPV1 (transient receptor potential vanilloid receptor subtype 1) is a member of the TRP channel family gated by vanilloids, protons, and heat. Structurally, TRPV1 appears to be a tetramer formed by the assembly of four identical subunits around a central aqueous pore. The molecular determinants that govern its subunit oligomerization remain elusive. Here, we report the identification of a segment comprising 684Glu-721Arg (referred to as the TRP-like domain) in the C terminus of TRPV1 as an association domain (AD) of the protein. Purified recombinant C terminus of TRPV1 (TRPV1-C) formed discrete and stable multimers in vitro. Yeast two-hybrid and pull-down assays showed that self-association of the TRPV1-C is blocked when segment 684Glu-721Arg is deleted. Biochemical and immunological analysis indicate that removal of the AD from full-length TRPV1 monomers blocks the formation of stable heteromeric assemblies with wild-type TRPV1 subunits. Deletion of the AD in a poreless TRPV1 subunit suppressed its robust dominant-negative phenotype. Together, these findings are consistent with the tenet that the TRP-like domain in TRPV1 is a molecular determinant of the tetramerization of receptor subunits into functional channels. Our observations suggest that the homologous TRP domain in the TRP protein family may function as a general, evolutionary conserved AD involved in subunit multimerization.

  8. Transient receptor potential channels encode volatile chemicals sensed by rat trigeminal ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Matthias Lübbert

    Full Text Available Primary sensory afferents of the dorsal root and trigeminal ganglia constantly transmit sensory information depicting the individual's physical and chemical environment to higher brain regions. Beyond the typical trigeminal stimuli (e.g. irritants, environmental stimuli comprise a plethora of volatile chemicals with olfactory components (odorants. In spite of a complete loss of their sense of smell, anosmic patients may retain the ability to roughly discriminate between different volatile compounds. While the detailed mechanisms remain elusive, sensory structures belonging to the trigeminal system seem to be responsible for this phenomenon. In order to gain a better understanding of the mechanisms underlying the activation of the trigeminal system by volatile chemicals, we investigated odorant-induced membrane potential changes in cultured rat trigeminal neurons induced by the odorants vanillin, heliotropyl acetone, helional, and geraniol. We observed the dose-dependent depolarization of trigeminal neurons upon application of these substances occurring in a stimulus-specific manner and could show that distinct neuronal populations respond to different odorants. Using specific antagonists, we found evidence that TRPA1, TRPM8, and/or TRPV1 contribute to the activation. In order to further test this hypothesis, we used recombinantly expressed rat and human variants of these channels to investigate whether they are indeed activated by the odorants tested. We additionally found that the odorants dose-dependently inhibit two-pore potassium channels TASK1 and TASK3 heterologously expressed In Xenopus laevis oocytes. We suggest that the capability of various odorants to activate different TRP channels and to inhibit potassium channels causes neuronal depolarization and activation of distinct subpopulations of trigeminal sensory neurons, forming the basis for a specific representation of volatile chemicals in the trigeminal ganglia.

  9. Seeking Structural Specificity: Direct Modulation of Pentameric Ligand-Gated Ion Channels by Alcohols and General Anesthetics

    Science.gov (United States)

    Trudell, James R.; Harris, R. Adron

    2014-01-01

    Alcohols and other anesthetic agents dramatically alter neurologic function in a wide range of organisms, yet their molecular sites of action remain poorly characterized. Pentameric ligand-gated ion channels, long implicated in important direct effects of alcohol and anesthetic binding, have recently been illuminated in renewed detail thanks to the determination of atomic-resolution structures of several family members from lower organisms. These structures provide valuable models for understanding and developing anesthetic agents and for allosteric modulation in general. This review surveys progress in this field from function to structure and back again, outlining early evidence for relevant modulation of pentameric ligand-gated ion channels and the development of early structural models for ion channel function and modulation. We highlight insights and challenges provided by recent crystal structures and resulting simulations, as well as opportunities for translation of these newly detailed models back to behavior and therapy. PMID:24515646

  10. Toxic β-Amyloid (Aβ) Alzheimer's Ion Channels: From Structure to Function and Design

    Science.gov (United States)

    Nussinov, Ruth

    2012-02-01

    Full-length amyloid beta peptides (Aβ1-40/42) form neuritic amyloid plaques in Alzheimer's disease (AD) patients and are implicated in AD pathology. Recent biophysical and cell biological studies suggest a direct mechanism of amyloid beta toxicity -- ion channel mediated loss of calcium homeostasis. Truncated amyloid beta fragments (Aβ11-42 and Aβ17-42), commonly termed as non-amyloidogenic are also found in amyloid plaques of Alzheimer's disease (AD) and in the preamyloid lesions of Down's syndrome (DS), a model system for early onset AD study. Very little is known about the structure and activity of these smaller peptides although they could be key AD and DS pathological agents. Using complementary techniques of explicit solvent molecular dynamics (MD) simulations, atomic force microscopy (AFM), channel conductance measurements, cell calcium uptake assays, neurite degeneration and cell death assays, we have shown that non-amyloidogenic Aβ9-42 and Aβ17-42 peptides form ion channels with loosely attached subunits and elicit single channel conductances. The subunits appear mobile suggesting insertion of small oligomers, followed by dynamic channel assembly and dissociation. These channels allow calcium uptake in APP-deficient cells and cause neurite degeneration in human cortical neurons. Channel conductance, calcium uptake and neurite degeneration are selectively inhibited by zinc, a blocker of amyloid ion channel activity. Thus truncated Aβ fragments could account for undefined roles played by full length Aβs and provide a novel mechanism of AD and DS pathology. The emerging picture from our large-scale simulations is that toxic ion channels formed by β-sheets are highly polymorphic, and spontaneously break into loosely interacting dynamic units (though still maintaining ion channel structures as imaged with AFM), that associate and dissociate leading to toxic ion flux. This sharply contrasts intact conventional gated ion channels that consist of tightly

  11. In Touch With the Mechanosensitive Piezo Channels: Structure, Ion Permeation, and Mechanotransduction.

    Science.gov (United States)

    Geng, J; Zhao, Q; Zhang, T; Xiao, B

    2017-01-01

    Mechanotransduction, the conversion of mechanical forces into biological signals, plays critical roles in various physiological and pathophysiological processes in mammals, such as conscious sensing of touch, pain, and sound, as well as unconscious sensing of blood flow-associated shear stress, urine flow, and bladder distention. Among the various molecules involved in mechanotransduction, mechanosensitive (MS) cation channels have long been postulated to represent one critical class of mechanotransducers that directly and rapidly converts mechanical force into electrochemical signals. Despite the awareness of their functional significance, the molecular identities of MS cation channels in mammals had remained elusive for decades till the groundbreaking finding that the Piezo family of genes, including Piezo1 and Piezo2, constitutes their essential components. Since their identification about 6years ago, tremendous progress has been made in understanding their physiological and pathophysiological importance in mechanotransduction and their structure-function relationships of being the prototypic class of mammalian MS cation channels. On the one hand, Piezo proteins have been demonstrated to serve as physiologically and pathophysiologically important mechanotransducers for most, if not all, mechanotransduction processes. On the other hand, they have been shown to form a remarkable three-bladed, propeller-shaped homotrimeric channel complex comprising a separable ion-conducting pore module and mechanotransduction modules. In this chapter, we review the major advancements, with a particular focus on the structural and biophysical features that enable Piezo proteins to serve as sophisticated MS cation channels for force sensing, transduction, and ion conduction. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Design and studies of multiple mechanism of anti-Candida activity of a new potent Trp-rich peptide dendrimers.

    Science.gov (United States)

    Zielińska, Paulina; Staniszewska, Monika; Bondaryk, Małgorzata; Koronkiewicz, Mirosława; Urbańczyk-Lipkowska, Zofia

    2015-11-13

    Eight peptide dendrimers were designed as structural mimics of natural cationic amphiphilic peptides with antifungal activity and evaluated for their anti-Candida potential against the wild type strains and mutants. Dendrimer 14 containing four Trp residues and dodecyl tail and a slightly smaller dendrimer 9 decorated with four N-methylated Trp that displayed 100 and 99.7% of growth inhibition at 16 μg/mL respectively, were selected for evaluation against the Candida albicans mutants with disabled biosynthesis of aspartic proteases responsible for host tissue colonization and morphogenesis during biofilm formation (sessile model). Flow cytometry method was employed to detect apoptotic cells with membrane alterations (phosphatidylserine translocation), and differentiation of apoptotic from necrotic cells was also performed. Simultaneous staining of cell surface phosphatidylserine with Annexin-V-Fluorescein and necrotic cells with propidium iodide was conducted. 14 at 16 μg/mL caused C. albicans cells to undergo cellular apoptosis but its increasing concentrations induced necrosis. 14 influenced C. albicans biofilm viability as well as hyphal and cell wall morphology. Confocal microscopy and cell wall staining with calcofluor white revealed that in epithelial model the cell surface structure was perturbed at MIC of peptide dendrimer. It appears that tryptophan or 1-methyltryptophan groups displayed at the surface and positive charges hidden in the dendrimer tree along with hydrocarbon tail located at C-terminus are important for the anti-Candida activity since dendrimers containing tryptamine at C-terminus showed only a moderate activity. Our results suggest that membranolytic dendrimer 14, targeting cellular apoptotic pathway and impairing the cell wall formation in mature biofilm, may be a potential multifunctional antifungal lead compound for the control of C. albicans infections. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Conceptual design on structure and cooling channel of ITER upper port plug

    International Nuclear Information System (INIS)

    Pak, Sunil; Lee, Hyeon Gon; Jung, Ki Jung; Walker, C.; Kim, Doo Gi; Choi, Kwang Suk; Eo, Sang Gon

    2007-01-01

    This study has performed conceptual design on structure and cooling channel for the upper port plug of the International Thermonuclear Experimental Reactor (ITER), in which electron cyclotron heating (ECH) launcher and various diagnostic modules will be installed with the same structure. There are twelve diagnostic plugs and four ECH plugs at the upper port in ITER Tokamak. The use of the same port plug structure is beneficial for installation of diagnostic modules and ECH launcher from the viewpoint of cost reduction and simple RH maintenance. The diagnostic modules have rectangular cross-section and ECH modules have trapezoidal crosssection with the lower part wider. Here was suggested the bolt-jointed common structure of inverted-U shape beam and bottom plate, where the diagnostic and ECH modules are installed onto the bottom plate and then the assembly is bolted to the inverted-U beam from the bottom. The common structure of Inverted-U type was evaluated by considering several aspects, such as installation, remote handling (RH) maintenance, cooling line connection, manufacturing, and structural stiffness. For the inverted-U port plug structure developed here, this paper proposed a network of water channel for cooling and baking. Pressurized water as working fluid has to be supplied into the whole port plug. It consists of the structure, diagnostic/shielding modules fixed onto the bottom plate, and the blanket shield module (BSM) attached to the front. The internal water ways for these three components were designed in the direction that would not only minimize the RH connections, flow restrictors, and the length of water-vacuum welding, but also make the welding reliable. Independent coolant loops were composed for three parts of the structure, BSM, and diagnostic/shielding modules with bottom plate. These loops, therefore, make it possible to perform the leakage test for each one separately. Finally hydraulic analysis has been performed with ANSYS in order to

  14. Numerical study on the thermal and flow characteristics of periodically formed inner wavy structures in a cooling channel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Chul; Park, Sang Hu; Son, Chang Min; Min, June Kee; Ha, Man Yeong [Pusan National University, Busan (Korea, Republic of); Cho, Jong Rae [Korea Maritime University, Busan (Korea, Republic of)

    2015-09-15

    In industrial fields of machine and aerospace, cooling systems consisting of channels are widely used to increase energy efficiency and prevent system overheat. In cooling channels, a reduced pressure drop, an enhanced heat transfer, and a short channel length are considered key design requirements for optimizing the total volume and weight of a system. In this work, we improved heat transfer efficiency by using milli-scale wavy structures inside the channel. By optimizing the inner structures through computational fluid dynamics analysis and Taguchi method, the Nusselt number increased by approximately 11.7% with a similar pressure drop compared with that of a normal channel for a Reynolds number of 1000.

  15. Energy expenditure, body composition and insulin response to glucose in male twins discordant for the Trp64Arg polymorphism of the β3-adrenergic receptor gene

    DEFF Research Database (Denmark)

    Højlund, Kurt; Christiansen, Christian; Bjørnsbo, K.S.

    2006-01-01

    AIM: The tryptophan to arginine change in position 64 (Trp64Arg) polymorphism of the beta3-adrenergic receptor (beta3AR) gene has been associated with an increased prevalence of obesity, insulin resistance and type 2 diabetes. In this, decreased rates of energy expenditure and impaired insulin...... and environmental background, the Trp64Arg polymorphism of the beta3AR gene is associated with lower fat mass, fasting insulin levels and an appropriate insulin response to glucose. Thus, heterozygosity for the Trp64Arg variant is unlikely to increase the risk of obesity, insulin resistance or type 2 diabetes....

  16. TRPA1 channels in Drosophila and honey bee ectoparasitic mites share heat sensitivity and temperature-related physiological functions

    Directory of Open Access Journals (Sweden)

    Guangda Peng

    2016-10-01

    Full Text Available The transient receptor potential cation channel, subfamily A, member 1 (TRPA1 is conserved between many arthropods, and in some has been shown to function as a chemosensor for noxious compounds. Activation of arthropod TRPA1 channels by temperature fluctuations has been tested in only a few insect species, and all of them were shown to be activated by heat. The recent identification of chemosensitive TRPA1 channels from two honey bee ectoparasitic mite species (VdTRPA1 and TmTRPA1 have provided an opportunity to study the temperature-dependent activation and the temperature-associated physiological functions of TRPA1 channels in non-insect arthropods. We found that both mite TRPA1 channels are heat sensitive and capable of rescuing the temperature-related behavioral defects of a Drosophila melanogaster trpA1 mutant. These results suggest that heat-sensitivity of TRPA1 could be conserved between many arthropods despite its amino acid sequence diversity. Nevertheless, the ankyrin repeats (ARs 6 and 7 are well-conserved between six heat-sensitive arthropod TRPA1 channels and have critical roles for the heat activation of VdTRPA1.

  17. Structural inferences for the native skeletal muscle sodium channel as derived from patterns of endogenous proteolysis

    International Nuclear Information System (INIS)

    Kraner, S.; Yang, J.; Barchi, R.

    1989-01-01

    The alpha subunit (Mr approximately 260,000) of the rat skeletal muscle sodium channel is sensitive to cleavage by endogenous proteases during the isolation of muscle surface membrane. Antisera against synthetic oligopeptides were used to map the resultant fragments in order to identify protease-sensitive regions of the channel's structure in its native membrane environment. Antibodies to the amino terminus labeled major fragments of Mr approximately 130,000 and 90,000 and lesser amounts of other peptides as small as Mr approximately 12,000. Antisera to epitopes within the carboxyl-terminal half of the primary sequence recognized two fragments of Mr approximately 110,000 and 78,000. Individual antisera also selectively labeled smaller polypeptides in the most extensively cleaved preparations. The immunoreactivity patterns of monoclonal antibodies previously raised against the purified channel were then surveyed. The binding sites for one group of monoclonals, including several that recognize subtype-specific epitopes in the channel structure, were localized within a 12-kDa fragment near the amino terminus. The distribution of carbohydrate along the primary structure of the channel was also assessed by quantitating 125 I-wheat germ agglutinin and 125I-concanavalin A binding to the proteolytic peptides. Most of the carbohydrate detected by these lectins was located between 22 and 90 kDa from the amino terminus of the protein. No lectin binding was detected to fragments arising from carboxyl-terminal half of the protein. These results were analyzed in terms of current models of sodium channel tertiary structure. In its normal membrane environment, the skeletal muscle sodium channel appears sensitive to cleavage by endogenous proteases in regions predicted to link the four repeat domains on the cytoplasmic side of the membrane while the repeat domains themselves are resistant to proteolysis

  18. Burst pressure of phaseguide structures of different heights in all-polymer microfluidic channels

    DEFF Research Database (Denmark)

    Garbarino, Francesca; Kistrup, Kasper; Rizzi, Giovanni

    2017-01-01

    We present an experimental investigation of the burst/overflow pressure of water and a representative surfactant-containing buffer in microfluidic channels with phaseguide structures oriented at an angle of 90° to the channel length as a function of their height, . The all-polymer chips were...... structures were found able to pin both liquids and the burst pressure was found to increase approximately linearly with the height of the phaseguide from about 100–350 Pa for water and from about 25–200 Pa for the buffer. The burst pressure was found not to depend on the channel width and it was only weakly...... influenced by the presence of a branch on the phaseguide. For phaseguides with a branch, the liquid was always found to burst at the branch location. The measured burst pressures were compared to those estimated using a simple theory. The knowledge obtained in this study enables simple tuning of liquid...

  19. Essential Oils and Their Constituents Targeting the GABAergic System and Sodium Channels as Treatment of Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Ze-Jun Wang

    2018-05-01

    Full Text Available Essential oils and the constituents in them exhibit different pharmacological activities, such as antinociceptive, anxiolytic-like, and anticonvulsant effects. They are widely applied as a complementary therapy for people with anxiety, insomnia, convulsion, pain, and cognitive deficit symptoms through inhalation, oral administration, and aromatherapy. Recent studies show that essential oils are emerging as a promising source for modulation of the GABAergic system and sodium ion channels. This review summarizes the recent findings regarding the pharmacological properties of essential oils and compounds from the oils and the mechanisms underlying their effects. Specifically, the review focuses on the essential oils and their constituents targeting the GABAergic system and sodium channels, and their antinociceptive, anxiolytic, and anticonvulsant properties. Some constituents target transient receptor potential (TRP channels to exert analgesic effects. Some components could interact with multiple therapeutic target proteins, for example, inhibit the function of sodium channels and, at the same time, activate GABAA receptors. The review concentrates on perspective compounds that could be better candidates for new drug development in the control of pain and anxiety syndromes.

  20. Involvement of Atm and Trp53 in neural cell loss due to Terf2 inactivation during mouse brain development.

    Science.gov (United States)

    Kim, Jusik; Choi, Inseo; Lee, Youngsoo

    2017-11-01

    Maintenance of genomic integrity is one of the critical features for proper neurodevelopment and inhibition of neurological diseases. The signals from both ATM and ATR to TP53 are well-known mechanisms to remove neural cells with DNA damage during neurogenesis. Here we examined the involvement of Atm and Atr in genomic instability due to Terf2 inactivation during mouse brain development. Selective inactivation of Terf2 in neural progenitors induced apoptosis, resulting in a complete loss of the brain structure. This neural loss was rescued partially in both Atm and Trp53 deficiency, but not in an Atr-deficient background in the mouse. Atm inactivation resulted in incomplete brain structures, whereas p53 deficiency led to the formation of multinucleated giant neural cells and the disruption of the brain structure. These giant neural cells disappeared in Lig4 deficiency. These data demonstrate ATM and TP53 are important for the maintenance of telomere homeostasis and the surveillance of telomere dysfunction during neurogenesis.

  1. Putative Structural and Functional Coupling of the Mitochondrial BKCa Channel to the Respiratory Chain.

    Directory of Open Access Journals (Sweden)

    Piotr Bednarczyk

    Full Text Available Potassium channels have been found in the inner mitochondrial membranes of various cells. These channels regulate the mitochondrial membrane potential, the matrix volume and respiration. The activation of these channels is cytoprotective. In our study, the single-channel activity of a large-conductance Ca(2+-regulated potassium channel (mitoBKCa channel was measured by patch-clamping mitoplasts isolated from the human astrocytoma (glioblastoma U-87 MG cell line. A potassium-selective current was recorded with a mean conductance of 290 pS in symmetrical 150 mM KCl solution. The channel was activated by Ca(2+ at micromolar concentrations and by the potassium channel opener NS1619. The channel was inhibited by paxilline and iberiotoxin, known inhibitors of BKCa channels. Western blot analysis, immuno-gold electron microscopy, high-resolution immunofluorescence assays and polymerase chain reaction demonstrated the presence of the BKCa channel β4 subunit in the inner mitochondrial membrane of the human astrocytoma cells. We showed that substrates of the respiratory chain, such as NADH, succinate, and glutamate/malate, decrease the activity of the channel at positive voltages. This effect was abolished by rotenone, antimycin and cyanide, inhibitors of the respiratory chain. The putative interaction of the β4 subunit of mitoBKCa with cytochrome c oxidase was demonstrated using blue native electrophoresis. Our findings indicate possible structural and functional coupling of the mitoBKCa channel with the mitochondrial respiratory chain in human astrocytoma U-87 MG cells.

  2. Structural basis of dual Ca2+/pH regulation of the endolysosomal TRPML1 channel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minghui; Zhang, Wei K.; Benvin, Nicole M.; Zhou, Xiaoyuan; Su, Deyuan; Li, Huan; Wang, Shu; Michailidis, Ioannis E.; Tong, Liang; Li, Xueming; Yang, Jian

    2017-01-23

    The activities of organellar ion channels are often regulated by Ca2+ and H+, which are present in high concentrations in many organelles. Here we report a structural element critical for dual Ca2+/pH regulation of TRPML1, a Ca2+-release channel crucial for endolysosomal function. TRPML1 mutations cause mucolipidosis type IV (MLIV), a severe lysosomal storage disorder characterized by neurodegeneration, mental retardation and blindness. We obtained crystal structures of the 213-residue luminal domain of human TRPML1 containing three missense MLIV-causing mutations. This domain forms a tetramer with a highly electronegative central pore formed by a novel luminal pore loop. Cysteine cross-linking and cryo-EM analyses confirmed that this architecture occurs in the full-length channel. Structure–function studies demonstrated that Ca2+ and H+ interact with the luminal pore and exert physiologically important regulation. The MLIV-causing mutations disrupt the luminal-domain structure and cause TRPML1 mislocalization. Our study reveals the structural underpinnings of TRPML1's regulation, assembly and pathogenesis.

  3. Visualization experimental investigation on long stripe coherent structure in small-scale rectangular channel

    International Nuclear Information System (INIS)

    Su Jiqiang; Sun Zhongning; Fan Guangming; Wang Shiming

    2013-01-01

    The long stripe coherent structure of the turbulent boundary layer in a small- scale vertical rectangular channel was observed by using hydrogen bubble flow trace visualization technique. The statistical properties of the long stripe in the experimental channel boundary layer were compared with that in the smooth flat plate boundary layer. The pitch characteristics were explained by the formation mechanism of the long stripe. It was analyzed that how the change of y + affected the distribution of the long stripe. In addition, the frequency characteristics of the long stripe were also investigated, and the correlation of the long stripe frequency in such a flow channel was obtained. (authors)

  4. Contribution of the putative inner-pore region to the gating of the Transient Receptor Potential Vanilloid Subtype 1 Channel (TRPV1)

    Czech Academy of Sciences Publication Activity Database

    Sušánková, Klára; Ettrich, Rüdiger; Vyklický st., Ladislav; Teisinger, Jan; Vlachová, Viktorie

    2007-01-01

    Roč. 27, č. 28 (2007), s. 7578-7585 ISSN 0270-6474 R&D Projects: GA ČR(CZ) GA305/06/0319; GA ČR(CZ) GA303/07/0915; GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554; GA MŠk LC06010 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z60870520 Keywords : capsaicin * vanilloid receptor * TRP channels Subject RIV: ED - Physiology Impact factor: 7.490, year: 2007

  5. Coupled channels description of the α-decay fine structure

    Science.gov (United States)

    Delion, D. S.; Ren, Zhongzhou; Dumitrescu, A.; Ni, Dongdong

    2018-05-01

    We review the coupled channels approach of α transitions to excited states. The α-decaying states are identified as narrow outgoing Gamow resonances in an α-daughter potential. The real part of the eigenvalue corresponds to the Q-value, while the imaginary part determines the half of the total α-decay width. We first review the calculations describing transitions to rotational states treated by the rigid rotator model, in even–even, odd-mass and odd–odd nuclei. It is found that the semiclassical method overestimates the branching ratios to excited 4+ for some even–even α-emitters and fails in explaining the unexpected inversion of branching ratios of some odd-mass nuclei, while the coupled-channels results show good agreement with the experimental data. Then, we review the coupled channels method for α-transitions to 2+ vibrational and transitional states. We present the results of the Coherent State Model that describes in a unified way the spectra of vibrational, transitional and rotational nuclei. We evidence general features of the α-decay fine structure, namely the linear dependence between α-intensities and excitation energy, the linear correlation between the strength of the α-core interaction and spectroscopic factor, and the inverse correlation between the nuclear collectivity, given by electromagnetic transitions, and α-clustering.

  6. Fast Atomic Charge Calculation for Implementation into a Polarizable Force Field and Application to an Ion Channel Protein

    Directory of Open Access Journals (Sweden)

    Raiker Witter

    2015-01-01

    Full Text Available Polarization of atoms plays a substantial role in molecular interactions. Class I and II force fields mostly calculate with fixed atomic charges which can cause inadequate descriptions for highly charged molecules, for example, ion channels or metalloproteins. Changes in charge distributions can be included into molecular mechanics calculations by various methods. Here, we present a very fast computational quantum mechanical method, the Bond Polarization Theory (BPT. Atomic charges are obtained via a charge calculation method that depend on the 3D structure of the system in a similar way as atomic charges of ab initio calculations. Different methods of population analysis and charge calculation methods and their dependence on the basis set were investigated. A refined parameterization yielded excellent correlation of R=0.9967. The method was implemented in the force field COSMOS-NMR and applied to the histidine-tryptophan-complex of the transmembrane domain of the M2 protein channel of influenza A virus. Our calculations show that moderate changes of side chain torsion angle χ1 and small variations of χ2 of Trp-41 are necessary to switch from the inactivated into the activated state; and a rough two-side jump model of His-37 is supported for proton gating in accordance with a flipping mechanism.

  7. Structural Responses of a Stream Community to a Channel Relocation Using a Natural Channel Design Approach

    Science.gov (United States)

    Jack, J.; Word, D.; Daniel, W.; Pritchard, S.; Parola, A.; Vesely, B.

    2005-05-01

    Streams have been heavily impacted by historical and contemporary management practices. Restorations are seen as a way to enhance stream ecosystem integrity, but there are few restoration sites where pre- and post-restoration data are available to assess "success." In 2003, a channelized reach of Wilson Creek (Kentucky, USA) was relocated using a natural channel design approach. We compared the structural and functional responses of the stream pre- and post restoration/relocation at sites within Wilson and two reference streams. Despite the construction disturbance, water chemistry parameters such as nitrate and turbidity were nearly identical at sampling stations above and below the relocation for 2003-2004. Macroinvertebrate colonization of the relocation sites was rapid, with communities dominated by Cheumatopsyche, Perlesta and Baetis. Assessments of CPOM transport indicated that the new stream channel is more retentive of leaf and woody debris material than the pre-restoration Wilson sites or unrestored reference stream sites. The restoration of suitable habitat and the presence of "source populations" for colonization may compensate for even large-scale (but short-term) construction disturbance. More research is needed to assess the balance between the disturbance impacts of restoration installation and the long term benefits of stream ecological improvement.

  8. Indium–gallium–zinc oxide thin film transistors with a hybrid-channel structure for defect suppression and mobility improvement

    International Nuclear Information System (INIS)

    Lin, Huang-Kai; Su, Liang-Yu; Hung, Chia-Chin; Huang, JianJang

    2013-01-01

    In this work, we explore an indium gallium zinc oxide (IGZO) thin film transistor structure with a vacuum annealed IGZO thin film inserted between the dielectric and typical channel layers. The device demonstrates a better subthreshold swing and field-effect mobility due to the suppression of defects in the channel and the channel/dielectric interface. The hybrid channel structure also exhibits the flexibility of adjusting the threshold voltage. The superior carrier mobility was then verified from the transient response of the inverter circuit constructed by the devices. - Highlights: • Additional in-situ annealed In–Ga–ZnO film was inserted in thin film transistor (TFT). • Traps are suppressed and field effect mobility is improved in the TFT. • An inverter with the device structure has a better transient response

  9. Indium–gallium–zinc oxide thin film transistors with a hybrid-channel structure for defect suppression and mobility improvement

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Huang-Kai; Su, Liang-Yu; Hung, Chia-Chin [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Huang, JianJang, E-mail: jjhuang@cc.ee.ntu.edu.tw [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Department of Electrical Engineering, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China)

    2013-07-01

    In this work, we explore an indium gallium zinc oxide (IGZO) thin film transistor structure with a vacuum annealed IGZO thin film inserted between the dielectric and typical channel layers. The device demonstrates a better subthreshold swing and field-effect mobility due to the suppression of defects in the channel and the channel/dielectric interface. The hybrid channel structure also exhibits the flexibility of adjusting the threshold voltage. The superior carrier mobility was then verified from the transient response of the inverter circuit constructed by the devices. - Highlights: • Additional in-situ annealed In–Ga–ZnO film was inserted in thin film transistor (TFT). • Traps are suppressed and field effect mobility is improved in the TFT. • An inverter with the device structure has a better transient response.

  10. Structural, functional and evolutionary study of in silico three dimensional model of pneumolysin

    International Nuclear Information System (INIS)

    Lutfullah, G.; Taj, S.; Bashir, K.; Khattak, S.U.

    2017-01-01

    Streptococcus pneumoniae, a gram-positive cocci shaped bacteria, is the major human pathogen, causing diseases like septic meningitis, otitis media, sinusitis, pneumonia and septicemia. The objective of present study is to gain more knowledge about the function of important domain of the toxin pneumolysin. This study aims to analyze the structural and functional features of pneumolysin and to investigate the residues involved in its pathogenicity.The major virulence factor of this bacterium is a protein, pneumolysin, which is the member of thiol-activated cytolysins. From the three dimensional homology model of the present study, it was found that pneumolysin has four domains, out of which domain 4 is of great importance. It was observed that Cys 428 and Trp 433 of pneumolysin are of great importance and any mutation in this region highly reduces its cytotoxicity. Cys 428 forms hydrophobic contact with Ala 373 and Trp 436 of the conserved region, while Trp 433 is bonded with Trp 436 and Arg 426 through hydrogen interactions .The particular cysteine residue is present at position 428 and is also sandwiched between beta-sheet and Trp 436. In pneumolysin, the undecapeptide or the Trp-rich loop spans the region (amino acid 427 to 437) and several single amino acid substitutions within this region reduce the cytolytic activity of pneumolysin by up to 99.9% as reported previously. The primary structure of pneumolysin has a total eight tryptophan residues and one cysteine. The undecapeptide region has three tryptophan and one cysteine residue containing 11 amino acid sequence i.e ECTGLAWEWWR. Cysteine 428 of pneumolysin present in trp-rich motif is responsible to act on cholestrol. Pairwise alignment reveals that pneumolysin do not have the N-terminus signal peptide sequence which is present in the template i.e. perfringolysin. This shows that pneumolysin is an intracellular protein and released only upon cell lysis. (author)

  11. ZnO-channel thin-film transistors: Channel mobility

    International Nuclear Information System (INIS)

    Hoffman, R.L.

    2004-01-01

    ZnO-channel thin-film transistor (TFT) test structures are fabricated using a bottom-gate structure on thermally oxidized Si; ZnO is deposited via RF sputtering from an oxide target, with an unheated substrate. Electrical characteristics are evaluated, with particular attention given to the extraction and interpretation of transistor channel mobility. ZnO-channel TFT mobility exhibits severe deviation from that assumed by ideal TFT models; mobility extraction methodology must accordingly be recast so as to provide useful insight into device operation. Two mobility metrics, μ avg and μ inc , are developed and proposed as relevant tools in the characterization of nonideal TFTs. These mobility metrics are employed to characterize the ZnO-channel TFTs reported herein; values for μ inc as high as 25 cm2/V s are measured, comprising a substantial increase in ZnO-channel TFT mobility as compared to previously reported performance for such devices

  12. Single-channel kinetics of BK (Slo1 channels

    Directory of Open Access Journals (Sweden)

    Yanyan eGeng

    2015-01-01

    Full Text Available Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1 channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD attached to four surrounding transmembrane voltage sensing domains (VSD and a large intracellular cytosolic domain (CTD, also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with 5 closed states on the upper tier and 5 open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states.

  13. Evolutionary and Structural Perspectives of Plant Cyclic Nucleotide Gated Cation Channels

    Directory of Open Access Journals (Sweden)

    Alice Kira Zelman

    2012-05-01

    Full Text Available Ligand-gated cation channels are a frequent component of signaling cascades in eukaryotes. Eukaryotes contain numerous diverse gene families encoding ion channels, some of which are shared and some of which are unique to particular kingdoms. Among the many different types are cyclic nucleotide-gated channels (CNGCs. CNGCs are cation channels with varying degrees of ion conduction selectivity. They are implicated in numerous signaling pathways and permit diffusion of divalent and monovalent cations, including Ca2+ and K+. CNGCs are present in both plant and animal cells, typically in the plasma membrane; recent studies have also documented their presence in prokaryotes. All eukaryote CNGC polypeptides have a cyclic nucleotide binding domain (CNBD and a calmodulin binding domain (CaMBD as well as a 6 transmembrane/1 pore tertiary structure. This review summarizes existing knowledge about the functional domains present in these cation-conducting channels, and considers the evidence indicating that plant and animal CNGCs evolved separately. Additionally, an amino acid motif that is only found in the phosphate binding cassette and hinge regions of plant CNGCs, and is present in all experimentally confirmed CNGCs but no other channels was identified. This CNGC-specific amino acid motif provides an additional diagnostic tool to identify plant CNGCs, and can increase confidence in the annotation of open reading frames in newly sequenced genomes as putative CNGCs. Conversely, the absence of the motif in some plant sequences currently identified as probable CNGCs may suggest that they are misannotated or protein fragments.

  14. Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels

    KAUST Repository

    Zelman, Alice K.

    2012-05-29

    Ligand-gated cation channels are a frequent component of signaling cascades in eukaryotes. Eukaryotes contain numerous diverse gene families encoding ion channels, some of which are shared and some of which are unique to particular kingdoms. Among the many different types are cyclic nucleotide-gated channels (CNGCs). CNGCs are cation channels with varying degrees of ion conduction selectivity. They are implicated in numerous signaling pathways and permit diffusion of divalent and monovalent cations, including Ca2+ and K+. CNGCs are present in both plant and animal cells, typically in the plasma membrane; recent studies have also documented their presence in prokaryotes. All eukaryote CNGC polypeptides have a cyclic nucleotide-binding domain and a calmodulin binding domain as well as a six transmembrane/one pore tertiary structure. This review summarizes existing knowledge about the functional domains present in these cation-conducting channels, and considers the evidence indicating that plant and animal CNGCs evolved separately. Additionally, an amino acid motif that is only found in the phosphate binding cassette and hinge regions of plant CNGCs, and is present in all experimentally confirmed CNGCs but no other channels was identified. This CNGC-specific amino acid motif provides an additional diagnostic tool to identify plant CNGCs, and can increase confidence in the annotation of open reading frames in newly sequenced genomes as putative CNGCs. Conversely, the absence of the motif in some plant sequences currently identified as probable CNGCs may suggest that they are misannotated or protein fragments. 2012 Zelman, Dawe, Gehring and Berkowitz.

  15. Coherent Vortical Structures and Their Relation to Hot/Cold Spots in a Thermal Turbulent Channel Flow

    Directory of Open Access Journals (Sweden)

    Suranga Dharmarathne

    2018-02-01

    Full Text Available Direct numerical simulations of a turbulent channel flow with a passive scalar at R e τ = 394 with blowing perturbations is carried out. The blowing is imposed through five spanwise jets located near the upstream end of the channel. Behind the blowing jets (about 1 D , where D is the jet diameter, we observe regions of reversed flow responsible for the high temperature region at the wall: hot spots that contribute to further heating of the wall. In between the jets, low pressure regions accelerate the flow, creating long, thin, streaky structures. These structures contribute to the high temperature region near the wall. At the far downstream of the jet (about 3 D , flow instabilities (high shear created by the blowing generate coherent vortical structures. These structures move hot fluid near the wall to the outer region of the channel; thereby, these are responsible for cooling of the wall. Thus, for engineering applications where cooling of the wall is necessary, it is critical to promote the generation of coherent structures near the wall.

  16. Volume of the space of qubit-qubit channels and state transformations under random quantum channels

    OpenAIRE

    Lovas, Attila; Andai, Attila

    2017-01-01

    The simplest building blocks for quantum computations are the qubit-qubit quantum channels. In this paper, we analyze the structure of these channels via their Choi representation. The restriction of a quantum channel to the space of classical states (i.e. probability distributions) is called the underlying classical channel. The structure of quantum channels over a fixed classical channel is studied, the volume of general and unital qubit channels with respect to the Lebesgue measure is comp...

  17. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    International Nuclear Information System (INIS)

    Holt, J.K.; Herberg, J.L.; Wu, Y.; Schwegler, E.; Mehta, A.

    2009-01-01

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  18. Cation-pi interactions stabilize the structure of the antimicrobial peptide indolicidin near membranes: molecular dynamics simulations

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Kaznessis, Yiannis N

    2007-01-01

    We implemented molecular dynamics simulations of the 13-residue antimicrobial peptide indolicidin (ILPWKWPWWPWRR-NH2) in dodecylphosphocholine (DPC) and sodium dodecyl sulfate (SDS) micelles. In DPC, a persistent cation-pi interaction between TRP11 and ARG13 defined the structure of the peptide...... near the interface. A transient cation-pi interaction was also observed between TRP4 and the choline group on DPC lipids. We also implemented simulation of a mutant of indolicidin in the DPC micelle where TRP11 was replaced by ALA11. As a result of the mutation, the boat-shaped conformation is lost...... and the structure becomes significantly less defined. On the basis of this evidence, we argue that cation-pi interactions determine the experimentally measured, well-defined boat-shaped structure of indolicidin. In SDS, the lack of such interactions and the electrostatic binding of the terminal arginine residues...

  19. Secure Degrees of Freedom Regions of Multiple Access and Interference Channels: The Polytope Structure

    OpenAIRE

    Xie, Jianwei; Ulukus, Sennur

    2014-01-01

    The sum secure degrees of freedom (s.d.o.f.) of two fundamental multi-user network structures, the K-user Gaussian multiple access (MAC) wiretap channel and the K-user interference channel (IC) with secrecy constraints, have been determined recently as K(K-1)/(K(K-1)+1) [1,2] and K(K-1)/(2K-1) [3,4], respectively. In this paper, we determine the entire s.d.o.f. regions of these two channel models. The converse for the MAC follows from a middle step in the converse of [1,2]. The converse for t...

  20. Research on Cost Information Sharing and Channel Choice in a Dual-Channel Supply Chain

    Directory of Open Access Journals (Sweden)

    Huihui Liu

    2016-01-01

    Full Text Available Many studies examine information sharing in an uncertain demand environment in a supply chain. However there is little literature on cost information sharing in a dual-channel structure consisting of a retail channel and a direct sales channel. Assuming that the retail sale cost and direct sale cost are random variables with a general distribution, the paper investigates the retailer’s choice on cost information sharing in a Bertrand competition model. Based on the equilibrium outcome of information sharing, the manufacturer’s channel choice is discussed in detail. Our paper provides several interesting conclusions. In both single- and dual-channel structures, the retailer has little motivation to share its private cost information which is verified to be valuable for the manufacturer. When the cost correlation between the two channels increases, our analyses show that the manufacturer’s profit improves. However, when channel choice is involved, the value of information could play a different role. The paper finds that a dual-channel structure can benefit the manufacturer only when the cost correlation is sufficiently low. In addition, if the cost correlation is weak, the cost fluctuation will bring out the advantage of a dual-channel structure and adding a new direct channel will help in risk pooling.

  1. Piezo channels and GsMTx4: Two milestones in our understanding of excitatory mechanosensitive channels and their role in pathology.

    Science.gov (United States)

    Suchyna, Thomas M

    2017-11-01

    Discovery of Piezo channels and the reporting of their sensitivity to the inhibitor GsMTx4 were important milestones in the study of non-selective cationic mechanosensitive channels (MSCs) in normal physiology and pathogenesis. GsMTx4 had been used for years to investigate the functional role of cationic MSCs, especially in muscle tissue, but with little understanding of its target or inhibitory mechanism. The sensitivity of Piezo channels to bilayer stress and its robust mechanosensitivity when expressed in heterologous systems were keys to determining GsMTx4's mechanism of action. However, questions remain regarding Piezo's role in muscle function due to the non-selective nature of GsMTx4 inhibition toward membrane mechanoenzymes and the implication of MCS channel types by genetic knockdown. Evidence supporting Piezo like activity, at least in the developmental stages of muscle, is presented. While the MSC targets of GsMTx4 in muscle pathology are unclear, its muscle protective effects are clearly demonstrated in two recent in situ studies on normal cardiomyocytes and dystrophic skeletal muscle. The muscle protective function may be due to the combined effect of GsMTx4's inhibitory action on cationic MSCs like Piezo and TRP, and its potentiation of repolarizing K + selective MSCs like K2P and SAKCa. Paradoxically, the potent in vitro action of GsMTx4 on many physiological functions seems to conflict with its lack of in situ side-effects on normal animal physiology. Future investigations into cytoskeletal control of sarcolemma mechanics and the suspected inclusion of MSCs in membrane micro/nano sized domains with distinct mechanical properties will aide our understanding of this dichotomy. Published by Elsevier Ltd.

  2. Current-driven channel switching and colossal positive magnetoresistance in the manganite-based structure

    International Nuclear Information System (INIS)

    Volkov, N V; Eremin, E V; Tsikalov, V S; Patrin, G S; Kim, P D; Seong-Cho, Yu; Kim, Dong-Hyun; Chau, Nguyen

    2009-01-01

    The transport and magnetotransport properties of a newly fabricated tunnel structure manganite/depletion layer/manganese silicide have been studied in the current-in-plane (CIP) geometry. A manganite depletion layer in the structure forms a potential barrier sandwiched between two conducting layers, one of manganite and the other of manganese silicide. The voltage-current characteristics of the structure are nonlinear due to switching conducting channels from an upper manganite film to a bottom, more conductive MnSi layer with an increase in the current applied to the structure. Bias current assists tunnelling of a carrier across the depletion layer; thus, a low-resistance contact between the current-carrying electrodes and the bottom layer is established. Below 30 K, both conducting layers are in the ferromagnetic state (magnetic tunnel junction), which allows control of the resistance of the tunnel junction and, consequently, switching of the conducting channels by the magnetic field. This provides a fundamentally new mechanism of magnetoresistance (MR) implementation in the magnetic layered structure with CIP geometry. MR of the structure under study depends on the bias current and can reach values greater than 400% in a magnetic field lower than 1 kOe. A positive MR value is related to peculiarities of the spin-polarized electronic structures of manganites and manganese silicides.

  3. 1st International Conference on Hydraulic Design in Water Resources Engineering : Channels and Channel Control Structures

    CERN Document Server

    1984-01-01

    The development of water resources has proceeded at an amazing speed around the world in the last few decades. The hydraulic engineer has played his part: in constructing much larger artificial channels than ever before, larger and more sophisticated control structures, and systems of irrigation, drainage and water supply channels in which the flow by its nature is complex and unsteady requiring computer-based techniques at both the design and operation stage. It seemed appropriate to look briefly at some of the developments in hydraulic design resulting from this situation. Hence the idea of the Conference was formed. The Proceedings of the Conference show that hydraulic engineers have been able to acquire a very substantial base of design capability from the experience of the period referred to. The most outstanding development to have occurred is in the combination of physical and mathematical modelling, which in hydraulic engineering has followed a parallel path to that in other branches of engineering sc...

  4. Theoretical evaluation of transcriptional pausing effect on the attenuation in trp leader sequence

    OpenAIRE

    Suzuki, H.; Kunisawa, T.; Otsuka, J.

    1986-01-01

    The effect of transcriptional pausing on attenuation is investigated theoretically on the basis of the attenuation control mechanism presented by Oxender et al. (Oxender, D. L., G. Zurawski, and C. Yanofsky, 1979, Proc. Natl. Acad. Sci. USA. 76:5524-5528). An extended stochastic model including the RNA polymerase pausing in the leader region is developed to calculate the probability of relative position between the RNA polymerase transcribing the trp leader sequence and the ribosome translati...

  5. Rectified motion in an asymmetrically structured channel due to induced-charge electrokinetic and thermo-kinetic phenomena

    International Nuclear Information System (INIS)

    Sugioka, Hideyuki

    2016-01-01

    It would be advantageous to move fluid by the gradient of random thermal noises that are omnipresent in the natural world. To achieve this motion, we propose a rectifier that uses a thermal noise along with induced-charge electroosmosis and electrophoresis (ICEO and ICEP) around a metal post cylinder in an asymmetrically structured channel and numerically examine its rectification performance. By the boundary element method combined with the thin double layer approximation, we find that rectified motion occurs in the asymmetrically structured channel due to ICEO and ICEP. Further, by thermodynamical and equivalent circuit methods, we discuss a thermal voltage that drives a rectifier consisting of a fluidic channel of an electrolyte and an impedance as a noise source. Our calculations show that fluid can be moved in the asymmetrically structured channel by the fluctuation of electric fields due to a thermal noise only when there is a temperature difference. In addition, our simple noise argument provides a different perspective for the thermo-kinetic phenomena (around a metal post) which was predicted based on the electrolyte Seebeck effect in our previous paper [H. Sugioka, “Nonlinear thermokinetic phenomena due to the Seebeck effect,” Langmuir 30, 8621 (2014)

  6. Rectified motion in an asymmetrically structured channel due to induced-charge electrokinetic and thermo-kinetic phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka, Hideyuki, E-mail: hsugioka@shinshu-u.ac.jp [Frontier Research Center, Canon Inc. 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan and Department of Mechanical Systems Engineering, Shinshu University 4-17-1 Wakasato, Nagano 380-8553 (Japan)

    2016-02-15

    It would be advantageous to move fluid by the gradient of random thermal noises that are omnipresent in the natural world. To achieve this motion, we propose a rectifier that uses a thermal noise along with induced-charge electroosmosis and electrophoresis (ICEO and ICEP) around a metal post cylinder in an asymmetrically structured channel and numerically examine its rectification performance. By the boundary element method combined with the thin double layer approximation, we find that rectified motion occurs in the asymmetrically structured channel due to ICEO and ICEP. Further, by thermodynamical and equivalent circuit methods, we discuss a thermal voltage that drives a rectifier consisting of a fluidic channel of an electrolyte and an impedance as a noise source. Our calculations show that fluid can be moved in the asymmetrically structured channel by the fluctuation of electric fields due to a thermal noise only when there is a temperature difference. In addition, our simple noise argument provides a different perspective for the thermo-kinetic phenomena (around a metal post) which was predicted based on the electrolyte Seebeck effect in our previous paper [H. Sugioka, “Nonlinear thermokinetic phenomena due to the Seebeck effect,” Langmuir 30, 8621 (2014)].

  7. [Mutation in the beta3-adrenergic receptor gene (Trp64Arg) does not influence insulin resistence, energy metabolism, fat distribution and lipid spectrum in young people. Pilot study].

    Science.gov (United States)

    Bendlová, B; Mazura, I; Vcelák, J; Pelikánová, T; Kunesová, M; Hainer, V; Obenberger, J; Palyzová, D

    1999-05-01

    A missence mutation Trp64Arg in the beta3-adrenergic receptor gene is associated with obesity, insulin resistance, a lower metabolic rate and the earlier onset of NIDDM but the published results are controversial. We investigated the effect of this mutation on insulin resistance (euglycemic hyperinsulinemic clamp), on fat mass and fat distribution (anthropometry, bioimpedance, CT) and resting metabolic rate (indirect calorimetry), lipid spectrum and other metabolic disturbances in Czech juveniles recruited from juvenile hypertensives (H, n = 68) and controls (C, n = 81). The frequency of this mutation (determined by digestion of 210 bp PCR product with MvaI) was double in H than in C (14.7%, vs. 7.4%) and the carriers of Arg64 allele had sig. higher fasting glucose (H: p = 0.002. C: p = 0.025). Four Trp64/Arg64 and six Trp64/Trp64 men (age 23 +/- 4.2, vs. 22.5 +/- 1.9 y, BMI 26 +/- 5.5, vs. 22.9 +/- 5.1 kg/m2) took part in a detailed pilot study. But no signif. differences (Horn's method) in fasting glucose (4.6 +/- 0.6, vs. 4.9 +/- 0.4 mmol/l), in parameters of insulin resistance (M-value150-180 min. 9.1 +/- 1.1, vs. 8.9 +/- 1.5 mg glucose/kg.min(-1)), resting metabolic rate/lean body mass (RMR/kg LBM: 78.6 +/- 4.6, vs. 85.6 +/- 23.2 kJ/kg), lipid spectrum and other screened parameters were found. The lowest resting metabolic rate (RMR/kg LBM 55.4; 62.6 kJ/kg) was found in brothers (both C, Trp64/Trp64) who highly differ in body constitution (BMI 19.0 resp. 32.4 kg/m2). We suppose that in this case the energy metabolism is probably determined by other genetic loci and does not correlate with body fat mass. Our pilot study does not confirm the influence of Trp64Arg mutation in heterozygous carriers on insulin resistance, energy metabolism and lipid spectrum.

  8. Pulsatile atheroprone shear stress affects the expression of transient receptor potential channels in human endothelial cells

    DEFF Research Database (Denmark)

    Thilo, Florian; Vorderwülbecke, Bernd J; Marki, Alex

    2012-01-01

    in comparison with endothelial cells grown under static conditions. There was a significant association between the expression of TRPC6 and tumor necrosis factor-α mRNA in human vascular tissue. No-flow and atheroprone flow conditions are equally characterized by an increase in the expression of tumor necrosis......The goal of the study was to assess whether pulsatile atheroprone shear stress modulates the expression of transient receptor potential (TRP) channels, TRPC3, TRPC6, TRPM7, and TRPV1 mRNA, in human umbilical vascular endothelial cells. Exposure of cultured vascular endothelial cells to defined...

  9. Molecular Aspects of Structure, Gating, and Physiology of pH-Sensitive Background K2P and Kir K+-Transport Channels

    Science.gov (United States)

    Sepúlveda, Francisco V.; Pablo Cid, L.; Teulon, Jacques; Niemeyer, María Isabel

    2015-01-01

    K+ channels fulfill roles spanning from the control of excitability to the regulation of transepithelial transport. Here we review two groups of K+ channels, pH-regulated K2P channels and the transport group of Kir channels. After considering advances in the molecular aspects of their gating based on structural and functional studies, we examine their participation in certain chosen physiological and pathophysiological scenarios. Crystal structures of K2P and Kir channels reveal rather unique features with important consequences for the gating mechanisms. Important tasks of these channels are discussed in kidney physiology and disease, K+ homeostasis in the brain by Kir channel-equipped glia, and central functions in the hearing mechanism in the inner ear and in acid secretion by parietal cells in the stomach. K2P channels fulfill a crucial part in central chemoreception probably by virtue of their pH sensitivity and are central to adrenal secretion of aldosterone. Finally, some unorthodox behaviors of the selectivity filters of K2P channels might explain their normal and pathological functions. Although a great deal has been learned about structure, molecular details of gating, and physiological functions of K2P and Kir K+-transport channels, this has been only scratching at the surface. More molecular and animal studies are clearly needed to deepen our knowledge. PMID:25540142

  10. A lower dose threshold for the in vivo protective adaptive response to radiation. Tumorigenesis in chronically exposed normal and Trp53 heterozygous C57BL/6 mice

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Burchart, P.; Wyatt, H.

    2008-01-01

    Low doses of ionizing radiation to cells and animals may induce adaptive responses that reduce the risk of cancer. However, there are upper dose thresholds above which these protective adaptive responses do not occur. We have now tested the hypothesis that there are similar lower dose thresholds that must be exceeded in order to induce protective effects in vivo. We examined the effects of low dose/low dose rate fractionated exposures on cancer formation in Trp53 normal or cancer-prone Trp53 heterozygous female C57BL/6 mice. Beginning at 6 weeks of age, mice were exposed 5 days/week to single daily doses (0.33 mGy, 0.7 mGy/h) totaling 48, 97 or 146 mGy over 30, 60 or 90 weeks. The exposures for shorter times (up to 60 weeks) appeared to be below the level necessary to induce overall protective adaptive responses in Trp53 normal mice, and detrimental effects (shortened lifespan, increased frequency) evident for only specific tumor types (B- and T-cell lymphomas), were produced. Only when the exposures were continued for 90 weeks did the dose become sufficient to induce protective adaptive responses, balancing the detrimental effects for these specific cancers, and reducing the risk level back to that of the unexposed animals. Detrimental effects were not seen for other tumor types, and a protective effect was seen for sarcomas after 60 weeks of exposure, which was then lost when the exposure continued for 90 weeks. As previously shown for the upper dose threshold for protection by low doses, the lower dose boundary between protection and harm was influenced by Trp53 functionality. Neither protection nor harm was observed in exposed Trp53 heterozygous mice, indicating that reduced Trp53 function raises the lower dose/dose rate threshold for both detrimental and protective tumorigenic effects. (author)

  11. Simulation of planar channeling-radiation spectra of relativistic electrons and positrons channeled in a diamond-structure or tungsten single crystal (classical approach)

    International Nuclear Information System (INIS)

    Azadegan, B.; Wagner, W.

    2015-01-01

    We present a Mathematica package for simulation of spectral-angular distributions and energy spectra of planar channeling radiation of relativistic electrons and positrons channeled along major crystallographic planes of a diamond-structure or tungsten single crystal. The program is based on the classical theory of channeling radiation which has been successfully applied to study planar channeling of light charged particles at energies higher than 100 MeV. Continuous potentials for different planes of diamond, Si, Ge and W single crystals are calculated using the Doyle–Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the classical one-dimensional equation of motion. The code is designed to calculate the trajectories, velocities and accelerations of electrons (positrons) channeled by the planar continuous potential. In the framework of classical electrodynamics, these data allow realistic simulations of spectral-angular distributions and energy spectra of planar channeling radiation. Since the generated output is quantitative, the results of calculation may be useful, e.g., for setup configuration and crystal alignment in channeling experiments, for the study of the dependence of channeling radiation on the input parameters of particle beams with respect to the crystal orientation, but also for the simulation of positron production by means of pair creation what is mandatory for the design of efficient positron sources necessary in high-energy and collider physics. Although the classical theory of channeling is well established for long time, there is no adequate library program for simulation of channeling radiation up to now, which is commonly available, sufficiently simple and effective to employ and, therefore, of benefit as for special investigations as for a quick overview of basic features of this type of radiation

  12. Structural interaction and functional regulation of polycystin-2 by filamin.

    Directory of Open Access Journals (Sweden)

    Qian Wang

    Full Text Available Filamins are important actin cross-linking proteins implicated in scaffolding, membrane stabilization and signal transduction, through interaction with ion channels, receptors and signaling proteins. Here we report the physical and functional interaction between filamins and polycystin-2, a TRP-type cation channel mutated in 10-15% patients with autosomal dominant polycystic kidney disease. Yeast two-hybrid and GST pull-down experiments demonstrated that the C-termini of filamin isoforms A, B and C directly bind to both the intracellular N- and C-termini of polycystin-2. Reciprocal co-immunoprecipitation experiments showed that endogenous polycystin-2 and filamins are in the same complexes in renal epithelial cells and human melanoma A7 cells. We then examined the effect of filamin on polycystin-2 channel function by electrophysiology studies with a lipid bilayer reconstitution system and found that filamin-A substantially inhibits polycystin-2 channel activity. Our study indicates that filamins are important regulators of polycystin-2 channel function, and further links actin cytoskeletal dynamics to the regulation of this channel protein.

  13. Structure-activity relationship of linear peptide Bu-His-DPhe-Arg-Trp-Gly-NH(2) at the human melanocortin-1 and -4 receptors: arginine substitution.

    Science.gov (United States)

    Cheung, Adrian Wai-Hing; Danho, Waleed; Swistok, Joseph; Qi, Lida; Kurylko, Grazyna; Franco, Lucia; Yagaloff, Keith; Chen, Li

    2002-09-02

    A series of pentapeptides, based on Bu-His(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2) and modified at the Arg(8) position, was prepared and pharmacologically characterized. Peptides containing either cyanoguanidine or acylguanidine, two substantially less basic arginine surrogates, were found to retain the agonist activity of the parent peptide at both hMC1R and hMC4R. This study unequivocally shows that the positive charge of Arg(8) is not essential for efficient interactions of our pentapeptide with both hMC1R and hMC4R.

  14. Experimental Investigation on Zonal Structure in Drag-Reducing Channel Flow with Surfactant Additives

    Directory of Open Access Journals (Sweden)

    Masaaki Motozawa

    2011-01-01

    Full Text Available The spatial structure of a drag-reducing channel flow with surfactant additives in a two-dimensional channel was investigated experimentally. We carried out detailed measurements of the instantaneous velocity in the streamwise wall-normal plane and streamwise spanwise plane by using particle image velocimetry (PIV. The surfactant used in this experiment is a kind of cationic surfactant CTAC. The weight concentrations of the CTAC solution were 25 and 40 ppm on the flow. We considered the effects of Reynolds number ranging from 10000 to 25000 and the weight concentration of CTAC. The results of this paper showed that in the drag-reducing flow, there appeared an area where the root mean square of streamwise velocity fluctuation and the vorticity fluctuation sharply decreased. This indicated that two layers with different turbulent structure coexisted on the boundary of this area. Moreover, these layers had characteristic flow structures, as confirmed by observation of the instantaneous vorticity fluctuation map.

  15. Ultraviolet-enhanced photodetection in a graphene/SiO2/Si capacitor structure with a vacuum channel

    International Nuclear Information System (INIS)

    Kim, Myungji; Kim, Hong Koo

    2015-01-01

    We report photodetection properties of a graphene/oxide/silicon capacitor structure with a nanoscale vacuum channel. The photogenerated two-dimensional electron gas (2DEG) inversion charges at SiO 2 /Si interface are extracted out to air and transported along the void channel at low bias voltage (<5 V). A monolayer graphene, placed on top of SiO 2 and suspended on the void channel, is utilized as a photon-transparent counter-electrode to the 2DEG layer and a collector electrode for the out-of-plane transported electrons, respectively. The photocurrent extracted through a void channel reveals high responsivity (1.0 A/W at 633 nm) as measured in a broad spectral range (325–1064 nm), especially demonstrating a UV-enhanced performance (0.43 A/W responsivity and 384% internal quantum efficiency at 325 nm). The mechanisms underlying photocarrier generation, emission, and transport in a suspended-graphene/SiO 2 /Si structure are proposed

  16. Structural organization of the quiescent core region in a turbulent channel flow

    International Nuclear Information System (INIS)

    Yang, Jongmin; Hwang, Jinyul; Sung, Hyung Jin

    2016-01-01

    Highlights: • The structural organization of the quiescent core region in a turbulent channel flow is explored. • The quiescent core region is the uniform momentum zone located at the center of the channel. • The boundary of the quiescent core region can be identified from the probability density function of the streamwise modal velocity. • The prograde and retrograde vortices form a counter-rotating vortex pair at the boundary of the core region. - Abstract: The structural organization of the quiescent core region in a turbulent channel flow was explored using direct numerical simulation data at Re_τ = 930. The quiescent core region is the uniform momentum zone located at the center of the channel, and contains the highest momentum with a low level of turbulence. The boundary of the quiescent core region can be identified from the probability density function of the streamwise modal velocity. The streamwise velocity changes abruptly near the boundary of the core region. The abrupt jump leads the increase of the velocity gradient, which is similar to the vorticity thickness of the laminar superlayer at the turbulent/non-turbulent interface. The strong shear induced from the abrupt change is originated from the vortical structure lying on the boundary of the core region. The spanwise population densities of the prograde and retrograde vortices have a local maximum near the boundary of the core region. The prograde vortex dominantly contributes to the total mean shear near the core boundary and the contribution to the total mean shear rapidly decreases within the core region. The prograde and retrograde vortices form a counter-rotating vortex pair at the boundary of the core region associated with the nibbling mechanism. The boundary of the core region contains large-scale concave and convex features. The concave (convex) core interface is organized by the negative-u (positive-u) regions which induce the ejections (sweeps) around the core boundary.

  17. Microstructural information from channeling measurements

    International Nuclear Information System (INIS)

    Quere, Y.

    1984-09-01

    Channeling is sensitive to nearly all structural changes in solids. One briefly recalls how particles are dechanneled by lattice defects and describes the main applications of channeling to materials science: detection of radiation damage, location of impurity atoms, precipitations in alloys... Channeling being a phenomenon characteristic of perfect crystals, any type of lattice imperfection (phonons, crystal defects, precipitation etc.) is expected to produce dechanneling. Consequently channeling and its opposite, dechanneling, have both been used to study structure and structural changes of materials

  18. On the relationship between multi-channel envelope and temporal fine structure

    DEFF Research Database (Denmark)

    Søndergaard, Peter Lempel; Decorsiere, Remi Julien Blaise; Dau, Torsten

    2011-01-01

    The envelope of a signal is broadly defined as the slow changes in time of the signal, where as the temporal fine structure (TFS) are the fast changes in time, i.e. the carrier wave(s) of the signal. The focus of this paper is on envelope and TFS in multi-channel systems. We discuss the differenc...

  19. Validation of Molecular Dynamics Simulations for Prediction of Three-Dimensional Structures of Small Proteins.

    Science.gov (United States)

    Kato, Koichi; Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Kurimoto, Eiji; Oda, Akifumi

    2017-10-12

    Although various higher-order protein structure prediction methods have been developed, almost all of them were developed based on the three-dimensional (3D) structure information of known proteins. Here we predicted the short protein structures by molecular dynamics (MD) simulations in which only Newton's equations of motion were used and 3D structural information of known proteins was not required. To evaluate the ability of MD simulationto predict protein structures, we calculated seven short test protein (10-46 residues) in the denatured state and compared their predicted and experimental structures. The predicted structure for Trp-cage (20 residues) was close to the experimental structure by 200-ns MD simulation. For proteins shorter or longer than Trp-cage, root-mean square deviation values were larger than those for Trp-cage. However, secondary structures could be reproduced by MD simulations for proteins with 10-34 residues. Simulations by replica exchange MD were performed, but the results were similar to those from normal MD simulations. These results suggest that normal MD simulations can roughly predict short protein structures and 200-ns simulations are frequently sufficient for estimating the secondary structures of protein (approximately 20 residues). Structural prediction method using only fundamental physical laws are useful for investigating non-natural proteins, such as primitive proteins and artificial proteins for peptide-based drug delivery systems.

  20. Severe coagulation factor VII deficiency caused by a novel homozygous mutation (p. Trp284Gly) in loop 140s.

    Science.gov (United States)

    Hao, Xiuping; Cheng, XiaoLi; Ye, Jiajia; Wang, Yingyu; Yang, LiHong; Wang, Mingshan; Jin, Yanhui

    2016-06-01

    Congenital coagulation factor VII (FVII) deficiency is a rare disorder caused by mutation in F7 gene. Herein, we reported a patient who had unexplained hematuria and vertigo with consanguineous parents. He has been diagnosed as having FVII deficiency based on the results of reduced FVII activity (2.0%) and antigen (12.8%). The thrombin generation tests verified that the proband has obstacles in producing thrombin. Direct sequencing analysis revealed a novel homozygous missense mutation p.Trp284Gly. Also noteworthy is the fact that the mutational residue belongs to structurally conserved loop 140s, which majorly undergo rearrangement after FVII activation. Model analysis indicated that the substitution disrupts these native hydrophobic interactions, which are of great importance to the conformation in the activation domain of FVIIa.

  1. Associations between Dietary Patterns, ADRβ2 Gln27Glu and ADRβ3 Trp64Arg with Regard to Serum Triglyceride Levels: J-MICC Study

    Directory of Open Access Journals (Sweden)

    Hinako Nanri

    2016-09-01

    Full Text Available Interactions between dietary patterns and 2 β-adrenergic receptor (ADRβ gene polymorphisms (ADRβ2 Gln27Glu and ADRβ3 Trp64Arg were examined with regard to the effects on serum triglyceride levels. The cross-sectional study comprised 1720 men and women (aged 35–69 years enrolled in the Japan Multi-Institutional Collaborative Cohort (J-MICC Study. Genotyping was conducted using a multiplex polymerase chain reaction-based invader assay. We used 46 items from a validated short food frequency questionnaire and examined major dietary patterns by factor analysis. We identified four dietary patterns: healthy, Western, seafood and bread patterns. There was no significant association between any dietary pattern and serum triglyceride levels. After a separate genotype-based analysis, significant interactions between ADRβ3 Trp64Arg genotype and the bread pattern (p for interaction = 0.01 were associated with serum triglyceride levels; specifically, after adjusting for confounding factors, Arg allele carriers with the bread pattern had lower serum triglycerides (p for trend = 0.01. However, the Trp/Trp homozygous subjects with the bread pattern showed no association with serum triglycerides (p for trend = 0.55. Interactions between other dietary patterns and ADRβ polymorphisms were not significant for serum triglyceride levels. Our findings suggest that ADRβ3 polymorphism modifies the effects of the bread pattern on triglyceride levels.

  2. Topology of transmembrane channel-like gene 1 protein.

    Science.gov (United States)

    Labay, Valentina; Weichert, Rachel M; Makishima, Tomoko; Griffith, Andrew J

    2010-10-05

    Mutations of transmembrane channel-like gene 1 (TMC1) cause hearing loss in humans and mice. TMC1 is the founding member of a family of genes encoding proteins of unknown function that are predicted to contain multiple transmembrane domains. The goal of our study was to define the topology of mouse TMC1 expressed heterologously in tissue culture cells. TMC1 was retained in the endoplasmic reticulum (ER) membrane of five tissue culture cell lines that we tested. We used anti-TMC1 and anti-HA antibodies to probe the topologic orientation of three native epitopes and seven HA epitope tags along full-length TMC1 after selective or complete permeabilization of transfected cells with digitonin or Triton X-100, respectively. TMC1 was present within the ER as an integral membrane protein containing six transmembrane domains and cytosolic N- and C-termini. There is a large cytoplasmic loop, between the fourth and fifth transmembrane domains, with two highly conserved hydrophobic regions that might associate with or penetrate, but do not span, the plasma membrane. Our study is the first to demonstrate that TMC1 is a transmembrane protein. The topologic organization revealed by this study shares some features with that of the shaker-TRP superfamily of ion channels.

  3. Increase in electron mobility of InGaAs/InP composite channel high electron mobility transistor structure due to SiN passivation

    International Nuclear Information System (INIS)

    Liu Yuwei; Wang Hong; Radhakrishnan, K.

    2007-01-01

    The influence of silicon nitride passivation on electron mobility of InGaAs/InP composite channel high electron mobility transistor structure has been studied. Different from the structures with single InGaAs channel, an increase in effective mobility μ e with a negligible change of sheet carrier density n s after SiN deposition is clearly observed in the composite channel structures. The enhancement of μ e could be explained under the framework of electrons transferring from the InP sub-channel into InGaAs channel region due to the energy band bending at the surface region caused by SiN passivation, which is further confirmed by low temperature photoluminescence measurements

  4. Crystal Structure of the Mammalian GIRK2 K+ Channel and Gating Regulation by G-Proteins, PIP2 and Sodium

    Science.gov (United States)

    Whorton, Matthew R.; MacKinnon, Roderick

    2011-01-01

    Summary G-protein-gated K+ channels (Kir3.1–Kir3.4) control electrical excitability in many different cells. Among their functions relevant to human physiology and disease, they regulate the heart rate and govern a wide range of neuronal activities. Here we present the first crystal structures of a G-protein-gated K+ channel. By comparing the wild-type structure to that of a constitutively active mutant, we identify a global conformational change through which G-proteins could open a G-loop gate in the cytoplasmic domain. The structures of both channels in the absence and presence of PIP2 show that G-proteins open only the G-loop gate in the absence of PIP2, but in the presence of PIP2 the G-loop gate and a second inner helix gate become coupled, so that both gates open. We also identify a strategically located Na+ ion-binding site, which would allow intracellular Na+ to modulate GIRK channel activity. These data provide a mechanistic description of multi-ligand regulation of GIRK channel gating. PMID:21962516

  5. A fungal P450 (CYP5136A3 capable of oxidizing polycyclic aromatic hydrocarbons and endocrine disrupting alkylphenols: role of Trp(129 and Leu(324.

    Directory of Open Access Journals (Sweden)

    Khajamohiddin Syed

    Full Text Available The model white rot fungus Phanerochaete chrysosporium, which is known for its versatile pollutant-biodegradation ability, possesses an extraordinarily large repertoire of P450 monooxygenases in its genome. However, the majority of these P450s have hitherto unknown function. Our initial studies using a genome-wide gene induction strategy revealed multiple P450s responsive to individual classes of xenobiotics. Here we report functional characterization of a cytochrome P450 monooxygenase, CYP5136A3 that showed common responsiveness and catalytic versatility towards endocrine-disrupting alkylphenols (APs and mutagenic/carcinogenic polycyclic aromatic hydrocarbons (PAHs. Using recombinant CYP5136A3, we demonstrated its oxidation activity towards APs with varying alkyl side-chain length (C3-C9, in addition to PAHs (3-4 ring size. AP oxidation involves hydroxylation at the terminal carbon of the alkyl side-chain (ω-oxidation. Structure-activity analysis based on a 3D model indicated a potential role of Trp(129 and Leu(324 in the oxidation mechanism of CYP5136A3. Replacing Trp(129 with Leu (W129L and Phe (W129F significantly diminished oxidation of both PAHs and APs. The W129L mutation caused greater reduction in phenanthrene oxidation (80% as compared to W129F which caused greater reduction in pyrene oxidation (88%. Almost complete loss of oxidation of C3-C8 APs (83-90% was observed for the W129L mutation as compared to W129F (28-41%. However, the two mutations showed a comparable loss (60-67% in C9-AP oxidation. Replacement of Leu(324 with Gly (L324G caused 42% and 54% decrease in oxidation activity towards phenanthrene and pyrene, respectively. This mutation also caused loss of activity towards C3-C8 APs (20-58%, and complete loss of activity toward nonylphenol (C9-AP. Collectively, the results suggest that Trp(129 and Leu(324 are critical in substrate recognition and/or regio-selective oxidation of PAHs and APs. To our knowledge, this is the first

  6. Effects of Drawdown and Structures on Bed-Load Transport in Pool 8 Navigation Channel

    National Research Council Canada - National Science Library

    Abraham, David; Hendrickson, Jon

    2003-01-01

    ... of a pool drawdown and structures on bed-load transport in the Pool 8 navigation channel. Work was conducted as part of the Monitoring of Completed Navigation Projects (MCNP) program. BACKGROUND...

  7. Single nucleotide polymorphisms and genotypes of transient receptor potential ion channel and acetylcholine receptor genes from isolated B lymphocytes in myalgic encephalomyelitis/chronic fatigue syndrome patients.

    Science.gov (United States)

    Marshall-Gradisnik, Sonya; Johnston, Samantha; Chacko, Anu; Nguyen, Thao; Smith, Peter; Staines, Donald

    2016-12-01

    Objective The pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is unknown; however, a small subgroup of patients has shown muscarinic antibody positivity and reduced symptom presentation following anti-CD20 intervention. Given the important roles of calcium (Ca 2+ ) and acetylcholine (ACh) signalling in B cell activation and potential antibody development, we aimed to identify relevant single nucleotide polymorphisms (SNPs) and genotypes in isolated B cells from CFS/ME patients. Methods A total of 11 CFS/ME patients (aged 31.82 ± 5.50 years) and 11 non-fatigued controls (aged 33.91 ± 5.06 years) were included. Flow cytometric protocols were used to determine B cell purity, followed by SNP and genotype analysis for 21 mammalian TRP ion channel genes and nine mammalian ACh receptor genes. SNP association and genotyping analysis were performed using ANOVA and PLINK analysis software. Results Seventy-eight SNPs were identified in nicotinic and muscarinic acetylcholine receptor genes in the CFS/ME group, of which 35 were in mAChM3. The remaining SNPs were identified in nAChR delta (n = 12), nAChR alpha 9 (n = 5), TRPV2 (n = 7), TRPM3 (n = 4), TRPM4 (n = 1) mAChRM3 2 (n = 2), and mAChRM5 (n = 3) genes. Nine genotypes were identified from SNPs in TRPM3 (n = 1), TRPC6 (n = 1), mAChRM3 (n = 2), nAChR alpha 4 (n = 1), and nAChR beta 1 (n = 4) genes, and were located in introns and 3' untranslated regions. Odds ratios for these specific genotypes ranged between 7.11 and 26.67 for CFS/ME compared with the non-fatigued control group. Conclusion This preliminary investigation identified a number of SNPs and genotypes in genes encoding TRP ion channels and AChRs from B cells in patients with CFS/ME. These may be involved in B cell functional changes, and suggest a role for Ca 2+ dysregulation in AChR and TRP ion channel signalling in the pathomechanism of CFS/ME.

  8. Site-specific electronic structure analysis by channeling EELS and first-principles calculations.

    Science.gov (United States)

    Tatsumi, Kazuyoshi; Muto, Shunsuke; Yamamoto, Yu; Ikeno, Hirokazu; Yoshioka, Satoru; Tanaka, Isao

    2006-01-01

    Site-specific electronic structures were investigated by electron energy loss spectroscopy (EELS) under electron channeling conditions. The Al-K and Mn-L(2,3) electron energy loss near-edge structure (ELNES) of, respectively, NiAl2O4 and Mn3O4 were measured. Deconvolution of the raw spectra with the instrumental resolution function restored the blunt and hidden fine features, which allowed us to interpret the experimental spectral features by comparing with theoretical spectra obtained by first-principles calculations. The present method successfully revealed the electronic structures specific to the differently coordinated cationic sites.

  9. Biological Membrane Ion Channels Dynamics, Structure, and Applications

    CERN Document Server

    Chung, Shin-Ho; Krishnamurthy, Vikram

    2007-01-01

    Ion channels are biological nanotubes that are formed by membrane proteins. Because ion channels regulate all electrical activities in living cells, understanding their mechanisms at a molecular level is a fundamental problem in biology. This book deals with recent breakthroughs in ion-channel research that have been brought about by the combined effort of experimental biophysicists and computational physicists, who together are beginning to unravel the story of these exquisitely designed biomolecules. With chapters by leading experts, the book is aimed at researchers in nanodevices and biosensors, as well as advanced undergraduate and graduate students in biology and the physical sciences. Key Features Presents the latest information on the molecular mechanisms of ion permeation through membrane ion channels Uses schematic diagrams to illustrate important concepts in biophysics Written by leading researchers in the area of ion channel investigations

  10. Dual curved photonic crystal ring resonator based channel drop filter using two-dimensional photonic crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com [Deptt. of Electronics and Communication Engineering, Government Engineering College Ajmer Rajasthan INDIA (India); Dusad, Lalit Kumar [Rajasthan Technical University Kota, Rajasthan (India)

    2016-05-06

    In this paper channel drop filter (CDF) is designed using dual curved photonic crystal ring resonator (PCRR). The photonic band gap (PBG) is calculated by plane wave expansion (PWE) method and the photonic crystal (PhC) based on two dimensional (2D) square lattice periodic arrays of silicon (Si) rods in air structure have been investigated using finite difference time domain (FDTD) method. The number of rods in Z and X directions is 21 and 20 respectively with lattice constant 0.540 nm and rod radius r = 0.1 µm. The channel drop filter has been optimized for telecommunication wavelengths λ = 1.591 µm with refractive indices 3.533. In the designed structure further analysis is also done by changing whole rods refractive index and it has been observed that this filter may be used for filtering several other channels also. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.

  11. Ultraviolet-enhanced photodetection in a graphene/SiO{sub 2}/Si capacitor structure with a vacuum channel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myungji; Kim, Hong Koo, E-mail: hkk@pitt.edu [Department of Electrical and Computer Engineering and Petersen Institute of NanoScience and Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2015-09-14

    We report photodetection properties of a graphene/oxide/silicon capacitor structure with a nanoscale vacuum channel. The photogenerated two-dimensional electron gas (2DEG) inversion charges at SiO{sub 2}/Si interface are extracted out to air and transported along the void channel at low bias voltage (<5 V). A monolayer graphene, placed on top of SiO{sub 2} and suspended on the void channel, is utilized as a photon-transparent counter-electrode to the 2DEG layer and a collector electrode for the out-of-plane transported electrons, respectively. The photocurrent extracted through a void channel reveals high responsivity (1.0 A/W at 633 nm) as measured in a broad spectral range (325–1064 nm), especially demonstrating a UV-enhanced performance (0.43 A/W responsivity and 384% internal quantum efficiency at 325 nm). The mechanisms underlying photocarrier generation, emission, and transport in a suspended-graphene/SiO{sub 2}/Si structure are proposed.

  12. Osmosis and pervaporation in polyimide submicron microfluidic channel structures

    NARCIS (Netherlands)

    Eijkel, Jan C.T.; Bomer, Johan G.; van den Berg, Albert

    2005-01-01

    Osmosis and pervaporation of water through the roof of all-polyimide channels of 500 nm height is described. The phenomena cause both a liquid flow in the channels and a concentration change of dissolved salt. Both effects are amplified due to the thin channel roof and the small channel height.

  13. Facile synthesis of graphene hybrid tube-like structure for simultaneous detection of ascorbic acid, dopamine, uric acid and tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wen [Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chai Yaqin, E-mail: yqchai@swu.edu.cn [Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo, E-mail: yuanruo@swu.edu.cn [Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chen Shihong; Han Jing; Yuan Dehua [Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2012-12-05

    Graphical abstract: A tube-like structure of graphene hybrid (GS-PTCA) was synthesized via {pi}-{pi} stacking interaction, and was used as modifier to fabricate electrode for simultaneous detection of ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (Trp). SEM images of GS, PTCA and GS-PTCA were presented. Under the synergistic effects between GS and PTCA, the modified electrode displayed high catalytic activity and selectivity toward the oxidation of AA, DA, UA, and Trp. Highlights: Black-Right-Pointing-Pointer A simple strategy for simultaneous detection of AA, DA, UA and Trp has been constructed. Black-Right-Pointing-Pointer The tube-like structure of graphene hybrid (GS-PTCA) was synthesized. Black-Right-Pointing-Pointer The GS-PTCA provided a selective interface for discrimination of AA, DA, UA and Trp. - Abstract: In the present work, a tube-like structure of graphene hybrid as modifier to fabricate electrode for simultaneous detection of ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (Trp) was reported. The hybrid was synthesized by a simple method based on graphene sheets (GS) and 3,4,9,10-perylenetetracarboxylic acid (PTCA) via {pi}-{pi} stacking interaction under ultrasonic condition. The combination of GS and PTCA could effectively improve the dispersion of GS, owing to PTCA with the carboxylic-functionalized interface. Comparing with pure GS or PTCA modified electrode, GS-PTCA displayed high catalytic activity and selectivity toward the oxidation of AA, DA, UA, and Trp. Moreover, cyclic voltammetry, different pulse voltammetry and scanning electron microscopy were employed to characterize the sensors. The experiment results showed that the linear response range for simultaneous detection of AA, DA, UA, and Trp were 20-420 {mu}M, 0.40-374 {mu}M, 4-544 {mu}M and 0.40-138 {mu}M, respectively, and the detection limits were 5.60 {mu}M, 0.13 {mu}M, 0.92 {mu}M and 0.06 {mu}M (S/N = 3). Importantly, the proposed method offers

  14. The human TRPV6 channel protein is associated with cyclophilin B in human placenta.

    Science.gov (United States)

    Stumpf, Tobias; Zhang, Qi; Hirnet, Daniela; Lewandrowski, Urs; Sickmann, Albert; Wissenbach, Ulrich; Dörr, Janka; Lohr, Christian; Deitmer, Joachim W; Fecher-Trost, Claudia

    2008-06-27

    Transcellular calcium transport in the kidney, pancreas, small intestine, and placenta is partly mediated by transient receptor potential (TRP) channels. The highly selective TRPV6 calcium channel protein is most likely important for the calcium transfer in different specialized epithelial cells. In the human placenta the protein is expressed in trophoblast tissue, where it is implicated in the transepithelial calcium transfer from mother to the fetus. We enriched the TRPV6 channel protein endogenously expressed in placenta together with annexin A2 and cyclophilin B (CypB), which is a member of the huge immunophilin family. In the human placenta TRPV6 and CypB are mainly located intracellularly in the syncytiotrophoblast layer, but a small amount of the mature glycosylated TRPV6 channel protein and CypB is also expressed in microvilli apical membranes, the fetomaternal barrier. To understand the role of CypB on the TRPV6 channel function, we evaluated the effect of CypB co-expression on TRPV6-mediated calcium uptake into Xenopus laevis oocytes expressing TRPV6. A significant increase of TRPV6-mediated calcium uptake was observed after CypB/TRPV6 co-expression. This stimulatory effect of CypB was reversed by the immunosuppressive drug cyclosporin A, which inhibits the enzymatic activity of CypB. Cyclosporin A had no significant effect on TRPV6 and CypB protein expression levels in the oocytes. In summary, our results establish CypB as a new TRPV6 accessory protein with potential involvement in TRPV6 channel activation through its peptidyl-prolyl cis/trans isomerase activity.

  15. Functional expression of TRPM8 and TRPA1 channels in rat odontoblasts.

    Directory of Open Access Journals (Sweden)

    Maki Tsumura

    Full Text Available Odontoblasts produce dentin during development, throughout life, and in response to pathological conditions by sensing stimulation of exposed dentin. The functional properties and localization patterns of transient receptor potential (TRP melastatin subfamily member 8 (TRPM8 and ankyrin subfamily member 1 (TRPA1 channels in odontoblasts remain to be clarified. We investigated the localization and the pharmacological, biophysical, and mechano-sensitive properties of TRPM8 and TRPA1 channels in rat odontoblasts. Menthol and icilin increased the intracellular free Ca(2+ concentration ([Ca(2+]i. Icilin-, WS3-, or WS12-induced [Ca(2+]i increases were inhibited by capsazepine or 5-benzyloxytriptamine. The increase in [Ca(2+]i elicited by allyl isothiocyanate (AITC was inhibited by HC030031. WS12 and AITC exerted a desensitizing effect on [Ca(2+]i increase. Low-temperature stimuli elicited [Ca(2+]i increases that are sensitive to both 5-benzyloxytriptamine and HC030031. Hypotonic stimulation-induced membrane stretch increased [Ca(2+]i; HC030031 but not 5-benzyloxytriptamine inhibited the effect. The results suggest that TRPM8 channels in rat odontoblasts play a role in detecting low-temperature stimulation of the dentin surface and that TRPA1 channels are involved in sensing membrane stretching and low-temperature stimulation. The results also indicate that odontoblasts act as mechanical and thermal receptor cells, detecting the stimulation of exposed dentin to drive multiple cellular functions, such as sensory transduction.

  16. Large eddy simulation of a buoyancy-aided flow in a non-uniform channel – Buoyancy effects on large flow structures

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Y. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); He, S., E-mail: s.he@sheffield.ac.uk [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2017-02-15

    Highlights: • Buoyancy may greatly redistribute the flow in a non-uniform channel. • Flow structures in the narrow gap are greatly changed when buoyancy is strong. • Large flow structures exist in wider gap, which is enhanced when heat is strong. • Buoyancy reduces mixing factor caused by large flow structures in narrow gap. - Abstract: It has been a long time since the ‘abnormal’ turbulent intensity distribution and high inter-sub-channel mixing rates were observed in the vicinity of the narrow gaps formed by the fuel rods in nuclear reactors. The extraordinary flow behaviour was first described as periodic flow structures by Hooper and Rehme (1984). Since then, the existences of large flow structures were demonstrated by many researchers in various non-uniform flow channels. It has been proved by many authors that the Strouhal number of the flow structure in the isothermal flow is dependent on the size of the narrow gap, not the Reynolds number once it is sufficiently large. This paper reports a numerical investigation on the effect of buoyancy on the large flow structures. A buoyancy-aided flow in a tightly-packed rod-bundle-like channel is modelled using large eddy simulation (LES) together with the Boussinesq approximation. The behaviour of the large flow structures in the gaps of the flow passage are studied using instantaneous flow fields, spectrum analysis and correlation analysis. It is found that the non-uniform buoyancy force in the cross section of the flow channel may greatly redistribute the velocity field once the overall buoyancy force is sufficiently strong, and consequently modify the large flow structures. The temporal and axial spatial scales of the large flow structures are influenced by buoyancy in a way similar to that turbulence is influenced. These scales reduce when the flow is laminarised, but start increasing in the turbulence regeneration region. The spanwise scale of the flow structures in the narrow gap remains more or

  17. Relating Trp-Glu dipeptide fluorescence to molecular conformation: the role of the discrete Chi 1 and Chi 2 angles.

    Science.gov (United States)

    Eisenberg, Azaria Solomon; Juszczak, Laura J

    2013-07-05

    Molecular dynamics (MD), coupled with fluorescence data for charged dipeptides of tryptophanyl glutamic acid (Trp-Glu), reveal a detailed picture of how specific conformation affects fluorescence. Fluorescence emission spectra and time-resolved emission measurements have been collected for all four charged species. MD simulations 20 to 30 ns in length have also been carried out for the Trp-Glu species, as simulation provides aqueous phase conformational data that can be correlated with the fluorescence data. The calculations show that each dipeptide species is characterized by a similar set of six, discrete Chi 1, Chi 2 dihedral angle pairs. The preferred Chi 1 angles--60°, 180°, and 300°--play the significant role in positioning the terminal amine relative to the indole ring. A Chi 1 angle of 60° results in the arching of the backbone over the indole ring and no interaction of the ring with the terminal amine. Chi 1 values of 180° and 300° result in an extension of the backbone away from the indole ring and a NH3 cation-π interaction with indole. This interaction is believed responsible for charge transfer quenching. Two fluorescence lifetimes and their corresponding amplitudes correlate with the Chi 1 angle probability distribution for all four charged Trp-Glu dipeptides. Fluorescence emission band maxima are also consistent with the proposed pattern of terminal amine cation quenching of fluorescence. Copyright © 2013 Wiley Periodicals, Inc.

  18. Investigation of KIF6 Trp719Arg in a case-control study of myocardial infarction: a Costa Rican population.

    Directory of Open Access Journals (Sweden)

    Lance A Bare

    2010-09-01

    Full Text Available The 719Arg allele of KIF6 (rs20455 was associated with coronary events in Caucasian participants of five prospective studies. We investigated whether this KIF6 variant was associated with non-fatal myocardial infarction (MI in a case-control study of an admixed population from the Central Valley of Costa Rica. Genotypes of the KIF6 variant were determined for 4,134 men and women. Cases (1,987 had survived a first MI; controls (2,147 had no history of MI and were matched to cases by age, sex, and area of residence. We tested the association between the KIF6 719Arg allele and non-fatal MI by conditional logistic regression and adjusted for admixture of founder populations.Compared with the reference Trp/Trp homozygotes, KIF6 719Arg carriers were not at significantly higher risk for non-fatal MI in this study after adjustment for traditional risk factors or admixture (OR= 1.12; 95%CI, 0.98-1.28. Heterozygotes of the KIF6 Trp719Arg variant were at increased risk of non-fatal MI: the adjusted odds ratio was 1.16 (95% confidence interval, 1.01-1.34, but this association would not be significant after a multiple testing correction.We found that carriers of the KIF6 719Arg allele were not at increased risk of non-fatal MI in a case-control study of Costa Ricans living in the Central Valley of Costa Rica.

  19. Hydraulic modeling of stream channels and structures in Harbor and Crow Hollow Brooks, Meriden, Connecticut

    Science.gov (United States)

    Weiss, Lawrence A.; Sears, Michael P.; Cervione, Michael A.

    1994-01-01

    Effects of urbanization have increased the frequency and size of floods along certain reaches of Harbor Brook and Crow Hollow Brook in Meriden, Conn. A floodprofile-modeling study was conducted to model the effects of selected channel and structural modifications on flood elevations and inundated areas. The study covered the reach of Harbor Brook downstream from Interstate 691 and the reach of Crow Hollow Brook downstream from Johnson Avenue. Proposed modifications, which include changes to bank heights, channel geometry, structural geometry, and streambed armoring on Harbor Brook and changes to bank heights on Crow Hollow Brook, significantly lower flood elevations. Results of the modeling indicate a significant reduction of flood elevations for the 10-year, 25-year, 35-year, 50-year, and 100-year flood frequencies using proposed modifications to (1 ) bank heights between Harbor Brook Towers and Interstate 691 on Harbor Brook, and between Centennial Avenue and Johnson Avenue on Crow Hollow Brook; (2) channel geometry between Coe Avenue and Interstate 69 1 on Harbor Brook; (3) bridge and culvert opening geometry between Harbor Brook Towers and Interstate 691 on Harbor Brook; and (4) channel streambed armoring between Harbor Brook Towers and Interstate 691 on Harbor Brook. The proposed modifications were developed without consideration of cost-benefit ratios.

  20. Uranium(VI) coordination polymers with pyromellitate ligand: Unique 1D channel structures and diverse fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingjie, E-mail: yzx@ansto.gov.au [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Bhadbhade, Mohan [Mark Wainwright Analytical Centre, University of New South Wales, Kensington, NSW 2052 (Australia); Karatchevtseva, Inna [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Price, Jason R. [Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168 (Australia); Liu, Hao [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW 2007 (Australia); Zhang, Zhaoming; Kong, Linggen [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Čejka, Jiří [Department of Mineralogy, National Museum, Václavské náměstí, 68, Prague 1, 115 79-CZ (Czech Republic); Lu, Kim; Lumpkin, Gregory R. [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2015-03-15

    Three new coordination polymers of uranium(VI) with pyromellitic acid (H{sub 4}btca) have been synthesized and structurally characterized. (ED)[(UO{sub 2})(btca)]·(DMSO)·3H{sub 2}O (1) (ED=ethylenediammonium; DMSO=dimethylsulfoxide) has a lamellar structure with intercalation of ED and DMSO. (NH{sub 4}){sub 2}[(UO{sub 2}){sub 6}O{sub 2}(OH){sub 6}(btca)]·~6H{sub 2}O (2) has a 3D framework built from 7-fold coordinated uranyl trinuclear units and btca ligands with 1D diamond-shaped channels (~8.5 Å×~8.6 Å). [(UO{sub 2}){sub 2}(H{sub 2}O)(btca)]·4H{sub 2}O (3) has a 3D network constructed by two types of 7-fold coordinated uranium polyhedron. The unique μ{sub 5}-coordination mode of btca in 3 enables the formation of 1D olive-shaped large channels (~4.5 Å×~19 Å). Vibrational modes, thermal stabilities and fluorescence properties have been investigated. - Graphical abstract: Table of content: three new uranium(VI) coordination polymers with pyromellitic acid (H{sub 4}btca) have been synthesized via room temperature and hydrothermal synthesis methods, and structurally characterized. Two to three dimensional (3D) frameworks are revealed. All 3D frameworks have unique 1D large channels. Their vibrational modes, thermal stabilities and photoluminescence properties have been investigated. - Highlights: • Three new coordination polymers of U(VI) with pyromellitic acid (H{sub 4}btca). • Structures from a 2D layer to 3D frameworks with unique 1D channels. • Unusual µ{sub 5}-(η{sub 1}:η{sub 2}:η{sub 1}:η{sub 2:}η{sub 1}) coordination mode of btca ligand. • Vibrational modes, thermal stabilities and luminescent properties reported.

  1. Pricing Decisions of Competing Tobacco Enterprises with Online Channel

    Directory of Open Access Journals (Sweden)

    Rong Zhang

    2015-01-01

    Full Text Available According to the new measurement of launching online distribution channels of tobacco enterprises in China, this paper investigates the tobacco firm’s pricing decisions on the supply chain which consists of two manufacturers and one retailer under three dual-channel structures. Three dual-channel structures include no online channel, only one online channel by one manufacture, and two online channels by two manufacturers. We apply the Stackelberg game to analyze the equilibrium pricing strategies under different structures and try to explore the necessity and advantages of launching online sales channels. The results demonstrate that the substitutability of a product has significant impact on introducing online sales channels, and the online dual-channel structure could result in less profit for manufacturers compared to the traditional retail channel structure; and thus, a dual-channel structure with online sales is not the best strategy for traditional manufacturers. Moreover, when the product is less substitutable, the effect of the tobacco control on the online sales channel is inferior to the traditional channels and vice versa.

  2. The TRPM2 channel: A thermo-sensitive metabolic sensor.

    Science.gov (United States)

    Kashio, Makiko; Tominaga, Makoto

    2017-09-03

    Living organisms continually experience changes in ambient temperature. To detect such temperature changes for adaptive behavioral responses, we evolved the ability to sense temperature. Thermosensitive transient receptor potential (TRP) channels, so-called thermo-TRPs, are involved in many physiologic functions in diverse organisms and constitute important temperature sensors. One of the important roles of thermo-TRPs is detecting ambient temperature in sensory neurons. Importantly, the functional expression of thermo-TRPs is observed not only in sensory neurons but also in tissues and cells that are not exposed to drastic temperature changes, indicating that thermo-TRPs are involved in many physiologic functions within the body's normal temperature range. Among such thermo-TRPs, this review focuses on one thermo-sensitive metabolic sensor in particular, TRPM2, and summarizes recent progress to clarify the regulatory mechanisms and physiologic functions of TRPM2 at body temperature under various metabolic states.

  3. A Crash Course in Calcium Channels.

    Science.gov (United States)

    Zamponi, Gerald W

    2017-12-20

    Much progress has been made in understanding the molecular physiology and pharmacology of calcium channels. Recently, there have been tremendous advances in learning about calcium channel structure and function through crystallography and cryo-electron microscopy studies. Here, I will give an overview of our knowledge about calcium channels, and highlight two recent studies that give important insights into calcium channel structure.

  4. Canonical Transient Receptor Potential (TRPC) 1 Acts as a Negative Regulator for Vanilloid TRPV6-mediated Ca2+ Influx*

    OpenAIRE

    Schindl, Rainer; Fritsch, Reinhard; Jardin, Isaac; Frischauf, Irene; Kahr, Heike; Muik, Martin; Riedl, Maria Christine; Groschner, Klaus; Romanin, Christoph

    2012-01-01

    TRP proteins mostly assemble to homomeric channels but can also heteromerize, preferentially within their subfamilies. The TRPC1 protein is the most versatile member and forms various TRPC channel combinations but also unique channels with the distantly related TRPP2 and TRPV4. We show here a novel cross-family interaction between TRPC1 and TRPV6, a Ca2+ selective member of the vanilloid TRP subfamily. TRPV6 exhibited substantial co-localization and in vivo interaction with TRPC1 in HEK293 ce...

  5. Integrative Approach with Electrophysiological and Theoretical Methods Reveals a New Role of S4 Positively Charged Residues in PKD2L1 Channel Voltage-Sensing.

    Science.gov (United States)

    Numata, Tomohiro; Tsumoto, Kunichika; Yamada, Kazunori; Kurokawa, Tatsuki; Hirose, Shinichi; Nomura, Hideki; Kawano, Mitsuhiro; Kurachi, Yoshihisa; Inoue, Ryuji; Mori, Yasuo

    2017-08-29

    Numerical model-based simulations provide important insights into ion channel gating when experimental limitations exist. Here, a novel strategy combining numerical simulations with patch clamp experiments was used to investigate the net positive charges in the putative transmembrane segment 4 (S4) of the atypical, positively-shifted voltage-dependence of polycystic kidney disease 2-like 1 (PKD2L1) channel. Charge-neutralising mutations (K452Q, K455Q and K461Q) in S4 reduced gating charges, positively shifted the Boltzmann-type activation curve [i.e., open probability (P open )-V curve] and altered the time-courses of activation/deactivation of PKD2L1, indicating that this region constitutes part of a voltage sensor. Numerical reconstruction of wild-type (WT) and mutant PKD2L1-mediated currents necessitated, besides their voltage-dependent gating parameters, a scaling factor that describes the voltage-dependence of maximal conductance, G max . Subsequent single-channel conductance (γ) measurements revealed that voltage-dependence of G max in WT can be explained by the inward-rectifying property of γ, which is greatly changed in PKD2L1 mutants. Homology modelling based on PKD2 and Na V Ab structures suggest that such voltage dependence of P open and γ in PKD2L1 could both reflect the charged state of the S4 domain. The present conjunctive experimental and theoretical approaches provide a framework to explore the undetermined mechanism(s) regulating TRP channels that possess non-classical voltage-dependent properties.

  6. Acid-sensing ion channel (ASIC) structure and function: Insights from spider, snake and sea anemone venoms.

    Science.gov (United States)

    Cristofori-Armstrong, Ben; Rash, Lachlan D

    2017-12-01

    Acid-sensing ion channels (ASICs) are proton-activated cation channels that are expressed in a variety of neuronal and non-neuronal tissues. As proton-gated channels, they have been implicated in many pathophysiological conditions where pH is perturbed. Venom derived compounds represent the most potent and selective modulators of ASICs described to date, and thus have been invaluable as pharmacological tools to study ASIC structure, function, and biological roles. There are now ten ASIC modulators described from animal venoms, with those from snakes and spiders favouring ASIC1, while the sea anemones preferentially target ASIC3. Some modulators, such as the prototypical ASIC1 modulator PcTx1 have been studied in great detail, while some of the newer members of the club remain largely unstudied. Here we review the current state of knowledge on venom derived ASIC modulators, with a particular focus on their molecular interaction with ASICs, what they have taught us about channel structure, and what they might still reveal about ASIC function and pathophysiological roles. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Homologue Structure of the SLAC1 Anion Channel for Closing Stomata in Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Y Chen; L Hu; M Punta; R Bruni; B Hillerich; B Kloss; B Rost; J Love; S Siegelbaum; W Hendrickson

    2011-12-31

    The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. Here we determine the crystal structure of a bacterial homologue (Haemophilus influenzae) of SLAC1 at 1.20 {angstrom} resolution, and use structure-inspired mutagenesis to analyse the conductance properties of SLAC1 channels. SLAC1 is a symmetrical trimer composed from quasi-symmetrical subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated by an extremely conserved phenylalanine residue. Conformational features indicate a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics indicate that selectivity among different anions is largely a function of the energetic cost of ion dehydration.

  8. Structure-activity relationships of the melanocortin tetrapeptide Ac-His-DPhe-Arg-Trp-NH(2) at the mouse melanocortin receptors: part 2 modifications at the Phe position.

    Science.gov (United States)

    Holder, Jerry Ryan; Bauzo, Rayna M; Xiang, Zhimin; Haskell-Luevano, Carrie

    2002-07-04

    The melanocortin pathway is an important participant in skin pigmentation, steroidogenesis, obesity, energy homeostasis and exocrine gland function. The centrally located melanocortin-3 and melanocortin-4 receptors (MC3R, MC4R) are involved in the metabolic and food intake aspects of energy homeostasis and are stimulated by melanocortin agonists such as alpha-melanocyte stimulation hormone (alpha-MSH). The melanocortin agonists contain the putative message sequence "His-Phe-Arg-Trp," and it has been well-documented that inversion of chirality of the Phe to DPhe results in a dramatic increase in melanocortin receptor potency. Herein, we report a tetrapeptide library, based upon the template Ac-His-DPhe-Arg-Trp-NH(2), consisting of 26 members that have been modified at the DPhe(7) position (alpha-MSH numbering) and pharmacologically characterized for agonist and antagonist activity at the mouse melanocortin receptors MC1R, MC3R, MC4R, and MC5R. The most notable results of this study include the identification of the tetrapeptide Ac-His-(pI)DPhe-Arg-Trp-NH(2) that is a full nanomolar agonist at the mMC1 and mMC5 receptors, a mMC3R partial agonist with potent antagonist activity (pA(2) = 7.25, K(i) = 56 nM) and, but unexpectedly, is a potent agonist at the mMC4R (EC(50) = 25 nM). This ligand possesses novel melanocortin receptor pharmacology, as compared to previously reported peptides, and is potentially useful for in vivo studies to differentiate MC3R vs MC4R physiological roles in animal models, such as primates, where "knockout" animals are not viable options. The DNal(2') substitution for DPhe resulted in a mMC3R partial agonist with antagonist activity (pA(2) = 6.5, K(i) = 295 nM) and a mMC4R (pA(2) = 7.8, K(i) = 17 nM) antagonist possessing 60- and 425-fold decreased potency, respectively, as compared with SHU9119 at these receptors. Examination of this DNal(2')-containing tetrapeptide at the F254S and F259S mutant mMC4Rs resulted in agonist activity of this m

  9. Demystifying Mechanosensitive Piezo Ion Channels.

    Science.gov (United States)

    Xu, X Z Shawn

    2016-06-01

    Mechanosensitive channels mediate touch, hearing, proprioception, and blood pressure regulation. Piezo proteins, including Piezo1 and Piezo2, represent a new class of mechanosensitive channels that have been reported to play key roles in most, if not all, of these modalities. The structural architecture and molecular mechanisms by which Piezos act as mechanosensitive channels, however, remain mysterious. Two new studies have now provided critical insights into the atomic structure and molecular basis of the ion permeation and mechano-gating properties of the Piezo1 channel.

  10. Complementary roles of KCa3.1 channels and β1-integrin during alveolar epithelial repair.

    Science.gov (United States)

    Girault, Alban; Chebli, Jasmine; Privé, Anik; Trinh, Nguyen Thu Ngan; Maillé, Emilie; Grygorczyk, Ryszard; Brochiero, Emmanuelle

    2015-09-04

    Extensive alveolar epithelial injury and remodelling is a common feature of acute lung injury and acute respiratory distress syndrome (ARDS) and it has been established that epithelial regeneration, and secondary lung oedema resorption, is crucial for ARDS resolution. Much evidence indicates that K(+) channels are regulating epithelial repair processes; however, involvement of the KCa3.1 channels in alveolar repair has never been investigated before. Wound-healing assays demonstrated that the repair rates were increased in primary rat alveolar cell monolayers grown on a fibronectin matrix compared to non-coated supports, whereas an anti-β1-integrin antibody reduced it. KCa3.1 inhibition/silencing impaired the fibronectin-stimulated wound-healing rates, as well as cell migration and proliferation, but had no effect in the absence of coating. We then evaluated a putative relationship between KCa3.1 channel and the migratory machinery protein β1-integrin, which is activated by fibronectin. Co-immunoprecipitation and immunofluorescence experiments indicated a link between the two proteins and revealed their cellular co-distribution. In addition, we demonstrated that KCa3.1 channel and β1-integrin membrane expressions were increased on a fibronectin matrix. We also showed increased intracellular calcium concentrations as well as enhanced expression of TRPC4, a voltage-independent calcium channel belonging to the large TRP channel family, on a fibronectin matrix. Finally, wound-healing assays showed additive effects of KCa3.1 and TRPC4 inhibitors on alveolar epithelial repair. Taken together, our data demonstrate for the first time complementary roles of KCa3.1 and TRPC4 channels with extracellular matrix and β1-integrin in the regulation of alveolar repair processes.

  11. A novel method for the biosynthesis of deuterated proteins with selective protonation at the aromatic rings of Phe, Tyr and Trp

    International Nuclear Information System (INIS)

    Rajesh, Sundaresan; Nietlispach, Daniel; Nakayama, Hiroshi; Takio, Koji; Laue, Ernest D.; Shibata, Takehiko; Ito, Yutaka

    2003-01-01

    A novel biosynthetic strategy is described for the preparation of deuterated proteins containing protons at the ring carbons of Phe, Tyr and Trp, using the aromatic amino acid precursor shikimic acid. Specific protonation at aromatic side chains, with complete deuteration at C α/β positions was achieved in proteins overexpressed in bacteria grown in shikimate-supplemented D 2 O medium. Co-expression of a shikimate transporter in prototrophic bacteria resulted in protonation levels of 62-79%, whereas complete labeling was accomplished using shikimate auxotrophic bacteria. Our labeling protocol permits the measurement of important aromatic side chain derived distance restraints in perdeuterated proteins that could be utilized to enhance the accuracy of NMR structures calculated using low densities of NOEs from methyl selectively protonated samples

  12. NMR assignments for the amino-terminal residues of trp repressor and their role in DNA binding

    International Nuclear Information System (INIS)

    Arrowsmith, C.H.; Carey, J.; Treat-Clemons, L.; Jardetzky, O.

    1989-01-01

    The trp repressor of Escherichia coli specifically binds to operator DNAs in three operons involved in tryptophan metabolism. The NMR spectra of repressor and a chymotryptic fragment lacking the six amino-terminal residues are compared. Two-dimensional J-correlated spectra of the two forms of the protein are superimposable except for cross-peaks that are associated with the N-terminal region. The chemical shifts and relaxation behavior of the N-terminal resonances suggest mobile arms. Spin-echo experiments on a ternary complex of repressor with L-tryptophan and operator DNA indicate that the termini are also disordered in the complex, although removal of the arms reduces the DNA binding energy. Relaxation measurements on the armless protein show increased mobility for several residues, probably due to helix fraying in the newly exposed N-terminal region. DNA binding by the armless protein does not reduce the mobility of these residues. Thus, it appears that the arms serve to stabilize the N-terminal helix but that this structural role does not explain their contribution to the DNA binding energy. These results suggest that the promiscuous DNA binding by the arms seen in the X-ray crystal structure is found in solution as well

  13. A Novel β-Globin Chain Hemoglobin Variant, Hb Allentown [β137(H15)Val→Trp (GTG>TGG) HBB: c.412_413delinsTG, p.Val138Trp], Associated with Low Oxygen Saturation, Intermittent Aplastic Crises and Splenomegaly.

    Science.gov (United States)

    Collier, Anderson B; Coon, Lea M; Monteleone, Philip; Umaru, Samuel; Swanson, Kenneth C; Hoyer, James D; Oliveira, Jennifer L

    2016-01-01

    Hemoglobin (Hb) variants may be associated with low oxygen saturation and exacerbated episodes of anemia from common stressors such as viral infections. These attributes frequently cause increased clinical concern and unnecessary and expensive testing if not considered early in the evaluation of the patient. Some clinically significant Hb variants result in a normal Hb electrophoresis result, which can be method-dependent. Herein we describe a patient with low oxygen saturation and a history of hemolytic anemia who was subsequently found to carry a novel, unstable β-globin variant that we have named Hb Allentown [β137(H15)Val→Trp (GTG>TGG) HBB: c.412_413delinsTG, p.Val138Trp] for the place of identification of the variant. Hb Allentown is formed by a rare double nucleotide substitution within the same codon. Additionally, positive identification of rare Hb variants characterized by a single method is discouraged, as the Hb variant was misclassified as Hb S-South End or β6(A3)Glu→Val;β132(H10)Lys→Asn (HBB: c.[20A > T;399A > C]) by the initial laboratory.

  14. TRPML3.

    Science.gov (United States)

    Grimm, Christian; Barthmes, Maria; Wahl-Schott, Christian

    2014-01-01

    TRPML3 belongs to the MCOLN (TRPML) subfamily of transient receptor potential (TRP) channels comprising three genes in mammals. Since the discovery of the pain sensing, capsaicin- and heat-activated vanilloid receptor (TRPV1), TRP channels have been found to be involved in regulating almost all kinds of our sensory modalities. Thus, TRP channel members are sensitive to heat or cold; they are involved in pain or osmosensation, vision, hearing, or taste sensation. Loss or mutation of TRPML1 can cause retina degeneration and eventually blindness in mice and men (mucolipidosis type IV). Gain-of-function mutations in TRPML3 cause deafness and circling behavior in mice. A special feature of TRPML channels is their intracellular expression. They mostly reside in membranes of organelles of the endolysosomal system such as early and late endosomes, recycling endosomes, lysosomes, or lysosome-related organelles. Although the physiological roles of TRPML channels within the endolysosomal system are far from being fully understood, it is speculated that they are involved in the regulation of endolysosomal pH, fusion/fission processes, trafficking, autophagy, and/or (hormone) secretion and exocytosis.

  15. TRPV1 channels and the progesterone receptor Sig-1R interact to regulate pain.

    Science.gov (United States)

    Ortíz-Rentería, Miguel; Juárez-Contreras, Rebeca; González-Ramírez, Ricardo; Islas, León D; Sierra-Ramírez, Félix; Llorente, Itzel; Simon, Sidney A; Hiriart, Marcia; Rosenbaum, Tamara; Morales-Lázaro, Sara L

    2018-02-13

    The Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is expressed in nociceptors where, when activated by chemical or thermal stimuli, it functions as an important transducer of painful and itch-related stimuli. Although the interaction of TRPV1 with proteins that regulate its function has been previously explored, their modulation by chaperones has not been elucidated, as is the case for other mammalian TRP channels. Here we show that TRPV1 physically interacts with the Sigma 1 Receptor (Sig-1R), a chaperone that binds progesterone, an antagonist of Sig-1R and an important neurosteroid associated to the modulation of pain. Antagonism of Sig-1R by progesterone results in the down-regulation of TRPV1 expression in the plasma membrane of sensory neurons and, consequently, a decrease in capsaicin-induced nociceptive responses. This is observed both in males treated with a synthetic antagonist of Sig-1R and in pregnant females where progesterone levels are elevated. This constitutes a previously undescribed mechanism by which TRPV1-dependent nociception and pain can be regulated.

  16. Alpha-adducin Gly460Trp polymorphism and hypertension risk: a meta-analysis of 22 studies including 14303 cases and 15961 controls.

    Directory of Open Access Journals (Sweden)

    Kuo Liu

    Full Text Available BACKGROUND: No clear consensus has been reached on the alpha-adducin polymorphism (Gly460Trp and essential hypertension risk. We performed a meta-analysis in an effort to systematically summarize the possible association. METHODOLOGY/PRINCIPAL FINDINGS: Studies were identified by searching MEDLINE and EMBASE databases complemented with perusal of bibliographies of retrieved articles and correspondence with original authors. The fixed-effects model and the random-effects model were applied for dichotomous outcomes to combine the results of the individual studies. We selected 22 studies that met the inclusion criteria including a total of 14303 hypertensive patients and 15961 normotensive controls. Overall, the 460Trp allele showed no statistically significant association with hypertension risk compared to Gly460 allele (P = 0.69, OR = 1.02, 95% CI 0.94-1.10, P(heterogeneity<0.0001 in all subjects. Meta-analysis under other genetic contrasts still did not reveal any significant association in all subjects, Caucasians, East Asians and others. The results were similar but heterogeneity did not persist when sensitivity analyses were limited to these studies. CONCLUSIONS/SIGNIFICANCE: Our meta-analysis failed to provide evidence for the genetic association of α-adducin gene Gly460Trp polymorphism with hypertension. Further studies investigating the effect of genetic networks, environmental factors, individual biological characteristics and their mutual interactions are needed to elucidate the possible mechanism for hypertension in humans.

  17. Nonlinear vs. linear biasing in Trp-cage folding simulations

    Energy Technology Data Exchange (ETDEWEB)

    Spiwok, Vojtěch, E-mail: spiwokv@vscht.cz; Oborský, Pavel; Králová, Blanka [Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, Prague 6 166 28 (Czech Republic); Pazúriková, Jana [Institute of Computer Science, Masaryk University, Botanická 554/68a, 602 00 Brno (Czech Republic); Křenek, Aleš [Institute of Computer Science, Masaryk University, Botanická 554/68a, 602 00 Brno (Czech Republic); Center CERIT-SC, Masaryk Univerzity, Šumavská 416/15, 602 00 Brno (Czech Republic)

    2015-03-21

    Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200 ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energy minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.

  18. Crystal Structure of Hyperthermophilic Endo-β-1,4-glucanase

    Science.gov (United States)

    Zheng, Baisong; Yang, Wen; Zhao, Xinyu; Wang, Yuguo; Lou, Zhiyong; Rao, Zihe; Feng, Yan

    2012-01-01

    Endo-β-1,4-glucanase from thermophilic Fervidobacterium nodosum Rt17-B1 (FnCel5A), a new member of glycosyl hydrolase family 5, is highly thermostable and exhibits the highest activity on carboxymethylcellulose among the reported homologues. To understand the structural basis for the thermostability and catalytic mechanism, we report here the crystal structures of FnCel5A and the complex with glucose at atomic resolution. FnCel5A exhibited a (β/α)8-barrel structure typical of clan GH-A of the glycoside hydrolase families with a large and deep catalytic pocket located in the C-terminal end of the β-strands that may permit substrate access. A comparison of the structure of FnCel5A with related structures from thermopile Clostridium thermocellum, mesophile Clostridium cellulolyticum, and psychrophile Pseudoalteromonas haloplanktis showed significant differences in intramolecular interactions (salt bridges and hydrogen bonds) that may account for the difference in their thermostabilities. The substrate complex structure in combination with a mutagenesis analysis of the catalytic residues implicates a distinctive catalytic module Glu167-His226-Glu283, which suggests that the histidine may function as an intermediate for the electron transfer network between the typical Glu-Glu catalytic module. Further investigation suggested that the aromatic residues Trp61, Trp204, Phe231, and Trp240 as well as polar residues Asn51, His127, Tyr228, and His235 in the active site not only participated in substrate binding but also provided a unique microenvironment suitable for catalysis. These results provide substantial insight into the unique characteristics of FnCel5A for catalysis and adaptation to extreme temperature. PMID:22128157

  19. alpha-helical structural elements within the voltage-sensing domains of a K(+) channel.

    Science.gov (United States)

    Li-Smerin, Y; Hackos, D H; Swartz, K J

    2000-01-01

    Voltage-gated K(+) channels are tetramers with each subunit containing six (S1-S6) putative membrane spanning segments. The fifth through sixth transmembrane segments (S5-S6) from each of four subunits assemble to form a central pore domain. A growing body of evidence suggests that the first four segments (S1-S4) comprise a domain-like voltage-sensing structure. While the topology of this region is reasonably well defined, the secondary and tertiary structures of these transmembrane segments are not. To explore the secondary structure of the voltage-sensing domains, we used alanine-scanning mutagenesis through the region encompassing the first four transmembrane segments in the drk1 voltage-gated K(+) channel. We examined the mutation-induced perturbation in gating free energy for periodicity characteristic of alpha-helices. Our results are consistent with at least portions of S1, S2, S3, and S4 adopting alpha-helical secondary structure. In addition, both the S1-S2 and S3-S4 linkers exhibited substantial helical character. The distribution of gating perturbations for S1 and S2 suggest that these two helices interact primarily with two environments. In contrast, the distribution of perturbations for S3 and S4 were more complex, suggesting that the latter two helices make more extensive protein contacts, possibly interfacing directly with the shell of the pore domain.

  20. Molecular cloning of a preprohormone from Hydra magnipapillata containing multiple copies of Hydra-L Wamide (Leu-Trp-NH2) neuropeptides: evidence for processing at Ser and Asn residues

    DEFF Research Database (Denmark)

    Leviev, I; Williamson, M; Grimmelikhuijzen, C J

    1997-01-01

    The simple, freshwater polyp Hydra is often used as a model to study development in cnidarians. Recently, a neuropeptide, metamorphosis in a hydroid planula larva to become a polyp. Here, we have cloned a preprohormone...... from Hydra magnipapillata containing 11 (eight different) immature neuropeptide sequences that are structurally related to the metamorphosis-inducing neuropeptide from sea anermones. During the final phase of our cloning experiments, another research team independently isolated and sequenced five...... most frequent one being Gly-Pro-Pro-Pro-Gly-Leu-Trp-NH2; Hydra-LWamide l; three copies). Based on their structural similarities with the metamorphosis-inducing neuropeptide from sea anemones, the mature peptides derived from the Hydra-LWamide preprohormone are potential candidates for being...

  1. Rapid effects of 17beta-estradiol on TRPV5 epithelial Ca2+ channels in rat renal cells.

    LENUS (Irish Health Repository)

    Irnaten, Mustapha

    2009-08-01

    The renal distal tubules and collecting ducts play a key role in the control of electrolyte and fluid homeostasis. The discovery of highly calcium selective channels, Transient Receptor Potential Vanilloid 5 (TRPV5) of the TRP superfamily, has clarified the nature of the calcium entry channels. It has been proposed that this channel mediates the critical Ca(2+) entry step in transcellular Ca(2+) re-absorption in the kidney. The regulation of transmembrane Ca(2+) flux through TRPV5 is of particular importance for whole body calcium homeostasis.In this study, we provide evidence that the TRPV5 channel is present in rat cortical collecting duct (RCCD(2)) cells at mRNA and protein levels. We demonstrate that 17beta-estradiol (E(2)) is involved in the regulation of Ca(2+) influx in these cells via the epithelial Ca(2+) channels TRPV5. By combining whole-cell patch-clamp and Ca(2+)-imaging techniques, we have characterized the electrophysiological properties of the TRPV5 channel and showed that treatment with 20-50nM E(2) rapidly (<5min) induced a transient increase in inward whole-cell currents and intracellular Ca(2+) via TRPV5 channels. This rise was significantly prevented when cells were pre-treated with ruthenium red and completely abolished in cells treated with siRNA specifically targeting TRPV5.These data demonstrate for the first time, a novel rapid modulation of endogenously expressed TRPV5 channels by E(2) in kidney cells. Furthermore, the results suggest calcitropic effects of E(2). The results are discussed in relation to present concepts of non-genomic actions of E(2) in Ca(2+) homeostasis.

  2. Resistance mutations of Pro197, Asp376 and Trp574 in the acetohydroxyacid synthase (AHAS) affect pigments, growths, and competitiveness of Descurainia sophia L.

    Science.gov (United States)

    Zhang, Yongzhi; Xu, Yufang; Wang, Shipeng; Li, Xuefeng; Zheng, Mingqi

    2017-11-27

    D. Sophia is one of the most problematic weed species infesting winter wheat in China, and has evolved high resistance to tribenuron-methyl. Amino acid substitutions at site of Pro197, Asp376 and Trp574 in acetohydroxyacid synthase (AHAS) were mainly responsible for D. sophia resistance to tribenuron-methyl. In this study, D. sophia plant individually homozygous for specific AHAS mutation (Pro197Leu, Pro197His, Pro197Ser, Pro197Thr, Asp376Glu and Trp574Leu) were generated. In addition, the effects of resistance mutations on pigments, growths and competitiveness of susceptible (S) and resistant (R) plants of D. sophia were investigated. The results indicated the R plants carrying Pro197Leu or Pro197His or Asp376Glu or Trp574Leu displayed stronger competitiveness than S plants. The adverse effects on R plants aggravated with the increase of R plants proportion, which made the R plants against domination the weed community in absent of herbicide selection. Therefore, these resistance mutation have no obvious adverse effects on the pigments (chlorophyll a, chlorophyll b and carotenoid), relative growth rates (RGR), leaf area ratio (LAR) and net assimilation rate (NAR) of R plants.

  3. Molecular dynamics study of homo-oligomeric ion channels: Structures of the surrounding lipids and dynamics of water movement

    Directory of Open Access Journals (Sweden)

    Thuy Hien Nguyen

    2018-03-01

    Full Text Available Molecular dynamics simulations were used to study the structural perturbations of lipids surrounding transmembrane ion channel forming helices/helical bundles and the movement of water within the pores of the ion-channels/bundles. Specifically, helical monomers to hexameric helical bundles embedded in palmitoyl-oleoyl-phosphatidyl-choline (POPC lipid bilayer were studied. Two amphipathic α-helices with the sequence Ac-(LSLLLSL3-NH2 (LS2, and Ac-(LSSLLSL3-NH2 (LS3, which are known to form ion channels, were used. To investigate the surrounding lipid environment, we examined the hydrophobic mismatch, acyl chain order parameter profiles, lipid head-to-tail vector projection on the membrane surface, and the lipid headgroup vector projection. We find that the lipid structure is perturbed within approximately two lipid solvation shells from the protein bundle for each system (~15.0 Å. Beyond two lipid “solvation” shells bulk lipid bilayer properties were observed in all systems. To understand water flow, we enumerated each time a water molecule enters or exited the channel, which allowed us to calculate the number of water crossing events and their rates, and the residence time of water in the channel. We correlate the rate of water crossing with the structural properties of these ion channels and find that the movements of water are predominantly governed by the packing and pore diameter, rather than the topology of each peptide or the pore (hydrophobic or hydrophilic. We show that the crossing events of water fit quantitatively to a stochastic process and that water molecules are traveling diffusively through the pores. These lipid and water findings can be used for understanding the environment within and around ion channels. Furthermore, these findings can benefit various research areas such as rational design of novel therapeutics, in which the drug interacts with membranes and transmembrane proteins to enhance the efficacy or reduce off

  4. The Broken Ring: Reduced Aromaticity in Lys-Trp Cations and High pH Tautomer Correlates with Lower Quantum Yield and Shorter Lifetimes

    Science.gov (United States)

    2015-01-01

    Several nonradiative processes compete with tryptophan fluorescence emission. The difficulty in spectral interpretation lies in associating specific molecular environmental features with these processes and thereby utilizing the fluorescence spectral data to identify the local environment of tryptophan. Here, spectroscopic and molecular modeling study of Lys-Trp dipeptide charged species shows that backbone-ring interactions are undistinguished. Instead, quantum mechanical ground state isosurfaces reveal variations in indole π electron distribution and density that parallel charge (as a function of pK1, pK2, and pKR) on the backbone and residues. A pattern of aromaticity-associated quantum yield and fluorescence lifetime changes emerges. Where quantum yield is high, isosurfaces have a charge distribution similar to the highest occupied molecular orbital (HOMO) of indole, which is the dominant fluorescent ground state of the 1La transition dipole moment. Where quantum yield is low, isosurface charge distribution over the ring is uneven, diminished, and even found off ring. At pH 13, the indole amine is deprotonated, and Lys-Trp quantum yield is extremely low due to tautomer structure that concentrates charge on the indole amine; the isosurface charge distribution bears scant resemblance to the indole HOMO. Such greatly diminished fluorescence has been observed for proteins where the indole nitrogen is hydrogen bonded, lending credence to the association of aromaticity changes with diminished quantum yield in proteins as well. Thus tryptophan ground state isosurfaces are an indicator of indole aromaticity, signaling the partition of excitation energy between radiative and nonradiative processes. PMID:24882092

  5. α-Helical Structural Elements within the Voltage-Sensing Domains of a K+ Channel

    Science.gov (United States)

    Li-Smerin, Yingying; Hackos, David H.; Swartz, Kenton J.

    2000-01-01

    Voltage-gated K+ channels are tetramers with each subunit containing six (S1–S6) putative membrane spanning segments. The fifth through sixth transmembrane segments (S5–S6) from each of four subunits assemble to form a central pore domain. A growing body of evidence suggests that the first four segments (S1–S4) comprise a domain-like voltage-sensing structure. While the topology of this region is reasonably well defined, the secondary and tertiary structures of these transmembrane segments are not. To explore the secondary structure of the voltage-sensing domains, we used alanine-scanning mutagenesis through the region encompassing the first four transmembrane segments in the drk1 voltage-gated K+ channel. We examined the mutation-induced perturbation in gating free energy for periodicity characteristic of α-helices. Our results are consistent with at least portions of S1, S2, S3, and S4 adopting α-helical secondary structure. In addition, both the S1–S2 and S3–S4 linkers exhibited substantial helical character. The distribution of gating perturbations for S1 and S2 suggest that these two helices interact primarily with two environments. In contrast, the distribution of perturbations for S3 and S4 were more complex, suggesting that the latter two helices make more extensive protein contacts, possibly interfacing directly with the shell of the pore domain. PMID:10613917

  6. A novel PKD2L1 C-terminal domain critical for trimerization and channel function.

    Science.gov (United States)

    Zheng, Wang; Hussein, Shaimaa; Yang, JungWoo; Huang, Jun; Zhang, Fan; Hernandez-Anzaldo, Samuel; Fernandez-Patron, Carlos; Cao, Ying; Zeng, Hongbo; Tang, Jingfeng; Chen, Xing-Zhen

    2015-03-30

    As a transient receptor potential (TRP) superfamily member, polycystic kidney disease 2-like-1 (PKD2L1) is also called TRPP3 and has similar membrane topology as voltage-gated cation channels. PKD2L1 is involved in hedgehog signaling, intestinal development, and sour tasting. PKD2L1 and PKD1L3 form heterotetramers with 3:1 stoichiometry. C-terminal coiled-coil-2 (CC2) domain (G699-W743) of PKD2L1 was reported to be important for its trimerization but independent studies showed that CC2 does not affect PKD2L1 channel function. It thus remains unclear how PKD2L1 proteins oligomerize into a functional channel. By SDS-PAGE, blue native PAGE and mutagenesis we here identified a novel C-terminal domain called C1 (K575-T622) involved in stronger homotrimerization than the non-overlapping CC2, and found that the PKD2L1 N-terminus is critical for dimerization. By electrophysiology and Xenopus oocyte expression, we found that C1, but not CC2, is critical for PKD2L1 channel function. Our co-immunoprecipitation and dynamic light scattering experiments further supported involvement of C1 in trimerization. Further, C1 acted as a blocking peptide that inhibits PKD2L1 trimerization as well as PKD2L1 and PKD2L1/PKD1L3 channel function. Thus, our study identified C1 as the first PKD2L1 domain essential for both PKD2L1 trimerization and channel function, and suggest that PKD2L1 and PKD2L1/PKD1L3 channels share the PKD2L1 trimerization process.

  7. Substance P Activates Ca2+-Permeable Nonselective Cation Channels through a Phosphatidylcholine-Specific Phospholipase C Signaling Pathway in nNOS-Expressing GABAergic Neurons in Visual Cortex.

    Science.gov (United States)

    Endo, Toshiaki; Yanagawa, Yuchio; Komatsu, Yukio

    2016-02-01

    To understand the functions of the neocortex, it is essential to characterize the properties of neurons constituting cortical circuits. Here, we focused on a distinct group of GABAergic neurons that are defined by a specific colocalization of intense labeling for both neuronal nitric oxide synthase (nNOS) and substance P (SP) receptor [neurokinin 1 (NK1) receptors]. We investigated the mechanisms of the SP actions on these neurons in visual cortical slices obtained from young glutamate decarboxylase 67-green fluorescent protein knock-in mice. Bath application of SP induced a nonselective cation current leading to depolarization that was inhibited by the NK1 antagonists in nNOS-immunopositive neurons. Ruthenium red and La(3+), transient receptor potential (TRP) channel blockers, suppressed the SP-induced current. The SP-induced current was mediated by G proteins and suppressed by D609, an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), but not by inhibitors of phosphatidylinositol-specific PLC, adenylate cyclase or Src tyrosine kinases. Ca(2+) imaging experiments under voltage clamp showed that SP induced a rise in intracellular Ca(2+) that was abolished by removal of extracellular Ca(2+) but not by depletion of intracellular Ca(2+) stores. These results suggest that SP regulates nNOS neurons by activating TRP-like Ca(2+)-permeable nonselective cation channels through a PC-PLC-dependent signaling pathway. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. ANN Model for Predicting the Impact of Submerged Aquatic Weeds Existence on the Hydraulic Performance of Branched Open Channel System Accompanied by Water Structures

    International Nuclear Information System (INIS)

    Abdeen, Mostafa A. M.; Abdin, Alla E.

    2007-01-01

    The existence of hydraulic structures in a branched open channel system urges the need for considering the gradually varied flow criterion in evaluating the different hydraulic characteristics in this type of open channel system. Computations of hydraulic characteristics such as flow rates and water surface profiles in branched open channel system with hydraulic structures require tremendous numerical effort especially when the flow cannot be assumed uniform. In addition, the existence of submerged aquatic weeds in this branched open channel system adds to the complexity of the evaluation of the different hydraulic characteristics for this system. However, this existence of aquatic weeds can not be neglected since it is very common in Egyptian open channel systems. Artificial Neural Network (ANN) has been widely utilized in the past decade in civil engineering applications for the simulation and prediction of the different physical phenomena and has proven its capabilities in the different fields. The present study aims towards introducing the use of ANN technique to model and predict the impact of submerged aquatic weeds existence on the hydraulic performance of branched open channel system. Specifically the current paper investigates a branched open channel system that consists of main channel supplies water to two branch channels that are infested by submerged aquatic weeds and have water structures such as clear over fall weirs and sluice gates. The results of this study showed that ANN technique was capable, with small computational effort and high accuracy, of predicting the impact of different infestation percentage for submerged aquatic weeds on the hydraulic performance of branched open channel system with two different hydraulic structures

  9. Large woody debris input and its influence on channel structure in agricultural lands of Southeast Brazil.

    Science.gov (United States)

    de Paula, Felipe Rossetti; Ferraz, Silvio Frosini de Barros; Gerhard, Pedro; Vettorazzi, Carlos Alberto; Ferreira, Anderson

    2011-10-01

    Riparian forests are important for the structure and functioning of stream ecosystems, providing structural components such as large woody debris (LWD). Changes in these forests will cause modifications in the LWD input to streams, affecting their structure. In order to assess the influence of riparian forests changes in LWD supply, 15 catchments (third and fourth order) with riparian forests at different conservation levels were selected for sampling. In each catchment we quantified the abundance, volume and diameter of LWD in stream channels; the number, area and volume of pools formed by LWD and basal area and tree diameter of riparian forest. We found that riparian forests were at a secondary successional stage with predominantly young trees (diameter at breast height LWD abundance, volume, frequency of LWD pools with subunits and area and volume of LWD pools. LWD diameter, LWD that form pools diameter and frequency of LWD pools without subunits did not differ between stream groups. Regression analyses showed that LWD abundance and volume, and frequency of LWD pools (with and without subunits) were positively related with the proportion of riparian forest. LWD diameter was not correlated to riparian tree diameter. The frequency of LWD pools was correlated to the abundance and volume of LWD, but characteristics of these pools (area and volume) were not correlated to the diameter of LWD that formed the pools. These results show that alterations in riparian forest cause modifications in the LWD abundance and volume in the stream channel, affecting mainly the structural complexity of these ecosystems (reduction in the number and structural characteristics of LWD pools). Our results also demonstrate that riparian forest conservation actions must consider not only its extension, but also successional stage to guarantee the quantity and quality of LWD necessary to enable the structuring of stream channels.

  10. A low-voltage flash memory cell utilizing the gate-injection program/erase method with a recessed channel structure

    International Nuclear Information System (INIS)

    Wu Dake; Huang Ru; Wang Pengfei; Tang Poren; Wang Yangyuan

    2008-01-01

    In this paper, a low-voltage recessed channel SONOS flash memory using the gate-injection program/erase method is proposed and investigated for NAND application. It is shown that the proposed flash memory can achieve 8 V lower programming voltage compared with planar flash memory, due to the effective capacitance coupling and the electric-field enhancement by combining the recessed channel structure and the gate-injection program/erase method. In addition, more than 30% larger threshold voltage window and improved short channel effects can be obtained in the proposed flash memory

  11. Structural analysis of peptides that fill sites near the active center of the two different enzyme molecules by artificial intelligence and computer simulations

    Science.gov (United States)

    Nishiyama, Katsuhiko

    2018-05-01

    Using artificial intelligence, the binding styles of 167 tetrapeptides were predicted in the active site of papain and cathepsin K. Five tetrapeptides (Asn-Leu-Lys-Trp, Asp-Gln-Trp-Gly, Cys-Gln-Leu-Arg, Gln-Leu-Trp-Thr and Arg-Ser-Glu-Arg) were found to bind sites near the active center of both papain and cathepsin K. These five tetrapeptides have the potential to also bind sites of other cysteine proteases, and structural characteristics of these tetrapeptides should aid the design of a common inhibitor of cysteine proteases. Smart application of artificial intelligence should accelerate data mining of important complex systems.

  12. Amorphous Oxide Thin Film Transistors with Nitrogen-Doped Hetero-Structure Channel Layers

    Directory of Open Access Journals (Sweden)

    Haiting Xie

    2017-10-01

    Full Text Available The nitrogen-doped amorphous oxide semiconductor (AOS thinfilm transistors (TFTs with double-stacked channel layers (DSCL were prepared and characterized. The DSCL structure was composed of nitrogen-doped amorphous InGaZnO and InZnO films (a-IGZO:N/a-IZO:N or a-IZO:N/a-IGZO:N and gave the corresponding TFT devices large field-effect mobility due to the presence of double conduction channels. The a-IZO:N/a-IGZO:N TFTs, in particular, showed even better electrical performance (µFE = 15.0 cm2・V−1・s−1, SS = 0.5 V/dec, VTH = 1.5 V, ION/IOFF = 1.1 × 108 and stability (VTH shift of 1.5, −0.5 and −2.5 V for positive bias-stress, negative bias-stress, and thermal stress tests, respectively than the a-IGZO:N/a-IZO:N TFTs. Based on the X-ray photoemission spectroscopy measurements and energy band analysis, we assumed that the optimized interface trap states, the less ambient gas adsorption, and the better suppression of oxygen vacancies in the a-IZO:N/a-IGZO:N hetero-structures might explain the better behavior of the corresponding TFTs.

  13. Structure-activity relationships of the melanocortin tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 at the mouse melanocortin receptors. Part 3: modifications at the Arg position.

    Science.gov (United States)

    Holder, Jerry Ryan; Xiang, Zhimin; Bauzo, Rayna M; Haskell-Luevano, Carrie

    2003-01-01

    The melanocortin pathway is involved in the regulation of several physiological functions including skin pigmentation, steroidogenesis, obesity, energy homeostasis, and exocrine gland function. This melanocortin pathway consists of five known G-protein coupled receptors, endogenous agonists derived from the proopiomelanocortin (POMC) gene transcript, the endogenous antagonists Agouti and the Agouti-related protein (AGRP) and signals through the intracellular cAMP signal transduction pathway. The melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) located in the brain are implicated as participating in the metabolic and food intake aspects of energy homeostasis and are stimulated by melanocortin agonists such as alpha-melanocyte stimulation hormone (alpha-MSH). All the endogenous (POMC-derived) melanocortin agonists contain the putative message sequence "His-Phe-Arg-Trp." Herein, we report 12 tetrapeptides, based upon the template Ac-His(6)-DPhe(7)-Arg(8)-Trp(9)-NH(2) (alpha-MSH numbering) that have been modified at the Arg(8) position by neutral, basic, or acidic amino acid side chains. These peptides have been pharmacologically characterized for agonist activity at the mouse melanocortin receptors MC1R, MC3R, MC4R, and MC5R. The most notable results of this study include the observation that removal of the guanidinyl side chain moiety results in decreased melanocortin receptor potency, but that this Arg(8) side chain is not critical for melanocortin receptor agonist activity. Additionally, incorporation of the homoArg(8) residue results in 56-fold MC4R versus MC3R selectivity, and the Orn(8) residue results in 123-fold MC4R versus MC5R and 63-fold MC5R versus MC3R selectivity. Copyright 2002 Elsevier Science Inc.

  14. Spark Channels

    Energy Technology Data Exchange (ETDEWEB)

    Haydon, S. C. [Department of Physics, University of New England, Armidale, NSW (Australia)

    1968-04-15

    A brief summary is given of the principal methods used for initiating spark channels and the various highly time-resolved techniques developed recently for studies with nanosecond resolution. The importance of the percentage overvoltage in determining the early history and subsequent development of the various phases of the growth of the spark channel is discussed. An account is then given of the recent photographic, oscillographic and spectroscopic investigations of spark channels initiated by co-axial cable discharges of spark gaps at low [{approx} 1%] overvoltages. The phenomena observed in the development of the immediate post-breakdown phase, the diffuse glow structure, the growth of the luminous filament and the final formation of the spark channel in hydrogen are described. A brief account is also given of the salient features emerging from corresponding studies of highly overvolted spark gaps in which the spark channel develops from single avalanche conditions. The essential differences between the two types of channel formation are summarized and possible explanations of the general features are indicated. (author)

  15. Structure-function relation of phospholamban: modulation of channel activity as a potential regulator of SERCA activity.

    Directory of Open Access Journals (Sweden)

    Serena Smeazzetto

    Full Text Available Phospholamban (PLN is a small integral membrane protein, which binds and inhibits in a yet unknown fashion the Ca(2+-ATPase (SERCA in the sarcoplasmic reticulum. When reconstituted in planar lipid bilayers PLN exhibits ion channel activity with a low unitary conductance. From the effect of non-electrolyte polymers on this unitary conductance we estimate a narrow pore with a diameter of ca. 2.2 Å for this channel. This value is similar to that reported for the central pore in the structure of the PLN pentamer. Hence the PLN pentamer, which is in equilibrium with the monomer, is the most likely channel forming structure. Reconstituted PLN mutants, which either stabilize (K27A and R9C or destabilize (I47A the PLN pentamer and also phosphorylated PLN still generate the same unitary conductance of the wt/non-phosphorylated PLN. However the open probability of the phosphorylated PLN and of the R9C mutant is significantly lower than that of the respective wt/non-phosphorylated control. In the context of data on PLN/SERCA interaction and on Ca(2+ accumulation in the sarcoplasmic reticulum the present results are consistent with the view that PLN channel activity could participate in the balancing of charge during Ca(2+ uptake. A reduced total conductance of the K(+ transporting PLN by phosphorylation or by the R9C mutation may stimulate Ca(2+ uptake in the same way as an inhibition of K(+ channels in the SR membrane. The R9C-PLN mutation, a putative cause of dilated cardiomyopathy, might hence affect SERCA activity also via its inherent low open probability.

  16. Two-Channel Dielectric Wake Field Accelerator

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2012-01-01

    Experimental results are reported for test beam acceleration and deflection in a two-channel, cm-scale, rectangular dielectric-lined wakefield accelerator structure energized by a 14-MeV drive beam. The dominant waveguide mode of the structure is at ∼30 GHz, and the structure is configured to exhibit a high transformer ratio (∼12:1). Accelerated bunches in the narrow secondary channel of the structure are continuously energized via Cherenkov radiation that is emitted by a drive bunch moving in the wider primary channel. Observed energy gains and losses, transverse deflections, and changes in the test bunch charge distribution compare favorably with predictions of theory.

  17. Identification of Molecular Fingerprints in Human Heat Pain Thresholds by Use of an Interactive Mixture Model R Toolbox (AdaptGauss).

    Science.gov (United States)

    Ultsch, Alfred; Thrun, Michael C; Hansen-Goos, Onno; Lötsch, Jörn

    2015-10-28

    Biomedical data obtained during cell experiments, laboratory animal research, or human studies often display a complex distribution. Statistical identification of subgroups in research data poses an analytical challenge. Here were introduce an interactive R-based bioinformatics tool, called "AdaptGauss". It enables a valid identification of a biologically-meaningful multimodal structure in the data by fitting a Gaussian mixture model (GMM) to the data. The interface allows a supervised selection of the number of subgroups. This enables the expectation maximization (EM) algorithm to adapt more complex GMM than usually observed with a noninteractive approach. Interactively fitting a GMM to heat pain threshold data acquired from human volunteers revealed a distribution pattern with four Gaussian modes located at temperatures of 32.3, 37.2, 41.4, and 45.4 °C. Noninteractive fitting was unable to identify a meaningful data structure. Obtained results are compatible with known activity temperatures of different TRP ion channels suggesting the mechanistic contribution of different heat sensors to the perception of thermal pain. Thus, sophisticated analysis of the modal structure of biomedical data provides a basis for the mechanistic interpretation of the observations. As it may reflect the involvement of different TRP thermosensory ion channels, the analysis provides a starting point for hypothesis-driven laboratory experiments.

  18. The feasible study of the water flow in the micro channel with the Y-junction and narrow structure for various flow rates

    Directory of Open Access Journals (Sweden)

    Jasikova D.

    2015-01-01

    Full Text Available Here we present the results of measurement in micro-channel with the Y-junction and narrow structure for various flow rates. There was used BSG micro-channel with trapezoidal cross-section. The parameters of the channel are described in the paper. The flow in the micro-channel was invested with micro-PIV technique and various flow rates were set on each inlet. The resulting flow rate in the steady area follows the laminar flow with very low Re 30. Here we are focused on the flow characteristic in the Y-junction and in selected narrow structure. The fluid flow is evaluated with vector and scalar maps and the profile plots that were taken in the point of interest.

  19. A Common Structural Component for β-Subunit Mediated Modulation of Slow Inactivation in Different KV Channels

    Directory of Open Access Journals (Sweden)

    Nathalie Strutz-Seebohm

    2013-06-01

    Full Text Available Background/Aims: Potassium channels are tetrameric proteins providing potassium selective passage through lipid embedded proteinaceous pores with highest fidelity. The selectivity results from binding to discrete potassium binding sites and stabilization of a hydrated potassium ion in a central internal cavity. The four potassium binding sites, generated by the conserved TTxGYGD signature sequence are formed by the backbone carbonyls of the amino acids TXGYG. Residues KV1.5-Val481, KV4.3-Leu368 and KV7.1- Ile 313 represent the amino acids in the X position of the respective channels. Methods: Here, we study the impact of these residues on ion selectivity, permeation and inactivation kinetics as well as the modulation by β-subunits using site-specific mutagenesis, electrophysiological analyses and molecular dynamics simulations. Results: We identify this position as key in modulation of slow inactivation by structurally dissimilar β-subunits in different KV channels. Conclusion: We propose a model in which structural changes accompanying activation and β-subunit modulation allosterically constrain the backbone carbonyl oxygen atoms via the side chain of the respective X-residue in the signature sequence to reduce conductance during slow inactivation.

  20. Discovery of melanocortin ligands via a double simultaneous substitution strategy based on the Ac-His-DPhe-Arg-Trp-NH2 template.

    Science.gov (United States)

    Todorovic, Aleksandar; Lensing, Cody J; Holder, Jerry Ryan; Scott, Joseph W; Sorensen, Nicholas B; Haskell-Luevano, Carrie

    2018-05-21

    The melanocortin system regulates an array of diverse physiological functions including pigmentation, feeding behavior, energy homeostasis, cardiovascular regulation, sexual function, and steroidogenesis. Endogenous melanocortin agonist ligands all possess the minimal messaging tetrapeptide sequence His-Phe-Arg-Trp. Based on this endogenous sequence, the Ac-His1-DPhe2-Arg3-Trp4-NH 2 tetrapeptide has previously been shown to be a useful scaffold when utilizing traditional positional scanning approaches to modify activity at the various melanocortin receptors (MC1-5R). The study reported herein was undertaken to evaluate a double simultaneous substitution strategy as an approach to further diversify the Ac-His1-DPhe2-Arg3-Trp4-NH 2 tetrapeptide with concurrent introduction of natural and unnatural amino acids at positions 1, 2, or 4 as well as an octanoyl residue at the N-terminus. The designed library includes the following combinations: (A) double simultaneous substitution at capping group position (Ac) together with position 1, 2, or 4, (B) double simultaneous substitution at position 1 and 2, (C) double simultaneous substitution at position 1 and 4, and (D) double simultaneous substitution at position 2 and 4. Several lead ligands with unique pharmacologies were discovered in the current study including antagonists targeting the neuronal mMC3R with minimal agonist activity and ligands with selective profiles for the various melanocortin subtypes. The results suggest that the double simultaneous substitution strategy is a suitable approach in altering melanocortin receptor potency, selectivity, or converting agonists into antagonists and vice versa.

  1. Near-membrane dynamics and capture of TRPM8 channels within transient confinement domains.

    Directory of Open Access Journals (Sweden)

    Luis A Veliz

    Full Text Available BACKGROUND: The cold and menthol receptor, TRPM8, is a non-selective cation channel expressed in a subset of peripheral neurons that is responsible for neuronal detection of environmental cold stimuli. It was previously shown that members of the transient receptor potential (TRP family of ion channels are translocated toward the plasma membrane (PM in response to agonist stimulation. Because the spatial and temporal dynamics of cold receptor cell-surface residence may determine neuronal activity, we hypothesized that the movement of TRPM8 to and from the PM might be a regulated process. Single particle tracking (SPT is a useful tool for probing the organization and dynamics of protein constituents in the plasma membrane. METHODOLOGY/PRINCIPAL FINDINGS: We used SPT to study the receptor dynamics and describe membrane/near-membrane behavior of particles containing TRPM8-EGFP in transfected HEK-293T and F-11 cells. Cells were imaged using total internal reflection fluorescence (TIRF microscopy and the 2D and 3D trajectories of TRPM8 molecules were calculated by analyzing mean-square particle displacement against time. Four characteristic types of motion were observed: stationary mode, simple Brownian diffusion, directed motion, and confined diffusion. In the absence of cold or menthol to activate the channel, most TRPM8 particles move in network covering the PM, periodically lingering for 2-8 s in confined microdomains of about 800 nm radius. Removing cholesterol with methyl-beta-cyclodextrin (MβCD stabilizes TRPM8 motion in the PM and is correlated with larger TRPM8 current amplitude that results from an increase in the number of available channels without a change in open probability. CONCLUSIONS/SIGNIFICANCE: These results reveal a novel mechanism for regulating TRPM8 channel activity, and suggest that PM dynamics may play an important role in controlling electrical activity in cold-sensitive neurons.

  2. Heavy metal cations permeate the TRPV6 epithelial cation channel.

    Science.gov (United States)

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A

    2011-01-01

    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Structural insights into substrate and inhibitor binding sites in human indoleamine 2,3-dioxygenase 1

    Energy Technology Data Exchange (ETDEWEB)

    Lewis-Ballester, Ariel; Pham, Khoa N.; Batabyal, Dipanwita; Karkashon, Shay; Bonanno, Jeffrey B.; Poulos, Thomas L.; Yeh, Syun-Ru (Einstein); (UCI)

    2017-11-22

    Human indoleamine 2,3-dioxygenase 1 (hIDO1) is an attractive cancer immunotherapeutic target owing to its role in promoting tumoral immune escape. However, drug development has been hindered by limited structural information. Here, we report the crystal structures of hIDO1 in complex with its substrate, Trp, an inhibitor, epacadostat, and/or an effector, indole ethanol (IDE). The data reveal structural features of the active site (Sa) critical for substrate activation; in addition, they disclose a new inhibitor-binding mode and a distinct small molecule binding site (Si). Structure-guided mutation of a critical residue, F270, to glycine perturbs the Si site, allowing structural determination of an inhibitory complex, where both the Sa and Si sites are occupied by Trp. The Si site offers a novel target site for allosteric inhibitors and a molecular explanation for the previously baffling substrate-inhibition behavior of the enzyme. Taken together, the data open exciting new avenues for structure-based drug design.

  4. A Mathematica package for calculation of planar channeling radiation spectra of relativistic electrons channeled in a diamond-structure single crystal (quantum approach)

    Science.gov (United States)

    Azadegan, B.

    2013-03-01

    The presented Mathematica code is an efficient tool for simulation of planar channeling radiation spectra of relativistic electrons channeled along major crystallographic planes of a diamond-structure single crystal. The program is based on the quantum theory of channeling radiation which has been successfully applied to study planar channeling at electron energies between 10 and 100 MeV. Continuum potentials for different planes of diamond, silicon and germanium single crystals are calculated using the Doyle-Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the one-dimensional Schrödinger equation. The code is designed to calculate the electron wave functions, transverse electron states in the planar continuum potential, transition energies, line widths of channeling radiation and depth dependencies of the population of quantum states. Finally the spectral distribution of spontaneously emitted channeling radiation is obtained. The simulation of radiation spectra considerably facilitates the interpretation of experimental data. Catalog identifier: AEOH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 446 No. of bytes in distributed program, including test data, etc.: 209805 Distribution format: tar.gz Programming language: Mathematica. Computer: Platforms on which Mathematica is available. Operating system: Operating systems on which Mathematica is available. RAM: 1 MB Classification: 7.10. Nature of problem: Planar channeling radiation is emitted by relativistic charged particles during traversing a single crystal in direction parallel to a crystallographic plane. Channeling is modeled as the motion

  5. Connexin 43 Channels are Essential for Normal Bone Structure and Osteocyte Viability

    Science.gov (United States)

    Xu, Huiyun; Gu, Sumin; Riquelme, Manuel A.; Burra, Sirisha; Callaway, Danielle; Cheng, Hongyun; Guda, Teja; Schmitz, James; Fajardo, Roberto J.; Werner, Sherry L.; Zhao, Hong; Shang, Peng; Johnson, Mark L.; Bonewald, Lynda F.; Jiang, Jean X.

    2014-01-01

    Connexin (Cx) 43 serves important roles in bone function and development. Targeted deletion of Cx43 in osteoblasts or osteocytes leads to increased osteocyte apoptosis, osteoclast recruitment, and reduced biomechanical properties. Cx43 forms both gap junction channels and hemichannels, which mediate the communication between adjacent cells or between cell and extracellular environments, respectively. Two transgenic mouse models driven by a DMP1 promoter with the overexpression of dominant negative Cx43 mutants were generated to dissect the functional contribution of Cx43 gap junction channels and hemichannels in osteocytes. The R76W mutant blocks gap junction channel, but not hemichannel function, and the Δ130-136 mutant inhibits activity of both types of channels. Δ130-136 mice showed a significant increase in bone mineral density compared to WT and R76W mice. MicroCT analyses revealed a significant increase in total tissue and bone area in midshaft cortical bone of Δ130-136 mice. The bone marrow cavity was expanded, whereas the cortical thickness was increased and associated with increased bone formation along the periosteal area. However, there is no significant alteration in the structure of trabecular bone. Histologic sections of the midshaft showed increased apoptotic osteocytes in Δ130-136, but not in WT and R76W, mice which correlated with altered biomechanical and estimated bone material properties. Osteoclasts were increased along the endocortical surface in both transgenic mice with a greater effect in Δ130-136 mice which likely contributed to the increased marrow cavity. Interestingly, the overall expression of serum bone formation and resorption markers were higher in R76W mice. These findings suggest that osteocytic Cx43 channels play distinctive roles in the bone; hemichannels play a dominant role in regulating osteocyte survival, endocortical bone resorption and periosteal apposition, and gap junction communication is involved in the process of

  6. Voltage-Gated Calcium Channels

    Science.gov (United States)

    Zamponi, Gerald Werner

    Voltage Gated Calcium Channels is the first comprehensive book in the calcium channel field, encompassing over thirty years of progress towards our understanding of calcium channel structure, function, regulation, physiology, pharmacology, and genetics. This book balances contributions from many of the leading authorities in the calcium channel field with fresh perspectives from risings stars in the area, taking into account the most recent literature and concepts. This is the only all-encompassing calcium channel book currently available, and is an essential resource for academic researchers at all levels in the areas neuroscience, biophysics, and cardiovascular sciences, as well as to researchers in the drug discovery area.

  7. Preparation of human Melanocortin-4 receptor agonist libraries: linear peptides X-Y-DPhe7-Arg8-Trp(or 2-Nal)9-Z-NH2.

    Science.gov (United States)

    Cheung, Adrian Wai-Hing; Qi, Lida; Gore, Vijay; Chu, Xin-Jie; Bartkovitz, David; Kurylko, Grazyna; Swistok, Joseph; Danho, Waleed; Chen, Li; Yagaloff, Keith

    2005-12-15

    Two libraries of hMC4R agonists, X-Y-DPhe(7)-Arg(8)-2-Nal(9)-Z-NH(2) and X-Y-DPhe(7)-Arg(8)-Trp(9)-Z-NH(2), totaling 185 peptides were prepared using Irori radiofrequency tagging technology and Argonaut Quest 210 Synthesizer, where X stands for N-caps, Y for His(6) surrogates and Z for Gly(10) surrogates. As a result of this study, His-modified pentapeptides with Trp were found to be more hMC4R potent than the corresponding 2-Nal analogs, novel N-caps and Gly surrogates were identified and 19 new peptides which are potent hMC4R agonists (EC(50) 1-15nM) and selective against hMC1R were discovered.

  8. Differential role of TRP channels in prostate cancer.

    NARCIS (Netherlands)

    Prevarskaya, N.; Flourakis, M.; Bidaux, G.; Thebault, S.C.; Skryma, R.

    2007-01-01

    A major clinical problem with PC (prostate cancer) is the cell's ability to survive and proliferate upon androgen withdrawal. Indeed, deregulated cell differentiation and proliferation, together with the suppression of apoptosis, provides the condition for abnormal tissue growth. Here, we examine

  9. A Better Understanding of Protein Structure and Function by the Synthesis and Incorporation of Selenium- and Tellurium Containing Tryptophan Analogs

    Energy Technology Data Exchange (ETDEWEB)

    Helmey, Sherif Samir [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Bioscience Division; Belmont Univ., Nashville, TN (United States). Dept. of Chemistry and Physics; Rice, Ambrose Eugene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Bioscience Division; Belmont Univ., Nashville, TN (United States). Dept. of Chemistry and Physics; Hatch, Duane Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Bioscience Division; Belmont Univ., Nashville, TN (United States). Dept. of Chemistry and Physics; Silks, Louis A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Bioscience Division; Marti-Arbona, Ricardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Bioscience Division

    2016-08-17

    Unnatural heavy metal-containing amino acid analogs have shown to be very important in the analysis of protein structure, using methods such as X-ray crystallography, mass spectroscopy, and NMR spectroscopy. Synthesis and incorporation of selenium-containing methionine analogs has already been shown in the literature however with some drawbacks due to toxicity to host organisms. Thus synthesis of heavy metal tryptophan analogs should prove to be more effective since the amino acid tryptophan is naturally less abundant in many proteins. For example, bioincorporation of β-seleno[3,2-b]pyrrolyl-L-alanine ([4,5]SeTrp) and β-selenolo[2,3-b]pyrrolyl-L-alanine ([6,7]SeTrp) has been shown in the following proteins without structural or catalytic perturbations: human annexin V, barstar, and dihydrofolate reductase. The reported synthesis of these Se-containing analogs is currently not efficient for commercial purposes. Thus a more efficient, concise, high-yield synthesis of selenotryptophan, as well as the corresponding, tellurotryptophan, will be necessary for wide spread use of these unnatural amino acid analogs. This research will highlight our progress towards a synthetic route of both [6,7]SeTrp and [6,7]TeTrp, which ultimately will be used to study the effect on the catalytic activity of Lignin Peroxidase (LiP).

  10. Performance enhancement in p-channel charge-trapping flash memory devices with Si/Ge super-lattice channel and band-to-band tunneling induced hot-electron injection

    International Nuclear Information System (INIS)

    Liu, Li-Jung; Chang-Liao, Kuei-Shu; Jian, Yi-Chuen; Wang, Tien-Ko; Tsai, Ming-Jinn

    2013-01-01

    P-channel charge-trapping flash memory devices with Si, SiGe, and Si/Ge super-lattice channel are investigated in this work. A Si/Ge super-lattice structure with extremely low roughness and good crystal structure is obtained by precisely controlling the epitaxy thickness of Ge layer. Both programming and erasing (P/E) speeds are significantly improved by employing this Si/Ge super-lattice channel. Moreover, satisfactory retention and excellent endurance characteristics up to 10 6 P/E cycles with 3.8 V memory window show that the degradation on reliability properties is negligible when super-lattice channel is introduced. - Highlights: ► A super-lattice structure is proposed to introduce more Ge content into channel. ► Super-lattice structure possesses low roughness and good crystal structure. ► P-channel flash devices with Si, SiGe, and super-lattice channel are investigated. ► Programming/erasing speeds are significantly improved. ► Reliability properties can be kept for device with super-lattice channel

  11. A conceptual design of the ITER upper port plug structure and its cooling channels

    International Nuclear Information System (INIS)

    Pak, S.I.; Lee, H.G.; Jung, K.J.; Walker, C.I.; Kim, D.G.; Choi, K.S.

    2008-01-01

    A study is conducted on the conceptual design of the structure and cooling channels of the upper port plug of International Thermonuclear Experimental Reactor (ITER). Modification of the earlier port plug design is made and a simple fabrication method is proposed. It is shown that the newly designed port plug can accommodate the installation of both diagnostic and electron cyclotron heating (ECH) devices. Design assessment is carried out through structural and thermo-hydraulic analyses. Results of the analyses show that the port plug structure is stable against one of the most severe plasma events and the total pressure drop of the coolant is within the allowable level

  12. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.

    2015-03-09

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60°C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO2 layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO2 layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.

  13. Quantum Channels With Memory

    International Nuclear Information System (INIS)

    Rybar, T.

    2012-01-01

    Quantum memory channels represent a very general, yet simple and comprehensible model for causal processes. As such they have attracted considerable research interest, mostly aimed on their transfer capabilities and structure properties. Most notably it was shown that memory channels can be implemented via physically naturally motivated collision models. We also define the concept of repeatable channels and show that only unital channels can be implemented repeat ably with pure memory channels. In the special case of qubit channels we also show that every unital qubit channel has a repeatable implementation. We also briefly explore the possibilities of stroboscopical simulation of channels and show that all random unitary channels can be stroboscopically simulated. Particularly in qubit case, all indivisible qubit channels are also random unitary, hence for qubit all indivisible channels can be stroboscopically simulated. Memory channels also naturally capture the framework of correlated experiments. We develop methods to gather and interpret data obtained in such setting and in detail examine the two qubit case. We also show that for control unitary interactions the measured data will never contradict a simple unitary evolution. Thus no memory effects can be spotted then. (author)

  14. The structure of the antimicrobial active center of lactoferricin B bound to sodium dodecyl sulfate micelles.

    Science.gov (United States)

    Schibli, D J; Hwang, P M; Vogel, H J

    1999-03-12

    Lactoferricin B (LfcinB) is a 25-residue antimicrobial peptide released from bovine lactoferrin upon pepsin digestion. The antimicrobial center of LfcinB consists of six residues (RRWQWR-NH2), and it possesses similar bactericidal activity to LfcinB. The structure of the six-residue peptide bound to sodium dodecyl sulfate (SDS) micelles has been determined by NMR spectroscopy and molecular dynamics refinement. The peptide adopts a well defined amphipathic structure when bound to SDS micelles with the Trp sidechains separated from the Arg residues. Additional evidence demonstrates that the peptide is oriented in the micelle such that the Trp residues are more deeply buried in the micelle than the Arg and Gln residues.

  15. High-Resolution Inkjet-Printed Oxide Thin-Film Transistors with a Self-Aligned Fine Channel Bank Structure.

    Science.gov (United States)

    Zhang, Qing; Shao, Shuangshuang; Chen, Zheng; Pecunia, Vincenzo; Xia, Kai; Zhao, Jianwen; Cui, Zheng

    2018-05-09

    A self-aligned inkjet printing process has been developed to construct small channel metal oxide (a-IGZO) thin-film transistors (TFTs) with independent bottom gates on transparent glass substrates. Poly(methylsilsesquioxane) was used to pattern hydrophobic banks on the transparent substrate instead of commonly used self-assembled octadecyltrichlorosilane. Photolithographic exposure from backside using bottom-gate electrodes as mask formed hydrophilic channel areas for the TFTs. IGZO ink was selectively deposited by an inkjet printer in the hydrophilic channel region and confined by the hydrophobic bank structure, resulting in the precise deposition of semiconductor layers just above the gate electrodes. Inkjet-printed IGZO TFTs with independent gate electrodes of 10 μm width have been demonstrated, avoiding completely printed channel beyond the broad of the gate electrodes. The TFTs showed on/off ratios of 10 8 , maximum mobility of 3.3 cm 2 V -1 s -1 , negligible hysteresis, and good uniformity. This method is conductive to minimizing the area of printed TFTs so as to the development of high-resolution printing displays.

  16. Intra-membrane molecular interactions of K+ channel proteins :

    Energy Technology Data Exchange (ETDEWEB)

    Moczydlowski, Edward G.

    2013-07-01

    Ion channel proteins regulate complex patterns of cellular electrical activity and ionic signaling. Certain K+ channels play an important role in immunological biodefense mechanisms of adaptive and innate immunity. Most ion channel proteins are oligomeric complexes with the conductive pore located at the central subunit interface. The long-term activity of many K+ channel proteins is dependent on the concentration of extracellular K+; however, the mechanism is unclear. Thus, this project focused on mechanisms underlying structural stability of tetrameric K+ channels. Using KcsA of Streptomyces lividans as a model K+ channel of known structure, the molecular basis of tetramer stability was investigated by: 1. Bioinformatic analysis of the tetramer interface. 2. Effect of two local anesthetics (lidocaine, tetracaine) on tetramer stability. 3. Molecular simulation of drug docking to the ion conduction pore. The results provide new insights regarding the structural stability of K+ channels and its possible role in cell physiology.

  17. A novel amino acid substitution Trp574Arg in acetolactate synthase (ALS) confers broad resistance to ALS-inhibiting herbicides in crabgrass (Digitaria sanguinalis).

    Science.gov (United States)

    Li, Jian; Li, Mei; Gao, Xingxiang; Fang, Feng

    2017-12-01

    Crabgrass (Digitaria sanguinalis) is an annual monocotyledonous weed. In recent years, field applications of nicosulfuron have been ineffective in controlling crabgrass populations in Shandong Province, China. To investigate the mechanisms of resistance to nicosulfuron in crabgrass populations, the acetolactate synthase (ALS) gene fragment covering known resistance-confering mutation sites was amplified and sequenced. Dose-response experiments suggested that the resistant population SD13 (R) was highly resistant to nicosulfuron (resistance index R/S = 43.7) compared with the sensitive population SD22 (S). ALS gene sequencing revealed a Trp574Arg substitution in the SD13 population, and no other known resistance-conferring mutations were found. In vitro ALS enzyme assays further confirmed that the SD13 population was resistant to all tested ALS-inhibiting herbicides. The resistance pattern experiments revealed that, compared with SD22, the SD13 population exhibited broad-spectrum resistance to nicosulfuron (43.7-fold), imazethapyr (11.4-fold) and flumetsulam (16.1-fold); however, it did not develop resistance to atrazine, mesotrione and topramezone. This study demonstrated that Trp574Arg substitution was the main reason for crabgrass resistance to ALS-inhibiting herbicides. To our knowledge, this is the first report of Trp574Arg substitution in a weed species, and is the first report of target-site mechanisms of herbicide resistance for crabgrass. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Overview of LEI investigations on heat transfer and flow structure in gas-cooled spheres packings and channels

    International Nuclear Information System (INIS)

    Vilemas, J.; Uspuras, E.; Rimkevicius, S.; Kaliatka, A.; Pabarcius, R.

    2002-01-01

    In this paper experimental investigations on heat transfer and hydrodynamics in various gas-cooled channels over wide ranges of geometrical and performance parameters performed at Lithuanian Energy Institute are presented. Overview introduces long-term experience on investigations of local and average heat transfer, hydraulic drag in various types of sphere packings, in smooth, helical tubes and annular channels equipped with smooth/rough or helical inner lubes, such bundle of twisted tubes, as well as turbulent flow structure and the effects of variable physical properties of gas heat carriers on local heat transfer in channels of different cross sections. Lithuanian Energy Institute has accumulated long term experience in the field of heat transfer investigations and has good experimental basis for providing such studies and following analytical analysis. (author)

  19. Social influence and adolescent health-related physical activity in structured and unstructured settings: role of channel and type.

    Science.gov (United States)

    Spink, Kevin S; Wilson, Kathleen S; Ulvick, Jocelyn

    2012-08-01

    Social influence channels (e.g., parents) and types (e.g., compliance) have each been related to physical activity independently, but little is known about how these two categories of influence may operate in combination. This study examined the relationships between various combinations of social influence and physical activity among youth across structured and unstructured settings. Adolescents (N=304), classified as high or low active, reported the social influence combinations they received for being active. Participants identified three channels and three types of influence associated with being active. For structured activity, compliance with peers and significant others predicted membership in the high active group (values of psocial influence, when examining health-related physical activity.

  20. Statistical Investigation on Coherent Vortex Structure in Turbulent Drag Reducing Channel Flow with Blown Polymer Solution

    International Nuclear Information System (INIS)

    Ishitsuka, Shota; Motozawa, Masaaki; Kawaguchi, Yasuo; Iwamoto, Kaoru; Ando, Hirotomo; Senda, Tetsuya

    2011-01-01

    Coherent vortex structure in turbulent drag-reducing channel flow with blown polymer solution from the wall was investigated. As a statistical analysis, we carried out Galilean decomposition, swirling strength and linear stochastic estimation of the PIV data obtained by the PIV measurement in x – y plane. Reynolds number based on bulk velocity and channel height was set to 40000. As a result, the angle of shear layer that cleared up by using Galilean decomposition becomes small in the drag-reducing flow. Q3 events were observed near the shear layer. In addition, as a result of linear stochastic estimation (LSE) based on swirling strength, we confirmed that the velocity under the vortex core is strong in the water flow. This result shows Q2 (ejection) are dominant in the water flow. However, in the drag-reducing flow with blown polymer solution, the velocity above the vortex core become strong, that is, Q4 (sweep) events are relatively strong around the vortex core. This is the result of Q4 events to come from the channel center region because the polymer solution does not exist in this region. The typical structure like this was observed in the drag -reducing flow with blown polymer solution from the wall.

  1. Crystal structure and dynamics of a lipid-induced potential desensitized-state of a pentameric ligand-gated channel

    Energy Technology Data Exchange (ETDEWEB)

    Basak, Sandip [Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States; Schmandt, Nicolaus [Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, United States; Gicheru, Yvonne [Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States; Chakrapani, Sudha [Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States

    2017-03-06

    Desensitization in pentameric ligand-gated ion channels plays an important role in regulating neuronal excitability. Here, we show that docosahexaenoic acid (DHA), a key ω-3 polyunsaturated fatty acid in synaptic membranes, enhances the agonist-induced transition to the desensitized state in the prokaryotic channel GLIC. We determined a 3.25 Å crystal structure of the GLIC-DHA complex in a potentially desensitized conformation. The DHA molecule is bound at the channel-periphery near the M4 helix and exerts a long-range allosteric effect on the pore across domain-interfaces. In this previously unobserved conformation, the extracellular-half of the pore-lining M2 is splayed open, reminiscent of the open conformation, while the intracellular-half is constricted, leading to a loss of both water and permeant ions. These findings, in combination with spin-labeling/EPR spectroscopic measurements in reconstituted-membranes, provide novel mechanistic details of desensitization in pentameric channels.

  2. Low-Complexity Bayesian Estimation of Cluster-Sparse Channels

    KAUST Repository

    Ballal, Tarig

    2015-09-18

    This paper addresses the problem of channel impulse response estimation for cluster-sparse channels under the Bayesian estimation framework. We develop a novel low-complexity minimum mean squared error (MMSE) estimator by exploiting the sparsity of the received signal profile and the structure of the measurement matrix. It is shown that due to the banded Toeplitz/circulant structure of the measurement matrix, a channel impulse response, such as underwater acoustic channel impulse responses, can be partitioned into a number of orthogonal or approximately orthogonal clusters. The orthogonal clusters, the sparsity of the channel impulse response and the structure of the measurement matrix, all combined, result in a computationally superior realization of the MMSE channel estimator. The MMSE estimator calculations boil down to simpler in-cluster calculations that can be reused in different clusters. The reduction in computational complexity allows for a more accurate implementation of the MMSE estimator. The proposed approach is tested using synthetic Gaussian channels, as well as simulated underwater acoustic channels. Symbol-error-rate performance and computation time confirm the superiority of the proposed method compared to selected benchmark methods in systems with preamble-based training signals transmitted over clustersparse channels.

  3. Low-Complexity Bayesian Estimation of Cluster-Sparse Channels

    KAUST Repository

    Ballal, Tarig; Al-Naffouri, Tareq Y.; Ahmed, Syed

    2015-01-01

    This paper addresses the problem of channel impulse response estimation for cluster-sparse channels under the Bayesian estimation framework. We develop a novel low-complexity minimum mean squared error (MMSE) estimator by exploiting the sparsity of the received signal profile and the structure of the measurement matrix. It is shown that due to the banded Toeplitz/circulant structure of the measurement matrix, a channel impulse response, such as underwater acoustic channel impulse responses, can be partitioned into a number of orthogonal or approximately orthogonal clusters. The orthogonal clusters, the sparsity of the channel impulse response and the structure of the measurement matrix, all combined, result in a computationally superior realization of the MMSE channel estimator. The MMSE estimator calculations boil down to simpler in-cluster calculations that can be reused in different clusters. The reduction in computational complexity allows for a more accurate implementation of the MMSE estimator. The proposed approach is tested using synthetic Gaussian channels, as well as simulated underwater acoustic channels. Symbol-error-rate performance and computation time confirm the superiority of the proposed method compared to selected benchmark methods in systems with preamble-based training signals transmitted over clustersparse channels.

  4. AFM imaging reveals the tetrameric structure of the TRPC1 channel

    International Nuclear Information System (INIS)

    Barrera, Nelson P.; Shaifta, Yasin; McFadzean, Ian; Ward, Jeremy P.T.; Henderson, Robert M.; Edwardson, J. Michael

    2007-01-01

    We have determined the subunit stoichiometry of the transient receptor potential C1 (TRPC1) channel by imaging isolated channels using atomic force microscopy (AFM). A frequency distribution of the molecular volumes of individual channel particles had two peaks, at 170 and 720 nm 3 , corresponding with the expected sizes of TRPC1 monomers and tetramers, respectively. Complexes were formed between TRPC1 channels and antibodies against a V5 epitope tag present on each subunit. The frequency distribution of angles between pairs of bound antibodies had two peaks, at 88 o and 178 o . This result again indicates that the channel assembles as a tetramer

  5. Alkaline pH sensor molecules.

    Science.gov (United States)

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range. © 2015 Wiley Periodicals, Inc.

  6. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shan-Li [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Sun, Ming-Rui [Department of Pharmacology, Qiqihaer Medical College, Qiqihaer 160001 (China); Li, Ting-Ting; Yin, Xin [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Xu, Chang-Qing [Department of Pathophysiology, Harbin Medical University, Harbin 150086 (China); Sun, Yi-Hua, E-mail: syh200415@126.com [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China)

    2011-03-11

    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue and promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, GdCl{sub 3

  7. Knockout and transgenic mice of Trp53: what have we learned about p53 in breast cancer?

    International Nuclear Information System (INIS)

    Blackburn, Anneke C; Jerry, D Joseph

    2002-01-01

    The human p53 tumor suppressor gene TP53 is mutated at a high frequency in sporadic breast cancer, and Li-Fraumeni syndrome patients who carry germline mutations in one TP53 allele have a high incidence of breast cancer. In the 10 years since the first knockout of the mouse p53 tumor suppressor gene (designated Trp53) was published, much has been learned about the contribution of p53 to biology and tumor suppression in the breast through the use of p53 transgenic and knockout mice. The original mice deficient in p53 showed no mammary gland phenotype. However, studies using BALB/c-Trp53-deficient mice have demonstrated a delayed involution phenotype and a mammary tumor phenotype. Together with other studies of mutant p53 transgenes and p53 bitransgenics, a greater understanding has been gained of the role of p53 in involution, of the regulation of p53 activity by hormones, of the effect of mouse strain and modifier genes on tumor phenotype, and of the cooperation between p53 and other oncogenic pathways, chemical carcinogens and hormonal stimulation in mammary tumorigenesis. Both p53 transgenic and knockout mice are important in vivo tools for understanding breast cancer, and are yet to be exploited for developing therapeutic strategies in breast cancer

  8. Structural and functional insights of β-glucosidases identified from the genome of Aspergillus fumigatus

    Science.gov (United States)

    Dodda, Subba Reddy; Aich, Aparajita; Sarkar, Nibedita; Jain, Piyush; Jain, Sneha; Mondal, Sudipa; Aikat, Kaustav; Mukhopadhyay, Sudit S.

    2018-03-01

    Thermostable glucose tolerant β-glucosidase from Aspergillus species has attracted worldwide interest for their potentiality in industrial applications and bioethanol production. A strain of Aspergillus fumigatus (AfNITDGPKA3) identified by our laboratory from straw retting ground showed higher cellulase activity, specifically the β-glucosidase activity, compared to other contemporary strains. Though A. fumigatus has been known for high cellulase activity, detailed identification and characterization of the cellulase genes from their genome is yet to be done. In this work we have been analyzed the cellulase genes from the genome sequence database of Aspergillus fumigatus (Af293). Genome analysis suggests two cellobiohydrolase, eleven endoglucanase and seventeen β-glucosidase genes present. β-Glucosidase genes belong to either Glycohydro1 (GH1 or Bgl1) or Glycohydro3 (GH3 or Bgl3) family. The sequence similarity suggests that Bgl1 and Bgl3 of A. fumagatus are phylogenetically close to those of A. fisheri and A. oryzae. The modelled structure of the Bgl1 predicts the (β/α)8 barrel type structure with deep and narrow active site, whereas, Bgl3 shows the (α/β)8 barrel and (α/β)6 sandwich structure with shallow and open active site. Docking results suggest that amino acids Glu544, Glu466, Trp408,Trp567,Tyr44,Tyr222,Tyr770,Asp844,Asp537,Asn212,Asn217 of Bgl3 and Asp224,Asn242,Glu440, Glu445, Tyr367, Tyr365,Thr994,Trp435,Trp446 of Bgl1 are involved in the hydrolysis. Binding affinity analyses suggest that Bgl3 and Bgl1 enzymes are more active on the substrates like 4-methylumbelliferyl glycoside (MUG) and p-nitrophenyl-β-D-1, 4-glucopyranoside (pNPG) than on cellobiose. Further docking with glucose suggests that Bgl1 is more glucose tolerant than Bgl3. Analysis of the Aspergillus fumigatus genome may help to identify a β-glucosidase enzyme with better property and the structural information may help to develop an engineered recombinant enzyme.

  9. Characterisation of the novel deleterious RAD51C p.Arg312Trp variant and prioritisation criteria for functional analysis of RAD51C missense changes.

    Science.gov (United States)

    Gayarre, Javier; Martín-Gimeno, Paloma; Osorio, Ana; Paumard, Beatriz; Barroso, Alicia; Fernández, Victoria; de la Hoya, Miguel; Rojo, Alejandro; Caldés, Trinidad; Palacios, José; Urioste, Miguel; Benítez, Javier; García, María J

    2017-09-26

    Despite a high prevalence of deleterious missense variants, most studies of RAD51C ovarian cancer susceptibility gene only provide in silico pathogenicity predictions of missense changes. We identified a novel deleterious RAD51C missense variant (p.Arg312Trp) in a high-risk family, and propose a criteria to prioritise RAD51C missense changes qualifying for functional analysis. To evaluate pathogenicity of p.Arg312Trp variant we used sequence homology, loss of heterozygosity (LOH) and segregation analysis, and a comprehensive functional characterisation. To define a functional-analysis prioritisation criteria, we used outputs for the known functionally confirmed deleterious and benign RAD51C missense changes from nine pathogenicity prediction algorithms. The p.Arg312Trp variant failed to correct mitomycin and olaparib hypersensitivity and to complement abnormal RAD51C foci formation according to functional assays, which altogether with LOH and segregation data demonstrated deleteriousness. Prioritisation criteria were based on the number of predictors providing a deleterious output, with a minimum of 5 to qualify for testing and a PredictProtein score greater than 33 to assign high-priority indication. Our study points to a non-negligible number of RAD51C missense variants likely to impair protein function, provides a guideline to prioritise and encourage their selection for functional analysis and anticipates that reference laboratories should have available resources to conduct such assays.

  10. Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation.

    Science.gov (United States)

    Chen, Jun; Joshi, Shailen K; DiDomenico, Stanley; Perner, Richard J; Mikusa, Joe P; Gauvin, Donna M; Segreti, Jason A; Han, Ping; Zhang, Xu-Feng; Niforatos, Wende; Bianchi, Bruce R; Baker, Scott J; Zhong, Chengmin; Simler, Gricelda H; McDonald, Heath A; Schmidt, Robert G; McGaraughty, Steve P; Chu, Katharine L; Faltynek, Connie R; Kort, Michael E; Reilly, Regina M; Kym, Philip R

    2011-05-01

    Despite the increasing interest in TRPA1 channel as a pain target, its role in cold sensation and body temperature regulation is not clear; the efficacy and particularly side effects resulting from channel blockade remain poorly understood. Here we use a potent, selective, and bioavailable antagonist to address these issues. A-967079 potently blocks human (IC(50): 51 nmol/L, electrophysiology, 67 nmol/L, Ca(2+) assay) and rat TRPA1 (IC(50): 101 nmol/L, electrophysiology, 289 nmol/L, Ca(2+) assay). It is >1000-fold selective over other TRP channels, and is >150-fold selective over 75 other ion channels, enzymes, and G-protein-coupled receptors. Oral dosing of A-967079 produces robust drug exposure in rodents, and exhibits analgesic efficacy in allyl isothiocyanate-induced nocifensive response and osteoarthritic pain in rats (ED(50): 23.2 mg/kg, p.o.). A-967079 attenuates cold allodynia produced by nerve injury but does not alter noxious cold sensation in naive animals, suggesting distinct roles of TRPA1 in physiological and pathological states. Unlike TRPV1 antagonists, A-967079 does not alter body temperature. It also does not produce locomotor or cardiovascular side effects. Collectively, these data provide novel insights into TRPA1 function and suggest that the selective TRPA1 blockade may present a viable strategy for alleviating pain without untoward side effects. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  11. Cation-π interactions in structural biology

    OpenAIRE

    Gallivan, Justin P.; Dougherty, Dennis A.

    1999-01-01

    Cation-pi interactions in protein structures are identified and evaluated by using an energy-based criterion for selecting significant sidechain pairs. Cation-pi interactions are found to be common among structures in the Protein Data Bank, and it is clearly demonstrated that, when a cationic sidechain (Lys or Arg) is near an aromatic sidechain (Phe, Tyr, or Trp), the geometry is biased toward one that would experience a favorable cation-pi interaction. The sidechain of Arg is more likely tha...

  12. Micromachining of buried micro channels in silicon

    NARCIS (Netherlands)

    de Boer, Meint J.; Tjerkstra, R.W.; Berenschot, Johan W.; Jansen, Henricus V.; Burger, G.J.; Burger, G.J.; Gardeniers, Johannes G.E.; Elwenspoek, Michael Curt; van den Berg, Albert

    A new method for the fabrication of micro structures for fluidic applications, such as channels, cavities, and connector holes in the bulk of silicon wafers, called buried channel technology (BCT), is presented in this paper. The micro structures are constructed by trench etching, coating of the

  13. Structure-activity relationships of the melanocortin tetrapeptide Ac-His-DPhe-Arg-Trp-NH(2) at the mouse melanocortin receptors. 1. Modifications at the His position.

    Science.gov (United States)

    Holder, Jerry Ryan; Bauzo, Rayna M; Xiang, Zhimin; Haskell-Luevano, Carrie

    2002-06-20

    The melanocortin pathway is an important participant in obesity and energy homeostasis. The centrally located melanocortin-3 and melanocortin-4 receptors (MC3R, MC4R) are involved in the metabolic and food intake aspects of energy homeostasis and are stimulated by melanocortin agonists such as alpha-melanocyte stimulation hormone (alpha-MSH). The melanocortin agonists contain the putative message sequence "His-Phe-Arg-Trp", and it has been well documented that inversion of chirality of the Phe to DPhe results in a dramatic increase in melanocortin receptor potency. Herein, we report a tetrapeptide library based on the template Ac-His-DPhe-Arg-Trp-NH(2), consisting of 17 members that have been modified at the His(6) position (alpha-MSH numbering) and pharmacologically characterized for agonist activity at the mouse melanocortin receptors MC1R, MC3R, MC4R, and MC5R. These studies provide further experimental evidence that the His(6) position can determine MC4R versus MC3R agonist selectivity and that chemically nonreactive side chains may be substituted for the imidazole ring (generally needs to be side chain protected in synthetic schemes) in the design of MC4R-selective, small-molecule, non-peptide agonists. Specifically, the tetrapeptide containing the amino-2-naphthylcarboxylic acid (Anc) amino acid at the His position resulted in a potent agonist at the mMC4R (EC(50) = 21 nM), was a weak mMC3R micromolar antagonist (pA(2) = 5.6, K(i) = 2.5 microM), and possessed >4700-fold agonist selectivity for the MC4R versus the MC3R. Substitution of the His(6) amino acid in the tetrapeptide template by the Phe, Anc, 3-(2-thienyl)alanine (2Thi), and 3-(4-pyridinyl)alanine (4-Pal) resulted in equipotency or only up to a 7-fold decrease in potency, compared to the His(6)-containing tetrapeptide at the mMC4R, demonstrating that these amino acid side chains may be substituted for the imidazole in the design of MC4R-selective non-peptide molecules.

  14. THE ASSORTMENT STRUCTURE AND THE PRICE LEVELS AS A FACTOR OF MARKETING CHANNEL COMPETITIVENESS–EMPIRICAL EVIDENCE FROM THE REPUBLIC OF SERBIA

    Directory of Open Access Journals (Sweden)

    Jelena Končar

    2016-12-01

    Full Text Available In this paper, the authors point out the differences in the structure of the product assortment of retailers who show their offers on the Web, with the aim of proving that the structure of the assortment may be a factor of marketing channel competitiveness that the consumers recognize and that makes them opt for a certain marketing channel. On the same basis we aim to compare the prices of representative product categories, in order to determine the impact of prices on marketing channel competitiveness, without taking other factors of channel competitiveness into consideration. Based on the conducted research, we can conclude that having a number of categories of products in the assortment presents a competitive advantage for the retailer in the traditional marketing channel since retailers with electronic sales have a more diverse assortment in their retail store than online. Compared to “pure play” electronic retailers, the structure of assortment measured in number of categories of products that are on offer in e-stores is not significantly different between “pure play” and “bricks and clicks” electronic retailers. On the other hand, if we look at the price levels, there is a difference in prices of product categories on websites of “brick and click” retailers since prices in retail stores are higher than prices in the traditional retail store of the same retailer. However, offers on the website of “pure play” electronic retailers are higher compared to “brick and click” retailers.

  15. Enhancement-mode two-channel triple quantum dot from an undoped Si/Si0.8Ge0.2 quantum well hetero-structure.

    Energy Technology Data Exchange (ETDEWEB)

    Studenikin, S. A.; Gaudreau, L.; Kataoka, K.; Austing, D. G.; Lu, Tzu-Ming; Luhman, Dwight; Bethke, Donald Thomas; Wanke, Michael; Lilly, Michael; Carroll, Malcolm S.; Sachrajda, A. S.

    2017-12-01

    We demonstrate coupled triple dot operation and charge sensing capability for the recently introduced quantum dot technology employing undoped Si/Si0.8Ge0.2 hetero-structures which also incorporate a single metal-gate layer to simplify fabrication [T. M. Lu et al., Appl. Phys. Lett. 109, 093102 (2016)]. Si/SiGe hetero-structures with a Ge concentration of 20% rather than the more usual 30% typically encountered offer higher electron mobility. The devices consist of two in-plane parallel electron channels that host a double dot in one channel and a single dot in the other channel. In a device where the channels are sufficiently close a triple dot in a triangular configuration is induced leading to regions in the charge stability diagram where three addition lines of different slope approach each other and anti-cross. In a device where the channels are further apart the single dot charge-senses the double dot with relative change of ~2% in the sensor current. We also highlight temporal drifting and metastability of the Coulomb oscillations. These effects are induced if the temperature environment of the device is not kept constant and arise from non-equilibrium charge redistribution and subsequent slow recovery.

  16. Assesment of strength and integrity of fuel channels

    International Nuclear Information System (INIS)

    2000-01-01

    Detailed analysis to base strength and integrity of fuel channels was necessary for the licensing process. Description of tasks performed in this direction in 1999 is presented: fuel channel independent strength calculations, assessment of present fuel channels state, analysis of dynamic processes during partial group distribution header rupture, structural integrity analysis of fuel channels located next to broke channel

  17. Quantum channels with a finite memory

    International Nuclear Information System (INIS)

    Bowen, Garry; Mancini, Stefano

    2004-01-01

    In this paper we study quantum communication channels with correlated noise effects, i.e., quantum channels with memory. We derive a model for correlated noise channels that includes a channel memory state. We examine the case where the memory is finite, and derive bounds on the classical and quantum capacities. For the entanglement-assisted and unassisted classical capacities it is shown that these bounds are attainable for certain classes of channel. Also, we show that the structure of any finite-memory state is unimportant in the asymptotic limit, and specifically, for a perfect finite-memory channel where no information is lost to the environment, achieving the upper bound implies that the channel is asymptotically noiseless

  18. Vertical structure of extreme currents in the Faroe-Bank Channel

    Directory of Open Access Journals (Sweden)

    C. Carollo

    2005-09-01

    Full Text Available Extreme currents are studied with the aim of understanding their vertical and spatial structures in the Faroe-Bank Channel. Acoustic Doppler Current Profiler time series recorded in 3 deployments in this channel were investigated. To understand the main features of extreme events, the measurements were separated into their components through filtering and tidal analysis before applying the extreme value theory to the surge component. The Generalized Extreme Value (GEV distribution and the Generalized Pareto Distribution (GPD were used to study the variation of surge extremes from near-surface to deep waters. It was found that this component alone is not able to explain the extremes measured in total currents, particularly below 500 m. Here the mean residual flow enhanced by tidal rectification was found to be the component feature dominating extremes. Therefore, it must be taken into consideration when applying the extreme value theory, not to underestimate the return level for total currents. Return value speeds up to 250 cm s–1 for 50/250 years return period were found for deep waters, where the flow is constrained by the topography at bearings near 300/330° It is also found that the UK Meteorological Office FOAM model is unable to reproduce either the magnitude or the form for the extremes, perhaps due to its coarse vertical and horizontal resolution, and is thus not suitable to model extremes on a regional scale. Keywords. Oceanography: Physical (Currents; General circulation; General or miscellaneous

  19. Molecular Dynamics Simulation of the Antiamoebin Ion Channel: Linking Structure and Conductance

    Science.gov (United States)

    Wilson, Michael A.; Wei, Chenyu; Bjelkmar, Paer; Wallace, B. A.; Pohorille, Andrew

    2011-01-01

    Molecular dynamics simulations were carried out in order to ascertain which of the potential multimeric forms of the transmembrane peptaibol channel, antiamoebin, is consistant with its measured conductance. Estimates of the conductance obtained through counting ions that cross the channel and by solving the Nernst-Planck equation yield consistent results, indicating that the motion of ions inside the channel can be satisfactorily described as diffusive.The calculated conductance of octameric channels is markedly higher than the conductance measured in single channel recordings, whereas the tetramer appears to be non-conducting. The conductance of the hexamer was estimated to be 115+/-34 pS and 74+/-20 pS, at 150 mV and 75 mV, respectively, in satisfactory agreement with the value of 90 pS measured at 75 mV. On this basis we propose that the antiamoebin channel consists of six monomers. Its pore is large enough to accommodate K(+) and Cl(-) with their first solvation shells intact. The free energy barrier encountered by K(+) is only 2.2 kcal/mol whereas Cl(-) encounters a substantially higher barrier of nearly 5 kcal/mol. This difference makes the channel selective for cations. Ion crossing events are shown to be uncorrelated and follow Poisson statistics. keywords: ion channels, peptaibols, channel conductance, molecular dynamics

  20. The Marketing Channels of China Auto Industry

    Institute of Scientific and Technical Information of China (English)

    our reporter

    2001-01-01

    <正> After the 1990’s, the multi-channel structure of sales has still existed although the market mechanism is playing a main role in Chinese auto marketing circulation. Now, the channels of automobile marketing in China are as follows: 1. Manufacturer-established marketing channels

  1. A reassessment of synchronous fluorescence in the separation of Trp and Tyr contributions in protein emission and in the determination of conformational changes

    DEFF Research Database (Denmark)

    Bobone, Sara; van de Weert, Marco; Stella, Lorenzo

    2014-01-01

    solvents, as well as a real protein (bovine serum albumin). Unfortunately, synchronous spectra were found to be unreliable in the separation of Trp and Tyr emission components in proteins. A simple alternative approach based on the deconvolution of emission spectra is presented. In addition, an equation...

  2. X-ray radiation channeling in micro-channel plates: Spectroscopy with a synchrotron radiation beam

    International Nuclear Information System (INIS)

    Mazuritskiy, M.I.; Dabagov, S.B.; Marcelli, A.; Dziedzic-Kocurek, K.; Lerer, A.M.

    2015-01-01

    We present here the angular distribution of the radiation propagated inside MultiChannel Plates with micro-channels of ∼3 μm diameter. The spectra collected at the exit of the channels present a complex distribution with contributions that can be assigned to the fluorescence radiation, originated from the excitation of the micro-channel walls. For radiation above the absorption edge, when the monochromatic energy in the region of the Si L-edge hits the micro-channel walls with a grazing angle θ ⩾ 5°, or at the O K-edge when θ ⩾ 2° a fluorescence radiation is detected. Additional information associated to the fine structures of the XANES spectra detected at the exit of MCPs are also presented and discussed

  3. LDGM Codes for Channel Coding and Joint Source-Channel Coding of Correlated Sources

    Directory of Open Access Journals (Sweden)

    Javier Garcia-Frias

    2005-05-01

    Full Text Available We propose a coding scheme based on the use of systematic linear codes with low-density generator matrix (LDGM codes for channel coding and joint source-channel coding of multiterminal correlated binary sources. In both cases, the structures of the LDGM encoder and decoder are shown, and a concatenated scheme aimed at reducing the error floor is proposed. Several decoding possibilities are investigated, compared, and evaluated. For different types of noisy channels and correlation models, the resulting performance is very close to the theoretical limits.

  4. Complex metrology on 3D structures using multi-channel OCD

    Science.gov (United States)

    Kagalwala, Taher; Mahendrakar, Sridhar; Vaid, Alok; Isbester, Paul K.; Cepler, Aron; Kang, Charles; Yellai, Naren; Sendelbach, Matthew; Ko, Mihael; Ilgayev, Ovadia; Katz, Yinon; Tamam, Lilach; Osherov, Ilya

    2017-03-01

    Device scaling has not only driven the use of measurements on more complex structures, in terms of geometry, materials, and tighter ground rules, but also the need to move away from non-patterned measurement sites to patterned ones. This is especially of concern for very thin film layers that have a high thickness dependence on structure geometry or wafer pattern factor. Although 2-dimensional (2D) sites are often found to be sufficient for process monitoring and control of very thin films, sometimes 3D sites are required to further simulate structures within the device. The measurement of film thicknesses only a few atoms thick on complex 3D sites, however, are very challenging. Apart from measuring thin films on 3D sites, there is also a critical need to measure parameters on 3D sites, which are weak and less sensitive for OCD (Optical Critical Dimension) metrology, with high accuracy and precision. Thus, state-ofthe-art methods are needed to address such metrology challenges. This work introduces the concept of Enhanced OCD which uses various methods to improve the sensitivity and reduce correlations for weak parameters in a complex measurement. This work also describes how more channels of information, when used correctly, can improve the precision and accuracy of weak, non-sensitive or complex parameters of interest.

  5. An approach to implement virtual channels for flowing magnetic beads

    International Nuclear Information System (INIS)

    Tang, Shih-Hao; Chiang, Hung-Wei; Hsieh, Min-Chien; Chang, Yen-Di; Yeh, Po-Fan; Tsai, Jui-che; Shieh, Wung-Yang

    2014-01-01

    This work demonstrates the feasibility of a novel microfluidic system with virtual channels formed by ‘walls’ of magnetic fields, including collecting channels, transporting channels and function channels. The channels are defined by the nickel patterns. With its own ferromagnetism, nickel can be magnetized using an external magnetic field; the nickel structures then generate magnetic fields that can either guide or trap magnetic beads. A glass substrate is sandwiched between the liquid containing magnetic beads and the chip with nickel structures, preventing the liquid from directly contacting the nickel. In this work, collecting channels, transporting channels and function channels are displayed sequentially. In the collecting channel portion, channels with different shapes are compared. Next, in the transporting channel portion we demonstrate I-, S- and Y-shaped channels can steer magnetic beads smoothly. Finally, in the function channel portion, a switchable trapping channel implemented with a bistable mechanism performs the passing and blocking of a magnetic bead. (paper)

  6. Influence of different structured channels of mesoporous silicate on the controlled ibuprofen delivery

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Lin [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing 100124 (China); Sun, Jihong, E-mail: jhsun@bjut.edu.cn [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing 100124 (China); Zhang, Li; Wang, Jinpeng; Ren, Bo [Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, 100 PingLeYuan, Chaoyang District, Beijing 100124 (China)

    2012-08-15

    The bimodal mesoporous silicas with short random mesoporous channels and MCM-41 with long ordered mesopores were synthesised and modified with 3-(2-aminoethylamino) propyltrimethoxysilane as ibuprofen carriers to study the influence of mesoporous structure on drug delivery property. For further comparing the different mesoporous channels, modified SBA-15 with relative large and long ordered mesopores was also synthesized as drug carriers. The resultant samples were characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, N{sub 2} adsorption-desorption isotherms, thermogravimetric analyses, solid-state {sup 29}Si NMR spectra, elemental analysis, and UV-vis spectra. Meanwhile, the Korsmeyer-Peppas equation f{sub t} = kt{sup n} was employed to analyze the drug release profile and three release mediums including simulated fluid solution, distilled water and simulated gastric fluid were used. The results indicated that the modified BMMs with the bimodal mesopores leaded to the most drug loading amount of 25.0 mg/0.1 g, while the MCM-41 with the long and one-dimensional mesopores had the least loading amount around 20.3 mg/0.1 g. Meanwhile, the easier diffusion behavior of drug molecules in the bimodal mesopore channels of BMMs resulted in relatively faster drug release properties in comparison with MCM-41, while the release time maintained in SBF for about 12 h (release percent was about 90 wt%) and corresponding release constant k obtained from Korsmeyer-Peppas equation was around 4.10. Highlights: Black-Right-Pointing-Pointer BMMs, MCM-41 and SBA-15 with different mesostructure channels were modified with amino groups via post-treatment procedure. Black-Right-Pointing-Pointer Loading and release profiles of ibuprofen in modified BMMs, MCM-41 and SBA-15. Black-Right-Pointing-Pointer BMMs presents more drug loading amount than MCM-41 as well as better controlled release than SBA-15.

  7. Influence of different structured channels of mesoporous silicate on the controlled ibuprofen delivery

    International Nuclear Information System (INIS)

    Gao, Lin; Sun, Jihong; Zhang, Li; Wang, Jinpeng; Ren, Bo

    2012-01-01

    The bimodal mesoporous silicas with short random mesoporous channels and MCM-41 with long ordered mesopores were synthesised and modified with 3-(2-aminoethylamino) propyltrimethoxysilane as ibuprofen carriers to study the influence of mesoporous structure on drug delivery property. For further comparing the different mesoporous channels, modified SBA-15 with relative large and long ordered mesopores was also synthesized as drug carriers. The resultant samples were characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, N 2 adsorption–desorption isotherms, thermogravimetric analyses, solid-state 29 Si NMR spectra, elemental analysis, and UV–vis spectra. Meanwhile, the Korsmeyer–Peppas equation f t = kt n was employed to analyze the drug release profile and three release mediums including simulated fluid solution, distilled water and simulated gastric fluid were used. The results indicated that the modified BMMs with the bimodal mesopores leaded to the most drug loading amount of 25.0 mg/0.1 g, while the MCM-41 with the long and one-dimensional mesopores had the least loading amount around 20.3 mg/0.1 g. Meanwhile, the easier diffusion behavior of drug molecules in the bimodal mesopore channels of BMMs resulted in relatively faster drug release properties in comparison with MCM-41, while the release time maintained in SBF for about 12 h (release percent was about 90 wt%) and corresponding release constant k obtained from Korsmeyer–Peppas equation was around 4.10. Highlights: ► BMMs, MCM-41 and SBA-15 with different mesostructure channels were modified with amino groups via post-treatment procedure. ► Loading and release profiles of ibuprofen in modified BMMs, MCM-41 and SBA-15. ► BMMs presents more drug loading amount than MCM-41 as well as better controlled release than SBA-15.

  8. Channelling versus inversion

    DEFF Research Database (Denmark)

    Gale, A.S.; Surlyk, Finn; Anderskouv, Kresten

    2013-01-01

    Evidence from regional stratigraphical patterns in Santonian−Campanian chalk is used to infer the presence of a very broad channel system (5 km across) with a depth of at least 50 m, running NNW−SSE across the eastern Isle of Wight; only the western part of the channel wall and fill is exposed. W......−Campanian chalks in the eastern Isle of Wight, involving penecontemporaneous tectonic inversion of the underlying basement structure, are rejected....

  9. An accurate mobility model for the I-V characteristics of n-channel enhancement-mode MOSFETs with single-channel boron implantation

    International Nuclear Information System (INIS)

    Chingyuan Wu; Yeongwen Daih

    1985-01-01

    In this paper an analytical mobility model is developed for the I-V characteristics of n-channel enhancement-mode MOSFETs, in which the effects of the two-dimensional electric fields in the surface inversion channel and the parasitic resistances due to contact and interconnection are included. Most importantly, the developed mobility model easily takes the device structure and process into consideration. In order to demonstrate the capabilities of the developed model, the structure- and process-oriented parameters in the present mobility model are calculated explicitly for an n-channel enhancement-mode MOSFET with single-channel boron implantation. Moreover, n-channel MOSFETs with different channel lengths fabricated in a production line by using a set of test keys have been characterized and the measured mobilities have been compared to the model. Excellent agreement has been obtained for all ranges of the fabricated channel lengths, which strongly support the accuracy of the model. (author)

  10. Peptide Probes Reveal a Hydrophobic Steric Ratchet in the Anthrax Toxin Protective Antigen Translocase.

    Science.gov (United States)

    Colby, Jennifer M; Krantz, Bryan A

    2015-11-06

    Anthrax toxin is a tripartite virulence factor produced by Bacillus anthracis during infection. Under acidic endosomal pH conditions, the toxin's protective antigen (PA) component forms a transmembrane channel in host cells. The PA channel then translocates its two enzyme components, lethal factor and edema factor, into the host cytosol under the proton motive force. Protein translocation under a proton motive force is catalyzed by a series of nonspecific polypeptide binding sites, called clamps. A 10-residue guest/host peptide model system, KKKKKXXSXX, was used to functionally probe polypeptide-clamp interactions within wild-type PA channels. The guest residues were Thr, Ala, Leu, Phe, Tyr, and Trp. In steady-state translocation experiments, the channel blocked most tightly with peptides that had increasing amounts of nonpolar surface area. Cooperative peptide binding was observed in the Trp-containing peptide sequence but not the other tested sequences. Trp substitutions into a flexible, uncharged linker between the lethal factor amino-terminal domain and diphtheria toxin A chain expedited translocation. Therefore, peptide-clamp sites in translocase channels can sense large steric features (like tryptophan) in peptides, and while these steric interactions may make a peptide translocate poorly, in the context of folded domains, they can make the protein translocate more rapidly presumably via a hydrophobic steric ratchet mechanism. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Modification of Turbulence Structures in a Channel Flow by Uniform Magnetic Fluxes

    Science.gov (United States)

    Lee, D.; Choi, H.; Kim, J.

    1997-11-01

    Effects of electromagnetic forcing on the near-wall turbulence are investigated by applying a uniform magnetic flux in a turbulent channel flow in the streamwise and spanwise directions, respectively. The base flow is a fully developed turbulent channel flow and the direct numerical simulation technique is used. The electromagnetic force induced from the magnetic fluxes reduces the intensity of the wall-layer structures and thus drag is significantly reduced. The wall-normal and spanwise velocity fluctuations and the Reynolds shear stress decrease with the increased magnetic flux in both directions. The streamwise velocity fluctuations increase with the streamwise magnetic flux, whereas they decrease with the spanwise magnetic flux. It is also shown that the spanwise magnetic flux is much more effective than the streamwise magnetic flux in reducing the skin-friction drag. Instantaneous Lorentz force vectors show that the flow motions by the near-wall vortices are directly inhibited by the spanwise magnetic flux, while they are less effectively inhibited by the streamwise magnetic flux. Other turbulence statistics that reveal the effects of the applied magnetic forcing will be presented. ^* Supported by KOSEF Contract No. 965-1008-003-2 and ONR Grant No. N00014-95-1-0352.

  12. High-resolution polypeptide structure and dynamics in anisotropic environments: The gramicidin channel

    Energy Technology Data Exchange (ETDEWEB)

    Cross, T.A.; Lee, K.C.; Ketchem, R.R.; Hu, W.; Lazo, N.D.; Huo, S. [Florida State Univ., Tallahassee, FL (United States)

    1994-12-01

    To understand the details of macromolecular function, high-resolution structural and dynamic detail is essential. The polypeptide fold of the gramicidin channel has been effectively modeled for the past 20 years, yet the functional changes in conductance and channel lifetime associated with amino acid substitutions cannot be predicted. To accomplish this goal, high-resolution electrostatic modeling and the precise orientation of all dipoles are required. Furthermore, an enhanced knowledge of the complex molecular environment of this membrane-bound peptide is needed. An aqueous environment is relatively uniform and achiral. The membrane environment is very heterogenous and chiral. A knowledge of the interactions, specific and nonspecific, between peptide and lipid will aid in developing a better understanding of this environment. To accomplish this goal, it is necessary to study the peptide in an extended lipid bilayer, rather than in a vesicular or micellar form. These latter environments are likely to possess increased dynamics, increased water penetration, and distorted interactions between the polypeptide and membrane surface. To perform NMR studies on bilayer bound peptides, solid state NMR methods are required, and for specific site information, isotopic labels are incorporated using solid phase peptide synthesis.

  13. Morphodynamics structures induced by variations of the channel width

    Science.gov (United States)

    Duro, Gonzalo; Crosato, Alessandra; Tassi, Pablo

    2014-05-01

    In alluvial channels, forcing effects, such as a longitudinally varying width, can induce the formation of steady bars (Olesen, 1984). The type of bars that form, such as alternate, central or multiple, will mainly depend on the local flow width-to-depth ratio and on upstream conditions (Struiksma et al., 1985). The effects on bar formation of varying the channel width received attention only recently and investigations, based on flume experiments and mathematical modelling, are mostly restricted to small longitudinal sinusoidal variations of the channel width (e.g. Repetto et al., 2002; Wu and Yeh, 2005, Zolezzi et al., 2012; Frascati and Lanzoni, 2013). In this work, we analyze the variations in equilibrium bed topography in a longitudinal width-varying channel with characteristic scales of the Waal River (The Netherlands) using two different 2D depth-averaged morphodynamic models, one based on the Delft3D code and one on Telemac-Mascaret system. In particular, we explore the effects of changing the wavelength of sinusoidal width variations in a straight channel, focusing on the effects of the spatial lag between bar formation and forcing that is observed in numerical models and laboratory experiments (e.g. Crosato et al, 2011). We extend the investigations to finite width variations in which longitudinal changes of the width-to-depth ratio are such that they may affect the type of bars that become unstable (alternate, central or multiple bars). Numerical results are qualitatively validated with field observations and the resulting morphodynamic pattern is compared with the physics-based predictor of river bar modes by Crosato and Mosselman (2009). The numerical models are finally used to analyse the experimental conditions of Wu and Yeh (2005). The study should be seen as merely exploratory. The aim is to investigate possible approaches for future research aiming at assessing the effects of artificial river widening and narrowing to control bar formation in

  14. Multi-Channel Capacitive Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Bingnan Wang

    2016-01-01

    Full Text Available In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved.

  15. Investigating ion channel conformational changes using voltage clamp fluorometry.

    Science.gov (United States)

    Talwar, Sahil; Lynch, Joseph W

    2015-11-01

    Ion channels are membrane proteins whose functions are governed by conformational changes. The widespread distribution of ion channels, coupled with their involvement in most physiological and pathological processes and their importance as therapeutic targets, renders the elucidation of these conformational mechanisms highly compelling from a drug discovery perspective. Thanks to recent advances in structural biology techniques, we now have high-resolution static molecular structures for members of the major ion channel families. However, major questions remain to be resolved about the conformational states that ion channels adopt during activation, drug modulation and desensitization. Patch-clamp electrophysiology has long been used to define ion channel conformational states based on functional criteria. It achieves this by monitoring conformational changes at the channel gate and cannot detect conformational changes occurring in regions distant from the gate. Voltage clamp fluorometry involves labelling cysteines introduced into domains of interest with environmentally sensitive fluorophores and inferring structural rearrangements from voltage or ligand-induced fluorescence changes. Ion channel currents are monitored simultaneously to verify the conformational status. By defining real time conformational changes in domains distant from the gate, this technique provides unexpected new insights into ion channel structure and function. This review aims to summarise the methodology and highlight recent innovative applications of this powerful technique. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Insights into channel dysfunction from modelling and molecular dynamics simulations.

    Science.gov (United States)

    Musgaard, Maria; Paramo, Teresa; Domicevica, Laura; Andersen, Ole Juul; Biggin, Philip C

    2018-04-01

    Developments in structural biology mean that the number of different ion channel structures has increased significantly in recent years. Structures of ion channels enable us to rationalize how mutations may lead to channelopathies. However, determining the structures of ion channels is still not trivial, especially as they necessarily exist in many distinct functional states. Therefore, the use of computational modelling can provide complementary information that can refine working hypotheses of both wild type and mutant ion channels. The simplest but still powerful tool is homology modelling. Many structures are available now that can provide suitable templates for many different types of ion channels, allowing a full three-dimensional interpretation of mutational effects. These structural models, and indeed the structures themselves obtained by X-ray crystallography, and more recently cryo-electron microscopy, can be subjected to molecular dynamics simulations, either as a tool to help explore the conformational dynamics in detail or simply as a means to refine the models further. Here we review how these approaches have been used to improve our understanding of how diseases might be linked to specific mutations in ion channel proteins. This article is part of the Special Issue entitled 'Channelopathies.' Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Structure-function of proteins interacting with the alpha1 pore-forming subunit of high voltage-activated calcium channel

    Directory of Open Access Journals (Sweden)

    Alan eNeely

    2014-06-01

    Full Text Available Openings of high-voltage-activated calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, high-voltage-activated calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1 associated with four additional polypeptide chains β, α2, δ and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of high-voltage-activated calcium channels.

  18. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels

    Science.gov (United States)

    Neely, Alan; Hidalgo, Patricia

    2014-01-01

    Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels. PMID:24917826

  19. Ligand Access Channels in Cytochrome P450 Enzymes: A Review

    Directory of Open Access Journals (Sweden)

    Philippe Urban

    2018-05-01

    Full Text Available Quantitative structure-activity relationships may bring invaluable information on structural elements of both enzymes and substrates that, together, govern substrate specificity. Buried active sites in cytochrome P450 enzymes are connected to the solvent by a network of channels exiting at the distal surface of the protein. This review presents different in silico tools that were developed to uncover such channels in P450 crystal structures. It also lists some of the experimental evidence that actually suggest that these predicted channels might indeed play a critical role in modulating P450 functions. Amino acid residues at the entrance of the channels may participate to a first global ligand recognition of ligands by P450 enzymes before they reach the buried active site. Moreover, different P450 enzymes show different networks of predicted channels. The plasticity of P450 structures is also important to take into account when looking at how channels might play their role.

  20. Correlation between interstitial flow and pore structure in packed bed. 1st Report. Axial velocity measurement using MRI and visualization of axial channel flow; Juten sonai ryudo to kugeki kozo no sokan. 1. MRI ni yoru jikuhoko ryusoku bunpu no keisoku to jikiuhoko channel ryu no kashika

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K; Yokouchi, Y; Hirai, S [Tokyo Institute of Technology, Tokyo (Japan)

    2000-02-25

    Structure and velocity measurements using magnetic resonance imaging (MRI) have been performed experimentally to obtain a correlation between pore structure and interstitial flow through the packed bed of 5 mm diameter in the tube of 36 mm ID. To measure axial velocity maps of water flow through the packed bed, the phase method of using the phase difference of water spin magnetization between flowing and stagnant fluids by applying magnetic fields with bipolar gradients was employed. The spatial resolution of the obtained map in 0.2 mm x 0.2 mm x 0.5 mm. It was made clear from the obtained axial velocity maps that channel flows with higher axial velocity were induced not only near the wall but also in the internal region of the packed bed. Furthermore, pore structure of the packed bed was characterized from multi-slice images by partitioning of void space and combining of each pore section along the axial direction to analyze the structure-flow correlation. It was found from image analysis that axial channels with long and straight void space existed in the pore structure, and that most of the channel flows with higher axial velocity were induced in the axial channels. The flow rate through an axial channel depends on the square of the averaged cross section of the axial channel. (author)

  1. Sensing with Ion Channels

    CERN Document Server

    Martinac, Boris

    2008-01-01

    All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input for the existence of life thus justifies the effort made to understand its molecular origins. Sensing with Ion Channels focuses on ion channels as key molecules enabling biological systems to sense and process the physical and chemical stimuli that act upon cells in their living environment. Its aim is to serve as a reference to ion channel specialists and as a source of new information to non specialists who want to learn about the structural and functional diversity of ion channels and their role in sensory physiology.

  2. Bidirectional Fano Algorithm for Lattice Coded MIMO Channels

    KAUST Repository

    Al-Quwaiee, Hessa

    2013-01-01

    channel model. Channel codes based on lattices are preferred due to three facts: lattice codes have simple structure, the code can achieve the limits of the channel, and they can be decoded efficiently using lattice decoders which can be considered

  3. Turbulent flow in a ribbed channel: Flow structures in the vicinity of a rib

    DEFF Research Database (Denmark)

    Wang, Lei; Salewski, Mirko; Sundén, Bengt

    2010-01-01

    PIV measurements are performed in a channel with periodic ribs on one wall. The emphasis of this study is to investigate the flow structures in the vicinity of a rib in terms of mean velocities, Reynolds stresses, probability density functions (PDF), and two-point correlations. The PDF distribution......-based visualization is applied to the separation bubble upstream of the rib. Salient critical points and limit cycles are extracted, which gives clues to the physical processes occurring in the flow....

  4. Genetic variation in the beta 3-adrenoreceptor gene (Trp64Arg polymorphism) and its influence on anthropometric parameters and insulin resistance under a high monounsaturated versus a high polyunsaturated fat hypocaloric diet.

    Science.gov (United States)

    de Luis, D A; Aller, R; Izaola, O; Conde, R; Eiros Bouza, J M

    2013-01-01

    The aim of our study was to investigate the role of Trp64Arg polymorphism of the beta 3-adrenergic receptor (beta 3-AR) gene on metabolic changes and weight loss secondary to a high monounsaturated fat versus a high polyunsaturated fat hypocaloric diet in obese subjects. A population of 260 obese subjects was analyzed. In the basal visit, patients were randomly allocated for 3 months to either diet M (high monounsaturated fat hypocaloric diet) or diet P (high polyunsaturated fat hypocaloric diet). There were no significant differences between the positive effects (on weight, body mass index, waist circumference, fat mass) in either genotype group with both diets. With diet P and in genotype Trp64Trp, glucose levels (-6.7 ± 12.1 vs. -1.2 ± 2.2 mg/dl; p hypocaloric diets is greatest in subjects with the normal homozygous beta 3-AR gene. Improvements in total cholesterol, LDL cholesterol, triglyceride, glucose, insulin and HOMA-R levels were better than in the heterozygous group. Copyright © 2013 S. Karger AG, Basel.

  5. Vertical structure of extreme currents in the Faroe-Bank Channel

    Directory of Open Access Journals (Sweden)

    C. Carollo

    2005-09-01

    Full Text Available Extreme currents are studied with the aim of understanding their vertical and spatial structures in the Faroe-Bank Channel. Acoustic Doppler Current Profiler time series recorded in 3 deployments in this channel were investigated. To understand the main features of extreme events, the measurements were separated into their components through filtering and tidal analysis before applying the extreme value theory to the surge component. The Generalized Extreme Value (GEV distribution and the Generalized Pareto Distribution (GPD were used to study the variation of surge extremes from near-surface to deep waters. It was found that this component alone is not able to explain the extremes measured in total currents, particularly below 500 m. Here the mean residual flow enhanced by tidal rectification was found to be the component feature dominating extremes. Therefore, it must be taken into consideration when applying the extreme value theory, not to underestimate the return level for total currents. Return value speeds up to 250 cm s–1 for 50/250 years return period were found for deep waters, where the flow is constrained by the topography at bearings near 300/330° It is also found that the UK Meteorological Office FOAM model is unable to reproduce either the magnitude or the form for the extremes, perhaps due to its coarse vertical and horizontal resolution, and is thus not suitable to model extremes on a regional scale.

    Keywords. Oceanography: Physical (Currents; General circulation; General or miscellaneous

  6. Ion channels in plants.

    Science.gov (United States)

    Hedrich, Rainer

    2012-10-01

    Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.

  7. Plant ion channels: gene families, physiology, and functional genomics analyses.

    Science.gov (United States)

    Ward, John M; Mäser, Pascal; Schroeder, Julian I

    2009-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.

  8. The hitchhiker’s guide to the voltage-gated sodium channel galaxy

    Science.gov (United States)

    2016-01-01

    Eukaryotic voltage-gated sodium (Nav) channels contribute to the rising phase of action potentials and served as an early muse for biophysicists laying the foundation for our current understanding of electrical signaling. Given their central role in electrical excitability, it is not surprising that (a) inherited mutations in genes encoding for Nav channels and their accessory subunits have been linked to excitability disorders in brain, muscle, and heart; and (b) Nav channels are targeted by various drugs and naturally occurring toxins. Although the overall architecture and behavior of these channels are likely to be similar to the more well-studied voltage-gated potassium channels, eukaryotic Nav channels lack structural and functional symmetry, a notable difference that has implications for gating and selectivity. Activation of voltage-sensing modules of the first three domains in Nav channels is sufficient to open the channel pore, whereas movement of the domain IV voltage sensor is correlated with inactivation. Also, structure–function studies of eukaryotic Nav channels show that a set of amino acids in the selectivity filter, referred to as DEKA locus, is essential for Na+ selectivity. Structures of prokaryotic Nav channels have also shed new light on mechanisms of drug block. These structures exhibit lateral fenestrations that are large enough to allow drugs or lipophilic molecules to gain access into the inner vestibule, suggesting that this might be the passage for drug entry into a closed channel. In this Review, we will synthesize our current understanding of Nav channel gating mechanisms, ion selectivity and permeation, and modulation by therapeutics and toxins in light of the new structures of the prokaryotic Nav channels that, for the time being, serve as structural models of their eukaryotic counterparts. PMID:26712848

  9. Planar channeling in superlattices: Theory

    International Nuclear Information System (INIS)

    Ellison, J.A.; Picraux, S.T.; Allen, W.R.; Chu, W.K.

    1988-01-01

    The well-known continuum model theory for planar channeled energetic particles in perfect crystals is extended to layered crystalline structures and applied to superlattices. In a strained-layer structure, the planar channels with normals which are not perpendicular to the growth direction change their direction at each interface, and this dramatically influences the channeling behavior. The governing equation of motion for a planar channeled ion in a strained-layer superlattice with equal layer thicknesses is a one degree of freedom nonlinear oscillator which is periodically forced with a sequence of δ functions. These δ functions, which are of equal spacing and amplitude with alternating sign, represent the tilts at each of the interfaces. Thus upon matching an effective channeled particle wavelength, corresponding to a natural period of the nonlinear oscillator, to the period of the strained-layer superlattice, corresponding to the periodic forcing, strong resonance effects are expected. The condition of one effective wavelength per period corresponds to a rapid dechanneling at a well-defined depth (catastrophic dechanneling), whereas two wavelengths per period corresponds to no enhanced dechanneling after the first one or two layers (resonance channeling). A phase plane analysis is used to characterize the channeled particle motion. Detailed calculations using the Moliere continuum potential are compared with our previously described modified harmonic model, and new results are presented for the phase plane evolution, as well as the dechanneling as a function of depth, incident angle, energy, and layer thickness. General scaling laws are developed and nearly universal curves are obtained for the dechanneling versus depth under catastrophic dechanneling

  10. Influence of internal channel geometry of gas turbine blade on flow structure and heat transfer

    Science.gov (United States)

    Szwaba, Ryszard; Kaczynski, Piotr; Telega, Janusz; Doerffer, Piotr

    2017-12-01

    This paper presents the study of the influence of channel geometry on the flow structure and heat transfer, and also their correlations on all the walls of a radial cooling passage model of a gas turbine blade. The investigations focus on the heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of internal cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include a corner fillets, ribs with fillet radii and a special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which has very realistic features.

  11. Structure determination of disease associated peak AAA from l-Tryptophan implicated in the eosinophilia-myalgia syndrome.

    Science.gov (United States)

    Klarskov, Klaus; Gagnon, Hugo; Boudreault, Pierre-Luc; Normandin, Chad; Plancq, Baptiste; Marsault, Eric; Gleich, Gerald J; Naylor, Stephen

    2018-01-05

    The eosinophilia-myalgia syndrome (EMS) outbreak of 1989 that occurred in the USA and elsewhere was caused by the ingestion of l-Tryptophan (L-Trp) solely manufactured by the Japanese company Showa Denko K.K. (SD). Six compounds present in the SD L-Trp were reported to be case-associated contaminants. However, "one" of these compounds, Peak AAA has remained structurally uncharacterized, despite the fact that it was described as "the only statistically significant (p=0.0014) contaminant". Here, we employ on-line microcapillary-high performance liquid chromatography-electrospray ionization mass spectrometry (LC-MS), and tandem mass spectrometry (MS/MS) to determine that Peak AAA is in fact two structurally related isomers. Peak AAA 1 and Peak AAA 2 differed in LC retention times, and were determined by accurate mass-LC-MS to both have a protonated molecular ion (MH +) of mass 343.239Da (Da), corresponding to a molecular formula of C 21 H 30 N 2 O 2, and possessing eight degrees of unsaturation (DoU) for the non-protonated molecule. By comparing the LC-MS and LC-MS-MS retention times and spectra with authentic synthetic standards, Peak AAA 1 was identified as the intermolecular condensation product of L-Trp with anteiso 7-methylnonanoic acid, to afford (S)-2-amino-3-(2-((S,E)-7-methylnon-1-en-1-yl)-1H-indol-3-yl)propanoic acid. Peak AAA 2 was determined to be a condensation product of L-Trp with decanoic acid, which produced (S)-2-amino-3-(2-((E)-dec-1-en-1-yl)-1H-indol-3-yl)propanoic acid. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Multiplicative properties of quantum channels

    Science.gov (United States)

    Rahaman, Mizanur

    2017-08-01

    In this paper, we study the multiplicative behaviour of quantum channels, mathematically described by trace preserving, completely positive maps on matrix algebras. It turns out that the multiplicative domain of a unital quantum channel has a close connection to its spectral properties. A structure theorem (theorem 2.5), which reveals the automorphic property of an arbitrary unital quantum channel on a subalgebra, is presented. Various classes of quantum channels (irreducible, primitive, etc) are then analysed in terms of this stabilising subalgebra. The notion of the multiplicative index of a unital quantum channel is introduced, which measures the number of times a unital channel needs to be composed with itself for the multiplicative algebra to stabilise. We show that the maps that have trivial multiplicative domains are dense in completely bounded norm topology in the set of all unital completely positive maps. Some applications in quantum information theory are discussed.

  13. Role of Ca++ Influx via Epidermal TRP Ion Channels

    Science.gov (United States)

    2017-12-01

    manuscript and helpful discussions. References 1. Burkhart, C. G., and Burkhart, H. R. (2003) Contact irritant dermatitis and anti-pruritic agents...E. (2013) TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis . FASEB J. 27, 3549–3563 64. Yoshioka, T., Imura, K...allergic   contact   dermatitis ,   including   contact   dermatitis   elicited  by  the  poison  ivy  allergen,  urushiol  [75,  126].     Similarly

  14. Role of Ca ++ Influx via Epidermal TRP Ion Channels

    Science.gov (United States)

    2016-10-01

    the North Carolina Biotechnology Center (NCBC), and by the Harrington Discovery Institute of University Hospitals in Cleveland OH. 7   The...widely read forum on Pain Medicine in the US and in English-speaking countries. http://www.painmedicinenews.com/Science-Technology/Article/08-16/Study...University, Durham NC USA. 2Dept of Medicine , Duke University, Durham NC USA. 3Dept of Chemistry, Duke University, Durham NC USA. 4Dept of Neurobiology

  15. Molecular modeling and structural analysis of two-pore domain potassium channels TASK1 interactions with the blocker A1899

    Directory of Open Access Journals (Sweden)

    David Mauricio Ramirez

    2015-03-01

    Full Text Available A1899 is a potent and highly selective blocker of the Two-pore domain potassium (K2P channel TASK-1, it acts as an antagonist blocking the K+ flux and binds to TASK-1 in the inner cavity and shows an activity in nanomolar order. This drug travels through the central cavity and finally binds in the bottom of the selectivity filter with some threonines and waters molecules forming a H-bond network and several hydrophobic interactions. Using alanine mutagenesis screens the binding site was identify involving residues in the P1 and P2 pore loops, the M2 and M4 transmembrane segments, and the halothane response element; mutations were introduced in the human TASK-1 (KCNK3, NM_002246 expressed in Oocytes from anesthetized Xenopus laevis frogs. Based in molecular modeling and structural analysis as such as molecular docking and binding free energy calculations a pose was suggested using a TASK-1 homology models. Recently, various K2P crystal structures have been obtained. We want redefined – from a structural point of view – the binding mode of A1899 in TASK-1 homology models using as a template the K2P crystal structures. By computational structural analysis we describe the molecular basis of the A1899 binding mode, how A1899 travel to its binding site and suggest an interacting pose (Figure 1. after 100 ns of molecular dynamics simulation (MDs we found an intra H-Bond (80% of the total MDs, a H-Bond whit Thr93 (42% of the total MDs, a pi-pi stacking interaction between a ring and Phe125 (88% of the total MDs and several water bridges. Our experimental and computational results allow the molecular understanding of the structural binding mechanism of the selective blocker A1899 to TASK-1 channels. We identified the structural common and divergent features of TASK-1 channel through our theoretical and experimental studies of A1899 drug action.

  16. Structures of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels: implications for movement of the C-terminal cysteine-rich domain

    International Nuclear Information System (INIS)

    Suzuki, Nobuhiro; Yamazaki, Yasuo; Brown, R. Lane; Fujimoto, Zui; Morita, Takashi; Mizuno, Hiroshi

    2008-01-01

    The structures of pseudechetoxin and pseudecin suggest that both proteins bind to cyclic nucleotide-gated ion channels in a manner in which the concave surface occludes the pore entrance. Cyclic nucleotide-gated (CNG) ion channels play pivotal roles in sensory transduction by retinal photoreceptors and olfactory neurons. The elapid snake toxins pseudechetoxin (PsTx) and pseudecin (Pdc) are the only known protein blockers of CNG channels. These toxins belong to a cysteine-rich secretory protein (CRISP) family containing an N-terminal pathogenesis-related proteins of group 1 (PR-1) domain and a C-terminal cysteine-rich domain (CRD). PsTx and Pdc are highly homologous proteins, but their blocking affinities on CNG channels are different: PsTx blocks both the olfactory and retinal channels with ∼15–30-fold higher affinity than Pdc. To gain further insights into their structure and function, the crystal structures of PsTx, Pdc and Zn 2+ -bound Pdc were determined. The structures revealed that most of the amino-acid-residue differences between PsTx and Pdc are located around the concave surface formed between the PR-1 domain and the CRD, suggesting that the concave surface is functionally important for CNG-channel binding and inhibition. A structural comparison in the presence and absence of Zn 2+ ion demonstrated that the concave surface can open and close owing to movement of the CRD upon Zn 2+ binding. The data suggest that PsTx and Pdc occlude the pore entrance and that the dynamic motion of the concave surface facilitates interaction with the CNG channels

  17. Structures of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels: implications for movement of the C-terminal cysteine-rich domain

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Nobuhiro [Department of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572 (Japan); Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602 (Japan); Yamazaki, Yasuo [Department of Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588 (Japan); Brown, R. Lane [Neurological Science Institute, Oregon Health and Science University, Beaverton, Oregon 97006 (United States); Fujimoto, Zui [Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602 (Japan); Morita, Takashi, E-mail: tmorita@my-pharm.ac.jp [Department of Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588 (Japan); Mizuno, Hiroshi, E-mail: tmorita@my-pharm.ac.jp [Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602 (Japan); VALWAY Technology Center, NEC Soft Ltd, Koto-ku, Tokyo 136-8627 (Japan); Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Central 6, Tsukuba, Ibaraki 305-8566 (Japan); Department of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572 (Japan)

    2008-10-01

    The structures of pseudechetoxin and pseudecin suggest that both proteins bind to cyclic nucleotide-gated ion channels in a manner in which the concave surface occludes the pore entrance. Cyclic nucleotide-gated (CNG) ion channels play pivotal roles in sensory transduction by retinal photoreceptors and olfactory neurons. The elapid snake toxins pseudechetoxin (PsTx) and pseudecin (Pdc) are the only known protein blockers of CNG channels. These toxins belong to a cysteine-rich secretory protein (CRISP) family containing an N-terminal pathogenesis-related proteins of group 1 (PR-1) domain and a C-terminal cysteine-rich domain (CRD). PsTx and Pdc are highly homologous proteins, but their blocking affinities on CNG channels are different: PsTx blocks both the olfactory and retinal channels with ∼15–30-fold higher affinity than Pdc. To gain further insights into their structure and function, the crystal structures of PsTx, Pdc and Zn{sup 2+}-bound Pdc were determined. The structures revealed that most of the amino-acid-residue differences between PsTx and Pdc are located around the concave surface formed between the PR-1 domain and the CRD, suggesting that the concave surface is functionally important for CNG-channel binding and inhibition. A structural comparison in the presence and absence of Zn{sup 2+} ion demonstrated that the concave surface can open and close owing to movement of the CRD upon Zn{sup 2+} binding. The data suggest that PsTx and Pdc occlude the pore entrance and that the dynamic motion of the concave surface facilitates interaction with the CNG channels.

  18. Retinal Cyclic Nucleotide-Gated Channels: From Pathophysiology to Therapy

    Directory of Open Access Journals (Sweden)

    Stylianos Michalakis

    2018-03-01

    Full Text Available The first step in vision is the absorption of photons by the photopigments in cone and rod photoreceptors. After initial amplification within the phototransduction cascade the signal is translated into an electrical signal by the action of cyclic nucleotide-gated (CNG channels. CNG channels are ligand-gated ion channels that are activated by the binding of cyclic guanosine monophosphate (cGMP or cyclic adenosine monophosphate (cAMP. Retinal CNG channels transduce changes in intracellular concentrations of cGMP into changes of the membrane potential and the Ca2+ concentration. Structurally, the CNG channels belong to the superfamily of pore-loop cation channels and share a common gross structure with hyperpolarization-activated cyclic nucleotide-gated (HCN channels and voltage-gated potassium channels (KCN. In this review, we provide an overview on the molecular properties of CNG channels and describe their physiological role in the phototransduction pathways. We also discuss insights into the pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient animal models and human CNG channelopathies. Finally, we summarize recent gene therapy activities and provide an outlook for future clinical application.

  19. Ac-Trp-DPhe(p-I)-Arg-Trp-NH2, a 250-Fold Selective Melanocortin-4 Receptor (MC4R) Antagonist over the Melanocortin-3 Receptor (MC3R), Affects Energy Homeostasis in Male and Female Mice Differently.

    Science.gov (United States)

    Lensing, Cody J; Adank, Danielle N; Doering, Skye R; Wilber, Stacey L; Andreasen, Amy; Schaub, Jay W; Xiang, Zhimin; Haskell-Luevano, Carrie

    2016-09-21

    The melanocortin-4 receptor (MC4R) has been indicated as a therapeutic target for metabolic disorders such as anorexia, cachexia, and obesity. The current study investigates the in vivo effects on energy homeostasis of a 15 nM MC4R antagonist SKY2-23-7, Ac-Trp-DPhe(p-I)-Arg-Trp-NH2, that is a 3700 nM melanocortin-3 receptor (MC3R) antagonist with minimal MC3R and MC4R agonist activity. When monitoring both male and female mice in TSE metabolic cages, sex-specific responses were observed in food intake, respiratory exchange ratio (RER), and energy expenditure. A 7.5 nmol dose of SKY2-23-7 increased food intake, increased RER, and trended toward decreasing energy expenditure in male mice. However, this compound had minimal effect on female mice's food intake and RER at the 7.5 nmol dose. A 2.5 nmol dose of SKY2-23-7 significantly increased female food intake, RER, and energy expenditure while having a minimal effect on male mice at this dose. The observed sex differences of SKY2-23-7 administration result in the discovery of a novel chemical probe for elucidating the molecular mechanisms of the sexual dimorphism present within the melanocortin pathway. To further explore the melanocortin sexual dimorphism, hypothalamic gene expression was examined. The mRNA expression of the MC3R and proopiomelanocortin (POMC) were not significantly different between sexes. However, the expression of agouti-related peptide (AGRP) was significantly higher in female mice which may be a possible mechanism for the sex-specific effects observed with SKY2-23-7.

  20. Structure dependent hydrophobic and hydrophilic interactions between nickel(II) Schiff base complexes and serum albumins: Spectroscopic and docking studies

    Energy Technology Data Exchange (ETDEWEB)

    Koley Seth, Banabithi; Ray, Aurkie; Banerjee, Mousumi; Bhattacharyya, Teerna [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Bhattacharyya, Dhananjay [Computational Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Basu, Samita, E-mail: samita.basu@saha.ac.in [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India)

    2016-03-15

    A systematic and comparative binding study between serum-albumins (SA) and a series of monomeric nickel(II)-Schiff-base-complexes (NSCs), which might be imperative to investigate the function of SA behind nickel allergy, has been carried out through docking and different spectroscopic techniques. The initial docking studies indicate structure-dependent selective hydrophobic and hydrophilic interactions. The pyridine and phenyl containing NSCs, which are more aromatic, show better π–π staking compared to pyrrole one. Again all the NSCs bind with BSA though amino acid residues of IB domain affecting local environment of the Trp-134 surrounded by both hydrophobic and hydrophilic residues instead of the hydrophobically buried Trp-212. In HSA the hydophobically buried Trp-214 is influenced by NSCs. The experimental results nicely support the docking outcomes. The changes in Gibbs free energy, binding affinity and the nature of hydrophilic/hydrophobic interactions of NSC–SA systems indicate greater accessibility of N{sub 2}O{sub 2} donor set complex compared to N{sub 4} one towards SA. Quantum chemical structure optimizations support the better planarity of NSC with N{sub 2}O{sub 2} which provides better binding. Therefore the structural variation of N{sub 2}O{sub 2} donor set complexes becomes much more useful compared to N{sub 4} one to search out the most compatible NSC towards SAs.

  1. Potassium channels in brain mitochondria.

    Science.gov (United States)

    Bednarczyk, Piotr

    2009-01-01

    Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca(+) ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoK(ATP)) channel, large conductance Ca(2+)-regulated (mitoBK(Ca)) channel, intermediate conductance Ca(2+)-regulated (mitoIK(Ca)) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoK(ATP) channel or mitoBK(Ca) channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBK(Ca) channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBK(Ca) channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify

  2. Modified MIMO Cube for Enhanced Channel Capacity

    Directory of Open Access Journals (Sweden)

    Lajos Nagy

    2012-01-01

    Full Text Available This paper deals with the optimization of MIMO antenna elements' position in modified MIMO cube for getting maximal channel capacity in indoor environment. The dependence of the channel capacity on the antenna orientation was analyzed by simulations. We have also examined the effect of the frequency dependence of the antenna system (in case of conjugate matching and nonconjugate matching for the channel capacity. Based on the simulation results in the created and measured antenna system, the antennas were at a right angle to each other. At the two chosen different structures, we measured the antenna parameters and the channel capacity. In this paper, we present the results of the measurements which clearly confirm our simulations. We will point out the differences between the two antenna structures.

  3. Nanobody mediated crystallization of an archeal mechanosensitive channel.

    Directory of Open Access Journals (Sweden)

    Christian Löw

    Full Text Available Mechanosensitive channels (MS are integral membrane proteins and allow bacteria to survive sudden changes in external osmolarity due to transient opening of their pores. The efflux of cytoplasmic osmolytes reduces the membrane tension and prevents membrane rupture. Therefore these channels serve as emergency valves when experiencing significant environmental stress. The preparation of high quality crystals of integral membrane proteins is a major bottleneck for structure determination by X-ray crystallography. Crystallization chaperones based on various protein scaffolds have emerged as promising tool to increase the crystallization probability of a selected target protein. So far archeal mechanosensitive channels of small conductance have resisted crystallization in our hands. To structurally analyse these channels, we selected nanobodies against an archeal MS channel after immunization of a llama with recombinant expressed, detergent solubilized and purified protein. Here we present the characterization of 23 different binders regarding their interaction with the channel protein using analytical gel filtration, western blotting and surface plasmon resonance. Selected nanobodies bound the target with affinities in the pico- to nanomolar range and some binders had a profound effect on the crystallization of the MS channel. Together with previous data we show that nanobodies are a versatile and valuable tool in structural biology by widening the crystallization space for highly challenging proteins, protein complexes and integral membrane proteins.

  4. Pharmacological evaluation of NSAID-induced gastropathy as a "Translatable" model of referred visceral hypersensitivity.

    Science.gov (United States)

    Hummel, Michele; Knappenberger, Terri; Reilly, Meghan; Whiteside, Garth T

    2017-09-07

    To evaluate whether non-steroidal anti-inflammatory drugs (NSAIDs)-induced gastropathy is a clinically predictive model of referred visceral hypersensitivity. Gastric ulcer pain was induced by the oral administration of indomethacin to male, CD1 mice ( n = 10/group) and then assessed by measuring referred abdominal hypersensitivity to tactile application. A diverse range of pharmacological mechanisms contributing to the pain were subsequently investigated. These mechanisms included: transient receptor potential (TRP), sodium and acid-sensing ion channels (ASICs) as well as opioid receptors and guanylate cyclase C (GC-C). Results showed that two opioids and a GC-C agonist, morphine, asimadoline and linaclotide, respectively, the TRP antagonists, AMG9810 and HC-030031 and the sodium channel blocker, carbamazepine, elicited a dose- and/or time-dependent attenuation of referred visceral hypersensitivity, while the ASIC blocker, amiloride, was ineffective at all doses tested. Together, these findings implicate opioid receptors, GC-C, and sodium and TRP channel activation as possible mechanisms associated with visceral hypersensitivity. More importantly, these findings also validate NSAID-induced gastropathy as a sensitive and clinically predictive mouse model suitable for assessing novel molecules with potential pain-attenuating properties.

  5. THREE DIMENSIONAL CFD MODELLING OF FLOW STRUCTURE IN COMPOUND CHANNELS

    Directory of Open Access Journals (Sweden)

    Usman Ghani

    2010-10-01

    Full Text Available The computational modeling of three dimensional flows in a meandering compound channel has been performed in this research work. The flow calculations are performed by solving 3D steady state continuity and Reynolds averaged Navier-Stokes equations. The turbulence closure is approximated with standard - turbulence model. The model equations are solved numerically with a general purpose software package. A comprehensive validation of the simulated results against the experimental data and a demonstration that the software used in this study has matured enough for investigating practical engineering problems are the major contributions of this paper. The model was initially validated. This was achieved by computing streamwise point velocities at different depths of various sections and depth averaged velocities at three cross sections along the main channel and comparing these results with experimental data. After the validation of the model, predictions were made for different flow parameters including velocity contours at the surface, pressure distribution, turbulence intensity etc. The results gave an overall understanding of these flow variables in meandering channels. The simulation also established the good prediction capability of the standard - turbulence model for flows in compound channels.

  6. Functional diversity of potassium channel voltage-sensing domains.

    Science.gov (United States)

    Islas, León D

    2016-01-01

    Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology.

  7. Bupivacaine-induced cellular entry of QX-314 and its contribution to differential nerve block

    Science.gov (United States)

    Brenneis, C; Kistner, K; Puopolo, M; Jo, S; Roberson, DP; Sisignano, M; Segal, D; Cobos, EJ; Wainger, BJ; Labocha, S; Ferreirós, N; Hehn, C; Tran, J; Geisslinger, G; Reeh, PW; Bean, BP; Woolf, C J

    2014-01-01

    Background and Purpose: Selective nociceptor fibre block is achieved by introducing the cell membrane impermeant sodium channel blocker lidocaine N-ethyl bromide (QX-314) through transient receptor potential V1 (TRPV1) channels into nociceptors. We screened local anaesthetics for their capacity to activate TRP channels, and characterized the nerve block obtained by combination with QX-314. Experimental Approach: We investigated TRP channel activation in dorsal root ganglion (DRG) neurons by calcium imaging and patch-clamp recordings, and cellular QX-314 uptake by MS. To characterize nerve block, compound action potential (CAP) recordings from isolated nerves and behavioural responses were analysed. Key Results: Of the 12 compounds tested, bupivacaine was the most potent activator of ruthenium red-sensitive calcium entry in DRG neurons and activated heterologously expressed TRPA1 channels. QX-314 permeated through TRPA1 channels and accumulated intracellularly after activation of these channels. Upon sciatic injections, QX-314 markedly prolonged bupivacaine's nociceptive block and also extended (to a lesser degree) its motor block. Bupivacaine's blockade of C-, but not A-fibre, CAPs in sciatic nerves was extended by co-application of QX-314. Surprisingly, however, this action was the same in wild-type, TRPA1-knockout and TRPV1/TRPA1-double knockout mice, suggesting a TRP-channel independent entry pathway. Consistent with this, high doses of bupivacaine promoted a non-selective, cellular uptake of QX-314. Conclusions and Implications: Bupivacaine, combined with QX-314, produced a long-lasting sensory nerve block. This did not require QX-314 permeation through TRPA1, although bupivacaine activated these channels. Regardless of entry pathway, the greatly extended duration of block produced by QX-314 and bupivacaine may be clinically useful. PMID:24117225

  8. Channel uranium-graphite reactor mounting

    International Nuclear Information System (INIS)

    Polushkin, K.K.; Kuznetsov, A.G.; Zheleznyakov, B.N.

    1981-01-01

    According to theoretical principles of general engineering technology the engineering experience of construction-mounting works at the NPP with channel uranium-graphite reactors is systematized. Main parameters and structural features of the 1000 MW channel uranium-graphite reactors are considered. The succession of mounting operations, premounting equipment and pipelines preparation and mounting works technique are described. The most efficient methods of fitting, welding and machining of reactor elements are recommended. Main problems of technical control service are discussed. A typical netted diagram of main equipment of channel uranium-graphite reactors mounting is given

  9. Sediment Mobilization and Storage Dynamics of a Debris Flow Impacted Stream Channel using Multi-Temporal Structure from Motion Photogrammetry

    Science.gov (United States)

    Bailey, T. L.; Sutherland-Montoya, D.

    2015-12-01

    High resolution topographic analysis methods have become important tools in geomorphology. Structure from Motion photogrammetry offers a compelling vehicle for geomorphic change detection in fluvial environments. This process can produce arbitrarily high resolution, geographically registered spectral and topographic coverages from a collection of overlapping digital imagery from consumer cameras. Cuneo Creek has had three historically observed episodes of rapid aggradation (1955, 1964, and 1997). The debris flow deposits continue to be major sources of sediment sixty years after the initial slope failure. Previous studies have monitored the sediment storage volume and particle size since 1976 (in 1976, 1982, 1983, 1985, 1986, 1987, 1998, 2003). We reoccupied 3 previously surveyed stream cross sections on Sept 30, 2014 and March 30, 2015, and produced photogrammetric point clouds using a pole mounted camera with a remote view finder to take nadir view images from 4.3 meters above the channel bed. Ground control points were registered using survey grade GPS and typical cross sections used over 100 images to build the structure model. This process simultaneously collects channel geometry and we used it to also generate surface texture metrics, and produced DEMs with point cloud densities above 5000 points / m2. In the period between the surveys, a five year recurrence interval discharge of 20 m3/s scoured the channel. Surface particle size distribution has been determined for each observation period using image segmentation algorithms based on spectral distance and compactness. Topographic differencing between the point clouds shows substantial channel bed mobilization and reorganization. The net decline in sediment storage is in excess of 4 x 10^5 cubic meters since the 1964 aggradation peak, with associated coarsening of surface particle sizes. These new methods provide a promising rapid assessment tool for measurement of channel responses to sediment inputs.

  10. Catalytic surface radical in dye-decolorizing peroxidase: a computational, spectroscopic and site-directed mutagenesis study

    Science.gov (United States)

    Linde, Dolores; Pogni, Rebecca; Cañellas, Marina; Lucas, Fátima; Guallar, Victor; Baratto, Maria Camilla; Sinicropi, Adalgisa; Sáez-Jiménez, Verónica; Coscolín, Cristina; Romero, Antonio; Medrano, Francisco Javier; Ruiz-Dueñas, Francisco J.; Martínez, Angel T.

    2014-01-01

    Dye-decolorizing peroxidase (DyP) of Auricularia auricula-judae has been expressed in Escherichia coli as a representative of a new DyP family, and subjected to mutagenic, spectroscopic, crystallographic and computational studies. The crystal structure of DyP shows a buried haem cofactor, and surface tryptophan and tyrosine residues potentially involved in long-range electron transfer from bulky dyes. Simulations using PELE (Protein Energy Landscape Exploration) software provided several binding-energy optima for the anthraquinone-type RB19 (Reactive Blue 19) near the above aromatic residues and the haem access-channel. Subsequent QM/MM (quantum mechanics/molecular mechanics) calculations showed a higher tendency of Trp-377 than other exposed haem-neighbouring residues to harbour a catalytic protein radical, and identified the electron-transfer pathway. The existence of such a radical in H2O2-activated DyP was shown by low-temperature EPR, being identified as a mixed tryptophanyl/tyrosyl radical in multifrequency experiments. The signal was dominated by the Trp-377 neutral radical contribution, which disappeared in the W377S variant, and included a tyrosyl contribution assigned to Tyr-337 after analysing the W377S spectra. Kinetics of substrate oxidation by DyP suggests the existence of high- and low-turnover sites. The high-turnover site for oxidation of RB19 (kcat> 200 s−1) and other DyP substrates was assigned to Trp-377 since it was absent from the W377S variant. The low-turnover site/s (RB19 kcat ~20 s−1) could correspond to the haem access-channel, since activity was decreased when the haem channel was occluded by the G169L mutation. If a tyrosine residue is also involved, it will be different from Tyr-337 since all activities are largely unaffected in the Y337S variant. PMID:25495127

  11. COAXIAL TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc.

    2013-04-30

    Theory, computations, and experimental apparatus are presented that describe and are intended to confirm novel properties of a coaxial two-channel dielectric wake field accelerator. In this configuration, an annular drive beam in the outer coaxial channel excites multimode wakefields which, in the inner channel, can accelerate a test beam to an energy much higher than the energy of the drive beam. This high transformer ratio is the result of judicious choice of the dielectric structure parameters, and of the phase separation between drive bunches and test bunches. A structure with cm-scale wakefields has been build for tests at the Argonne Wakefield Accelerator Laboratory, and a structure with mm-scale wakefields has been built for tests at the SLAC FACET facility. Both tests await scheduling by the respective facilities.

  12. Contrasted structuring effects of mesoscale features on the seabird community in the Mozambique Channel

    Science.gov (United States)

    Jaquemet, S.; Ternon, J. F.; Kaehler, S.; Thiebot, J. B.; Dyer, B.; Bemanaja, E.; Marteau, C.; Le Corre, M.

    2014-02-01

    of mescoscale features in structuring the tropical seabird community in the Mozambique Channel, in addition to segregating tropical and non-tropical species. The mechanisms underlying the segregation of tropical seabirds seem to partially differ from that of other tropical regions, and this may be a consequence of the strong local mesoscale activity, affecting prey size and availability schemes. Beyond characterising the foraging habitats of the seabird community of the Mozambique Channel, this study highlights the importance of this region as a hot spot for seabirds; especially the southern part, where several endangered sub-Antarctic species over-winter.

  13. Channeling of neutral particles in micro- and nano-capillaries

    International Nuclear Information System (INIS)

    Dabagov, S.B.

    2003-01-01

    After briefly reviewing the main directions in X-ray optics and analyzing the development of capillary optics, a general theory of radiation propagation through capillary structures is described in both geometrical optics and wave optics approximations. Analysis of radiation field structure inside a capillary waveguide shows that wave propagation in channels can be of a purely modal nature, with transmitted energy mostly concentrated in the immediate neighbourhood of capillary inner walls. A qualitative change in radiation scattering with decreasing channel diameter 0 namely, the transition from surface channeling in microcapillaries to bulk channeling in nanocapillaries - is discussed [ru

  14. From membrane tension to channel gating: A principal energy transfer mechanism for mechanosensitive channels.

    Science.gov (United States)

    Zhang, Xuejun C; Liu, Zhenfeng; Li, Jie

    2016-11-01

    Mechanosensitive (MS) channels are evolutionarily conserved membrane proteins that play essential roles in multiple cellular processes, including sensing mechanical forces and regulating osmotic pressure. Bacterial MscL and MscS are two prototypes of MS channels. Numerous structural studies, in combination with biochemical and cellular data, provide valuable insights into the mechanism of energy transfer from membrane tension to gating of the channel. We discuss these data in a unified two-state model of thermodynamics. In addition, we propose a lipid diffusion-mediated mechanism to explain the adaptation phenomenon of MscS. © 2016 The Protein Society.

  15. Volcanic Structures Within Niger and Dao Valles, Mars, and Implications for Outflow Channel Evolution and Hellas Basin Rim Development

    Science.gov (United States)

    Korteniemi, J.; Kukkonen, S.

    2018-04-01

    Outflow channel formation on the eastern Hellas rim region is traditionally thought to have been triggered by activity phases of the nearby volcanoes Hadriacus and Tyrrhenus Montes: As a result of volcanic heating subsurface volatiles were mobilized. It is, however, under debate, whether eastern Hellas volcanism was in fact more extensive, and if there were volcanic centers separate from the identified central volcanoes. This work describes previously unrecognized structures in the Niger-Dao Valles outflow channel complex. We interpret them as volcanic edifices: cones, a shield, and a caldera. The structures provide evidence of an additional volcanic center within the valles and indicate volcanic activity both prior to and following the formation of the outflow events. They expand the extent, type, and duration of volcanic activity in the Circum-Hellas Volcanic Province and provide new information on interaction between volcanism and fluvial activity.

  16. An in-depth analysis of the biological functional studies based on the NMR M2 channel structure of influenza A virus

    International Nuclear Information System (INIS)

    Huang Ribo; Du Qishi; Wang Chenghua; Chou, K.-C.

    2008-01-01

    The long-sought three-dimensional structure of the M2 proton channel of influenza A virus was successfully determined recently by the high-resolution NMR [J.R. Schnell, J.J. Chou, Structure and mechanism of the M2 proton channel of influenza A virus, Nature 451 (2008) 591-595]. Such a milestone work has provided a solid structural basis for studying drug-resistance problems. However, the action mechanism revealed from the NMR structure is completely different from the traditional view and hence prone to be misinterpreted as 'conflicting' with some previous biological functional studies. To clarify this kind of confusion, an in-depth analysis was performed for these functional studies, particularly for the mutations D44N, D44A and N44D on position 44, and the mutations on positions 27-38. The analyzed results have provided not only compelling evidences to further validate the NMR structure but also very useful clues for dealing with the drug-resistance problems and developing new effective drugs against H5N1 avian influenza virus, an impending threat to human beings.

  17. Effect of Zingiber officinale Supplementation on Obesity Management with Respect to the Uncoupling Protein 1 -3826A>G and ß3-adrenergic Receptor Trp64Arg Polymorphism.

    Science.gov (United States)

    Ebrahimzadeh Attari, Vahideh; Asghari Jafarabadi, Mohammad; Zemestani, Maryam; Ostadrahimi, Alireza

    2015-07-01

    The present study aimed to investigate the effect of ginger (Zingiber officinale) supplementation on some obesity-associated parameters, with nutrigenetics approach. Accordingly, 80 eligible obese women (aged 18-45 years) were randomly assigned to receive either ginger (2-g ginger rhizomes powder as two 1-g tablets per day) or placebo supplements (corn starch with the same amount) for 12 weeks. Subjects were tested for changes in body weight, body mass index, waist and hip circumferences, body composition, appetite score, and dietary intake. Moreover, participants were genotyped for the -3826A>G and Trp64Arg polymorphisms of uncoupling protein 1 and ß3-adrenergic receptor genes, respectively. Over 12 weeks, ginger supplementation resulted in a slight but statistically significant decrease in all anthropometric measurements and total appetite score as compared with placebo group, which were more pronounced in subjects with the AA genotype for uncoupling protein 1 and Trp64Trp genotype for ß3-adrenergic receptor gene. However, there was no significant difference in changes of body composition and total energy and macronutrients intake between groups. In conclusion, our findings suggest that ginger consumption has potential in managing obesity, accompanying with an intervention-genotype interaction effect. However, further clinical trials need to explore ginger's efficacy as an anti-obesity agent in the form of powder, extract, or its active components. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Crystal Structure and Substrate Specificity Modification of Acetyl Xylan Esterase from Aspergillus luchuensis.

    Science.gov (United States)

    Komiya, Dai; Hori, Akane; Ishida, Takuya; Igarashi, Kiyohiko; Samejima, Masahiro; Koseki, Takuya; Fushinobu, Shinya

    2017-10-15

    Acetyl xylan esterase (AXE) catalyzes the hydrolysis of the acetyl bonds present in plant cell wall polysaccharides. Here, we determined the crystal structure of AXE from Aspergillus luchuensis ( Al AXEA), providing the three-dimensional structure of an enzyme in the Esterase_phb family. Al AXEA shares its core α/β-hydrolase fold structure with esterases in other families, but it has an extended central β-sheet at both its ends and an extra loop. Structural comparison with a ferulic acid esterase (FAE) from Aspergillus niger indicated that Al AXEA has a conserved catalytic machinery: a catalytic triad (Ser119, His259, and Asp202) and an oxyanion hole (Cys40 and Ser120). Near the catalytic triad of A lAXEA, two aromatic residues (Tyr39 and Trp160) form small pockets at both sides. Homology models of fungal FAEs in the same Esterase_phb family have wide pockets at the corresponding sites because they have residues with smaller side chains (Pro, Ser, and Gly). Mutants with site-directed mutations at Tyr39 showed a substrate specificity similar to that of the wild-type enzyme, whereas those with mutations at Trp160 acquired an expanded substrate specificity. Interestingly, the Trp160 mutants acquired weak but significant type B-like FAE activity. Moreover, the engineered enzymes exhibited ferulic acid-releasing activity from wheat arabinoxylan. IMPORTANCE Hemicelluloses in the plant cell wall are often decorated by acetyl and ferulic acid groups. Therefore, complete and efficient degradation of plant polysaccharides requires the enzymes for cleaving the side chains of the polymer. Since the Esterase_phb family contains a wide array of fungal FAEs and AXEs from fungi and bacteria, our study will provide a structural basis for the molecular mechanism of these industrially relevant enzymes in biopolymer degradation. The structure of the Esterase_phb family also provides information for bacterial polyhydroxyalkanoate depolymerases that are involved in biodegradation of

  19. Channel selection in e-commerce age: A strategic analysis of co-op advertising models

    Directory of Open Access Journals (Sweden)

    Yongmei Liu

    2013-03-01

    Full Text Available Purpose: The purpose of this paper is to develop and compare two co-op advertising models: advertising model under traditional channel and co-op advertising model under dual channel, to select optimal channel structure to sell products for manufacturer and to derive optimal co-op advertising strategies for the manufacturer and the retailer.Design/methodology/approach: Stackelberg game theoretical is used to develop two co-op advertising models: co-op advertising model under traditional channel and co-op advertising model under dual channel. Then we compare the two models to select optimal channel structure to sell products for manufacturer and to derive optimal co-op advertising strategies for the manufacturer and the retailer. Furthermore, we analyze the impact of product web-fit on these optimal strategies and illustrate by some numeral examples. Based on our results, we provide some significant theories and managerial insights, and derive some probable paths of future research.Findings: We provide a framework for researching optimal co-op advertising strategies in a two-level supply chain considering different marketing channel structures. First, we discuss the traditional channel co-op adverting model and the dual channel co-op advertising model based on Stackelberg game theoretical, and we derive optimal co-op advertising strategies. Next, comparisons of these two channel structures are discussed and we find that the manufacturer always benefits from dual channel. But the retailer not always benefits from dual channel structure, and dual channel structure is better than retail channel with certain conditions. Also, the optimal co-op advertising strategies for the manufacturer and the retailer are obtained.Research limitations/implications: First, we focus on the aforementioned two channel structures; a further comparison with other channel structures can be investigated. Second, we ignore some factors that influence the demand of product

  20. Sterol Regulation of Voltage-Gated K+ Channels.

    Science.gov (United States)

    Balajthy, Andras; Hajdu, Peter; Panyi, Gyorgy; Varga, Zoltan

    2017-01-01

    Cholesterol is an essential lipid building block of the cellular plasma membrane. In addition to its structural role, it regulates the fluidity and raft structure of the membrane and influences the course of numerous membrane-linked signaling pathways and the function of transmembrane proteins, including ion channels. This is supported by a vast body of scientific data, which demonstrates the modulation of ion channels with a great variety of ion selectivity, gating, and tissue distribution by changes in membrane cholesterol. Here, we review what is currently known about the modulation of voltage-gated K + (Kv) channels by changes in membrane cholesterol content, considering raft association of the channels, the roles of cholesterol recognition sites, and those of adaptor proteins in cholesterol-Kv channel interactions. We specifically focus on Kv1.3, the dominant K + channel of human T cells. Effects of cholesterol depletion and enrichment and 7-dehydrocholesterol enrichment on Kv1.3 gating are discussed in the context of the immunological synapse and the comparison of the in vitro effects of sterol modifications on Kv1.3 function with ex vivo effects on cells from hypercholesterolemic and Smith-Lemli-Opitz patients. © 2017 Elsevier Inc. All rights reserved.

  1. Effectiveness Using Circular Fibre Steel Flap Gate As a Control Structure Towards the Hydraulic Characteristics in Open Channel

    Science.gov (United States)

    Adib, M. R. M.; Amirza, A. R. M.; Wardah, T.; Junaidah, A.

    2016-07-01

    Hydraulic control gate structure plays an important role in regulating the flow of water in river, canal or water reservoir. One of the most appropriate structures in term of resolving the problem of flood occured is the construction of circular fibre steel flap gate. Therefore, an experiment has been conducted by using an open channel model at laboratory. In this case, hydraulic jump and backwater were the method to determined the hydraulic characteristics of circular fibre steel flap gate in an open channel model. From the experiment, the opening angle of flap gate can receive discharges with the highest flow rate of 0.035 m3/s with opening angle was 47°. The type of jump that occurs at the slope of 1/200 for a distance of 5.0 m is a standing jump or undulating wave. The height of the backwater can be identified based on the differences of specific force which is specific force before jump, F1 and specific force after jump, F2 from the formation of backwater. Based on the research conducted, the tendency of incident backwater wave occurred was high in every distance of water control location from water inlet is flap slope and the slope of 1/300 which is 0.84 m/s and 0.75 m/s of celerity in open channel model.

  2. Quantum privacy and Schur product channels

    Science.gov (United States)

    Levick, Jeremy; Kribs, David W.; Pereira, Rajesh

    2017-12-01

    We investigate the quantum privacy properties of an important class of quantum channels, by making use of a connection with Schur product matrix operations and associated correlation matrix structures. For channels implemented by mutually commuting unitaries, which cannot privatise qubits encoded directly into subspaces, we nevertheless identify private algebras and subsystems that can be privatised by the channels. We also obtain further results by combining our analysis with tools from the theory of quasi-orthogonal operator algebras and graph theory.

  3. Spontaneous formation of structurally diverse membrane channel architectures from a single antimicrobial peptide

    Science.gov (United States)

    Wang, Yukun; Chen, Charles H.; Hu, Dan; Ulmschneider, Martin B.; Ulmschneider, Jakob P.

    2016-11-01

    Many antimicrobial peptides (AMPs) selectively target and form pores in microbial membranes. However, the mechanisms of membrane targeting, pore formation and function remain elusive. Here we report an experimentally guided unbiased simulation methodology that yields the mechanism of spontaneous pore assembly for the AMP maculatin at atomic resolution. Rather than a single pore, maculatin forms an ensemble of structurally diverse temporarily functional low-oligomeric pores, which mimic integral membrane protein channels in structure. These pores continuously form and dissociate in the membrane. Membrane permeabilization is dominated by hexa-, hepta- and octamers, which conduct water, ions and small dyes. Pores form by consecutive addition of individual helices to a transmembrane helix or helix bundle, in contrast to current poration models. The diversity of the pore architectures--formed by a single sequence--may be a key feature in preventing bacterial resistance and could explain why sequence-function relationships in AMPs remain elusive.

  4. Structural and biophysical investigation of the interaction of a mutant Grb2 SH2 domain (W121G) with its cognate phosphopeptide.

    Science.gov (United States)

    Papaioannou, Danai; Geibel, Sebastian; Kunze, Micha B A; Kay, Christopher W M; Waksman, Gabriel

    2016-03-01

    The adaptor protein Grb2 is a key element of mitogenetically important signaling pathways. With its SH2 domain it binds to upstream targets while its SH3 domains bind to downstream proteins thereby relaying signals from the cell membranes to the nucleus. The Grb2 SH2 domain binds to its targets by recognizing a phosphotyrosine (pY) in a pYxNx peptide motif, requiring an Asn at the +2 position C-terminal to the pY with the residue either side of this Asn being hydrophobic. Structural analysis of the Grb2 SH2 domain in complex with its cognate peptide has shown that the peptide adopts a unique β-turn conformation, unlike the extended conformation that phosphopeptides adopt when bound to other SH2 domains. TrpEF1 (W121) is believed to force the peptide into this unusual conformation conferring this unique specificity to the Grb2 SH2 domain. Using X-ray crystallography, electron paramagnetic resonance (EPR) spectroscopy, and isothermal titration calorimetry (ITC), we describe here a series of experiments that explore the role of TrpEF1 in determining the specificity of the Grb2 SH2 domain. Our results demonstrate that the ligand does not adopt a pre-organized structure before binding to the SH2 domain, rather it is the interaction between the two that imposes the hairpin loop to the peptide. Furthermore, we find that the peptide adopts a similar structure when bound to both the wild-type Grb2 SH2 domain and a TrpEF1Gly mutant. This suggests that TrpEF1 is not the determining factor for the conformation of the phosphopeptide. © 2015 The Protein Society.

  5. Tuning the ion selectivity of two-pore channels

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiangtao; Zeng, Weizhong; Jiang, Youxing (UTSMC)

    2017-01-17

    Organellar two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in plants and animals. Interestingly, plant and animal TPCs share high sequence similarity in the filter region, yet exhibit drastically different ion selectivity. Plant TPC1 functions as a nonselective cation channel on the vacuole membrane, whereas mammalian TPC channels have been shown to be endo/lysosomal Na+-selective or Ca2+-release channels. In this study, we performed systematic characterization of the ion selectivity of TPC1 from Arabidopsis thaliana (AtTPC1) and compared its selectivity with the selectivity of human TPC2 (HsTPC2). We demonstrate that AtTPC1 is selective for Ca2+ over Na+, but nonselective among monovalent cations (Li+, Na+, and K+). Our results also confirm that HsTPC2 is a Na+-selective channel activated by phosphatidylinositol 3,5-bisphosphate. Guided by our recent structure of AtTPC1, we converted AtTPC1 to a Na+-selective channel by mimicking the selectivity filter of HsTPC2 and identified key residues in the TPC filters that differentiate the selectivity between AtTPC1 and HsTPC2. Furthermore, the structure of the Na+-selective AtTPC1 mutant elucidates the structural basis for Na+ selectivity in mammalian TPCs.

  6. Transmembrane helical interactions in the CFTR channel pore.

    Directory of Open Access Journals (Sweden)

    Jhuma Das

    2017-06-01

    Full Text Available Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR gene affect CFTR protein biogenesis or its function as a chloride channel, resulting in dysregulation of epithelial fluid transport in the lung, pancreas and other organs in cystic fibrosis (CF. Development of pharmaceutical strategies to treat CF requires understanding of the mechanisms underlying channel function. However, incomplete 3D structural information on the unique ABC ion channel, CFTR, hinders elucidation of its functional mechanism and correction of cystic fibrosis causing mutants. Several CFTR homology models have been developed using bacterial ABC transporters as templates but these have low sequence similarity to CFTR and are not ion channels. Here, we refine an earlier model in an outward (OWF and develop an inward (IWF facing model employing an integrated experimental-molecular dynamics simulation (200 ns approach. Our IWF structure agrees well with a recently solved cryo-EM structure of a CFTR IWF state. We utilize cysteine cross-linking to verify positions and orientations of residues within trans-membrane helices (TMHs of the OWF conformation and to reconstruct a physiologically relevant pore structure. Comparison of pore profiles of the two conformations reveal a radius sufficient to permit passage of hydrated Cl- ions in the OWF but not the IWF model. To identify structural determinants that distinguish the two conformations and possible rearrangements of TMHs within them responsible for channel gating, we perform cross-linking by bifunctional reagents of multiple predicted pairs of cysteines in TMH 6 and 12 and 6 and 9. To determine whether the effects of cross-linking on gating observed are the result of switching of the channel from open to close state, we also treat the same residue pairs with monofunctional reagents in separate experiments. Both types of reagents prevent ion currents indicating that pore blockage is primarily responsible.

  7. A computational design approach for virtual screening of peptide interactions across K+ channel families

    Directory of Open Access Journals (Sweden)

    Craig A. Doupnik

    2015-01-01

    Full Text Available Ion channels represent a large family of membrane proteins with many being well established targets in pharmacotherapy. The ‘druggability’ of heteromeric channels comprised of different subunits remains obscure, due largely to a lack of channel-specific probes necessary to delineate their therapeutic potential in vivo. Our initial studies reported here, investigated the family of inwardly rectifying potassium (Kir channels given the availability of high resolution crystal structures for the eukaryotic constitutively active Kir2.2 channel. We describe a ‘limited’ homology modeling approach that can yield chimeric Kir channels having an outer vestibule structure representing nearly any known vertebrate or invertebrate channel. These computationally-derived channel structures were tested in silico for ‘docking’ to NMR structures of tertiapin (TPN, a 21 amino acid peptide found in bee venom. TPN is a highly selective and potent blocker for the epithelial rat Kir1.1 channel, but does not block human or zebrafish Kir1.1 channel isoforms. Our Kir1.1 channel-TPN docking experiments recapitulated published in vitro findings for TPN-sensitive and TPN-insensitive channels. Additionally, in silico site-directed mutagenesis identified ‘hot spots’ within the channel outer vestibule that mediate energetically favorable docking scores and correlate with sites previously identified with in vitro thermodynamic mutant-cycle analysis. These ‘proof-of-principle’ results establish a framework for virtual screening of re-engineered peptide toxins for interactions with computationally derived Kir channels that currently lack channel-specific blockers. When coupled with electrophysiological validation, this virtual screening approach may accelerate the drug discovery process, and can be readily applied to other ion channels families where high resolution structures are available.

  8. Hollow core plasma channel generation

    International Nuclear Information System (INIS)

    Quast, Heinrich Martin

    2018-03-01

    The use of a hollow plasma channel in plasma-based acceleration has beneficial properties for the acceleration of electron and positron bunches. In the scope of the FLASHForward facility at DESY, the generation of such a plasma structure is examined. Therefore, the generation of a ring-shaped laser intensity profile with different techniques is analyzed. From the obtained intensity profiles the electron density of a hollow plasma channel is simulated in the focal region. Different parameters are scanned to understand their influence on the electron density distribution - an important parameter being, for example, the radius of the central region of the channel. In addition to the simulations, experiments are presented, during which a laser pulse is transformed into a hollow beam with a spiral phase plate. Subsequently, it forms a plasma during the interaction with hydrogen, where the plasma is imaged with interferometry. For energies above 0.9 mJ a hollow plasma structure can be observed at the location of first plasma formation.

  9. Price leadership within a marketing channel: A cointegration study

    NARCIS (Netherlands)

    Kuiper, W.E.; Meulenberg, M.T.G.

    2004-01-01

    Building upon a multiple-product channel structure, this paper develops a model to test channel price leadership on the basis of time series observations on retail and wholesale prices and using absence of double marginalisation as a criterion for channel price leadership. The model studies

  10. Structural Bases for the Regulation of CO Binding in the Archaeal Protoglobin from Methanosarcina acetivorans.

    Directory of Open Access Journals (Sweden)

    Lesley Tilleman

    Full Text Available Studies of CO ligand binding revealed that two protein states with different ligand affinities exist in the protoglobin from Methanosarcina acetivorans (in MaPgb*, residue Cys(E20101 was mutated to Ser. The switch between the two states occurs upon the ligation of MaPgb*. In this work, site-directed mutagenesis was used to explore the role of selected amino acids in ligand sensing and stabilization and in affecting the equilibrium between the "more reactive" and "less reactive" conformational states of MaPgb*. A combination of experimental data obtained from electronic and resonance Raman absorption spectra, CO ligand-binding kinetics, and X-ray crystallography was employed. Three amino acids were assigned a critical role: Trp(60B9, Tyr(61B10, and Phe(93E11. Trp(60B9 and Tyr(61B10 are involved in ligand stabilization in the distal heme pocket; the strength of their interaction was reflected by the spectra of the CO-ligated MaPgb* and by the CO dissociation rate constants. In contrast, Phe(93E11 is a key player in sensing the heme-bound ligand and promotes the rotation of the Trp(60B9 side chain, thus favoring ligand stabilization. Although the structural bases of the fast CO binding rate constant of MaPgb* are still unclear, Trp(60B9, Tyr(61B10, and Phe(93E11 play a role in regulating heme/ligand affinity.

  11. Reconstitution of a Kv channel into lipid membranes for structural and functional studies.

    Science.gov (United States)

    Lee, Sungsoo; Zheng, Hui; Shi, Liang; Jiang, Qiu-Xing

    2013-07-13

    To study the lipid-protein interaction in a reductionistic fashion, it is necessary to incorporate the membrane proteins into membranes of well-defined lipid composition. We are studying the lipid-dependent gating effects in a prototype voltage-gated potassium (Kv) channel, and have worked out detailed procedures to reconstitute the channels into different membrane systems. Our reconstitution procedures take consideration of both detergent-induced fusion of vesicles and the fusion of protein/detergent micelles with the lipid/detergent mixed micelles as well as the importance of reaching an equilibrium distribution of lipids among the protein/detergent/lipid and the detergent/lipid mixed micelles. Our data suggested that the insertion of the channels in the lipid vesicles is relatively random in orientations, and the reconstitution efficiency is so high that no detectable protein aggregates were seen in fractionation experiments. We have utilized the reconstituted channels to determine the conformational states of the channels in different lipids, record electrical activities of a small number of channels incorporated in planar lipid bilayers, screen for conformation-specific ligands from a phage-displayed peptide library, and support the growth of 2D crystals of the channels in membranes. The reconstitution procedures described here may be adapted for studying other membrane proteins in lipid bilayers, especially for the investigation of the lipid effects on the eukaryotic voltage-gated ion channels.

  12. Bilayer Protograph Codes for Half-Duplex Relay Channels

    Science.gov (United States)

    Divsalar, Dariush; VanNguyen, Thuy; Nosratinia, Aria

    2013-01-01

    Direct to Earth return links are limited by the size and power of lander devices. A standard alternative is provided by a two-hops return link: a proximity link (from lander to orbiter relay) and a deep-space link (from orbiter relay to Earth). Although direct to Earth return links are limited by the size and power of lander devices, using an additional link and a proposed coding for relay channels, one can obtain a more reliable signal. Although significant progress has been made in the relay coding problem, existing codes must be painstakingly optimized to match to a single set of channel conditions, many of them do not offer easy encoding, and most of them do not have structured design. A high-performing LDPC (low-density parity-check) code for the relay channel addresses simultaneously two important issues: a code structure that allows low encoding complexity, and a flexible rate-compatible code that allows matching to various channel conditions. Most of the previous high-performance LDPC codes for the relay channel are tightly optimized for a given channel quality, and are not easily adapted without extensive re-optimization for various channel conditions. This code for the relay channel combines structured design and easy encoding with rate compatibility to allow adaptation to the three links involved in the relay channel, and furthermore offers very good performance. The proposed code is constructed by synthesizing a bilayer structure with a pro to graph. In addition to the contribution to relay encoding, an improved family of protograph codes was produced for the point-to-point AWGN (additive white Gaussian noise) channel whose high-rate members enjoy thresholds that are within 0.07 dB of capacity. These LDPC relay codes address three important issues in an integrative manner: low encoding complexity, modular structure allowing for easy design, and rate compatibility so that the code can be easily matched to a variety of channel conditions without extensive

  13. The growth hormone (GH) response to GH-releasing peptide (His-DTrp-Ala-Trp-DPhe-Lys-NH2), GH-releasing hormone, and thyrotropin-releasing hormone in acromegaly.

    Science.gov (United States)

    Alster, D K; Bowers, C Y; Jaffe, C A; Ho, P J; Barkan, A L

    1993-09-01

    In patients with acromegaly, GH-producing pituitary tumors release GH in response to specific stimuli such as GH-releasing hormone (GHRH) and are also responsive to a variety of nonspecific stimuli, such as TRH or GnRH, and may exhibit paradoxical responses to glucose and dopamine. In healthy humans, the synthetic peptide GH-releasing peptide (GHRP) (His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) releases GH by a putative mechanism of action that is independent of GHRH. How these tumors respond to GHRP is not well characterized. We studied the GH responses to GHRH, GHRP, and TRH stimulation in 11 patients with active acromegaly. The peak GH responses to GHRP and GHRH were not correlated (r = 0.57; P = 0.066). In contrast, the peak GH responses to GHRP and TRH were highly correlated (r = 0.95; P < 0.001). In conclusion, in patients with acromegaly, the GH response to GHRP is qualitatively normal and does not appear to depend on GHRH.

  14. Channel erosion in a rapidly urbanizing region of Tijuana, Mexico: Enlargement downstream of channel hardpoints

    Science.gov (United States)

    Taniguchi, Kristine; Biggs, Trent; Langendoen, Eddy; Castillo, Carlos; Gudiño, Napoleon; Yuan, Yongping; Liden, Douglas

    2016-04-01

    Urban-induced erosion in Tijuana, Mexico, has led to excessive sediment deposition in the Tijuana Estuary in the United States. Urban areas in developing countries, in contrast to developed countries, are characterized by much lower proportions of vegetation and impervious surfaces due to limited access to urban services such as road paving and landscaping, and larger proportions of exposed soils. In developing countries, traditional watershed scale variables such as impervious surfaces may not be good predictors of channel enlargement. In this research, we surveyed the stream channel network of an erodible tributary of the Tijuana River Watershed, Los Laureles Canyon, at 125 locations, including repeat surveys from 2008. Structure from Motion (SfM) and 3D photo-reconstruction techniques were used to create digital terrain models of stream reaches upstream and downstream of channel hardpoints. Channels are unstable downstream of hardpoints, with incision up to 2 meters and widening up to 12 meters. Coordinated channelization is essential to avoid piece-meal approaches that lead to channel degradation. Watershed impervious area is not a good predictor of channel erosion due to the overriding importance of hardpoints and likely to the high sediment supply from the unpaved roads which prevents channel erosion throughout the stream network.

  15. Platelet dysfunction associated with the novel Trp29Cys thromboxane A₂ receptor variant.

    Science.gov (United States)

    Mumford, A D; Nisar, S; Darnige, L; Jones, M L; Bachelot-Loza, C; Gandrille, S; Zinzindohoue, F; Fischer, A-M; Mundell, S J; Gaussem, P

    2013-03-01

    Genetic variations that affect the structure of the thromboxane A2 receptor (TP receptor) provide insights into the function of this key platelet and vascular receptor, but are very rare in unselected populations. To determine the functional consequences of the TP receptor Trp29Cys (W29C) substitution. We performed a detailed phenotypic analysis of an index case (P1) with reduced platelet aggregation and secretion responses to TP receptor pathway activators, and a heterozygous TP receptor W29C substitution. An analysis of the variant W29C TP receptor expressed in heterologous cells was performed. Total TP receptor expression in platelets from P1 was similar to that of controls, but there was reduced maximum binding and reduced affinity of binding to the TP receptor antagonist [(3) H]SQ29548. HEK293 cells transfected with W29C TP receptor cDNA showed similar total TP receptor expression to wild-type (WT) controls. However, the TP receptor agonist U46619 was less potent at inducing rises in cytosolic free Ca(2+) in HEK293 cells expressing the W29C TP receptor than in WT controls, indicating reduced receptor function. Immunofluorescence microscopy and cell surface ELISA showed intracellular retention and reduced cell surface expression of the W29C TP receptor in HEK293 cells. Consistent with the platelet phenotype, both maximum binding and the affinity of binding of [(3) H]SQ29548 to the W29C TP receptor were reduced compared to WT controls. These findings extend the phenotypic description of the very rare disorder TP receptor deficiency, and show that the W29C substitution reduces TP receptor function by reducing surface receptor expression and by disrupting ligand binding. © 2012 International Society on Thrombosis and Haemostasis.

  16. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key

  17. Structure and band gap determination of irradiation-induced amorphous nano-channels in LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sachan, R., E-mail: sachanr@ornl.gov; Pakarinen, O. H.; Chisholm, M. F. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Liu, P. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); School of Physics, State Key Laboratory of Crystal Materials and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Jinan 250100 (China); Patel, M. K. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Zhang, Y. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Wang, X. L. [School of Physics, State Key Laboratory of Crystal Materials and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Jinan 250100 (China); Weber, W. J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-04-07

    The irradiation of lithium niobate with swift heavy ions results in the creation of amorphous nano-sized channels along the incident ion path. These nano-channels are on the order of a hundred microns in length and could be useful for photonic applications. However, there are two major challenges in these nano-channels characterization: (i) it is difficult to investigate the structural characteristics of these nano-channels due to their very long length and (ii) the analytical electron microscopic analysis of individual ion track is complicated due to electron beam sensitive nature of lithium niobate. Here, we report the first high resolution microscopic characterization of these amorphous nano-channels, widely known as ion-tracks, by direct imaging them at different depths in the material, and subsequently correlating the key characteristics with electronic energy loss of ions. Energetic Kr ions ({sup 84}Kr{sup 22} with 1.98 GeV energy) are used to irradiate single crystal lithium niobate with a fluence of 2 × 10{sup 10} ions/cm{sup 2}, which results in the formation of individual ion tracks with a penetration depth of ∼180 μm. Along the ion path, electron energy loss of the ions, which is responsible for creating the ion tracks, increases with depth under these conditions in LiNbO{sub 3}, resulting in increases in track diameter of a factor of ∼2 with depth. This diameter increase with electronic energy loss is consistent with predictions of the inelastic thermal spike model. We also show a new method to measure the band gap in individual ion track by using electron energy-loss spectroscopy.

  18. Selectivity and evolutionary divergence of metabotropic glutamate receptors for endogenous ligands and G proteins coupled to phospholipase C or TRP channels.

    Science.gov (United States)

    Kang, Hye Jin; Menlove, Kit; Ma, Jianpeng; Wilkins, Angela; Lichtarge, Olivier; Wensel, Theodore G

    2014-10-24

    To define the upstream and downstream signaling specificities of metabotropic glutamate receptors (mGluR), we have examined the ability of representative mGluR of group I, II, and III to be activated by endogenous amino acids and catalyze activation of G proteins coupled to phospholipase C (PLC), or activation of G(i/o) proteins coupled to the ion channel TRPC4β. Fluorescence-based assays have allowed us to observe interactions not previously reported or clearly identified. We have found that the specificity for endogenous amino acids is remarkably stringent. Even at millimolar levels, structurally similar compounds do not elicit significant activation. As reported previously, the clear exception is L-serine-O-phosphate (L-SOP), which strongly activates group III mGluR, especially mGluR4,-6,-8 but not group I or II mGluR. Whereas L-SOP cannot activate mGluR1 or mGluR2, it acts as a weak antagonist for mGluR1 and a potent antagonist for mGluR2, suggesting that co-recognition of L-glutamate and L-SOP arose early in evolution, and was followed later by divergence of group I and group II mGluR versus group III in l-SOP responses. mGluR7 has low affinity and efficacy for activation by both L-glutamate and L-SOP. Molecular docking studies suggested that residue 74 corresponding to lysine in mGluR4 and asparagine in mGluR7 might play a key role, and, indeed, mutagenesis experiments demonstrated that mutating this residue to lysine in mGluR7 enhances the potency of L-SOP. Experiments with pertussis toxin and dominant-negative Gα(i/o) proteins revealed that mGluR1 couples strongly to TRPC4β through Gα(i/o), in addition to coupling to PLC through Gα(q/11). © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Selectivity and Evolutionary Divergence of Metabotropic Glutamate Receptors for Endogenous Ligands and G Proteins Coupled to Phospholipase C or TRP Channels*

    Science.gov (United States)

    Kang, Hye Jin; Menlove, Kit; Ma, Jianpeng; Wilkins, Angela; Lichtarge, Olivier; Wensel, Theodore G.

    2014-01-01

    To define the upstream and downstream signaling specificities of metabotropic glutamate receptors (mGluR), we have examined the ability of representative mGluR of group I, II, and III to be activated by endogenous amino acids and catalyze activation of G proteins coupled to phospholipase C (PLC), or activation of Gi/o proteins coupled to the ion channel TRPC4β. Fluorescence-based assays have allowed us to observe interactions not previously reported or clearly identified. We have found that the specificity for endogenous amino acids is remarkably stringent. Even at millimolar levels, structurally similar compounds do not elicit significant activation. As reported previously, the clear exception is l-serine-O-phosphate (l-SOP), which strongly activates group III mGluR, especially mGluR4,-6,-8 but not group I or II mGluR. Whereas l-SOP cannot activate mGluR1 or mGluR2, it acts as a weak antagonist for mGluR1 and a potent antagonist for mGluR2, suggesting that co-recognition of l-glutamate and l-SOP arose early in evolution, and was followed later by divergence of group I and group II mGluR versus group III in l-SOP responses. mGluR7 has low affinity and efficacy for activation by both l-glutamate and l-SOP. Molecular docking studies suggested that residue 74 corresponding to lysine in mGluR4 and asparagine in mGluR7 might play a key role, and, indeed, mutagenesis experiments demonstrated that mutating this residue to lysine in mGluR7 enhances the potency of l-SOP. Experiments with pertussis toxin and dominant-negative Gαi/o proteins revealed that mGluR1 couples strongly to TRPC4β through Gαi/o, in addition to coupling to PLC through Gαq/11. PMID:25193666

  20. Improved Sparse Channel Estimation for Cooperative Communication Systems

    Directory of Open Access Journals (Sweden)

    Guan Gui

    2012-01-01

    Full Text Available Accurate channel state information (CSI is necessary at receiver for coherent detection in amplify-and-forward (AF cooperative communication systems. To estimate the channel, traditional methods, that is, least squares (LS and least absolute shrinkage and selection operator (LASSO, are based on assumptions of either dense channel or global sparse channel. However, LS-based linear method neglects the inherent sparse structure information while LASSO-based sparse channel method cannot take full advantage of the prior information. Based on the partial sparse assumption of the cooperative channel model, we propose an improved channel estimation method with partial sparse constraint. At first, by using sparse decomposition theory, channel estimation is formulated as a compressive sensing problem. Secondly, the cooperative channel is reconstructed by LASSO with partial sparse constraint. Finally, numerical simulations are carried out to confirm the superiority of proposed methods over global sparse channel estimation methods.