WorldWideScience

Sample records for tropical forest biomass

  1. Tree height and tropical forest biomass estimation

    Science.gov (United States)

    M.O. Hunter; M. Keller; D. Vitoria; D.C. Morton

    2013-01-01

    Tropical forests account for approximately half of above-ground carbon stored in global vegetation. However, uncertainties in tropical forest carbon stocks remain high because it is costly and laborious to quantify standing carbon stocks. Carbon stocks of tropical forests are determined using allometric relations between tree stem diameter and height and biomass....

  2. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics

    DEFF Research Database (Denmark)

    Slik, J.W.Ferry; Paoli, Gary; McGuire, Krista

    2013-01-01

    Aim Large trees (d.b.h. ≥ 70 cm) store large amounts of biomass. Several studies suggest that large trees may be vulnerable to changing climate, potentially leading to declining forest biomass storage. Here we determine the importance of large trees for tropical forest biomass storage and explore...

  3. Conservative species drive biomass productivity in tropical dry forests

    NARCIS (Netherlands)

    Prado-Junior, Jamir A.; Schiavini, Ivan; Vale, Vagner S.; Sande, van der Masha T.; Lohbeck, Madelon; Poorter, Lourens

    2016-01-01

    Forests account for a substantial part of the terrestrial biomass storage and productivity. To better understand forest productivity, we need to disentangle the processes underlying net biomass change. We tested how above-ground net biomass change and its underlying biomass dynamics (biomass

  4. Pan tropical biomass equations for Mexico's dry forests

    Directory of Open Access Journals (Sweden)

    José Návar

    2014-12-01

    Full Text Available This study reports a set of robust regional M-tree allometric equations for Mexico's tropical dry forests and their application to a forest inventory dataset for the States of Durango and Sinaloa, Mexico. Calculated M data from 15 reported equations were fitted, applied and validated for regional and global models. Proposed theoretical models, empirically derived equations, as well as global and local reported equations were fitted and applied to calculated M-tree data using wood specific gravity, diameter at breast height, and top height as exogenous variables. Empirically-derived, computer-based equations assessed the M-tree evaluations slightly better than the theoretical, the global and the local models. However, the theoretical models projected compatible M-tree values and deserve further attention once wood specific gravity data are collected in the field. Using the best fit equation, mean M plot density values of 30, 41 and 35 Mg ha-1 were estimated from 57 plots (1,600 m² each, 217 plots (1,000 m² each and 166 plots (1,000 m² each in the tropical dry forests of the States of Durango, Tiniaquis and Vado Hondo (Sinaloa, respectively. The large sample size, the richness of the tested allometric models, the economic and ecological importance of this data-source, and the spatial coverage of these equations made this dataset uniquely useful for biomass, charcoal, and other bio-energy estimations, as well as for understanding the inherent heterogeneity of the stand-structure in dynamic tropical forest environments.

  5. Floristic structure and biomass distribution of a tropical seasonal rain forest in Xishuangbanna, southwest China

    Energy Technology Data Exchange (ETDEWEB)

    Shanmughavel, P.; Zheng Zheng; Sha Liqing; Cao Min [Chinese Academy of Sciences, Kunming (China). Dept. of Forest Ecology

    2001-07-01

    The aim of this research was to study the forest community structure, tree species diversity and biomass production of a tropical seasonal rain forest in Xishuangbanna, southwest China. The community structure showed a diversified species composition and supported many species of economic significance. This tropical rain forest in closely related to Malaysian forests. The biomass and its distribution were studied using standard regression analysis and the clear-cut method for shrubs and herbs. The total biomass was 360.9 t/ha and its allocation in different layers was: tree layer 352.5 t/ha, shrub layer 4.7 t/ha, liana 3.1 t/ha and herb layer 0.5 t/ha. Most of the biomass was concentrated in the trees: stem 241.2 t/ha, root 69.6 t/ha, branch 37.2 t/ha and leaves 4.3 t/ha. The DBH class allocation of the tree biomass was concentrated in the middle DBH class. The biomass of six DBH classes from 20 to 80 cm was 255.4 t/ha. There are twenty-six species with biomass over 0.5% of the total biomass of the tree layer, and three species with biomass over 5%, i.e., Pometia tomentosa, Barringtonia macrostachya (5.4%) and Terminalia myriocarpa (5.2%). Data on stem, branch, leaves and root of the individual tree species were used to develop regression models. D{sup 2}H was found to be the best estimator of the biomass in this tropical rain forest. However, higher biomass figures have been reported from tropical forests elsewhere e.g., 415-520 t/ha in the tropical forests of Cambodia, the tropical moist mixed dipterocarp forests, and the tropical moist logged moist evergreen-high, medium, and low yield forests of Sri Lanka. In some forests, lower accumulation of biomass was reported, e.g., 10-295 t/ha in the tropical moist forests of Bangladesh, the tropical moist dense forest of Cambodia, the tropical dry forests of India, the tropical moist forests of Peninsular-Malaysia, the tropical moist mixed dipterocarp forests of Sarawak-Malaysia, the tropical evergreen forests of

  6. ALLOMETRIC EQUATIONS FOR ESTIMATING ABOVEGROUND BIOMASS IN PAPUA TROPICAL FOREST

    Directory of Open Access Journals (Sweden)

    Sandhi Imam Maulana

    2014-10-01

    Full Text Available Allometric equations can be used to estimate biomass and carbon stock of  the forest. However, so far the allometric equations for commercial species in Papua tropical forests have not been appropriately developed. In this research, allometric equations are presented based on the genera of  commercial species. Few equations have been developed for the commercial species of  Intsia, Pometia, Palaquium and Vatica genera and an equation of  a mix of  these genera. The number of  trees sampled in this research was 49, with diameters (1.30 m above-ground or above buttresses ranging from 5 to 40 cm. Destructive sampling was used to collect the samples where Diameter at Breast Height (DBH and Wood Density (WD were used as predictors for dry weight of  Total Above-Ground Biomass (TAGB. Model comparison and selection were based on the values of  F-statistics, R-sq, R-sq (adj, and average deviation. Based on these statistical indicators, the most suitable model for Intsia, Pometia, Palaquium and Vatica genera respectively are Log(TAGB = -0.76 + 2.51Log(DBH, Log(TAGB = -0.84 + 2.57Log(DBH, Log(TAGB = -1.52 + 2.96Log(DBH, and Log(TAGB = -0.09 + 2.08Log(DBH. Additional explanatory variables such as Commercial Bole Height (CBH do not really increase the indicators’ goodness of  fit for the equation. An alternative model to incorporate wood density should  be considered for estimating the above-ground biomass for mixed genera. Comparing the presented mixed-genera equation; Log(TAGB = 0.205 + 2.08Log(DBH + 1.75Log(WD, R-sq: 97.0%, R-sq (adj: 96.9%, F statistics 750.67, average deviation: 3.5%; to previously published datashows that this local species specific equation differs substantially from previously published equations and this site-specific equation is  considered to give a better estimation of  biomass.

  7. Data from: Conservative species drive biomass productivity in tropical dry forests

    NARCIS (Netherlands)

    Prado-Junior, Jamir A.; Schiavini, Ivan; Vale, Vagner S.; Sande, van der M.T.; Lohbeck, M.W.M.; Poorter, L.

    2016-01-01

    Data of above-ground biomass dynamics over a five-year period in eight seasonal tropical dry forests in Minas Gerais state, Southeastern Brazil. In each forest, 25 permanent sample plots (20 × 20 m) were established totaling one ha per site. Biomass dynamics, structural, floristic, functional and

  8. Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps.

    Science.gov (United States)

    Mitchard, Edward Ta; Saatchi, Sassan S; Baccini, Alessandro; Asner, Gregory P; Goetz, Scott J; Harris, Nancy L; Brown, Sandra

    2013-10-26

    Mapping the aboveground biomass of tropical forests is essential both for implementing conservation policy and reducing uncertainties in the global carbon cycle. Two medium resolution (500 m - 1000 m) pantropical maps of vegetation biomass have been recently published, and have been widely used by sub-national and national-level activities in relation to Reducing Emissions from Deforestation and forest Degradation (REDD+). Both maps use similar input data layers, and are driven by the same spaceborne LiDAR dataset providing systematic forest height and canopy structure estimates, but use different ground datasets for calibration and different spatial modelling methodologies. Here, we compare these two maps to each other, to the FAO's Forest Resource Assessment (FRA) 2010 country-level data, and to a high resolution (100 m) biomass map generated for a portion of the Colombian Amazon. We find substantial differences between the two maps, in particular in central Amazonia, the Congo basin, the south of Papua New Guinea, the Miombo woodlands of Africa, and the dry forests and savannas of South America. There is little consistency in the direction of the difference. However, when the maps are aggregated to the country or biome scale there is greater agreement, with differences cancelling out to a certain extent. When comparing country level biomass stocks, the two maps agree with each other to a much greater extent than to the FRA 2010 estimates. In the Colombian Amazon, both pantropical maps estimate higher biomass than the independent high resolution map, but show a similar spatial distribution of this biomass. Biomass mapping has progressed enormously over the past decade, to the stage where we can produce globally consistent maps of aboveground biomass. We show that there are still large uncertainties in these maps, in particular in areas with little field data. However, when used at a regional scale, different maps appear to converge, suggesting we can provide

  9. A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models.

    Science.gov (United States)

    Vieilledent, G; Vaudry, R; Andriamanohisoa, S F D; Rakotonarivo, O S; Randrianasolo, H Z; Razafindrabe, H N; Rakotoarivony, C Bidaud; Ebeling, J; Rasamoelina, M

    2012-03-01

    Allometric equations allow aboveground tree biomass and carbon stock to be estimated from tree size. The allometric scaling theory suggests the existence of a universal power-law relationship between tree biomass and tree diameter with a fixed scaling exponent close to 8/3. In addition, generic empirical models, like Chave's or Brown's models, have been proposed for tropical forests in America and Asia. These generic models have been used to estimate forest biomass and carbon worldwide. However, tree allometry depends on environmental and genetic factors that vary from region to region. Consequently, theoretical models that include too few ecological explicative variables or empirical generic models that have been calibrated at particular sites are unlikely to yield accurate tree biomass estimates at other sites. In this study, we based our analysis on a destructive sample of 481 trees in Madagascar spiny dry and moist forests characterized by a high rate of endemism (> 95%). We show that, among the available generic allometric models, Chave's model including diameter, height, and wood specific gravity as explicative variables for a particular forest type (dry, moist, or wet tropical forest) was the only one that gave accurate tree biomass estimates for Madagascar (R2 > 83%, bias allometric models. When biomass allometric models are not available for a given forest site, this result shows that a simple height-diameter allometry is needed to accurately estimate biomass and carbon stock from plot inventories.

  10. Tropical Soil Carbon Stocks do not Reflect Aboveground Forest Biomass Across Geological and Rainfall Gradients

    Science.gov (United States)

    Cusack, D. F.; Markesteijn, L.; Turner, B. L.

    2016-12-01

    Soil organic carbon (C) dynamics present a large source of uncertainty in global C cycle models, and inhibit our ability to predict effects of climate change. Tropical wet and seasonal forests exert a disproportionate influence on the global C cycle relative to their land area because they are the most C-rich ecosystems on Earth, containing 25-40% of global terrestrial C stocks. While significant advances have been made to map aboveground C stocks in tropical forests, determining soil C stocks using remote sensing technology is still not possible for closed-canopy forests. It is unclear to what extent aboveground C stocks can be used to predict soil C stocks across tropical forests. Here we present 1-m-deep soil organic C stocks for 42 tropical forest sites across rainfall and geological gradients in Panama. We show that soil C stocks do not correspond to aboveground plant biomass or to litterfall productivity in these humid tropical forests. Rather, soil C stocks were strongly and positively predicted by fine root biomass, soil clay content, and rainfall (R2 = 0.47, p chemical characteristics form an important basis for improving model estimates of soil C stocks and predictions of climate change effects on tropical C storage.

  11. Landscape-level effects on aboveground biomass of tropical forests: A conceptual framework.

    Science.gov (United States)

    Melito, Melina; Metzger, Jean Paul; de Oliveira, Alexandre A

    2018-02-01

    Despite the general recognition that fragmentation can reduce forest biomass through edge effects, a systematic review of the literature does not reveal a clear role of edges in modulating biomass loss. Additionally, the edge effects appear to be constrained by matrix type, suggesting that landscape composition has an influence on biomass stocks. The lack of empirical evidence of pervasive edge-related biomass losses across tropical forests highlights the necessity for a general framework linking landscape structure with aboveground biomass. Here, we propose a conceptual model in which landscape composition and configuration mediate the magnitude of edge effects and seed-flux among forest patches, which ultimately has an influence on biomass. Our model hypothesizes that a rapid reduction of biomass can occur below a threshold of forest cover loss. Just below this threshold, we predict that changes in landscape configuration can strongly influence the patch's isolation, thus enhancing biomass loss. Moreover, we expect a synergism between landscape composition and patch attributes, where matrix type mediates the effects of edges on species decline, particularly for shade-tolerant species. To test our conceptual framework, we propose a sampling protocol where the effects of edges, forest amount, forest isolation, fragment size, and matrix type on biomass stocks can be assessed both collectively and individually. The proposed model unifies the combined effects of landscape and patch structure on biomass into a single framework, providing a new set of main drivers of biomass loss in human-modified landscapes. We argue that carbon trading agendas (e.g., REDD+) and carbon-conservation initiatives must go beyond the effects of forest loss and edges on biomass, considering the whole set of effects on biomass related to changes in landscape composition and configuration. © 2017 John Wiley & Sons Ltd.

  12. Diversity and aboveground biomass of lianas in the tropical seasonal rain forests of Xishuangbanna, SW China.

    Science.gov (United States)

    Lü, Xiao-Tao; Tang, Jian-Wei; Feng, Zhi-Li; Li, Mai-He

    2009-01-01

    Lianas are important components of tropical forests and have significant impacts on the diversity, structure and dynamics of tropical forests. The present study documented the liana flora in a Chinese tropical region. Species richness, abundance, size-class distribution and spatial patterns of lianas were investigated in three 1-ha plots in tropical seasonal rain forests in Xishuangbanna, SW China. All lianas with > or = 2 cm diameter at breast height (dbh) were measured, tagged and identified. A total of 458 liana stems belonging to 95 species (ranging from 38 to 50 species/ha), 59 genera and 32 families were recorded in the three plots. The most well-represented families were Loganiaceae, Annonceae, Papilionaceae, Apocynaceae and Rhamnaceae. Papilionaceae (14 species recorded) was the most important family in the study forests. The population density, basal area and importance value index (IVI) varied greatly across the three plots. Strychnos cathayensis, Byttneria grandifolia and Bousigonia mekongensis were the dominant species in terms of IVI across the three plots. The mean aboveground biomass of lianas (3 396 kg/ha) accounted for 1.4% of the total community above-ground biomass. The abundance, diversity and biomass of lianas in Xishuangbanna tropical seasonal rain forests are lower than those in tropical moist and wet forests, but higher than those in tropical dry forests. This study provides new data on lianas from a geographical region that has been little-studied. Our findings emphasize that other factors beyond the amount and seasonality of precipitation should be included when considering the liana abundance patterns across scales.

  13. Above ground biomass and tree species richness estimation with airborne lidar in tropical Ghana forests

    Science.gov (United States)

    Vaglio Laurin, Gaia; Puletti, Nicola; Chen, Qi; Corona, Piermaria; Papale, Dario; Valentini, Riccardo

    2016-10-01

    Estimates of forest aboveground biomass are fundamental for carbon monitoring and accounting; delivering information at very high spatial resolution is especially valuable for local management, conservation and selective logging purposes. In tropical areas, hosting large biomass and biodiversity resources which are often threatened by unsustainable anthropogenic pressures, frequent forest resources monitoring is needed. Lidar is a powerful tool to estimate aboveground biomass at fine resolution; however its application in tropical forests has been limited, with high variability in the accuracy of results. Lidar pulses scan the forest vertical profile, and can provide structure information which is also linked to biodiversity. In the last decade the remote sensing of biodiversity has received great attention, but few studies focused on the use of lidar for assessing tree species richness in tropical forests. This research aims at estimating aboveground biomass and tree species richness using discrete return airborne lidar in Ghana forests. We tested an advanced statistical technique, Multivariate Adaptive Regression Splines (MARS), which does not require assumptions on data distribution or on the relationships between variables, being suitable for studying ecological variables. We compared the MARS regression results with those obtained by multilinear regression and found that both algorithms were effective, but MARS provided higher accuracy either for biomass (R2 = 0.72) and species richness (R2 = 0.64). We also noted strong correlation between biodiversity and biomass field values. Even if the forest areas under analysis are limited in extent and represent peculiar ecosystems, the preliminary indications produced by our study suggest that instrument such as lidar, specifically useful for pinpointing forest structure, can also be exploited as a support for tree species richness assessment.

  14. Tropical-Forest Structure and Biomass Dynamics from TanDEM-X Radar Interferometry

    Science.gov (United States)

    Robert Treuhaft; Yang Lei; Fabio Gonçalves; Michael Keller; João Santos; Maxim Neumann; André Almeida

    2017-01-01

    Changes in tropical-forest structure and aboveground biomass (AGB) contribute directly to atmospheric changes in CO2, which, in turn, bear on global climate. This paper demonstrates the capability of radar-interferometric phase-height time series at X-band (wavelength = 3 cm) to monitor changes in vertical structure and AGB, with sub-hectare and monthly spatial and...

  15. Spaceborne SAR Data for Aboveground-Biomass Retrieval of Indian Tropical Forests

    Science.gov (United States)

    Khati, U.; Singh, G.; Musthafa, M.

    2017-12-01

    Forests are important and indispensable part of the terrestrial ecosystems, and have a direct impact on the global carbon cycle. Forest biophysical parameters such as forest stand height and forest above-ground biomass (AGB) are forest health indicators. Measuring the forest biomass using traditional ground survey techniques are man-power consuming and have very low spatial coverage. Satellite based remote sensing techniques provide synoptic view of the earth with continuous measurements over large, inaccessible forest regions. Satellite Synthetic Aperture Radar (SAR) data has been shown to be sensitive to these forest bio-physical parameters and have been extensively utilized over boreal and tropical forests. However, there are limited studies over Indian tropical forests due to lack of auxiliary airborne data and difficulties in manual in situ data collection. In this research work we utilize spaceborne data from TerraSAR-X/TanDEM-X and ALOS-2/PALSAR-2 and implement both Polarimetric SAR and PolInSAR techniques for retrieval of AGB of a managed tropical forest in India. The TerraSAR-X/TanDEM-X provide a single-baseline PolInSAR data robust to temporal decorrelation. This would be used to accurately estimate the forest stand height. The retrieved height would be an input parameter for modelling AGB using the L-band ALOS-2/PALSAR-2 data. The IWCM model is extensively utilized to estimate AGB from SAR observations. In this research we utilize the six component scattering power decomposition (6SD) parameters and modify the IWCM based technique for a better retrieval of forest AGB. PolInSAR data shows a high estimation accuracy with r2 of 0.8 and a RMSE of 2 m. With this accurate height provided as input to the modified model along with 6SD parameters shows promising results. The results are validated with extensive field based measurements, and are further analysed in detail.

  16. Predicting tree heights for biomass estimates in tropical forests – a test from French Guiana

    Directory of Open Access Journals (Sweden)

    Q. Molto

    2014-06-01

    Full Text Available The recent development of REDD+ mechanisms requires reliable estimation of carbon stocks, especially in tropical forests that are particularly threatened by global changes. Even though tree height is a crucial variable for computing aboveground forest biomass (AGB, it is rarely measured in large-scale forest censuses because it requires extra effort. Therefore, tree height has to be predicted with height models. The height and diameter of all trees over 10 cm in diameter were measured in 33 half-hectare plots and 9 one-hectare plots throughout northern French Guiana, an area with substantial climate and environmental gradients. We compared four different model shapes and found that the Michaelis–Menten shape was most appropriate for the tree biomass prediction. Model parameter values were significantly different from one forest plot to another, and this leads to large errors in biomass estimates. Variables from the forest stand structure explained a sufficient part of plot-to-plot variations of the height model parameters to improve the quality of the AGB predictions. In the forest stands dominated by small trees, the trees were found to have rapid height growth for small diameters. In forest stands dominated by larger trees, the trees were found to have the greatest heights for large diameters. The aboveground biomass estimation uncertainty of the forest plots was reduced by the use of the forest structure-based height model. It demonstrated the feasibility and the importance of height modeling in tropical forests for carbon mapping. When the tree heights are not measured in an inventory, they can be predicted with a height–diameter model and incorporating forest structure descriptors may improve the predictions.

  17. Aboveground Biomass Modeling from Field and LiDAR Data in Brazilian Amazon Tropical Rain Forest

    Science.gov (United States)

    Silva, C. A.; Hudak, A. T.; Vierling, L. A.; Keller, M. M.; Klauberg Silva, C. K.

    2015-12-01

    Tropical forests are an important component of global carbon stocks, but tropical forest responses to climate change are not sufficiently studied or understood. Among remote sensing technologies, airborne LiDAR (Light Detection and Ranging) may be best suited for quantifying tropical forest carbon stocks. Our objective was to estimate aboveground biomass (AGB) using airborne LiDAR and field plot data in Brazilian tropical rain forest. Forest attributes such as tree density, diameter at breast height, and heights were measured at a combination of square plots and linear transects (n=82) distributed across six different geographic zones in the Amazon. Using previously published allometric equations, tree AGB was computed and then summed to calculate total AGB at each sample plot. LiDAR-derived canopy structure metrics were also computed at each sample plot, and random forest regression modelling was applied to predict AGB from selected LiDAR metrics. The LiDAR-derived AGB model was assessed using the random forest explained variation, adjusted coefficient of determination (Adj. R²), root mean square error (RMSE, both absolute and relative) and BIAS (both absolute and relative). Our findings showed that the 99th percentile of height and height skewness were the best LiDAR metrics for AGB prediction. The AGB model using these two best predictors explained 59.59% of AGB variation, with an Adj. R² of 0.92, RMSE of 33.37 Mg/ha (20.28%), and bias of -0.69 (-0.42%). This study showed that LiDAR canopy structure metrics can be used to predict AGC stocks in Tropical Forest with acceptable precision and accuracy. Therefore, we conclude that there is good potential to monitor carbon sequestration in Brazilian Tropical Rain Forest using airborne LiDAR data, large field plots, and the random forest algorithm.

  18. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession.

    Science.gov (United States)

    Lohbeck, Madelon; Poorter, Lourens; Martínez-Ramos, Miguel; Bongers, Frans

    2015-05-01

    Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity, actual litter decomposition, and potential litter decomposition) during secondary succession after shifting cultivation in wet tropical forest of Mexico. We test the importance of three alternative drivers of ecosystem processes: vegetation biomass (vegetation quantity hypothesis), community-weighted trait mean (mass ratio hypothesis), and functional diversity (niche complementarity hypothesis) using structural equation modeling. This allows us to infer the relative importance of different mechanisms underlying ecosystem process recovery. Ecosystem process rates changed during succession, and the strongest driver was aboveground biomass for each of the processes. Productivity of aboveground stem biomass and leaf litter as well as actual litter decomposition increased with initial standing vegetation biomass, whereas potential litter decomposition decreased with standing biomass. Additionally, biomass productivity was positively affected by community-weighted mean of specific leaf area, and potential decomposition was positively affected by functional divergence, and negatively by community-weighted mean of leaf dry matter content. Our empirical results show that functional diversity and community-weighted means are of secondary importance for explaining changes in ecosystem process rates during tropical forest succession. Instead, simply, the amount of vegetation in a site is the major driver of changes, perhaps because there is a steep biomass buildup during succession that overrides more subtle effects of community functional properties on ecosystem processes. We recommend future studies in the field of biodiversity and ecosystem functioning to separate the effects of

  19. Forest Structure, Composition and Above Ground Biomass of Tree Community in Tropical Dry Forests of Eastern Ghats, India

    Directory of Open Access Journals (Sweden)

    Sudam Charan SAHU

    2016-03-01

    Full Text Available The study of biomass, structure and composition of tropical forests implies also the investigation of forest productivity, protection of biodiversity and removal of CO2 from the atmosphere via C-stocks. The hereby study aimed at understanding the forest structure, composition and above ground biomass (AGB of tropical dry deciduous forests of Eastern Ghats, India, where as a total of 128 sample plots (20 x 20 meters were laid. The study showed the presence of 71 tree species belonging to 57 genera and 30 families. Dominant tree species was Shorea robusta with an importance value index (IVI of 40.72, while Combretaceae had the highest family importance value (FIV of 39.01. Mean stand density was 479 trees ha-1 and a basal area of 15.20 m2 ha-1. Shannon’s diversity index was 2.01 ± 0.22 and Simpson’s index was 0.85 ± 0.03. About 54% individuals were in the size between 10 and 20 cm DBH, indicating growing forests. Mean above ground biomass value was 98.87 ± 68.8 Mg ha-1. Some of the dominant species that contributed to above ground biomass were Shorea robusta (17.2%, Madhuca indica (7.9%, Mangifera indica (6.9%, Terminalia alata (6.9% and Diospyros melanoxylon (4.4%, warranting extra efforts for their conservation. The results suggested that C-stocks of tropical dry forests can be enhanced by in-situ conserving the high C-density species and also by selecting these species for afforestation and stand improvement programs. Correlations were computed to understand the relationship between above ground biomass, diversity indices, density and basal area, which may be helpful for implementation of REDD+ (reduce emissions from deforestation and forest degradation, and foster conservation, sustainable management of forests and enhancement of forest carbon stocks scheme.

  20. Lidar Estimation of Aboveground Biomass in a Tropical Coastal Forest of Gabon

    Science.gov (United States)

    Meyer, V.; Saatchi, S. S.; Poulsen, J.; Clark, C.; Lewis, S.; White, L.

    2012-12-01

    Estimation of tropical forest carbon stocks is a critical yet challenging problem from both ground surveys and remote sensing measurements. However, with its increasing importance in global climate mitigation and carbon cycle assessment, there is a need to develop new techniques to measure forest carbon stocks at landscape scales. Progresses have been made in terms of above ground biomass (AGB) monitoring techniques using ground measurements, with the development of tree allometry techniques. Besides, studies have shown that new remote sensing technologies such as Lidar can give accurate information on tree height and forest structure at a landscape level and can be very useful to estimate AGB. This study examines the ability of small footprint Lidar to estimate above ground biomass in Mondah forest, Gabon. Mondah forest is a coastal tropical forest that is partially flooded and includes areas of mangrove. Its mean annual temperature is 18.8C and mean annual precipitation is 2631mm/yr. Its proximity to the capital of Gabon, Libreville, makes it particularly subject to environmental pressure. The analysis is based on small footprint Lidar waveform information and relative height (RH) metrics that correspond to the percentiles of energy of the signal (25%, 50%, 75% and 100%). AGB estimation is calibrated with ground measurements. Ground-estimated AGB is calculated using allometric equations based on tree diameter, wood density and tree height. Lidar-derived AGB is calculated using a linear regression model between the four Lidar RH metrics and ground-estimated AGB and using available models developed in other tropical regions that use one height metric, average wood density, and tree stocking number. We present uncertainty of different approaches and discuss the universality of lidar biomass estimation models in tropical forests.

  1. On the potential of long wavelength imaging radars for mapping vegetation types and woody biomass in tropical rain forests

    Science.gov (United States)

    Rignot, Eric J.; Zimmermann, Reiner; Oren, Ram

    1995-01-01

    In the tropical rain forests of Manu, in Peru, where forest biomass ranges from 4 kg/sq m in young forest succession up to 100 kg/sq m in old, undisturbed floodplain stands, the P-band polarimetric radar data gathered in June of 1993 by the AIRSAR (Airborne Synthetic Aperture Radar) instrument separate most major vegetation formations and also perform better than expected in estimating woody biomass. The worldwide need for large scale, updated biomass estimates, achieved with a uniformly applied method, as well as reliable maps of land cover, justifies a more in-depth exploration of long wavelength imaging radar applications for tropical forests inventories.

  2. Above-ground biomass and structure of 260 African tropical forests

    Science.gov (United States)

    Lewis, Simon L.; Sonké, Bonaventure; Sunderland, Terry; Begne, Serge K.; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje M. F.; Phillips, Oliver L.; Affum-Baffoe, Kofi; Baker, Timothy R.; Banin, Lindsay; Bastin, Jean-François; Beeckman, Hans; Boeckx, Pascal; Bogaert, Jan; De Cannière, Charles; Chezeaux, Eric; Clark, Connie J.; Collins, Murray; Djagbletey, Gloria; Djuikouo, Marie Noël K.; Droissart, Vincent; Doucet, Jean-Louis; Ewango, Cornielle E. N.; Fauset, Sophie; Feldpausch, Ted R.; Foli, Ernest G.; Gillet, Jean-François; Hamilton, Alan C.; Harris, David J.; Hart, Terese B.; de Haulleville, Thales; Hladik, Annette; Hufkens, Koen; Huygens, Dries; Jeanmart, Philippe; Jeffery, Kathryn J.; Kearsley, Elizabeth; Leal, Miguel E.; Lloyd, Jon; Lovett, Jon C.; Makana, Jean-Remy; Malhi, Yadvinder; Marshall, Andrew R.; Ojo, Lucas; Peh, Kelvin S.-H.; Pickavance, Georgia; Poulsen, John R.; Reitsma, Jan M.; Sheil, Douglas; Simo, Murielle; Steppe, Kathy; Taedoumg, Hermann E.; Talbot, Joey; Taplin, James R. D.; Taylor, David; Thomas, Sean C.; Toirambe, Benjamin; Verbeeck, Hans; Vleminckx, Jason; White, Lee J. T.; Willcock, Simon; Woell, Hannsjorg; Zemagho, Lise

    2013-01-01

    We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha−1 (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha−1) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha−1 greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus–AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes. PMID:23878327

  3. Human and natural controls of the variation in aboveground tree biomass in African dry tropical forests.

    Science.gov (United States)

    Pelletier, Johanne; Siampale, Abel; Legendre, Pierre; Jantz, Patrick; Laporte, Nadine T; Goetz, Scott J

    2017-07-01

    Understanding the anthropogenic and natural controls that affect the patterns, distribution, and dynamics of terrestrial carbon is crucial to meeting climate change mitigation objectives. We assessed the human and natural controls over aboveground tree biomass density in African dry tropical forests, using Zambia's first nationwide forest inventory. We identified predictors that best explain the variation in biomass density, contrasted anthropogenic and natural sites at different spatial scales, and compared sites with different stand structure characteristics and species composition. In addition, we evaluated the effects of different management and conservation practices on biomass density. Variation in biomass density was mostly determined by biotic processes, linked with both species richness and dominance (evenness), and to a lesser extent, by land use, environmental controls, and spatial structure. Biomass density was negatively associated with tree species evenness and positively associated with species richness for both natural and human-modified sites. Human influence variables (including distance to roads, distance to town, fire occurrence, and the population on site) did not explain substantial variation in biomass density in comparison to biodiversity variables. The relationship of human activities to biomass density in managed sites appears to be mediated by effects on species diversity and stand structure characteristics, with lower values in human-modified sites for all metrics tested. Small contrasts in carbon density between human-modified and natural forest sites signal the potential to maintain carbon in the landscape inside but also outside forestlands in this region. Biodiversity is positively related to biomass density in both human and natural sites, demonstrating potential synergies between biodiversity conservation and climate change mitigation. This is the first evidence of positive outcomes of protected areas and participatory forest

  4. Aboveground-Biomass Estimation of a Complex Tropical Forest in India Using Lidar

    Directory of Open Access Journals (Sweden)

    Cédric Véga

    2015-08-01

    Full Text Available Light Detection and Ranging (Lidar is a state of the art technology to assess forest aboveground biomass (AGB. To date, methods developed to relate Lidar metrics with forest parameters were built upon the vertical component of the data. In multi-layered tropical forests, signal penetration might be restricted, limiting the efficiency of these methods. A potential way for improving AGB models in such forests would be to combine traditional approaches by descriptors of the horizontal canopy structure. We assessed the capability and complementarity of three recently proposed methods for assessing AGB at the plot level using point distributional approach (DM, canopy volume profile approach (CVP, 2D canopy grain approach (FOTO, and further evaluated the potential of a topographical complexity index (TCI to explain part of the variability of AGB with slope. This research has been conducted in a mountainous wet evergreen tropical forest of Western Ghats in India. AGB biomass models were developed using a best subset regression approach, and model performance was assessed through cross-validation. Results demonstrated that the variability in AGB could be efficiently captured when variables describing both the vertical (DM or CVP and horizontal (FOTO structure were combined. Integrating FOTO metrics with those of either DM or CVP decreased the root mean squared error of the models by 4.42% and 6.01%, respectively. These results are of high interest for AGB mapping in the tropics and could significantly contribute to the REDD+ program. Model quality could be further enhanced by improving the robustness of field-based biomass models and influence of topography on area-based Lidar descriptors of the forest structure.

  5. Diversity and aboveground biomass of lianas in the tropical seasonal rain forests of Xishuangbanna, SW China

    Directory of Open Access Journals (Sweden)

    Xiao-Tao Lü

    2009-06-01

    Full Text Available Lianas are important components of tropical forests and have significant impacts on the diversity, structure and dynamics of tropical forests. The present study documented the liana flora in a Chinese tropical region. Species richness, abundance, size-class distribution and spatial patterns of lianas were investigated in three 1-ha plots in tropical seasonal rain forests in Xishuangbanna, SW China. All lianas with = 2 cm diameter at breast height (dbh were measured, tagged and identified. A total of 458 liana stems belonging to 95 species (ranging from 38 to 50 species/ha, 59 genera and 32 families were recorded in the three plots. The most well-represented families were Loganiaceae, Annonceae, Papilionaceae, Apocynaceae and Rhamnaceae. Papilionaceae (14 species recorded was the most important family in the study forests. The population density, basal area and importance value index (IVI varied greatly across the three plots. Strychnos cathayensis, Byttneria grandifolia and Bousigonia mekongensis were the dominant species in terms of IVI across the three plots. The mean aboveground biomass of lianas (3 396 kg/ha accounted for 1.4% of the total community aboveground biomass. The abundance, diversity and biomass of lianas in Xishuangbanna tropical seasonal rain forests are lower than those in tropical moist and wet forests, but higher than those in tropical dry forests. This study provides new data on lianas from a geographical region that has been little-studied. Our findings emphasize that other factors beyond the amount and seasonality of precipitation should be included when considering the liana abundance patterns across scales. Rev. Biol. Trop. 57 (1-2: 211-222. Epub 2009 June 30.Las lianas son componentes importantes de los bosques tropicales y tienen importantes impactos en la diversidad, la estructura y la dinámica de los bosques tropicales. El presente estudio documenta la flora de lianas en una región tropical estacional china. La

  6. Incorporating Canopy Cover for Airborne-Derived Assessments of Forest Biomass in the Tropical Forests of Cambodia

    OpenAIRE

    Singh, Minerva; Evans, Damian; Coomes, David A.; Friess, Daniel A.; Suy Tan, Boun; Samean Nin, Chan

    2016-01-01

    This research examines the role of canopy cover in influencing above ground biomass (AGB) dynamics of an open canopied forest and evaluates the efficacy of individual-based and plot-scale height metrics in predicting AGB variation in the tropical forests of Angkor Thom, Cambodia. The AGB was modeled by including canopy cover from aerial imagery alongside with the two different canopy vertical height metrics derived from LiDAR; the plot average of maximum tree height (Max_CH) of individual tre...

  7. OPTIMAL WAVELENGTH SELECTION ON HYPERSPECTRAL DATA WITH FUSED LASSO FOR BIOMASS ESTIMATION OF TROPICAL RAIN FOREST

    Directory of Open Access Journals (Sweden)

    T. Takayama

    2016-06-01

    Full Text Available Above-ground biomass prediction of tropical rain forest using remote sensing data is of paramount importance to continuous large-area forest monitoring. Hyperspectral data can provide rich spectral information for the biomass prediction; however, the prediction accuracy is affected by a small-sample-size problem, which widely exists as overfitting in using high dimensional data where the number of training samples is smaller than the dimensionality of the samples due to limitation of require time, cost, and human resources for field surveys. A common approach to addressing this problem is reducing the dimensionality of dataset. Also, acquired hyperspectral data usually have low signal-to-noise ratio due to a narrow bandwidth and local or global shifts of peaks due to instrumental instability or small differences in considering practical measurement conditions. In this work, we propose a methodology based on fused lasso regression that select optimal bands for the biomass prediction model with encouraging sparsity and grouping, which solves the small-sample-size problem by the dimensionality reduction from the sparsity and the noise and peak shift problem by the grouping. The prediction model provided higher accuracy with root-mean-square error (RMSE of 66.16 t/ha in the cross-validation than other methods; multiple linear analysis, partial least squares regression, and lasso regression. Furthermore, fusion of spectral and spatial information derived from texture index increased the prediction accuracy with RMSE of 62.62 t/ha. This analysis proves efficiency of fused lasso and image texture in biomass estimation of tropical forests.

  8. Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest

    DEFF Research Database (Denmark)

    Goussanou, Cédric A.; Guendehou, Sabin; Assogbadjo, Achille E.

    2016-01-01

    The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest...... enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good...

  9. DEVELOPMENT OF LOCAL ALLOMETRIC EQUATION TO ESTIMATE TOTAL ABOVEGROUND BIOMASS IN PAPUA TROPICAL FOREST

    Directory of Open Access Journals (Sweden)

    Sandhi Imam Maulana

    2016-10-01

    Full Text Available Recently, pantropical allometric equations  have been commonly used across the globe to  estimate the aboveground biomass of the forests, including in Indonesia. However, in relation to regional differences in diameter, height and wood density, the lack of data measured, particularly from eastern part of Indonesia, may raise the question on  accuracy of pantropical allometric in such area. Hence, this paper examines  the differences of local allometric equations of Papua Island with equations developed by Chave and his research groups.. Measurements of biomass in this study were conducted directly based on weighing and destructive samplings. Results show that the most appropriate local equation to estimate total aboveground biomass in Papua tropical forest is Log(TAGB = -0.267 + 2.23 Log(DBH +0.649 Log(WD (CF=1.013; VIF=1.6; R2= 95%; R2-adj= 95.1%; RMSE= 0.149; P<0.001. This equation is also a better option in comparison to those of previously published pantropical equations with only 6.47% average deviation and 5.37 points of relative bias. This finding implies that the locally developed equation should be a better option to produce more accurate site specific total aboveground biomass estimation.

  10. Challenges for Validating Large Scale Maps of Aboveground Biomass of Humid Tropical Forests

    Science.gov (United States)

    Saatchi, S. S.; Xu, L.; Yu, Y.

    2017-12-01

    Post-2020 will witness a series of new observations from NASA and ESA spaceborne missions dedicated to measurements of aboveground forest structure and biomass (AGB). These measurements are designed to significantly reduce the uncertainty in terrestrial carbon cycle by providing globally consistent estimates of forest aboveground carbon stocks and dynamics from land use and climate related changes. The products of these missions are maps of AGB at spatial resolutions ranging from 1-ha to 100 ha derived from dense spatial sampling in the case of NASA's Global Ecosystem Dynamics Investigation (GEDI), or wall-to-wall coverage in the case of NASA and ISRO SAR (NISAR), and ESA's BIOMASS (launch in 2020-21) missions. Validation of these maps over tropical forests requires ground observations that allow assessments of spatial uncertainty at the pixel level and verification of systematic errors in regional spatial patterns and carbon estimates. Current ground plots are either based on adhoc sampling of forests at landscapes, or if from systematic sampling have large uncertainty associated with ground measurements, sample size, and allometric models. Satellite observations, on the other hand, provide either significantly larger sample size or the entire population, have consistent and systematic measurements of the forest structural attributes, and may inform variations of forest allometry across regions. Therefore, not only ground observations of AGB may not be suitable for validation of satellite products, but satellite products may be superior in measurement accuracy (in the case of forest structure), sampling, and consistency across regions. Here, we address challenges associated with the validation of satellite AGB products over tropical forests and provide examples of how ground and airborne data may be integrated to verify the satellite derived products at local scales. We also discuss the strong possibility that satellite observations of spatial patterns and

  11. Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa.

    Science.gov (United States)

    Imani, Gérard; Boyemba, Faustin; Lewis, Simon; Nabahungu, Nsharwasi Léon; Calders, Kim; Zapfack, Louis; Riera, Bernard; Balegamire, Clarisse; Cuni-Sanchez, Aida

    2017-01-01

    Tropical montane forests provide an important natural laboratory to test ecological theory. While it is well-known that some aspects of forest structure change with altitude, little is known on the effects of altitude on above ground biomass (AGB), particularly with regard to changing height-diameter allometry. To address this we investigate (1) the effects of altitude on height-diameter allometry, (2) how different height-diameter allometric models affect above ground biomass estimates; and (3) how other forest structural, taxonomic and environmental attributes affect above ground biomass using 30 permanent sample plots (1-ha; all trees ≥ 10 cm diameter measured) established between 1250 and 2600 m asl in Kahuzi Biega National Park in eastern Democratic Republic of Congo. Forest structure and species composition differed with increasing altitude, with four forest types identified. Different height-diameter allometric models performed better with the different forest types, as trees got smaller with increasing altitude. Above ground biomass ranged from 168 to 290 Mg ha-1, but there were no significant differences in AGB between forests types, as tree size decreased but stem density increased with increasing altitude. Forest structure had greater effects on above ground biomass than forest diversity. Soil attributes (K and acidity, pH) also significantly affected above ground biomass. Results show how forest structural, taxonomic and environmental attributes affect above ground biomass in African tropical montane forests. They particularly highlight that the use of regional height-diameter models introduces significant biases in above ground biomass estimates, and that different height-diameter models might be preferred for different forest types, and these should be considered in future studies.

  12. Estimation of Aboveground Biomass Using Manual Stereo Viewing of Digital Aerial Photographs in Tropical Seasonal Forest

    Directory of Open Access Journals (Sweden)

    Katsuto Shimizu

    2014-11-01

    Full Text Available The objectives of this study are to: (1 evaluate accuracy of tree height measurements of manual stereo viewing on a computer display using digital aerial photographs compared with airborne LiDAR height measurements; and (2 develop an empirical model to estimate stand-level aboveground biomass with variables derived from manual stereo viewing on the computer display in a Cambodian tropical seasonal forest. We evaluate observation error of tree height measured from the manual stereo viewing, based on field measurements. RMSEs of tree height measurement with manual stereo viewing and LiDAR were 1.96 m and 1.72 m, respectively. Then, stand-level aboveground biomass is regressed against tree height indices derived from the manual stereo viewing. We determined the best model to estimate aboveground biomass in terms of the Akaike’s information criterion. This was a model of mean tree height of the tallest five trees in each plot (R2 = 0.78; RMSE = 58.18 Mg/ha. In conclusion, manual stereo viewing on the computer display can measure tree height accurately and is useful to estimate aboveground stand biomass.

  13. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China

    DEFF Research Database (Denmark)

    Liu, Lei; Gundersen, Per; Zhang, Tao

    2012-01-01

    Elevated nitrogen (N) deposition in humid tropical regions may aggravate phosphorus (P) deficiency in forest on old weathered soil found in these regions. From January 2007 to August 2009, we studied the responses of soil microbial biomass and community composition to P addition (in two monthly p...

  14. Mapping Above-Ground Biomass in a Tropical Forest in Cambodia Using Canopy Textures Derived from Google Earth

    OpenAIRE

    Singh, Minerva; Evans, Damian; Friess, Daniel; Tan, Boun; Nin, Chan

    2015-01-01

    This study develops a modelling framework for utilizing very high-resolution (VHR) aerial imagery for monitoring stocks of above-ground biomass (AGB) in a tropical forest in Southeast Asia. Three different texture-based methods (grey level co-occurrence metric (GLCM), Gabor wavelets and Fourier-based textural ordination (FOTO)) were used in conjunction with two different machine learning (ML)-based regression techniques (support vector regression (SVR) and random forest (RF) regression). Thes...

  15. Incorporating Canopy Cover for Airborne-Derived Assessments of Forest Biomass in the Tropical Forests of Cambodia

    Science.gov (United States)

    Singh, Minerva; Evans, Damian; Coomes, David A.; Friess, Daniel A.; Suy Tan, Boun; Samean Nin, Chan

    2016-01-01

    This research examines the role of canopy cover in influencing above ground biomass (AGB) dynamics of an open canopied forest and evaluates the efficacy of individual-based and plot-scale height metrics in predicting AGB variation in the tropical forests of Angkor Thom, Cambodia. The AGB was modeled by including canopy cover from aerial imagery alongside with the two different canopy vertical height metrics derived from LiDAR; the plot average of maximum tree height (Max_CH) of individual trees, and the top of the canopy height (TCH). Two different statistical approaches, log-log ordinary least squares (OLS) and support vector regression (SVR), were used to model AGB variation in the study area. Ten different AGB models were developed using different combinations of airborne predictor variables. It was discovered that the inclusion of canopy cover estimates considerably improved the performance of AGB models for our study area. The most robust model was log-log OLS model comprising of canopy cover only (r = 0.87; RMSE = 42.8 Mg/ha). Other models that approximated field AGB closely included both Max_CH and canopy cover (r = 0.86, RMSE = 44.2 Mg/ha for SVR; and, r = 0.84, RMSE = 47.7 Mg/ha for log-log OLS). Hence, canopy cover should be included when modeling the AGB of open-canopied tropical forests. PMID:27176218

  16. Incorporating Canopy Cover for Airborne-Derived Assessments of Forest Biomass in the Tropical Forests of Cambodia.

    Directory of Open Access Journals (Sweden)

    Minerva Singh

    Full Text Available This research examines the role of canopy cover in influencing above ground biomass (AGB dynamics of an open canopied forest and evaluates the efficacy of individual-based and plot-scale height metrics in predicting AGB variation in the tropical forests of Angkor Thom, Cambodia. The AGB was modeled by including canopy cover from aerial imagery alongside with the two different canopy vertical height metrics derived from LiDAR; the plot average of maximum tree height (Max_CH of individual trees, and the top of the canopy height (TCH. Two different statistical approaches, log-log ordinary least squares (OLS and support vector regression (SVR, were used to model AGB variation in the study area. Ten different AGB models were developed using different combinations of airborne predictor variables. It was discovered that the inclusion of canopy cover estimates considerably improved the performance of AGB models for our study area. The most robust model was log-log OLS model comprising of canopy cover only (r = 0.87; RMSE = 42.8 Mg/ha. Other models that approximated field AGB closely included both Max_CH and canopy cover (r = 0.86, RMSE = 44.2 Mg/ha for SVR; and, r = 0.84, RMSE = 47.7 Mg/ha for log-log OLS. Hence, canopy cover should be included when modeling the AGB of open-canopied tropical forests.

  17. Improved allometric equations for tree aboveground biomass estimation in tropical dipterocarp forests of Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    Solichin Manuri

    2016-12-01

    Full Text Available Background Currently, the common and feasible way to estimate the most accurate forest biomass requires ground measurements and allometric models. Previous studies have been conducted on allometric equations development for estimating tree aboveground biomass (AGB of tropical dipterocarp forests (TDFs in Kalimantan (Indonesian Borneo. However, before the use of existing equations, a validation for the selection of the best allometric equation is required to assess the model bias and precision. This study aims at evaluating the validity of local and pantropical equations; developing new allometric equations for estimating tree AGB in TDFs of Kalimantan; and validating the new equations using independent datasets. Methods We used 108 tree samples from destructive sampling to develop the allometric equations, with maximum tree diameter of 175 cm and another 109 samples from previous studies for validating our equations. We performed ordinary least squares linear regression to explore the relationship between the AGB and the predictor variables in the natural logarithmic form. Results This study found that most of the existing local equations tended to be biased and imprecise, with mean relative error and mean absolute relative error more than 0.1 and 0.3, respectively. We developed new allometric equations for tree AGB estimation in the TDFs of Kalimantan. Through a validation using an independent dataset, we found that our equations were reliable in estimating tree AGB in TDF. The pantropical equation, which includes tree diameter, wood density and total height as predictor variables performed only slightly worse than our new models. Conclusions Our equations improve the precision and reduce the bias of AGB estimates of TDFs. Local models developed from small samples tend to systematically bias. A validation of existing AGB models is essential before the use of the models.

  18. Evaluating the coupled vegetation-fire model, LPJ-GUESS-SPITFIRE, against observed tropical forest biomass

    Science.gov (United States)

    Spessa, Allan; Forrest, Matthew; Werner, Christian; Steinkamp, Joerg; Hickler, Thomas

    2013-04-01

    disturbance such as fire. SPITFIRE (SPread and InTensity of FIRe and Emissions) mechanistically simulates the number of fires, area burnt, fire intensity, crown fires, fire-induced plant mortality, and emissions of carbon, trace gases and aerosols from biomass burning. Originally developed as an embedded model within LPJ-DGVM, SPITFIRE has since been coupled to LPJ-GUESS. However, neither LPJ-DGVM-SPITFIRE nor LPJ-GUESS-SPITFIRE has been fully benchmarked, especially in terms of how well each model simulates vegetation patterns and biomass in areas where fire is known to be important. This information is crucial if we are to have confidence in the models in forecasting fire, emissions from biomass burning and fire-climate impacts on ecosystems. Here we report on the benchmarking of the LPJ-GUESS-SPITFIRE model. We benchmarked LPJ-GUESS-SPITFIRE driven by a combination of daily reanalysis climate data (Sheffield 2012), monthly GFEDv3 burnt area data (1997-2009) (van der Werf et al. 2010) and long-term annual fire statistics (1901 to 2000) (Mouillot and Field 2005) against new Lidar-based biomass data for tropical forests and savannas (Saatchi et al. 2011; Baccini et al., 2012). Our new work has focused on revising the way GUESS simulates tree allometry, light penetration through the tree canopy and sapling recruitment, and how GUESS-SPITFIRE simulates fire-induced mortality, all based on recent literature, as well as a more explicit accounting of land cover change (JRC's GLC 2009). We present how these combined changes result in a much improved simulation of tree carbon across the tropics, including the Americas, Africa, Asia and Australia. Our results are compared with respect to more empirical-based approaches to calculating emissions from biomass burning. We discuss our findings in terms of improved forecasting of fire, emissions from biomass burning and fire-climate impacts on ecosystems.

  19. Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica

    Science.gov (United States)

    Dubayah, R. O.; Sheldon, S. L.; Clark, D. B.; Hofton, M. A.; Blair, J. B.; Hurtt, G. C.; Chazdon, R. L.

    2010-06-01

    In this paper we present the results of an experiment to measure forest structure and biomass dynamics over the tropical forests of La Selva Biological Station in Costa Rica using a medium resolution lidar. Our main objective was to observe changes in forest canopy height, related height metrics, and biomass, and from these map sources and sinks of carbon across the landscape. The Laser Vegetation Imaging Sensor (LVIS) measured canopy structure over La Selva in 1998 and again in 2005. Changes in waveform metrics were related to field-derived changes in estimated aboveground biomass from a series of old growth and secondary forest plots. Pairwise comparisons of nearly coincident lidar footprints between years showed canopy top height changes that coincided with expected changes based on land cover types. Old growth forests had a net loss in height of -0.33 m, while secondary forests had net gain of 2.08 m. Multiple linear regression was used to relate lidar metrics with biomass changes for combined old growth and secondary forest plots, giving an r2 of 0.65 and an RSE of 10.5 Mg/ha, but both parametric and bootstrapped confidence intervals were wide, suggesting weaker model performance. The plot level relationships were then used to map biomass changes across La Selva using LVIS at a 1 ha scale. The spatial patterns of biomass changes matched expected patterns given the distribution of land cover types at La Selva, with secondary forests showing a gain of 25 Mg/ha and old growth forests showing little change (2 Mg/ha). Prediction intervals were calculated to assess uncertainty for each 1 ha cell to ascertain whether the data and methods used could confidently estimate the sign (source or sink) of the biomass changes. The resulting map showed most of the old growth areas as neutral (no net biomass change), with widely scattered and isolated sources and sinks. Secondary forests in contrast were mostly sinks or neutral, but were never sources. By quantifying both the

  20. Does functional trait diversity predict aboveground biomass and productivity of tropical forests? Testing three alternative hypotheses

    NARCIS (Netherlands)

    Finegan, B.; Pena Claros, M.; Silva de Oliveira, A.; Ascarrunz, N.; Bret-Harte, M.S.; Carreño Rocabado, I.G.; Casanoves, F.; Diaz, S.; Eguiguren Velepucha, P.; Fernandez, F.; Licona, J.C.; Lorenzo, L.; Salgado Negret, B.; Vaz, M.; Poorter, L.

    2014-01-01

    1. Tropical forests are globally important, but it is not clear whether biodiversity enhances carbon storage and sequestration in them. We tested this relationship focusing on components of functional trait biodiversity as predictors. 2. Data are presented for three rain forests in Bolivia, Brazil

  1. Does functional trait diversity predict aboveground biomass and productivity of tropical forests? Testing three alternative hypotheses

    NARCIS (Netherlands)

    Finegan, B.; Peña Claros, M.; Oliviera, de A.; Alarcón, A.; Ascarrunz, N.; Bret-Harte, M.S.; Carreño-Rocabado, G.; Casanoves, F.; Díaz, S.; Eguiguren Velepucha, P.; Fernandez, F.; Licona, J.C.; Lorenzo, L.; Salgado Negret, B.; Vaz, M.; Poorter, L.

    2015-01-01

    Tropical forests are globally important, but it is not clear whether biodiversity enhances carbon storage and sequestration in them. We tested this relationship focusing on components of functional trait biodiversity as predictors. Data are presented for three rain forests in Bolivia, Brazil and

  2. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests

    Science.gov (United States)

    Liu, Lei; Gundersen, Per; Zhang, Wei; Zhang, Tao; Chen, Hao; Mo, Jiangming

    2015-09-01

    Elevated nitrogen (N) deposition may aggravate phosphorus (P) deficiency in forests in the warm humid regions of China. To our knowledge, the interactive effects of long-term N deposition and P availability on soil microorganisms in tropical replanted forests remain unclear. We conducted an N and P manipulation experiment with four treatments: control, N addition (15 g N m-2·yr-1), P addition (15 g P m-2·yr-1), and N and P addition (15 + 15 g N and P m-2·yr-1, respectively) in disturbed (planted pine forest with recent harvests of understory vegetation and litter) and rehabilitated (planted with pine, but mixed with broadleaf returning by natural succession) forests in southern China. Nitrogen addition did not significantly affect soil microbial biomass, but significantly decreased the abundance of gram-negative bacteria PLFAs in both forest types. Microbial biomass increased significantly after P addition in the disturbed forest but not in the rehabilitated forest. No interactions between N and P additions on soil microorganisms were observed in either forest type. Our results suggest that microbial growth in replanted forests of southern China may be limited by P rather than by N, and this P limitation may be greater in disturbed forests.

  3. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession

    NARCIS (Netherlands)

    Lohbeck, M.W.M.; Poorter, L.; Martinez-Ramos, M.; Bongers, F.

    2015-01-01

    Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity,

  4. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests

    NARCIS (Netherlands)

    Basuki, T.M.; Laake, van P.E.; Skidmore, A.K.; Hussin, Y.A.

    2009-01-01

    Allometric equations can be used to estimate the biomass and carbon stock of forests. However, so far the equations for Dipterocarp forests have not been developed in sufficient detail. In this research, allometric equations are presented based on the genera of commercial species and mixed species.

  5. Polarimetric SAR Interferometry based modeling for tree height and aboveground biomass retrieval in a tropical deciduous forest

    Science.gov (United States)

    Kumar, Shashi; Khati, Unmesh G.; Chandola, Shreya; Agrawal, Shefali; Kushwaha, Satya P. S.

    2017-08-01

    The regulation of the carbon cycle is a critical ecosystem service provided by forests globally. It is, therefore, necessary to have robust techniques for speedy assessment of forest biophysical parameters at the landscape level. It is arduous and time taking to monitor the status of vast forest landscapes using traditional field methods. Remote sensing and GIS techniques are efficient tools that can monitor the health of forests regularly. Biomass estimation is a key parameter in the assessment of forest health. Polarimetric SAR (PolSAR) remote sensing has already shown its potential for forest biophysical parameter retrieval. The current research work focuses on the retrieval of forest biophysical parameters of tropical deciduous forest, using fully polarimetric spaceborne C-band data with Polarimetric SAR Interferometry (PolInSAR) techniques. PolSAR based Interferometric Water Cloud Model (IWCM) has been used to estimate aboveground biomass (AGB). Input parameters to the IWCM have been extracted from the decomposition modeling of SAR data as well as PolInSAR coherence estimation. The technique of forest tree height retrieval utilized PolInSAR coherence based modeling approach. Two techniques - Coherence Amplitude Inversion (CAI) and Three Stage Inversion (TSI) - for forest height estimation are discussed, compared and validated. These techniques allow estimation of forest stand height and true ground topography. The accuracy of the forest height estimated is assessed using ground-based measurements. PolInSAR based forest height models showed enervation in the identification of forest vegetation and as a result height values were obtained in river channels and plain areas. Overestimation in forest height was also noticed at several patches of the forest. To overcome this problem, coherence and backscatter based threshold technique is introduced for forest area identification and accurate height estimation in non-forested regions. IWCM based modeling for forest

  6. Understanding Tropical Forest Abiotic Responses to Canopy Loss and Biomass Deposition from an Experimental Hurricane Manipulation

    Science.gov (United States)

    Van Beusekom, A.; González, G.; Stankavitch, S.; Zimmerman, J. K.

    2017-12-01

    Understanding the nature and duration of the response of tropical forests to the extreme weather events of hurricanes is critical to understanding future forest regimes, as hurricanes are expected to increase in frequency with climate change. Here we present results from a manipulative experiment on hurricane disturbance effects in the Luquillo Experimental Forest (LEF) in Puerto Rico. The LEF is an example of a forest that would be in a frequent-hurricane region in Earth System Models (ESMs). Thus, the Canopy Trimming Experiment (CTE) was designed to study the key mechanisms behind such a forest's response after a major hurricane (category 4), and guide how repeated hurricanes might be expected to alter such ecosystems using these key mechanisms. Furthermore, with explicit forest manipulation instead of natural occurrence, it is possible to separate out which aspects of hurricane disturbance are most important to be accurately included in ESMs. Phase one of the experiments ran from 2005-2012, where it was found that short-term biotic responses of the forests were driven by canopy openness rather than by debris deposition. In phase two, running from 2014 through the present, we focus here on the abiotic changes forcing the overall response of the ecosystem. The manner in which these abiotic characteristics are disturbed and the speed at which they recover will be key to the continued existence of tropical forests under a climate with more frequent hurricane activity.

  7. Predicting aboveground forest biomass with topographic variables in human-impacted tropical dry forest landscapes

    NARCIS (Netherlands)

    Salinas-Melgoza, Miguel A.; Skutsch, Margaret; Lovett, Jon C.

    2018-01-01

    Topographic variables such as slope and elevation partially explain spatial variations in aboveground biomass (AGB) within landscapes. Human activities that impact vegetation, such as cattle grazing and shifting cultivation, often follow topographic features and also play a key role in determining

  8. Review of Methods for the Monitoring of Biomass and Vegetal Carbon in Tropical Forest Ecosystems

    Directory of Open Access Journals (Sweden)

    William Fonseca

    2017-06-01

    Full Text Available The quantification of vegetal biomass is the key to know the carbon that forest ecosystems store, and therefore, its capacity to mitigate climatic change. There is a variety of methods to estimate biomass, many with small variations, such as size and shape of sampling units, inclusion or not of any reservoir component (leaves, branches, roots, necromasses, minimum diameter inventoried, among others. The objective of the paper is to explain the most important aspects to be considered in the inventory of removals, based on the inventory design (statistical design, size and shape of the sampling units, components of the biomass to be evaluated. A second point deals with the determination of aerial biomass and roots, referring to the direct or destructive method, and indirect methods, especially to the use of mathematical models for their easy application and low cost; besides, some models for natural forest and plantations are noted. Reference is also made to the study of carbon in soils, biomass expansion factors, and how to determine carbon in biomass. We hope that these notes will facilitate the understanding of the topic and be a reference for the establishment of monitoring, reporting and verification schemes.

  9. Quantifying above- and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia).

    Science.gov (United States)

    Kotowska, Martyna M; Leuschner, Christoph; Triadiati, Triadiati; Meriem, Selis; Hertel, Dietrich

    2015-10-01

    Natural forests in South-East Asia have been extensively converted into other land-use systems in the past decades and still show high deforestation rates. Historically, lowland forests have been converted into rubber forests, but more recently, the dominant conversion is into oil palm plantations. While it is expected that the large-scale conversion has strong effects on the carbon cycle, detailed studies quantifying carbon pools and total net primary production (NPPtotal ) in above- and belowground tree biomass in land-use systems replacing rainforest (incl. oil palm plantations) are rare so far. We measured above- and belowground carbon pools in tree biomass together with NPPtotal in natural old-growth forests, 'jungle rubber' agroforests under natural tree cover, and rubber and oil palm monocultures in Sumatra. In total, 32 stands (eight plot replicates per land-use system) were studied in two different regions. Total tree biomass in the natural forest (mean: 384 Mg ha(-1) ) was more than two times higher than in jungle rubber stands (147 Mg ha(-1) ) and >four times higher than in monoculture rubber and oil palm plantations (78 and 50 Mg ha(-1) ). NPPtotal was higher in the natural forest (24 Mg ha(-1)  yr(-1) ) than in the rubber systems (20 and 15 Mg ha(-1)  yr(-1) ), but was highest in the oil palm system (33 Mg ha(-1)  yr(-1) ) due to very high fruit production (15-20 Mg ha(-1)  yr(-1) ). NPPtotal was dominated in all systems by aboveground production, but belowground productivity was significantly higher in the natural forest and jungle rubber than in plantations. We conclude that conversion of natural lowland forest into different agricultural systems leads to a strong reduction not only in the biomass carbon pool (up to 166 Mg C ha(-1) ) but also in carbon sequestration as carbon residence time (i.e. biomass-C:NPP-C) was 3-10 times higher in the natural forest than in rubber and oil palm plantations. © 2015 John Wiley & Sons Ltd.

  10. Aboveground tree biomass in a recovering tropical sal (Shorea robusta Gaertn. f.) forest of Eastern Ghats, India

    Energy Technology Data Exchange (ETDEWEB)

    Behera, Soumit K.; Misra, Malaya K. [Ecology and Floristic Laboratory, Department of Botany, Berhampur University, Berhampur 760 007, Orissa (India)

    2006-06-15

    Aboveground biomass of individual tree species by component and total biomass per unit area for four different stages of a recovering tropical dry deciduous forest stands, dominated by sal (Shorea robusta Gaertn. f.) of the Eastern Ghats, India were investigated during 2001-2002. Different periods of recovering (2, 4, 6, and 10-year) forest stands (84{sup o}13'E, 20{sup o}29'N) were selected in the Kandhamal district of Orissa, India and sample trees of all species were harvested. Tree species diversity was 23, 23, 21 and 22 in 2, 4, 6, and 10-year recovering stands, respectively. Species-wise Ixora pavetta showed the highest biomass in 2 and 4-year stands while Shorea robusta in 6 and 10-year stands. Component-wise, in all species, bole-wood contribution ranged between 22.6% and 60.9%. Aboveground tree biomass, in all the stands, was dominated by Shorea robusta, which ranged between 12.68 and 231.91Mgha{sup -1}. Total aboveground tree biomass was 30.12, 49.21, 107.54 and 261.08Mgha{sup -1} in 2, 4, 6 and 10-year stands, respectively. (author)

  11. Tropical forest biomass and its relationship with P-band SAR data

    Directory of Open Access Journals (Sweden)

    Fábio Furlan Gama

    2006-04-01

    Full Text Available The objective of this research is to show the potential of P-band polarimetric SAR images to define the space of attributes of primary and regenerating forest and also to estimate aerial biomass of such formations. The approach used was the analysis of the relation between backscatter and biomass data estimated by four specific allometric equations. The Bivariate Intensities HH-HV image was segmented and the mean σ° of each segment was converted into biomass by the best fit function (the heat capacity model and following that the biomass was mapped. As a conclusion, the best allometric equations for primary and secondary forest biomass estimation were defined, considering the different polarizations of P-band SAR data. The methodology used in this treatment of P-band data might improve the regional monitoring of Amazonian land cover change, a process whose speed was accelerated as a result of human action in the Amazon during the last two decades.

  12. Landscape and forest structural controls on wood density and aboveground biomass along a tropical elevation gradient in Costa Rica

    Science.gov (United States)

    Robinson, C. M.; Saatchi, S. S.; Clark, D. B.; Gillespie, T. W.; Andelman, S.

    2014-12-01

    This research seeks to understand how tree wood density and taxonomic diversity relate to topography and three-dimensional vegetation structure in the tropical montane forest of Braulio Carrillo National Park in Costa Rica. The study utilized forest inventory and botanical data from twenty 1-ha plots ranging from 55 m to 2800 m above sea level and remote sensing data from an airborne lidar sensor (NASA's Land, Vegetation, and Ice Sensor [LVIS]) to quantify variations in forest structure. There is growing evidence that ecosystem structure plays an important role in defining patterns of species diversity and help to control the phenotypic and functional variations across landscapes. Elevation gradients along mountains provide landscape-size scales through which variations in topography, climate, and edaphic conditions as drivers of biodiversity can be tested. In this study we report on the effectiveness of relating patterns of tree wood density and alpha diversity to three-dimensional structure of a tropical montane forest using remote sensing observations of forest structure. Wood density is an important parameter for aboveground biomass and carbon estimations. Tree cores were analyzed for wood density and compared to existing database values for the same species. In this manner we were able to test the effect of the gradient on wood density and on the subsequent aboveground biomass estimations. Understanding these patterns has implications for conservation of both ecosystem services and biodiversity. Our results indicate that there is a strong relationship between LVIS-derived forest 3D-structure and alpha diversity, likely controlled controlled by variations in abiotic factors and topography along the elevation. Using spatial analysis with the aid of remote sensing data, we found distinct patterns along the environmental gradients defining species composition and forest structure. Wood density values were found to vary significantly from database values for the

  13. Impacts of Airborne Lidar Pulse Density on Estimating Biomass Stocks and Changes in a Selectively Logged Tropical Forest

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Silva

    2017-10-01

    Full Text Available Airborne lidar is a technology well-suited for mapping many forest attributes, including aboveground biomass (AGB stocks and changes in selective logging in tropical forests. However, trade-offs still exist between lidar pulse density and accuracy of AGB estimates. We assessed the impacts of lidar pulse density on the estimation of AGB stocks and changes using airborne lidar and field plot data in a selectively logged tropical forest located near Paragominas, Pará, Brazil. Field-derived AGB was computed at 85 square 50 × 50 m plots in 2014. Lidar data were acquired in 2012 and 2014, and for each dataset the pulse density was subsampled from its original density of 13.8 and 37.5 pulses·m−2 to lower densities of 12, 10, 8, 6, 4, 2, 0.8, 0.6, 0.4 and 0.2 pulses·m−2. For each pulse density dataset, a power-law model was developed to estimate AGB stocks from lidar-derived mean height and corresponding changes between the years 2012 and 2014. We found that AGB change estimates at the plot level were only slightly affected by pulse density. However, at the landscape level we observed differences in estimated AGB change of >20 Mg·ha−1 when pulse density decreased from 12 to 0.2 pulses·m−2. The effects of pulse density were more pronounced in areas of steep slope, especially when the digital terrain models (DTMs used in the lidar derived forest height were created from reduced pulse density data. In particular, when the DTM from high pulse density in 2014 was used to derive the forest height from both years, the effects on forest height and the estimated AGB stock and changes did not exceed 20 Mg·ha−1. The results suggest that AGB change can be monitored in selective logging in tropical forests with reasonable accuracy and low cost with low pulse density lidar surveys if a baseline high-quality DTM is available from at least one lidar survey. We recommend the results of this study to be considered in developing projects and national

  14. Assessment of variations in taxonomic diversity, forest structure, and aboveground biomass using remote sensing along an altitudinal gradient in tropical montane forest of Costa Rica

    Science.gov (United States)

    Robinson, C. M.; Saatchi, S. S.; Clark, D.; Fricker, G. A.; Wolf, J.; Gillespie, T. W.; Rovzar, C. M.; Andelman, S.

    2012-12-01

    This research sought to understand how alpha and beta diversity of plants vary and relate to the three-dimensional vegetation structure and aboveground biomass along environmental gradients in the tropical montane forests of Braulio Carrillo National Park in Costa Rica. There is growing evidence that ecosystem structure plays an important role in defining patterns of species diversity and along with abiotic factors (climate and edaphic) control the phenotypic and functional variations across landscapes. It is well documented that strong subdivisions at local and regional scales are found mainly on geologic or climate gradients. These general determinants of biodiversity are best demonstrated in regions with natural gradients such as tropical montane forests. Altitudinal gradients provide a landscape scale changes through variations in topography, climate, and edaphic conditions on which we tested several theoretical and biological hypotheses regarding drivers of biodiversity. The study was performed by using forest inventory and botanical data from nine 1-ha plots ranging from 100 m to 2800 m above sea level and remote sensing data from airborne lidar and radar sensors to quantify variations in forest structure. In this study we report on the effectiveness of relating patterns of tree taxonomic alpha diversity to three-dimensional structure of a tropical montane forest using lidar and radar observations of forest structure and biomass. We assessed alpha and beta diversity at the species, genus, and family levels utilizing datasets provided by the Terrestrial Ecology Assessment and Monitoring (TEAM) Network. Through the comparison to active remote sensing imagery, our results show that there is a strong relationship between forest 3D-structure, and alpha and beta diversity controlled by variations in abiotic factors along the altitudinal gradient. Using spatial analysis with the aid of remote sensing data, we find distinct patterns along the environmental gradients

  15. Geographical Distribution of Biomass Carbon in Tropical Southeast Asian Forests: A Database; TOPICAL

    International Nuclear Information System (INIS)

    Brown, S

    2001-01-01

    A database was generated of estimates of geographically referenced carbon densities of forest vegetation in tropical Southeast Asia for 1980. A geographic information system (GIS) was used to incorporate spatial databases of climatic, edaphic, and geomorphological indices and vegetation to estimate potential (i.e., in the absence of human intervention and natural disturbance) carbon densities of forests. The resulting map was then modified to estimate actual 1980 carbon density as a function of population density and climatic zone. The database covers the following 13 countries: Bangladesh, Brunei, Cambodia (Campuchea), India, Indonesia, Laos, Malaysia, Myanmar (Burma), Nepal, the Philippines, Sri Lanka, Thailand, and Vietnam. The data sets within this database are provided in three file formats: ARC/INFO(trademark) exported integer grids, ASCII (American Standard Code for Information Interchange) files formatted for raster-based GIS software packages, and generic ASCII files with x, y coordinates for use with non-GIS software packages

  16. Mapping Above-Ground Biomass in a Tropical Forest in Cambodia Using Canopy Textures Derived from Google Earth

    Directory of Open Access Journals (Sweden)

    Minerva Singh

    2015-04-01

    Full Text Available This study develops a modelling framework for utilizing very high-resolution (VHR aerial imagery for monitoring stocks of above-ground biomass (AGB in a tropical forest in Southeast Asia. Three different texture-based methods (grey level co-occurrence metric (GLCM, Gabor wavelets and Fourier-based textural ordination (FOTO were used in conjunction with two different machine learning (ML-based regression techniques (support vector regression (SVR and random forest (RF regression. These methods were implemented on both 50-cm resolution Digital Globe data extracted from Google Earth™ (GE and 8-cm commercially obtained VHR imagery. This study further examines the role of forest biophysical parameters, such as ground-measured canopy cover and vertical canopy height, in explaining AGB distribution. Three models were developed using: (i horizontal canopy variables (i.e., canopy cover and texture variables plus vertical canopy height; (ii horizontal variables only; and (iii texture variables only. AGB was variable across the site, ranging from 51.02 Mg/ha to 356.34 Mg/ha. GE-based AGB estimates were comparable to those derived from commercial aerial imagery. The findings demonstrate that novel use of this array of texture-based techniques with GE imagery can help promote the wider use of freely available imagery for low-cost, fine-resolution monitoring of forests parameters at the landscape scale.

  17. Tropical forests and climate policy

    Energy Technology Data Exchange (ETDEWEB)

    Gullison, R.E. [Univ British Columbia, Biodivers Res Ctr, Vancouver, BC V6T 1Z4, (Canada); Frumhoff, P.C. [Union Concerned Sci, Cambridge, MA 02238 (United States); Canadell, J.G. [CSIRO Marine and Atmospher Res, Global Carbon Project, Canberra, ACT 2601, (Australia); Field, C.B. [Carnegie Inst, Dept Global Ecol, Stanford, CA 94305 (United States); Nepstad, D.C. [Woods Hole Res Ctr, Woods Hole, MA 02543 (United States); Hayhoe, K. [Texas Tech Univ, Dept Geosci, Lubbock, TX 79409 (United States); Avissar, R. [Duke Univ, Dept Civil and Environm Engn, Durham, NC 27708 (United States); Curran, L.M. [YAle Sch Forestry and Environm Studies, Trop Resources Inst, New Haven, CT 06511 (United States); Friedlingstein, P. [CEA, CNRS, Unite Mixte Rech 1572, Lab Sci Climate and Environm IPSL LSCE, F-91191 Gif Sur Yvette, (France); Jones, C.D. [Hadley Ctr Climate Predict and Res, Met Off, Exeter EX1 3PB, Devon, (United Kingdom); Nobre, C. [CPTEC, Cachoeira Paulista, SP, (Brazil)

    2007-07-01

    Beyond protecting the climate, reducing tropical deforestation has the potential to eliminate many negative impacts that may compromise the ability of tropical countries to develop sustainably, including reduction in rainfall, loss of biodiversity, degraded human health from biomass burning pollution, and the unintentional loss of productive forests. Providing economic incentives for the maintenance of forest cover can help tropical countries avoid these negative impacts and meet development goals, while also complementing aggressive efforts to reduce fossil fuel emissions. Industrialized and developing countries urgently need to support the RED policy process and develop effective and equitable compensation schemes to help tropical countries protect their forests, reducing the risk of dangerous climate change and protecting the many other goods and services that these forests contribute to sustainable development. (authors)

  18. Tropical forests and climate policy

    International Nuclear Information System (INIS)

    Gullison, R.E.; Frumhoff, P.C.; Canadell, J.G.; Field, C.B.; Nepstad, D.C.; Hayhoe, K.; Avissar, R.; Curran, L.M.; Friedlingstein, P.; Jones, C.D.; Nobre, C.

    2007-01-01

    Beyond protecting the climate, reducing tropical deforestation has the potential to eliminate many negative impacts that may compromise the ability of tropical countries to develop sustainably, including reduction in rainfall, loss of biodiversity, degraded human health from biomass burning pollution, and the unintentional loss of productive forests. Providing economic incentives for the maintenance of forest cover can help tropical countries avoid these negative impacts and meet development goals, while also complementing aggressive efforts to reduce fossil fuel emissions. Industrialized and developing countries urgently need to support the RED policy process and develop effective and equitable compensation schemes to help tropical countries protect their forests, reducing the risk of dangerous climate change and protecting the many other goods and services that these forests contribute to sustainable development. (authors)

  19. Tropical Tree Trait Diversity Enhances Forest Biomass Resilience in a Dynamic Global Vegetation Model

    Science.gov (United States)

    Sakschewski, B.; Kirsten, T.; von Bloh, W.; Poorter, L.; Pena-Claros, M.; Boit, A.

    2016-12-01

    Functional diversity of ecosystems has been found to increase ecosystem functions and therefore enhance ecosystem resilience against environmental stressors. However, global carbon-cycle and biosphere models still classify the global vegetation into a relatively small number of distinct plant functional types (PFT) with constant features over space and time. Therefore, those models might underestimate the resilience and adaptive capacity of natural vegetation under climate change by ignoring positive effects that functional diversity might bring about. We diversified a set a of selected tree traits in a dynamic global vegetation model (LPJmL). In the new subversion, called LPJmL-FIT, Amazon region biomass stocks and forest structure appear significantly more resilient against climate change. Enhanced tree trait diversity enables the simulated rainforests to adjust to new environmental conditions via ecological sorting. These results may stimulate a new debate on the value of biodiversity for climate change mitigation.

  20. Tree Biomass Allocation and Its Model Additivity for Casuarina equisetifolia in a Tropical Forest of Hainan Island, China.

    Directory of Open Access Journals (Sweden)

    Yang Xue

    Full Text Available Casuarina equisetifolia is commonly planted and used in the construction of coastal shelterbelt protection in Hainan Island. Thus, it is critical to accurately estimate the tree biomass of Casuarina equisetifolia L. for forest managers to evaluate the biomass stock in Hainan. The data for this work consisted of 72 trees, which were divided into three age groups: young forest, middle-aged forest, and mature forest. The proportion of biomass from the trunk significantly increased with age (P<0.05. However, the biomass of the branch and leaf decreased, and the biomass of the root did not change. To test whether the crown radius (CR can improve biomass estimates of C. equisetifolia, we introduced CR into the biomass models. Here, six models were used to estimate the biomass of each component, including the trunk, the branch, the leaf, and the root. In each group, we selected one model among these six models for each component. The results showed that including the CR greatly improved the model performance and reduced the error, especially for the young and mature forests. In addition, to ensure biomass additivity, the selected equation for each component was fitted as a system of equations using seemingly unrelated regression (SUR. The SUR method not only gave efficient and accurate estimates but also achieved the logical additivity. The results in this study provide a robust estimation of tree biomass components and total biomass over three groups of C. equisetifolia.

  1. Tree Biomass Allocation and Its Model Additivity for Casuarina equisetifolia in a Tropical Forest of Hainan Island, China

    Science.gov (United States)

    Xue, Yang; Yang, Zhongyang; Wang, Xiaoyan; Lin, Zhipan; Li, Dunxi; Su, Shaofeng

    2016-01-01

    Casuarina equisetifolia is commonly planted and used in the construction of coastal shelterbelt protection in Hainan Island. Thus, it is critical to accurately estimate the tree biomass of Casuarina equisetifolia L. for forest managers to evaluate the biomass stock in Hainan. The data for this work consisted of 72 trees, which were divided into three age groups: young forest, middle-aged forest, and mature forest. The proportion of biomass from the trunk significantly increased with age (Pbiomass of the branch and leaf decreased, and the biomass of the root did not change. To test whether the crown radius (CR) can improve biomass estimates of C. equisetifolia, we introduced CR into the biomass models. Here, six models were used to estimate the biomass of each component, including the trunk, the branch, the leaf, and the root. In each group, we selected one model among these six models for each component. The results showed that including the CR greatly improved the model performance and reduced the error, especially for the young and mature forests. In addition, to ensure biomass additivity, the selected equation for each component was fitted as a system of equations using seemingly unrelated regression (SUR). The SUR method not only gave efficient and accurate estimates but also achieved the logical additivity. The results in this study provide a robust estimation of tree biomass components and total biomass over three groups of C. equisetifolia. PMID:27002822

  2. Tree Biomass Allocation and Its Model Additivity for Casuarina equisetifolia in a Tropical Forest of Hainan Island, China.

    Science.gov (United States)

    Xue, Yang; Yang, Zhongyang; Wang, Xiaoyan; Lin, Zhipan; Li, Dunxi; Su, Shaofeng

    2016-01-01

    Casuarina equisetifolia is commonly planted and used in the construction of coastal shelterbelt protection in Hainan Island. Thus, it is critical to accurately estimate the tree biomass of Casuarina equisetifolia L. for forest managers to evaluate the biomass stock in Hainan. The data for this work consisted of 72 trees, which were divided into three age groups: young forest, middle-aged forest, and mature forest. The proportion of biomass from the trunk significantly increased with age (Pbiomass of the branch and leaf decreased, and the biomass of the root did not change. To test whether the crown radius (CR) can improve biomass estimates of C. equisetifolia, we introduced CR into the biomass models. Here, six models were used to estimate the biomass of each component, including the trunk, the branch, the leaf, and the root. In each group, we selected one model among these six models for each component. The results showed that including the CR greatly improved the model performance and reduced the error, especially for the young and mature forests. In addition, to ensure biomass additivity, the selected equation for each component was fitted as a system of equations using seemingly unrelated regression (SUR). The SUR method not only gave efficient and accurate estimates but also achieved the logical additivity. The results in this study provide a robust estimation of tree biomass components and total biomass over three groups of C. equisetifolia.

  3. Biomass expansion factors of Olea ferruginea (Royle) in sub tropical ...

    African Journals Online (AJOL)

    Wood biomass gives information about total productivity of the forest as well as individual tree. Olea ferruginea (Royle) which is small and evergreen is widely distributed in native sub tropical forests of Pakistan and extensively used as fuelwood domestically. This study was carried out in the sub tropical forests of Pakistan at ...

  4. Geographical Distribution of Biomass Carbon in Tropical Southeast Asian Forests: A Database

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.

    2002-02-07

    A database was generated of estimates of geographically referenced carbon densities of forest vegetation in tropical Southeast Asia for 1980. A geographic information system (GIS) was used to incorporate spatial databases of climatic, edaphic, and geomorphological indices and vegetation to estimate potential (i.e., in the absence of human intervention and natural disturbance) carbon densities of forests. The resulting map was then modified to estimate actual 1980 carbon density as a function of population density and climatic zone. The database covers the following 13 countries: Bangladesh, Brunei, Cambodia (Campuchea), India, Indonesia, Laos, Malaysia, Myanmar (Burma), Nepal, the Philippines, Sri Lanka, Thailand, and Vietnam. The data sets within this database are provided in three file formats: ARC/INFO{trademark} exported integer grids, ASCII (American Standard Code for Information Interchange) files formatted for raster-based GIS software packages, and generic ASCII files with x, y coordinates for use with non-GIS software packages. This database includes ten ARC/INFO exported integer grid files (five with the pixel size 3.75 km x 3.75 km and five with the pixel size 0.25 degree longitude x 0.25 degree latitude) and 27 ASCII files. The first ASCII file contains the documentation associated with this database. Twenty-four of the ASCII files were generated by means of the ARC/INFO GRIDASCII command and can be used by most raster-based GIS software packages. The 24 files can be subdivided into two groups of 12 files each. These files contain real data values representing actual carbon and potential carbon density in Mg C/ha (1 megagram = 10{sup 6} grams) and integer- coded values for country name, Weck's Climatic Index, ecofloristic zone, elevation, forest or non-forest designation, population density, mean annual precipitation, slope, soil texture, and vegetation classification. One set of 12 files contains these data at a spatial resolution of 3.75 km

  5. Geographical Distribution of Biomass Carbon in Tropical Southeast Asian Forests: A Database

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S

    2001-05-22

    A database was generated of estimates of geographically referenced carbon densities of forest vegetation in tropical Southeast Asia for 1980. A geographic information system (GIS) was used to incorporate spatial databases of climatic, edaphic, and geomorphological indices and vegetation to estimate potential (i.e., in the absence of human intervention and natural disturbance) carbon densities of forests. The resulting map was then modified to estimate actual 1980 carbon density as a function of population density and climatic zone. The database covers the following 13 countries: Bangladesh, Brunei, Cambodia (Campuchea), India, Indonesia, Laos, Malaysia, Myanmar (Burma), Nepal, the Philippines, Sri Lanka, Thailand, and Vietnam. The data sets within this database are provided in three file formats: ARC/INFOTM exported integer grids, ASCII (American Standard Code for Information Interchange) files formatted for raster-based GIS software packages, and generic ASCII files with x, y coordinates for use with non-GIS software packages. This database includes ten ARC/INFO exported integer grid files (five with the pixel size 3.75 km x 3.75 km and five with the pixel size 0.25 degree longitude x 0.25 degree latitude) and 27 ASCII files. The first ASCII file contains the documentation associated with this database. Twenty-four of the ASCII files were generated by means of the ARC/INFO GRIDASCII command and can be used by most raster-based GIS software packages. The 24 files can be subdivided into two groups of 12 files each. These files contain real data values representing actual carbon and potential carbon density in Mg C/ha (1 megagram = 10{sup 6} grams) and integer-coded values for country name, Weck's Climatic Index, ecofloristic zone, elevation, forest or non-forest designation, population density, mean annual precipitation, slope, soil texture, and vegetation classification. One set of 12 files contains these data at a spatial resolution of 3.75 km, whereas the

  6. Biomass resilience of Neotropical secondary forests

    Science.gov (United States)

    Poorter, Lourens; Bongers, Frans; Aide, T. Mitchell; Almeyda Zambrano, Angélica M.; Balvanera, Patricia; Becknell, Justin M.; Boukili, Vanessa; Brancalion, Pedro H. S.; Broadbent, Eben N.; Chazdon, Robin L.; Craven, Dylan; de Almeida-Cortez, Jarcilene S.; Cabral, George A. L.; de Jong, Ben H. J.; Denslow, Julie S.; Dent, Daisy H.; Dewalt, Saara J.; Dupuy, Juan M.; Durán, Sandra M.; Espírito-Santo, Mario M.; Fandino, María C.; César, Ricardo G.; Hall, Jefferson S.; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C.; Junqueira, André B.; Kennard, Deborah; Letcher, Susan G.; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A.; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R. F.; Ochoa-Gaona, Susana; de Oliveira, Alexandre A.; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A.; Piotto, Daniel; Powers, Jennifer S.; Rodríguez-Velázquez, Jorge; Romero-Pérez, I. Eunice; Ruíz, Jorge; Saldarriaga, Juan G.; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B.; Steininger, Marc K.; Swenson, Nathan G.; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D. M.; Vester, Hans F. M.; Vicentini, Alberto; Vieira, Ima C. G.; Bentos, Tony Vizcarra; Williamson, G. Bruce; Rozendaal, Danaë M. A.

    2016-02-01

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha-1), corresponding to a net carbon uptake of 3.05 Mg C ha-1 yr-1, 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha-1) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  7. Biomass resilience of Neotropical secondary forests.

    Science.gov (United States)

    Poorter, Lourens; Bongers, Frans; Aide, T Mitchell; Almeyda Zambrano, Angélica M; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Broadbent, Eben N; Chazdon, Robin L; Craven, Dylan; de Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben H J; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; de Oliveira, Alexandre A; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velázquez, Jorge; Romero-Pérez, I Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans F M; Vicentini, Alberto; Vieira, Ima C G; Bentos, Tony Vizcarra; Williamson, G Bruce; Rozendaal, Danaë M A

    2016-02-11

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  8. Ecological Importance of Small-Diameter Trees to the Structure, Diversity and Biomass of a Tropical Evergreen Forest at Rabi, Gabon.

    Directory of Open Access Journals (Sweden)

    Hervé R Memiaghe

    Full Text Available Tropical forests have long been recognized for their biodiversity and ecosystem services. Despite their importance, tropical forests, and particularly those of central Africa, remain understudied. Until recently, most forest inventories in Central Africa have focused on trees ≥10 cm in diameter, even though several studies have shown that small-diameter tree population may be important to demographic rates and nutrient cycling. To determine the ecological importance of small-diameter trees in central African forests, we used data from a 25-ha permanent plot that we established in the rainforest of Gabon to study the diversity and dynamics of these forests. Within the plot, we censused 175,830 trees ≥1 cm dbh from 54 families, 192 genera, and 345 species. Average tree density was 7,026 trees/ha, basal area 31.64 m2/ha, and above-ground biomass 369.40 Mg/ha. Fabaceae, Ebenaceae and Euphorbiaceae were the most important families by basal area, density and above-ground biomass. Small-diameter trees (1 cm ≥ dbh <10 cm comprised 93.7% of the total tree population, 16.5% of basal area, and 4.8% of the above-ground biomass. They also had diversity 18% higher at family level, 34% higher at genus level, and 42% higher at species level than trees ≥10 cm dbh. Although the relative contribution of small-diameter trees to biomass was comparable to other forests globally, their contribution to forest density, and diversity was disproportionately higher. The high levels of diversity within small-diameter classes may give these forests high levels of structural resilience to anthropogenic/natural disturbance and a changing climate.

  9. Ecological Importance of Small-Diameter Trees to the Structure, Diversity and Biomass of a Tropical Evergreen Forest at Rabi, Gabon.

    Science.gov (United States)

    Memiaghe, Hervé R; Lutz, James A; Korte, Lisa; Alonso, Alfonso; Kenfack, David

    2016-01-01

    Tropical forests have long been recognized for their biodiversity and ecosystem services. Despite their importance, tropical forests, and particularly those of central Africa, remain understudied. Until recently, most forest inventories in Central Africa have focused on trees ≥10 cm in diameter, even though several studies have shown that small-diameter tree population may be important to demographic rates and nutrient cycling. To determine the ecological importance of small-diameter trees in central African forests, we used data from a 25-ha permanent plot that we established in the rainforest of Gabon to study the diversity and dynamics of these forests. Within the plot, we censused 175,830 trees ≥1 cm dbh from 54 families, 192 genera, and 345 species. Average tree density was 7,026 trees/ha, basal area 31.64 m2/ha, and above-ground biomass 369.40 Mg/ha. Fabaceae, Ebenaceae and Euphorbiaceae were the most important families by basal area, density and above-ground biomass. Small-diameter trees (1 cm ≥ dbh basal area, and 4.8% of the above-ground biomass. They also had diversity 18% higher at family level, 34% higher at genus level, and 42% higher at species level than trees ≥10 cm dbh. Although the relative contribution of small-diameter trees to biomass was comparable to other forests globally, their contribution to forest density, and diversity was disproportionately higher. The high levels of diversity within small-diameter classes may give these forests high levels of structural resilience to anthropogenic/natural disturbance and a changing climate.

  10. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession.

    Science.gov (United States)

    Lasky, Jesse R; Uriarte, María; Boukili, Vanessa K; Erickson, David L; John Kress, W; Chazdon, Robin L

    2014-09-01

    Theory predicts shifts in the magnitude and direction of biodiversity effects on ecosystem function (BEF) over succession, but this theory remains largely untested. We studied the relationship between aboveground tree biomass dynamics (Δbiomass) and multiple dimensions of biodiversity over 8-16 years in eight successional rainforests. We tested whether successional changes in diversity-Δbiomass correlations reflect predictions of niche theories. Diversity-Δbiomass correlations were positive early but weak later in succession, suggesting saturation of niche space with increasing diversity. Early in succession, phylogenetic diversity and functional diversity in two leaf traits exhibited the strongest positive correlations with Δbiomass, indicating complementarity or positive selection effects. In mid-successional stands, high biodiversity was associated with greater mortality-driven biomass loss, i.e. negative selection effects, suggesting successional niche trade-offs and loss of fast-growing pioneer species. Our results demonstrate that BEF relationships are dynamic across succession, thus successional context is essential to understanding BEF in a given system. © 2014 John Wiley & Sons Ltd/CNRS.

  11. Going beyond the green: senesced vegetation material predicts basal area and biomass in remote sensing of tree cover conditions in an African tropical dry forest (miombo woodland) landscape

    Science.gov (United States)

    Mayes, Marc; Mustard, John; Melillo, Jerry; Neill, Christopher; Nyadzi, Gerson

    2017-08-01

    In sub-Saharan Africa (SSA), tropical dry forests and savannas cover over 2.5 million km2 and support livelihoods for millions in fast-growing nations. Intensifying land use pressures have driven rapid changes in tree cover structure (basal area, biomass) that remain poorly characterized at regional scales. Here, we posed the hypothesis that tree cover structure related strongly to senesced and non-photosynthetic (NPV) vegetation features in a SSA tropical dry forest landscape, offering improved means for satellite remote sensing of tree cover structure compared to vegetation greenness-based methods. Across regrowth miombo woodland sites in Tanzania, we analyzed relationships among field data on tree structure, land cover, and satellite indices of green and NPV features based on spectral mixture analyses and normalized difference vegetation index calculated from Landsat 8 data. From satellite-field data relationships, we mapped regional basal area and biomass using NPV and greenness-based metrics, and compared map performances at landscape scales. Total canopy cover related significantly to stem basal area (r 2 = 0.815, p  60%) at all sites. From these two conditions emerged a key inverse relationship: skyward exposure of NPV ground cover was high at sites with low tree basal area and biomass, and decreased with increasing stem basal area and biomass. This pattern scaled to Landsat NPV metrics, which showed strong inverse correlations to basal area (Pearson r = -0.85, p forests.

  12. Securing tropical forest carbon

    DEFF Research Database (Denmark)

    Scharlemann, Jörn P. W.; Kapos, Valerie; Campbell, Alison

    2010-01-01

    that 1.75 million ha of forest were lost from protected areas in humid tropical forests, causing the emission of 0.25-0.33 Pg C. Protected areas lost about half as much carbon as the same area of unprotected forest. We estimate that the reduction of these carbon emissions from ongoing deforestation......, although certainly not sufficient, component of an overall strategy for reducing emissions from deforestation and forest degradation (REDD)...

  13. Development of Allometric Equations for Estimating Above-Ground Liana Biomass in Tropical Primary and Secondary Forests, Malaysia

    Directory of Open Access Journals (Sweden)

    Patrick Addo-Fordjour

    2013-01-01

    Full Text Available The study developed allometric equations for estimating liana stem and total above-ground biomass in primary and secondary forests in the Penang National Park, Penang, Malaysia. Using biomass-diameter-length data of 60 liana individuals representing 15 species, allometric equations were developed for liana stem biomass and total above-ground biomass (TAGB. Three types of allometric equations were developed: models fitted to untransformed, weighted, and log-transformed (log10 data. There was a significant linear relationship between biomass and the predictors (diameter, length, and/or their combinations. The same set of models was developed for primary and secondary forests due to absence of differences in regression line slopes of the forests (ANCOVA: . The coefficients of determination values of the models were high (stem: 0.861 to 0.990; TAGB: 0.900 to 0.992. Generally, log-transformed models showed better fit (Furnival's index, FI 0.5. A comparison of the best TAGB model in this study (based on FI with previously published equations indicated that most of the equations significantly ( overestimated TAGB of lianas. However, a previous equation from Southeast Asia estimated TAGB similar to that of the current equation (. Therefore, regional or intracontinental equations should be preferred to intercontinental equations when estimating liana biomass.

  14. Biomass resilience of Neotropical secondary forests

    NARCIS (Netherlands)

    Poorter, Lourens; Bongers, Frans; Aide, T.M.; Almeyda Zambrano, A.M.; Balvanera, Patricia; Jakovac, C.C.; Braga Junqueira, A.; Lohbeck, Madelon; Penã-Claros, Marielos; Rozendaal, D.M.A.

    2016-01-01

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates

  15. Influence of Plot Size on Efficiency of Biomass Estimates in Inventories of Dry Tropical Forests Assisted by Photogrammetric Data from an Unmanned Aircraft System

    Directory of Open Access Journals (Sweden)

    Daud Jones Kachamba

    2017-06-01

    Full Text Available Applications of unmanned aircraft systems (UASs to assist in forest inventories have provided promising results in biomass estimation for different forest types. Recent studies demonstrating use of different types of remotely sensed data to assist in biomass estimation have shown that accuracy and precision of estimates are influenced by the size of field sample plots used to obtain reference values for biomass. The objective of this case study was to assess the influence of sample plot size on efficiency of UAS-assisted biomass estimates in the dry tropical miombo woodlands of Malawi. The results of a design-based field sample inventory assisted by three-dimensional point clouds obtained from aerial imagery acquired with a UAS showed that the root mean square errors as well as the standard error estimates of mean biomass decreased as sample plot sizes increased. Furthermore, relative efficiency values over different sample plot sizes were above 1.0 in a design-based and model-assisted inferential framework, indicating that UAS-assisted inventories were more efficient than purely field-based inventories. The results on relative costs for UAS-assisted and pure field-based sample plot inventories revealed that there is a trade-off between inventory costs and required precision. For example, in our study if a standard error of less than approximately 3 Mg ha−1 was targeted, then a UAS-assisted forest inventory should be applied to ensure more cost effective and precise estimates. Future studies should therefore focus on finding optimum plot sizes for particular applications, like for example in projects under the Reducing Emissions from Deforestation and Forest Degradation, plus forest conservation, sustainable management of forest and enhancement of carbon stocks (REDD+ mechanism with different geographical scales.

  16. Understanding the key mechanisms of tropical forest responses to canopy loss and biomass deposition from experimental hurricane effects

    Science.gov (United States)

    A.B. Shiels; Grizelle Gonzalez

    2014-01-01

    To date, it is not clear which are the factors that most influence tropical forest recovery from hurricanes.Increased canopy openness and increased detritus (debris) deposition are two of the most likely factors,but due to their simultaneous occurrence during a hurricane, their relative effects cannot be separated without a manipulative experiment. Hence, in the...

  17. People & Tropical Rain Forests.

    Science.gov (United States)

    NatureScope, 1989

    1989-01-01

    Discusses ways people who live in rain forests make a living and some of the products that enrich our lives. Provides activities covering forest people, tropical treats, jungle in the pantry, treetop explorers, and three copyable pages to accompany activities. (Author/RT)

  18. Lidar and Ground Assessment of Diversity, Wood Density, and Aboveground Biomass Along an Elevation Gradient in Tropical Montane Forest of Costa Rica

    Science.gov (United States)

    Robinson, C. M.; Saatchi, S. S.; Clark, D.; Andelman, S.; Gillespie, T.

    2013-12-01

    This research seeks to understand how tree diversity relates to three-dimensional vegetation structure along environmental gradients in the tropical montane forest of Braulio Carrillo National Park in Costa Rica. Elevation gradients along mountains provide landscape-size scales through which variations in topography and climatic conditions can be tested as drivers of biodiversity. In this study we report on the effectiveness of relating patterns of tree alpha diversity to three-dimensional structure of a tropical montane forest using remote sensing observations of forest structure. The study was utilized forest inventory and botanical data from nine 1-ha plots ranging from 100m-2800m above sea level and remote sensing data from an airborne lidar sensor (NASA's Land, Vegetation, and Ice Sensor [LVIS]) to quantify variations in forest structure. In addition to calculating alpha diversity, we report on the variations in wood density with elevation, important for biomass and carbon estimations. Tree cores were analyzed for wood density and compared to existing database values for the same species, often collected only in the lowlands. In this manner we were able to test the effect of the gradient on effective wood density. Through the comparison to the lidar, our results show that there is a strong relationship between forest 3D structure and alpha diversity controlled by variations in abiotic factors along the elevational gradient. Using spatial analysis with the aid of remote sensing data, we found distinct patterns along the environmental gradients defining species composition. Wood density values with elevation change were found to vary significantly from database values for the same species. These wood density values are directly tied to biomass estimates, and it is possible that carbon storage has been overestimated along this gradient using prior methods. This variation in individual tree growth has repercussions on overall forest structure, as well as

  19. Use of GIS for estimating potential and actual forest biomass for continental South and Southeast Asia.

    Science.gov (United States)

    L. R. Iverson; S. Brown; A. Prasad; H. Mitasova; A. J. R. Gillespie; A. E. Lugo

    1994-01-01

    A geographic information system (GIS) was used to estimate total biomass and biomass density of the tropical forest in south and southeast Asia because available data from forest inventories were insufficient to extrapolate biomass-density estimates across the region.

  20. Height-diameter allometry of tropical forest trees

    Science.gov (United States)

    T.R. Feldpausch; L. Banin; O.L. Phillips; T.R. Baker; S.L. Lewis; C.A. Quesada; K. Affum-Baffoe; E.J.M.M. Arets; N.J. Berry; M. Bird; E.S. Brondizio; P de Camargo; J. Chave; G. Djagbletey; T.F. Domingues; M. Drescher; P.M. Fearnside; M.B. Franca; N.M. Fyllas; G. Lopez-Gonzalez; A. Hladik; N. Higuchi; M.O. Hunter; Y. Iida; K.A. Salim; A.R. Kassim; M. Keller; J. Kemp; D.A. King; J.C. Lovett; B.S. Marimon; B.H. Marimon-Junior; E. Lenza; A.R. Marshall; D.J. Metcalfe; E.T.A. Mitchard; E.F. Moran; B.W. Nelson; R. Nilus; E.M. Nogueira; M. Palace; S. Patiño; K.S.-H. Peh; M.T. Raventos; J.M. Reitsma; G. Saiz; F. Schrodt; B. Sonke; H.E. Taedoumg; S. Tan; L. White; H. Woll; J. Lloyd

    2011-01-01

    Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical...

  1. Rain Forests: Tropical Treasures.

    Science.gov (United States)

    Braus, Judy, Ed.

    1989-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Rain Forests: Tropical Treasures." Contents are organized into the…

  2. Tropical Montane Cloud Forests

    NARCIS (Netherlands)

    Ramirez Correal, Beatriz; Teuling, Adriaan J.; Ganzeveld, Laurens; Hegger, Zita; Leemans, Rik

    2017-01-01

    Mountain areas are characterized by a large heterogeneity in hydrological and meteorological conditions. This heterogeneity is currently poorly represented by gauging networks and by the coarse scale of global and regional climate and hydrological models. Tropical Montane Cloud Forests (TMCFs)

  3. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    Science.gov (United States)

    Ostertag, Rebecca; Inman-Narahari, Faith; Cordell, Susan; Giardina, Christian P; Sack, Lawren

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species), six-fold variation in mean annual rainfall (835-5272 mm yr(-1)) and 1.8-fold variation in mean annual temperature (16.0-28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological theory for

  4. Effects of soil type and light on height growth, biomass partitioning, and nitrogen dynamics on 22 species of tropical dry forest tree seedlings: Comparisons between legumes and nonlegumes.

    Science.gov (United States)

    Smith-Martin, Christina M; Gei, Maria G; Bergstrom, Ellie; Becklund, Kristen K; Becknell, Justin M; Waring, Bonnie G; Werden, Leland K; Powers, Jennifer S

    2017-03-01

    The seedling stage is particularly vulnerable to resource limitation, with potential consequences for community composition. We investigated how light and soil variation affected early growth, biomass partitioning, morphology, and physiology of 22 tree species common in tropical dry forest, including eight legumes. Our hypothesis was that legume seedlings are better at taking advantage of increased resource availability, which contributes to their successful regeneration in tropical dry forests. We grew seedlings in a full-factorial design under two light levels in two soil types that differed in nutrient concentrations and soil moisture. We measured height biweekly and, at final harvest, biomass partitioning, internode segments, leaf carbon, nitrogen, δ 13 C, and δ 15 N. Legumes initially grew taller and maintained that height advantage over time under all experimental conditions. Legumes also had the highest final total biomass and water-use efficiency in the high-light and high-resource soil. For nitrogen-fixing legumes, the amount of nitrogen derived from fixation was highest in the richer soil. Although seed mass tended to be larger in legumes, seed size alone did not account for all the differences between legumes and nonlegumes. Both belowground and aboveground resources were limiting to early seedling growth and function. Legumes may have a different regeneration niche, in that they germinate rapidly and grow taller than other species immediately after germination, maximizing their performance when light and belowground resources are readily available, and potentially permitting them to take advantage of high light, nutrient, and water availability at the beginning of the wet season. © 2017 Botanical Society of America.

  5. Tree height integrated into pantropical forest biomass estimates

    NARCIS (Netherlands)

    Feldpausch, T.R.; Lloyd, J.; Lewis, S.L.; Brienen, R.J.W.; Gloor, M.; Montegudo Mendoza, A.; Arets, E.J.M.M.

    2012-01-01

    Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer

  6. Litter removal in a tropical rain forest reduces fine root biomass and production but litter addition has few effects.

    Science.gov (United States)

    Rodtassana, C; Tanner, E V J

    2018-03-01

    Many old-growth lowland tropical rain forests are potentially nutrient limited, and it has long been thought that many such forests maintain growth by recycling nutrients from decomposing litter. We investigated this by continuously removing (for 10 yr) freshly fallen litter from five (45 m × 45 m) plots, adding it to five other plots, there were five controls. From monthly measures over 1 yr we show that litter removal caused lower: fine root (≤2 mm diameter) standing mass, fine root standing length, fine root length production and fine root length survivorship. Litter addition did not significantly change fine root mass or length or production. Nutrient concentrations in fine roots in litter removal plots were lower than those in controls for nitrogen (N), calcium (Ca) and magnesium (Mg), concentrations in fine roots in litter addition plots were higher for N and Ca. Chronic litter removal has resulted in reduced forest growth due to lack of nutrients, probably nitrogen. Conversely, long-term litter addition has had fewer effects. © 2018 by the Ecological Society of America.

  7. Estimating Above-Ground Biomass in Sub-Tropical Buffer Zone Community Forests, Nepal, Using Sentinel 2 Data

    Directory of Open Access Journals (Sweden)

    Santa Pandit

    2018-04-01

    Full Text Available Accurate assessment of above-ground biomass (AGB is important for the sustainable management of forests, especially buffer zone (areas within the protected area, where restrictions are placed upon resource use and special measure are undertaken to intensify the conservation value of protected area areas with a high dependence on forest products. This study presents a new AGB estimation method and demonstrates the potential of medium-resolution Sentinel-2 Multi-Spectral Instrument (MSI data application as an alternative to hyperspectral data in inaccessible regions. Sentinel-2 performance was evaluated for a buffer zone community forest in Parsa National Park, Nepal, using field-based AGB as a dependent variable, as well as spectral band values and spectral-derived vegetation indices as independent variables in the Random Forest (RF algorithm. The 10-fold cross-validation was used to evaluate model effectiveness. The effect of the input variable number on AGB prediction was also investigated. The model using all extracted spectral information plus all derived spectral vegetation indices provided better AGB estimates (R2 = 0.81 and RMSE = 25.57 t ha−1. Incorporating the optimal subset of key variables did not improve model variance but reduced the error slightly. This result is explained by the technically-advanced nature of Sentinel-2, which includes fine spatial resolution (10, 20 m and strategically-positioned bands (red-edge, conducted in flat topography with an advanced machine learning algorithm. However, assessing its transferability to other forest types with varying altitude would enable future performance and interpretability assessments of Sentinel-2.

  8. Towards ground-truthing of spaceborne estimates of above-ground life biomass and leaf area index in tropical rain forests

    Directory of Open Access Journals (Sweden)

    P. Köhler

    2010-08-01

    Full Text Available The canopy height h of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or LIDAR. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground life biomass (AGB (and thus carbon content of vegetation and leaf area index (LAI and identify how correlation and uncertainty vary for two different spatial scales. The process-based forest growth model FORMIND2.0 was applied to simulate (a undisturbed forest growth and (b a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia in South-East Asia. In both undisturbed and disturbed forests AGB can be expressed as a power-law function of canopy height h (AGB = a · hb with an r2 ~ 60% if data are analysed in a spatial resolution of 20 m × 20 m (0.04 ha, also called plot size. The correlation coefficient of the regression is becoming significant better in the disturbed forest sites (r2 = 91% if data are analysed hectare wide. There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2 ~ 60% between AGB and the area fraction of gaps in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a

  9. Object-Based Mapping of Aboveground Biomass in Tropical Forests Using LiDAR and Very-High-Spatial-Resolution Satellite Data

    Directory of Open Access Journals (Sweden)

    Yasumasa Hirata

    2018-03-01

    Full Text Available Developing countries that intend to implement the United Nations REDD-plus (Reducing Emissions from Deforestation and forest Degradation, and the role of forest conservation, sustainable management of forests, and enhancement of forest carbon stocks framework and obtain economic incentives are required to estimate changes in forest carbon stocks based on the IPCC guidelines. In this study, we developed a method to support REDD-plus implementation by estimating tropical forest aboveground biomass (AGB by combining airborne LiDAR with very-high-spatial-resolution satellite data. We acquired QuickBird satellite images of Kampong Thom, Cambodia in 2011 and airborne LiDAR measurements in some parts of the same area. After haze reduction and atmospheric correction of the satellite data, we calibrated reflectance values from the mean reflectance of the objects (obtained by segmentation from areas of overlap between dates to reduce the effects of the observation angle and solar elevation. Then, we performed object-based classification using the satellite data (overall accuracy = 77.0%, versus 92.9% for distinguishing forest from non-forest land. We used a two-step method to estimate AGB and map it in a tropical environment in Cambodia. First, we created a multiple-regression model to estimate AGB from the LiDAR data and plotted field-surveyed AGB values against AGB values predicted by the LiDAR-based model (R2 = 0.90, RMSE = 38.7 Mg/ha, and calculated reflectance values in each band of the satellite data for the analyzed objects. Then, we created a multiple-regression model using AGB predicted by the LiDAR-based model as the dependent variable and the mean and standard deviation of the reflectance values in each band of the satellite data as the explanatory variables (R2 = 0.73, RMSE = 42.8 Mg/ha. We calculated AGB of all objects, divided the results into density classes, and mapped the resulting AGB distribution. Our results suggest that this approach

  10. Above – Ground Standing Biomass and Carbon Stock Dynamics under a Varied Degree of Anthropogenic Pressure in Tropical Rain Forests of Uttara Kannada District, Western Ghats, India

    Directory of Open Access Journals (Sweden)

    D. M. Bhat

    2011-06-01

    Full Text Available Above-ground standing biomass and carbon-stock dynamics were monitored for 25 years (from 1984 to 2009 in six 1- ha permanent forest sites subjected to different levels of anthropogenic pressure in tropical rain forests of Uttara Kannada district,Western Ghats, south India. Over the years, total loss of trees ranged from 97 to 761 (23.95- 60 .7% trees/ha, removal of trees by people ranged from 42 to 559 (5.5-55.17% trees/ha and number of trees dead ranged from 55-370 (5.52-38.38% trees/ha, leading to reduction in basal area in two sites (-1.81 m2/ha, and -1.73 m2/ha. In four sites, basal area increased from 0.98 to 22.19 m2/ha, because of compensatory growth of surviving trees and added above-ground standing biomass ranging from 6.40 to 144.67 t/ha. Tree recruitment ranged from 214 to 1,840 trees/ha and it was more than the number of trees lost in four sites, indicating faster recovery of tree density. In the 25th year, recruits formed 28.34 - 85.06% of the stand tree density and shared 1.20-18.47% of the stand basal area and accounted for 1.0 -14.67% of the above- ground standing biomass and carbon stock, making all six sites as C-sinks. In general, the rate of carbon accumulation in forests of Uttara Kannada district was 1.13 t C /ha /yr , of which, 0.58 ± 1.18 t C /ha/year was contributed by surviving trees and 0.55 ± 0.33 t C/ha/year was added by recruits. With proper management strategies, the C-sequestration potential in the forests can be elevated and by reforesting degraded area, the carbon sink can be enhanced in the Western Ghats region. Role of recruits in forest dynamics must be considered while planning and management of forests to enhance carbon stocks.

  11. NPP Tropical Forest: San Eusebio, Venezuela, 1970-1971

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Biomass, litterfall,a nd nutrient content of above- and below-ground vegetation and soil for a tropical montane forest at San Eusebio, Venezuela.

  12. NPP Tropical Forest: Magdalena Valley, Colombia, 1970-1971

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Biomass, litterfall, and nutrient content of above-ground vegetation and soil for a tropical seasonal evergreen forest at Magdalena Valley, Columbia,...

  13. Biomass Estimation of Dry Tropical Woody Species at Juvenile Stage

    Directory of Open Access Journals (Sweden)

    R. K. Chaturvedi

    2012-01-01

    Full Text Available Accurate characterization of biomass in different forest components is important to estimate their contribution to total carbon stock. Due to lack of allometric equations for biomass estimation of woody species at juvenile stage, the carbon stored in this forest component is ignored. We harvested 47 woody species at juvenile stage in a dry tropical forest and developed regression models for the estimation of above-ground biomass (AGB. The models including wood-specific gravity ( exhibited higher 2 than those without . The model consisting of , stem diameter (, and height ( not only exhibited the highest 2 value but also had the lowest standard error of estimate. We suggest that -based regression model is a viable option for nondestructive estimation of biomass of forest trees at juvenile stage.

  14. Seven Guideposts for Tropical Rain Forest Education.

    Science.gov (United States)

    Rillero, Peter

    1999-01-01

    Identifies seven guideposts for tropical rain forest education. Aids teachers in finding structure and creating educational experiences that promote more complete understanding of tropical rain forests. (CCM)

  15. Variation of biomass and carbon pool with NDVI and altitude in sub-tropical forests of northwestern Himalaya.

    Science.gov (United States)

    Bhardwaj, D R; Banday, Muneesa; Pala, Nazir A; Rajput, Bhalendra Singh

    2016-11-01

    In the present study, forests at three altitudes, viz., A 1 (600-900 m), A 2 (900-1200 m) and A 3 (1200-1500 m) above mean sea level having normalised differential vegetation index (NDVI) values of N 1 (0.0-0.1), N 2 (0.1-0.2), N 3 (0.2-0.3), N 4 (0.3-0.4) and N 5 (0.4-0.5) were selected for studying their relationship with the biomass and carbon pool in the state of Himachal Pradesh, India. The study reported maximum stem density of (928 trees ha -1 ) at the A 2 altitude and minimum in the A 3 and A 1 with 600 trees ha -1 each. The stem densities in relation to NDVIs were observed in the order N 5 > N 3 > N 4 > N 1 > N 2 and did not show any definite trend with increasing altitude. Highest stem volume (295.7 m 3  ha -1 ) was observed in N 1 NDVI and minimum (194.1 m 3  ha -1 ) in N 3 index. The trend observed for stem biomass at different altitudes was A 3 > A 1 > A 2 and for NDVIs, it was N 5 > N 1 > N 4 > N 2 > N 3 . Maximum aboveground biomass (265.83 t ha -1 ) was recorded in the 0.0-0.1 NDVI and minimum (169.05 t ha -1 ) in 0.2-0.3 NDVI index. Significantly, maximum total soil carbon density (90.82 t C ha -1 ) was observed in 0.4-0.5 NDVI followed by 0.3-0.4 NDVI (77.12 t C ha -1 ). The relationship between soil carbon and other studied parameters was derived through different functions simultaneously. Cubic function showed highest r 2 in most cases, followed by power, inverse and exponential function. The relationship with NDVI showed highest r 2 (0.62) through cubic functions. In relationship between ecosystem carbon with other parameters of different altitudinal gradient and NDVI, only one positively significant relation was formed with total density (0.579) through cubic function. The present study thus reveals that soil carbon density was directly related to altitude and NDVIs, but the vegetation carbon density did not bear any significant relation with altitude and NDVI.

  16. Assessing the influence of return density on estimation of lidar-based aboveground biomass in tropical peat swamp forests of Kalimantan, Indonesia

    Science.gov (United States)

    Manuri, Solichin; Andersen, Hans-Erik; McGaughey, Robert J.; Brack, Cris

    2017-04-01

    The airborne lidar system (ALS) provides a means to efficiently monitor the status of remote tropical forests and continues to be the subject of intense evaluation. However, the cost of ALS acquisition can vary significantly depending on the acquisition parameters, particularly the return density (i.e., spatial resolution) of the lidar point cloud. This study assessed the effect of lidar return density on the accuracy of lidar metrics and regression models for estimating aboveground biomass (AGB) and basal area (BA) in tropical peat swamp forests (PSF) in Kalimantan, Indonesia. A large dataset of ALS covering an area of 123,000 ha was used in this study. This study found that cumulative return proportion (CRP) variables represent a better accumulation of AGB over tree heights than height-related variables. The CRP variables in power models explained 80.9% and 90.9% of the BA and AGB variations, respectively. Further, it was found that low-density (and low-cost) lidar should be considered as a feasible option for assessing AGB and BA in vast areas of flat, lowland PSF. The performance of the models generated using reduced return densities as low as 1/9 returns per m2 also yielded strong agreement with the original high-density data. The use model-based statistical inferences enabled relatively precise estimates of the mean AGB at the landscape scale to be obtained with a fairly low-density of 1/4 returns per m2, with less than 10% standard error (SE). Further, even when very low-density lidar data was used (i.e., 1/49 returns per m2) the bias of the mean AGB estimates were still less than 10% with a SE of approximately 15%. This study also investigated the influence of different DTM resolutions for normalizing the elevation during the generation of forest-related lidar metrics using various return densities point cloud. We found that the high-resolution digital terrain model (DTM) had little effect on the accuracy of lidar metrics calculation in PSF. The accuracy of

  17. A degradation debt? Large-scale shifts in community composition and loss of biomass in a tropical forest fragment after 40 years of isolation.

    Directory of Open Access Journals (Sweden)

    Rakan A Zahawi

    Full Text Available Habitat loss and fragmentation are among the biggest threats to tropical biodiversity and associated ecosystem services. We examined forest dynamics in a mid-elevation 365-ha fragment in southern Costa Rica. The fragment was isolated in the mid-1970s and belongs to the Las Cruces Biological Station. A 2.25-ha permanent plot was established in the center of the old-growth forest (>400 m to nearest edge boundary and all plants >5 cm DBH were censused, mapped, and identified to species in two surveys taken ~5-6 years apart (>3,000 stems/survey. Although the reserve maintains high species richness (>200 spp., with many rare species represented by only one individual, we document a strong shift in composition with a two-fold increase in the number of soft-wooded pioneer individuals. The dominant late-successional understory tree species, Chrysochlamys glauca (Clusiaceae, and most species in the Lauraceae, declined dramatically. Turnover was high: 22.9% of stems in the first survey were lost, and 27.8% of stems in the second survey represented new recruits. Mean tree diameter decreased significantly and there was a 10% decrease in overall biomass. Such alteration has been documented previously but only in smaller fragments or within ~100 m of an edge boundary. Further penetration into this fragment was perhaps driven by a progressive invasion of disturbance-adapted species into the fragment's core over time; the loss of once-dominant late successional species could be a contributing factor. The pattern found is of particular concern given that such fragments represent a substantial portion of today's remaining tropical habitat; further studies in similar-sized fragments that have been isolated for similar prolonged periods are called for.

  18. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics

    NARCIS (Netherlands)

    Chazdon, R.L.; Broadbent, E.N.; Rozendaal, Danae; Bongers, F.; Jakovac, A.C.; Braga Junqueira, A.; Lohbeck, M.W.M.; Pena Claros, M.; Poorter, L.

    2016-01-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We

  19. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape.

    Science.gov (United States)

    Alamgir, Mohammed; Campbell, Mason J; Turton, Stephen M; Pert, Petina L; Edwards, Will; Laurance, William F

    2016-07-20

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.

  20. Forest Structure in Low-Diversity Tropical Forests: A Study of Hawaiian Wet and Dry Forests

    Science.gov (United States)

    Ostertag, Rebecca; Inman-Narahari, Faith; Cordell, Susan; Giardina, Christian P.; Sack, Lawren

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai‘i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai‘i forests were characterized by low species richness and very high relative dominance. The two Hawai‘i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5–>50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai‘i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15–1182 species), six-fold variation in mean annual rainfall (835–5272 mm yr−1) and 1.8-fold variation in mean annual temperature (16.0–28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of

  1. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    Directory of Open Access Journals (Sweden)

    Rebecca Ostertag

    Full Text Available The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species and stem density (3078 vs. 3486/ha. While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species, six-fold variation in mean annual rainfall (835-5272 mm yr(-1 and 1.8-fold variation in mean annual temperature (16.0-28.4°C. Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological

  2. Forest biomass-based energy

    Science.gov (United States)

    Janaki R. R. Alavalapati; Pankaj Lal; Andres Susaeta; Robert C. Abt; David N. Wear

    2013-01-01

    Key FindingsHarvesting woody biomass for use as bioenergy is projected to range from 170 million to 336 million green tons by 2050, an increase of 54 to 113 percent over current levels.Consumption projections for forest biomass-based energy, which are based on Energy Information Administration projections, have a high level of...

  3. Forest biomass sustainability and availability

    Science.gov (United States)

    K.E. Skog; John Stanturf

    2011-01-01

    This chapter provides a synthesis of information on potential supply of forest biomass given needs for sustainable development of forestry. Sustainability includes maintenance of water supply, biodiversity, and carbon storage as well as timber products, community development, and recreation. Biomass removals can reduce fire hazard and insect and disease attack, restore...

  4. Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania.

    Science.gov (United States)

    Mauya, Ernest William; Hansen, Endre Hofstad; Gobakken, Terje; Bollandsås, Ole Martin; Malimbwi, Rogers Ernest; Næsset, Erik

    2015-12-01

    Airborne laser scanning (ALS) has recently emerged as a promising tool to acquire auxiliary information for improving aboveground biomass (AGB) estimation in sample-based forest inventories. Under design-based and model-assisted inferential frameworks, the estimation relies on a model that relates the auxiliary ALS metrics to AGB estimated on ground plots. The size of the field plots has been identified as one source of model uncertainty because of the so-called boundary effects which increases with decreasing plot size. Recent research in tropical forests has aimed to quantify the boundary effects on model prediction accuracy, but evidence of the consequences for the final AGB estimates is lacking. In this study we analyzed the effect of field plot size on model prediction accuracy and its implication when used in a model-assisted inferential framework. The results showed that the prediction accuracy of the model improved as the plot size increased. The adjusted R 2 increased from 0.35 to 0.74 while the relative root mean square error decreased from 63.6 to 29.2%. Indicators of boundary effects were identified and confirmed to have significant effects on the model residuals. Variance estimates of model-assisted mean AGB relative to corresponding variance estimates of pure field-based AGB, decreased with increasing plot size in the range from 200 to 3000 m 2 . The variance ratio of field-based estimates relative to model-assisted variance ranged from 1.7 to 7.7. This study showed that the relative improvement in precision of AGB estimation when increasing field-plot size, was greater for an ALS-assisted inventory compared to that of a pure field-based inventory.

  5. DINÁMICA DE LA BIOMASA AÉREA EN UN BOSQUE PLUVIAL TROPICAL DEL CHOCÓ BIOGEOGRÁFICO DYNAMICS OF TREE ABOVEGROUND BIOMASS IN A TROPICAL RAIN FOREST OF THE CHOCÓ BIOGEOGRÁFICO

    Directory of Open Access Journals (Sweden)

    Harley Quinto Mosquera

    2011-06-01

    Full Text Available El estudio de la biomasa aérea (BA de los bosques tropicales es fundamental para entender el balance del C global en el contexto del cambio climático. La BA se cuantificó en un bosque maduro de Salero (Chocó Biogeográfico, mediante ecuaciones diseñadas para bosques húmedos tropicales, a partir de datos de densidad de madera, diámetro (DAP y altura de árboles (con DAP = 10 cm medidos en dos sub-parcelas permanentes ("E" y "U" de 1 ha, las cuales se monitorearon en los años 1998, 2005 y 2008. La BA fue 237,31 t·ha-1, 259,99 t·ha-1 y 217,97 t·ha-1 respectivamente en la sub-parcela "E". Mientras que en la "U" fue de 178,94 t·ha-1y 179,17 t·ha-1 en los años 2005 y 2008; las diferencias de BA a través del tiempo fueron no significativas. Los incrementos promedios anuales de BA de sobrevivientes fueron 4,42 y 3,18 t·ha-1 año-1 en las sub-parcelas "E" y "U" respectivamente. Además, en sub-parcela "E" en condiciones imperturbadas, se presentó una tasa de incremento neto de la BA (TINBA de 2,61 t·ha-1 año-1, en concordancia con la hipótesis del incremento en la BA en los bosques húmedos tropicales. La productividad primaria neta aérea (PPNA en Salero de carbono fue de 5,21 t· ha-1 año-1, por lo tanto los resultados no apoyaron la hipótesis de la disminución en la productividad de los bosques tropicales con el incremento en la precipitación.The study of the aboveground biomass (AB of tropical forests is fundamental to understand the balance of the global C in the context of the climatic change. We quantified the AB in a mature forest of Salero (Chocó Biogeográfico, by means of equations designed for tropical humid forests, starting from data of wooden density, diameter (D and height of trees (with D = 10 cm measured in two permanent sub-parcels (E and U of 1 hectare (ha, which were measured in the years 1998, 2005 and 2008. Inthis years the AB was of 237.31 t·ha-1, 259.99 t·ha-1 and 217.97 t·ha-1 respectively in the E

  6. Modelling tropical forests response to logging

    Science.gov (United States)

    Cazzolla Gatti, Roberto; Di Paola, Arianna; Valentini, Riccardo; Paparella, Francesco

    2013-04-01

    Tropical rainforests are among the most threatened ecosystems by large-scale fragmentation due to human activity such as heavy logging and agricultural clearance. Although, they provide crucial ecosystem goods and services, such as sequestering carbon from the atmosphere, protecting watersheds and conserving biodiversity. In several countries forest resource extraction has experienced a shift from clearcutting to selective logging to maintain a significant forest cover and understock of living biomass. However the knowledge on the short and long-term effects of removing selected species in tropical rainforest are scarce and need to be further investigated. One of the main effects of selective logging on forest dynamics seems to be the local disturbance which involve the invasion of open space by weed, vines and climbers at the expense of the late-successional state cenosis. We present a simple deterministic model that describes the dynamics of tropical rainforest subject to selective logging to understand how and why weeds displace native species. We argue that the selective removal of tallest tropical trees carries out gaps of light that allow weeds, vines and climbers to prevail on native species, inhibiting the possibility of recovery of the original vegetation. Our results show that different regime shifts may occur depending on the type of forest management adopted. This hypothesis is supported by a dataset of trees height and weed/vines cover that we collected from 9 plots located in Central and West Africa both in untouched and managed areas.

  7. Natural and near natural tropical forest values

    Science.gov (United States)

    Daniel H. Henning

    2011-01-01

    This paper identifies and describes some of the values associated with tropical rain forests in their natural and near-natural conditions. Tropical rain forests are moist forests in the humid tropics where temperature and rainfall are high and the dry season is short. These closed (non-logged) and broad-leaved forests are a global resource. Located almost entirely in...

  8. The future of tropical forests.

    Science.gov (United States)

    Wright, S Joseph

    2010-05-01

    Five anthropogenic drivers--land use change, wood extraction, hunting, atmospheric change, climate change--will largely determine the future of tropical forests. The geographic scope and intensity of these five drivers are in flux. Contemporary land use change includes deforestation (approximately 64,000 km(2) yr(-1) for the entire tropical forest biome) and natural forests regenerating on abandoned land (approximately 21,500 km(2) yr(-1) with just 29% of the biome evaluated). Commercial logging is shifting rapidly from Southeast Asia to Africa and South America, but local fuelwood consumption continues to constitute 71% of all wood production. Pantropical rates of net deforestation are declining even as secondary and logged forests increasingly replace old-growth forests. Hunters reduce frugivore, granivore and browser abundances in most forests. This alters seed dispersal, seed and seedling survival, and hence the species composition and spatial template of plant regeneration. Tropical governments have responded to these local threats by protecting 7% of all land for the strict conservation of nature--a commitment that is only matched poleward of 40 degrees S and 70 degrees N. Protected status often fails to stop hunters and is impotent against atmospheric and climate change. There are increasing reports of stark changes in the structure and dynamics of protected tropical forests. Four broad classes of mechanisms might contribute to these changes. Predictions are developed to distinguish among these mechanisms.

  9. Diversity and carbon storage across the tropical forest biome

    Science.gov (United States)

    Sullivan, Martin J. P.; Talbot, Joey; Lewis, Simon L.; Phillips, Oliver L.; Qie, Lan; Begne, Serge K.; Chave, Jerôme; Cuni-Sanchez, Aida; Hubau, Wannes; Lopez-Gonzalez, Gabriela; Miles, Lera; Monteagudo-Mendoza, Abel; Sonké, Bonaventure; Sunderland, Terry; Ter Steege, Hans; White, Lee J. T.; Affum-Baffoe, Kofi; Aiba, Shin-Ichiro; de Almeida, Everton Cristo; de Oliveira, Edmar Almeida; Alvarez-Loayza, Patricia; Dávila, Esteban Álvarez; Andrade, Ana; Aragão, Luiz E. O. C.; Ashton, Peter; Aymard C., Gerardo A.; Baker, Timothy R.; Balinga, Michael; Banin, Lindsay F.; Baraloto, Christopher; Bastin, Jean-Francois; Berry, Nicholas; Bogaert, Jan; Bonal, Damien; Bongers, Frans; Brienen, Roel; Camargo, José Luís C.; Cerón, Carlos; Moscoso, Victor Chama; Chezeaux, Eric; Clark, Connie J.; Pacheco, Álvaro Cogollo; Comiskey, James A.; Valverde, Fernando Cornejo; Coronado, Eurídice N. Honorio; Dargie, Greta; Davies, Stuart J.; de Canniere, Charles; Djuikouo K., Marie Noel; Doucet, Jean-Louis; Erwin, Terry L.; Espejo, Javier Silva; Ewango, Corneille E. N.; Fauset, Sophie; Feldpausch, Ted R.; Herrera, Rafael; Gilpin, Martin; Gloor, Emanuel; Hall, Jefferson S.; Harris, David J.; Hart, Terese B.; Kartawinata, Kuswata; Kho, Lip Khoon; Kitayama, Kanehiro; Laurance, Susan G. W.; Laurance, William F.; Leal, Miguel E.; Lovejoy, Thomas; Lovett, Jon C.; Lukasu, Faustin Mpanya; Makana, Jean-Remy; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Junior, Ben Hur Marimon; Marshall, Andrew R.; Morandi, Paulo S.; Mukendi, John Tshibamba; Mukinzi, Jaques; Nilus, Reuben; Vargas, Percy Núñez; Camacho, Nadir C. Pallqui; Pardo, Guido; Peña-Claros, Marielos; Pétronelli, Pascal; Pickavance, Georgia C.; Poulsen, Axel Dalberg; Poulsen, John R.; Primack, Richard B.; Priyadi, Hari; Quesada, Carlos A.; Reitsma, Jan; Réjou-Méchain, Maxime; Restrepo, Zorayda; Rutishauser, Ervan; Salim, Kamariah Abu; Salomão, Rafael P.; Samsoedin, Ismayadi; Sheil, Douglas; Sierra, Rodrigo; Silveira, Marcos; Slik, J. W. Ferry; Steel, Lisa; Taedoumg, Hermann; Tan, Sylvester; Terborgh, John W.; Thomas, Sean C.; Toledo, Marisol; Umunay, Peter M.; Gamarra, Luis Valenzuela; Vieira, Ima Célia Guimarães; Vos, Vincent A.; Wang, Ophelia; Willcock, Simon; Zemagho, Lise

    2017-01-01

    Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity.

  10. Remote Characterization of Biomass Measurements: Case Study of Mangrove Forests

    Science.gov (United States)

    Fatoyinbo, Temilola E.

    2010-01-01

    Accurately quantifying forest biomass is of crucial importance for climate change studies. By quantifying the amount of above and below ground biomass and consequently carbon stored in forest ecosystems, we are able to derive estimates of carbon sequestration, emission and storage and help close the carbon budget. Mangrove forests, in addition to providing habitat and nursery grounds for over 1300 animal species, are also an important sink of biomass. Although they only constitute about 3% of the total forested area globally, their carbon storage capacity -- in forested biomass and soil carbon -- is greater than that of tropical forests (Lucas et al, 2007). In addition, the amount of mangrove carbon -- in the form of litter and leaves exported into offshore areas is immense, resulting in over 10% of the ocean's dissolved organic carbon originating from mangroves (Dittmar et al, 2006) The measurement of forest above ground biomass is carried out on two major scales: on the plot scale, biomass can be measured using field measurements through allometric equation derivation and measurements of forest plots. On the larger scale, the field data are used to calibrate remotely sensed data to obtain stand-wide or even regional estimates of biomass. Currently, biomass can be calculated using average stand biomass values and optical data, such as aerial photography or satellite images (Landsat, Modis, Ikonos, SPOT, etc.). More recent studies have concentrated on deriving forest biomass values using radar (JERS, SIR-C, SRTM, Airsar) and/or lidar (ICEsat/GLAS, LVIS) active remote sensing to retrieve more accurate and detailed measurements of forest biomass. The implementation of a generation of new active sensors (UAVSar, DesdynI, Alos/Palsar, TerraX) has prompted the development of new tecm'liques of biomass estimation that use the combination of multiple sensors and datasets, to quantify past, current and future biomass stocks. Focusing on mangrove forest biomass estimation

  11. Assessing the influence of return density on estimation of lidar-based aboveground biomass in tropical peat swamp forests of Kalimantan, Indonesia

    Science.gov (United States)

    Solichin Manuri; Hans-Erik Andersen; Robert J. McGaughey; Cris Brack

    2017-01-01

    The airborne lidar system (ALS) provides a means to efficiently monitor the status of remote tropical forests and continues to be the subject of intense evaluation. However, the cost of ALS acquisition canvary significantly depending on the acquisition parameters, particularly the return density (i.e., spatial resolution) of the lidar point cloud. This study assessed...

  12. Physical properties and concentration of aerosol particles over the Amazon tropical forest during background and biomass burning conditions

    Directory of Open Access Journals (Sweden)

    P. Guyon

    2003-01-01

    Full Text Available We investigated the size distribution, scattering and absorption properties of Amazonian aerosols and the optical thickness of the aerosol layer under the pristine background conditions typical of the wet season, as well as during the biomass-burning-influenced dry season. The measurements were made during two campaigns in 1999 as part of the European contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH. In moving from the wet to the dry season, median particle numbers were observed to increase from values comparable to those of the remote marine boundary layer (~400 cm-3 to values more commonly associated with urban smog (~4000 cm-3, due to a massive injection of submicron smoke particles. Aerosol optical depths at 500 nm increased from 0.05 to 0.8 on average, reaching a value of 2 during the dry season. Scattering and absorption coefficients, measured at 550 nm, showed a concomitant increase from average values of 6.8 and 0.4 Mm-1 to values of 91 and 10 Mm-1, respectively, corresponding to an estimated decrease in single-scattering albedo from ca. 0.97 to 0.91. The roughly tenfold increase in many of the measured parameters attests to the dramatic effect that extensive seasonal biomass burning (deforestation, pasture cleaning is having on the composition and properties of aerosols over Amazonia. The potential exists for these changes to impact on regional and global climate through changes to the extinction of solar radiation as well as the alteration of cloud properties.

  13. A comparison of two above-ground biomass estimation techniques integrating satellite-based remotely sensed data and ground data for tropical and semiarid forests in Puerto Rico

    Science.gov (United States)

    Iiames, J. S.; Riegel, J.; Lunetta, R.

    2013-12-01

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA) program. The U.S. Environmental Protection Agency (EPA) estimated above-ground forest biomass implementing methodology first posited by the Woods Hole Research Center developed for conterminous United States (National Biomass and Carbon Dataset [NBCD2000]). For EPA's effort, spatial predictor layers for above-ground biomass estimation included derived products from the U.S. Geologic Survey (USGS) National Land Cover Dataset 2001 (NLCD) (landcover and canopy density), the USGS Gap Analysis Program (forest type classification), the USGS National Elevation Dataset, and the NASA Shuttle Radar Topography Mission (tree heights). In contrast, the U.S. Forest Service (USFS) biomass product integrated FIA ground-based data with a suite of geospatial predictor variables including: (1) the Moderate Resolution Imaging Spectrometer (MODIS)-derived image composites and percent tree cover; (2) NLCD land cover proportions; (3) topographic variables; (4) monthly and annual climate parameters; and (5) other ancillary variables. Correlations between both data sets were made at variable watershed scales to test level of agreement. Notice: This work is done in support of EPA's Sustainable Healthy Communities Research Program. The U.S EPA funded and conducted the research described in this paper. Although this work was reviewed by the EPA and has been approved for publication, it may not necessarily reflect official Agency policy. Mention of any trade names or commercial products does not constitute endorsement or recommendation for use.

  14. Nutrient limitation in tropical secondary forests following different management practices.

    Science.gov (United States)

    Nagy, R Chelsea; Rastetter, Edward B; Neill, Christopher; Porder, Stephen

    2017-04-01

    Secondary forests now make up more than one-half of all tropical forests, and constraints on their biomass accumulation will influence the strength of the terrestrial carbon (C) sink in the coming decades. However the variance in secondary tropical forest biomass for a given stand age and climate is high and our understanding of why is limited. We constructed a model of terrestrial C, nitrogen (N), and phosphorus (P) cycling to examine the influence of disturbance and management practices on nutrient limitation and biomass recovery in secondary tropical forests. The model predicted that N limited the rate of forest recovery in the first few decades following harvest, but that this limitation switched to P approximately 30-40 yr after abandonment, consistent with field data on N and P cycling from secondary tropical forest chronosequences. Simulated biomass recovery agreed well with field data of biomass accumulation following harvest (R 2  = 0.80). Model results showed that if all biomass remained on site following a severe disturbance such as blowdown, regrowth approached pre-disturbance biomass in 80-90 yr, and recovery was faster following smaller disturbances such as selective logging. Field data from regrowth on abandoned pastures were consistent with simulated losses of nutrients in soil organic matter, particularly P. Following any forest disturbance that involved the removal of nutrients (i.e., except blowdown), forest regrowth produced reduced biomass relative to the initial state as a result of nutrient loss through harvest, leaching and/or sequestration by secondary minerals. Differences in nutrient availability accounted for 49-94% of the variance in secondary forest biomass C at a given stand age. Management lessons from this study are the importance of strategies that help retain nutrients on site, recognizing the role of coarse woody debris in immobilization and subsequent release of nutrients, and the potential for nutrient additions to enhance

  15. The Biomass mission: a step forward in quantifying forest biomass and structure

    Science.gov (United States)

    LE Toan, T.

    2015-12-01

    The primary aim of the ESA BIOMASS mission is to determine, for the first time and in a consistent manner, the global distribution of above-ground forest biomass (AGB) in order to provide greatly improved quantification of the size and distribution of the terrestrial carbon pool, and improved estimates of terrestrial carbon fluxes. Specifically, BIOMASS will measure forest carbon stock, as well as forest height, from data provided by a single satellite giving a biomass map covering tropical, temperate and boreal forests at a resolution of around 200 m every 6 months throughout the five years of the mission. BIOMASS will use a long wavelength SAR (P-band) providing three mutually supporting measurement techniques, namely polarimetric SAR (PolSAR), polarimetric interferometric SAR (PolInSAR) and tomographic SAR (TomoSAR). The combination of these techniques will significantly reduce the uncertainties in biomass retrievals by yielding complementary information on biomass properties. Horizontal mapping: For a forest canopy, the P-band radar waves penetrate deep into the canopy, and their interaction with the structure of the forest will be exploited to map above ground biomass (AGB), as demonstrated from airborne data for temperate, boreal forests and tropical forest. Height mapping: By repeat revisits to the same location, the PolInSAR measurements will be used to estimate the height of scattering in the forest canopy. The long wavelength used by BIOMASS is crucial for the temporal coherence to be preserved over much longer timescales than at L-band, for example. 3D mapping: The P-band frequency used by BIOMASS is low enough to ensure penetration through the entire canopy, even in dense tropical forests. As a consequence, resolution of the vertical structure of the forest will be possible using tomographic methods from the multi-baseline acquisitions. This is the concept of SAR tomography, which will be implemented in the BIOMASS mission. The improvement in the

  16. Forests to fields. Restoring tropical lands to agriculture.

    Science.gov (United States)

    Wood, D

    1993-04-01

    In discussing land use in tropical forest regions, there is an emphasis on the following topics: the need for the expansion of cropping areas, the precedent for use of the tropical forest for cropping based on past use patterns, the pressure from conservationists against cropping, debunking the mythology that forests are "natural" and refuting the claims that forest clearance is not reversible, the archeological evidence of past forest use for agricultural purposes, abandonment of tropical land to forest, and rotation of forest and field. The assumption is that the way to stop food importation is to increase crop production in the tropics. Crop production can be increased through 1) land intensification or clearing new land, 2) output per unit of land increases, or 3) reallocation to agriculture land previously cleared and overgrown with tropical forest. "Temporary" reuse of land, which reverted back to tropical forest, is recommended. This reuse would ease population pressure, and benefit bioconservation, while populations stabilize and further progress is made in international plant breeding. The land would eventually be returned to a forest state. Conservation of tropical forest areas should be accomplished, after an assessment has been made of its former uses. Primary forests need to identified and conversion to farming ceased. Research needs to be directed to understanding the process of past forest regeneration, and to devising cropping systems with longterm viability. The green revolution is unsuitable for traditional cropping systems, is contrary to demands of international funding agencies for sustainability, and is not affordable by most poor farmers. Only .48 million sq. km of closed forest loss was in tropical rainforests; 6.53 million sq. km was lost from temperate forests cleared for intensive small-scale peasant farming. The use of tropical forest land for farming has some benefits; crops in the wetter tropics are perennial, which would "reduce

  17. Equation for estimating tree biomass in tropical forests of Costa Rica Ecuación para estimar la biomasa arbórea en los bosques tropicales de Costa Rica

    Directory of Open Access Journals (Sweden)

    Shu Wei-Chou

    2013-06-01

    Full Text Available One of the most relevant measures for climate change mitigation is the conservation and regeneration of forests in our countries. The amount of stored carbon in the forest biomass becomes a relevant variable for public policy. The present article analyses the association of some dasometric variables, easily obtained, with tree biomass with the purpose of indirectly estimating it, given that direct measurement of tree biomass is a complex and very expensive task. The general objective of this study was to analyze the pattern shown by dasometric variables, easily obtained, with tree biomass to estimate it by using data from two tropical forests in Costa Rica, with the purpose of analyzing its potential general application in tropical forests in the entire country. The bibliographic review helped to identify four possible models which estimate biomass in tropical forests. 907 trees were used with diameter at breast height (dbh greater than 10 cm in two tropical forests in Costa Rica (Corcovado National Park at the SW of the country, and Fila Carbón at the SE part, Caribbean slope, generating a biomass estimate as precise as possible. Dasometric variables (wood density, total height and dbh were used to analyze their relationship with biomass with the objective of finding a model that could predict it. The final model uses, as independent variables, dbh and density. Dbh has a high correlation with tree total height, which is very difficult to obtain in the field, therefore it was not used. The variable density is very important as it varies between trees having the same structure but of different species. To estimate the model, a segmented regression technique was used as well as weighted mean squares to solve for heteroscedasticity. The final model met all statistical assumptions for a linear model according to the residual and parametric analysis. The determination coefficient resulted in 0,992. As a conclusion, the study proposes a

  18. Tree height integrated into pantropical forest biomass estimates

    Directory of Open Access Journals (Sweden)

    T. R. Feldpausch

    2012-08-01

    Full Text Available Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H. We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions:

    1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass?

    2. To what extent does including H estimates derived in (1 reduce uncertainty in biomass estimates across all 327 plots?

    3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates?

    The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06, was half that when excluding H (mean 0.13. Power- and Weibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (≤40 cm D that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8 Mg ha−1 (range 6.6 to 112.4 to 8.0 Mg ha−1 (−2.5 to 23.0. For all plots, aboveground live biomass was −52.2 Mg ha−1 (−82.0 to −20.3 bootstrapped 95% CI, or 13%, lower when including H estimates, with the greatest relative reductions in estimated biomass in forests of the Brazilian Shield, east Africa, and Australia, and relatively little change in the Guiana Shield, central Africa and southeast Asia. Appreciably different stand structure was observed among regions across the tropical continents, with some storing significantly

  19. Environmental and biotic controls over aboveground biomass throughout a tropical rainforest

    Science.gov (United States)

    G.P. Asner; R.F. Hughes; T.A. Varga; D.E. Knapp; T. Kennedy-Bowdoin

    2009-01-01

    The environmental and biotic factors affecting spatial variation in canopy three-dimensional (3-D) structure and aboveground tree biomass (AGB) are poorly understood in tropical rain forests. We combined field measurements and airborne light detection and ranging (lidar) to quantify 3-D structure and AGB across a 5,016 ha rain forest reserve on the...

  20. Strategies for global monitoring of tropical forests

    Science.gov (United States)

    Raymond L. Czaplewski

    1994-01-01

    The Food and Agricultural Organization (FAO) of the United Nations is conducting a global assessment of tropical forest resources, which will be accomplished by mid-1992. This assessment requires, in part, estimates of the total area of tropical forest cover in 1990 and the rate of change in forest cover between 1980 and 1990. The following are described here: (1) the...

  1. Tropical rain forest: a wider perspective

    National Research Council Canada - National Science Library

    Goldsmith, F. B

    1998-01-01

    .... Barbier -- Can non-market values save the tropical forests? / D. Pearce -- The role of policy and institutions / James Mayers and Stephen Bass -- Modelling tropical land use change and deforestation...

  2. Geographic, environmental and biotic sources of variation in the nutrient relations of tropical montane forests

    Science.gov (United States)

    James W. Dalling; Katherine Heineman; Grizelle Gonzalez; Rebecca Ostertag

    2016-01-01

    Tropicalmontane forests (TMF) are associated with a widely observed suite of characteristics encompassing forest structure, plant traits and biogeochemistry.With respect to nutrient relations, montane forests are characterized by slow decomposition of organic matter, high investment in below-ground biomass and poor litter quality, relative to tropical lowland forests....

  3. Abiotic factors influencing tropical dry forests regeneration

    OpenAIRE

    Ceccon,Eliane; Huante,Pilar; Rincón,Emanuel

    2006-01-01

    Tropical dry forests represent nearly half the tropical forests in the world and are the ecosystems registering the greatest deterioration from the anthropogenic exploitation of the land. This paper presents a review on the dynamics of tropical dry forests regeneration and the main abiotic factors influencing this regeneration, such as seasonal nature, soil fertility and humidity, and natural and anthropic disturbances. The main purpose is to clearly understand an important part of TDF succes...

  4. Abiotic factors influencing tropical dry forests regeneration

    Directory of Open Access Journals (Sweden)

    Ceccon Eliane

    2006-01-01

    Full Text Available Tropical dry forests represent nearly half the tropical forests in the world and are the ecosystems registering the greatest deterioration from the anthropogenic exploitation of the land. This paper presents a review on the dynamics of tropical dry forests regeneration and the main abiotic factors influencing this regeneration, such as seasonal nature, soil fertility and humidity, and natural and anthropic disturbances. The main purpose is to clearly understand an important part of TDF succession dynamics.

  5. The impact of tree age on biomass growth and carbon accumulation capacity: A retrospective analysis using tree ring data of three tropical tree species grown in natural forests of Suriname.

    Science.gov (United States)

    Köhl, Michael; Neupane, Prem R; Lotfiomran, Neda

    2017-01-01

    The world's forests play a pivotal role in the mitigation of global climate change. By photosynthesis they remove CO2 from the atmosphere and store carbon in their biomass. While old trees are generally acknowledged for a long carbon residence time, there is no consensus on their contribution to carbon accumulation due to a lack of long-term individual tree data. Tree ring analyses, which use anatomical differences in the annual formation of wood for dating growth zones, are a retrospective approach that provides growth patterns of individual trees over their entire lifetime. We developed time series of diameter growth and related annual carbon accumulation for 61 trees of the species Cedrela odorata L. (Meliacea), Hymenaea courbaril L. (Fabacea) and Goupia glabra Aubl. (Goupiacea). The trees grew in unmanaged tropical wet-forests of Suriname and reached ages from 84 to 255 years. Most of the trees show positive trends of diameter growth and carbon accumulation over time. For some trees we observed fluctuating growth-periods of lower growth alternate with periods of increased growth. In the last quarter of their lifetime trees accumulate on average between 39 percent (C. odorata) and 50 percent (G. glabra) of their final carbon stock. This suggests that old-growth trees in tropical forests do not only contribute to carbon stocks by long carbon resistance times, but maintain high rates of carbon accumulation at later stages of their life time.

  6. The impact of tree age on biomass growth and carbon accumulation capacity: A retrospective analysis using tree ring data of three tropical tree species grown in natural forests of Suriname.

    Directory of Open Access Journals (Sweden)

    Michael Köhl

    Full Text Available The world's forests play a pivotal role in the mitigation of global climate change. By photosynthesis they remove CO2 from the atmosphere and store carbon in their biomass. While old trees are generally acknowledged for a long carbon residence time, there is no consensus on their contribution to carbon accumulation due to a lack of long-term individual tree data. Tree ring analyses, which use anatomical differences in the annual formation of wood for dating growth zones, are a retrospective approach that provides growth patterns of individual trees over their entire lifetime. We developed time series of diameter growth and related annual carbon accumulation for 61 trees of the species Cedrela odorata L. (Meliacea, Hymenaea courbaril L. (Fabacea and Goupia glabra Aubl. (Goupiacea. The trees grew in unmanaged tropical wet-forests of Suriname and reached ages from 84 to 255 years. Most of the trees show positive trends of diameter growth and carbon accumulation over time. For some trees we observed fluctuating growth-periods of lower growth alternate with periods of increased growth. In the last quarter of their lifetime trees accumulate on average between 39 percent (C. odorata and 50 percent (G. glabra of their final carbon stock. This suggests that old-growth trees in tropical forests do not only contribute to carbon stocks by long carbon resistance times, but maintain high rates of carbon accumulation at later stages of their life time.

  7. Characterization of biomass burning aerosols from forest fire in Indonesia

    Science.gov (United States)

    Fujii, Y.; Iriana, W.; Okumura, M.; Lestari, P.; Tohno, S.; Akira, M.; Okuda, T.

    2012-12-01

    Biomass burning (forest fire, wild fire) is a major source of pollutants, generating an estimate of 104 Tg per year of aerosol particles worldwide. These particles have adverse human health effects and can affect the radiation budget and climate directly and indirectly. Eighty percent of biomass burning aerosols are generated in the tropics and about thirty percent of them originate in the tropical regions of Asia (Andreae, 1991). Several recent studies have reported on the organic compositions of biomass burning aerosols in the tropical regions of South America and Africa, however, there is little data about forest fire aerosols in the tropical regions of Asia. It is important to characterize biomass burning aerosols in the tropical regions of Asia because the aerosol properties vary between fires depending on type and moisture of wood, combustion phase, wind conditions, and several other variables (Reid et al., 2005). We have characterized PM2.5 fractions of biomass burning aerosols emitted from forest fire in Indonesia. During the dry season in 2012, PM2.5 aerosols from several forest fires occurring in Riau, Sumatra, Indonesia were collected on quartz and teflon filters with two mini-volume samplers. Background aerosols in forest were sampled during transition period of rainy season to dry season (baseline period). Samples were analyzed with several analytical instruments. The carbonaceous content (organic and elemental carbon, OC and EC) of the aerosols was analyzed by a thermal optical reflectance technique using IMPROVE protocol. The metal, inorganic ion and organic components of the aerosols were analyzed by X-ray Fluorescence (XRF), ion chromatography and gas chromatography-mass spectrometry, respectively. There was a great difference of chemical composition between forest fire and non-forest fire samples. Smoke aerosols for forest fires events were composed of ~ 45 % OC and ~ 2.5 % EC. On the other hand, background aerosols for baseline periods were

  8. Phylogenetic classification of the world's tropical forests

    DEFF Research Database (Denmark)

    Slik, J. W. Ferry; Franklin, Janet; Arroyo-Rodriguez, Victor

    2018-01-01

    Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern p...

  9. Phylogenetic classification of the world's tropical forests

    NARCIS (Netherlands)

    Slik, J.W.F.; Franklin, Janet; Arroyo-Rodríguez, Víctor; Field, Richard; Aguilar, Salomon; Aguirre, Nikolay; Ahumada, Jorge; Aiba, Shin Ichiro; Alves, Luciana F.; Anitha, K.; Avella, Andres; Mora, Francisco; Aymard, Gerardo A.C.; Báez, Selene; Balvanera, Patricia; Bastian, Meredith L.; Bastin, Jean François; Bellingham, Peter J.; Berg, Van Den Eduardo; Conceição Bispo, Da Polyanna; Boeckx, Pascal; Boehning-Gaese, Katrin; Bongers, Frans; Boyle, Brad; Brambach, Fabian; Brearley, Francis Q.; Brown, Sandra; Chai, Shauna Lee; Chazdon, Robin L.; Chen, Shengbin; Chhang, Phourin; Chuyong, George; Ewango, Corneille; Coronado, Indiana M.; Cristóbal-Azkarate, Jurgi; Culmsee, Heike; Damas, Kipiro; Dattaraja, H.S.; Davidar, Priya; DeWalt, Saara J.; Din, Hazimah; Drake, Donald R.; Duque, Alvaro; Durigan, Giselda; Eichhorn, Karl; Eler, Eduardo Schmidt; Enoki, Tsutomu; Ensslin, Andreas; Fandohan, Adandé Belarmain; Farwig, Nina; Feeley, Kenneth J.; Fischer, Markus; Forshed, Olle; Garcia, Queila Souza; Garkoti, Satish Chandra; Gillespie, Thomas W.; Gillet, Jean Francois; Gonmadje, Christelle; Granzow-De La Cerda, Iñigo; Griffith, Daniel M.; Grogan, James; Hakeem, Khalid Rehman; Harris, David J.; Harrison, Rhett D.; Hector, Andy; Hemp, Andreas; Homeier, Jürgen; Hussain, M.S.; Ibarra-Manríquez, Guillermo; Hanum, I.F.; Imai, Nobuo; Jansen, Patrick A.; Joly, Carlos Alfredo; Joseph, Shijo; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L.; Kessler, Michael; Killeen, Timothy J.; Kooyman, Robert M.; Laumonier, Yves; Laurance, Susan G.; Laurance, William F.; Lawes, Michael J.; Letcher, Susan G.; Lindsell, Jeremy; Lovett, Jon; Lozada, Jose; Lu, Xinghui; Lykke, Anne Mette; Mahmud, Bin Khairil; Mahayani, Ni Putu Diana; Mansor, Asyraf; Marshall, Andrew R.; Martin, Emanuel H.; Matos, Darley Calderado Leal; Meave, Jorge A.; Melo, Felipe P.L.; Mendoza, Zhofre Huberto Aguirre; Metali, Faizah; Medjibe, Vincent P.; Metzger, Jean Paul; Metzker, Thiago; Mohandass, D.; Munguía-Rosas, Miguel A.; Muñoz, Rodrigo; Nurtjahy, Eddy; Oliveira, De Eddie Lenza; Onrizal,; Parolin, Pia; Parren, Marc; Parthasarathy, N.; Paudel, Ekananda; Perez, Rolando; Pérez-García, Eduardo A.; Pommer, Ulf; Poorter, Lourens; Qi, Lan; Piedade, Maria Teresa F.; Pinto, José Roberto Rodrigues; Poulsen, Axel Dalberg; Poulsen, John R.; Powers, Jennifer S.; Prasad, Rama Chandra; Puyravaud, Jean Philippe; Rangel, Orlando; Reitsma, Jan; Rocha, Diogo S.B.; Rolim, Samir; Rovero, Francesco; Rozak, Andes; Ruokolainen, Kalle; Rutishauser, Ervan; Rutten, Gemma; Mohd Said, Mohd Nizam; Saiter, Felipe Z.; Saner, Philippe; Santos, Braulio; Santos, Dos João Roberto; Sarker, Swapan Kumar; Schmitt, Christine B.; Schoengart, Jochen; Schulze, Mark; Sheil, Douglas; Sist, Plinio; Souza, Alexandre F.; Spironello, Wilson Roberto; Sposito, Tereza; Steinmetz, Robert; Stevart, Tariq; Suganuma, Marcio Seiji; Sukri, Rahayu; Sultana, Aisha; Sukumar, Raman; Sunderland, Terry; Supriyadi, S.; Suresh, H.S.; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jianwei; Tanner, Ed V.J.; Targhetta, Natalia; Theilade, Ida; Thomas, Duncan; Timberlake, Jonathan; Morisson Valeriano, De Márcio; Valkenburg, Van Johan; Do, Van Tran; Sam, Van Hoang; Vandermeer, John H.; Verbeeck, Hans; Vetaas, Ole Reidar; Adekunle, Victor; Vieira, Simone A.; Webb, Campbell O.; Webb, Edward L.; Whitfeld, Timothy; Wich, Serge; Williams, John; Wiser, Susan; Wittmann, Florian; Yang, Xiaobo; Yao, C.Y.A.; Yap, Sandra L.; Zahawi, Rakan A.; Zakaria, Rahmad; Zang, Runguo

    2018-01-01

    Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern

  10. SUSTAINING CARBON SINK POTENTIALS IN TROPICAL FOREST ...

    African Journals Online (AJOL)

    HP

    the role of tropical forests with respect to climate change from being sources of carbon emissions to .... Most tropical forests are already doomed but present effort can still save the remaining resources for the .... the machines, and electric power for the outside would reduce emissions and valorize these residues, which can ...

  11. Forest biomass estimation from polarimetric SAR interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Mette, T.

    2007-07-01

    Polarimetric SAR interferometry (Pol-InSAR) is a radar remote sensing technique that allows extracting forest heights by means of model-based inversions. Forest biomass is closely related to forest height, and can be derived from it with allometric relations. This work investigates the combination of the two methods to estimate forest biomass from Pol-InSAR. It develops a concept for the use of height-biomass allometry, and outlines the Pol-InSAR height inversion. The methodology is validated against a set of forest inventory data and Pol-InSAR data at L-band of the test site Traunstein. The results allow drawing conclusions on the potential of Pol-InSAR forest biomass missions. (orig.)

  12. Forest structure and carbon dynamics in Amazonian tropical rain forests.

    Science.gov (United States)

    Vieira, Simone; de Camargo, Plinio Barbosa; Selhorst, Diogo; da Silva, Roseana; Hutyra, Lucy; Chambers, Jeffrey Q; Brown, I Foster; Higuchi, Niro; dos Santos, Joaquim; Wofsy, Steven C; Trumbore, Susan E; Martinelli, Luiz Antonio

    2004-08-01

    Living trees constitute one of the major stocks of carbon in tropical forests. A better understanding of variations in the dynamics and structure of tropical forests is necessary for predicting the potential for these ecosystems to lose or store carbon, and for understanding how they recover from disturbance. Amazonian tropical forests occur over a vast area that encompasses differences in topography, climate, and geologic substrate. We observed large differences in forest structure, biomass, and tree growth rates in permanent plots situated in the eastern (near Santarém, Pará), central (near Manaus, Amazonas) and southwestern (near Rio Branco, Acre) Amazon, which differed in dry season length, as well as other factors. Forests at the two sites experiencing longer dry seasons, near Rio Branco and Santarém, had lower stem frequencies (460 and 466 ha(-1) respectively), less biodiversity (Shannon-Wiener diversity index), and smaller aboveground C stocks (140.6 and 122.1 Mg C ha(-1)) than the Manaus site (626 trees ha(-1), 180.1 Mg C ha(-1)), which had less seasonal variation in rainfall. The forests experiencing longer dry seasons also stored a greater proportion of the total biomass in trees with >50 cm diameter (41-45 vs 30% in Manaus). Rates of annual addition of C to living trees calculated from monthly dendrometer band measurements were 1.9 (Manaus), 2.8 (Santarém), and 2.6 (Rio Branco) Mg C ha(-1) year(-1). At all sites, trees in the 10-30 cm diameter class accounted for the highest proportion of annual growth (38, 55 and 56% in Manaus, Rio Branco and Santarém, respectively). Growth showed marked seasonality, with largest stem diameter increment in the wet season and smallest in the dry season, though this may be confounded by seasonal variation in wood water content. Year-to-year variations in C allocated to stem growth ranged from nearly zero in Rio Branco, to 0.8 Mg C ha(-1) year(-1) in Manaus (40% of annual mean) and 0.9 Mg C ha(-1) year(-1) (33% of

  13. Tropical rain forest biogeochemistry in a warmer world: initial results from a novel warming experiment in a Puerto Rico tropical forest

    Science.gov (United States)

    Reed, S.; Cavaleri, M. A.; Alonso-Rodríguez, A. M.; Kimball, B. A.; Wood, T. E.

    2016-12-01

    Tropical forests represent one of the planet's most active biogeochemical engines. They account for the dominant proportion of Earth's live terrestrial plant biomass, nearly one-third of all soil carbon, and exchange more CO2 with the atmosphere than any other biome. In the coming decades, the tropics will experience extraordinary changes in temperature, and our understanding of how this warming will affect biogeochemical cycling remains notably poor. Given the large amounts of carbon tropical forests store and cycle, it is no surprise that our limited ability to characterize tropical forest responses to climate change may represent the largest hurdle in accurately predicting Earth's future climate. Here we describe initial results from the world's first tropical forest field warming experiment, where forest understory plants and soils are being warmed 4 °C above ambient temperatures. This Tropical Responses to Altered Climate Experiment (TRACE) was established in a rain forest in Puerto Rico to investigate the effects of increased temperature on key biological processes that control tropical forest carbon cycling, and to establish the steps that need to be taken to resolve the uncertainties surrounding tropical forest responses to warming. In this talk we will describe the experimental design, as well as the wide range of measurements being conducted. We will also present results from the initial phase of warming, including data on how increased temperatures from infrared lamp warming affected soil moisture, soil respiration rates, a suite of carbon pools, soil microbial biomass, nutrient availability, and the exchange of elements between leaf litter and soil. These data represent a first look into tropical rain forest responses to an experimentally-warmed climate in the field, and provide exciting insight into the non-linear ways tropical biogeochemical cycles respond to change. Overall, we strive to improve Earth System Model parameterization of the pools and

  14. Scenarios in tropical forest degradation: carbon stock trajectories for REDD+

    Directory of Open Access Journals (Sweden)

    Rafael B. de Andrade

    2017-03-01

    Full Text Available Abstract Background Human-caused disturbance to tropical rainforests—such as logging and fire—causes substantial losses of carbon stocks. This is a critical issue to be addressed in the context of policy discussions to implement REDD+. This work reviews current scientific knowledge about the temporal dynamics of degradation-induced carbon emissions to describe common patterns of emissions from logging and fire across tropical forest regions. Using best available information, we: (i develop short-term emissions factors (per area for logging and fire degradation scenarios in tropical forests; and (ii describe the temporal pattern of degradation emissions and recovery trajectory post logging and fire disturbance. Results Average emissions from aboveground biomass were 19.9 MgC/ha for logging and 46.0 MgC/ha for fire disturbance, with an average period of study of 3.22 and 2.15 years post-disturbance, respectively. Longer-term studies of post-logging forest recovery suggest that biomass accumulates to pre-disturbance levels within a few decades. Very few studies exist on longer-term (>10 years effects of fire disturbance in tropical rainforests, and recovery patterns over time are unknown. Conclusions This review will aid in understanding whether degradation emissions are a substantial component of country-level emissions portfolios, or whether these emissions would be offset by forest recovery and regeneration.

  15. Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012

    Science.gov (United States)

    Tyukavina, A.; Baccini, A.; Hansen, M. C.; Potapov, P. V.; Stehman, S. V.; Houghton, R. A.; Krylov, A. M.; Turubanova, S.; Goetz, S. J.

    2015-07-01

    Tropical forests provide global climate regulation ecosystem services and their clearing is a significant source of anthropogenic greenhouse gas (GHG) emissions and resultant radiative forcing of climate change. However, consensus on pan-tropical forest carbon dynamics is lacking. We present a new estimate that employs recommended good practices to quantify gross tropical forest aboveground carbon (AGC) loss from 2000 to 2012 through the integration of Landsat-derived tree canopy cover, height, intactness and forest cover loss and GLAS-lidar derived forest biomass. An unbiased estimate of forest loss area is produced using a stratified random sample with strata derived from a wall-to-wall 30 m forest cover loss map. Our sample-based results separate the gross loss of forest AGC into losses from natural forests (0.59 PgC yr-1) and losses from managed forests (0.43 PgC yr-1) including plantations, agroforestry systems and subsistence agriculture. Latin America accounts for 43% of gross AGC loss and 54% of natural forest AGC loss, with Brazil experiencing the highest AGC loss for both categories at national scales. We estimate gross tropical forest AGC loss and natural forest loss to account for 11% and 6% of global year 2012 CO2 emissions, respectively. Given recent trends, natural forests will likely constitute an increasingly smaller proportion of tropical forest GHG emissions and of global emissions as fossil fuel consumption increases, with implications for the valuation of co-benefits in tropical forest conservation.

  16. Stem biomass and volume models of selected tropical tree species ...

    African Journals Online (AJOL)

    Estimating tree volume and biomass constitutes an essential part of the forest resources assessment and the evaluation of the climate change mitigation potential of forests through biomass accumulation and carbon sequestration. This research article provides stem volume and biomass equations applicable to five tree ...

  17. Biogas energy production from tropical biomass wastes by anaerobic digestion

    Science.gov (United States)

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass, and food w...

  18. Urgent need for warming experiments in tropical forests

    Science.gov (United States)

    Cavaleri, Molly A.; Reed, Sasha C.; Kolby Smith, W.; Wood, Tana E.

    2015-04-01

    Tropical forests represent one of the planet's most active biogeochemical engines. Although only 15 % of the planet's terrestrial surface is comprised of tropical forests, they account for over 2/3 of live terrestrial plant biomass, nearly 1/3 of all soil carbon (C), and exchange more carbon dioxide (CO2) with the atmosphere than any other biome. In the coming decades, the tropics will experience unprecedented changes in temperature, rapid increases in atmospheric CO2 concentrations, and significant alterations in the timing and amount of rainfall. Given the disproportionate role tropical forests play in the global climate, combined with the high uncertainty surrounding their responses to change, funding agencies are increasingly interested in how these ecosystems will respond to future climatic conditions. Thus, it is imperative that the scientific community identify key research priorities to resolve major uncertainties about the functioning of tropical forests and to improve predictive capacity of earth system models. With these goals in mind, we ask (1) can we quantify the uncertainty in C balance response to climate change in the tropics? (2) why should we implement large-scale manipulation experiments in tropical forests? (3) how many environmental factors should be manipulated? (4) which environmental factor(s) to manipulate? and (5) at what spatial and temporal scales should these manipulations occur? We investigate overall model uncertainty of tropical latitudes with a Coupled Model Intercomparison Project Phase 5 (CMIP5) analysis and review current literature to discuss the scientific benefits and inevitable trade-offs inherent in large-scale manipulative field experiments. We discuss how to prioritize research approaches given both funding and logistical constraints in order to optimize the knowledge gained from the limited resources available for such research.

  19. Recover: A Concept For Tropical Forest Assessment For REDD

    Science.gov (United States)

    Hame, Tuomas; Sirro, Laura; Caberea, Edersson; Enßle, Fabian; Haarpainter, Jorg; Hamalainen, Jarno; de Jong, Bernardus; Pellat, Fernando Paz; Pedrazzani, Donata; Reiche, Johannes

    2013-12-01

    Project ReCover, funded by the 7th Framework Program of the European Union, developed beyond state-of-the- art service capabilities to support fighting deforestation and forest degradation in the tropical region in the context of the REDD process (Reducing Emissions from Deforestation and forest Degradation). A monitoring system for forest cover mapping by combining wall-to-wall mapping and a sample of VHR imagery was introduced. Also biomass and changes of forest cover changes were estimated. ReCover provided close to one hundred products for the study sites in Mexico, Guyana, Democratic Republic of Congo, Colombia and Fiji using optical and SAR data and their combinations. The accuracy in forest and non- forest classification varied from 85 % to 97 %.

  20. An empirical, integrated forest biomass monitoring system

    Science.gov (United States)

    Kennedy, Robert E.; Ohmann, Janet; Gregory, Matt; Roberts, Heather; Yang, Zhiqiang; Bell, David M.; Kane, Van; Hughes, M. Joseph; Cohen, Warren B.; Powell, Scott; Neeti, Neeti; Larrue, Tara; Hooper, Sam; Kane, Jonathan; Miller, David L.; Perkins, James; Braaten, Justin; Seidl, Rupert

    2018-02-01

    The fate of live forest biomass is largely controlled by growth and disturbance processes, both natural and anthropogenic. Thus, biomass monitoring strategies must characterize both the biomass of the forests at a given point in time and the dynamic processes that change it. Here, we describe and test an empirical monitoring system designed to meet those needs. Our system uses a mix of field data, statistical modeling, remotely-sensed time-series imagery, and small-footprint lidar data to build and evaluate maps of forest biomass. It ascribes biomass change to specific change agents, and attempts to capture the impact of uncertainty in methodology. We find that: • A common image framework for biomass estimation and for change detection allows for consistent comparison of both state and change processes controlling biomass dynamics. • Regional estimates of total biomass agree well with those from plot data alone. • The system tracks biomass densities up to 450–500 Mg ha‑1 with little bias, but begins underestimating true biomass as densities increase further. • Scale considerations are important. Estimates at the 30 m grain size are noisy, but agreement at broad scales is good. Further investigation to determine the appropriate scales is underway. • Uncertainty from methodological choices is evident, but much smaller than uncertainty based on choice of allometric equation used to estimate biomass from tree data. • In this forest-dominated study area, growth and loss processes largely balance in most years, with loss processes dominated by human removal through harvest. In years with substantial fire activity, however, overall biomass loss greatly outpaces growth. Taken together, our methods represent a unique combination of elements foundational to an operational landscape-scale forest biomass monitoring program.

  1. Biomass expansion factors of Olea ferruginea (Royle) in sub tropical ...

    African Journals Online (AJOL)

    user

    2011-02-28

    Feb 28, 2011 ... carbon stocks and yield of the forest. Key words: Biomass, biomass expansion factor, tree volume, Olea ferruginea. INTRODUCTION. Since ancient times, man has relied on biomass of trees as an important non-renewable energy source. Biomass, which is currently the fourth largest energy source in the.

  2. Equation for estimating tree biomass in tropical forests of Costa Rica Ecuación para estimar la biomasa arbórea en los bosques tropicales de Costa Rica

    OpenAIRE

    Shu Wei-Chou; Egdar E. Gutiérrez-Espeleta

    2013-01-01

    One of the most relevant measures for climate change mitigation is the conservation and regeneration of forests in our countries. The amount of stored carbon in the forest biomass becomes a relevant variable for public policy. The present article analyses the association of some dasometric variables, easily obtained, with tree biomass with the purpose of indirectly estimating it, given that direct measurement of tree biomass is a complex and very expensive task. The general objective of this ...

  3. Assessing biomass accumulation in second growth forests of Puerto Rico using airborne lidar

    Science.gov (United States)

    Martinuzzi, S.; Cook, B.; Corp, L. A.; Morton, D. C.; Helmer, E.; Keller, M.

    2017-12-01

    Degraded and second growth tropical forests provide important ecosystem services, such as carbon sequestration and soil stabilization. Lidar data measure the three-dimensional structure of forest canopies and are commonly used to quantify aboveground biomass in temperate forest landscapes. However, the ability of lidar data to quantify second growth forest biomass in complex, tropical landscapes is less understood. Our goal was to evaluate the use of airborne lidar data to quantify aboveground biomass in a complex tropical landscape, the Caribbean island of Puerto Rico. Puerto Rico provides an ideal place for studying biomass accumulation because of the abundance of second growth forests in different stages of recovery, and the high ecological heterogeneity. Puerto Rico was almost entirely deforested for agriculture until the 1930s. Thereafter, agricultural abandonment resulted in a mosaic of second growth forests that have recovered naturally under different types of climate, land use, topography, and soil fertility. We integrated forest plot data from the US Forest Service, Forest Inventory and Analysis (FIA) Program with recent lidar data from NASA Goddard's Lidar, Hyperspectral, and Thermal (G-LiHT) airborne imager to quantify forest biomass across the island's landscape. The G-LiHT data consisted on targeted acquisitions over the FIA plots and other forested areas representing the environmental heterogeneity of the island. To fully assess the potential of the lidar data, we compared the ability of lidar-derived canopy metrics to quantify biomass alone, and in combination with intensity and topographic metrics. The results presented here are a key step for improving our understanding of the patterns and drivers of biomass accumulation in tropical forests.

  4. Forest structure in low diversity tropical forests: a study of Hawaiian wet and dry forests

    Science.gov (United States)

    R. Ostertag; F. Inman-Narahari; S. Cordell; C.P. Giardina; L. Sack

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai‘i Island. We compared the species...

  5. Relationships between Tropical, Temperate and Boreal Forest Variables and PALSAR Data

    Science.gov (United States)

    Tansey, Kevin; Balzter, Heiko; Hoscilo, Agata; Luckman, Adrian; Page, Susan E.

    2008-11-01

    The overall aim of our ALOS project is to evaluate the information content of polarimetric radar data sets, being acquired by the PALSAR instrument, to estimate forest variables (specifically those related to biomass and biomass change) of forested regions in the UK (temperate forest), central Siberia (boreal forest) and Indonesia (tropical forest in Sumatra and Borneo). By utilising the FBD and PLR operating modes of PALSAR, as well as interferometric products derived from 46-day repeat-pass data, we explore the relationships between measured bio-physical forest variables (from field data) with values of backscatter coefficient, coherence and other data derived values. The paper will show our initial observations and interpretations.

  6. Forest biomass observation: current state and prospective

    Directory of Open Access Journals (Sweden)

    D. G. Schepaschenko

    2017-08-01

    Full Text Available With this article, we provide an overview of the methods, instruments and initiatives for forest biomass observation at global scale. We focus on the freely available information, provided by both remote and in-situ observations. The advantages and limitation of various space borne methods, including optical, radar (C, L and P band and LiDAR, as well as respective instruments available on the orbit (MODIS, Proba-V, Landsat, Sentinel-1, Sentinel-2 , ALOS PALSAR, Envisat ASAR or expecting (BIOMASS, GEDI, NISAR, SAOCOM-CS are discussed. We emphasize the role of in-situ methods in the development of a biomass models, providing calibration and validation of remote sensing data. We focus on freely available forest biomass maps, databases and empirical models. We describe the functionality of Biomass.Geo-Wiki.org portal, which provides access to a collection of global and regional biomass maps in full resolution with unified legend and units overplayed with high-resolution imagery. The Forest-Observation-System.net is announced as an international cooperation to establish a global in-situ forest biomass database to support earth observation and to encourage investment in relevant field-based observations and science. Prospects of unmanned aerial vehicles in the forest inventory are briefly discussed. The work was partly supported by ESA IFBN project (contract 4000114425/15/NL/FF/gp.

  7. Functional ecology of tropical forest recovery

    NARCIS (Netherlands)

    Lohbeck, M.W.M.

    2014-01-01

    Electronic abstract of the thesis for the library for the acquisitions department of Wageningen UR library (published as a html file so hyperlinks may be included) In English, one or 2 pages. Functional ecology of tropical forest recovery Currently in the tropics, the area of

  8. Amazonian landscapes and the bias in field studies of forest structure and biomass.

    Science.gov (United States)

    Marvin, David C; Asner, Gregory P; Knapp, David E; Anderson, Christopher B; Martin, Roberta E; Sinca, Felipe; Tupayachi, Raul

    2014-12-02

    Tropical forests convert more atmospheric carbon into biomass each year than any terrestrial ecosystem on Earth, underscoring the importance of accurate tropical forest structure and biomass maps for the understanding and management of the global carbon cycle. Ecologists have long used field inventory plots as the main tool for understanding forest structure and biomass at landscape-to-regional scales, under the implicit assumption that these plots accurately represent their surrounding landscape. However, no study has used continuous, high-spatial-resolution data to test whether field plots meet this assumption in tropical forests. Using airborne LiDAR (light detection and ranging) acquired over three regions in Peru, we assessed how representative a typical set of field plots are relative to their surrounding host landscapes. We uncovered substantial mean biases (9-98%) in forest canopy structure (height, gaps, and layers) and aboveground biomass in both lowland Amazonian and montane Andean landscapes. Moreover, simulations reveal that an impractical number of 1-ha field plots (from 10 to more than 100 per landscape) are needed to develop accurate estimates of aboveground biomass at landscape scales. These biases should temper the use of plots for extrapolations of forest dynamics to larger scales, and they demonstrate the need for a fundamental shift to high-resolution active remote sensing techniques as a primary sampling tool in tropical forest biomass studies. The potential decrease in the bias and uncertainty of remotely sensed estimates of forest structure and biomass is a vital step toward successful tropical forest conservation and climate-change mitigation policy.

  9. Evaluation of alternative approaches for landscape-scale biomass estimation in a mixed-species northern forest

    Science.gov (United States)

    Coeli M. Hoover; Mark J. Ducey; R. Andy Colter; Mariko. Yamasaki

    2018-01-01

    There is growing interest in estimating and mapping biomass and carbon content of forests across large landscapes. LiDAR-based inventory methods are increasingly common and have been successfully implemented in multiple forest types. Asner et al. (2011) developed a simple universal forest carbon estimation method for tropical forests that reduces the amount of required...

  10. Forest biomass resources and utilization in China

    African Journals Online (AJOL)

    user

    environmental benefits may result from using forest biomass for energy rather than fossil fuels. ... nuclear energy. Therefore, one of the most urgent pro- blems the Chinese government faces is to build a safe, economic, clean and sustainable energy supply system, ... Forest bioenergy is the use of renewable forestry.

  11. Theme E: Forest Biomass and Bioenergy

    DEFF Research Database (Denmark)

    Bentsen, Niclas Scott; Stupak, Inge; Smith, C

    2014-01-01

    , especially in the EU and its biomass importing countries. As countries and companies search worldwide for new biomass sourcing areas, there is a need to review and compare the biomass potentials in different regions and the associated forest sustainability challenges. We reviewed the literature to assess...... reductions, ecosystem carbon, biodiversity, soil and water) and how well they are governed. We also addressed other issues of significant concern in a specific region, such as competition with food production. We propose and compare the most urgent short- and long-term forest sustainability and governance...

  12. Long-term patterns in tropical reforestation: plant community composition and aboveground biomass accumulation.

    Science.gov (United States)

    Marín-Spiotta, E; Ostertag, R; Silver, W L

    2007-04-01

    Primary tropical forests are renowned for their high biodiversity and carbon storage, and considerable research has documented both species and carbon losses with deforestation and agricultural land uses. Economic drivers are now leading to the abandonment of agricultural lands, and the area in secondary forests is increasing. We know little about how long it takes for these ecosystems to achieve the structural and compositional characteristics of primary forests. In this study, we examine changes in plant species composition and aboveground biomass during eight decades of tropical secondary succession in Puerto Rico, and compare these patterns with primary forests. Using a well-replicated chronosequence approach, we sampled primary forests and secondary forests established 10, 20, 30, 60, and 80 years ago on abandoned pastures. Tree species composition in all secondary forests was different from that of primary forests and could be divided into early (10-, 20-, and 30-year) vs. late (60- and 80-year) successional phases. The highest rates of aboveground biomass accumulation occurred in the first 20 years, with rates of C sequestration peaking at 6.7 +/- 0.5 Mg C x ha(-1) x yr(-1). Reforestation of pastures resulted in an accumulation of 125 Mg C/ha in aboveground standing live biomass over 80 years. The 80 year-old secondary forests had greater biomass than the primary forests, due to the replacement of woody species by palms in the primary forests. Our results show that these new ecosystems have different species composition, but similar species richness, and significant potential for carbon sequestration, compared to remnant primary forests.

  13. Abiotic and biotic drivers of biomass change in a Neotropical forest

    NARCIS (Netherlands)

    Sande, van der M.T.; Pena Claros, M.; Ascarrunz, Nataly; Arets, E.J.M.M.; Licona, J.C.; Toledo, Marisol; Poorter, L.

    2017-01-01

    Summary
    1. Tropical fores ts play an important role in the global carbon cycle, but the drivers of net forest biomass change (i.e. net carbon sequestration) are poorly understood. Here, we evaluate how abiotic factors (soil co nditions and disturbance) and biotic factors (forest structure,

  14. Diversity enhances carbon storage in tropical forests

    NARCIS (Netherlands)

    Poorter, L.; Sande, van der M.T.; Thompson, J.; Arets, E.J.M.M.; Bongers, F.; Steege, ter H.; Pena Claros, M.; Hoosbeek, M.R.; Dutrieux, L.P.; Levis, C.

    2015-01-01

    Aim Tropical forests store 25% of global carbon and harbour 96% of the world's tree species, but it is not clear whether this high biodiversity matters for carbon storage. Few studies have teased apart the relative importance of forest attributes and environmental drivers for ecosystem functioning,

  15. [Contribution of tropical upland forests to carbon storage in Colombia].

    Science.gov (United States)

    Yepes, Adriana; Herrera, Johana; Phillips, Juan; Galindo, Gustavo; Granados, Edwin; Duque, Alvaro; Barbosa, Adriana; Olarte, Claudia; Cardona, María

    2015-03-01

    The tropical montane forests in the Colombian Andean region are located above 1500 m, and have been heavily deforested. Despite the general presumption that productivity and hence carbon stocks in these ecosystems are low, studies in this regard are scarce. This study aimed to (i) to estimate Above Ground Biomass (AGB) in forests located in the South of the Colombian Andean region, (ii) to identify the carbon storage potential of tropical montane forests dominated by the black oak Colombobalanus excelsa and to identify the relationship between AGB and altitude, and (iii) to analyze the role of tropical mountain forests in conservation mechanisms such as Payment for Environmental Services (PES) and Reducing Emissions from Deforestation and Degradation (REDD+). Twenty six 0.25 ha plots were randomly distributed in the forests and all trees with D > or =10 cm were measured. The results provided important elements for understanding the role of tropical montane forests as carbon sinks. The information produced can be used in subnational initiatives, which seek to mitigate or reduce the effects of deforestation through management or conservation of these ecosystems, like REDD+ or PES. The AGB and carbon stocks results obtained were similar to those reported for lowland tropical forests. These could be explained by the dominance and abundance of C. excelsa, which accounted for over 81% of AGB/carbon. The error associated with the estimates of AGB/carbon was 10.58%. We found a negative and significant relationship between AGB and altitude, but the higher AGB values were in middle altitudes (approximatly = 700-1800 m), where the environmental conditions could be favorable to their growth. The carbon storage potential of these forests was higher. However, if the historical rate of the deforestation in the study area continues, the gross emissions of CO2e to the atmosphere could turn these forests in to an important emissions source. Nowadays, it is clear that tropical

  16. Spatial partitioning of biomass and diversity in a lowland Bolivian forest: linking field and remote sensing measurements

    NARCIS (Netherlands)

    Broadbent, E.B.; Asner, G.P.; Peña-Claros, M.; Palace, M.; Soriano, M.

    2008-01-01

    Large-scale inventories of forest biomass and structure are necessary for both understanding carbon dynamics and conserving biodiversity. High-resolution satellite imagery is starting to enable structural analysis of tropical forests over large areas, but we lack an understanding of how tropical

  17. Life in Tropical Rain Forests.

    Science.gov (United States)

    NatureScope, 1989

    1989-01-01

    Discusses the diversity of rain forest life, the adaptations of rain forest plants and animals, and ways these organisms interact. Includes activities on canopy critters with a copyable sheet, rain forest revue, design a plant, and jungle sleuths. (RT)

  18. Tropical secondary forests regenerating after shifting cultivation in the Philippines uplands are important carbon sinks.

    Science.gov (United States)

    Mukul, Sharif A; Herbohn, John; Firn, Jennifer

    2016-03-08

    In the tropics, shifting cultivation has long been attributed to large scale forest degradation, and remains a major source of uncertainty in forest carbon accounting. In the Philippines, shifting cultivation, locally known as kaingin, is a major land-use in upland areas. We measured the distribution and recovery of aboveground biomass carbon along a fallow gradient in post-kaingin secondary forests in an upland area in the Philippines. We found significantly higher carbon in the aboveground total biomass and living woody biomass in old-growth forest, while coarse dead wood biomass carbon was higher in the new fallow sites. For young through to the oldest fallow secondary forests, there was a progressive recovery of biomass carbon evident. Multivariate analysis indicates patch size as an influential factor in explaining the variation in biomass carbon recovery in secondary forests after shifting cultivation. Our study indicates secondary forests after shifting cultivation are substantial carbon sinks and that this capacity to store carbon increases with abandonment age. Large trees contribute most to aboveground biomass. A better understanding of the relative contribution of different biomass sources in aboveground total forest biomass, however, is necessary to fully capture the value of such landscapes from forest management, restoration and conservation perspectives.

  19. Tropical Forest Gain and Interactions amongst Agents of Forest Change

    Directory of Open Access Journals (Sweden)

    Sean Sloan

    2016-02-01

    Full Text Available The tropical deforestation literature advocates multi-agent enquiry in recognition that key dynamics arise from inter-agent interactions. Studies of tropical forest-cover gain have lagged in this respect. This article explores the roles and key aspects of interactions shaping natural forest regeneration and active reforestation in Eastern Panama since 1990. It employs household surveys of agricultural landholders, interviews with community forest-restoration organisations, archival analysis of plantation reforestation interests, satellite image analysis of forest-cover change, and the consideration of State reforestation policies. Forest-cover gain reflected a convergence of interests and land-use trends amongst agents. Low social and economic costs of sustained interaction and organisation enabled extensive forest-cover gain, but low transaction costs did not. Corporate plantation reforestation rose to the fore of regional forest-cover gain via opportunistic land sales by ranchers and economic subsidies indicative of a State preference for autonomous, self-organising forest-cover gain. This reforestation follows a recent history of neoliberal frontier development in which State-backed loggers and ranchers similarly displaced agriculturalists. Community institutions, long neglected by the State, struggled to coordinate landholders and so effected far less forest-cover gain. National and international commitments to tropical forest restoration risk being similarly characterised as ineffective by a predominance of industrial plantation reforestation without greater State support for community forest management.

  20. Toward detection of CO2 fertilization of tree growth and biomass accumulation in Amazon forests

    Science.gov (United States)

    Chambers, J. Q.; Negron Juarez, R. I.; Di Vittorio, A. V.; Marra, D.; Rifai, S. W.; Ribeiro, G.; Higuchi, N.

    2012-12-01

    Synthesis studies of old-growth tropical forest plot networks indicate a pantropical net carbon sink of more than 1 Pg C/yr. However a number of confounding factors limit our ability to attribute these changes to direct CO2 fertilization of tree growth and forest productivity. Of primary importance is determining if the plots adequately sample natural disturbance and recovery gradients, and the larger landscape successional mosaic. In addition, forest biomass dynamics which include tree growth, recruitment and mortality can interact in complex ways with changes in forest productivity and biomass accumulation. This study represents a novel approach to determine the sensitivity of different sampling strategies for detecting tropical forest CO2 fertilization while accounting for these confounding factors. Our approach, developed for Amazon forests in Brazil and Peru, combines extensive field plot data on biomass dynamics, remote sensing analyses to generate disturbance probability distribution functions, and individual-based simulation modeling for placing plot-level results into a landscape context. Results indicate that forest plots significantly larger than 10 ha are required to maximize the signal-to-noise ratio for detecting CO2 fertilization. We also present a field sampling strategy for quantifying site-to-site differences in forest biomass accumulation rates, which is useful for detecting regional differences in tropical forest sensitivity to rising atmospheric CO2 concentration. Overall, this approach is useful in developing field campaigns that explicitly account for landscape heterogeneity in testing key predictions of Earth system models.

  1. Hydrological Networks and Associated Topographic Variation as Templates for the Spatial Organization of Tropical Forest Vegetation

    OpenAIRE

    Detto, Matteo; Muller-Landau, Helene C.; Mascaro, Joseph; Asner, Gregory P.

    2013-01-01

    An understanding of the spatial variability in tropical forest structure and biomass, and the mechanisms that underpin this variability, is critical for designing, interpreting, and upscaling field studies for regional carbon inventories. We investigated the spatial structure of tropical forest vegetation and its relationship to the hydrological network and associated topographic structure across spatial scales of 10-1000 m using high-resolution maps of LiDAR-derived mean canopy profile heigh...

  2. Allometric Equations for Aboveground and Belowground Biomass Estimations in an Evergreen Forest in Vietnam.

    Directory of Open Access Journals (Sweden)

    Vu Thanh Nam

    Full Text Available Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations for aboveground biomass (AGB and root biomass (RB based on 300 (of 45 species and 40 (of 25 species sample trees respectively, in an evergreen forest in Vietnam. The biomass estimations from these local models were compared to regional and pan-tropical models. For AGB we also compared local models that distinguish functional types to an aggregated model, to assess the degree of specificity needed in local models. Besides diameter at breast height (DBH and tree height (H, wood density (WD was found to be an important parameter in AGB models. Existing pan-tropical models resulted in up to 27% higher estimates of AGB, and overestimated RB by nearly 150%, indicating the greater accuracy of local models at the plot level. Our functional group aggregated local model which combined data for all species, was as accurate in estimating AGB as functional type specific models, indicating that a local aggregated model is the best choice for predicting plot level AGB in tropical forests. Finally our study presents the first allometric biomass models for aboveground and root biomass in forests in Vietnam.

  3. Allometric Equations for Aboveground and Belowground Biomass Estimations in an Evergreen Forest in Vietnam.

    Science.gov (United States)

    Nam, Vu Thanh; van Kuijk, Marijke; Anten, Niels P R

    2016-01-01

    Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations for aboveground biomass (AGB) and root biomass (RB) based on 300 (of 45 species) and 40 (of 25 species) sample trees respectively, in an evergreen forest in Vietnam. The biomass estimations from these local models were compared to regional and pan-tropical models. For AGB we also compared local models that distinguish functional types to an aggregated model, to assess the degree of specificity needed in local models. Besides diameter at breast height (DBH) and tree height (H), wood density (WD) was found to be an important parameter in AGB models. Existing pan-tropical models resulted in up to 27% higher estimates of AGB, and overestimated RB by nearly 150%, indicating the greater accuracy of local models at the plot level. Our functional group aggregated local model which combined data for all species, was as accurate in estimating AGB as functional type specific models, indicating that a local aggregated model is the best choice for predicting plot level AGB in tropical forests. Finally our study presents the first allometric biomass models for aboveground and root biomass in forests in Vietnam.

  4. Restoring degraded tropical forests for carbon and biodiversity

    International Nuclear Information System (INIS)

    Budiharta, Sugeng; Meijaard, Erik; Wilson, Kerrie A; Erskine, Peter D; Rondinini, Carlo; Pacifici, Michela

    2014-01-01

    The extensive deforestation and degradation of tropical forests is a significant contributor to the loss of biodiversity and to global warming. Restoration could potentially mitigate the impacts of deforestation, yet knowledge on how to efficiently allocate funding for restoration is still in its infancy. We systematically prioritize investments in restoration in the tropical landscape of East Kalimantan, Indonesia, and through this application demonstrate the capacity to account for a diverse suite of restoration techniques and forests of varying condition. To achieve this we develop a map of forest degradation for the region, characterized on the basis of aboveground biomass and differentiated by broad forest types. We estimate the costs of restoration as well as the benefits in terms of carbon sequestration and improving the suitability of habitat for threatened mammals through time. When the objective is solely to enhance carbon stocks, then restoration of highly degraded lowland forest is the most cost-effective activity. However, if the objective is to improve the habitat of threatened species, multiple forest types should be restored and this reduces the accumulated carbon by up to 24%. Our analysis framework provides a transparent method for prioritizing where and how restoration should occur in heterogeneous landscapes in order to maximize the benefits for carbon and biodiversity. (letter)

  5. Restoring degraded tropical forests for carbon and biodiversity

    Science.gov (United States)

    Budiharta, Sugeng; Meijaard, Erik; Erskine, Peter D.; Rondinini, Carlo; Pacifici, Michela; Wilson, Kerrie A.

    2014-11-01

    The extensive deforestation and degradation of tropical forests is a significant contributor to the loss of biodiversity and to global warming. Restoration could potentially mitigate the impacts of deforestation, yet knowledge on how to efficiently allocate funding for restoration is still in its infancy. We systematically prioritize investments in restoration in the tropical landscape of East Kalimantan, Indonesia, and through this application demonstrate the capacity to account for a diverse suite of restoration techniques and forests of varying condition. To achieve this we develop a map of forest degradation for the region, characterized on the basis of aboveground biomass and differentiated by broad forest types. We estimate the costs of restoration as well as the benefits in terms of carbon sequestration and improving the suitability of habitat for threatened mammals through time. When the objective is solely to enhance carbon stocks, then restoration of highly degraded lowland forest is the most cost-effective activity. However, if the objective is to improve the habitat of threatened species, multiple forest types should be restored and this reduces the accumulated carbon by up to 24%. Our analysis framework provides a transparent method for prioritizing where and how restoration should occur in heterogeneous landscapes in order to maximize the benefits for carbon and biodiversity.

  6. Explaining biomass growth of tropical canopy trees: the importance of sapwood.

    Science.gov (United States)

    van der Sande, Masha T; Zuidema, Pieter A; Sterck, Frank

    2015-04-01

    Tropical forests are important in worldwide carbon (C) storage and sequestration. C sequestration of these forests may especially be determined by the growth of canopy trees. However, the factors driving variation in growth among such large individuals remain largely unclear. We evaluate how crown traits [total leaf area, specific leaf area and leaf nitrogen (N) concentration] and stem traits [sapwood area (SA) and sapwood N concentration] measured for individual trees affect absolute biomass growth for 43 tropical canopy trees belonging to four species, in a moist forest in Bolivia. Biomass growth varied strongly among trees, between 17.3 and 367.3 kg year(-1), with an average of 105.4 kg year(-1). We found that variation in biomass growth was chiefly explained by a positive effect of SA, and not by tree size or other traits examined. SA itself was positively associated with sapwood growth, sapwood lifespan and basal area. We speculate that SA positively affects the growth of individual trees mainly by increasing water storage, thus securing water supply to the crown. These positive roles of sapwood on growth apparently offset the increased respiration costs incurred by more sapwood. This is one of the first individual-based studies to show that variation in sapwood traits-and not crown traits-explains variation in growth among tropical canopy trees. Accurate predictions of C dynamics in tropical forests require similar studies on biomass growth of individual trees as well as studies evaluating the dual effect of sapwood (water provision vs. respiratory costs) on tropical tree growth.

  7. The potential for species conservation in tropical secondary forests

    Science.gov (United States)

    Robin L. Chazdon; Carlos A. Peres; Daisy Dent; Douglas Sheil; Ariel E. Lugo; David Lamb; Nigel E. Stork; Scott E. Miller

    2009-01-01

    In the wake of widespread loss of old-growth forests throughout the tropics, secondary forests will likely play a growing role in the conservation of forest biodiversity. We considered a complex hierarchy of factors that interact in space and time to determine the conservation potential of tropical secondary forests. Beyond the characteristics of local forest patches,...

  8. Family forest owner preferences for biomass harvesting in Massachusetts

    Science.gov (United States)

    Marla Markowski-Lindsay; Thomas Stevens; David B. Kittredge; Brett J. Butler; Paul Catanzaro; David Damery

    2012-01-01

    U.S. forests, including family-owned forests, are a potential source of biomass for renewable energy. Family forest owners constitute a significant portion of the overall forestland in the U.S., yet little is known about family forest owners' preferences for supplying wood-based biomass. The goal of this study is to understand how Massachusetts family forest...

  9. Estimating forest biomass and identifying low-intensity logging areas using airborne scanning lidar in Antimary State Forest, Acre State, Western Brazilian Amazon

    Science.gov (United States)

    Marcus V.N. d' Oliveira; Stephen E. Reutebuch; Robert J. McGaughey; Hans-Erik. Andersen

    2012-01-01

    The objectives of this study were to estimate above ground forest biomass and identify areas disturbed by selective logging in a 1000 ha Brazilian tropical forest in the Antimary State Forest using airborne lidar data. The study area consisted of three management units, two of which were unlogged, while the third unit was selectively logged at a low intensity. A...

  10. The importance of crown dimensions to improve tropical tree biomass estimates.

    Science.gov (United States)

    Goodman, Rosa C; Phillips, Oliver L; Baker, Timothy R

    2014-06-01

    Tropical forests play a vital role in the global carbon cycle, but the amount of carbon they contain and its spatial distribution remain uncertain. Recent studies suggest that once tree height is accounted for in biomass calculations, in addition to diameter and wood density, carbon stock estimates are reduced in many areas. However, it is possible that larger crown sizes might offset the reduction in biomass estimates in some forests where tree heights are lower because even comparatively short trees develop large, well-lit crowns in or above the forest canopy. While current allometric models and theory focus on diameter, wood density, and height, the influence of crown size and structure has not been well studied. To test the extent to which accounting for crown parameters can improve biomass estimates, we harvested and weighed 51 trees (11-169 cm diameter) in southwestern Amazonia where no direct biomass measurements have been made. The trees in our study had nearly half of total aboveground biomass in the branches (44% +/- 2% [mean +/- SE]), demonstrating the importance of accounting for tree crowns. Consistent with our predictions, key pantropical equations that include height, but do not account for crown dimensions, underestimated the sum total biomass of all 51 trees by 11% to 14%, primarily due to substantial underestimates of many of the largest trees. In our models, including crown radius greatly improves performance and reduces error, especially for the largest trees. In addition, over the full data set, crown radius explained more variation in aboveground biomass (10.5%) than height (6.0%). Crown form is also important: Trees with a monopodial architectural type are estimated to have 21-44% less mass than trees with other growth patterns. Our analysis suggests that accounting for crown allometry would substantially improve the accuracy of tropical estimates of tree biomass and its distribution in primary and degraded forests.

  11. Improving simulated spatial distribution of productivity and biomass in Amazon forests using the ACME land model

    Science.gov (United States)

    Yang, X.; Thornton, P. E.; Ricciuto, D. M.; Shi, X.; Xu, M.; Hoffman, F. M.; Norby, R. J.

    2017-12-01

    Tropical forests play a crucial role in the global carbon cycle, accounting for one third of the global NPP and containing about 25% of global vegetation biomass and soil carbon. This is particularly true for tropical forests in the Amazon region, as it comprises approximately 50% of the world's tropical forests. It is therefore important for us to understand and represent the processes that determine the fluxes and storage of carbon in these forests. In this study, we show that the implementation of phosphorus (P) cycle and P limitation in the ACME Land Model (ALM) improves simulated spatial pattern of NPP. The P-enabled ALM is able to capture the west-to-east gradient of productivity, consistent with field observations. We also show that by improving the representation of mortality processes, ALM is able to reproduce the observed spatial pattern of above ground biomass across the Amazon region.

  12. Tropical forests and the changing earth system.

    Science.gov (United States)

    Lewis, Simon L

    2006-01-29

    Tropical forests are global epicentres of biodiversity and important modulators of the rate of climate change. Recent research on deforestation rates and ecological changes within intact forests, both areas of recent research and debate, are reviewed, and the implications for biodiversity (species loss) and climate change (via the global carbon cycle) addressed. Recent impacts have most likely been: (i) a large source of carbon to the atmosphere, and major loss of species, from deforestation and (ii) a large carbon sink within remaining intact forest, accompanied by accelerating forest dynamism and widespread biodiversity changes. Finally, I look to the future, suggesting that the current carbon sink in intact forests is unlikely to continue, and that the tropical forest biome may even become a large net source of carbon, via one or more of four plausible routes: changing photosynthesis and respiration rates, biodiversity changes in intact forest, widespread forest collapse via drought, and widespread forest collapse via fire. Each of these scenarios risks potentially dangerous positive feedbacks with the climate system that could dramatically accelerate and intensify climate change. Given that continued land-use change alone is already thought to be causing the sixth mass extinction event in Earth's history, should such feedbacks occur, the resulting biodiversity and societal consequences would be even more severe.

  13. Phylogenetic classification of the world's tropical forests.

    Science.gov (United States)

    Slik, J W Ferry; Franklin, Janet; Arroyo-Rodríguez, Víctor; Field, Richard; Aguilar, Salomon; Aguirre, Nikolay; Ahumada, Jorge; Aiba, Shin-Ichiro; Alves, Luciana F; K, Anitha; Avella, Andres; Mora, Francisco; Aymard C, Gerardo A; Báez, Selene; Balvanera, Patricia; Bastian, Meredith L; Bastin, Jean-François; Bellingham, Peter J; van den Berg, Eduardo; da Conceição Bispo, Polyanna; Boeckx, Pascal; Boehning-Gaese, Katrin; Bongers, Frans; Boyle, Brad; Brambach, Fabian; Brearley, Francis Q; Brown, Sandra; Chai, Shauna-Lee; Chazdon, Robin L; Chen, Shengbin; Chhang, Phourin; Chuyong, George; Ewango, Corneille; Coronado, Indiana M; Cristóbal-Azkarate, Jurgi; Culmsee, Heike; Damas, Kipiro; Dattaraja, H S; Davidar, Priya; DeWalt, Saara J; Din, Hazimah; Drake, Donald R; Duque, Alvaro; Durigan, Giselda; Eichhorn, Karl; Eler, Eduardo Schmidt; Enoki, Tsutomu; Ensslin, Andreas; Fandohan, Adandé Belarmain; Farwig, Nina; Feeley, Kenneth J; Fischer, Markus; Forshed, Olle; Garcia, Queila Souza; Garkoti, Satish Chandra; Gillespie, Thomas W; Gillet, Jean-Francois; Gonmadje, Christelle; Granzow-de la Cerda, Iñigo; Griffith, Daniel M; Grogan, James; Hakeem, Khalid Rehman; Harris, David J; Harrison, Rhett D; Hector, Andy; Hemp, Andreas; Homeier, Jürgen; Hussain, M Shah; Ibarra-Manríquez, Guillermo; Hanum, I Faridah; Imai, Nobuo; Jansen, Patrick A; Joly, Carlos Alfredo; Joseph, Shijo; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L; Kessler, Michael; Killeen, Timothy J; Kooyman, Robert M; Laumonier, Yves; Laurance, Susan G; Laurance, William F; Lawes, Michael J; Letcher, Susan G; Lindsell, Jeremy; Lovett, Jon; Lozada, Jose; Lu, Xinghui; Lykke, Anne Mette; Mahmud, Khairil Bin; Mahayani, Ni Putu Diana; Mansor, Asyraf; Marshall, Andrew R; Martin, Emanuel H; Calderado Leal Matos, Darley; Meave, Jorge A; Melo, Felipe P L; Mendoza, Zhofre Huberto Aguirre; Metali, Faizah; Medjibe, Vincent P; Metzger, Jean Paul; Metzker, Thiago; Mohandass, D; Munguía-Rosas, Miguel A; Muñoz, Rodrigo; Nurtjahy, Eddy; de Oliveira, Eddie Lenza; Onrizal; Parolin, Pia; Parren, Marc; Parthasarathy, N; Paudel, Ekananda; Perez, Rolando; Pérez-García, Eduardo A; Pommer, Ulf; Poorter, Lourens; Qie, Lan; Piedade, Maria Teresa F; Pinto, José Roberto Rodrigues; Poulsen, Axel Dalberg; Poulsen, John R; Powers, Jennifer S; Prasad, Rama Chandra; Puyravaud, Jean-Philippe; Rangel, Orlando; Reitsma, Jan; Rocha, Diogo S B; Rolim, Samir; Rovero, Francesco; Rozak, Andes; Ruokolainen, Kalle; Rutishauser, Ervan; Rutten, Gemma; Mohd Said, Mohd Nizam; Saiter, Felipe Z; Saner, Philippe; Santos, Braulio; Dos Santos, João Roberto; Sarker, Swapan Kumar; Schmitt, Christine B; Schoengart, Jochen; Schulze, Mark; Sheil, Douglas; Sist, Plinio; Souza, Alexandre F; Spironello, Wilson Roberto; Sposito, Tereza; Steinmetz, Robert; Stevart, Tariq; Suganuma, Marcio Seiji; Sukri, Rahayu; Sultana, Aisha; Sukumar, Raman; Sunderland, Terry; Supriyadi; Suresh, H S; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jianwei; Tanner, Ed V J; Targhetta, Natalia; Theilade, Ida; Thomas, Duncan; Timberlake, Jonathan; de Morisson Valeriano, Márcio; van Valkenburg, Johan; Van Do, Tran; Van Sam, Hoang; Vandermeer, John H; Verbeeck, Hans; Vetaas, Ole Reidar; Adekunle, Victor; Vieira, Simone A; Webb, Campbell O; Webb, Edward L; Whitfeld, Timothy; Wich, Serge; Williams, John; Wiser, Susan; Wittmann, Florian; Yang, Xiaobo; Adou Yao, C Yves; Yap, Sandra L; Zahawi, Rakan A; Zakaria, Rahmad; Zang, Runguo

    2018-02-20

    Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world's tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: ( i ) Indo-Pacific, ( ii ) Subtropical, ( iii ) African, ( iv ) American, and ( v ) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests. Copyright © 2018 the Author(s). Published by PNAS.

  14. Biomass and water storage dynamics of epiphytes in old-growth and secondary montane cloud forest stands in Costa Rica

    NARCIS (Netherlands)

    Koehler, L.; Tobon, C.; Frumau, K.F.A.; Bruijnzeel, L.A.

    2007-01-01

    Epiphytic biomass, canopy humus and associated canopy water storage capacity are known to vary greatly between old-growth tropical montane cloud forests but for regenerating forests such data are virtually absent. The present study was conducted in an old-growth cloud forest and in a 30-year-old

  15. Examining effective use of data sources and modeling algorithms for improving biomass estimation in a moist tropical forest of the Brazilian Amazon

    Science.gov (United States)

    Yunyun Feng; Dengsheng Lu; Qi Chen; Michael Keller; Emilio Moran; Maiza Nara dos-Santos; Edson Luis Bolfe; Mateus Batistella

    2017-01-01

    Previous research has explored the potential to integrate lidar and optical data in aboveground biomass (AGB) estimation, but how different data sources, vegetation types, and modeling algorithms influence AGB estimation is poorly understood. This research conducts a comparative analysis of different data sources and modeling approaches in improving AGB estimation....

  16. Effects of Hurricane-Felled Tree Trunks on Soil Carbon, Nitrogen, Microbial Biomass, and Root Length in a Wet Tropical Forest

    Directory of Open Access Journals (Sweden)

    D. Jean Lodge

    2016-11-01

    Full Text Available Decaying coarse woody debris can affect the underlying soil either by augmenting nutrients that can be exploited by tree roots, or by diminishing nutrient availability through stimulation of microbial nutrient immobilization. We analyzed C, N, microbial biomass C and root length in closely paired soil samples taken under versus 20–50 cm away from large trunks of two species felled by Hugo (1989 and Georges (1998 three times during wet and dry seasons over the two years following the study conducted by Georges. Soil microbial biomass, % C and % N were significantly higher under than away from logs felled by both hurricanes (i.e., 1989 and 1998, at all sampling times and at both depths (0–10 and 10–20 cm. Frass from wood boring beetles may contribute to early effects. Root length was greater away from logs during the dry season, and under logs in the wet season. Root length was correlated with microbial biomass C, soil N and soil moisture (R = 0.36, 0.18, and 0.27, respectively; all p values < 0.05. Microbial biomass C varied significantly among seasons but differences between positions (under vs. away were only suggestive. Microbial C was correlated with soil N (R = 0.35. Surface soil on the upslope side of the logs had significantly more N and microbial biomass, likely from accumulation of leaf litter above the logs on steep slopes. We conclude that decaying wood can provide ephemeral resources that are exploited by tree roots during some seasons.

  17. Diversity and carbon storage across the tropical forest biome

    NARCIS (Netherlands)

    Sullivan, Martin J.P.; Talbot, Joey; Lewis, Simon L.; Phillips, Oliver L.; Qie, Lan; Begne, Serge K.; Chave, Jerôme; Cuni-Sanchez, Aida; Hubau, Wannes; Lopez-Gonzalez, Gabriela; Bongers, Frans; Peña-Claros, Marielos; Sheil, Douglas

    2017-01-01

    Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest

  18. Will concern for biodiversity spell doom to tropical forest management?

    Science.gov (United States)

    A.E. Lugo

    1999-01-01

    Arguments against active tropical management are analyzed in light of available data and new research that shows tropical forests to be more resilient after disturbances than previously thought. Tropical forest management involves a diverse array of human activity embedded in a complex social and natural environment. Within this milieu, forest structure and composition...

  19. Forest biodiversity and woody biomass harvesting

    Science.gov (United States)

    Deahn M. Donner; T. Bently Wigley; Darren A. Miller

    2017-01-01

    With the expected increase in demand for woody biomass to help meet renewable energy needs, one principal sustainability question has been whether this material can be removed from forest stands while still conserving biological diversity and retaining ecosystem functioning (Hecht et al. 2009; Berch, Morris, and Malcolm 2011; Ridley et al. 2013). In general,...

  20. Design considerations for tropical forest inventories

    Directory of Open Access Journals (Sweden)

    Ronald Edward McRoberts

    2013-06-01

    Full Text Available Forests contribute substantially to maintaining the global greenhouse gas balance, primarily because among the five economic sectors identified by the United Nations Framework Convention on Climate Change, only the forestry sector has the potential to remove greenhouse gas emissions from the atmosphere. In this context, development of national forest carbon accounting systems, particularly in countries with tropical forests, has emerged as an international priority. Because these systems are often developed as components of or in parallel with national forest inventories, a brief review of statistical issues related to the development of forest ground sampling designs is provided. This overview addresses not only the primary issues of plot configurations and sampling designs, but also to a lesser extent the emerging roles of remote sensing and uncertainty assessment. Basic inventory principles are illustrated for two case studies, the national forest inventory of Brazil with special emphasis on the state of Santa Catarina, and an inventory for Tanzania.

  1. Characteristics of Comminuted Forest Biomass

    Science.gov (United States)

    Jacob Sprinkle; Dana. Mitchell

    2013-01-01

    Transpirational drying and in-woods production of microchips potentially improve the economic efficiency of energy production from forest-derived feedstocks, but yield materials with moisture contents, bulk densities, and particle size distributions that differ from more conventional feedstocks. Ongoing research suggests that transpirational drying reduces the moisture...

  2. Forest Biomass for Climate Change Mitigation

    DEFF Research Database (Denmark)

    Nielsen, Anders Tærø

    Awareness of elevated CO2 levels in the atmosphere and resulting climate change has increased focus on renewable energy sources during recent decades. Biomass for energy has been predicted to have the greatest potential for CO2 reductions in the short term and the IPCC assumes that the use...... on southern Scandinavian sites, managed under different systems both in agriculture and in forests. In addition, the objective is to assess the potential of the poplar plantations to mitigate climate change by using poplar biomass for substitution of fossil fuels in comparison to a traditional product...... of fossil fuels in silviculture, harvest, transport etc., and due to the fact that most managed forests have a lower carbon stock than unmanaged forests....

  3. Defaunation affects carbon storage in tropical forests.

    Science.gov (United States)

    Bello, Carolina; Galetti, Mauro; Pizo, Marco A; Magnago, Luiz Fernando S; Rocha, Mariana F; Lima, Renato A F; Peres, Carlos A; Ovaskainen, Otso; Jordano, Pedro

    2015-12-01

    Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are threatened by hunting, illegal trade, and habitat loss. We used a large data set on tree species composition and abundance, seed, fruit, and carbon-related traits, and plant-animal interactions to estimate the loss of carbon storage capacity of tropical forests in defaunated scenarios. By simulating the local extinction of trees that depend on large frugivores in 31 Atlantic Forest communities, we found that defaunation has the potential to significantly erode carbon storage even when only a small proportion of large-seeded trees are extirpated. Although intergovernmental policies to reduce carbon emissions and reforestation programs have been mostly focused on deforestation, our results demonstrate that defaunation, and the loss of key ecological interactions, also poses a serious risk for the maintenance of tropical forest carbon storage.

  4. Functional ecology of tropical forest recovery

    NARCIS (Netherlands)

    Lohbeck, M.W.M.

    2014-01-01

    Electronic abstract of the thesis for the library for the acquisitions department of Wageningen UR library (published as a html file so hyperlinks may be included)

    In English, one or 2 pages.

    Functional ecology of tropical forest recovery

    Currently in the

  5. Biodiversity and the functioning of tropical forests

    NARCIS (Netherlands)

    Sande, van der M.T.

    2016-01-01

    Tropical forests are the most diverse terrestrial ecosystems. Moreover, their capacity for removal of carbon from the atmosphere makes them important for climate change mitigation. Theories predict that species use resources in a different way, and therefore high species diversity would result in

  6. Sustainable Biofuels from Forests: Woody Biomass

    Directory of Open Access Journals (Sweden)

    Edwin H. White

    2011-11-01

    Full Text Available The use of woody biomass feedstocks for bioenergy and bioproducts involves multiple sources of material that together create year round supplies. The main sources of woody biomass include residues from wood manufacturing industries, low value trees including logging slash in forests that are currently underutilized and dedicated short-rotation woody crops. Conceptually a ton of woody biomass feedstocks can replace a barrel of oil as the wood is processed (refined through a biorefinery. As oil is refined only part of the barrel is used for liquid fuel, e.g., gasoline, while much of the carbon in oil is refined into higher value chemical products-carbon in woody biomass can be refined into the same value-added products.

  7. Global patterns of tropical forest fragmentation

    Science.gov (United States)

    Taubert, Franziska; Fischer, Rico; Groeneveld, Jürgen; Lehmann, Sebastian; Müller, Michael S.; Rödig, Edna; Wiegand, Thorsten; Huth, Andreas

    2018-02-01

    Remote sensing enables the quantification of tropical deforestation with high spatial resolution. This in-depth mapping has led to substantial advances in the analysis of continent-wide fragmentation of tropical forests. Here we identified approximately 130 million forest fragments in three continents that show surprisingly similar power-law size and perimeter distributions as well as fractal dimensions. Power-law distributions have been observed in many natural phenomena such as wildfires, landslides and earthquakes. The principles of percolation theory provide one explanation for the observed patterns, and suggest that forest fragmentation is close to the critical point of percolation; simulation modelling also supports this hypothesis. The observed patterns emerge not only from random deforestation, which can be described by percolation theory, but also from a wide range of deforestation and forest-recovery regimes. Our models predict that additional forest loss will result in a large increase in the total number of forest fragments—at maximum by a factor of 33 over 50 years—as well as a decrease in their size, and that these consequences could be partly mitigated by reforestation and forest protection.

  8. Estimating Tropical Forest Structure Using a Terrestrial Lidar

    Science.gov (United States)

    Palace, Michael; Sullivan, Franklin B; Ducey, Mark; Herrick, Christina

    2016-01-01

    Forest structure comprises numerous quantifiable biometric components and characteristics, which include tree geometry and stand architecture. These structural components are important in the understanding of the past and future trajectories of these biomes. Tropical forests are often considered the most structurally complex and yet least understood of forested ecosystems. New technologies have provided novel avenues for quantifying biometric properties of forested ecosystems, one of which is LIght Detection And Ranging (lidar). This sensor can be deployed on satellite, aircraft, unmanned aerial vehicles, and terrestrial platforms. In this study we examined the efficacy of a terrestrial lidar scanner (TLS) system in a tropical forest to estimate forest structure. Our study was conducted in January 2012 at La Selva, Costa Rica at twenty locations in a predominantly undisturbed forest. At these locations we collected field measured biometric attributes using a variable plot design. We also collected TLS data from the center of each plot. Using this data we developed relative vegetation profiles (RVPs) and calculated a series of parameters including entropy, Fast Fourier Transform (FFT), number of layers and plant area index to develop statistical relationships with field data. We developed statistical models using a series of multiple linear regressions, all of which converged on significant relationships with the strongest relationship being for mean crown depth (r2 = 0.88, p lidar metrics (r2 = 0.75, p < 0.001, RMSE = 3.76 number ha-1). Parameters selected in our models varied, thus indicating the potential relevance of multiple features in canopy profiles and geometry that are related to field-measured structure. Models for biomass estimation included structural canopy variables in addition to height metrics. Our work indicates that vegetation profiles from TLS data can provide useful information on forest structure. PMID:27124295

  9. Estimating tropical forest structure using discrete return lidar data and a locally trained synthetic forest algorithm

    Science.gov (United States)

    Palace, M. W.; Sullivan, F. B.; Ducey, M.; Czarnecki, C.; Zanin Shimbo, J.; Mota e Silva, J.

    2012-12-01

    Forests are complex ecosystems with diverse species assemblages, crown structures, size class distributions, and historical disturbances. This complexity makes monitoring, understanding and forecasting carbon dynamics difficult. Still, this complexity is also central in carbon cycling of terrestrial vegetation. Lidar data often is used solely to associate plot level biomass measurements with canopy height models. There is much more that may be gleaned from examining the full profile from lidar data. Using discrete return airborne light detection and ranging (lidar) data collected in 2009 by the Tropical Ecology Assessment and Monitoring Network (TEAM), we compared synthetic vegetation profiles to lidar-derived relative vegetation profiles (RVPs) in La Selva, Costa Rica. To accomplish this, we developed RVPs to describe the vertical distribution of plant material on 20 plots at La Selva by transforming cumulative lidar observations to account for obscured plant material. Hundreds of synthetic profiles were developed for forests containing approximately 200,000 trees with random diameter at breast height (DBH), assuming a Weibull distribution with a shape of 1.0, and mean DBH ranging from 0cm to 500cm. For each tree in the synthetic forests, crown shape (width, depth) and total height were estimated using previously developed allometric equations for tropical forests. Profiles for each synthetic forest were generated and compared to TEAM lidar data to determine the best fitting synthetic profile to lidar profiles for each of 20 field plots at La Selva. After determining the best fit synthetic profile using the minimum sum of squared differences, we are able to estimate forest structure (diameter distribution, height, and biomass) and to compare our estimates to field data for each of the twenty field plots. Our preliminary results show promise for estimating forest structure and biomass using lidar data and computer modeling.

  10. Cutover tropical forest productivity potential merits assessment, Puerto Rico

    Science.gov (United States)

    Frank H. Wadsworth; Brynne Bryan; Julio Figueroa-Colón

    2010-01-01

    Timber extraction continues to add to vast cutover tropical forests. They are unattractive economically because of the loss of merchantable timber and the long delay foreseen for recovery. Despite this, wood in cutover tropical forests is in line to become more marketable as demand continues and old-growth forests become less accessible. In a cutover forest in Puerto...

  11. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles

    International Nuclear Information System (INIS)

    Crutzen, P.J.; Andreae, M.O.

    1990-01-01

    Biomass burning is widespread, especially in the tropics. It serves to clear land for shifting cultivation, to convert forests to agricultural and pastoral lands, and to remove dry vegetation in order to promote agricultural productivity and the growth of higher yield grasses. Furthermore, much agricultural waste and fuel wood is being combusted, particularly in developing countries. Biomass containing 2 to 5 petagrams of carbon is burned annually (1 petagram = 10 15 grams), producing large amounts of trace gases and aerosol particles that play important roles in atmospheric chemistry and climate. Emissions of carbon monoxide and methane by biomass burning affect the oxidation efficiency of the atmosphere by reacting with hydroxyl radicals, and emissions of nitric oxide and hydrocarbons lead to high ozone concentrations in the tropics during the dry season. Large quantities of smoke particles are produced as well, and these can serve as cloud condensation nuclei. These particles may thus substantially influence cloud microphysical and optical properties, an effect that could have repercussions for the radiation budget and the hydrological cycle in the tropics. Widespread burning may also disturb biogeochemical cycles, especially that of nitrogen. About 50% of the nitrogen in the biomass fuel can be released as molecular nitrogen. This pyrodenitrification process causes a sizable loss of fixed nitrogen in tropical ecosystems, in the range of 10 to 20 teragrams per year (1 teragram = 10 12 grams)

  12. Impact of deforestation on biomass burning in the tropics

    International Nuclear Information System (INIS)

    Hao, W.M.; Liu, M.H.; Ward, D.E.

    1994-01-01

    Fires are widely used for various land use practices in tropical countries. Large amounts of trace gases and aerosol particles are produced during the fires. It is important to assess the potential impact of these gases and particulate matter on the chemistry of the atmosphere and global climate. One of the largest uncertainties in quantifying the effects is the lack of information on the source strengths. The authors quantify the amount of biomass burned due to deforestation in each tropical country on basis of the deforestation rate, the above ground density, and the fraction of above ground biomass burned. Approximately 725 Tg of biomass were burned in 1980 and 984 Tg were burned in 1990. The 36% increase took place mostly in Latin America and tropical Asia. The largest source was Brazil, contributing about 29% of the total biomass burned in the tropics. The second largest source was Indonesia accounting for 10%, followed by Zaire accounting for about 8%. The burning of biomass due to increased deforestation has resulted in an additional 33 Tg CO and 2.5 Tg CH 4 emitted annually to the atmosphere from 1980 to 1990

  13. Forest production for tropical America. Agriculture handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, F.H.

    1997-12-01

    This book is concerned primarily with wood production. Without the direct economic returns possible therefrom, the other, less tangible benefits that accrue from forests are in jeopardy in the face of developmental pressures driven by more attractive direct financial incentives. Nevertheless, multiple benefits from forests are inseparable, so the goal should be to make forest productive for all purposes. Forest production, then, as here defined refers to all the values of forests, including those primarily esthetic. The text emphasizes two vital relations. One is that forestry is ecological. Forest managers must be oriented to accept ecological information fundamental to goals and practices. A rift between the two disciplines that exists elsewhere must not intensify in tropical America. Forest production is forestry, not ecology, but intimacy between the two disciplines is mutually vital. The second relation emphasized in the book is that in productive forest management the animal component is as crucial as the plants, The value of animals to forest ecosystems goes far beyond their physical attraction.

  14. Forest above ground biomass estimation and forest/non-forest classification for Odisha, India, using L-band Synthetic Aperture Radar (SAR) data

    Science.gov (United States)

    Suresh, M.; Kiran Chand, T. R.; Fararoda, R.; Jha, C. S.; Dadhwal, V. K.

    2014-11-01

    Tropical forests contribute to approximately 40 % of the total carbon found in terrestrial biomass. In this context, forest/non-forest classification and estimation of forest above ground biomass over tropical regions are very important and relevant in understanding the contribution of tropical forests in global biogeochemical cycles, especially in terms of carbon pools and fluxes. Information on the spatio-temporal biomass distribution acts as a key input to Reducing Emissions from Deforestation and forest Degradation Plus (REDD+) action plans. This necessitates precise and reliable methods to estimate forest biomass and to reduce uncertainties in existing biomass quantification scenarios. The use of backscatter information from a host of allweather capable Synthetic Aperture Radar (SAR) systems during the recent past has demonstrated the potential of SAR data in forest above ground biomass estimation and forest / nonforest classification. In the present study, Advanced Land Observing Satellite (ALOS) / Phased Array L-band Synthetic Aperture Radar (PALSAR) data along with field inventory data have been used in forest above ground biomass estimation and forest / non-forest classification over Odisha state, India. The ALOSPALSAR 50 m spatial resolution orthorectified and radiometrically corrected HH/HV dual polarization data (digital numbers) for the year 2010 were converted to backscattering coefficient images (Schimada et al., 2009). The tree level measurements collected during field inventory (2009-'10) on Girth at Breast Height (GBH at 1.3 m above ground) and height of all individual trees at plot (plot size 0.1 ha) level were converted to biomass density using species specific allometric equations and wood densities. The field inventory based biomass estimations were empirically integrated with ALOS-PALSAR backscatter coefficients to derive spatial forest above ground biomass estimates for the study area. Further, The Support Vector Machines (SVM) based Radial

  15. Tropical forest policies for the global climate

    International Nuclear Information System (INIS)

    De Groot, W.T.; Kamminga, E.M.

    1995-01-01

    A summary is given of the approach and findings of the NRP project 'Local Actors and Global Tree Cover Policies'. The aim of this project was to identify the most effective and efficient options for global climate policies focusing on the tropical forest. Tropical deforestation is a process with very complex and variable causes. In the project's conclusions, therefore, much care has been given to arrive at a coherent image of what really counts most in the myriad of factors, actors, policy levels and policy options. 5 refs

  16. Abiotic Controls on Macroscale Variations of Humid Tropical Forest Height

    Directory of Open Access Journals (Sweden)

    Yan Yang

    2016-06-01

    Full Text Available Spatial variation of tropical forest tree height is a key indicator of ecological processes associated with forest growth and carbon dynamics. Here we examine the macroscale variations of tree height of humid tropical forests across three continents and quantify the climate and edaphic controls on these variations. Forest tree heights are systematically sampled across global humid tropical forests with more than 2.5 million measurements from Geoscience Laser Altimeter System (GLAS satellite observations (2004–2008. We used top canopy height (TCH of GLAS footprints to grid the statistical mean and variance and the 90 percentile height of samples at 0.5 degrees to capture the regional variability of average and large trees globally. We used the spatial regression method (spatial eigenvector mapping-SEVM to evaluate the contributions of climate, soil and topography in explaining and predicting the regional variations of forest height. Statistical models suggest that climate, soil, topography, and spatial contextual information together can explain more than 60% of the observed forest height variation, while climate and soil jointly explain 30% of the height variations. Soil basics, including physical compositions such as clay and sand contents, chemical properties such as PH values and cation-exchange capacity, as well as biological variables such as the depth of organic matter, all present independent but statistically significant relationships to forest height across three continents. We found significant relations between the precipitation and tree height with shorter trees on the average in areas of higher annual water stress, and large trees occurring in areas with low stress and higher annual precipitation but with significant differences across the continents. Our results confirm other landscape and regional studies by showing that soil fertility, topography and climate may jointly control a significant variation of forest height and

  17. Vulnerability of tropical forest ecosystems and forest dependent communities to droughts.

    Science.gov (United States)

    Vogt, D J; Vogt, K A; Gmur, S J; Scullion, J J; Suntana, A S; Daryanto, S; Sigurðardóttir, R

    2016-01-01

    (>3500 mm) levels. By combining data on the ratios of precipitation to the amount of biomass produced in a year with how much less precipitation input occurs during a drought year, it is possible to estimate whether productivity levels are sufficient to support forest growth and forest dependent communities following a drought. In this study, the ratios of annual precipitation inputs required to produce 1 Mg ha(-1) yr(-1) biomass by soil texture class varied across the three soil textural classes. By using a conservative estimate of 20% of productivity collected or harvested by people and 30% precipitation reduction level as triggering a drought, it was possible to estimate a potential loss of annual productivity due to a drought. In this study, the total NPP unavailable due to drought and harvest by forest dependent communities per year was 10.2 Mg ha(-1) yr(-1) for the sandy textured soils (64% of NPP still available), 8.4 Mg ha(-1) yr(-1) for the sandy loam textured soils (60% available) and 12.7 Mg ha(-1) yr(-1) for the clay textured soils (29% available). Forests growing on clay textured soils would be most vulnerable to drought triggered reductions in productivity so NPP levels would be inadequate to maintain ecosystem functions and would potentially cause a forest-to-savanna shift. Further, these forests would not be able to provide sufficient NPP to satisfy the requirements of forest dependent communities. By predicting the productivity responses of different tropical forest ecosystems to changes in precipitation patterns coupled with edaphic data, it could be possible to spatially identify where tropical forests are most vulnerable to climate change impacts and where mitigation efforts should be concentrated. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Phosphate addition enhanced soil inorganic nutrients to a large extent in three tropical forests.

    Science.gov (United States)

    Zhu, Feifei; Lu, Xiankai; Liu, Lei; Mo, Jiangming

    2015-01-21

    Elevated nitrogen (N) deposition may constrain soil phosphorus (P) and base cation availability in tropical forests, for which limited evidence have yet been available. In this study, we reported responses of soil inorganic nutrients to full factorial N and P treatments in three tropical forests different in initial soil N status (N-saturated old-growth forest and two less-N-rich younger forests). Responses of microbial biomass, annual litterfall production and nutrient input were also monitored. Results showed that N treatments decreased soil inorganic nutrients (except N) in all three forests, but the underlying mechanisms varied depending on forests: through inhibition on litter decomposition in the old-growth forest and through Al(3+) replacement of Ca(2+) in the two younger forests. In contrast, besides great elevation in soil available P, P treatments induced 60%, 50%, 26% increases in sum of exchangeable (K(+)+Ca(2+)+Mg(2+)) in the old-growth and the two younger forests, respectively. These positive effects of P were closely related to P-stimulated microbial biomass and litter nutrient input, implying possible stimulation of nutrient return. Our results suggest that N deposition may result in decreases in soil inorganic nutrients (except N) and that P addition can enhance soil inorganic nutrients to support ecosystem processes in these tropical forests.

  19. Allometric Equations for Aboveground and Belowground Biomass Estimations in an Evergreen Forest in Vietnam

    NARCIS (Netherlands)

    Nam, Vu Thanh; van Kuijk, Marijke; Anten, Niels P R

    2016-01-01

    Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations for

  20. Allometric equations for aboveground and belowground biomass estimations in an evergreen forest in Vietnam

    NARCIS (Netherlands)

    Nam, Vu Thanh; Kuijk, Van Marijke; Anten, Niels P.R.

    2016-01-01

    Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations

  1. Height-diameter allometry of tropical forest trees

    Directory of Open Access Journals (Sweden)

    T. R. Feldpausch

    2011-05-01

    Full Text Available Tropical tree height-diameter (H:D relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were:

    1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap.

    2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A.

    3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass.

    Annual precipitation coefficient of variation (PV, dry season length (SD, and mean annual air temperature (TA emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike's information criterion and lowest deviation estimated stand-level H across all plots to within amedian −2.7 to 0.9% of the true value. Some of the plot-to-plot variability in

  2. Canopy Surface Reconstruction and Tropical Forest Parameters Prediction from Airborne Laser Scanner for Large Forest Area

    Science.gov (United States)

    Chen, Z.; Yang, Z.; Chen, Y.; Wang, C.; Qian, J.; Yang, Q.; Chen, X.; Lei, J.

    2017-10-01

    Canopy height model(CHM) and tree mean height are critical forestry parameters that many other parameters such as growth, carbon sequestration, standing timber volume, and biomass can be derived from. LiDAR is a new method used to rapidly estimate these parameters over large areas. The estimation of these parameters has been derived successfully from CHM. However, a number of challenges limit the accurate retrieval of tree height and crowns, especially in tropical forest area. In this study, an improved canopy estimation model is proposed based on dynamic moving window that applied on LiDAR point cloud data. DEM, DSM and CHM of large tropical forest area can be derived from LiDAR data effectively and efficiently.

  3. BIOMASS AND NUTRIENT DYNAMICS OF RESTORED NEOTROPICAL FORESTS

    Science.gov (United States)

    ARIEL E. LUGO; WHENDEE L. SILVER; SANDRA MOLINA COLON

    2004-01-01

    Restoring species-rich tropical forests is an important activity because it helps mitigate land deforestation and degradation. However, scientific understanding of the ecological processes responsible for forest restoration is poor. We review the literature to synthesize the current state of understanding of tropical forest restoration from a biogeochemical point of...

  4. Palm Harvest Impact on Tropical Forests

    DEFF Research Database (Denmark)

    Balslev, Henrik; Eiserhardt, Wolf L.

    Palms are the most useful group of plants in tropical American forests and in this project we study the effect of extraction and trade of palms on forest in the western Amazon, Andes and Pacific lowlands. We determine the size of the resource by making palm community studies in the different forest...... formations and determine the number of species and individuals of all palm species. The genetic structure of useful palm species is studied to determine how much harvesting of the species contributes to genetic erosion of its populations, and whether extraction can be made without harm. We determine how much...... palms are used for subsistence purposes by carrying out quantitative, ethnobotanical research in different forest types and we also study trade patterns for palm products from local markets to markets that involve export to other countries and continents. We study different ways in which palms...

  5. Potentials for forest woody biomass production in Serbia

    Directory of Open Access Journals (Sweden)

    Vasiljević Aleksandar Lj.

    2015-01-01

    Full Text Available The paper presents the analysis of possible potentials for the production of forest biomass in Serbia taking into consideration the condition of forests, present organizational and technical capacities as well as the needs and situation on the firewood market. Starting point for the estimation of production potentials for forest biomass is the condition of forests which is analyzed based on the available planning documents on all levels. Potentials for biomass production and use refer to initial periods in the production and use of forest biomass in Serbia.

  6. Fine root dynamics and trace gas fluxes in two lowland tropical forest soils.

    Science.gov (United States)

    WHENDEE L. SILVER; ANDREW W. THOMPSON; MEGAN E . MCGRODDY; RUTH K. VARNER; JADSON D. DIAS; HUDSON SILVA; CRILL PATRICK M.; MICHAEL KELLER

    2005-01-01

    Fine root dynamics have the potential to contribute significantly to ecosystem-scale biogeochemical cycling, including the production and emission of greenhouse gases. This is particularly true in tropical forests which are often characterized as having large fine root biomass and rapid rates of root production and decomposition. We examined patterns in fine root...

  7. Assessing fire emissions from tropical savanna and forests of central Brazil

    Science.gov (United States)

    Philip J. Riggan; James A. Brass; Robert N. Lockwood

    1993-01-01

    Wildfires in tropical forest and savanna are a strong source of trace gas and particulate emissions to the atmosphere, but estimates of the continental-scale impacts are limited by large uncertainties in the rates of fire occurrence and biomass combustion. Satellite-based remote sensing offers promise for characterizing fire physical properties and impacts on the...

  8. Isoprene emission from tropical forest canopy leaves

    Science.gov (United States)

    Keller, Michael; Lerdau, Manuel

    1999-03-01

    We screened 51 species of trees and vines for isoprene emission by using a tower crane to gain access to the top of the canopy in a semideciduous forest in the Republic of Panama. Of the species screened, 15 emitted isoprene at rates greater than 0.8 nmol m-2 s-1. We measured the influence of light and temperature on emissions. The species-dependent emission rates at 303 K and 1000 μmol m-2 s-1 of incident photosynthetically active radiation ranged from 9 to 43 nmol m-2 s-1 with coefficients of variation of about 20%. Isoprene emission showed a hyperbolic response to light intensity and an exponential response to temperature. We modified an existing algorithm developed for temperate plants to fit the temperature response of these tropical species. We suggest a new algorithm to fit the light response of isoprene emission. The new and modified algorithms are compared to the algorithms developed for temperate plants that are used in global models of isoprene emission. Both sets of algorithms also are compared to additional validation data collected in Panama and to published data on isoprene emission from a tropical dry forest in Puerto Rico. Our comparisons suggest that algorithms developed for temperate plants can significantly underestimate isoprene emissions from tropical forests at high-light and high-temperature levels.

  9. Colossal carbon! Disturbance and biomass dynamics in Alaska's national forests

    Science.gov (United States)

    John Kirkland; Tara Barrett

    2016-01-01

    The Chugach and Tongass National Forests are changing, possibly in response to global warming. Forested areas within Alaska's temperate rain forests are creeping into areas that were previously too cold or too wet. These forests are also becoming denser. As biomass increases, the amount of carbon stored in the forest also increases. Tara Barrett, a...

  10. Forest biomass variation in Southernmost Brazil: the impact of Araucaria trees.

    Science.gov (United States)

    Rosenfield, Milena Fermina; Souza, Alexandre F

    2014-03-01

    A variety of environmental and biotic factors determine vegetation growth and affect plant biomass accumulation. From temperature to species composition, aboveground biomass storage in forest ecosystems is influenced by a number of variables and usually presents a high spatial variability. With this focus, the aim of the study was to evaluate the variables affecting live aboveground forest biomass (AGB) in Subtropical Moist Forests of Southern Brazil, and to analyze the spatial distribution of biomass estimates. Data from a forest inventory performed in the State of Rio Grande do Sul, Southern Brazil, was used in the present study. Thirty-eight 1-ha plots were sampled and all trees with DBH > or = 9.5cm were included for biomass estimation. Values for aboveground biomass were obtained using published allometric equations. Environmental and biotic variables (elevation, rainfall, temperature, soils, stem density and species diversity) were obtained from the literature or calculated from the dataset. For the total dataset, mean AGB was 195.2 Mg/ha. Estimates differed between Broadleaf and Mixed Coniferous-Broadleaf forests: mean AGB was lower in Broadleaf Forests (AGB(BF)=118.9 Mg/ha) when compared to Mixed Forests (AGB(MF)=250.3 Mg/ha). There was a high spatial and local variability in our dataset, even within forest types. This condition is normal in tropical forests and is usually attributed to the presence of large trees. The explanatory multiple regressions were influenced mainly by elevation and explained 50.7% of the variation in AGB. Stem density, diversity and organic matter also influenced biomass variation. The results from our study showed a positive relationship between aboveground biomass and elevation. Therefore, higher values of AGB are located at higher elevations and subjected to cooler temperatures and wetter climate. There seems to be an important contribution of the coniferous species Araucaria angustifolia in Mixed Forest plots, as it presented

  11. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests

    Science.gov (United States)

    Keith, Heather; Mackey, Brendan G.; Lindenmayer, David B.

    2009-01-01

    From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized. PMID:19553199

  12. Statistical strategies for global monitoring of tropical forests

    Science.gov (United States)

    Raymond L. Czaplewski

    1991-01-01

    The Food and Agricultural Organization (FAO) of the United Nations is conducting a global assessment of tropical forest resources, which will be accomplished by mid-1992. This assessment requires, in part, estimates of the total area of tropical forest cover in 1990, and the rate of change in forest cover between 1980 and 1990. This paper describes: (1) the strategic...

  13. Management of tropical forests for products and energy

    Science.gov (United States)

    John I. Zerbe

    1992-01-01

    Tropical forests have always been sources for prized timbers, rubber, tannin, and other forest products for use worldwide. However, with the recent concern regarding global change, the importance of effective forest products management and utilization has increased significantly. The USDA Forest Service's Forest Products Laboratory at Madison, Wisconsin, has...

  14. Multi-temporal lidar test of chronosequence assumptions in secondary tropical forest

    Science.gov (United States)

    Becknell, J.; Porder, S.; Kellner, J. R.; Chazdon, R.

    2016-12-01

    Secondary forests make up more than half of all tropical forests and are a globally significant carbon sink. However, nearly everything known about secondary forest regeneration comes from chronosequence studies that substitute space for time to approximate long-term secondary succession. Here we examine the efficacy of chronosequence predictions over 11 years of forest regrowth using two lidar datasets collected over the La Selva Biological Station in 1998 and 2009, each covering 381 ha of secondary forest and 803 ha of mature forest. We use these data to ask: 1) Do lidar waveforms from different age classes predict forest structure changes from repeated measurements at the same location? 2) Do simulated chronosequences predict the landscape mean biomass change? 3) How do differences in plot size and number affect the accuracy and precision of chronosequence based biomass recovery estimates? Lidar waveforms indicate that tree height and forest structure was similar between 1998 and 2009 for any given age class. For example, an 11-20 year old forest in 1998 had similar lidar returns to an 11-20 year old forest in 2009. Simulated chronosequences predict the landscape mean biomass change, but the accuracy of predictions depends on the size and number of plots used in the chronosequence. In forest with 0-10 years in 1998, 86 to 99% of 1000 simulated chronosequences predict the landscape mean biomass change within 20 Mg/ha depending on the plot size and number. However, predictions in forests with 11-20 years in 1998 are less accurate with 60-71% of predictions within 20 Mg/ha of the landscape mean. With area kept equal, chronosequences with many small plots, rather than fewer larger plots, have a higher probability of accurately predicting the landscape mean biomass change over the 11 year period. Overall, our results suggest both deterministic and stochastic controls on biomass accumulation in these secondary forests.

  15. Tropical Africa: Land use, biomass, and carbon estimates for 1980

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S. [Environmental Protection Agency, Corvallis, OR (United States). Western Ecology Division; Gaston, G. [Environmental Protection Agency, Corvallis, OR (United States). National Research Council; Daniels, R.C. [ed.] [Oak Ridge National Lab., TN (United States)

    1996-06-01

    This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980 and describes a methodology that may be used to extend this data set to 1990 and beyond based on population and land cover data. The biomass data and carbon estimates are for woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with the possible magnitude of historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth`s land surface and includes those countries that for the most part are located in Tropical Africa. Countries bordering the Mediterranean Sea and in southern Africa (i.e., Egypt, Libya, Tunisia, Algeria, Morocco, South Africa, Lesotho, Swaziland, and Western Sahara) have maximum potential biomass and land cover information but do not have biomass or carbon estimate. The database was developed using the GRID module in the ARC/INFO{sup TM} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass-carbon values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

  16. Riparian forest buffers mitigate the effects of deforestation on fish assemblages in tropical headwater streams.

    Science.gov (United States)

    Lorion, Christopher M; Kennedy, Brian P

    2009-03-01

    Riparian forest buffers may play a critical role in moderating the impacts of deforestation on tropical stream ecosystems, but very few studies have examined the ecological effects of riparian buffers in the tropics. To test the hypothesis that riparian forest buffers can reduce the impacts of deforestation on tropical stream biota, we sampled fish assemblages in lowland headwater streams in southeastern Costa Rica representing three different treatments: (1) forested reference stream reaches, (2) stream reaches adjacent to pasture with a riparian forest buffer averaging at least 15 m in width on each bank, and (3) stream reaches adjacent to pasture without a riparian forest buffer. Land cover upstream from the study reaches was dominated by forest at all of the sites, allowing us to isolate the reach-scale effects of the three study treatments. Fish density was significantly higher in pasture reaches than in forest and forest buffer reaches, mostly due to an increase in herbivore-detritivores, but fish biomass did not differ among reach types. Fish species richness was also higher in pasture reaches than in forested reference reaches, while forest buffer reaches were intermediate. Overall, the taxonomic and trophic structure of fish assemblages in forest and forest buffer reaches was very similar, while assemblages in pasture reaches were quite distinct. These patterns were persistent across three sampling periods during our 15-month study. Differences in stream ecosystem conditions between pasture reaches and forested sites, including higher stream temperatures, reduced fruit and seed inputs, and a trend toward increased periphyton abundance, appeared to favor fish species normally found in larger streams and facilitate a native invasion process. Forest buffer reaches, in contrast, had stream temperatures and allochthonous inputs more similar to forested streams. Our results illustrate the importance of riparian areas to stream ecosystem integrity in the tropics

  17. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    Science.gov (United States)

    Batterman, Sarah A.; Hedin, Lars O.; van Breugel, Michiel; Ransijn, Johannes; Craven, Dylan J.; Hall, Jefferson S.

    2013-10-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2), but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000kg carbon per hectare) in the first 12years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.

  18. CMS: Aboveground Biomass for Mangrove Forest, Zambezi River Delta, Mozambique

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides several estimates of aboveground biomass from various regressions and allometries for mangrove forest in the Zambezi River Delta, Mozambique....

  19. Tropical forest transitions: structural changes in forest area, composition and landscape

    NARCIS (Netherlands)

    Wiersum, K.F.

    2014-01-01

    Most studies on tropical forest dynamics focus on the processes of deforestation and forest degradation and its associated ecological impacts; comparatively little attention is given to the emergence of forest transitions. This review gives an overview of forest transitions in the tropics as

  20. Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass

    Science.gov (United States)

    Joetzjer, E.; Pillet, M.; Ciais, P.; Barbier, N.; Chave, J.; Schlund, M.; Maignan, F.; Barichivich, J.; Luyssaert, S.; Hérault, B.; von Poncet, F.; Poulter, B.

    2017-07-01

    Despite advances in Earth observation and modeling, estimating tropical biomass remains a challenge. Recent work suggests that integrating satellite measurements of canopy height within ecosystem models is a promising approach to infer biomass. We tested the feasibility of this approach to retrieve aboveground biomass (AGB) at three tropical forest sites by assimilating remotely sensed canopy height derived from a texture analysis algorithm applied to the high-resolution Pleiades imager in the Organizing Carbon and Hydrology in Dynamic Ecosystems Canopy (ORCHIDEE-CAN) ecosystem model. While mean AGB could be estimated within 10% of AGB derived from census data in average across sites, canopy height derived from Pleiades product was spatially too smooth, thus unable to accurately resolve large height (and biomass) variations within the site considered. The error budget was evaluated in details, and systematic errors related to the ORCHIDEE-CAN structure contribute as a secondary source of error and could be overcome by using improved allometric equations.

  1. Biomass and carbon pools of disturbed riparian forests

    Science.gov (United States)

    Laura A. B. Giese; W. M. Aust; Randall K. Kolka; Carl C. Trettin

    2003-01-01

    Quantification of carbon pools as affected by forest age/development can facilitate riparian restoration and increase awareness of the potential for forests to sequester global carbon. Riparian forest biomass and carbon pools were quantified for four riparian forests representing different seral stages in the South Carolina Upper Coastal Plain. Three of the riparian...

  2. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling

    Science.gov (United States)

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha C.; Thompson, Jill; Zimmerman, Jess K.; Murphy, Lora

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured inter-annual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including above-ground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.

  3. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests.

    Science.gov (United States)

    Cusack, Daniela F; Silver, Whendee L; Torn, Margaret S; Burton, Sarah D; Firestone, Mary K

    2011-03-01

    Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to N deposition and shifts in soil organic matter (SOM) quality and quantity. We used phospholipid fatty acid (PLFA) analysis and microbial enzyme assays in soils to assess microbial community responses to long-term N additions in two distinct tropical rain forests. We used soil density fractionation and 13C nuclear magnetic resonance (NMR) spectroscopy to measure related changes in SOM pool sizes and chemical quality. Microbial biomass increased in response to N fertilization in both tropical forests and corresponded to declines in pools of low-density SOM. The chemical quality of this soil C pool reflected ecosystem-specific changes in microbial community composition. In the lower-elevation forest, there was an increase in gram-negative bacteria PLFA biomass, and there were significant losses of labile C chemical groups (O-alkyls). In contrast, the upper-elevation tropical forest had an increase in fungal PLFAs with N additions and declines in C groups associated with increased soil C storage (alkyls). The dynamics of microbial enzymatic activities with N addition provided a functional link between changes in microbial community structure and SOM chemistry. Ecosystem-specific changes in microbial community composition are likely to have far-reaching effects on soil carbon storage and cycling. This study indicates that microbial communities in N-rich tropical forests can be sensitive to added N, but we can expect significant variability in how ecosystem structure and function respond to N deposition among tropical forest types.

  4. FLORULA URBAN FRAGMENT OF TROPICAL DRY FOREST

    Directory of Open Access Journals (Sweden)

    Willington Barranco-Pérez

    2016-01-01

    Full Text Available The aim of this study was to record the composition of plant species in an urban fragment of tropical dry forest of secondary regeneration (bs-T to generate information that can be used in the planning and management of green spaces in the city of Santa Marta. Transects of 2 x 50 m were established equivalent to 0.1 ha and all species were counted >1.0 cm DBH (Diameter at Breast Height: 1.3m. 100 species of angiosperms were recorded of which 47% have herbaceous habit. The number of species recorded in this study represents 39.6% of the species reported for the hills of Santa Marta and 3.8% for the dry forests of Colombia. It is suggested to isolate this type of secondary formations of any intervention and contemplate the reintroduction of individuals and conservation strategies.

  5. Fruiting and flushing phenology in Asian tropical and temperate forests: implications for primate ecology.

    Science.gov (United States)

    Hanya, Goro; Tsuji, Yamato; Grueter, Cyril C

    2013-04-01

    In order to understand the ecological adaptations of primates to survive in temperate forests, we need to know the general patterns of plant phenology in temperate and tropical forests. Comparative analyses have been employed to investigate general trends in the seasonality and abundance of fruit and young leaves in tropical and temperate forests. Previous studies have shown that (1) fruit fall biomass in temperate forest is lower than in tropical forest, (2) non-fleshy species, in particular acorns, comprise the majority of the fruit biomass in temperate forest, (3) the duration of the fruiting season is shorter in temperate forest, and (4) the fruiting peak occurs in autumn in most temperate forests. Through our comparative analyses of the fruiting and flushing phenology between Asian temperate and tropical forests, we revealed that (1) fruiting is more annually periodic (the pattern in one year is similar to that seen in the next year) in temperate forest in terms of the number of fruiting species or trees, (2) there is no consistent difference in interannual variations in fruiting between temperate and tropical forests, although some oak-dominated temperate forests exhibit extremely large interannual variations in fruiting, (3) the timing of the flushing peak is predictable (in spring and early summer), and (4) the duration of the flushing season is shorter. The flushing season in temperate forests (17-28 % of that in tropical forests) was quite limited, even compared to the fruiting season (68 %). These results imply that temperate primates need to survive a long period of scarcity of young leaves and fruits, but the timing is predictable. Therefore, a dependence on low-quality foods, such as mature leaves, buds, bark, and lichens, would be indispensable for temperate primates. Due to the high predictability of the timing of fruiting and flushing in temperate forests, fat accumulation during the fruit-abundant period and fat metabolization during the

  6. Primary forests are irreplaceable for sustaining tropical biodiversity.

    Science.gov (United States)

    Gibson, Luke; Lee, Tien Ming; Koh, Lian Pin; Brook, Barry W; Gardner, Toby A; Barlow, Jos; Peres, Carlos A; Bradshaw, Corey J A; Laurance, William F; Lovejoy, Thomas E; Sodhi, Navjot S

    2011-09-14

    Human-driven land-use changes increasingly threaten biodiversity, particularly in tropical forests where both species diversity and human pressures on natural environments are high. The rapid conversion of tropical forests for agriculture, timber production and other uses has generated vast, human-dominated landscapes with potentially dire consequences for tropical biodiversity. Today, few truly undisturbed tropical forests exist, whereas those degraded by repeated logging and fires, as well as secondary and plantation forests, are rapidly expanding. Here we provide a global assessment of the impact of disturbance and land conversion on biodiversity in tropical forests using a meta-analysis of 138 studies. We analysed 2,220 pairwise comparisons of biodiversity values in primary forests (with little or no human disturbance) and disturbed forests. We found that biodiversity values were substantially lower in degraded forests, but that this varied considerably by geographic region, taxonomic group, ecological metric and disturbance type. Even after partly accounting for confounding colonization and succession effects due to the composition of surrounding habitats, isolation and time since disturbance, we find that most forms of forest degradation have an overwhelmingly detrimental effect on tropical biodiversity. Our results clearly indicate that when it comes to maintaining tropical biodiversity, there is no substitute for primary forests.

  7. Estimating Tropical Forest Structure Using a Terrestrial Lidar.

    Directory of Open Access Journals (Sweden)

    Michael Palace

    Full Text Available Forest structure comprises numerous quantifiable biometric components and characteristics, which include tree geometry and stand architecture. These structural components are important in the understanding of the past and future trajectories of these biomes. Tropical forests are often considered the most structurally complex and yet least understood of forested ecosystems. New technologies have provided novel avenues for quantifying biometric properties of forested ecosystems, one of which is LIght Detection And Ranging (lidar. This sensor can be deployed on satellite, aircraft, unmanned aerial vehicles, and terrestrial platforms. In this study we examined the efficacy of a terrestrial lidar scanner (TLS system in a tropical forest to estimate forest structure. Our study was conducted in January 2012 at La Selva, Costa Rica at twenty locations in a predominantly undisturbed forest. At these locations we collected field measured biometric attributes using a variable plot design. We also collected TLS data from the center of each plot. Using this data we developed relative vegetation profiles (RVPs and calculated a series of parameters including entropy, Fast Fourier Transform (FFT, number of layers and plant area index to develop statistical relationships with field data. We developed statistical models using a series of multiple linear regressions, all of which converged on significant relationships with the strongest relationship being for mean crown depth (r2 = 0.88, p < 0.001, RMSE = 1.04 m. Tree density was found to have the poorest significant relationship (r2 = 0.50, p < 0.01, RMSE = 153.28 n ha-1. We found a significant relationship between basal area and lidar metrics (r2 = 0.75, p < 0.001, RMSE = 3.76 number ha-1. Parameters selected in our models varied, thus indicating the potential relevance of multiple features in canopy profiles and geometry that are related to field-measured structure. Models for biomass estimation included

  8. Estimating Tropical Forest Structure Using a Terrestrial Lidar.

    Science.gov (United States)

    Palace, Michael; Sullivan, Franklin B; Ducey, Mark; Herrick, Christina

    2016-01-01

    Forest structure comprises numerous quantifiable biometric components and characteristics, which include tree geometry and stand architecture. These structural components are important in the understanding of the past and future trajectories of these biomes. Tropical forests are often considered the most structurally complex and yet least understood of forested ecosystems. New technologies have provided novel avenues for quantifying biometric properties of forested ecosystems, one of which is LIght Detection And Ranging (lidar). This sensor can be deployed on satellite, aircraft, unmanned aerial vehicles, and terrestrial platforms. In this study we examined the efficacy of a terrestrial lidar scanner (TLS) system in a tropical forest to estimate forest structure. Our study was conducted in January 2012 at La Selva, Costa Rica at twenty locations in a predominantly undisturbed forest. At these locations we collected field measured biometric attributes using a variable plot design. We also collected TLS data from the center of each plot. Using this data we developed relative vegetation profiles (RVPs) and calculated a series of parameters including entropy, Fast Fourier Transform (FFT), number of layers and plant area index to develop statistical relationships with field data. We developed statistical models using a series of multiple linear regressions, all of which converged on significant relationships with the strongest relationship being for mean crown depth (r2 = 0.88, p < 0.001, RMSE = 1.04 m). Tree density was found to have the poorest significant relationship (r2 = 0.50, p < 0.01, RMSE = 153.28 n ha-1). We found a significant relationship between basal area and lidar metrics (r2 = 0.75, p < 0.001, RMSE = 3.76 number ha-1). Parameters selected in our models varied, thus indicating the potential relevance of multiple features in canopy profiles and geometry that are related to field-measured structure. Models for biomass estimation included structural canopy

  9. Resource stoichiometry and availability modulate species richness and biomass of tropical litter macro-invertebrates.

    Science.gov (United States)

    Jochum, Malte; Barnes, Andrew D; Weigelt, Patrick; Ott, David; Rembold, Katja; Farajallah, Achmad; Brose, Ulrich

    2017-09-01

    High biodiversity and biomass of soil communities are crucial for litter decomposition in terrestrial ecosystems such as tropical forests. However, the leaf litter that these communities consume is of particularly poor quality as indicated by elemental stoichiometry. The impact of resource quantity, quality and other habitat parameters on species richness and biomass of consumer communities is often studied in isolation, although much can be learned from simultaneously studying both community characteristics. Using a dataset of 780 macro-invertebrate consumer species across 32 sites in tropical lowland rain forest and agricultural systems on Sumatra, Indonesia, we investigated the effects of basal resource stoichiometry (C:X ratios of N, P, K, Ca, Mg, Na, S in local leaf litter), litter mass (basal resource quantity and habitat space), plant species richness (surrogate for litter habitat heterogeneity), and soil pH (acidity) on consumer species richness and biomass across different consumer groups (i.e. 3 feeding guilds and 10 selected taxonomic groups). In order to distinguish the most important predictors of consumer species richness and biomass, we applied a standardised model averaging approach investigating the effects of basal resource stoichiometry, litter mass, plant species richness and soil pH on both consumer community characteristics. This standardised approach enabled us to identify differences and similarities in the magnitude and importance of such effects on consumer species richness and biomass. Across consumer groups, we found litter mass to be the most important predictor of both species richness and biomass. Resource stoichiometry had a more pronounced impact on consumer species richness than on their biomass. As expected, taxonomic groups differed in which resource and habitat parameters (basal resource stoichiometry, litter mass, plant species richness and pH) were most important for modulating their community characteristics. The importance

  10. Quantitative Analysis of Complex Tropical Forest Stands: A Review ...

    African Journals Online (AJOL)

    The importance of data analysis in quantitative assessment of natural resources remains significant in the sustainable management of complex tropical forest resources. Analyses of data from complex tropical forest stands have not been easy or clear due to improper data management. It is pivotal to practical researches ...

  11. Mapping dynamics of deforestation and forest degradation in tropical forests using radar satellite data

    Science.gov (United States)

    Joshi, Neha; Mitchard, Edward TA; Woo, Natalia; Torres, Jorge; Moll-Rocek, Julian; Ehammer, Andrea; Collins, Murray; Jepsen, Martin R.; Fensholt, Rasmus

    2015-03-01

    Mapping anthropogenic forest disturbances has largely been focused on distinct delineations of events of deforestation using optical satellite images. In the tropics, frequent cloud cover and the challenge of quantifying forest degradation remain problematic. In this study, we detect processes of deforestation, forest degradation and successional dynamics, using long-wavelength radar (L-band from ALOS PALSAR) backscatter. We present a detection algorithm that allows for repeated disturbances on the same land, and identifies areas with slow- and fast-recovering changes in backscatter in close spatial and temporal proximity. In the study area in Madre de Dios, Peru, 2.3% of land was found to be disturbed over three years, with a false positive rate of 0.3% of area. A low, but significant, detection rate of degradation from sparse and small-scale selective logging was achieved. Disturbances were most common along the tri-national Interoceanic Highway, as well as in mining areas and areas under no land use allocation. A continuous spatial gradient of disturbance was observed, highlighting artefacts arising from imposing discrete boundaries on deforestation events. The magnitude of initial radar backscatter, and backscatter decrease, suggested that large-scale deforestation was likely in areas with initially low biomass, either naturally or since already under anthropogenic use. Further, backscatter increases following disturbance suggested that radar can be used to characterize successional disturbance dynamics, such as biomass accumulation in lands post-abandonment. The presented radar-based detection algorithm is spatially and temporally scalable, and can support monitoring degradation and deforestation in tropical rainforests with the use of products from ALOS-2 and the future SAOCOM and BIOMASS missions.

  12. Community ecology of tropical forest snails: 30 years after Solem

    NARCIS (Netherlands)

    Schilthuizen, M.

    2011-01-01

    Since Solem’s provocative claim in the early 1980s that land snails in tropical forests are neither abundant nor diverse, at least 30 quantitative-ecological papers on tropical land snail communities have appeared. Jointly, these papers have shown that site diversity is, in fact, high in tropical

  13. Poverty and corruption compromise tropical forest reserves.

    Science.gov (United States)

    Wright, S Joseph; Sanchez-Azofeifa, G Arturo; Portillo-Quintero, Carlos; Davies, Diane

    2007-07-01

    We used the global fire detection record provided by the satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to determine the number of fires detected inside 823 tropical and subtropical moist forest reserves and for contiguous buffer areas 5, 10, and 15 km wide. The ratio of fire detection densities (detections per square kilometer) inside reserves to their contiguous buffer areas provided an index of reserve effectiveness. Fire detection density was significantly lower inside reserves than in paired, contiguous buffer areas but varied by five orders of magnitude among reserves. The buffer: reserve detection ratio varied by up to four orders of magnitude among reserves within a single country, and median values varied by three orders of magnitude among countries. Reserves tended to be least effective at reducing fire frequency in many poorer countries and in countries beset by corruption. Countries with the most successful reserves include Costa Rica, Jamaica, Malaysia, and Taiwan and the Indonesian island of Java. Countries with the most problematic reserves include Cambodia, Guatemala, Paraguay, and Sierra Leone and the Indonesian portion of Borneo. We provide fire detection density for 3964 tropical and subtropical reserves and their buffer areas in the hope that these data will expedite further analyses that might lead to improved management of tropical reserves.

  14. Lacunarity as a texture measure for a tropical forest landscape

    Energy Technology Data Exchange (ETDEWEB)

    Su, Haiping; Krummel, J.

    1996-01-01

    Fragmentation and loss of tropical forest cover alters terrestrial plant and animal population dynamics, reduces biodiversity and carbon storage capacity, and, as a global phenomenon could affect regional and global climate patterns. Lacunarity as a texture measure can offer a simple solution to characterize the texture of tropical forest landscape and determine spatial patterns associated with ecological processes. Lacunarity quantifies the deviation from translational invariance by describing the distribution of gaps within a binary image at multiple scales. As lacunarity increases, the spatial arrangement of tropical forest gaps will also increase. In this study, we used the Spatial Modeler in Imagine as a graphic programming tool to calculate lacunarity indices for a tropical forest landscape in Southern Mexico and Northern Guatemala. Lacunarity indices were derived from classified Landsat MSS images acquired in 1974 and 1984. Random-generated binary images were also used to derive lacunarity indices and compared with the lacunarity of forest patterns derived from the classified MSS images. Tropical forest area declined about 17%, with most of the forest areas converted into pasture/grassland for grazing. During this period, lacunarity increased about 25%. Results of this study suggest that tropical forest fragmentation could be quantified with lacunarity measures. The study also demonstrated that the Spatial Modeler can be useful as a programming tool to quantify spatial patterns of tropical forest landscape by using remotely sensed data.

  15. Aboveground Biomass Variability Across Intact and Degraded Forests in the Brazilian Amazon

    Science.gov (United States)

    Longo, Marcos; Keller, Michael; Dos-Santos, Maiza N.; Leitold, Veronika; Pinage, Ekena R.; Baccini, Alessandro; Saatchi, Sassan; Nogueira, Euler M.; Batistella, Mateus; Morton, Douglas C.

    2016-01-01

    Deforestation rates have declined in the Brazilian Amazon since 2005, yet degradation from logging, re, and fragmentation has continued in frontier forests. In this study we quantified the aboveground carbon density (ACD) in intact and degraded forests using the largest data set of integrated forest inventory plots (n 359) and airborne lidar data (18,000 ha) assembled to date for the Brazilian Amazon. We developed statistical models relating inventory ACD estimates to lidar metrics that explained70 of the variance across forest types. Airborne lidar-ACD estimates for intact forests ranged between 5.0 +/- 2.5 and 31.9 +/- 10.8 kg C m(exp -2). Degradation carbon losses were large and persistent. Sites that burned multiple times within a decade lost up to 15.0 +/- 0.7 kg C m(-2)(94%) of ACD. Forests that burned nearly15 years ago had between 4.1 +/- 0.5 and 6.8 +/- 0.3 kg C m(exp -2) (22-40%) less ACD than intact forests. Even for low-impact logging disturbances, ACD was between 0.7 +/- 0.3 and 4.4 +/- 0.4 kg C m(exp -2)(4-21%) lower than unlogged forests. Comparing biomass estimates from airborne lidar to existing biomass maps, we found that regional and pan-tropical products consistently overestimated ACD in degraded forests, under-estimated ACD in intact forests, and showed little sensitivity to res and logging. Fine-scale heterogeneity in ACD across intact and degraded forests highlights the benefits of airborne lidar for carbon mapping. Differences between airborne lidar and regional biomass maps underscore the need to improve and update biomass estimates for dynamic land use frontiers, to better characterize deforestation and degradation carbon emissions for regional carbon budgets and Reduce Emissions from Deforestation and forest Degradation(REDD+).

  16. Regional biomass stores and dynamics in forests of coastal Alaska

    Science.gov (United States)

    Mikhaill A. Yatskov; Mark E. Harmon; Olga N. Krankina; Tara M. Barrett; Kevin R. Dobelbower; Andrew N. Gray; Becky Fasth; Lori Trummer; Toni L. Hoyman; Chana M. Dudoit

    2015-01-01

    Coastal Alaska is a vast forested region (6.2 million ha) with the potential to store large amounts of carbon in live and dead biomass thus influencing continental and global carbon dynamics. The main objectives of this study were to assess regional biomass stores, examine the biomass partitioning between live and dead pools, and evaluate the effect of disturbance on...

  17. Emissions Of Forest Fires In The Amazon: Impact On The Tropical Mountain Forest In Ecuador

    Science.gov (United States)

    Fabian, P.; Rollenbeck, R.; Thiemens, M. H.; Brothers, L.

    2006-12-01

    Biomass burning is a source of carbon, sulphur, and nitrogen compounds which, along with their photochemically generated reaction products, can be transported over very large distances, even traversing oceans. Four years of regular rain and fog-water measurements in the tropical mountain forest at the eastern slopes of the Ecuadorian Andes, along an altitude profile between 1800 m and 3185 m, have been carried out. The ion composition of rain and fog-water samples shows frequent episodes of significantly enhanced nitrogen and sulphur, resulting in annual deposition rates of about 5 kg N/ha and 10 kg S/ha into this ecosystem, which are comparable to those of polluted central Europe. By relating back trajectories calculated by means of the FLEXTRA model to the distributions of satellite derived forest fire pixels, it can be shown that most episodes of enhanced ion concentration, with pH values as low as 4.0, can be attributed to biomass burning in the Amazon. First analyses of oxygen isotopes 16O, 17O, and 18O of nitrate in fogwater samples show mass independent fractionation values ranging between 15 and 20 per mille, clearly indicating that nitrate in the samples is a product of atmospheric conversion of precursors, while the isotope data of river samples taken downstream of the research area are grouped in the region of microbial nitrate. This strongly supports the aforementioned trajectory results and shows that the tropical mountain forest in Ecuador, with local pollution sources missing,is "fertilized" by long-range transport of substances originating from forest fires in Colombia, Venezuela, Brazil, and Peru, far upwind of the research site.

  18. Loss of aboveground forest biomass and landscape biomass variability in Missouri, US

    Science.gov (United States)

    Brice B. Hanberry; Hong S. He; Stephen R. Shifley

    2016-01-01

    Disturbance regimes and forests have changed over time in the eastern United States. We examined effects of historical disturbance (circa 1813 to 1850) compared to current disturbance (circa 2004 to 2008) on aboveground, live tree biomass (for trees with diameters ≥13 cm) and landscape variation of biomass in forests of the Ozarks and Plains landscapes in Missouri, USA...

  19. Aboveground Biomass and Dynamics of Forest Attributes using LiDAR Data and Vegetation Model

    Science.gov (United States)

    V V L, P. A.

    2015-12-01

    In recent years, biomass estimation for tropical forests has received much attention because of the fact that regional biomass is considered to be a critical input to climate change. Biomass almost determines the potential carbon emission that could be released to the atmosphere due to deforestation or conservation to non-forest land use. Thus, accurate biomass estimation is necessary for better understating of deforestation impacts on global warming and environmental degradation. In this context, forest stand height inclusion in biomass estimation plays a major role in reducing the uncertainty in the estimation of biomass. The improvement in the accuracy in biomass shall also help in meeting the MRV objectives of REDD+. Along with the precise estimate of biomass, it is also important to emphasize the role of vegetation models that will most likely become an important tool for assessing the effects of climate change on potential vegetation dynamics and terrestrial carbon storage and for managing terrestrial ecosystem sustainability. Remote sensing is an efficient way to estimate forest parameters in large area, especially at regional scale where field data is limited. LIDAR (Light Detection And Ranging) provides accurate information on the vertical structure of forests. We estimated average tree canopy heights and AGB from GLAS waveform parameters by using a multi-regression linear model in forested area of Madhya Pradesh (area-3,08,245 km2), India. The derived heights from ICESat-GLAS were correlated with field measured tree canopy heights for 60 plots. Results have shown a significant correlation of R2= 74% for top canopy heights and R2= 57% for stand biomass. The total biomass estimation 320.17 Mt and canopy heights are generated by using random forest algorithm. These canopy heights and biomass maps were used in vegetation models to predict the changes biophysical/physiological characteristics of forest according to the changing climate. In our study we have

  20. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests.

    Science.gov (United States)

    Peres, Carlos A; Emilio, Thaise; Schietti, Juliana; Desmoulière, Sylvain J M; Levi, Taal

    2016-01-26

    Tropical forests are the global cornerstone of biological diversity, and store 55% of the forest carbon stock globally, yet sustained provisioning of these forest ecosystem services may be threatened by hunting-induced extinctions of plant-animal mutualisms that maintain long-term forest dynamics. Large-bodied Atelinae primates and tapirs in particular offer nonredundant seed-dispersal services for many large-seeded Neotropical tree species, which on average have higher wood density than smaller-seeded and wind-dispersed trees. We used field data and models to project the spatial impact of hunting on large primates by ∼ 1 million rural households throughout the Brazilian Amazon. We then used a unique baseline dataset on 2,345 1-ha tree plots arrayed across the Brazilian Amazon to model changes in aboveground forest biomass under different scenarios of hunting-induced large-bodied frugivore extirpation. We project that defaunation of the most harvest-sensitive species will lead to losses in aboveground biomass of between 2.5-5.8% on average, with some losses as high as 26.5-37.8%. These findings highlight an urgent need to manage the sustainability of game hunting in both protected and unprotected tropical forests, and place full biodiversity integrity, including populations of large frugivorous vertebrates, firmly in the agenda of reducing emissions from deforestation and forest degradation (REDD+) programs.

  1. The relative contributions of forest growth and areal expansion to forest biomass carbon

    Science.gov (United States)

    P. Li; J. Zhu; H. Hu; Z. Guo; Y. Pan; R. Birdsey; J. Fang

    2016-01-01

    Forests play a leading role in regional and global terrestrial carbon (C) cycles. Changes in C sequestration within forests can be attributed to areal expansion (increase in forest area) and forest growth (increase in biomass density). Detailed assessment of the relative contributions of areal expansion and forest growth to C sinks is crucial to reveal the mechanisms...

  2. CMS: Estimated Deforested Area Biomass, Tropical America, Africa, and Asia, 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides estimates of pre-deforestation aboveground live woody biomass (AGLB) at 30-m resolution for deforested areas of tropical America, tropical...

  3. Biomass estimation in forest ecosystems - a review | Wakawa ...

    African Journals Online (AJOL)

    Forest ecosystems plays an important role in global warming serving as both sink and source of one of the prominent green house gases, carbon dioxide (CO2). Biomass estimation in forest ecosystems is an important aspect of forest management processes aimed at ensuring sustainability. The choice of appropriate ...

  4. Forest Type and Tree Characteristics Determine the Vertical Distribution of Epiphytic Lichen Biomass in Subtropical Forests

    Directory of Open Access Journals (Sweden)

    Su Li

    2017-11-01

    Full Text Available Epiphytic lichens are an important component in subtropical forests and contribute greatly to forest biodiversity and biomass. However, information on epiphytic lichens still remains scarce in forest conservation owing to the difficulty of accessing all canopy layers for direct observation. Here, epiphytic lichens were quantified on 73 whole trees in five forest types in Southwest China to clarify the vertical stratification of their biomass in subtropical forests. Lichen biomass was significantly influenced by forest type and host attributes, varying from 187.11 to 8.55 g∙tree−1 among forest types and from 289.81 to <0.01 g∙tree−1 among tree species. The vertical stratification of lichen biomass was also determined by forest type, which peaked at the top in primary Lithocarpus forest and middle-aged oak secondary forest and in the middle upper heights in other forests. Overall, the proportion of lichen biomass accounted for 73.17–100.00% of total lichen biomass on branches and 0.00–26.83% on trunks in five forests, and 64.53–100.00% and 0.00–35.47% on eight host species. Seven functional groups showed marked and various responses to tree height between and among forest types. This information improves our understanding of the distribution of epiphytic lichens in forest ecosystems and the promotion of forest management in subtropical China.

  5. Impacts of roads and linear clearings on tropical forests.

    Science.gov (United States)

    Laurance, William F; Goosem, Miriam; Laurance, Susan G W

    2009-12-01

    Linear infrastructure such as roads, highways, power lines and gas lines are omnipresent features of human activity and are rapidly expanding in the tropics. Tropical species are especially vulnerable to such infrastructure because they include many ecological specialists that avoid even narrow (<30-m wide) clearings and forest edges, as well as other species that are susceptible to road kill, predation or hunting by humans near roads. In addition, roads have a major role in opening up forested tropical regions to destructive colonization and exploitation. Here, we synthesize existing research on the impacts of roads and other linear clearings on tropical rainforests, and assert that such impacts are often qualitatively and quantitatively different in tropical forests than in other ecosystems. We also highlight practical measures to reduce the negative impacts of roads and other linear infrastructure on tropical species.

  6. Carbon Dioxide Effects Research and Assessment Program. The role of tropical forests on the world carbon cycle

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.; Lugo, A. E.; Liegel, B. [eds.

    1980-08-01

    Tropical forests constitute about half of the world's forest and are characterized by rapid rates of organic matter turnover and high storages of organic matter. Tropical forests are considered to be one of the most significant terrestrial elements in the equation that balances the carbon cycle of the world. As discussed in the paper by Tosi, tropical and subtropical latitudes are more complex in terms of climate and vegetation composition than temperate and boreal latitudes. The implications of the complexity of the tropics and the disregard of this complexity by many scientists is made evident in the paper by Brown and Lugo which shows that biomass estimates for tropical ecosystems have been overestimated by at least 100%. The paper by Brown shows that that rates of succession in the tropics are extremely rapid in terms of the ability of moist and wet forests to accumulate organic matter. Yet, in arid tropical Life Zones succession is slow. This leads to the idea that the question of whether tropical forests are sinks or sources of carbon must be analyzed in relation to Life Zones and to intensities of human activity in these Zones. The paper by Lugo presents conceptual models to illustrate this point and the paper by Tosi shows how land uses in the tropics also correspond to Life Zone characteristics. The ultimate significance of land use to the question of the carbon balance in a large region is addressed in the paper by Detwiler and Hall.

  7. Carbon emissions from tropical forest degradation caused by logging

    International Nuclear Information System (INIS)

    Pearson, Timothy R H; Brown, Sandra; Casarim, Felipe M

    2014-01-01

    The focus of land-use related efforts in developing countries to reduce carbon emissions has been on slowing deforestation, yet international agreements are to reduce emissions from both deforestation and forest degradation (REDD). The second ‘D’ is poorly understood and accounted for a number of technical and policy reasons. Here we introduce a complete accounting method for estimating emission factors from selective timber harvesting, a substantial form of forest degradation in many tropical developing countries. The method accounts separately for emissions from the extracted log, from incidental damage to the surrounding forest, and from logging infrastructure, and emissions are expressed as units of carbon per cubic meter of timber extracted to allow for simple application to timber harvesting statistics. We applied the method in six tropical countries (Belize, Bolivia, Brazil, Guyana, Indonesia, and Republic of Congo), resulting in total emission factors of 0.99−2.33 Mg C m −3 . In all cases, emissions were dominated by damage to surrounding vegetation and the infrastructure rather than the logs themselves, and total emissions represented about 3–15% of the biomass carbon stocks of the associated unlogged forests. We then combined the emission factors with country level logging statistics for nine key timber producing countries represented by our study areas to gain an understanding of the order of magnitude of emissions from degradation compared to those recently reported for deforestation in the same countries. For the nine countries included, emissions from logging were on average equivalent to about 12% of those from deforestation. For those nine countries with relatively low emissions from deforestation, emissions from logging were equivalent to half or more of those from deforestation, whereas for those countries with the highest emissions from deforestation, emissions from logging were equivalent to <10% of those from deforestation

  8. Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests

    Energy Technology Data Exchange (ETDEWEB)

    Cusack, D.; Silver, W.L.; Torn, M.S.; McDowell, W.H.

    2011-04-15

    Anthropogenic nitrogen (N) deposition is increasing rapidly in tropical regions, adding N to ecosystems that often have high background N availability. Tropical forests play an important role in the global carbon (C) cycle, yet the effects of N deposition on C cycling in these ecosystems are poorly understood. We used a field N-fertilization experiment in lower and upper elevation tropical rain forests in Puerto Rico to explore the responses of above- and belowground C pools to N addition. As expected, tree stem growth and litterfall productivity did not respond to N fertilization in either of these Nrich forests, indicating a lack of N limitation to net primary productivity (NPP). In contrast, soil C concentrations increased significantly with N fertilization in both forests, leading to larger C stocks in fertilized plots. However, different soil C pools responded to N fertilization differently. Labile (low density) soil C fractions and live fine roots declined with fertilization, while mineral-associated soil C increased in both forests. Decreased soil CO2 fluxes in fertilized plots were correlated with smaller labile soil C pools in the lower elevation forest (R2 = 0.65, p\\0.05), and with lower live fine root biomass in the upper elevation forest (R2 = 0.90, p\\0.05). Our results indicate that soil C storage is sensitive to N deposition in tropical forests, even where plant productivity is not N-limited. The mineral-associated soil C pool has the potential to respond relatively quickly to N additions, and can drive increases in bulk soil C stocks in tropical forests.

  9. Multi-stage approach to estimate forest biomass in degraded area by fire and selective logging

    Science.gov (United States)

    Santos, E. G.; Shimabukuro, Y. E.; Arai, E.; Duarte, V.; Jorge, A.; Gasparini, K.

    2017-12-01

    The Amazon forest has been the target of several threats throughout the years. Anthropogenic disturbances in the region can significantly alter this environment, affecting directly the dynamics and structure of tropical forests. Monitoring these threats of forest degradation across the Amazon is of paramount to understand the impacts of disturbances in the tropics. With the advance of new technologies such as Light Detection and Ranging (LiDAR) the quantification and development of methodologies to monitor forest degradation in the Amazon is possible and may bring considerable contributions to this topic. The objective of this study was to use remote sensing data to assess and estimate the aboveground biomass (AGB) across different levels of degradation (fire and selective logging) using multi-stage approach between airborne LiDAR and orbital image. The study area is in the northern part of the state of Mato Grosso, Brazil. It is predominantly characterized by agricultural land and remnants of the Amazon Forest intact and degraded by either anthropic or natural reasons (selective logging and/or fire). More specifically, the study area corresponds to path/row 226/69 of OLI/Landsat 8 image. With a forest mask generated from the multi-resolution segmentation, agriculture and forest areas, forest biomass was calculated from LiDAR data and correlated with texture images, vegetation indices and fraction images by Linear Spectral Unmixing of OLI/Landsat 8 image and extrapolated to the entire scene 226/69 and validated with field inventories. The results showed that there is a moderate to strong correlation between forest biomass and texture data, vegetation indices and fraction images. With that, it is possible to extract biomass information and create maps using optical data, specifically by combining vegetation indices, which contain forest greening information with texture data that contains forest structure information. Then it was possible to extrapolate the biomass

  10. Monitoring coniferous forest biomass change using a Landsat trajectory-based approach

    Science.gov (United States)

    Magdalena Main-Knorn; Warren B. Cohen; Robert E. Kennedy; Wojciech Grodzki; Dirk Pflugmacher; Patrick Griffiths; Patrick Hostert

    2013-01-01

    Forest biomass is a major store of carbon and thus plays an important role in the regional and global carbon cycle. Accurate forest carbon sequestration assessment requires estimation of both forest biomass and forest biomass dynamics over time. Forest dynamics are characterized by disturbances and recovery, key processes affecting site productivity and the forest...

  11. Biomass and Soil Carbon Stocks in Wet Montane Forest, Monteverde Region, Costa Rica: Assessments and Challenges for Quantifying Accumulation Rates

    Directory of Open Access Journals (Sweden)

    Lawrence H. Tanner

    2016-01-01

    Full Text Available We measured carbon stocks at two forest reserves in the cloud forest region of Monteverde, comparing cleared land, experimental secondary forest plots, and mature forest at each location to assess the effectiveness of reforestation in sequestering biomass and soil carbon. The biomass carbon stock measured in the mature forest at the Monteverde Institute is similar to other measurements of mature tropical montane forest biomass carbon in Costa Rica. Local historical records and the distribution of large trees suggest a mature forest age of greater than 80 years. The forest at La Calandria lacks historical documentation, and dendrochronological dating is not applicable. However, based on the differences in tree size, above-ground biomass carbon, and soil carbon between the Monteverde Institute and La Calandria sites, we estimate an age difference of at least 30 years of the mature forests. Experimental secondary forest plots at both sites have accumulated biomass at lower than expected rates, suggesting local limiting factors, such as nutrient limitation. We find that soil carbon content is primarily a function of time and that altitudinal differences between the study sites do not play a role.

  12. Characterizing forest carbon stocks at tropical biome and landscape level in Mount Apo National Park, Philippines

    Science.gov (United States)

    Rubas, L. C.

    2012-12-01

    Forest resources sequester and store carbon, and serve as a natural brake on climate change. In the tropics, the largest source of greenhouse emission is from deforestation and forest degradation (Gibbs et al 2007). This paper attempts to compile sixty (60) existing studies on using remote sensing to measure key environmental forest indicators at two levels of scales: biome and landscape level. At the tropical forest biome level, there is not as much remote sensing studies that have been done as compared to other forest biomes. Also, existing studies on tropical Asia is still sparse compared to other tropical regions in Latin America and Africa. Biomass map is also produced for the tropical biome using keyhole macro language (KML) which is projected on Google Earth. The compiled studies showed there are four indicators being measured using remote sensors in tropical forest. These are biomass, landcover classification, deforestation and cloud cover. The landscape level will focus on Mount Apo National Park in the Philippines which is encompassing a total area of 54,974.87 hectares. It is one of the ten priority sites targeted in the World Bank-assisted Biodiversity Conservation Program. This park serves as the major watershed for the three provinces with 19 major rivers emanating from the montane formations. Only a small fraction of the natural forest that once covered the country remains. In spite of different policies that aim to reduce logging recent commercial deforestation, illegal logging and agricultural expansion pose an important threat to the remaining forest areas. In some locations in the country, these hotspots of deforestation overlap with the protected areas (Verburg et al 2006). The study site was clipped using ArcGIS from the forest biomass carbon density map produced by Gibbs and Brown (2007). Characterization on this national park using vegetation density, elevation, slope, land cover and precipitation will be conducted to determine factors that

  13. Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data

    Directory of Open Access Journals (Sweden)

    Sandra Eckert

    2012-03-01

    Full Text Available Accurate estimation of aboveground biomass and carbon stock has gained importance in the context of the United Nations Framework Convention on Climate Change (UNFCCC and the Kyoto Protocol. In order to develop improved forest stratum–specific aboveground biomass and carbon estimation models for humid rainforest in northeast Madagascar, this study analyzed texture measures derived from WorldView-2 satellite data. A forest inventory was conducted to develop stratum-specific allometric equations for dry biomass. On this basis, carbon was calculated by applying a conversion factor. After satellite data preprocessing, vegetation indices, principal components, and texture measures were calculated. The strength of their relationships with the stratum-specific plot data was analyzed using Pearson’s correlation. Biomass and carbon estimation models were developed by performing stepwise multiple linear regression. Pearson’s correlation coefficients revealed that (a texture measures correlated more with biomass and carbon than spectral parameters, and (b correlations were stronger for degraded forest than for non-degraded forest. For degraded forest, the texture measures of Correlation, Angular Second Moment, and Contrast, derived from the red band, contributed to the best estimation model, which explained 84% of the variability in the field data (relative RMSE = 6.8%. For non-degraded forest, the vegetation index EVI and the texture measures of Variance, Mean, and Correlation, derived from the newly introduced coastal blue band, both NIR bands, and the red band, contributed to the best model, which explained 81% of the variability in the field data (relative RMSE = 11.8%. These results indicate that estimation of tropical rainforest biomass/carbon, based on very high resolution satellite data, can be improved by (a developing and applying forest stratum–specific models, and (b including textural information in addition to spectral information.

  14. Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China.

    Directory of Open Access Journals (Sweden)

    Dunmei Lin

    Full Text Available The subtropical forest biome occupies about 25% of China, with species diversity only next to tropical forests. Despite the recognized importance of subtropical forest in regional carbon storage and cycling, uncertainties remain regarding the carbon storage of subtropical forests, and few studies have quantified within-site variation of biomass, making it difficult to evaluate the role of these forests in the global and regional carbon cycles. Using data for a 24-ha census plot in east China, we quantify aboveground biomass, characterize its spatial variation among different habitats, and analyse species relative contribution to the total aboveground biomass of different habitats. The average aboveground biomass was 223.0 Mg ha(-1 (bootstrapped 95% confidence intervals [217.6, 228.5] and varied substantially among four topographically defined habitats, from 180.6 Mg ha(-1 (bootstrapped 95% CI [167.1, 195.0] in the upper ridge to 245.9 Mg ha(-1 (bootstrapped 95% CI [238.3, 253.8] in the lower ridge, with upper and lower valley intermediate. In consistent with our expectation, individual species contributed differently to the total aboveground biomass of different habitats, reflecting significant species habitat associations. Different species show differently in habitat preference in terms of biomass contribution. These patterns may be the consequences of ecological strategies difference among different species. Results from this study enhance our ability to evaluate the role of subtropical forests in the regional carbon cycle and provide valuable information to guide the protection and management of subtropical broad-leaved forest for carbon sequestration and carbon storage.

  15. Understanding forest-derived biomass supply with GIS modelling

    DEFF Research Database (Denmark)

    Hock, B. K.; Blomqvist, L.; Hall, P.

    2012-01-01

    distribution, and the cost of delivery as forests are frequently remote from energy users. A GIS-based model was developed to predict supply curves of forest biomass material for a site or group of sites, both now and in the future. The GIS biomass supply model was used to assist the New Zealand Energy...... Efficiency and Conservation Authority's development of a national target for biomass use for industrial heat production, to determine potential forest residue volumes for industrial heat and their delivery costs for 19 processing plants of the dairy company Fonterra, and towards investigating options...

  16. Boreal Forest Biomass Classification with TanDEM-X

    Science.gov (United States)

    Torano Caicoya, Astor; Kugler, Florian; Hajnsek, Irena; Papathanassiou, Kostas

    2013-08-01

    High spatial resolution X-band interferometric SAR data from TanDEM-X acquired in the operational DEM generation mode are sensitive to forest structure and can therefore be used for thematic boreal forest classification. The interferometric coherence in absence of temporal decorrelation depends strongly on forest height and structure. Due to the rather homogenous structure of boreal forest, forest biomass can be derived from forest height, on the basis of allometric equations with sufficient accuracy and can therefore, be used for thematic classification applications. Two test sites in mid- and southern Sweden are investigated. A maximum of 4 biomass classes, up to 150 Mg/ha, for a single baseline scenario and 5 biomass classes up to 250 Mg/ha for a dual baseline scenario, are achieved.

  17. Correlation between earthworms and plant litter decomposition in a tropical wet forest of Puerto Rico.

    Science.gov (United States)

    Jennifer Dechainea; Honghua Ruanb; Yaniria Sanchez-de Leon; Xiaoming Zou

    2005-01-01

    Earthworms are recognized to play an important role in the decomposition of organic materials. To test the use of earthworms as an indicator of plant litter decomposition, we examined the abundance and biomass of earthworms in relation to plant litter decomposition in a tropical wet forest of Puerto Rico. We collected earthworms at 0–0.1m and 0.1–0.25m soil depths from...

  18. Trailblazing the Carbon Cycle of Tropical Forests from Puerto Rico

    Directory of Open Access Journals (Sweden)

    Sandra Brown

    2017-03-01

    Full Text Available We review the literature that led to clarifying the role of tropical forests in the global carbon cycle from a time when they were considered sources of atmospheric carbon to the time when they were found to be atmospheric carbon sinks. This literature originates from work conducted by US Forest Service scientists in Puerto Rico and their collaborators. It involves the classification of forests by life zones, estimation of carbon density by forest type, assessing carbon storage changes with ecological succession and land use/land cover type, describing the details of the carbon cycle of forests at stand and landscape levels, assessing global land cover by forest type and the complexity of land use change in tropical regions, and assessing the ecological fluxes and storages that contribute to net carbon accumulation in tropical forests. We also review recent work that couples field inventory data, remote sensing technology such as LIDAR, and GIS analysis in order to more accurately determine the role of tropical forests in the global carbon cycle and point out new avenues of carbon research that address the responses of tropical forests to environmental change.

  19. NPP Multi-Biome: Grassland, Boreal Forest, and Tropical Forest Sites, 1939-1996, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains one data file (.csv format) that provides net primary productivity (NPP) estimates for 34 grasslands, 14 tropical forests, and 5 boreal forest...

  20. VT0005 In Action: National Forest Biomass Inventory Using Airborne Lidar Sampling

    Science.gov (United States)

    Saatchi, S. S.; Xu, L.; Meyer, V.; Ferraz, A.; Yang, Y.; Shapiro, A.; Bastin, J. F.

    2016-12-01

    Tropical countries are required to produce robust and verifiable estimates of forest carbon stocks for successful implementation of climate change mitigation. Lack of systematic national inventory data due to access, cost, and infrastructure, has impacted the capacity of most tropical countries to accurately report the GHG emissions to the international community. Here, we report on the development of the aboveground forest carbon (AGC) map of Democratic Republic of Congo (DRC) by using the VCS (Verified Carbon Standard) methodology developed by Sassan Saatchi (VT0005) using high-resolution airborne LiDAR samples. The methodology provides the distribution of the carbon stocks in aboveground live trees of more than 150 million ha of forests at 1-ha spatial resolution in DRC using more than 430, 000 ha of systematic random airborne Lidar inventory samples of forest structure. We developed a LIDAR aboveground biomass allometry using more than 100 1-ha plots across forest types and power-law model with LIDAR height metrics and average landscape scale wood density. The methodology provided estimates of forest biomass over the entire country using two approaches: 1) mean, variance, and total carbon estimates for each forest type present in DRC using inventory statistical techniques, and 2) a wall-to-wall map of the forest biomass extrapolated using satellite radar (ALOS PALSAR), surface topography from SRTM, and spectral information from Landsat (TM) and machine learning algorithms. We present the methodology, the estimates of carbon stocks and the spatial uncertainty over the entire country. AcknowledgementsThe theoretical research was carried out partially at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, and the design and implementation in the Democratic Republic of Congo was carried out at the Institute of Environment and Sustainability at University of California Los

  1. Landscape Patterns of Wood Density and Aboveground Biomass Along a Tropical Elevation Gradient in Costa Rica

    Science.gov (United States)

    Robinson, C. M.

    2015-12-01

    This research sought to understand how tree wood density and taxonomic diversity relate to topography and three-dimensional vegetation structure in the tropical montane forest of Braulio Carrillo National Park in Costa Rica. The study utilized forest inventory and botanical data from twenty 1-ha plots ranging from 55 m to 2800 m above sea level and remote sensing data from an airborne lidar sensor (NASA's Land, Vegetation, and Ice Sensor [LVIS]) to quantify variations in forest structure. There is growing evidence that ecosystem structure may help to control the functional variations across landscapes. This study relates patterns of tree functional wood density and alpha diversity to three-dimensional structure using remote sensing observations of forest structure. We were able to test the effect of the gradient on wood density measured from collected tree cores and on the subsequent aboveground biomass estimations. We sought to determine if there was a significant pattern of wood density across the altitudinal gradient, which has implications for conservation of both ecosystem services and biodiversity. We also wanted to determine how many random individuals could be sampled to accurately estimate aboveground biomass in a one-hectare plot. Our results indicate that there is a strong relationship between LVIS-derived forest 3D-structure and alpha diversity, likely controlled by variations in abiotic factors and topography along the elevation. Using spatial analysis with the aid of remote sensing data, we found patterns along the environmental gradients defining species composition and forest structure. Wood density values were found to vary significantly from database values for the same species. This variation in tree growth has repercussions on overall forest structure, and subsequent carbon estimates extrapolated from field measurements. Because these wood density values are directly tied to biomass estimates, it is possible that carbon storage has been

  2. CMS: Aboveground Biomass from Penobscot Experimental Forest, Maine, 2012

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes estimates of aboveground biomass (AGB) in 2012 from the Penobscot Experimental Forest (PEF) in Bradley, Maine. The AGB was modeled using LiDAR...

  3. NPP Tropical Forest: Chamela, Mexico, 1982-1995, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains five data files (.txt format). Three data files provide net primary productivity (NPP) estimates for a tropical dry deciduous forest within...

  4. NPP Tropical Forest: Consistent Worldwide Site Estimates, 1967-1999

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Currently available data on net primary production in tropical forests are extremely limited. Even the best estimates for this biome must be thought of as...

  5. Tropical forests can suffer from a serious deficiency of calcium after logging

    International Nuclear Information System (INIS)

    Nykvist, Nils

    2000-01-01

    All harvesting of biomass results in a loss of plant nutrients from the soil. The impact of this loss on forest productivity can be determined only if the total amounts of plant nutrients in logs, other biomass and soil are known. In investigations of tropical rain forest ecosystems the total analysis of calcium is common with regard to logs and other biomass, whereas for soils only the content of exchangeable calcium has been determined. This study, involving a calcium-poor bedrock area in Sabah, Malaysia, shows that the contents of total calcium in the soil can be estimated from figures of exchangeable calcium. In the state of Sabah, these estimated amounts were lower in 19 out of 115 soil profiles compared with the amount measured at our research area at Mendolong in Sabah where a sustainable forestry is not possible with the present rotation period without compensating for the harvest-related loss of calcium

  6. The impacts of tropical cyclones on the net carbon balance of eastern US forests (1851-2000)

    Science.gov (United States)

    Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K. A.; Negrón-Juárez, R. I.

    2013-12-01

    In temperate forests of the eastern US, tropical cyclones are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial progress has been made to quantify forest damage and resulting gross carbon emissions from tropical cyclones. However, the net effect of storms on the carbon balance of forests depends not only on the biomass lost in single events, but also on the uptake during recovery from a mosaic of past events. This study estimates the net impacts of tropical cyclones on the carbon balance of US forests over the period 1851-2000. To track both disturbance and recovery and to isolate the effects of storms, a modeling framework is used combining gridded historical estimates of mortality and damage with a mechanistic model using an ensemble approach. The net effect of tropical cyclones on the carbon balance is shown to depend strongly on the spatial and temporal scales of analysis. On average, tropical cyclones contribute a net carbon source over latter half of the 19th century. However, throughout much of the 20th century a regional carbon sink is estimated resulting from periods of forest recovery exceeding damage. The large-scale net annual flux resulting from tropical cyclones varies by up to 50 Tg C yr-1, an amount equivalent to 17%-36% of the US forest carbon sink.

  7. Community assessment of tropical tree biomass: challenges and opportunities for REDD.

    Science.gov (United States)

    Theilade, Ida; Rutishauser, Ervan; Poulsen, Michael K

    2015-12-01

    REDD+ programs rely on accurate forest carbon monitoring. Several REDD+ projects have recently shown that local communities can monitor above ground biomass as well as external professionals, but at lower costs. However, the precision and accuracy of carbon monitoring conducted by local communities have rarely been assessed in the tropics. The aim of this study was to investigate different sources of error in tree biomass measurements conducted by community monitors and determine the effect on biomass estimates. Furthermore, we explored the potential of local ecological knowledge to assess wood density and botanical identification of trees. Community monitors were able to measure tree DBH accurately, but some large errors were found in girth measurements of large and odd-shaped trees. Monitors with experience from the logging industry performed better than monitors without previous experience. Indeed, only experienced monitors were able to discriminate trees with low wood densities. Local ecological knowledge did not allow consistent tree identification across monitors. Future REDD+ programmes may benefit from the systematic training of local monitors in tree DBH measurement, with special attention given to large and odd-shaped trees. A better understanding of traditional classification systems and concepts is required for local tree identifications and wood density estimates to become useful in monitoring of biomass and tree diversity.

  8. Averting biodiversity collapse in tropical forest protected areas

    Science.gov (United States)

    W.F. Laurance; D.C. Useche; J. Rendeiro; and others NO-VALUE; Ariel Lugo

    2012-01-01

    The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon1–3. With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment...

  9. Andean grasslands are as productive as tropical cloud forests

    NARCIS (Netherlands)

    Oliveras Menor, I.; Girardin, C.; Doughty, C.E.; Cahuana, N.; Arenas, C.E.; Oliver, V.; Huaraca Huasco, W.; Malhi, Y.

    2014-01-01

    We aim to assess net primary productivity (NPP) and carbon cycling in Andean tropical alpine grasslands (puna) and compare it with NPP of tropical montane cloud forests. We ask the following questions: (1) how do NPP and soil respiration of grasslands vary over the seasonal cycle? (2) how do burning

  10. The impact of logging on biodiversity and carbon sequestration in tropical forests

    Science.gov (United States)

    Cazzolla Gatti, R.

    2012-04-01

    Tropical deforestation is one of the most relevant environmental issues at planetary scale. Forest clearcutting has dramatic effect on local biodiversity, on the terrestrial carbon sink and atmospheric GHGs balance. In terms of protection of tropical forests selective logging is, instead, often regarded as a minor or even positive management practice for the ecosystem and it is supported by international certifications. However, few studies are available on changes in the structure, biodiversity and ecosystem services due to the selective logging of African forests. This paper presents the results of a survey on tropical forests of West and Central Africa, with a comparison of long-term dynamics, structure, biodiversity and ecosystem services (such as the carbon sequestration) of different types of forests, from virgin primary to selectively logged and secondary forest. Our study suggests that there is a persistent effect of selective logging on biodiversity and carbon stock losses in the long term (up to 30 years since logging) and after repeated logging. These effects, in terms of species richness and biomass, are greater than the expected losses from commercial harvesting, implying that selective logging in West and Central Africa is impairing long term (at least until 30 years) ecosystem structure and services. A longer selective logging cycle (>30 years) should be considered by logging companies although there is not yet enough information to consider this practice sustainable.

  11. Urgent need for warming experiments in tropical forests.

    Science.gov (United States)

    Cavaleri, Molly A; Reed, Sasha C; Smith, W Kolby; Wood, Tana E

    2015-06-01

    Although tropical forests account for only a fraction of the planet's terrestrial surface, they exchange more carbon dioxide with the atmosphere than any other biome on Earth, and thus play a disproportionate role in the global climate. In the next 20 years, the tropics will experience unprecedented warming, yet there is exceedingly high uncertainty about their potential responses to this imminent climatic change. Here, we prioritize research approaches given both funding and logistical constraints in order to resolve major uncertainties about how tropical forests function and also to improve predictive capacity of earth system models. We investigate overall model uncertainty of tropical latitudes and explore the scientific benefits and inevitable trade-offs inherent in large-scale manipulative field experiments. With a Coupled Model Intercomparison Project Phase 5 analysis, we found that model variability in projected net ecosystem production was nearly 3 times greater in the tropics than for any other latitude. Through a review of the most current literature, we concluded that manipulative warming experiments are vital to accurately predict future tropical forest carbon balance, and we further recommend the establishment of a network of comparable studies spanning gradients of precipitation, edaphic qualities, plant types, and/or land use change. We provide arguments for long-term, single-factor warming experiments that incorporate warming of the most biogeochemically active ecosystem components (i.e. leaves, roots, soil microbes). Hypothesis testing of underlying mechanisms should be a priority, along with improving model parameterization and constraints. No single tropical forest is representative of all tropical forests; therefore logistical feasibility should be the most important consideration for locating large-scale manipulative experiments. Above all, we advocate for multi-faceted research programs, and we offer arguments for what we consider the most

  12. Urgent need for warming experiments in tropical forests

    Science.gov (United States)

    Calaveri, Molly A.; Reed, Sasha C.; Smith, W. Kolby; Wood, Tana E.

    2015-01-01

    Although tropical forests account for only a fraction of the planet's terrestrial surface, they exchange more carbon dioxide with the atmosphere than any other biome on Earth, and thus play a disproportionate role in the global climate. In the next 20 years, the tropics will experience unprecedented warming, yet there is exceedingly high uncertainty about their potential responses to this imminent climatic change. Here, we prioritize research approaches given both funding and logistical constraints in order to resolve major uncertainties about how tropical forests function and also to improve predictive capacity of earth system models. We investigate overall model uncertainty of tropical latitudes and explore the scientific benefits and inevitable trade-offs inherent in large-scale manipulative field experiments. With a Coupled Model Intercomparison Project Phase 5 analysis, we found that model variability in projected net ecosystem production was nearly 3 times greater in the tropics than for any other latitude. Through a review of the most current literature, we concluded that manipulative warming experiments are vital to accurately predict future tropical forest carbon balance, and we further recommend the establishment of a network of comparable studies spanning gradients of precipitation, edaphic qualities, plant types, and/or land use change. We provide arguments for long-term, single-factor warming experiments that incorporate warming of the most biogeochemically active ecosystem components (i.e. leaves, roots, soil microbes). Hypothesis testing of underlying mechanisms should be a priority, along with improving model parameterization and constraints. No single tropical forest is representative of all tropical forests; therefore logistical feasibility should be the most important consideration for locating large-scale manipulative experiments. Above all, we advocate for multi-faceted research programs, and we offer arguments for what we consider the most

  13. Landsat Pathfinder tropical forest information management system

    Science.gov (United States)

    Salas, W.; Chomentowski, W.; Harville, J.; Skole, D.; Vellekamp, K.

    1994-01-01

    A Tropical Forest Information Management System_(TFIMS) has been designed to fulfill the needs of HTFIP in such a way that it tracks all aspects of the generation and analysis of the raw satellite data and the derived deforestation dataset. The system is broken down into four components: satellite image selection, processing, data management and archive management. However, as we began to think of how the TFIMS could also be used to make the data readily accessible to all user communities we realized that the initial system was too project oriented and could only be accessed locally. The new system needed development in the areas of data ingest and storage, while at the same time being implemented on a server environment with a network interface accessible via Internet. This paper summarizes the overall design of the existing prototype (version 0) information management system and then presents the design of the new system (version 1). The development of version 1 of the TFIMS is ongoing. There are no current plans for a gradual transition from version 0 to version 1 because the significant changes are in how the data within the HTFIP will be made accessible to the extended community of scientists, policy makers, educators, and students and not in the functionality of the basic system.

  14. Benchmark map of forest carbon stocks in tropical regions across three continents.

    Science.gov (United States)

    Saatchi, Sassan S; Harris, Nancy L; Brown, Sandra; Lefsky, Michael; Mitchard, Edward T A; Salas, William; Zutta, Brian R; Buermann, Wolfgang; Lewis, Simon L; Hagen, Stephen; Petrova, Silvia; White, Lee; Silman, Miles; Morel, Alexandra

    2011-06-14

    Developing countries are required to produce robust estimates of forest carbon stocks for successful implementation of climate change mitigation policies related to reducing emissions from deforestation and degradation (REDD). Here we present a "benchmark" map of biomass carbon stocks over 2.5 billion ha of forests on three continents, encompassing all tropical forests, for the early 2000s, which will be invaluable for REDD assessments at both project and national scales. We mapped the total carbon stock in live biomass (above- and belowground), using a combination of data from 4,079 in situ inventory plots and satellite light detection and ranging (Lidar) samples of forest structure to estimate carbon storage, plus optical and microwave imagery (1-km resolution) to extrapolate over the landscape. The total biomass carbon stock of forests in the study region is estimated to be 247 Gt C, with 193 Gt C stored aboveground and 54 Gt C stored belowground in roots. Forests in Latin America, sub-Saharan Africa, and Southeast Asia accounted for 49%, 25%, and 26% of the total stock, respectively. By analyzing the errors propagated through the estimation process, uncertainty at the pixel level (100 ha) ranged from ± 6% to ± 53%, but was constrained at the typical project (10,000 ha) and national (>1,000,000 ha) scales at ca. ± 5% and ca. ± 1%, respectively. The benchmark map illustrates regional patterns and provides methodologically comparable estimates of carbon stocks for 75 developing countries where previous assessments were either poor or incomplete.

  15. Aboveground Biomass and Litterfall Dynamics in Secondary Forest ...

    African Journals Online (AJOL)

    The differences in aboveground biomass, litterfall patterns and the seasonality of litterfall in three secondary forest fields aged 1, 5 and 10 years of age regenerating from degraded abandoned rubber plantation and a mature forest were studied in southern Nigeria. This is with a view to understanding the possibility of ...

  16. Preliminary results of the global forest biomass survey

    Science.gov (United States)

    S. Healey; E. Lindquist

    2014-01-01

    Many countries do not yet have well-established national forest inventories, and among those that do, significant methodological differences exist, particularly in the estimation of standing forest biomass. Global space-based LiDAR (Light Detection and Ranging) from NASA’s now-completed ICESat mission provided consistent, high-quality measures of canopy height and...

  17. Modeling population dynamics and woody biomass of Alaska coastal forest

    Science.gov (United States)

    Randy L. Peterson; Jingjing Liang; Tara M. Barrett

    2014-01-01

    Alaska coastal forest, 6.2 million ha in size, has been managed in the past mainly through clearcutting. Declining harvest and dwindling commercial forest resources over the past 2 decades have led to increased interest in management of young-growth stands and utilization of woody biomass for bioenergy. However, existing models to support these new management systems...

  18. Nontraditional Use of Biomass at Certified Forest Management Units: Forest Biomass for Energy Production and Carbon Emissions Reduction in Indonesia

    Directory of Open Access Journals (Sweden)

    Asep S. Suntana

    2012-01-01

    Full Text Available Biomass conversion technologies that produce energy and reduce carbon emissions have become more feasible to develop. This paper analyzes the potential of converting biomass into biomethanol at forest management units experiencing three forest management practices (community-based forest management (CBFM, plantation forest (PF, and natural production forest (NPF. Dry aboveground biomass collected varied considerably: 0.26–2.16 Mg/ha/year (CBFM, 8.08–8.35 Mg/ha/year (NPF, and 36.48–63.55 Mg/ha/year (PF. If 5% of the biomass was shifted to produce biomethanol for electricity production, the NPF and PF could provide continuous power to 138 and 2,762 households, respectively. Dedicating 5% of the biomass was not a viable option from one CBFM unit. However, if all biomasses were converted, the CBFM could provide electricity to 19–27 households. If 100% biomass from two selected PF was dedicated to biomethanol production: (1 52,200–72,600 households could be provided electricity for one year; (2 142–285% of the electricity demand in Jambi province could be satisfied; (3 all gasoline consumed in Jambi, in 2009, would be replaced. The net carbon emissions avoided could vary from 323 to 8,503 Mg when biomethanol was substituted for the natural gas methanol in fuel cells and from 294 to 7,730 Mg when it was used as a gasoline substitute.

  19. NPP Tropical Forest: Gunung Mulu, Malaysia, 1977-1978

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Biomass, litterfall, and nutrient content of different vegetation components and soil for four lowland rain forest types on contrasting soils at Gunung...

  20. NPP Tropical Forest: Marafunga, Papua New Guinea, 1970-1971

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Biomass and nutrient content of different vegetation components and soil for a lower montane secondary rain forest at Marafunga in the highlands of Papua...

  1. Global demand for gold is another threat for tropical forests

    International Nuclear Information System (INIS)

    Alvarez-Berríos, Nora L; Mitchell Aide, T

    2015-01-01

    The current global gold rush, driven by increasing consumption in developing countries and uncertainty in financial markets, is an increasing threat for tropical ecosystems. Gold mining causes significant alteration to the environment, yet mining is often overlooked in deforestation analyses because it occupies relatively small areas. As a result, we lack a comprehensive assessment of the spatial extent of gold mining impacts on tropical forests. In this study, we provide a regional assessment of gold mining deforestation in the tropical moist forest biome of South America. Specifically, we analyzed the patterns of forest change in gold mining sites between 2001 and 2013, and evaluated the proximity of gold mining deforestation to protected areas (PAs). The forest cover maps were produced using the Land Mapper web application and images from the MODIS satellite MOD13Q1 vegetation indices 250 m product. Annual maps of forest cover were used to model the incremental change in forest in ∼1600 potential gold mining sites between 2001–2006 and 2007–2013. Approximately 1680 km 2 of tropical moist forest was lost in these mining sites between 2001 and 2013. Deforestation was significantly higher during the 2007–2013 period, and this was associated with the increase in global demand for gold after the international financial crisis. More than 90% of the deforestation occurred in four major hotspots: Guianan moist forest ecoregion (41%), Southwest Amazon moist forest ecoregion (28%), Tapajós–Xingú moist forest ecoregion (11%), and Magdalena Valley montane forest and Magdalena–Urabá moist forest ecoregions (9%). In addition, some of the more active zones of gold mining deforestation occurred inside or within 10 km of ∼32 PAs. There is an urgent need to understand the ecological and social impacts of gold mining because it is an important cause of deforestation in the most remote forests in South America, and the impacts, particularly in aquatic systems

  2. Quantitative Analysis of Complex Tropical Forest Stands: A Review ...

    African Journals Online (AJOL)

    FIRST LADY

    Disciplinary Journal, Ethiopia. Vol. 4 (3a) July, 2010. ISSN 1994-9057 (Print). ISSN 2070-0083 (Online). Quantitative Analysis of Complex Tropical Forest. Stands: A Review (Pp. 367-377). Oyebade, B. A. - Forest Biometrics & Measurement Unit, ...

  3. Tropical forest conservation versus conversion trade-offs

    NARCIS (Netherlands)

    Mutoko, M.C.; Hein, Lars; Shisanya, Chris A.

    2015-01-01

    Ecosystem services provided by tropical forests are becoming scarcer due to continued deforestation as demand for forest benefits increases with the growing population. There is need for comprehensive valuation of key ecosystem services in order to inform policy and implement better management

  4. Restoring biodiversity and forest ecosystem services in degraded tropical landscapes

    Science.gov (United States)

    John A. Parrotta

    2010-01-01

    Over the past century, an estimated 850 million ha of the world’s tropical forests have been lost or severely degraded, with serious impacts on local and regional biodiversity. A significant proportion of these lands were originally cleared of their forest cover for agricultural development or other economic uses. Today, however, they provide few if any environmental...

  5. Small mammal trapping in tropical montane forests of the Upper ...

    Indian Academy of Sciences (India)

    Capture-mark-recapture was used to study small mammal populations in tropical montane forests in southern India. Eleven plots in six montane forest patches were sampled from February–October, 1994. Six species were captured, including four rodents and two shrews. PROGRAM CAPTURE was used to derive estimates ...

  6. Trailblazing the Carbon Cycle of Tropical Forests from Puerto Rico

    Science.gov (United States)

    Sandra Brown; Ariel Lugo

    2017-01-01

    We review the literature that led to clarifying the role of tropical forests in the global carbon cycle from a time when they were considered sources of atmospheric carbon to the time when they were found to be atmospheric carbon sinks. This literature originates from work conducted by US Forest Service scientists in Puerto Rico and their collaborators. It involves the...

  7. Tropical dry forest recovery : processes and causes of change

    NARCIS (Netherlands)

    Lebrija Trejos, E.E.

    2009-01-01

    Seasonally dry areas are one of the preferred zones for human inhabitance in the tropics. Large forest areas are converted to other land uses and many are covered by secondary forests that grow naturally after cessation of disturbance. Surprisingly, secondary succession in these strongly seasonal

  8. Lianas and trees in tropical forests in south China

    NARCIS (Netherlands)

    Cai, Z.Q.

    2007-01-01

    Lianas (woody climbers) and trees are the most important life-forms in most tropical forests. In many of these forests lianas are abundant and diverse and their presence is often a key physiognomic feature. Lianas contribute substantially to the floristic, structural and functional diversity of

  9. Pattern and control of biomass allocation across global forest ecosystems.

    Science.gov (United States)

    Jiang, Yongtao; Wang, Limei

    2017-07-01

    The underground part of a tree is an important carbon sink in forest ecosystems. Understanding biomass allocation between the below- and aboveground parts ( root:shoot ratios ) is necessary for estimation of the underground biomass and carbon pool. Nevertheless, large-scale biomass allocation patterns and their control mechanisms are not well identified. In this study, a large database of global forests at the community level was compiled to investigate the root:shoot ratios and their responses to environmental factors. The results indicated that both the aboveground biomass ( AGB ) and belowground biomass ( BGB ) of the forests in China (medians 73.0 Mg/ha and 17.0 Mg/ha, respectively) were lower than those worldwide (medians 120.3 Mg/ha and 27.7 Mg/ha, respectively). The root:shoot ratios of the forests in China (median = 0.23), however, were not significantly different from other forests worldwide (median = 0.24). In general, the allocation of biomass between the belowground and aboveground parts was determined mainly by the inherent allometry of the plant but also by environmental factors. In this study, most correlations between root:shoot ratios and environmental factors (development parameter, climate, altitude, and soil) were weak but significant ( p  BGB based on AGB across the entire database.

  10. Mapping Forest Biomass Using Remote Sensing and National Forest Inventory in China

    Directory of Open Access Journals (Sweden)

    Ling Du

    2014-06-01

    Full Text Available Quantifying the spatial pattern of large-scale forest biomass can provide a general picture of the carbon stocks within a region and is of great scientific and political importance. The combination of the advantages of remote sensing data and field survey data can reduce uncertainty as well as demonstrate the spatial distribution of forest biomass. In this study, the seventh national forest inventory statistics (for the period 2004–2008 and the spatially explicit MODIS Land Cover Type product (MCD12C1 were used together to quantitatively estimate the spatially-explicit distribution of forest biomass in China (with a resolution of 0.05°, ~5600 m. Our study demonstrated that the calibrated forest cover proportion maps allow proportionate downscaling of regional forest biomass statistics to forest cover pixels to produce a relatively fine-resolution biomass map. The total stock of forest biomass in China was 11.9 Pg with an average of 76.3 Mg ha−1 during the study period; the high values were located in mountain ranges in northeast, southwest and southeast China and were strongly correlated with forest age and forest density.

  11. On-line CO, CO2 emissions evaluation and (benzene, toluene, xylene) determination from experimental burn of tropical biomass.

    Science.gov (United States)

    Tawfiq, Mohammed F; Aroua, Mohamed Kheireddine; Sulaiman, Nik Meriam Nik

    2015-07-01

    Atmospheric pollution and global warming issues are increasingly becoming major environmental concerns. Fire is one of the significant sources of pollutant gases released into the atmosphere; and tropical biomass fires, which are of particular interest in this study, contribute greatly to the global budget of CO and CO2. This pioneer research simulates the natural biomass burning strategy in Malaysia using an experimental burning facility. The investigation was conducted on the emissions (CO2, CO, and Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)) from ten tropical biomass species. The selected species represent the major tropical forests that are frequently subjected to dry forest fire incidents. An experimental burning facility equipped with an on-line gas analyzer was employed to determine the burning emissions. The major emission factors were found to vary among the species, and the specific results were as follows. The moisture content of a particular biomass greatly influenced its emission pattern. The smoke analysis results revealed the existence of BTEX, which were sampled from a combustion chamber by enrichment traps aided with a universal gas sampler. The BTEX were determined by organic solvent extraction followed by GC/MS quantification, the results of which suggested that the biomass burning emission factor contributed significant amounts of benzene, toluene, and m,p-xylene. The modified combustion efficiency (MCE) changed in response to changes in the sample moisture content. Therefore, this study concluded that the emission of some pollutants mainly depends on the burning phase and sample moisture content of the biomass. Copyright © 2015. Published by Elsevier B.V.

  12. Mapping Aboveground Biomass using Texture Indices from Aerial Photos in a Temperate Forest of Northeastern China

    Directory of Open Access Journals (Sweden)

    Shili Meng

    2016-03-01

    Full Text Available Optical remote sensing data have been considered to display signal saturation phenomena in regions of high aboveground biomass (AGB and multi-storied forest canopies. However, some recent studies using texture indices derived from optical remote sensing data via the Fourier-based textural ordination (FOTO approach have provided promising results without saturation problems for some tropical forests, which tend to underestimate AGB predictions. This study was applied to the temperate mixed forest of the Liangshui National Nature Reserve in Northeastern China and demonstrated the capability of FOTO texture indices to obtain a higher prediction quality of forest AGB. Based on high spatial resolution aerial photos (1.0 m spatial resolution acquired in September 2009, the relationship between FOTO texture indices and field-derived biomass measurements was calibrated using a support vector regression (SVR algorithm. Ten-fold cross-validation was used to construct a robust prediction model, which avoided the over-fitting problem. By further comparison the performance of the model estimates for greater coverage, the predicted results were compared with a reference biomass map derived from LiDAR metrics. This study showed that the FOTO indices accounted for 88.3% of the variance in ground-based AGB; the root mean square error (RMSE was 34.35 t/ha, and RMSE normalized by the mean value of the estimates was 22.31%. This novel texture-based method has great potential for forest AGB estimation in other temperate regions.

  13. Characterizing Tropical Forest Structure using Field-based Measurements and a Terrestrial Lidar

    Science.gov (United States)

    Palace, M. W.; Sullivan, F.; Ducey, M. J.; Herrick, C.

    2015-12-01

    Forest structure comprises numerous quantifiable components of forest biometric characteristics, one of which is tree architecture. This structural component is important in the understanding of the past and future trajectories of these biomes. Tropical forests are often considered the most structurally complex and yet least understood of forested ecosystems. New technologies have provided novel avenues for quantifying properties of forested ecosystems, one of which is LIght Detection And Ranging (lidar). This sensor can be deployed on satellite, aircraft, unmanned aerial vehicles, and terrestrial platforms. In this study we examined the efficacy of a terrestrial lidar scanner (TLS) system in a tropical forest to estimate forest structure. Our study was conducted in January 2012 at La Selva, Costa Rica at twenty locations in predominantly undisturbed forest. At these locations we collected field measured biometric attributes using a variable plot design. We also collected TLS data from the center of each plot. Using this data we developed relative vegetation profiles (RVPs) and calculated a series of parameters including entropy, FFT, number of layers and plant area index to develop statistical relationships with field data. We developed statistical models using multiple linear regressions, all of which converged on statistically significant relationships with the strongest relationship being for mean crown depth (r2 = 0.87, p < 0.01, RMSE = 1.1 m). Tree density was found to have the least strong statistical relationship (r2 = 0.45, p < 0.01, RMSE = 160.7 n ha-1). We found significant relationship between basal area and lidar metrics (r2 = 0.76, p < 0.001, RMSE = 3.68 number ha-1). Models developed for biomass 1 had a higher r-squared value and lower RMSE than that of biomass2 (biomass1: r2 = 0.7, p < 0.01, RMSE = 28.94 Mg ha-1; biomass2: r2 = 0.67, p < 0.01, RMSE = 40.62 Mg ha-1). Parameters selected in our models varied, thus indicating the potential relevance of

  14. Fate of Deposited Nitrogen in Tropical Forests in Southern China

    DEFF Research Database (Denmark)

    Gurmesa, Geshere Abdisa

    Tropical forests are generally regarded as naturally nitrogen (N)-rich ecosystems where N availability is in excess of biological demands. These forests are usually characterized by increased soil N cycling rates such as mineralization and nitrification causing loss of N through leaching...... nitrogen (N) isotope 15N to uncover two aspects of N cycling in tropical forests: i) the patterns of ecosystem natural 15N abundance (δ15N) in relation to the 15N signature of deposition N, and its response to increased N deposition; ii) the fate of ambient and increased N deposition in the same forests...... and denitrification from the ecosystem. Loss of N, in turn, has many negative consequences, including soil and surface water acidification, plant nutrient imbalances and related adverse effects on biological diversities. Increased atmospheric N deposition that is anticipated for tropical regions may further aggravate...

  15. Increasing potential of biomass burning over Sumatra, Indonesia induced by anthropogenic tropical warming

    International Nuclear Information System (INIS)

    Lestari, R Kartika; Watanabe, Masahiro; Kimoto, Masahide; Imada, Yukiko; Shiogama, Hideo; Field, Robert D; Takemura, Toshihiko

    2014-01-01

    Uncontrolled biomass burning in Indonesia during drought periods damages the landscape, degrades regional air quality, and acts as a disproportionately large source of greenhouse gas emissions. The expansion of forest fires is mostly observed in October in Sumatra favored by persistent droughts during the dry season from June to November. The contribution of anthropogenic warming to the probability of severe droughts is not yet clear. Here, we show evidence that past events in Sumatra were exacerbated by anthropogenic warming and that they will become more frequent under a future emissions scenario. By conducting two sets of atmospheric general circulation model ensemble experiments driven by observed sea surface temperature for 1960–2011, one with and one without an anthropogenic warming component, we found that a recent weakening of the Walker circulation associated with tropical ocean warming increased the probability of severe droughts in Sumatra, despite increasing tropical-mean precipitation. A future increase in the frequency of droughts is then suggested from our analyses of the Coupled Model Intercomparison Project Phase 5 model ensembles. Increasing precipitation to the north of the equator accompanies drier conditions over Indonesia, amplified by enhanced ocean surface warming in the central equatorial Pacific. The resultant precipitation decrease leads to a ∼25% increase in severe drought events from 1951–2000 to 2001–2050. Our results therefore indicate the global warming impact to a potential of wide-spreading forest fires over Indonesia, which requires mitigation policy for disaster prevention. (letter)

  16. Increasing potential of biomass burning over Sumatra, Indonesia induced by anthropogenic tropical warming

    Science.gov (United States)

    Kartika Lestari, R.; Watanabe, Masahiro; Imada, Yukiko; Shiogama, Hideo; Field, Robert D.; Takemura, Toshihiko; Kimoto, Masahide

    2014-10-01

    Uncontrolled biomass burning in Indonesia during drought periods damages the landscape, degrades regional air quality, and acts as a disproportionately large source of greenhouse gas emissions. The expansion of forest fires is mostly observed in October in Sumatra favored by persistent droughts during the dry season from June to November. The contribution of anthropogenic warming to the probability of severe droughts is not yet clear. Here, we show evidence that past events in Sumatra were exacerbated by anthropogenic warming and that they will become more frequent under a future emissions scenario. By conducting two sets of atmospheric general circulation model ensemble experiments driven by observed sea surface temperature for 1960-2011, one with and one without an anthropogenic warming component, we found that a recent weakening of the Walker circulation associated with tropical ocean warming increased the probability of severe droughts in Sumatra, despite increasing tropical-mean precipitation. A future increase in the frequency of droughts is then suggested from our analyses of the Coupled Model Intercomparison Project Phase 5 model ensembles. Increasing precipitation to the north of the equator accompanies drier conditions over Indonesia, amplified by enhanced ocean surface warming in the central equatorial Pacific. The resultant precipitation decrease leads to a ˜25% increase in severe drought events from 1951-2000 to 2001-2050. Our results therefore indicate the global warming impact to a potential of wide-spreading forest fires over Indonesia, which requires mitigation policy for disaster prevention.

  17. Pan-Tropical Forest Clearing, 2000-2005

    Science.gov (United States)

    Hansen, M.; Potapov, P.; Pittman, K.; Loveland, T.; Stehman, S.

    2007-12-01

    Quantifying rates of tropical forest cover clearing allows for improved biogeochemical cycle and climate change modeling, management of forestry and agricultural resources, and biodiversity monitoring. As a result, there is a critical need to monitor forest clearing over large areas in a timely manner. While the use of satellite-based observations for monitoring tropical deforestation is well established, consistent and timely monitoring of the entire humid tropics has not been implemented and limits the effective management of this important resource. This paper presents a probability sampling approach employing multi-resolution satellite data to provide timely, synoptic estimates of humid tropical forest cover loss. Biome-wide change indicator maps were created using moderate spatial resolution imagery for 2000 to 2005 from the MODerate Resolution Imaging Spectroradiometer sensor (MODIS). A sample of 183, 18.5km by 18.5km blocks of high spatial resolution image pairs from the Landsat Enhanced Thematic Mapper Plus sensor was used to determine biome-wide area of forest clearing. The sampling strategy employed the MODIS data in the design to stratify the blocks and also in the analysis via a survey sampling regression estimator of forest clearing. This statistically rigorous sampling strategy provides a biome-level clearing estimate with known uncertainty. Forest was defined as greater than 25% canopy cover and change was measured without regard to forest land use. All tree cover assemblages that met the 25% threshold, including intact forests, plantations, and forest regrowth, were defined as forests. Forest area cleared for the biome is estimated to be 1.53% with a standard error of 0.106%. This translates to an estimated area cleared of 29.4 million hectares with a standard error of 2.1 million hectares representing a 2.54% reduction in year 2000 forest cover. Rates of clearing are on a par with those from the 1990's. Regional variation is pronounced, with 48% of

  18. Impacts of tropical cyclones on U.S. forest tree mortality and carbon flux from 1851 to 2000.

    Science.gov (United States)

    Zeng, Hongcheng; Chambers, Jeffrey Q; Negrón-Juárez, Robinson I; Hurtt, George C; Baker, David B; Powell, Mark D

    2009-05-12

    Tropical cyclones cause extensive tree mortality and damage to forested ecosystems. A number of patterns in tropical cyclone frequency and intensity have been identified. There exist, however, few studies on the dynamic impacts of historical tropical cyclones at a continental scale. Here, we synthesized field measurements, satellite image analyses, and empirical models to evaluate forest and carbon cycle impacts for historical tropical cyclones from 1851 to 2000 over the continental U.S. Results demonstrated an average of 97 million trees affected each year over the entire United States, with a 53-Tg annual biomass loss, and an average carbon release of 25 Tg y(-1). Over the period 1980-1990, released CO(2) potentially offset the carbon sink in forest trees by 9-18% over the entire United States. U.S. forests also experienced twice the impact before 1900 than after 1900 because of more active tropical cyclones and a larger extent of forested areas. Forest impacts were primarily located in Gulf Coast areas, particularly southern Texas and Louisiana and south Florida, while significant impacts also occurred in eastern North Carolina. Results serve as an important baseline for evaluating how potential future changes in hurricane frequency and intensity will impact forest tree mortality and carbon balance.

  19. Short-term precipitation exclusion alters microbial responses to soil moisture in a wet tropical forest.

    Science.gov (United States)

    Waring, Bonnie G; Hawkes, Christine V

    2015-05-01

    Many wet tropical forests, which contain a quarter of global terrestrial biomass carbon stocks, will experience changes in precipitation regime over the next century. Soil microbial responses to altered rainfall are likely to be an important feedback on ecosystem carbon cycling, but the ecological mechanisms underpinning these responses are poorly understood. We examined how reduced rainfall affected soil microbial abundance, activity, and community composition using a 6-month precipitation exclusion experiment at La Selva Biological Station, Costa Rica. Thereafter, we addressed the persistent effects of field moisture treatments by exposing soils to a controlled soil moisture gradient in the lab for 4 weeks. In the field, compositional and functional responses to reduced rainfall were dependent on initial conditions, consistent with a large degree of spatial heterogeneity in tropical forests. However, the precipitation manipulation significantly altered microbial functional responses to soil moisture. Communities with prior drought exposure exhibited higher respiration rates per unit microbial biomass under all conditions and respired significantly more CO2 than control soils at low soil moisture. These functional patterns suggest that changes in microbial physiology may drive positive feedbacks to rising atmospheric CO2 concentrations if wet tropical forests experience longer or more intense dry seasons in the future.

  20. Biomass energy, forests and global warming

    International Nuclear Information System (INIS)

    Rosillo-Calle, Frank; Hall, D.O.

    1992-01-01

    Biomass in all its forms currently provides about 14% of the world's energy, equivalent to 25 million bbl oil/day; in developing countries where it is the major energy source, biomass supplies 35% of total energy use. Although biomass energy use affects the flux of carbon to the atmosphere, the main carbon emission problem is caused by fossil fuels and land clearance for agriculture. Biomass fuels make no net contribution to atmospheric CO 2 if used sustainably. A major global revegetation and reforestation effort is a possible strategy to reduce CO 2 emissions and to slow the pace of climatic change. However, a more attractive alternative strategy might be to substitute fossil fuels, especially coal, with biomass grown specifically for this purpose producing modern fuels such as electricity, liquids and gases. This paper examines biomass energy use, devegetation, biomass burning, the implications for global warming and the ability of biomass to sequester CO 2 and substitute for fossil fuels. It also discusses some socioeconomic and political issues. (author)

  1. Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information

    Science.gov (United States)

    J. A. Blackard; M. V. Finco; E. H. Helmer; G. R. Holden; M. L. Hoppus; D.M. Jacobs; A. J. Lister; G. G. Moisen; M. D. Nelson; R. Riemann; B. Ruefenacht; D. Salajanu; D. L. Weyermann; K. C. Winterberger; T. J. Brandeis; R. L. Czaplewski; R. E. McRoberts; P. L. Patterson; R. P. Tymcio

    2008-01-01

    A spatially explicit dataset of aboveground live forest biomass was made from ground measured inventory plots for the conterminous U.S., Alaska and Puerto Rico. The plot data are from the USDA Forest Service Forest Inventory and Analysis (FIA) program. To scale these plot data to maps, we developed models relating field-measured response variables to plot attributes...

  2. Soil Effects on Forest Structure and Diversity in a Moist and a Dry Tropical Forest

    NARCIS (Netherlands)

    Peña-Claros, M.; Poorter, L.; Alarcon, A.; Blate, G.; Choque, U.; Fredericksen, T.S.; Justiniano, J.; Leaño, C.; Licona, J.C.; Pariona, W.; Putz, F.E.; Quevedo, L.; Toledo, M.

    2012-01-01

    Soil characteristics are important drivers of variation in wet tropical forest structure and diversity, but few studies have evaluated these relationships in drier forest types. Using tree and soil data from 48 and 32 1 ha plots, respectively, in a Bolivian moist and dry forest, we asked how soil

  3. Effects of tropical montane forest disturbance on epiphytic macrolichens

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Angel [Instituto de Ecologia, Herbario HUTPL, Universidad Tecnica Particular de Loja, San Cayetano s/n, Loja (Ecuador); Prieto, Maria, E-mail: maria.prieto@urjc.es [Area de Biodiversidad y Conservacion, ESCET, Universidad Rey Juan Carlos, Mostoles, E-28933, Madrid (Spain); Gonzalez, Yadira [Instituto de Ecologia, Herbario HUTPL, Universidad Tecnica Particular de Loja, San Cayetano s/n, Loja (Ecuador); Aragon, Gregorio [Area de Biodiversidad y Conservacion, ESCET, Universidad Rey Juan Carlos, Mostoles, E-28933, Madrid (Spain)

    2012-12-15

    The high diversity of epiphytes typical of undisturbed montane tropical forests has been negatively affected by continuous deforestation and forest conversion to secondary vegetation. Macrolichens are an important component of these epiphytes. Because their physiology is strongly coupled to humidity and solar radiation, we hypothesized that microclimatic changes derived from forest clearing and logging can affect the diversity of these poikilohydric organisms. In southern Ecuador, we examined three types of forests according to a disturbance gradient (primary forests, secondary forests, and monospecific forests of Alnus acuminata) for the presence/absence and coverage of epiphytic macrolichens that we identified on 240 trees. We found that total richness tended to decrease when the range of the disturbance increased. The impoverishment was particularly drastic for 'shade-adapted lichens', while the richness of 'heliophytic lichens' increased in the drier conditions of secondary growth. Epiphytic composition also differed significantly among the three types of forests, and the similarity decreased when the range of the disturbance was greater. We concluded that a span of 40 years of recovery by secondary vegetation was not enough to regenerate the diversity of epiphytic macrolichens that was lost due to forest disturbances. -- Highlights: Black-Right-Pointing-Pointer Tropical montane forest disturbance drastically reduced macrolichen diversity. Black-Right-Pointing-Pointer Species loss was most severe for the 'shade-adapted lichens' because high radiation is harmful to them. Black-Right-Pointing-Pointer In secondary forests lichen diversity of native forests was not regenerated. Black-Right-Pointing-Pointer The protection of remnants of primary tropical forest might help to preserve a diverse community of epiphytic macrolichens.

  4. Controls over leaf litter decomposition in wet tropical forests.

    Science.gov (United States)

    Wieder, William R; Cleveland, Cory C; Townsend, Alan R

    2009-12-01

    Tropical forests play a substantial role in the global carbon (C) cycle and are projected to experience significant changes in climate, highlighting the importance of understanding the factors that control organic matter decomposition in this biome. In the tropics, high temperature and rainfall lead to some of the highest rates of litter decomposition on earth, and given the near-optimal abiotic conditions, litter quality likely exerts disproportionate control over litter decomposition. Yet interactions between litter quality and abiotic variables, most notably precipitation, remain poorly resolved, especially for the wetter end of the tropical forest biome. We assessed the importance of variation in litter chemistry and precipitation in a lowland tropical rain forest in southwest Costa Rica that receives >5000 mm of precipitation per year, using litter from 11 different canopy tree species in conjunction with a throughfall manipulation experiment. In general, despite the exceptionally high rainfall in this forest, simulated throughfall reductions consistently suppressed rates of litter decomposition. Overall, variation between species was greater than that induced by manipulating throughfall and was best explained by initial litter solubility and lignin:P ratios. Collectively, these results support a model of litter decomposition in which mass loss rates are positively correlated with rainfall up to very high rates of mean annual precipitation and highlight the importance of phosphorus availability in controlling microbial processes in many lowland tropical forests.

  5. Forest Biomass Mapping From Lidar and Radar Synergies

    Science.gov (United States)

    Sun, Guoqing; Ranson, K. Jon; Guo, Z.; Zhang, Z.; Montesano, P.; Kimes, D.

    2011-01-01

    The use of lidar and radar instruments to measure forest structure attributes such as height and biomass at global scales is being considered for a future Earth Observation satellite mission, DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice). Large footprint lidar makes a direct measurement of the heights of scatterers in the illuminated footprint and can yield accurate information about the vertical profile of the canopy within lidar footprint samples. Synthetic Aperture Radar (SAR) is known to sense the canopy volume, especially at longer wavelengths and provides image data. Methods for biomass mapping by a combination of lidar sampling and radar mapping need to be developed. In this study, several issues in this respect were investigated using aircraft borne lidar and SAR data in Howland, Maine, USA. The stepwise regression selected the height indices rh50 and rh75 of the Laser Vegetation Imaging Sensor (LVIS) data for predicting field measured biomass with a R(exp 2) of 0.71 and RMSE of 31.33 Mg/ha. The above-ground biomass map generated from this regression model was considered to represent the true biomass of the area and used as a reference map since no better biomass map exists for the area. Random samples were taken from the biomass map and the correlation between the sampled biomass and co-located SAR signature was studied. The best models were used to extend the biomass from lidar samples into all forested areas in the study area, which mimics a procedure that could be used for the future DESDYnI Mission. It was found that depending on the data types used (quad-pol or dual-pol) the SAR data can predict the lidar biomass samples with R2 of 0.63-0.71, RMSE of 32.0-28.2 Mg/ha up to biomass levels of 200-250 Mg/ha. The mean biomass of the study area calculated from the biomass maps generated by lidar- SAR synergy 63 was within 10% of the reference biomass map derived from LVIS data. The results from this study are preliminary, but do show the

  6. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics.

    Science.gov (United States)

    Chazdon, Robin L; Broadbent, Eben N; Rozendaal, Danaë M A; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T Mitchell; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Craven, Dylan; Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernández-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans; Vieira, Ima Celia G; Bentos, Tony Vizcarra; Williamson, G Bruce; Poorter, Lourens

    2016-05-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km(2) of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.

  7. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics

    Science.gov (United States)

    Chazdon, Robin L.; Broadbent, Eben N.; Rozendaal, Danaë M. A.; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T. Mitchell; Balvanera, Patricia; Becknell, Justin M.; Boukili, Vanessa; Brancalion, Pedro H. S.; Craven, Dylan; Almeida-Cortez, Jarcilene S.; Cabral, George A. L.; de Jong, Ben; Denslow, Julie S.; Dent, Daisy H.; DeWalt, Saara J.; Dupuy, Juan M.; Durán, Sandra M.; Espírito-Santo, Mario M.; Fandino, María C.; César, Ricardo G.; Hall, Jefferson S.; Hernández-Stefanoni, José Luis; Jakovac, Catarina C.; Junqueira, André B.; Kennard, Deborah; Letcher, Susan G.; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A.; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R. F.; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A.; Piotto, Daniel; Powers, Jennifer S.; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G.; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B.; Steininger, Marc K.; Swenson, Nathan G.; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D. M.; Vester, Hans; Vieira, Ima Celia G.; Bentos, Tony Vizcarra; Williamson, G. Bruce; Poorter, Lourens

    2016-01-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km2 of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services. PMID:27386528

  8. Lianas reduce carbon accumulation and storage in tropical forests.

    Science.gov (United States)

    van der Heijden, Geertje M F; Powers, Jennifer S; Schnitzer, Stefan A

    2015-10-27

    Tropical forests store vast quantities of carbon, account for one-third of the carbon fixed by photosynthesis, and are a major sink in the global carbon cycle. Recent evidence suggests that competition between lianas (woody vines) and trees may reduce forest-wide carbon uptake; however, estimates of the impact of lianas on carbon dynamics of tropical forests are crucially lacking. Here we used a large-scale liana removal experiment and found that, at 3 y after liana removal, lianas reduced net above-ground carbon uptake (growth and recruitment minus mortality) by ∼76% per year, mostly by reducing tree growth. The loss of carbon uptake due to liana-induced mortality was four times greater in the control plots in which lianas were present, but high variation among plots prevented a significant difference among the treatments. Lianas altered how aboveground carbon was stored. In forests where lianas were present, the partitioning of forest aboveground net primary production was dominated by leaves (53.2%, compared with 39.2% in liana-free forests) at the expense of woody stems (from 28.9%, compared with 43.9%), resulting in a more rapid return of fixed carbon to the atmosphere. After 3 y of experimental liana removal, our results clearly demonstrate large differences in carbon cycling between forests with and without lianas. Combined with the recently reported increases in liana abundance, these results indicate that lianas are an important and increasing agent of change in the carbon dynamics of tropical forests.

  9. Effects of Increased Nitrogen Availability on C and N Cycles in Tropical Forests: A Meta-Analysis.

    Science.gov (United States)

    Bejarano-Castillo, Marylin; Campo, Julio; Roa-Fuentes, Lilia L

    2015-01-01

    Atmospheric N deposition is predicted to increase four times over its current status in tropical forests by 2030. Our ability to understand the effects of N enrichment on C and N cycles is being challenged by the large heterogeneity of the tropical forest biome. The specific response will depend on the forest's nutrient status; however, few studies of N addition appear to incorporate the nutrient status in tropical forests, possibly due to difficulties in explaining how this status is maintained. We used a meta-analysis to explore the consequences of the N enrichment on C and N cycles in tropical montane and lowland forests. We tracked changes in aboveground and belowground plant C and N and in mineral soil in response to N addition. We found an increasing trend of plant biomass in montane forests, but not in lowland forests, as well as a greater increase in NO emission in montane forest compared with lowland forest. The N2O and NO emission increase in both forest; however, the N2O increase in lowland forest was significantly even at first time N addition. The NO emission increase showed be greater at first term compared with long term N addition. Moreover, the increase in total soil N, ammonium, microbial N, and dissolved N concentration under N enrichment indicates a rich N status of lowland forests. The available evidence of N addition experiments shows that the lowland forest is richer in N than montane forests. Finally, the greater increase in N leaching and N gas emission highlights the importance of study the N deposition effect on the global climate change.

  10. Tree diversity, composition, forest structure and aboveground biomass dynamics after single and repeated fire in a Bornean rain forest

    NARCIS (Netherlands)

    Slik, J.W.F.; Bernard, C.S.; Beek, van M.; Breman, F.C.; Eichhorn, K.A.O.

    2008-01-01

    Forest fires remain a devastating phenomenon in the tropics that not only affect forest structure and biodiversity, but also contribute significantly to atmospheric CO2. Fire used to be extremely rare in tropical forests, leaving ample time for forests to regenerate to pre-fire conditions. In recent

  11. Unexpectedly large impact of forest management and grazing on global vegetation biomass

    Science.gov (United States)

    Erb, Karl-Heinz; Kastner, Thomas; Plutzar, Christoph; Bais, Anna Liza S.; Carvalhais, Nuno; Fetzel, Tamara; Gingrich, Simone; Haberl, Helmut; Lauk, Christian; Niedertscheider, Maria; Pongratz, Julia; Thurner, Martin; Luyssaert, Sebastiaan

    2018-01-01

    Carbon stocks in vegetation have a key role in the climate system. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon. In the hypothetical absence of land use, potential vegetation would store around 916 petagrams of carbon, under current climate conditions. This difference highlights the massive effect of land use on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects (the biomass stock changes induced by land use within the same land cover) contribute 42-47%, but have been underestimated in the literature. Therefore, avoiding deforestation is necessary but not sufficient for mitigation of climate change. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change. Efforts to raise biomass stocks are currently verifiable only in temperate forests, where their potential is limited. By contrast, large uncertainties hinder verification in the tropical forest, where the largest potential is located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement.

  12. Total distribution of plant nutrients in a tropical rain forest ecosystem, Sabah, Malaysia

    International Nuclear Information System (INIS)

    Nykvist, N.

    1997-01-01

    Total amounts of plant nutrients in biomass and soil were estimated in a tropical rain forest ecosystem in Sabah, Malaysia. Amounts of some elements, especially calcium, were very low in the soil. The loss of calcium through log removal after clearfelling represented about 19% of the total amount in the ecosystem, indicating that sustainable forestry in this area is not possible without replacing the calcium removed. Neither the calcium content of the biomass nor the amount of exchangeable calcium in the soil were extremely low. Total analyses of the soil, including a complete digestion of the minerals are, therefore, necessary for a satisfactory determination of the long-term productivity of forest soils in areas with low contents of one or more plant nutrients. 37 refs, 1 fig, 5 tabs

  13. Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere.

    Directory of Open Access Journals (Sweden)

    Emma J Sayer

    Full Text Available Aboveground litter production in forests is likely to increase as a consequence of elevated atmospheric carbon dioxide (CO(2 concentrations, rising temperatures, and shifting rainfall patterns. As litterfall represents a major flux of carbon from vegetation to soil, changes in litter inputs are likely to have wide-reaching consequences for soil carbon dynamics. Such disturbances to the carbon balance may be particularly important in the tropics because tropical forests store almost 30% of the global soil carbon, making them a critical component of the global carbon cycle; nevertheless, the effects of increasing aboveground litter production on belowground carbon dynamics are poorly understood. We used long-term, large-scale monthly litter removal and addition treatments in a lowland tropical forest to assess the consequences of increased litterfall on belowground CO(2 production. Over the second to the fifth year of treatments, litter addition increased soil respiration more than litter removal decreased it; soil respiration was on average 20% lower in the litter removal and 43% higher in the litter addition treatment compared to the controls but litter addition did not change microbial biomass. We predicted a 9% increase in soil respiration in the litter addition plots, based on the 20% decrease in the litter removal plots and an 11% reduction due to lower fine root biomass in the litter addition plots. The 43% measured increase in soil respiration was therefore 34% higher than predicted and it is possible that this 'extra' CO(2 was a result of priming effects, i.e. stimulation of the decomposition of older soil organic matter by the addition of fresh organic matter. Our results show that increases in aboveground litter production as a result of global change have the potential to cause considerable losses of soil carbon to the atmosphere in tropical forests.

  14. Land-use dynamics influence estimates of carbon sequestration potential in tropical second-growth forest

    Science.gov (United States)

    Schwartz, Naomi B.; Uriarte, María; DeFries, Ruth; Gutierrez-Velez, Victor H.; Pinedo-Vasquez, Miguel A.

    2017-07-01

    Many countries have made major commitments to carbon sequestration through reforestation under the Paris Climate Agreement, and recent studies have illustrated the potential for large amounts of carbon sequestration in tropical second-growth forests. However, carbon gains in second-growth forests are threatened by non-permanence, i.e. release of carbon into the atmosphere from clearing or disturbance. The benefits of second-growth forests require long-term persistence on the landscape, but estimates of carbon potential rarely consider the spatio-temporal landscape dynamics of second-growth forests. In this study, we used remotely sensed imagery from a landscape in the Peruvian Amazon to examine patterns of second-growth forest regrowth and permanence over 28 years (1985-2013). By 2013, 44% of all forest cover in the study area was second growth and more than 50% of second-growth forest pixels were less than 5 years old. We modeled probabilities of forest regrowth and clearing as a function of landscape factors. The amount of neighboring forest and variables related to pixel position (i.e. distance to edge) were important for predicting both clearing and regrowth. Forest age was the strongest predictor of clearing probability and suggests a threshold response of clearing probability to age. Finally, we simulated future trajectories of carbon sequestration using the parameters from our models. We compared this with the amount of biomass that would accumulate under the assumption of second-growth permanence. Estimates differed by 900 000 tonnes, equivalent to over 80% of Peru’s commitment to carbon sequestration through ‘community reforestation’ under the Paris Agreement. Though the study area has more than 40 000 hectares of second-growth forest, only a small proportion is likely to accumulate significant carbon. Instead, cycles between forest and non-forest are common. Our results illustrate the importance of considering landscape dynamics when assessing

  15. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis.

    Science.gov (United States)

    Cleveland, Cory C; Townsend, Alan R; Taylor, Philip; Alvarez-Clare, Silvia; Bustamante, Mercedes M C; Chuyong, George; Dobrowski, Solomon Z; Grierson, Pauline; Harms, Kyle E; Houlton, Benjamin Z; Marklein, Alison; Parton, William; Porder, Stephen; Reed, Sasha C; Sierra, Carlos A; Silver, Whendee L; Tanner, Edmund V J; Wieder, William R

    2011-09-01

    Tropical rain forests play a dominant role in global biosphere-atmosphere CO(2) exchange. Although climate and nutrient availability regulate net primary production (NPP) and decomposition in all terrestrial ecosystems, the nature and extent of such controls in tropical forests remain poorly resolved. We conducted a meta-analysis of carbon-nutrient-climate relationships in 113 sites across the tropical forest biome. Our analyses showed that mean annual temperature was the strongest predictor of aboveground NPP (ANPP) across all tropical forests, but this relationship was driven by distinct temperature differences between upland and lowland forests. Within lowland forests (tropical forests, but more importantly, underscores the need for a series of large-scale nutrient manipulations - especially in lowland forests - to elucidate the most important nutrient interactions and controls. © 2011 Blackwell Publishing Ltd/CNRS.

  16. Water Quality Response to Forest Biomass Utilization

    Science.gov (United States)

    Benjamin Rau; Augustine Muwamba; Carl Trettin; Sudhanshu Panda; Devendra Amatya; Ernest Tollner

    2017-01-01

    Forested watersheds provide approximately 80% of freshwater drinking resources in the United States (Fox et al. 2007). The water originating from forested watersheds is typically of high quality when compared to agricul¬tural watersheds, and concentrations of nitrogen and phosphorus are nine times higher, on average, in agricultur¬al watersheds when compared to...

  17. The structure of tropical forests and sphere packings.

    Science.gov (United States)

    Taubert, Franziska; Jahn, Markus Wilhelm; Dobner, Hans-Jürgen; Wiegand, Thorsten; Huth, Andreas

    2015-12-08

    The search for simple principles underlying the complex architecture of ecological communities such as forests still challenges ecological theorists. We use tree diameter distributions--fundamental for deriving other forest attributes--to describe the structure of tropical forests. Here we argue that tree diameter distributions of natural tropical forests can be explained by stochastic packing of tree crowns representing a forest crown packing system: a method usually used in physics or chemistry. We demonstrate that tree diameter distributions emerge accurately from a surprisingly simple set of principles that include site-specific tree allometries, random placement of trees, competition for space, and mortality. The simple static model also successfully predicted the canopy structure, revealing that most trees in our two studied forests grow up to 30-50 m in height and that the highest packing density of about 60% is reached between the 25- and 40-m height layer. Our approach is an important step toward identifying a minimal set of processes responsible for generating the spatial structure of tropical forests.

  18. Land crabs as key drivers in tropical coastal forest recruitment

    Science.gov (United States)

    Lindquist, E.S.; Krauss, K.W.; Green, P.T.; O'Dowd, D. J.; Sherman, P.M.; Smith, T. J.

    2009-01-01

    Plant populations are regulated by a diverse assortment of abiotic and biotic factors that influence seed dispersal and viability, and seedling establishment and growth at the microsite. Rarely does one animal guild exert as significant an influence on different plant assemblages as land crabs. We review three tropical coastal ecosystems-mangroves, island maritime forests, and mainland coastal terrestrial forests-where land crabs directly influence forest composition by limiting tree establishment and recruitment. Land crabs differentially prey on seeds, propagules and seedlings along nutrient, chemical and physical environmental gradients. In all of these ecosystems, but especially mangroves, abiotic gradients are well studied, strong and influence plant species distributions. However, we suggest that crab predation has primacy over many of these environmental factors by acting as the first limiting factor of tropical tree recruitment to drive the potential structural and compositional organisation of coastal forests. We show that the influence of crabs varies relative to tidal gradient, shoreline distance, canopy position, time, season, tree species and fruiting periodicity. Crabs also facilitate forest growth and development through such activities as excavation of burrows, creation of soil mounds, aeration of soils, removal of leaf litter into burrows and creation of carbon-rich soil microhabitats. For all three systems, land crabs influence the distribution, density and size-class structure of tree populations. Indeed, crabs are among the major drivers of tree recruitment in tropical coastal forest ecosystems, and their conservation should be included in management plans of these forests. ?? 2009 Cambridge Philosophical Society.

  19. Land crabs as key drivers in tropical coastal forest recruitment.

    Science.gov (United States)

    Lindquist, Erin Stewart; Krauss, Ken W; Green, Peter T; O'Dowd, Dennis J; Sherman, Peter M; Smith, Thomas J

    2009-05-01

    Plant populations are regulated by a diverse assortment of abiotic and biotic factors that influence seed dispersal and viability, and seedling establishment and growth at the microsite. Rarely does one animal guild exert as significant an influence on different plant assemblages as land crabs. We review three tropical coastal ecosystems-mangroves, island maritime forests, and mainland coastal terrestrial forests-where land crabs directly influence forest composition by limiting tree establishment and recruitment. Land crabs differentially prey on seeds, propagules and seedlings along nutrient, chemical and physical environmental gradients. In all of these ecosystems, but especially mangroves, abiotic gradients are well studied, strong and influence plant species distributions. However, we suggest that crab predation has primacy over many of these environmental factors by acting as the first limiting factor of tropical tree recruitment to drive the potential structural and compositional organisation of coastal forests. We show that the influence of crabs varies relative to tidal gradient, shoreline distance, canopy position, time, season, tree species and fruiting periodicity. Crabs also facilitate forest growth and development through such activities as excavation of burrows, creation of soil mounds, aeration of soils, removal of leaf litter into burrows and creation of carbon-rich soil microhabitats. For all three systems, land crabs influence the distribution, density and size-class structure of tree populations. Indeed, crabs are among the major drivers of tree recruitment in tropical coastal forest ecosystems, and their conservation should be included in management plans of these forests.

  20. Effects of Increased Nitrogen Availability on C and N Cycles in Tropical Forests: A Meta-Analysis

    Science.gov (United States)

    2015-01-01

    Atmospheric N deposition is predicted to increase four times over its current status in tropical forests by 2030. Our ability to understand the effects of N enrichment on C and N cycles is being challenged by the large heterogeneity of the tropical forest biome. The specific response will depend on the forest’s nutrient status; however, few studies of N addition appear to incorporate the nutrient status in tropical forests, possibly due to difficulties in explaining how this status is maintained. We used a meta-analysis to explore the consequences of the N enrichment on C and N cycles in tropical montane and lowland forests. We tracked changes in aboveground and belowground plant C and N and in mineral soil in response to N addition. We found an increasing trend of plant biomass in montane forests, but not in lowland forests, as well as a greater increase in NO emission in montane forest compared with lowland forest. The N2O and NO emission increase in both forest; however, the N2O increase in lowland forest was significantly even at first time N addition. The NO emission increase showed be greater at first term compared with long term N addition. Moreover, the increase in total soil N, ammonium, microbial N, and dissolved N concentration under N enrichment indicates a rich N status of lowland forests. The available evidence of N addition experiments shows that the lowland forest is richer in N than montane forests. Finally, the greater increase in N leaching and N gas emission highlights the importance of study the N deposition effect on the global climate change. PMID:26633681

  1. Intact tropical forests, new evidence they uptake carbon actively

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available According to a paper recently published on Nature, tropical forests play as active carbon sink, absorbing 1.3·109 tons of carbon per year on a global scale. Functional interpretation is not clear yet, but a point is quite easy to realize: tropical forests accumulate and contain more carbon than any other vegetation cover and, if their disruption goes on at current rates, these ecosystems could revert to be a “carbon bomb”, releasing huge amount of CO2 to the atmosphere.

  2. Phylogenetic classification of the world’s tropical forests

    Science.gov (United States)

    Franklin, Janet; Arroyo-Rodríguez, Víctor; Field, Richard; Aguilar, Salomon; Aguirre, Nikolay; Ahumada, Jorge; Aiba, Shin-Ichiro; K, Anitha; Avella, Andres; Mora, Francisco; Aymard C., Gerardo A.; Báez, Selene; Balvanera, Patricia; Bastian, Meredith L.; Bastin, Jean-François; Bellingham, Peter J.; van den Berg, Eduardo; da Conceição Bispo, Polyanna; Boeckx, Pascal; Boehning-Gaese, Katrin; Bongers, Frans; Boyle, Brad; Brearley, Francis Q.; Brown, Sandra; Chai, Shauna-Lee; Chazdon, Robin L.; Chen, Shengbin; Chhang, Phourin; Chuyong, George; Ewango, Corneille; Coronado, Indiana M.; Cristóbal-Azkarate, Jurgi; Culmsee, Heike; Damas, Kipiro; Dattaraja, H. S.; Davidar, Priya; DeWalt, Saara J.; Din, Hazimah; Drake, Donald R.; Durigan, Giselda; Eichhorn, Karl; Eler, Eduardo Schmidt; Enoki, Tsutomu; Ensslin, Andreas; Fandohan, Adandé Belarmain; Farwig, Nina; Feeley, Kenneth J.; Fischer, Markus; Forshed, Olle; Garcia, Queila Souza; Garkoti, Satish Chandra; Gillespie, Thomas W.; Gillet, Jean-Francois; Gonmadje, Christelle; Granzow-de la Cerda, Iñigo; Griffith, Daniel M.; Grogan, James; Hakeem, Khalid Rehman; Harris, David J.; Harrison, Rhett D.; Hector, Andy; Hemp, Andreas; Hussain, M. Shah; Ibarra-Manríquez, Guillermo; Hanum, I. Faridah; Imai, Nobuo; Jansen, Patrick A.; Joly, Carlos Alfredo; Joseph, Shijo; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L.; Kessler, Michael; Killeen, Timothy J.; Kooyman, Robert M.; Laumonier, Yves; Laurance, William F.; Lawes, Michael J.; Letcher, Susan G.; Lovett, Jon; Lozada, Jose; Lu, Xinghui; Lykke, Anne Mette; Mahmud, Khairil Bin; Mahayani, Ni Putu Diana; Mansor, Asyraf; Marshall, Andrew R.; Martin, Emanuel H.; Calderado Leal Matos, Darley; Meave, Jorge A.; Melo, Felipe P. L.; Mendoza, Zhofre Huberto Aguirre; Metali, Faizah; Medjibe, Vincent P.; Metzger, Jean Paul; Metzker, Thiago; Mohandass, D.; Munguía-Rosas, Miguel A.; Muñoz, Rodrigo; Nurtjahy, Eddy; de Oliveira, Eddie Lenza; Onrizal; Parolin, Pia; Parren, Marc; Parthasarathy, N.; Paudel, Ekananda; Perez, Rolando; Pérez-García, Eduardo A.; Pommer, Ulf; Poorter, Lourens; Qie, Lan; Piedade, Maria Teresa F.; Pinto, José Roberto Rodrigues; Poulsen, Axel Dalberg; Poulsen, John R.; Powers, Jennifer S.; Prasad, Rama Chandra; Puyravaud, Jean-Philippe; Rangel, Orlando; Reitsma, Jan; Rocha, Diogo S. B.; Rolim, Samir; Rovero, Francesco; Ruokolainen, Kalle; Rutishauser, Ervan; Rutten, Gemma; Mohd. Said, Mohd. Nizam; Saiter, Felipe Z.; Saner, Philippe; Santos, Braulio; dos Santos, João Roberto; Sarker, Swapan Kumar; Schoengart, Jochen; Schulze, Mark; Sheil, Douglas; Sist, Plinio; Souza, Alexandre F.; Spironello, Wilson Roberto; Sposito, Tereza; Steinmetz, Robert; Stevart, Tariq; Suganuma, Marcio Seiji; Sukri, Rahayu; Sukumar, Raman; Sunderland, Terry; Supriyadi; Suresh, H. S.; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jianwei; Tanner, Ed V. J.; Targhetta, Natalia; Theilade, Ida; Thomas, Duncan; Timberlake, Jonathan; de Morisson Valeriano, Márcio; van Valkenburg, Johan; Van Do, Tran; Van Sam, Hoang; Vandermeer, John H.; Verbeeck, Hans; Vetaas, Ole Reidar; Adekunle, Victor; Vieira, Simone A.; Webb, Campbell O.; Webb, Edward L.; Whitfeld, Timothy; Wich, Serge; Williams, John; Wiser, Susan; Wittmann, Florian; Yang, Xiaobo; Adou Yao, C. Yves; Yap, Sandra L.; Zahawi, Rakan A.; Zakaria, Rahmad; Zang, Runguo

    2018-01-01

    Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests. PMID:29432167

  3. NPP Multi-Biome: Grassland, Boreal Forest, and Tropical Forest Sites, 1939-1996, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains one data file (.csv format) that provides net primary productivity (NPP) estimates for 34 grasslands, 14 tropical forests, and 5...

  4. The impact of forest structure and light utilization on carbon cycling in tropical forests

    Science.gov (United States)

    Morton, D. C.; Longo, M.; Leitold, V.; Keller, M. M.

    2015-12-01

    Light competition is a fundamental organizing principle of forest ecosystems, and interactions between forest structure and light availability provide an important constraint on forest productivity. Tropical forests maintain a dense, multi-layered canopy, based in part on abundant diffuse light reaching the forest understory. Climate-driven changes in light availability, such as more direct illumination during drought conditions, therefore alter the potential productivity of forest ecosystems during such events. Here, we used multi-temporal airborne lidar data over a range of Amazon forest conditions to explore the influence of forest structure on gross primary productivity (GPP). Our analysis combined lidar-based observations of canopy illumination and turnover in the Ecosystem Demography model (ED, version 2.2). The ED model was updated to specifically account for regional differences in canopy and understory illumination using lidar-derived measures of canopy light environments. Model simulations considered the influence of forest structure on GPP over seasonal to decadal time scales, including feedbacks from differential productivity between illuminated and shaded canopy trees on mortality rates and forest composition. Finally, we constructed simple scenarios with varying diffuse and direct illumination to evaluate the potential for novel plant-climate interactions under scenarios of climate change. Collectively, the lidar observations and model simulations underscore the need to account for spatial heterogeneity in the vertical structure of tropical forests to constrain estimates of tropical forest productivity under current and future climate conditions.

  5. A new pan-tropical estimate of carbon loss in natural and managed forests in 2000-2012

    Science.gov (United States)

    Tyukavina, A.; Baccini, A.; Hansen, M.; Potapov, P.; Stehman, S. V.; Houghton, R. A.; Krylov, A.; Turubanova, S.; Goetz, S. J.

    2015-12-01

    Clearing of tropical forests, which includes semi-permanent conversion of forests to other land uses (deforestation) and more temporary forest disturbances, is a significant source of carbon emissions. The previous estimates of tropical forest carbon loss vary among studies due to the differences in definitions, methodologies and data inputs. The best currently available satellite-derived datasets, such as a 30-m forest cover loss map by Hansen et al. (2013), may be used to produce methodologically consistent carbon loss estimates for the entire tropical region, but forest cover loss area derived from maps is biased due to classification errors. In this study we produced an unbiased estimate of forest cover loss area from a validation sample, as suggested by good practice recommendations. Stratified random sampling was implemented with forest carbon stock strata defined based on Landsat-derived tree canopy cover, height, intactness (Potapov et al., 2008) and forest cover loss (Hansen et al., 2013). The largest difference between the sample-based and Hansen et al. (2013) forest loss area estimates occurred in humid tropical Africa. This result supports the earlier finding (Tyukavina et al., 2013) that Landsat-based forest cover loss maps may significantly underestimate loss area in regions with small-scale forest dynamics while performing well in regions with large industrial forest clearing, such as Brazil and Indonesia (where differences between sample-based and map estimates were within 10%). To produce final carbon loss estimates, sample-based forest loss area estimates for each stratum were related to GLAS-lidar derived forest biomass (Baccini et al., 2012). Our sample-based results distinguish gross losses of aboveground carbon from natural forests (0.59 PgC/yr), which include primary, mature secondary forests and natural woodlands, and from managed forests (0.43 PgC/yr), which include plantations, agroforestry systems and areas of subsistence agriculture

  6. A tale of two "forests": random forest machine learning AIDS tropical forest carbon mapping.

    Directory of Open Access Journals (Sweden)

    Joseph Mascaro

    Full Text Available Accurate and spatially-explicit maps of tropical forest carbon stocks are needed to implement carbon offset mechanisms such as REDD+ (Reduced Deforestation and Degradation Plus. The Random Forest machine learning algorithm may aid carbon mapping applications using remotely-sensed data. However, Random Forest has never been compared to traditional and potentially more reliable techniques such as regionally stratified sampling and upscaling, and it has rarely been employed with spatial data. Here, we evaluated the performance of Random Forest in upscaling airborne LiDAR (Light Detection and Ranging-based carbon estimates compared to the stratification approach over a 16-million hectare focal area of the Western Amazon. We considered two runs of Random Forest, both with and without spatial contextual modeling by including--in the latter case--x, and y position directly in the model. In each case, we set aside 8 million hectares (i.e., half of the focal area for validation; this rigorous test of Random Forest went above and beyond the internal validation normally compiled by the algorithm (i.e., called "out-of-bag", which proved insufficient for this spatial application. In this heterogeneous region of Northern Peru, the model with spatial context was the best preforming run of Random Forest, and explained 59% of LiDAR-based carbon estimates within the validation area, compared to 37% for stratification or 43% by Random Forest without spatial context. With the 60% improvement in explained variation, RMSE against validation LiDAR samples improved from 33 to 26 Mg C ha(-1 when using Random Forest with spatial context. Our results suggest that spatial context should be considered when using Random Forest, and that doing so may result in substantially improved carbon stock modeling for purposes of climate change mitigation.

  7. Forest harvesting reduces the soil metagenomic potential for biomass decomposition.

    Science.gov (United States)

    Cardenas, Erick; Kranabetter, J M; Hope, Graeme; Maas, Kendra R; Hallam, Steven; Mohn, William W

    2015-11-01

    Soil is the key resource that must be managed to ensure sustainable forest productivity. Soil microbial communities mediate numerous essential ecosystem functions, and recent studies show that forest harvesting alters soil community composition. From a long-term soil productivity study site in a temperate coniferous forest in British Columbia, 21 forest soil shotgun metagenomes were generated, totaling 187 Gb. A method to analyze unassembled metagenome reads from the complex community was optimized and validated. The subsequent metagenome analysis revealed that, 12 years after forest harvesting, there were 16% and 8% reductions in relative abundances of biomass decomposition genes in the organic and mineral soil layers, respectively. Organic and mineral soil layers differed markedly in genetic potential for biomass degradation, with the organic layer having greater potential and being more strongly affected by harvesting. Gene families were disproportionately affected, and we identified 41 gene families consistently affected by harvesting, including families involved in lignin, cellulose, hemicellulose and pectin degradation. The results strongly suggest that harvesting profoundly altered below-ground cycling of carbon and other nutrients at this site, with potentially important consequences for forest regeneration. Thus, it is important to determine whether these changes foreshadow long-term changes in forest productivity or resilience and whether these changes are broadly characteristic of harvested forests.

  8. Fragmentation impairs the microclimate buffering effect of tropical forests.

    Science.gov (United States)

    Ewers, Robert M; Banks-Leite, Cristina

    2013-01-01

    Tropical forest species are among the most sensitive to changing climatic conditions, and the forest they inhabit helps to buffer their microclimate from the variable climatic conditions outside the forest. However, habitat fragmentation and edge effects exposes vegetation to outside microclimatic conditions, thereby reducing the ability of the forest to buffer climatic variation. In this paper, we ask what proportion of forest in a fragmented ecosystem is impacted by altered microclimate conditions driven by edge effects, and extrapolate these results to the whole Atlantic Forest biome, one of the most disturbed biodiversity hotspots. To address these questions, we collected above and below ground temperature for a full year using temperature sensors placed in forest fragments of different sizes, and at different distances from the forest edge. In the Atlantic forests of Brazil, we found that the buffering effect of forests reduced maximum outside temperatures by one third or more at ground level within a forest, with the buffering effect being stronger below-ground than one metre above-ground. The temperature buffering effect of forests was, however, reduced near forest edges with the edge effect extending up to 20 m inside the forest. The heavily fragmented nature of the Brazilian Atlantic forest means that 12% of the remaining biome experiences altered microclimate conditions. Our results add further information about the extent of edge effects in the Atlantic Forest, and we suggest that maintaining a low perimeter-to-area ratio may be a judicious method for minimizing the amount of forest area that experiences altered microclimatic conditions in this ecosystem.

  9. Humus forms in two secondary semi-evergreen tropical forests

    OpenAIRE

    Loranger, Gladys; Ponge, Jean-François; Lavelle, Patrick

    2003-01-01

    International audience; The dynamics and function of humus forms in tropical forests are still poorly understood. Humus profiles in two secondary semi-evergreen woodlands in Guadeloupe (French West Indies) were analysed micromorphologically. The humus forms are described under the canopy of five dominant tree species at two sites: under Pisonia subcordata and Bursera simaruba in a secondary forest on a Leptosol (Rendzina), and under Swietenia macrophylla, Tabebuia heterophylla and B. simaruba...

  10. Hurricane Impacts to Tropical and Temperate Forest Landscapes

    OpenAIRE

    Boose, Emery Robert; Foster, David Russell; Fluet, Marcheterre

    1994-01-01

    Hurricanes represent an important natural disturbance process to tropical and temperate forests in many coastal areas of the world. The complex patterns of damage created in forests by hurricane winds result from the interaction of meteorological, physiographic, and biotic factors on a range of spatial scales. To improve our understanding of these factors and of the role of catastrophic hurricane wind as a disturbance process, we take an integrative approach. A simple meteorological model (HU...

  11. Forest dynamics in tropical rain forests of Uttara Kannada district in Western Ghats, India

    OpenAIRE

    Bhat, DM; Naik, MB; Patagar, SG; Hegde, GT; Kanade, YG; Hegde, GN; Shastri, CM; Shetti, DM; Furtado, RM

    2000-01-01

    Species richness, tree and stem density, basal area and recruitment details were monitored for ten years (1984 to 1994) in eight one-hectare forest sites in evergreen and moist deciduous forest zones of the tropical rain forests in Uttara Kannada district of the Western Chats in southern India, Changes in species richness and basal area were observed in majority of the forest sites. Loss of more number of stems and trees as well as species was observed in minor forests of the evergreen forest...

  12. Login wood. Logistic for the Treatment of Forest Biomass; Loginwood. Logistica para el tratamiento de biomasa forestal

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Sanchez, R.; Ayala Schraemili, F.

    2008-07-01

    This paper is about developing a logistic for the treatment of the forest prunes, including specific machines so far. Collecting, treatment, and transportation of forest biomass residues to valuation energy plant. Key words: collecting, treatment, transportation of forest prunes. (Author)

  13. Soil and biomass carbon pools in model communities of tropical plants under elevated CO2.

    Science.gov (United States)

    Arnone, J A; Körner, Ch

    1995-09-01

    The experimental data presented here relate to the question of whether terrestrial ecosystems will sequester more C in their soils, litter and biomass as atmospheric CO 2 concentrations rise. Similar to our previous study with relatively fertile growth conditions (Körner and Arnone 1992), we constructed four rather nutrient-limited model communities of moist tropical plant species in greenhouses (approximately 7 m 2 each). Plant communities were composed of seven species (77 individuals per community) representing major taxonomic groups and various life forms found in the moist tropics. Two ecosystems were exposed to 340 μl CO 2 l -1 and two to 610 μl l -1 for 530 days of humid tropical growth conditions. In order to permit precise determination of C deposition in the soil, plant communities were initially established in C-free unwashed quartz sand. Soils were then amended with known amounts of organic matter (containing C and nutrients). Mineral nutrients were also supplied over the course of the experiment as timed-release full-balance fertilizer pellets. Soils represented by far the largest repositories for fixed C in all ecosystems. Almost 5 times more C (ca. 80% of net C fixation) was sequestered in the soil than in the biomass, but this did not differ between CO 2 treatments. In addition, at the whole-ecosystem level we found a remarkably small and statistically non-significant increase in C sequestration (+4%; the sum of C accretion in the soil, biomass, litter and necromass). Total community biomass more than quadrupled during the experiment, but at harvest was, on average, only 8% greater (i.e. 6% per year; n.s.) under elevated CO 2 , mainly due to increased root biomass (+15%, P=0.12). Time courses of leaf area index of all ecosystems suggested that canopy expansion was approaching steady state by the time systems were harvested. Net primary productivity (NPP) of all ecosystems-i.e. annual accumulation of biomass, necromass, and leaf litter (but not

  14. Tracking disturbance-regrowth dynamics in tropical forests using structural change detection and Landsat time series

    NARCIS (Netherlands)

    DeVries, B.R.; Decuyper, M.; Verbesselt, J.; Zeileis, A.; Herold, M.; Joseph, S.

    2015-01-01

    Increasing attention on tropical deforestation and forest degradation has necessitated more detailed knowledge of forest change dynamics in the tropics. With an increasing amount of satellite data being released to the public free of charge, understanding forest change dynamics in the tropics is

  15. Humid tropical rain forest has expanded into eucalypt forest and savanna over the last 50 years.

    Science.gov (United States)

    Tng, David Y P; Murphy, Brett P; Weber, Ellen; Sanders, Gregor; Williamson, Grant J; Kemp, Jeanette; Bowman, David M J S

    2012-01-01

    Tropical rain forest expansion and savanna woody vegetation thickening appear to be a global trend, but there remains uncertainty about whether there is a common set of global drivers. Using geographic information techniques, we analyzed aerial photography of five areas in the humid tropics of northeastern Queensland, Australia, taken in the 1950s and 2008, to determine if changes in rain forest extent match those reported for the Australian monsoon tropics using similar techniques. Mapping of the 1950s aerial photography showed that of the combined study area (64,430 ha), 63% was classified as eucalypt forests/woodland and 37% as rain forest. Our mapping revealed that although most boundaries remained stable, there was a net increase of 732 ha of the original rain forest area over the study period, and negligible conversion of rain forest to eucalypt forest/woodland. Statistical modeling, controlling for spatial autocorrelation, indicated distance from preexisting rain forest as the strongest determinant of rain forest expansion. Margin extension had a mean rate across the five sites of 0.6 m per decade. Expansion was greater in tall open forest types but also occurred in shorter, more flammable woodland vegetation types. No correlations were detected with other local variables (aspect, elevation, geology, topography, drainage). Using a geographically weighted mean rate of rain forest margin extension across the whole region, we predict that over 25% of tall open forest (a forest type of high conservation significance) would still remain after 2000 years of rain forest expansion. This slow replacement is due to the convoluted nature of the rain forest boundary and the irregular shape of the tall open forest patches. Our analyses point to the increased concentration of atmospheric CO(2) as the most likely global driver of indiscriminate rain forest expansion occurring in northeastern Australia, by increasing tree growth and thereby overriding the effects of fire

  16. A dataset of forest biomass structure for Eurasia

    Science.gov (United States)

    Schepaschenko, Dmitry; Shvidenko, Anatoly; Usoltsev, Vladimir; Lakyda, Petro; Luo, Yunjian; Vasylyshyn, Roman; Lakyda, Ivan; Myklush, Yuriy; See, Linda; McCallum, Ian; Fritz, Steffen; Kraxner, Florian; Obersteiner, Michael

    2017-05-01

    The most comprehensive dataset of in situ destructive sampling measurements of forest biomass in Eurasia have been compiled from a combination of experiments undertaken by the authors and from scientific publications. Biomass is reported as four components: live trees (stem, bark, branches, foliage, roots); understory (above- and below ground); green forest floor (above- and below ground); and coarse woody debris (snags, logs, dead branches of living trees and dead roots), consisting of 10,351 unique records of sample plots and 9,613 sample trees from ca 1,200 experiments for the period 1930-2014 where there is overlap between these two datasets. The dataset also contains other forest stand parameters such as tree species composition, average age, tree height, growing stock volume, etc., when available. Such a dataset can be used for the development of models of biomass structure, biomass extension factors, change detection in biomass structure, investigations into biodiversity and species distribution and the biodiversity-productivity relationship, as well as the assessment of the carbon pool and its dynamics, among many others.

  17. Biomass publications of the forest operations research unit: A synthesis

    Science.gov (United States)

    Dana Mitchell; Renee Ayala; [Compilers

    2005-01-01

    The Forest Operations Unit of the Southern Research Station has been studying biomass-related topics since 1977. This CD aids the reader by organizing these publications in one easy-to-use CD. This CD is comprised of an executive summary, two bibliographies, individual publications (in PDF format), and a keyword listing. The types of publications included on this CD...

  18. Forest biomass resources and utilization in China | Zhang | African ...

    African Journals Online (AJOL)

    China has rich biodiversity with 30 thousand high plant species and 154 kinds of energy trees could produce seeds containing more than 40% of oil, with total production of the ... In view of climate change their globally significant environmental benefits may result from using forest biomass for energy rather than fossil fuels.

  19. Liberation: Acceptable production of tropical forest timber.

    Science.gov (United States)

    Frank H. Wadsworth; Johan Zweede

    2006-01-01

    Reduced impact logging in an eastern Amazonian terra firme forest left more than half of the next crop trees growing at a rate corresponding to a rotation of more than a century to attain 60-cm dbh. Two years after the logging, in 20 ha of the logged forest, tree competitors around crop trees were eliminated. Competitors were defined as trees whose crowns overtopped...

  20. Strong carbon sink of monsoon tropical seasonal forest in Southern Vietnam

    Science.gov (United States)

    Deshcherevskaya, Olga; Anichkin, Alexandr; Avilov, Vitaly; Duy Dinh, Ba; Luu Do, Phong; Huan Tran, Cong; Kurbatova, Julia

    2014-05-01

    Comparison between anthropogenic emission of carbon dioxide and atmospheric carbon pool change displays that only half of emitted CO2 remains in air, leaving so-called 'missing sink' of carbon. Terrestrial biosphere and ocean accumulate each about a half of this value (Gifford, 1994). Forest biomes play the decisive role in 'missing sink' because of high primary production flux and large carbon pool. Almost all the sink belongs to boreal forests, because warming and wetting coupled with increasing CO2 concentration and N deposition gives more favorable conditions for boreal ecosystems. On the contrary, tropical climate changes effect on forests is not obvious, probably cause more drought conditions; tropical forests suffer from 1.2 % per year area reduction and disturbance. Whether primary tropical forests act as carbon sink is still unclear. Biomass inventories at 146 forest plots across all the tropics in 1987-1997 revealed low carbon sink in humid forests biomass of 49 (29-66; 95% C.I.) g C m-2 year-1 on average (Malhi, 2010). Estimates for undisturbed African forests are close to global (Ciais et al., 2008). Eddy covariance (EC) observations with weak-turbulence correction in Amazonia reveal near-zero or small negative (i.e. sink) balance (Clark, 2004). Three EC sites in SE Asia primary forests give near-zero balance again (Saigusa et al., 2008; Kosugi et al., 2012). There are two main groups of explanations of moderate tropical carbon sink: (a) recovering of large-disturbance in the past or (b) response to current atmospheric changes: increase of CO2 concentration and/or climate change. So, strong carbon accumulation is not common for primary tropical forests. In this context sink of 402 g C m-2 in 2012 at EC station of Nam Cat Tien (NCT), Southern Vietnam (N 11°27', E 107°24', 134 m a.s.l.) in primary monsoon tropical forest looks questionably. EC instrument set at NCT consists of CSAT3 sonic anemometer and LI-7500A open-path gas analyzer. All the standard

  1. Feedstock quality : an important consideration in forest biomass supply

    Energy Technology Data Exchange (ETDEWEB)

    Ryans, M. [FP Innovations, Vancouver, BC (Canada). FERIC

    2009-07-01

    The move to forest-based sources of biomass requires an emphasis on the quality of forest residues. Customers set the feedstock requirements, and demand homogeneous and predictable quality. The top quality factors are appropriate moisture content, consistent particle size, chlorine content, and clean material. The seasonal variability of the resource means that suppliers must determine how to deliver a year-round supply with appropriate moisture content. Methods such as pre-piling and covering with a tarp are being tested. Although mills tailored for biomass deliveries have modernized boilers capable of burning a variety of biomass feedstocks at varying moisture contents, a 10 per cent reduction in moisture content can offer a good return on investment because suppliers could transports more energy content and less water per tonne of biomass. This presentation also discussed the range of equipment choices available for delivering the right-sized biomass, and outlined the right and wrong practices that influence biomass quality along the supply chain. figs.

  2. Averting biodiversity collapse in tropical forest protected areas

    Czech Academy of Sciences Publication Activity Database

    Laurence, W. F.; Novotný, Vojtěch

    2012-01-01

    Roč. 489, č. 7415 (2012), s. 290-294 ISSN 0028-0836 Grant - others:NSF grant(AU) RCN-0741956 Institutional support: RVO:60077344 Keywords : biodiversity * tropical forest * collapse Subject RIV: EH - Ecology, Behaviour Impact factor: 38.597, year: 2012 http://www.nature.com/nature/journal/vaop/ncurrent/pdf/nature11318.pdf

  3. Bioremediation of a crude oil polluted tropical rain forest soil ...

    African Journals Online (AJOL)

    A combination of options including Biostimulation with agricultural fertilizers, Bioaugumentation and physical processes were evaluated in-situ in the clean-up of crude oil polluted tropical rain forest soil for a period of nine weeks. Soil physicochemical parameters such as moisture (19% to 13%), pH (6.34 to 4.5) and organic ...

  4. Wood CO2 efflux in a primary tropical rain forest

    Science.gov (United States)

    Molly A. Cavaleri; Steven F. Oberbauer; Michael G. Ryan

    2006-01-01

    The balance between photosynthesis and plant respiration in tropical forests may substantially affect the global carbon cycle. Woody tissue CO2 efflux is a major component of total plant respiration, but estimates of ecosystem-scale rates are uncertain because of poor sampling in the upper canopy and across landscapes. To overcome these problems, we used a portable...

  5. Propagation of dry tropical forest trees in Mexico

    Science.gov (United States)

    Martha A. Cervantes Sanchez

    2002-01-01

    There is a distinct lack of technical information on the propagation of native tree species from the dry tropical forest ecosystem in Mexico. This ecosystem has come under heavy human pressures to obtain several products such as specialty woods for fuel, posts for fences and construction, forage, edible fruits, stakes for horticulture crops, and medicinal products. The...

  6. Hydrometeorology of tropical montane cloud forests: emerging patterns

    NARCIS (Netherlands)

    Bruijnzeel, L.A.; Mulligan, M.; Scatena, F.N.

    2011-01-01

    Tropical montane cloud forests (TMCF) typically experience conditions of frequent to persistent fog. On the basis of the altitudinal limits between which TMCF generally occur (800-3500 m.a.s.l. depending on mountain size and distance to coast) their current areal extent is estimated at ∼215 000 km

  7. Issues of Tropical Forest Transformation in Ashanti Region: Testing ...

    African Journals Online (AJOL)

    Studies have revealed that there was a dramatic loss of forests in West Africa during the 20th century due to pressure of population growth and poverty. However some scholars have challenged this view. This paper adopts a political ecology approach to argue that the dominant global discourse of tropical deforestation ...

  8. Autochthonous white rot fungi from the tropical forest: Potential of ...

    African Journals Online (AJOL)

    Autochthonous white rot fungi from the tropical forest: Potential of Cuban strains for dyes and textile industrial effluents decolourisation. MI Sánchez-López, SF Vanhulle, V Mertens, G Guerra, SH Figueroa, C Decock, A Corbisier, MJ Penninckx ...

  9. Increasing carbon storage in intact African tropical forests

    NARCIS (Netherlands)

    Lewis, S.L.; Lopez-Gonzalez, G.; Sonké, B.; Affum-Baffoe, K.; Ewango, C.E.N.

    2009-01-01

    The response of terrestrial vegetation to a globally changing environment is central to predictions of future levels of atmospheric carbon dioxide1, 2. The role of tropical forests is critical because they are carbon-dense and highly productive3, 4. Inventory plots across Amazonia show that

  10. Ant Foraging As an Indicator of Tropical Dry Forest Restoration.

    Science.gov (United States)

    Hernández-Flores, J; Osorio-Beristain, M; Martínez-Garza, C

    2016-08-01

    Variation in foraging behavior may indicate differences in food availability and allow assessment of restoration actions. Ants are prominent bioindicators used in assessing ecological responses to disturbance. However, behavioral data have been poorly incorporated as an index. The foraging performance of red harvester ants was quantified in order to evaluate the success of a restoration ecology experiment in the tropical dry forest of Sierra de Huautla, Morelos, in central Mexico. Foraging performance by granivorous, Pogonomyrmex barbatus, ants was diminished after 6 and 8 years of cattle grazing and wood harvest were excluded as part of a restoration experiment in a highly degraded biome. Despite investing more time in foraging, ant colonies in exclusion plots showed lower foraging success and acquired less seed biomass than colonies in control plots. In line with the predictions of optimal foraging theory, in restored plots where ant foraging performance was poor, ants harvested a higher diversity of seeds. Reduced foraging success and increased harvest of non-preferred foods in exclusion plots were likely due to the growth of herbaceous vegetation, which impedes travel by foragers. Moreover, by 8 years of exclusion, 37% of nests in exclusion plots had disappeared compared to 0% of nests in control plots. Ants' foraging success and behavior were sensitive to changes in habitat quality due to the plant successional process triggered by a restoration intervention. This study spotlights on the utility of animal foraging behavior in the evaluation of habitat restoration programs. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Tropical rain-forest matrix quality affects bat assemblage structure in secondary forest patches

    NARCIS (Netherlands)

    Vleut, I.; Levy-Tacher, I.; Galindo-Gonzalez, J.; Boer, de W.F.; Ramirez-Marcial, N.

    2012-01-01

    We studied Phyllostomidae bat assemblage structure in patches of secondary forest dominated by the pioneer tree Ochroma pyramidale, largely (.85%) or partially (,35%) surrounded by a matrix of tropical rain forest, to test 3 hypotheses: the highest bat diversity and richness is observed in the

  12. Humid tropical forest disturbance alerts using Landsat data

    Science.gov (United States)

    Hansen, Matthew C.; Krylov, Alexander; Tyukavina, Alexandra; Potapov, Peter V.; Turubanova, Svetlana; Zutta, Bryan; Ifo, Suspense; Margono, Belinda; Stolle, Fred; Moore, Rebecca

    2016-03-01

    A Landsat-based humid tropical forest disturbance alert was implemented for Peru, the Republic of Congo and Kalimantan, Indonesia. Alerts were mapped on a weekly basis as new terrain-corrected Landsat 7 and 8 images were made available; results are presented for all of 2014 and through September 2015. The three study areas represent different stages of the forest land use transition, with all featuring a variety of disturbance dynamics including logging, smallholder agriculture, and agroindustrial development. Results for Peru were formally validated and alerts found to have very high user’s accuracies and moderately high producer’s accuracies, indicating an appropriately conservative product suitable for supporting land management and enforcement activities. Complete pan-tropical coverage will be implemented during 2016 in support of the Global Forest Watch initiative. To date, Global Forest Watch produces annual global forest loss area estimates using a comparatively richer set of Landsat inputs. The alert product is presented as an interim update of forest disturbance events between comprehensive annual updates. Results from this study are available for viewing and download at http://glad.geog.umd.edu/forest-alerts and www.globalforestwatch.org.

  13. Edge fires drive the shape and stability of tropical forests.

    Science.gov (United States)

    Hébert-Dufresne, Laurent; Pellegrini, Adam F A; Bhat, Uttam; Redner, Sidney; Pacala, Stephen W; Berdahl, Andrew M

    2018-03-25

    In tropical regions, fires propagate readily in grasslands but typically consume only edges of forest patches. Thus, forest patches grow due to tree propagation and shrink by fires in surrounding grasslands. The interplay between these competing edge effects is unknown, but critical in determining the shape and stability of individual forest patches, as well the landscape-level spatial distribution and stability of forests. We analyze high-resolution remote-sensing data from protected Brazilian Cerrado areas and find that forest shapes obey a robust perimeter-area scaling relation across climatic zones. We explain this scaling by introducing a heterogeneous fire propagation model of tropical forest-grassland ecotones. Deviations from this perimeter-area relation determine the stability of individual forest patches. At a larger scale, our model predicts that the relative rates of tree growth due to propagative expansion and long-distance seed dispersal determine whether collapse of regional-scale tree cover is continuous or discontinuous as fire frequency changes. © 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  14. Tropical forest light regimes in a human-modified landscape.

    Science.gov (United States)

    Fauset, Sophie; Gloor, Manuel U; Aidar, Marcos P M; Freitas, Helber C; Fyllas, Nikolaos M; Marabesi, Mauro A; Rochelle, André L C; Shenkin, Alexander; Vieira, Simone A; Joly, Carlos A

    2017-11-01

    Light is the key energy input for all vegetated systems. Forest light regimes are complex, with the vertical pattern of light within canopies influenced by forest structure. Human disturbances in tropical forests impact forest structure and hence may influence the light environment and thus competitiveness of different trees. In this study, we measured vertical diffuse light profiles along a gradient of anthropogenic disturbance, sampling intact, logged, secondary, and fragmented sites in the biodiversity hot spot of the Atlantic forest, southeast Brazil, using photosynthetically active radiation sensors and a novel approach with estimations of vertical light profiles from hemispherical photographs. Our results show clear differences in vertical light profiles with disturbance: Fragmented forests are characterized by rapid light extinction within their low canopies, while the profiles in logged forests show high heterogeneity and high light in the mid-canopy despite decades of recovery. The secondary forest showed similar light profiles to intact forest, but with a lower canopy height. We also show that in some cases the upper canopy layer and heavy liana infestations can severely limit light penetration. Light extinction with height above the ground and depth below the canopy top was highest in fragmented forest and negatively correlated with canopy height. The novel, inexpensive, and rapid methods described here can be applied to other sites to quantify rarely measured vertical light profiles.

  15. Opinions of Forest Managers, Loggers, and Forest Landowners in North Carolina regarding Biomass Harvesting Guidelines

    Directory of Open Access Journals (Sweden)

    Diane Fielding

    2012-01-01

    Full Text Available Woody biomass has been identified as an important renewable energy source capable of offsetting fossil fuel use. The potential environmental impacts associated with using woody biomass for energy have spurred development of biomass harvesting guidelines (BHGs in some states and proposals for BHGs in others. We examined stakeholder opinions about BHGs through 60 semistructured interviews with key participants in the North Carolina, USA, forest business sector—forest managers, loggers, and forest landowners. Respondents generally opposed requirements for new BHGs because guidelines added to best management practices (BMPs. Most respondents believed North Carolina’s current BMPs have been successful and sufficient in protecting forest health; biomass harvesting is only an additional component to harvesting with little or no modification to conventional harvesting operations; and scientific research does not support claims that biomass harvesting negatively impacts soil, water quality, timber productivity, or wildlife habitat. Some respondents recognized possible benefits from the implementation of BHGs, which included reduced site preparation costs and increases in proactive forest management, soil quality, and wildlife habitat. Some scientific literature suggests that biomass harvests may have adverse site impacts that require amelioration. The results suggest BHGs will need to be better justified for practitioners based on the scientific literature or linked to demand from new profitable uses or subsidies to offset stakeholder perceptions that they create unnecessary costs.

  16. An assessment of radiance in Landsat TM middle and thermal infrared wavebands for the detection of tropical forest regeneration

    International Nuclear Information System (INIS)

    Boyd, D.S.; Foody, G.M.; Curran, P.J.; Lucas, R.M.; Honzak, M.

    1996-01-01

    It has been postulated that tropical forests regenerating after deforestation constitute an unmeasured terrestrial sink of atmospheric carbon, and that the strength of this sink is a function of regeneration stage. Such regeneration stages can be characterized by biophysical properties, such as leaf and wood biomass, which influence the radiance emitted and/or reflected from the forest canopy. Remotely sensed data can therefore be used to estimate these biophysical properties and thereby determine the forest regenerative stage. Studies conducted on temperate forests have related biophysical properties successfully with red and near-infrared radiance, particularly within the Normalized Difference Vegetation Index (NDVI). However, only weak correlations have generally been observed for tropical forests and it is suggested here that the relationship between forest biophysical properties and middle and thermal infrared radiance may be stronger than that between those properties and visible and near-infrared radiance.An assessment of Landsat Thematic Mapper (TM) data revealed that radiance acquired in middle and thermal infrared wavebands contained significant information for the detection of regeneration stages in Amazonian tropical forests. It was demonstrated that tropical forest regeneration stages were most separable using middle infrared and thermal infrared wavebands and that the correlation with regeneration stage was stronger with middle infrared, thermal infrared or combinations of these wavebands than they were with visible, near infrared or combinations of these wavebands. For example, correlation coefficients increased from — 0·26 (insignificant at 95 per cent confidence level) when using the NDVI, to up to 0·93 (significant at 99 per cent confidence level) for a vegetation index containing data acquired in the middle and thermal infrared wavebands. These results point to the value of using data acquired in middle and thermal infrared wavebands for the

  17. Sprinting, climbing and persisting: Light interception and carbon gain in a secondary tropical forest succession

    NARCIS (Netherlands)

    Selaya Garvizú, N.G.

    2007-01-01

    In the tropics human induced forest disturbance, i.e. timber extraction or forest slash and burn for agriculture is leading to an increase of secondary forest area. Therefore, people in the tropics, especially the poor, will rely on secondary forests for good and services. Pioneer trees (short-and

  18. Tolerance of frugivorous birds to habitat disturbance in a tropical cloud forest

    NARCIS (Netherlands)

    Gomes, L.G.L.; Oostra, V.; Nijman, V.; Cleef, A.M.; Kappelle, M.

    2008-01-01

    In view of the continued decline in tropical forest cover around the globe, forest restoration has become a key tool in tropical rainforest conservation. One of the main - and least expensive - restoration strategies is natural forest regeneration. By aiding forest seed influx both into disturbed

  19. Mirror image hydrocarbons from Tropical and Boreal forests

    Directory of Open Access Journals (Sweden)

    J. Williams

    2007-01-01

    Full Text Available Monoterpenes, emitted in large quantities by trees to attract pollinators and repel herbivores, can exist in mirror image forms called enantiomers. In this study such enantiomeric pairs have been measured in ambient air over extensive forest ecosystems in South America and northern Europe. For the dominant monoterpene, α-pinene, the (−-form was measured in large excess over the (+-form over the Tropical rainforest, whereas the reverse was observed over the Boreal forest. Interestingly, over the Tropical forest (−-α-pinene did not correlate with its own enantiomer, but correlated well with isoprene. The results indicate a remarkable ecosystem scale enantiomeric fingerprint and a nexus between the biosphere and atmosphere.

  20. Investigating the controls on Gross Primary Productivity of a high elevation tropical montane cloud forest

    Science.gov (United States)

    van de Weg, M. J.; Meir, P.; Malhi, Y.; Williams, M.; Silva-Espejo, J.; Grace, J.

    2012-04-01

    Tropical montane cloud forests (TMCF) are a unique, but little understood ecosystem that can be found in tropical mountainous areas around the world. In recent years, the interest in the carbon (C) cycle of TMCFs has increased, especially with regard to possibilities for carbon sequestration and storage practices. Compared with tropical lowland rainforests, these forests have a low aboveground net primary productivity (ANPP), a small standing biomass and a small leaf area index (LAI), while the forests are characterized by the stunted growth form of the trees. However, estimates of gross primary productivity (GPP) of TMCFs are scarce, and there are uncertainties in what factors are most important in controlling TMCF productivity. We investigated the controlling factors on GPP in a TMCF in the Andes in south east Peru (13°11'28"S / 71°35'24"W). First, we measured physiological and structural parameters of the vegetation. On a leaf level, the carboxylation efficiency of Rubisco (V cmax) and the electron transport capacity (Jmax) were as high as those found in tropical lowland forests, but as expected the LAI was smaller. Therefore, in terms of the capacity for TMCF C uptake, the total leaf area is more important in explaining the difference between TMCF GPP and tropical lowland forest GPP, than photosynthetic capacity of the leaf tissue. Furthermore, we used the vegetation parameters, together with meteorological data from the site with a process based simulator (the SPA model) to simulate TMCF GPP and to evaluate the relative importance of the environmental controls on GPP. To our knowledge, this is the first estimate of TMCF GPP that uses parameters and drivers that are derived from the site simulated in the model. Simulated annual GPP was 16.2 ± SE 1.6 t C ha-1 yr-1, which is about half of the GPP commonly observed in neotropical lowland rainforests. Temperature and, to a lesser extent photosynthetic active radiation (PAR), were the strongest environmental

  1. Low biomass of macrobenthic fauna at a tropical mudflat: An effect of latitude?

    Science.gov (United States)

    Purwoko, Agus; Wolff, Wim J.

    2008-03-01

    The macrobenthic animal biomass of the intertidal area of the Sembilang peninsula of South Sumatra, Indonesia, has been studied in 2004. Each month (March-August) 21 core samples were taken at each of six sampling stations. Macrobenthic fauna were identified at the lowest taxonomical level possible and counted. Biomass was measured as ash-free dry mass (afdm). The average biomass over all stations and months was 3.62 g afdm m -2, the highest biomass (47.45 g afdm m -2) found at a station in one month was due to abundant occurrence of the bivalve Anadara granosa. Low biomass of macrobenthic fauna at Sembilang peninsula cannot easily be explained but is in line with low biomasses found elsewhere in the tropics. For that reason we analyzed a data set of 268 soft-bottom intertidal biomasses collected world-wide to look for a relationship with latitude. It was shown that average biomass of intertidal macrobenthic fauna in the tropics was significantly ( p < 0.05) lower than that at non-tropical sites. A significant second-order relationship between biomass of macrobenthic fauna and latitude was established.

  2. Measuring Forest Height and Biomass from Space

    Science.gov (United States)

    Agueh, Temilola Elisabeth Fato

    2013-01-01

    Talk about doing earth science at NASA and how what we do is focus on the biosphere- that is the living portion of the earth.In particular, we are interested in looking at forests-quantifying deforestation, regrowth, change in general and helping develop new cutting-edge technologies and instruments to be able to measure these changes in land use, land cover and quality more accurately.

  3. High-resolution mapping of biomass burning emissions in tropical regions across three continents

    Science.gov (United States)

    Shi, Yusheng; Matsunaga, Tsuneo; Saito, Makoto

    2015-04-01

    Biomass burning emissions from open vegetation fires (forest fires, savanna fires, agricultural waste burning), human waste and biofuel combustion contain large amounts of trace gases (e.g., CO2, CH4, and N2O) and aerosols (BC and OC), which significantly impact ecosystem productivity, global atmospheric chemistry, and climate . With the help of recently released satellite products, biomass density based on satellite and ground-based observation data, and spatial variable combustion factors, this study developed a new high-resolution emissions inventory for biomass burning in tropical regions across three continents in 2010. Emissions of trace gases and aerosols from open vegetation burning are estimated from burned areas, fuel loads, combustion factors, and emission factors. Burned areas were derived from MODIS MCD64A1 burned area product, fuel loads were mapped from biomass density data sets for herbaceous and tree-covered land based on satellite and ground-based observation data. To account for spatial heterogeneity in combustion factors, global fractional tree cover (MOD44B) and vegetation cover maps (MCD12Q1) were introduced to estimate the combustion factors in different regions by using their relationship with tree cover under less than 40%, between 40-60% and above 60% conditions. For emission factors, the average values for each fuel type from field measurements are used. In addition to biomass burning from open vegetation fires, the emissions from human waste (residential and dump) burning and biofuel burning in 2010 were also estimated for 76 countries in tropical regions across the three continents and then allocated into each pixel with 1 km grid based on the population density (Gridded Population of the World v3). Our total estimates for the tropical regions across the three continents in 2010 were 17744.5 Tg CO2, 730.3 Tg CO, 32.0 Tg CH4, 31.6 Tg NOx, 119.2 Tg NMOC, 6.3 Tg SO2, 9.8 NH3 Tg, 81.8 Tg PM2.5, 48.0 Tg OC, and 5.7 Tg BC, respectively. Open

  4. Allometric equations for predicting Puerto Rican dry forest biomass and volume

    Science.gov (United States)

    Thomas Brandeis; Matthew Delaney; Larry Royer; Bernard Parresol

    2009-01-01

    We used forest inventory data, intensive tree measurement, destructive sampling in the field, and subsequent laboratory analyses to develop regression equations that estimate tree biomass, merchantable volume, and total volume for upland forests in Puerto Rican subtropical dry forest. Most parsimonious and additive biomass equations for mixed, dry forest species were...

  5. Composite materials from forest biomass : a review of current practices, science, and technology

    Science.gov (United States)

    Roger M. Rowell

    2007-01-01

    Renewable and sustainable composite materials can be produced using forest biomass if we maintain healthy forests. Small diameter trees and other forest biomass can be processed in the forest into small solid wood pieces, sliced veneers, strands, flakes, chips, particles and fiber that can be used to make construction composite products such as glued-laminated lumber,...

  6. Long-term changes in above ground biomass after disturbance in a neotropical dry forest, Hellshire Hills, Jamaica

    DEFF Research Database (Denmark)

    Niño, Milena; McLaren, Kurt P.; Meilby, Henrik

    2014-01-01

    We used data from experimental plots (control, partially cut and clear-cut) established in 1998, in a tropical dry forest (TDF) in Jamaica, to assess changes in above ground biomass (AGB) 10 years after disturbance. The treatments reduced AGB significantly in 1999 (partially cut: 37.6 %, clear-cu...... for the clear-cut plots to recover pre-treatment AGB; this is significantly longer than AGB recovery time for some successional rainforests on abandoned pastures/farmland. Consequently, this TDF may not be as resilient as tropical rainforests....

  7. Estimating Aboveground Forest Carbon Stock of Major Tropical Forest Land Uses Using Airborne Lidar and Field Measurement Data in Central Sumatra

    Science.gov (United States)

    Thapa, R. B.; Watanabe, M.; Motohka, T.; Shiraishi, T.; shimada, M.

    2013-12-01

    Tropical forests are providing environmental goods and services including carbon sequestration, energy regulation, water fluxes, wildlife habitats, fuel, and building materials. Despite the policy attention, the tropical forest reserve in Southeast Asian region is releasing vast amount of carbon to the atmosphere due to deforestation. Establishing quality forest statistics and documenting aboveground forest carbon stocks (AFCS) are emerging in the region. Airborne and satellite based large area monitoring methods are developed to compliment conventional plot based field measurement methods as they are costly, time consuming, and difficult to implement for large regions. But these methods still require adequate ground measurements for calibrating accurate AFCS model. Furthermore, tropical region comprised of varieties of natural and plantation forests capping higher variability of forest structures and biomass volumes. To address this issue and the needs for ground data, we propose the systematic collection of ground data integrated with airborne light detection and ranging (LiDAR) data. Airborne LiDAR enables accurate measures of vertical forest structure, including canopy height and volume demanding less ground measurement plots. Using an appropriate forest type based LiDAR sampling framework, structural properties of forest can be quantified and treated similar to ground measurement plots, producing locally relevant information to use independently with satellite data sources including synthetic aperture radar (SAR). In this study, we examined LiDAR derived forest parameters with field measured data and developed general and specific AFCS models for tropical forests in central Sumatra. The general model is fitted for all types of natural and plantation forests while the specific model is fitted to the specific forest type. The study region consists of natural forests including peat swamp and dry moist forests, regrowth, and mangrove and plantation forests

  8. Global 1-degree Maps of Forest Area, Carbon Stocks, and Biomass, 1950-2010

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides global forest area, forest growing stock, and forest biomass data at 1-degree resolution for the period 1950-2010. The data set is based on a...

  9. Near-field emission profiling of tropical forest and Cerrado fires in Brazil during SAMBBA 2012

    Directory of Open Access Journals (Sweden)

    A. K. Hodgson

    2018-04-01

    Full Text Available We profile trace gas and particulate emissions from near-field airborne measurements of discrete smoke plumes in Brazil during the 2012 biomass burning season. The South American Biomass Burning Analysis (SAMBBA Project conducted during September and October 2012 sampled across two distinct fire regimes prevalent in the Amazon Basin. Combined measurements from a Compact Time-of-Flight Aerosol Mass Spectrometer (C-ToF-AMS and a Single Particle Soot Photometer (SP2 are reported for the first time in a tropical biomass burning environment. Emissions from a mostly smouldering tropical forest wildfire in Rondônia state and numerous smaller flaming Cerrado fires in Tocantins state are presented. While the Cerrado fires appear to be representative of typical fire conditions in the existing literature, the tropical forest wildfire likely represents a more extreme example of biomass burning with a bias towards mostly smouldering emissions. We determined fire-integrated modified combustion efficiencies, emission ratios and emission factors for trace gas and particulate components for these two fire types, alongside aerosol microphysical properties. Seven times more black carbon was emitted from the Cerrado fires per unit of fuel combustion (EFBC of 0.13 ± 0.04 g kg−1 compared to the tropical forest fire (EFBC of 0.019 ± 0.006 g kg−1, and more than 6 times the amount of organic aerosol was emitted from the tropical forest fire per unit of fuel combustion (EFOM of 8.00 ± 2.53 g kg−1, EFOC of 5.00 ± 1.58 g kg−1 compared to the Cerrado fires (EFOM of 1.31 ± 0.42 g kg−1, EFOC of 0.82 ± 0.26 g kg−1. Particulate-phase species emitted from the fires sampled are generally lower than those reported in previous studies and in emission inventories, which is likely a combination of differences in fire combustion efficiency and fuel mixture, along with different measurement techniques. Previous

  10. Estimating forest carbon stocks in tropical dry forests of Zimbabwe ...

    African Journals Online (AJOL)

    Estimation and mapping of forest dendrometric characteristics such as carbon stocks using remote sensing techniques is fundamental for improved understanding of the role of forests in the carbon cycle and climate change. In this study, we tested whether and to what extent spectral transforms, i.e. vegetation indices ...

  11. Understory biomass from southern pine forests as a fuel source

    Energy Technology Data Exchange (ETDEWEB)

    Ku, T.T. [Univ. of Arkansas, Monticello, AR (United States); Baker, J.B. [USDA Forest Service, Monticello, AR (United States)

    1993-12-31

    The energy crisis in the US in the late 1970s led to accelerated research on renewable energy resources. The use of woody biomass, harvested from pine forests in the southern US, as a renewable energy source would not only provide an efficient energy alternative to forest industries, but its use would also reduce understory competition and accelerate growth of overstory crop trees. This study was initiated in the early 1980s to investigate the feasibility and applicability of the use of understory vegetation as a possible energy fuel resource. All woody understory vegetation [<14 cm (<5.5 in) in dbh], on 0.2 ha (0.5 ac) plots that represented a range of stand/site conditions of pine stands located in twelve southern Arkansas counties and two northern Louisiana parishes were characterized, quantified, and harvested. Based on the biomass yield from 720 subplots nested within 40 main plots, the top five dominant species in the understory, based on number and size were: Red maple, red oaks, pines, sweetgum, and winged elm. Some other species occurring, but in smaller proportions, were flowering dogwood, beautyberry, white oaks, black gum, wax myrtle, hickories, persimmon, and ashes. Most of these species are deciduous hardwoods that provide high BTU output upon burning. The average yield of chipped understory biomass was 23.5 T/ha with no difference occurring between summer and winter harvests. A predictive model of understory biomass production was developed using a step-wise multivariate regression analysis. In relation to forest type, high density pine stands produced 53% more understory biomass than high density pine-hardwood stands. The average moisture content of biomass was significantly lower when harvested in winter than when harvested in summer.

  12. Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest.

    Science.gov (United States)

    Wurzburger, Nina; Wright, S Joseph

    2015-08-01

    Questions remain as to which soil nutrients limit primary production in tropical forests. Phosphorus (P) has long been considered the primary limiting element in lowland forests, but recent evidence demonstrates substantial heterogeneity in response to nutrient addition, highlighting a need to understand and diagnose nutrient limitation across diverse forests. Fine-root characteristics including their abundance, functional traits, and mycorrhizal symbionts can be highly responsive to changes in soil nutrients and may help to diagnose nutrient limitation. Here, we document the response of fine roots to long-term nitrogen (N), P, and potassium (K) fertilization in a lowland forest in Panama. Because this experiment has demonstrated that N and K together limit tree growth and P limits fine litter production, we hypothesized that fine roots would also respond to nutrient addition. Specifically we hypothesized that N, P, and K addition would reduce the biomass, diameter, tissue density, and mycorrhizal colonization of fine roots, and increase nutrient concentration in root tissue. Most morphological root traits responded to the single addition of K and the paired addition of N and P, with the greatest response to all three nutrients combined. The addition of N, P, and K together reduced fine-root biomass, length, and tissue density, and increased specific root length, whereas root diameter remained unchanged. Nitrogen addition did not alter root N concentration, but P and K addition increased root P and K concentration, respectively. Mycorrhizal colonization of fine roots declined with N, increased with P, and was unresponsive to K addition. Although plant species composition remains unchanged after 14 years of fertilization, fine-root characteristics responded to N, P, and K addition, providing some of the strongest stand-level responses in this experiment. Multiple soil nutrients regulate fine-root abundance, morphological and chemical traits, and their association

  13. Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada's boreal forests.

    Science.gov (United States)

    Chen, Han Y H; Luo, Yong

    2015-10-01

    Biomass change of the world's forests is critical to the global carbon cycle. Despite storing nearly half of global forest carbon, the boreal biome of diverse forest types and ages is a poorly understood component of the carbon cycle. Using data from 871 permanent plots in the western boreal forest of Canada, we examined net annual aboveground biomass change (ΔAGB) of four major forest types between 1958 and 2011. We found that ΔAGB was higher for deciduous broadleaf (DEC) (1.44 Mg ha(-1)  year(-1) , 95% Bayesian confidence interval (CI), 1.22-1.68) and early-successional coniferous forests (ESC) (1.42, CI, 1.30-1.56) than mixed forests (MIX) (0.80, CI, 0.50-1.11) and late-successional coniferous (LSC) forests (0.62, CI, 0.39-0.88). ΔAGB declined with forest age as well as calendar year. After accounting for the effects of forest age, ΔAGB declined by 0.035, 0.021, 0.032 and 0.069 Mg ha(-1)  year(-1) per calendar year in DEC, ESC, MIX and LSC forests, respectively. The ΔAGB declines resulted from increased tree mortality and reduced growth in all forest types except DEC, in which a large biomass loss from mortality was accompanied with a small increase in growth. With every degree of annual temperature increase, ΔAGB decreased by 1.00, 0.20, 0.55 and 1.07 Mg ha(-1)  year(-1) in DEC, ESC, MIX and LSC forests, respectively. With every cm decrease of annual climatic moisture availability, ΔAGB decreased 0.030, 0.045 and 0.17 Mg ha(-1)  year(-1) in ESC, MIX and LSC forests, but changed little in DEC forests. Our results suggest that persistent warming and decreasing water availability have profound negative effects on forest biomass in the boreal forests of western Canada. Furthermore, our results indicate that forest responses to climate change are strongly dependent on forest composition with late-successional coniferous forests being most vulnerable to climate changes in terms of aboveground biomass. © 2015 John Wiley & Sons Ltd.

  14. Deforestation trends of tropical dry forests in central Brazil

    Science.gov (United States)

    Bianchi, Carlos A.; Haig, Susan M.

    2013-01-01

    Tropical dry forests are the most threatened forest type in the world yet a paucity of research about them stymies development of appropriate conservation actions. The Paranã River Basin has the most significant dry forest formations in the Cerrado biome of central Brazil and is threatened by intense land conversion to pastures and agriculture. We examined changes in Paranã River Basin deforestation rates and fragmentation across three time intervals that covered 31 yr using Landsat imagery. Our results indicated a 66.3 percent decrease in forest extent between 1977 and 2008, with an annual rate of forest cover change of 3.5 percent. Landscape metrics further indicated severe forest loss and fragmentation, resulting in an increase in the number of fragments and reduction in patch sizes. Forest fragments in flatlands have virtually disappeared and the only significant forest remnants are mostly found over limestone outcrops in the eastern part of the basin. If current patterns persist, we project that these forests will likely disappear within 25 yr. These patterns may be reversed with creation of protected areas and involvement of local people to preserve small fragments that can be managed for restoration.

  15. Bringing Together Users and Developers of Forest Biomass Maps

    Science.gov (United States)

    Brown, Molly Elizabeth; Macauley, Molly K.

    2012-01-01

    Forests store carbon and thus represent important sinks for atmospheric carbon dioxide. Reducing uncertainty in current estimates of the amount of carbon in standing forests will improve precision of estimates of anthropogenic contributions to carbon dioxide in the atmosphere due to deforestation. Although satellite remote sensing has long been an important tool for mapping land cover, until recently aboveground forest biomass estimates have relied mostly on systematic ground sampling of forests. In alignment with fiscal year 2010 congressional direction, NASA has initiated work toward a carbon monitoring system (CMS) that includes both maps of forest biomass and total carbon flux estimates. A goal of the project is to ensure that the products are useful to a wide community of scientists, managers, and policy makers, as well as to carbon cycle scientists. Understanding the needs and requirements of these data users is helpful not just to the NASA CMS program but also to the entire community working on carbon-related activities. To that end, this meeting brought together a small group of natural resource managers and policy makers who use information on forests in their work with NASA scientists who are working to create aboveground forest biomass maps. These maps, derived from combining remote sensing and ground plots, aim to be more accurate than current inventory approaches when applied at local and regional scales. Meeting participants agreed that users of biomass information will look to the CMS effort not only to provide basic data for carbon or biomass measurements but also to provide data to help serve a broad range of goals, such as forest watershed management for water quality, habitat management for biodiversity and ecosystem services, and potential use for developing payments for ecosystem service projects. Participants also reminded the CMS group that potential users include not only public sector agencies and nongovernmental organizations but also the

  16. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  17. Forest Biomass Energy Resources in China: Quantity and Distribution

    Directory of Open Access Journals (Sweden)

    Caixia Zhang

    2015-11-01

    Full Text Available As one of the most important renewable and sustainable energy sources, the forest biomass energy resource has always been the focus of attention of scholars and policy makers. However, its potential is still uncertain in China, especially with respect to its spatial distribution. In this paper, the quantity and distribution of Chinese forest biomass energy resources are explored based mainly on forestry statistics data rather than forest resource inventory data used by most previous studies. The results show that the forest biomass energy resource in China was 169 million tons in 2010, of which wood felling and bucking residue (WFBR,wood processing residue (WPR, bamboo processing residue, fuel wood and firewood used by farmers accounted for 38%, 37%, 6%, 4% and 15%, respectively. The highest resource was located in East China, accounting for nearly 39.0% of the national amount, followed by the Southwest and South China regions, which accounted for 17.4% and 16.3%, respectively. At the provincial scale, Shandong has the highest distribution, accounting for 11.9% of total resources, followed by Guangxi and Fujian accounting for 10.3% and 10.2%, respectively. The actual wood-processing residue (AWPR estimated from the actual production of different wood products (considering the wood transferred between regions showed apparent differences from the local wood processing residue (LWPR, which assumes that no wood has been transferredbetween regions. Due to the large contribution of WPR to total forestry bioenergy resources, the estimation of AWPR will provide a more accurate evaluation of the total amount and the spatial distribution of forest biomass energy resources in China.

  18. Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India.

    Science.gov (United States)

    Dar, Javid Ahmad; Sundarapandian, Somaiah

    2015-02-01

    An accurate characterization of tree, understory, deadwood, floor litter, and soil organic carbon (SOC) pools in temperate forest ecosystems is important to estimate their contribution to global carbon (C) stocks. However, this information on temperate forests of the Himalayas is lacking and fragmented. In this study, we measured C stocks of tree (aboveground and belowground biomass), understory (shrubs and herbaceous), deadwood (standing and fallen trees and stumps), floor litter, and soil from 111 plots of 50 m × 50 m each, in seven forest types: Populus deltoides (PD), Juglans regia (JR), Cedrus deodara (CD), Pinus wallichiana (PW), mixed coniferous (MC), Abies pindrow (AP), and Betula utilis (BU) in temperate forests of Kashmir Himalaya, India. The main objective of the present study is to quantify the ecosystem C pool in these seven forest types. The results showed that the tree biomass ranged from 100.8 Mg ha(-1) in BU forest to 294.8 Mg ha(-1) for the AP forest. The understory biomass ranged from 0.16 Mg ha(-1) in PD forest to 2.36 Mg ha(-1) in PW forest. Deadwood biomass ranged from 1.5 Mg ha(-1) in PD forest to 14.9 Mg ha(-1) for the AP forest, whereas forest floor litter ranged from 2.5 Mg ha(-1) in BU and JR forests to 3.1 Mg ha(-1) in MC forest. The total ecosystem carbon stocks varied from 112.5 to 205.7 Mg C ha(-1) across all the forest types. The C stocks of tree, understory, deadwood, litter, and soil ranged from 45.4 to 135.6, 0.08 to 1.18, 0.7 to 6.8, 1.1 to 1.4, and 39.1-91.4 Mg ha(-1), respectively, which accounted for 61.3, 0.2, 1.4, 0.8, and 36.3 % of the total carbon stock. BU forest accounted 65 % from soil C and 35 % from biomass, whereas PD forest contributed only 26 % from soil C and 74 % from biomass. Of the total C stock in the 0-30-cm soil, about 55 % was stored in the upper 0-10 cm. Soil C stocks in BU forest were significantly higher than those in other forests. The variability of C pools of different ecosystem components is

  19. Efficient way back litters nutrient potential of a tropical forest of bank. Sierra Nevada of Santa Marta Colombia

    International Nuclear Information System (INIS)

    Fuentes Molina, Natalia; Rodriguez Barrios, Javier Alfredo

    2012-01-01

    In three representative forests along the River Gaira, (subtropical wet forest, subtropical moist forest and tropical thorn mount), were measured over six months (wet and dry seasons) fluxes of nitrogen and phosphorus through the litter. Concentrations of nutrients (nitrogen and phosphorus) in the litter were relatively similar in the three Nevada de Santa Marta Colombia. Fuentes, Rodriguez. vegetation types (1.71% n and 0.12% p for the subtropical moist forest, followed by the tropical thorn mount with 1.50% n and 0.10% p and the subtropical wet forest with 1.39% n and 0.08% p), with the most significant differences found for nitrogen, which is the major nutrient with the absolute maximum in the subtropical rain forest set in the middle stretch of the basin. The greatest returns on biomass and nutrients occurred in the subtropical moist forest and tropical thorn mount set in the middle and lower reaches of the basin. The leaves showed high concentration of n and consequently, given the high production values of the different fractions, a high potential return of n (78.6 kg ha-1 yr-1). The foliar p concentration showed a potential return of 4.9 kgha1yr-1 and high values of the indices of efficiency in their use (iev: 2888.5) and foliar resorption (ern: 98.2), was the nutrient most limiting.

  20. Assessment of forest management influences on total live aboveground tree biomass in William B Bankhead National Forest, Alabama

    Science.gov (United States)

    Callie Schweitzer; Dawn Lemke; Wubishet Tadesse; Yong Wang

    2015-01-01

    Forests contain a large amount of carbon (C) stored as tree biomass (above and below ground), detritus, and soil organic material. The aboveground tree biomass is the most rapid change component in this forest C pool. Thus, management of forest resources can influence the net C exchange with the atmosphere by changing the amount of C stored, particularly in landscapes...

  1. Effects of model choice and forest structure on inventory-based estimations of Puerto Rican forest biomass

    Science.gov (United States)

    Thomas J. Brandeis; Maria Del Rocio; Suarez Rozo

    2005-01-01

    Total aboveground live tree biomass in Puerto Rican lower montane wet, subtropical wet, subtropical moist and subtropical dry forests was estimated using data from two forest inventories and published regression equations. Multiple potentially-applicable published biomass models existed for some forested life zones, and their estimates tended to diverge with increasing...

  2. Soil mineralogy and microbes determine forest life history strategy and carbon cycling in humid tropical forests

    Science.gov (United States)

    Soong, J.; Verbruggen, E.; Peñuelas, J.; Janssens, I. A.; Grau, O.

    2017-12-01

    Tropical forests account for over one third of global terrestrial gross primary productivity and cycle more C than any other ecosystem on Earth. However, we still lack a mechanistic understanding of how such high productivity is maintained on the old, highly weathered and phosphorus depleted soils in the tropics. We hypothesized that heterogeneity in soil texture, mineralogy and microbial community composition may be the major drivers of differences in soil C storage and P limitation across tropical forests. We sampled 12 forest sites across a 200 km transect in the humid neo-tropics of French Guiana that varied in soil texture, precipitation and mineralogy. We found that soil texture was a major driver of soil carbon stocks and forest life history strategy, where sandy forests have lower soil C stocks, slower turnover and decomposition and a more closed nutrient cycle while clayey forests have higher soil C stocks, faster turnover and a more leaky nutrient cycle (using natural abundance stable isotope evidence). We found that although the presence of Al and Fe oxides in the clayey soils occludes soil organic matter and P, a greater abundance of arbuscular mycorrhizal fungi help forests to access occluded P in clayey soils fueling higher turnover and faster decomposition rates. Evidence from a laboratory incubation of tropical soils with nutrient additions further demonstrates the de-coupling of microbial P demands from C:N limitations providing further evidence for the need to examine microbial stoichiometry to explain C cycling in the P-limited tropics. We argue that microbial community composition and physiological demands, constrained within the limitations of soil mineralogical reactivity, largely controls nutrient and C cycling in tropical forest soils. Together our observational field study and laboratory incubation provide a unique dataset to shed light on the mineralogical and microbial controls on C and nutrient cycling in tropical soils. By integrating

  3. Effectiveness of Africa's tropical protected areas for maintaining forest cover.

    Science.gov (United States)

    Bowker, J N; De Vos, A; Ament, J M; Cumming, G S

    2017-06-01

    The effectiveness of parks for forest conservation is widely debated in Africa, where increasing human pressure, insufficient funding, and lack of management capacity frequently place significant demands on forests. Tropical forests house a substantial portion of the world's remaining biodiversity and are heavily affected by anthropogenic activity. We analyzed park effectiveness at the individual (224 parks) and national (23 countries) level across Africa by comparing the extent of forest loss (as a proxy for deforestation) inside parks to matched unprotected control sites. Although significant geographical variation existed among parks, the majority of African parks had significantly less forest loss within their boundaries (e.g., Mahale Park had 34 times less forest loss within its boundary) than control sites. Accessibility was a significant driver of forest loss. Relatively inaccessible areas had a higher probability (odds ratio >1, p < 0.001) of forest loss but only in ineffective parks, and relatively accessible areas had a higher probability of forest loss but only in effective parks. Smaller parks less effectively prevented forest loss inside park boundaries than larger parks (T = -2.32, p < 0.05), and older parks less effectively prevented forest loss inside park boundaries than younger parks (F 2,154 = -4.11, p < 0.001). Our analyses, the first individual and national assessment of park effectiveness across Africa, demonstrated the complexity of factors (such as geographical variation, accessibility, and park size and age) influencing the ability of a park to curb forest loss within its boundaries. © 2016 Society for Conservation Biology.

  4. Liana infestation impacts tree growth in a lowland tropical moist forest

    Directory of Open Access Journals (Sweden)

    G. M. F. van der Heijden

    2009-10-01

    Full Text Available Ecosystem-level estimates of the effect of lianas on tree growth in mature tropical forests are needed to evaluate the functional impact of lianas and their potential to affect the ability of tropical forests to sequester carbon, but these are currently lacking. Using data collected on tree growth rates, local growing conditions and liana competition in five permanent sampling plots in Amazonian Peru, we present the first ecosystem-level estimates of the effect of lianas on above-ground productivity of trees. By first constructing a multi-level linear mixed effect model to predict individual-tree diameter growth model using individual-tree growth conditions, we were able to then estimate stand-level above-ground biomass (AGB increment in the absence of lianas. We show that lianas, mainly by competing above-ground with trees, reduce tree annual above-ground stand-level biomass increment by ~10%, equivalent to 0.51 Mg dry weight ha−1 yr−1 or 0.25 Mg C ha−1 yr−1. AGB increment of lianas themselves was estimated to be 0.15 Mg dry weight ha−1 yr−1 or 0.07 Mg C ha−1 yr−1, thus only compensating ~29% of the liana-induced reduction in ecosystem AGB increment. Increasing liana pressure on tropical forests will therefore not only tend to reduce their carbon storage capacity, by indirectly promoting tree species with low-density wood, but also their rate of carbon uptake, with potential consequences for the rate of increase in atmospheric carbon dioxide.

  5. Estimating gross primary productivity of a tropical forest ecosystem over north-east India using LAI and meteorological variables

    Science.gov (United States)

    Deb Burman, Pramit Kumar; Sarma, Dipankar; Williams, Mathew; Karipot, Anandakumar; Chakraborty, Supriyo

    2017-10-01

    Tropical forests act as a major sink of atmospheric carbon dioxide, and store large amounts of carbon in biomass. India is a tropical country with regions of dense vegetation and high biodiversity. However due to the paucity of observations, the carbon sequestration potential of these forests could not be assessed in detail so far. To address this gap, several flux towers were erected over different ecosystems in India by Indian Institute of Tropical Meteorology as part of the MetFlux India project funded by MoES (Ministry of Earth Sciences, Government of India). A 50 m tall tower was set up over a semi-evergreen moist deciduous forest named Kaziranga National Park in north-eastern part of India which houses a significant stretch of local forest cover. Climatically this region is identified to be humid sub-tropical. Here we report first generation of the in situ meteorological observations and leaf area index (LAI) measurements from this site. LAI obtained from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) is compared with the in situ measured LAI. We use these in situ measurements to calculate the total gross photosynthesis (or gross primary productivity, GPP) of the forest using a calibrated model. LAI and GPP show prominent seasonal variation. LAI ranges between 0.75 in winter to 3.25 in summer. Annual GPP is estimated to be 2.11 kg C m^{-2} year^{-1}.

  6. Arthropod diversity in a tropical forest

    DEFF Research Database (Denmark)

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe

    2012-01-01

    Most eukaryotic organisms are arthropods. Yet, their diversity in rich terrestrial ecosystems is still unknown. Here we produce tangible estimates of the total species richness of arthropods in a tropical rainforest. Using a comprehensive range of structured protocols, we sampled the phylogenetic......,000 arthropod species. Notably, just 1 hectare of rainforest yields >60% of the arthropod biodiversity held in the wider landscape. Models based on plant diversity fitted the accumulated species richness of both herbivore and nonherbivore taxa exceptionally well. This lends credence to global estimates...

  7. Measurement and characteristics of microbial biomass in forest soils

    International Nuclear Information System (INIS)

    Vance, E.D.

    1986-01-01

    The soil microbial biomass is the primary agent responsible for the breakdown and mineralization of soil organic matter and plays a major role in regulating nutrient availability to plants. In this study, methods for measuring biomass in soil were compared and tested in forest soils ranging in pH from 3.2 to 7.2. A good relationship between biomass C measured using the chloroform fumigation-incubation method and soil ATP or microbial biomass C by direct microscopy was found in soils at or above pH 4.2. The fumigation-incubation method consistently underestimated biomass C in soils below pH 4.2, however. Hypotheses for the breakdown of the fumigation-incubation method in strongly acid soils were tested by using an alterative fumigant, measuring the proportion of added 14 C labelled fungi and bacteria decomposed in fumigated soils (k/sub C/), and by studying the effect of large, non-fumigated soil inocula on the flush of respiration following fumigation. These studies indicated that the failure of the method in strongly acid soils was due to inhibited decomposition of non-microbial soil organic matter by the microbial recolonizing population following fumigation. A modified method for measuring biomass C by fumigation-incubation in acid soils is proposed

  8. Sustainable utilisation of forest biomass for energy - Possibilities and problems

    DEFF Research Database (Denmark)

    Stupak, I.; Asikainen, A.; Jonsell, M.

    2007-01-01

    The substitution of biomass for fossil fuels in energy consumption is a measure to mitigate global warming, as well as having other advantages. Political action plans for increased use exist at both European and national levels. This paper briefly reviews the contents of recommendations. guidelines...... restrict use for environmental reasons. Forest certification standards include indicators directly related to the utilisation of wood for energy under several criteria, with most occurences found under environmental criteria. Roles and problems in relation to policy, legislation, certification standards....... and other synthesis publications on Sustainable use of forest biomass for energy. Topics are listed and an overview of advantages. disadvantages, and trade-offs between them is given, from the viewpoint of society in general and the forestry or the Nordic and Baltic countries, the paper also identifies...

  9. Response of African humid tropical forests to recent rainfall anomalies.

    Science.gov (United States)

    Asefi-Najafabady, Salvi; Saatchi, Sassan

    2013-01-01

    During the last decade, strong negative rainfall anomalies resulting from increased sea surface temperature in the tropical Atlantic have caused extensive droughts in rainforests of western Amazonia, exerting persistent effects on the forest canopy. In contrast, there have been no significant impacts on rainforests of West and Central Africa during the same period, despite large-scale droughts and rainfall anomalies during the same period. Using a combination of rainfall observations from meteorological stations from the Climate Research Unit (CRU; 1950-2009) and satellite observations of the Tropical Rainfall Measuring Mission (TRMM; 1998-2010), we show that West and Central Africa experienced strong negative water deficit (WD) anomalies over the last decade, particularly in 2005, 2006 and 2007. These anomalies were a continuation of an increasing drying trend in the region that started in the 1970s. We monitored the response of forests to extreme rainfall anomalies of the past decade by analysing the microwave scatterometer data from QuickSCAT (1999-2009) sensitive to variations in canopy water content and structure. Unlike in Amazonia, we found no significant impacts of extreme WD events on forests of Central Africa, suggesting potential adaptability of these forests to short-term severe droughts. Only forests near the savanna boundary in West Africa and in fragmented landscapes of the northern Congo Basin responded to extreme droughts with widespread canopy disturbance that lasted only during the period of WD. Time-series analyses of CRU and TRMM data show most regions in Central and West Africa experience seasonal or decadal extreme WDs (less than -600 mm). We hypothesize that the long-term historical extreme WDs with gradual drying trends in the 1970s have increased the adaptability of humid tropical forests in Africa to droughts.

  10. An Ecologically Based System for Sustainable Agroforestry in Sub-Tropical and Tropical Forests

    Directory of Open Access Journals (Sweden)

    Yuan Sun

    2017-03-01

    Full Text Available Forests in tropical and sub-tropical countries face severe pressures due to a combination of poverty and environment degradation. To be effective, measures to protect these forests must therefore consider both economic and ecological dimensions synergistically. The purpose of this paper was to synthesize our long-term work (1994–2015 on a Ginkgo (Ginkgo biloba L. agroforestry system and demonstrate its potential for achieving both goals, and discuss its wider application in tropical and sub-tropical countries. The performance of various ecological, economic, and social indicators was compared among five Ginkgo agroforestry systems. Two additional indicators, Harmony Degree (HD and Development Degree (DD, were also used to show the integrated performance of these indicators. Ginkgo-Wheat-Peanut (G+W+P and Ginkgo-Rapeseed-Peanut (G+R+P are the best systems when compared to pure and mixed Ginkgo plantations, or pure agricultural crops. Results demonstrate that it is possible to achieve both economic development and environmental protection through implementation of sustainable agroforestry systems in sub-tropical regions.

  11. Estimation of above ground biomass by using multispectral data for Evergreen Forest in Phu Hin Rong Kla National Park, Thailand

    International Nuclear Information System (INIS)

    Suwanprasit, C.

    2010-01-01

    Tropical forest is the most important and largest source for stocking CO 2 from the atmosphere which might be one of the main sources of carbon emission, global warming and climate change in recent decades. There are two main objectives of this study. The first one is to establish a relationship between above ground biomass and vegetation indices and the other is to evaluate above ground biomass and carbon sequestration for evergreen forest areas in Phu Hin Rong Kla National park, Thailand. Random sampling design based was applied for calculating the above ground biomass at stand level in the selected area by using Brown and Tsutsumi allometric equations. Landsat 7 ETM+ data in February 2009 was used. Support Vector Machine (SVM) was applied for identifying evergreen forest area. Forty-three of vegetation indices and image transformations were used for finding the best correlation with forest stand biomass. Regression analysis was used to investigate the relationship between the biomass volume at stand level and digital data from the satellite image. TM51 which derived from Tsutsumi allometric equation was the highest correlation with stand biomass. Normalized Difference Vegetation Index (NDVI) was not the best correlation in this study. The best biomass estimation model was from TM51 and ND71 (R2 =0.658). The totals of above ground biomass and carbon sequestration were 112,062,010 ton and 56,031,005 ton respectively. The application of this study would be quite useful for understanding the terrestrial carbon dynamics and global climate change. (author)

  12. Monodominance of Parashorea chinensis on fertile soils in a Chinese tropical rain forest

    NARCIS (Netherlands)

    Velden, van der N.; Slik, J.W.F.; Hu, Y.H.; Lan, Q.; Lin, L.; Deng, X.B.; Poorter, L.

    2014-01-01

    Monodominance in the tropics is often seen as an unusual phenomenon due to the normally high diversity in tropical rain forests. Here we studied Parashorea chinensis H. Wang (Dipterocarpaceae) in a seasonal tropical forest in south-west China, to elucidate the mechanisms behind its monodominance.

  13. Infrared heater system for warming tropical forest understory plants and soils

    Science.gov (United States)

    Bruce A. Kimball; Aura M. Alonso-Rodríguez; Molly A. Cavaleri; Sasha C. Reed; Grizelle González; Tana E. Wood

    2018-01-01

    The response of tropical forests to global warming is one of the largest uncertainties in predicting the future carbon balance of Earth. To determine the likely effects of elevated temperatures on tropical forest understory plants and soils, as well as other ecosystems, an infrared (IR) heater system was developed to provide in situ warming for the Tropical Responses...

  14. The Tropical Ecology, Assessment and Monitoring (TEAM) Network: An early warning system for tropical rain forests.

    Science.gov (United States)

    Rovero, Francesco; Ahumada, Jorge

    2017-01-01

    While there are well established early warning systems for a number of natural phenomena (e.g. earthquakes, catastrophic fires, tsunamis), we do not have an early warning system for biodiversity. Yet, we are losing species at an unprecedented rate, and this especially occurs in tropical rainforests, the biologically richest but most eroded biome on earth. Unfortunately, there is a chronic gap in standardized and pan-tropical data in tropical forests, affecting our capacity to monitor changes and anticipate future scenarios. The Tropical Ecology, Assessment and Monitoring (TEAM) Network was established to contribute addressing this issue, as it generates real time data to monitor long-term trends in tropical biodiversity and guide conservation practice. We present the Network and focus primarily on the Terrestrial Vertebrates protocol, that uses systematic camera trapping to detect forest mammals and birds, and secondarily on the Zone of Interaction protocol, that measures changes in the anthroposphere around the core monitoring area. With over 3 million images so far recorded, and managed using advanced information technology, TEAM has created the most important data set on tropical forest mammals globally. We provide examples of site-specific and global analyses that, combined with data on anthropogenic disturbance collected in the larger ecosystem where monitoring sites are, allowed us to understand the drivers of changes of target species and communities in space and time. We discuss the potential of this system as a candidate model towards setting up an early warning system that can effectively anticipate changes in coupled human-natural system, trigger management actions, and hence decrease the gap between research and management responses. In turn, TEAM produces robust biodiversity indicators that meet the requirements set by global policies such as the Aichi Biodiversity Targets. Standardization in data collection and public sharing of data in near real time

  15. Greenhouse gas emissions from tropical forest degradation: an underestimated source.

    Science.gov (United States)

    Pearson, Timothy R H; Brown, Sandra; Murray, Lara; Sidman, Gabriel

    2017-12-01

    The degradation of forests in developing countries, particularly those within tropical and subtropical latitudes, is perceived to be an important contributor to global greenhouse gas emissions. However, the impacts of forest degradation are understudied and poorly understood, largely because international emission reduction programs have focused on deforestation, which is easier to detect and thus more readily monitored. To better understand and seize opportunities for addressing climate change it will be essential to improve knowledge of greenhouse gas emissions from forest degradation. Here we provide a consistent estimation of forest degradation emissions between 2005 and 2010 across 74 developing countries covering 2.2 billion hectares of forests. We estimated annual emissions of 2.1 billion tons of carbon dioxide, of which 53% were derived from timber harvest, 30% from woodfuel harvest and 17% from forest fire. These percentages differed by region: timber harvest was as high as 69% in South and Central America and just 31% in Africa; woodfuel harvest was 35% in Asia, and just 10% in South and Central America; and fire ranged from 33% in Africa to only 5% in Asia. Of the total emissions from deforestation and forest degradation, forest degradation accounted for 25%. In 28 of the 74 countries, emissions from forest degradation exceeded those from deforestation. The results of this study clearly demonstrate the importance of accounting greenhouse gases from forest degradation by human activities. The scale of emissions presented indicates that the exclusion of forest degradation from national and international GHG accounting is distorting. This work helps identify where emissions are likely significant, but policy developments are needed to guide when and how accounting should be undertaken. Furthermore, ongoing research is needed to create and enhance cost-effective accounting approaches.

  16. Greenhouse gas emissions from tropical forest degradation: an underestimated source

    Directory of Open Access Journals (Sweden)

    Timothy R. H. Pearson

    2017-02-01

    Full Text Available Abstract Background The degradation of forests in developing countries, particularly those within tropical and subtropical latitudes, is perceived to be an important contributor to global greenhouse gas emissions. However, the impacts of forest degradation are understudied and poorly understood, largely because international emission reduction programs have focused on deforestation, which is easier to detect and thus more readily monitored. To better understand and seize opportunities for addressing climate change it will be essential to improve knowledge of greenhouse gas emissions from forest degradation. Results Here we provide a consistent estimation of forest degradation emissions between 2005 and 2010 across 74 developing countries covering 2.2 billion hectares of forests. We estimated annual emissions of 2.1 billion tons of carbon dioxide, of which 53% were derived from timber harvest, 30% from woodfuel harvest and 17% from forest fire. These percentages differed by region: timber harvest was as high as 69% in South and Central America and just 31% in Africa; woodfuel harvest was 35% in Asia, and just 10% in South and Central America; and fire ranged from 33% in Africa to only 5% in Asia. Of the total emissions from deforestation and forest degradation, forest degradation accounted for 25%. In 28 of the 74 countries, emissions from forest degradation exceeded those from deforestation. Conclusions The results of this study clearly demonstrate the importance of accounting greenhouse gases from forest degradation by human activities. The scale of emissions presented indicates that the exclusion of forest degradation from national and international GHG accounting is distorting. This work helps identify where emissions are likely significant, but policy developments are needed to guide when and how accounting should be undertaken. Furthermore, ongoing research is needed to create and enhance cost-effective accounting approaches.

  17. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth.

    Science.gov (United States)

    Fang, Jingyun; Guo, Zhaodi; Hu, Huifeng; Kato, Tomomichi; Muraoka, Hiroyuki; Son, Yowhan

    2014-06-01

    Forests play an important role in regional and global carbon (C) cycles. With extensive afforestation and reforestation efforts over the last several decades, forests in East Asia have largely expanded, but the dynamics of their C stocks have not been fully assessed. We estimated biomass C stocks of the forests in all five East Asian countries (China, Japan, North Korea, South Korea, and Mongolia) between the 1970s and the 2000s, using the biomass expansion factor method and forest inventory data. Forest area and biomass C density in the whole region increased from 179.78 × 10(6) ha and 38.6 Mg C ha(-1) in the 1970s to 196.65 × 10(6) ha and 45.5 Mg C ha(-1) in the 2000s, respectively. The C stock increased from 6.9 Pg C to 8.9 Pg C, with an averaged sequestration rate of 66.9 Tg C yr(-1). Among the five countries, China and Japan were two major contributors to the total region's forest C sink, with respective contributions of 71.1% and 32.9%. In China, the areal expansion of forest land was a larger contributor to C sinks than increased biomass density for all forests (60.0% vs. 40.0%) and for planted forests (58.1% vs. 41.9%), while the latter contributed more than the former for natural forests (87.0% vs. 13.0%). In Japan, increased biomass density dominated the C sink for all (101.5%), planted (91.1%), and natural (123.8%) forests. Forests in South Korea also acted as a C sink, contributing 9.4% of the total region's sink because of increased forest growth (98.6%). Compared to these countries, the reduction in forest land in both North Korea and Mongolia caused a C loss at an average rate of 9.0 Tg C yr(-1), equal to 13.4% of the total region's C sink. Over the last four decades, the biomass C sequestration by East Asia's forests offset 5.8% of its contemporary fossil-fuel CO2 emissions. © 2014 John Wiley & Sons Ltd.

  18. Biological Nitrogen Fixation In Tropical Dry Forests Of Costa Rica

    Science.gov (United States)

    Gei, M. G.; Powers, J. S.

    2012-12-01

    Evidence suggests that tropical dry forests (TDF) are not nitrogen (N) deficient. This evidence includes: high losses of gaseous nitrogen during the rainy season, high ecosystem soil N stocks and high N concentrations in leaves and litterfall. Its been commonly hypothesized that biological nitrogen fixation is responsible for the high availability of N in tropical soils. However, the magnitude of this flux has rarely if ever been measured in tropical dry forests. Because of the high cost of fixing N and the ubiquity of N fixing legume trees in the TDF, at the individual tree level symbiotic fixation should be a strategy down-regulated by the plant. Our main goal was to determine the rates of and controls over symbiotic N fixation. We hypothesized that legume tree species employ a facultative strategy of nitrogen fixation and that this process responds to changes in light availability, soil moisture and nutrient supply. We tested this hypothesis both on naturally established trees in a forest and under controlled conditions in a shade house by estimating the quantities of N fixed annually using the 15N natural abundance method, counting nodules, and quantifying (field) or manipulating (shade house) the variation in important environmental variables (soil nutrients, soil moisture, and light). We found that in both in our shade house experiment and in the forest, nodulation varied among different legume species. For both settings, the 15N natural abundance approach successfully detected differences in nitrogen fixation among species. The legume species that we studied were able to regulate fixation depending on the environmental conditions. They showed to have different strategies of nitrogen fixation that follow a gradient of facultative to obligate fixation. Our data suggest that there exists a continuum of nitrogen fixation strategies among species. Any efforts to define tropical legume trees as a functional group need to incorporate this variation.

  19. Whole-ecosystem experimental manipulations of tropical forests

    OpenAIRE

    Fayle, Tom M; Turner, Edgar Clive; Basset, Yves; Ewers, Robert M; Reynolds, Glen; Novotny, Vojtech

    2015-01-01

    Tropical forests are highly diverse systems involving extraordinary numbers of interactions between species, with each species responding in a different way to the abiotic environment. Understanding how these systems function and predicting how they respond to anthropogenic global change is extremely challenging. We argue for the necessity of ‘whole-ecosystem’ experimental manipulations, in which the entire ecosystem is targeted, either to reveal the functioning of the...

  20. Assessing biomass and forest area classifications from modis satellite data while incrementing the number of FIA data panels

    Science.gov (United States)

    Dumitru Salajanu; Dennis M. Jacobs

    2005-01-01

    Our objective was to determine at what level biomass and forest area obtained from 2, 3, 4, or 5 panels of forest inventory data compares well with forested area and biomass estimates from the national inventory data. A subset of 2605 inventory plots (100% forested, 100% non-forested) was used to classify the land cover and model the biomass in South Carolina. Mixed...

  1. Multidecadal stability in tropical rain forest structure and dynamics across an old-growth landscape.

    Science.gov (United States)

    Clark, David B; Clark, Deborah A; Oberbauer, Steven F; Kellner, James R

    2017-01-01

    Have tropical rain forest landscapes changed directionally through recent decades? To answer this question requires tracking forest structure and dynamics through time and across within-forest environmental heterogeneity. While the impacts of major environmental gradients in soil nutrients, climate and topography on lowland tropical rain forest (TRF) structure and function have been extensively analyzed, the effects of the shorter environmental gradients typical of mesoscale TRF landscapes remain poorly understood. To evaluate multi-decadal performance of an old-growth TRF at the La Selva Biological Station, Costa Rica, we established 18 0.5-ha annually-censused forest inventory plots in a stratified-random design across major landscape edaphic gradients. Over the 17-year study period, there were moderate differences in stand dynamics and structure across these gradients but no detectable difference in woody productivity. We found large effects on forest structure and dynamics from the mega-Niño event at the outset of the study, with subdecadal recovery and subsequent stabilization. To extend the timeline to >40 years, we combined our findings with those from earlier studies at this site. While there were annual to multiannual variations in the structure and dynamics, particularly in relation to local disturbances and the mega-Niño event, at the longer temporal scale and broader spatial scale this landscape was remarkably stable. This stability contrasts notably with a current hypothesis of increasing biomass and dynamics of TRF, which we term the Bigger and Faster Hypothesis (B&FHo). We consider possible reasons for the contradiction and conclude that it is currently not possible to independently assess the vast majority of previously published B&FHo evidence due to restricted data access.

  2. Light in Tropical Forest Models: What Detail Matters?

    Science.gov (United States)

    Shenkin, A.; Bentley, L. P.; Asner, G. P.; Malhi, Y.

    2014-12-01

    Representations of light in models of tropical forests are typically unconstrained by field data and rife with assumptions, and for good reason: forest light environments are highly variable, difficult and onerous to predict, and the value of improved prediction is unclear. Still, the question remains: how detailed must our models be to be accurate enough, yet simple enough to be able to scale them from plots to landscapes? Here we use field data to constrain 1-D, 2-D, and 3-D light models and integrate them with simple forest models to predict net primary production (NPP) across an Andes-to-Amazon elevation transect in Peru. Field data consist of novel vertical light profile measurements coupled with airborne LiDAR (light detection and ranging) data from the Carnegie Airborne Observatory. Preliminary results indicate that while 1-D models may be "good-enough" and highly-scalable where forest structure is relatively homogenous, more complex models become important as forest structure becomes more heterogeneous. We discuss the implications our results hold for prediction of NPP under a changing climate, and suggest paths forward for useful proxies of light availability in forests to improve and scale up forest models.

  3. Quaternary forest associations in lowland tropical West Africa

    Science.gov (United States)

    Miller, Charlotte S.; Gosling, William D.

    2014-01-01

    Terrestrial fossil pollen records are frequently used to reveal the response of vegetation to changes in both regional and global climate. Here we present a fossil pollen record from sediment cores extracted from Lake Bosumtwi (West Africa). This record covers the last c. 520 thousand years (ka) and represents the longest terrestrial pollen record from Africa published to date. The fossil pollen assemblages reveal dynamic vegetation change which can be broadly characterized as indicative of shifts between savannah and forest. Savannah formations are heavily dominated by grass (Poaceae) pollen (>55%) typically associated with Cyperaceae, Chenopodiaceae-Amaranthaceae and Caryophyllaceae. Forest formations are palynologically more diverse than the savannah, with the key taxa occurring in multiple forest zones being Moraceae, Celtis, Uapaca, Macaranga and Trema. The fossil pollen data indicate that over the last c. 520 ka the vegetation of lowland tropical West Africa has mainly been savannah; however six periods of forest expansion are evident which most likely correspond to global interglacial periods. A comparison of the forest assemblage composition within each interglacial suggests that the Holocene (11-0 ka) forest occurred under the wettest climate, while the forest which occurred at the time of Marine Isotope Stage 7 probably occurred under the driest climate.

  4. Woody biomass utilization trends, barriers, and strategies: Perspectives of U.S. Forest Service managers

    Science.gov (United States)

    Shiloh Sundstrom; Max Nielsen-Pincus; Cassandra Moseley; Sarah. McCaffrey

    2012-01-01

    The use of woody biomass is being promoted across the United States as a means of increasing energy independence, mitigating climate change, and reducing the cost of hazardous fuels reduction treatments and forest restoration projects. The opportunities and challenges for woody biomass use on the national forest system are unique. In addition to making woody biomass...

  5. Historical forest biomass dynamics modelled with Landsat spectral trajectories

    Science.gov (United States)

    Gómez, Cristina; White, Joanne C.; Wulder, Michael A.; Alejandro, Pablo

    2014-07-01

    Estimation of forest aboveground biomass (AGB) is informative of the role of forest ecosystems in local and global carbon budgets. There is a need to retrospectively estimate biomass in order to establish a historical baseline and enable reporting of change. In this research, we used temporal spectral trajectories to inform on forest successional development status in support of modelling and mapping of historic AGB for Mediterranean pines in central Spain. AGB generated with ground plot data from the Spanish National Forest Inventory (NFI), representing two collection periods (1990 and 2000), are linked with static and dynamic spectral data as captured by Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) sensors over a 25 year period (1984-2009). The importance of forest structural complexity on the relationship between AGB and spectral vegetation indices is revealed by the analysis of wavelet transforms. Two-dimensional (2D) wavelet transforms support the identification of spectral trajectory patterns of forest stands that in turn, are associated with traits of individual NFI plots, using a flexible algorithm sensitive to capturing time series similarity. Single-date spectral indices, temporal trajectories, and temporal derivatives associated with succession are used as input variables to non-parametric decision trees for modelling, estimation, and mapping of AGB and carbon sinks over the entire study area. Results indicate that patterns of change found in Normalized Difference Vegetation Index (NDVI) values are associated and relate well to classes of forest AGB. The Tasseled Cap Angle (TCA) index was found to be strongly related with forest density, although the related patterns of change had little relation with variability in historic AGB. By scaling biomass models through small (˜2.5 ha) spatial objects defined by spectral homogeneity, the AGB dynamics in the period 1990-2000 are mapped (70% accuracy when validated with plot values of

  6. Uncertainty of Forest Biomass Estimates in North Temperate Forests Due to Allometry: Implications for Remote Sensing

    Directory of Open Access Journals (Sweden)

    Razi Ahmed

    2013-06-01

    Full Text Available Estimates of above ground biomass density in forests are crucial for refining global climate models and understanding climate change. Although data from field studies can be aggregated to estimate carbon stocks on global scales, the sparsity of such field data, temporal heterogeneity and methodological variations introduce large errors. Remote sensing measurements from spaceborne sensors are a realistic alternative for global carbon accounting; however, the uncertainty of such measurements is not well known and remains an active area of research. This article describes an effort to collect field data at the Harvard and Howland Forest sites, set in the temperate forests of the Northeastern United States in an attempt to establish ground truth forest biomass for calibration of remote sensing measurements. We present an assessment of the quality of ground truth biomass estimates derived from three different sets of diameter-based allometric equations over the Harvard and Howland Forests to establish the contribution of errors in ground truth data to the error in biomass estimates from remote sensing measurements.

  7. Climate impacts on soil carbon processes along an elevation gradient in the tropical Luquillo Experimental Forest

    Science.gov (United States)

    Dingfang Chen; Mei Yu; Grizelle González; Xiaoming Zou; Qiong Gao

    2017-01-01

    Tropical forests play an important role in regulating the global climate and the carbon cycle. With the changing temperature and moisture along the elevation gradient, the Luquillo Experimental Forest in Northeastern Puerto Rico provides a natural approach to understand tropical forest ecosystems under climate change. In this study, we conducted a soil translocation...

  8. Two mycoheterotrophic orchids from Thailand tropical dipterocarpacean forests associate with a broad diversity of ectomycorrhizal fungi.

    Science.gov (United States)

    Roy, Mélanie; Watthana, Santi; Stier, Anna; Richard, Franck; Vessabutr, Suyanee; Selosse, Marc-André

    2009-08-14

    Mycoheterotrophic plants are considered to associate very specifically with fungi. Mycoheterotrophic orchids are mostly associated with ectomycorrhizal fungi in temperate regions, or with saprobes or parasites in tropical regions. Although most mycoheterotrophic orchids occur in the tropics, few studies have been devoted to them, and the main conclusions about their specificity have hitherto been drawn from their association with ectomycorrhizal fungi in temperate regions. We investigated three Asiatic Neottieae species from ectomycorrhizal forests in Thailand. We found that all were associated with ectomycorrhizal fungi, such as Thelephoraceae, Russulaceae and Sebacinales. Based on 13C enrichment of their biomass, they probably received their organic carbon from these fungi, as do mycoheterotrophic Neottieae from temperate regions. Moreover, 13C enrichment suggested that some nearby green orchids received part of their carbon from fungi too. Nevertheless, two of the three orchids presented a unique feature for mycoheterotrophic plants: they were not specifically associated with a narrow clade of fungi. Some orchid individuals were even associated with up to nine different fungi. Our results demonstrate that some green and mycoheterotrophic orchids in tropical regions can receive carbon from ectomycorrhizal fungi, and thus from trees. Our results reveal the absence of specificity in two mycoheterotrophic orchid-fungus associations in tropical regions, in contrast to most previous studies of mycoheterotrophic plants, which have been mainly focused on temperate orchids.

  9. Satellite observations of the role and impacts of dry season climate limitations on tropical forest fates

    Science.gov (United States)

    Huete, A. R.; Restrepo-Coupe, N.; Wu, J.; Devadas, R.; Guan, K.; Liu, Y.; Ratana, P.; Sun, Q.; Schaaf, C.; Saleska, S. R.

    2015-12-01

    Climate change scenarios projected for the 21st century predict drying of the Amazon, greening of monsoon tropical Asia and no change in the tropics of Australia. Dry season variability is increasing with complex associated forest responses and feedbacks as they become exposed to longer and/or more intense dry seasons. The functional response of tropical forests to dry seasonal periods is thus crucial to forest resilience, as forests may respond with either enhanced photosynthesis (due to more sunlight) or may dry down with greater susceptibility to fires and release of greenhouse gases and severe public health haze alerts. In this study, we use multiple satellite remote sensing datasets representing forest canopy states, environmental drivers (light and water status), and disturbance (fires), along with in situ flux tower measures of photosynthesis to assess whole ecosystem patterns and test mechanisms of forest- dry season climate interactions. We compare photosynthesis patterns and dry season responses of Asia-Oceania tropical forests with neotropical forests to better understand forest resilience to climate change and human impacts. In contrast to the neotropics, human activities in monsoon tropical Asia have resulted in intensive transformations of tropical forests. We find forest disturbance exerts a strong influence on tropical forest functioning and a partial loss or degradation of tropical forests can reverse dry seasonal responses with substantial impacts on carbon fluxes. Neotropical forests displayed large variations in dry season forest responses due to spatially variable dry season lengths and magnitude, whereas most of monsoon Asia tropical forests lacked well-defined dry seasons, yet were highly sensitive to shorter term, intense drought events that impacted severely upon the disturbed forests. Our results highlight the interactions among rainfall, radiation and forest health with the relative importance of each factor varying with the

  10. Assessing change in national forest monitoring capacities of 99 tropical countries

    NARCIS (Netherlands)

    Romijn, J.E.; Lantican, C.B.; Herold, M.; Lindquist, E.; Ochieng, R.M.; Wijaya, A.; Murdiyarso, D.; Verchot, L.

    2015-01-01

    Monitoring of forest cover and forest functions provides information necessary to support policies and decisions to conserve, protect and sustainably manage forests. Especially in the tropics where forests are declining at a rapid rate, national forest monitoring systems capable of reliably

  11. Low beta diversity of herbivorous insects in tropical forests.

    Science.gov (United States)

    Novotny, Vojtech; Miller, Scott E; Hulcr, Jiri; Drew, Richard A I; Basset, Yves; Janda, Milan; Setliff, Gregory P; Darrow, Karolyn; Stewart, Alan J A; Auga, John; Isua, Brus; Molem, Kenneth; Manumbor, Markus; Tamtiai, Elvis; Mogia, Martin; Weiblen, George D

    2007-08-09

    Recent advances in understanding insect communities in tropical forests have contributed little to our knowledge of large-scale patterns of insect diversity, because incomplete taxonomic knowledge of many tropical species hinders the mapping of their distribution records. This impedes an understanding of global biodiversity patterns and explains why tropical insects are under-represented in conservation biology. Our study of approximately 500 species from three herbivorous guilds feeding on foliage (caterpillars, Lepidoptera), wood (ambrosia beetles, Coleoptera) and fruit (fruitflies, Diptera) found a low rate of change in species composition (beta diversity) across 75,000 square kilometres of contiguous lowland rainforest in Papua New Guinea, as most species were widely distributed. For caterpillars feeding on large plant genera, most species fed on multiple host species, so that even locally restricted plant species did not support endemic herbivores. Large plant genera represented a continuously distributed resource easily colonized by moths and butterflies over hundreds of kilometres. Low beta diversity was also documented in groups with differing host specificity (fruitflies and ambrosia beetles), suggesting that dispersal limitation does not have a substantial role in shaping the distribution of insect species in New Guinea lowland rainforests. Similar patterns of low beta diversity can be expected in other tropical lowland rainforests, as they are typically situated in the extensive low basins of major tropical rivers similar to the Sepik-Ramu region of New Guinea studied here.

  12. Impact of biomass harvesting on forest soil productivity in the northern Rocky Mountains

    Science.gov (United States)

    Woongsoon Jang; Christopher R. Keyes; Deborah Page-Dumroese

    2015-01-01

    Biomass harvesting extracts an increased amount of organic matter from forest ecosystems over conventional harvesting. Since organic matter plays a critical role in forest productivity, concerns of potential negative long-term impacts of biomass harvesting on forest productivity (i.e., changing nutrient/water cycling, aggravating soil properties, and compaction) have...

  13. Evaluating forest biomass utilization in the Appalachians: A review of potential impacts and guidelines for management

    Science.gov (United States)

    Michael R. Vanderberg; Mary Beth Adams; Mark S. Wiseman

    2012-01-01

    Forests are important economic and ecological resources for both the Appalachian hardwood forest region and the country. Increased demand for woody biomass can be met, at least in part, by improved utilization of these resources. However, concerns exist about the impacts of increased intensity of woody biomass removal on the sustainability of forest ecosystems....

  14. Emissions tradeoffs associated with cofiring forest biomass with coal: A case study in Colorado, USA

    Science.gov (United States)

    Dan Loeffler; Nathaniel Anderson

    2014-01-01

    Cofiring forest biomass residues with coal to generate electricity is often cited for its potential to offset fossil fuels and reduce greenhouse gas emissions, but the extent to which cofiring achieves these objectives is highly dependent on case specific variables. This paper uses facility and forest specific data to examine emissions from cofiring forest biomass with...

  15. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments

    Science.gov (United States)

    Matthew D. Wallenstein; Steven McNulty; Ivan J. Fernandez; Johnny Boggs; William H. Schlesinger

    2006-01-01

    We examined the effects of N fertilization on forest soil fungal and bacterial biomass at three long-term experiments in New England (Harvard Forest, MA; Mt. Ascutney, VT; Bear Brook, ME). At Harvard Forest, chronic N fertilization has decreased organic soil microbial biomass C (MBC) by an average of 54% and substrate induced respiration (SIR) was decreased by an...

  16. Resource availability and the abundance of an N-based defense in Australian tropical rain forests.

    Science.gov (United States)

    Miller, Rebecca E; Woodrow, Ian E

    2008-06-01

    Plant defense theories predict that relatively resource-rich environments (those with more fertile soil) will support a greater abundance of plants with nitrogen-based chemical defense, but this has yet to be adequately tested. We tested this prediction by measuring the diversity and contribution to total biomass of cyanogenic plants (those that release hydrogen cyanide from endogenous cyanide-containing compounds) in the Australian tropical rain forest. We examined 401 species in thirty 200-m2 plots, six at each of five sites, for cyanogenesis. In upland/highland rain forest, two pairs of sites similar in rainfall and altitude, but differing in soil nutrients, were selected, as well as one site in lowland rain forest. Sites differed markedly in species composition and foliar N was positively related to soil fertility. Holding altitude constant, we did not detect significant differences in the proportion of cyanogenic species with soil fertility, nor did we consistently detect significant increases in the contribution of cyanogenic species to total biomass on higher nutrient sites. Thus we found no clear evidence that soil fertility affects the distribution and prevalence of species investing in a constitutive N-based defense at the community level.

  17. Ecotoxicology of mercury in tropical forest soils: Impact on earthworms.

    Science.gov (United States)

    Buch, Andressa Cristhy; Brown, George Gardner; Correia, Maria Elizabeth Fernandes; Lourençato, Lúcio Fábio; Silva-Filho, Emmanoel Vieira

    2017-07-01

    Mercury (Hg) is one of the most toxic nonessential trace metals in the environment, with high persistence and bioaccumulation potential, and hence of serious concern to environmental quality and public health. Emitted to the atmosphere, this element can travel long distances, far from emission sources. Hg speciation can lead to Hg contamination of different ecosystem components, as well as biomagnification in trophic food webs. To evaluate the effects of atmospheric Hg deposition in tropical forests, we investigated Hg concentrations in earthworm tissues and soils of two Forest Conservation Units in State of Rio de Janeiro, Brazil. Next, we performed a laboratory study of the biological responses (cast analysis and behavioral, acute, chronic and bioaccumulation ecotoxicological tests) of two earthworms species (Pontoscolex corethrurus and Eisenia andrei) to Hg contamination in tropical artificial soil (TAS) and two natural forest soils (NS) spiked with increasing concentration of HgCl 2 . Field results showed Hg concentrations up to 13 times higher in earthworm tissues than in forest soils, while in the laboratory Hg accumulation after 91-days of exposure was 25 times greater in spiked-soils with 128mgHgkg -1 (dry wt) than in control (unspiked) soils. In all the toxicity tests P. corethrurus showed a higher adaptability or resistance to mercury than E. andrei. The role of earthworms as environmental bioremediators was confirmed in this study, showing their ability to greatly bioaccumulate trace metals while reducing Hg availability in feces. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Biofuels and biochemicals production from forest biomass in Western Canada

    International Nuclear Information System (INIS)

    Sarkar, Susanjib; Kumar, Amit; Sultana, Arifa

    2011-01-01

    Biomass can be used for the production of fuels, and chemicals with reduced life cycle (greenhouse gas) emissions. Currently, these fuels and chemicals are produced mainly from natural gas and other fossil fuels. In Western Canada, forest residue biomass is gasified for the production of syngas which is further synthesized to produce different fuels and chemicals. Two types of gasifiers: the atmospheric pressure gasifier (commercially known as SilvaGas) and the pressurized gasifier (commercially known as RENUGAS) are considered for syngas production. The production costs of methanol, (dimethyl ether), (Fischer-Tropsch) fuels, and ammonia are $0.29/kg, $0.47/kg, $0.97/kg, and $2.09/kg, respectively, for a SilvaGas-based gasification plant with a capacity of 2000 dry tonnes/day. The cost of producing methanol, DME, F-T fuels, and ammonia in a RENUGAS-based plant are $0.45/kg, $0.69/kg, $1.53/kg, and $2.72/kg, respectively, for a plant capacity of 2000 dry tonnes/day. The minimum cost of producing methanol, DME, F-T fuels, and ammonia are $0.28/kg, $0.44/kg, $0.94/kg, and $2.06/kg at plant capacities of 3000, 3500, 4000, and 3000 dry tonnes/day, respectively, using the SilvaGas-based gasification process. Biomass-based fuels and chemicals are expensive compared to fuels and chemicals derived from fossil fuels, and carbon credits can help them become competitive. -- Highlights: → Forest residue can be used for production of fuels and chemicals in Western Canada. → Methanol, dimethyl ether, Fischer-Tropsch fuel and ammonia are focus of this study. → This study estimates the production cost of these fuels and chemicals from biomass. → Economic optimum sizes of production plants are also estimated through modeling. → Costs of fuels and chemicals from biomass are higher than that from fossil fuels.

  19. Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas

    Directory of Open Access Journals (Sweden)

    Mohammad El Hajj

    2017-02-01

    Full Text Available Mapping forest AGB (Above Ground Biomass is of crucial importance to estimate the carbon emissions associated with tropical deforestation. This study proposes a method to overcome the saturation at high AGB values of existing AGB map (Vieilledent’s AGB map by using a map of correction factors generated from GLAS (Geoscience Laser Altimeter System spaceborne LiDAR data. The Vieilledent’s AGB map of Madagascar was established using optical images, with parameters calculated from the SRTM Digital Elevation Model, climatic variables, and field inventories. In the present study, first, GLAS LiDAR data were used to obtain a spatially distributed (GLAS footprints geolocation estimation of AGB (GLAS AGB covering Madagascar forested areas, with a density of 0.52 footprint/km2. Second, the difference between the AGB from the Vieilledent’s AGB map and GLAS AGB at each GLAS footprint location was calculated, and additional spatially distributed correction factors were obtained. Third, an ordinary kriging interpolation was thus performed by taking into account the spatial structure of these additional correction factors to provide a continuous correction factor map. Finally, the existing and the correction factor maps were summed to improve the Vieilledent’s AGB map. The results showed that the integration of GLAS data improves the precision of Vieilledent’s AGB map by approximately 7 t/ha. By integrating GLAS data, the RMSE on AGB estimates decreases from 81 t/ha (R2 = 0.62 to 74.1 t/ha (R2 = 0.71. Most importantly, we showed that this approach using LiDAR data avoids underestimating high biomass values (new maximum AGB of 650 t/ha compared to 550 t/ha with the first approach.

  20. Resilience of tropical rain forests: tree community reassembly in secondary forests.

    Science.gov (United States)

    Norden, Natalia; Chazdon, Robin L; Chao, Anne; Jiang, Yi-Huei; Vílchez-Alvarado, Braulio

    2009-05-01

    Understanding the recovery dynamics of ecosystems presents a major challenge in the human-impacted tropics. We tested whether secondary forests follow equilibrium or non-equilibrium dynamics by evaluating community reassembly over time, across different successional stages, and among multiple life stages. Based on long-term and static data from six 1-ha plots in NE Costa Rica, we show that secondary forests are undergoing reassembly of canopy tree and palm species composition through the successful recruitment of seedlings, saplings, and young trees of mature forest species. Such patterns were observed over time within sites and across successional stages. Floristic reassembly in secondary forests showed a clear convergence with mature forest community composition, supporting an equilibrium model. This resilience stems from three key factors co-occurring locally: high abundance of generalist species in the regional flora, high levels of seed dispersal, and local presence of old-growth forest remnants.

  1. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling

    Science.gov (United States)

    Xiaohui Feng; María Uriarte; Grizelle González; Sasha Reed; Jill Thompson; Jess K. Zimmerman; Lora Murphy

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very...

  2. The importance of Ficus (Moraceae) trees for tropical forest restoration

    DEFF Research Database (Denmark)

    Cottee-Jones, H. Eden W.; Bajpai, Omesh; Chaudhary, Lal B.

    2016-01-01

    Forest restoration is an increasingly important tool to offset and indeed reverse global deforestation rates. One low cost strategy to accelerate forest recovery is conserving scattered native trees that persist across disturbed landscapes and which may act as seedling recruitment foci. Ficus trees......, which are considered to be critically important components of tropical ecosystems, may be particularly attractive to seed dispersers in that they produce large and nutritionally rewarding fruit crops. Here, we evaluate the effectiveness of remnant Ficus trees in inducing forest recovery compared...... to other common trees. We studied the sapling communities growing under 207 scattered trees, and collected data on seed rain for 55 trees in a modified landscape in Assam, India. We found that Ficus trees have more sapling species around them (species richness = 140.1 ± 9.9) than non-Ficus trees (79.5 ± 12...

  3. Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.

    Science.gov (United States)

    Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S

    2016-09-01

    We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.

  4. The impact of lianas on the carbon cycle of tropical forests: a modeling study using the Ecosystem Demography model

    Science.gov (United States)

    di Porcia e Brugnera, M.; Longo, M.; Verbeek, H.

    2017-12-01

    Lianas are an important component of tropical forests, constituting up to 40% of the woody stems and about 35% of the woody species. Tropical forests have been experiencing large-scale structural changes, including an increase in liana abundance and biomass. This may eventually reduce the projected carbon sink of tropical forests. Despite their crucial role no single terrestrial ecosystem model has included lianas so far. Here, we present the very first implementation of lianas in the Ecosystem Demography model (ED2). ED2 is able to represent the competition for water and light between different vegetation types at the regional level. Our new implementation of ED2 is hence suitable to address important questions such as the impact of lianas on the tropical forest carbon balance. We validated the model against forest inventory and eddy covariance flux data at a dry seasonal site (Barro Colorado Island, Panama), and at a wet rainforest site (Paracou, French Guiana). The model was able to represent size structure and carbon accumulation rates. We also evaluated the impact of the unique allocation strategy of lianas on their competitive ability. Lianas invest only a small fraction of their carbon for structural tissues when compared to trees. As a result, lianas benefit from an extra amount of available carbon, however the trade-offs of low allocation on structural tissues are not yet well understood. We are currently investigating a number of hypotheses, including the possibility for lianas to have high turnover rates for leaves and fine roots, or to have high mortality rates due to the loss of structural support when trees die. As such our model allows us to get a better understanding of the role of lianas in the tropical forest carbon cycle.

  5. Heat Storage and Energy Closure in Two Tropical Montane Forests in Hawaii

    Science.gov (United States)

    Mudd, R. G.; Giambelluca, T. W.; Huang, M.

    2012-12-01

    To date, eddy covariance observations of evapotranspiration (ET) in tropical rainforest ecosystems are limited and thorough assessments of such observations are rare. In this study, we present a detailed evaluation of eddy covariance data collected at two sites in Hawaii Volcanoes National Park, Hawaii, for a 34 month period to evaluate the importance of biomass and air heat storage to the energy balance and determine site specific energy closure characteristics. One site is located in a native Hawaiian tropical montane forest dominated by Metrosideros polymorpha (Nahuku), while the other is located in a nearby forest (Olaa) that has been partially invaded by strawberry guava (Psidium cattleianum). Vertical and radial distribution of all biomass components were evaluated from detailed stand surveys, biomass samples, allometric relationships, wood density, fresh to dry weight ratios of plant materials, and temperature measurements of stem biomass. Total fresh biomass was estimated to be 69.8 ± 11.7 kg m-2 and 75.9 ± 16.6 kg m-2 at Nahuku and Olaa, respectively, and the contribution of separate biomass components to energy closure were evaluated in detail. Despite statistically similar fresh biomass between stands, energy storage was found to be significantly greater at the forest site with P. cattleianum tree invasion (Olaa) than at the native forest stand (Nahuku). The difference was attributed to a higher proportion of smaller stems at Olaa, absorbing and releasing more heat for a given mass. Inclusion of biomass and air heat storage in the energy balance improved the relative energy closure, the slope of the linear regression (forced through the origin) of the sum of latent and sensible heat fluxes measured above the canopies for each 30-minute period from 0.767 to 0.805 at Nahuku and from 0.918 to 0.997 at Olaa. The mean absolute energy imbalance, the mean of the differences between the available energy and the sum of latent and sensible heat fluxes for each

  6. Large-scale carbon stock assessment of woody vegetation in tropical dry deciduous forest of Sathanur reserve forest, Eastern Ghats, India.

    Science.gov (United States)

    Gandhi, Durai Sanjay; Sundarapandian, Somaiah

    2017-04-01

    Tropical dry forests are one of the most widely distributed ecosystems in tropics, which remain neglected in research, especially in the Eastern Ghats. Therefore, the present study was aimed to quantify the carbon storage in woody vegetation (trees and lianas) on large scale (30, 1 ha plots) in the dry deciduous forest of Sathanur reserve forest of Eastern Ghats. Biomass of adult (≥10 cm DBH) trees was estimated by species-specific allometric equations using diameter and wood density of species whereas in juvenile tree population and lianas, their respective general allometric equations were used to estimate the biomass. The fractional value 0.4453 was used to convert dry biomass into carbon in woody vegetation of tropical dry forest. The mean aboveground biomass value of juvenile tree population was 1.86 Mg/ha. The aboveground biomass of adult trees ranged from 64.81 to 624.96 Mg/ha with a mean of 245.90 Mg/ha. The mean aboveground biomass value of lianas was 7.98 Mg/ha. The total biomass of woody vegetation (adult trees + juvenile population of trees + lianas) ranged from 85.02 to 723.46 Mg/ha, with a mean value of 295.04 Mg/ha. Total carbon accumulated in woody vegetation in tropical dry deciduous forest ranged from 37.86 to 322.16 Mg/ha with a mean value of 131.38 Mg/ha. Adult trees accumulated 94.81% of woody biomass carbon followed by lianas (3.99%) and juvenile population of trees (1.20%). Albizia amara has the greatest biomass and carbon stock (58.31%) among trees except for two plots (24 and 25) where Chloroxylon swietenia contributed more to biomass and carbon stock. Similarly, Albizia amara (52.4%) showed greater carbon storage in juvenile population of trees followed by Chloroxylon swietenia (21.9%). Pterolobium hexapetalum (38.86%) showed a greater accumulation of carbon in liana species followed by Combretum albidum (33.04%). Even though, all the study plots are located within 10 km radius, they show a significant spatial variation among

  7. Hydrological niche separation explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests

    Science.gov (United States)

    Xu, X.; Medvigy, D.; Powers, J. S.; Becknell, J. M.; Guan, K.

    2015-12-01

    Despite ample water supply, vegetation dynamics are subject to seasonal water stress in large fraction of tropical forests. These seasonally dry tropical forests (SDTFs) account for over 40% of tropical forests, harbor high biodiversity, have large potential carbon sink due to forest recovery from human disturbance and also play a critical role in global carbon budget and inter-annual variations. Plants in this biome display notably diverse responses to seasonal and inter-annual variations of water availability, especially inter-specific variations in canopy seasonality and biomass growth. Current process-based dynamic vegetation models cannot represent these diversities and are shown to perform poorly on simulating drought responses of tropical forests, calling into question of their ability to accurately simulate future changes in SDTFs. Accumulated field observations, suggest that hydrological niche separation driven by coordinated plant functional traits is associated with plants' performance under drought. Yet, it remains not clear whether the physiology-level hydrological niche separation can explain the ecosystem-level diversity observed in SDTFs. Here, we test the theory with a model-data fusion approach. We implemented a new plant hydrodynamic module that is able to track leaf water potential at sub-daily scale in ED2 model. We further incorporated a hydrological niche separation scheme based on a meta-data analysis of key functional traits in SDTFs. Simulated ecological patterns with and without hydrological niche separation were then compared with remote-sensing and long-term field observations from an SDTF site in Palo Verde, Costa Rica. Using several numerical experiments, we specifically examine the following questions: (i) Whether hydrological niche separation can explain the diversity in canopy seasonality and biomass growth? (ii) How important are the yet uncertain belowground functional traits, especially root profile in determining canopy

  8. Compatibility of timber and non-timber forest product management in natural tropical forests: perspectives, challenges, and opportunities

    NARCIS (Netherlands)

    Guariguata, M.R.; García-Fernández, C.; Shiel, D.; Nasi, R.; Herrero-Jáuregui, C.; Cronkleton, P.; Ingram, V.

    2010-01-01

    Tropical forests could satisfy multiple demands for goods and services both for present and future generations. Yet integrated approaches to natural forest management remain elusive across the tropics. In this paper we examine one combination of uses: selective harvesting of timber and non-timber

  9. Why do forest products become less available? A pan-tropical comparison of drivers of forest-resource degradation

    NARCIS (Netherlands)

    Hermans, Kathleen; Gerstner, Katharina; Geijzendorffer, Ilse R.; Herold, Martin; Seppelt, Ralf; Wunder, Sven

    2016-01-01

    Forest products provide an important source of income and wellbeing for rural smallholder communities across the tropics. Although tropical forest products frequently become over-exploited, only few studies explicitly address the dynamics of degradation in response to socio-economic drivers. Our

  10. Indigenous exploitation and management of tropical forest resources: an evolutionary continuum in forest-people interactions.

    NARCIS (Netherlands)

    Wiersum, K.F.

    1997-01-01

    Since the early 1980s several new approaches towards forest management, which include active participation of local communities, have been tried out in many tropical regions. As a result of these efforts recognition has increased about the various ways in which many local communities are already

  11. Sustainable forest management of tropical forests can reduce carbon emissions and stabilize timber production

    Science.gov (United States)

    N. Sasaki; G.P. Asner; Yude Pan; W. Knorr; P.B. Durst; H.O. Ma; I. Abe; A.J. Lowe; L.P. Koh

    2016-01-01

    The REDD+ scheme of the United Nations Framework Conventionon Climate Change has provided opportunities to manage tropical forests for timber production and carbon emission reductions. To determine the appropriate loggingtechniques, we analyzed potential timber production and carbon emission reductions under two logging techniques over a 40-year period of selective...

  12. Forest biomass carbon stocks and variation in Tibet’s carbon-dense forests from 2001 to 2050

    Science.gov (United States)

    Sun, Xiangyang; Wang, Genxu; Huang, Mei; Chang, Ruiying; Ran, Fei

    2016-01-01

    Tibet’s forests, in contrast to China’s other forests, are characterized by primary forests, high carbon (C) density and less anthropogenic disturbance, and they function as an important carbon pool in China. Using the biomass C density data from 413 forest inventory sites and a spatial forest age map, we developed an allometric equation for the forest biomass C density and forest age to assess the spatial biomass C stocks and variation in Tibet’s forests from 2001 to 2050. The results indicated that the forest biomass C stock would increase from 831.1 Tg C in 2001 to 969.4 Tg C in 2050, with a net C gain of 3.6 Tg C yr−1 between 2001 and 2010 and a decrease of 1.9 Tg C yr−1 between 2040 and 2050. Carbon tends to allocate more in the roots of fir forests and less in the roots of spruce and pine forests with increasing stand age. The increase of the biomass carbon pool does not promote significant augmentation of the soil carbon pool. Our findings suggest that Tibet’s mature forests will remain a persistent C sink until 2050. However, afforestation or reforestation, especially with the larger carbon sink potential forest types, such as fir and spruce, should be carried out to maintain the high C sink capacity. PMID:27703215

  13. Regulation of bacterioplankton density and biomass in tropical shallow coastal lagoons

    Directory of Open Access Journals (Sweden)

    Fabiana MacCord

    Full Text Available AIM: Estimating bacterioplankton density and biomass and their regulating factors is important in order to evaluate aquatic systems' carrying capacity, regarding bacterial growth and the stock of matter in the bacterial community, which can be consumed by higher trophic levels. We aim to evaluate the limnological factors which regulate - in space and time - the bacterioplankton dynamics (abundance and biomass in five tropical coastal lagoons in the state of Rio de Janeiro, Brazil. METHOD: The current study was carried out at the following lagoons: Imboassica, Cabiúnas, Comprida, Carapebus and Garças. They differ in morphology and in their main limnological factors. The limnological variables as well as bacterioplankton abundance and biomass were monthly sampled for 14 months. Model selection analyses were performed in order to evaluate the main variables regulating the bacterioplankton's dynamics in these lagoons. RESULT: The salt concentration and the "space" factor (i.e. different lagoons explained great part of the bacterial density and biomass variance in the studied tropical coastal lagoons. When the lagoons were analyzed separately, salinity still explained great part of the variation of bacterial density and biomass in the Imboassica and Garças lagoons. On the other hand, phosphorus concentration was the main factor explaining the variance of bacterial density and biomass in the distrophic Cabiúnas, Comprida and Carapebus lagoons. There was a strong correlation between bacterial density and biomass (r² = 0.70, p < 0.05, indicating that bacterial biomass variations are highly dependent on bacterial density variations. CONCLUSION: (i Different limnological variables regulate the bacterial density and biomass in the studied coastal lagoons, (ii salt and phosphorus concentrations greatly explained the variation of bacterial density and biomass in the saline and distrophic lagoons, respectively, and (iii N-nitrate and chlorophyll

  14. Eco-Hydrology of a Tropical Montane Cloud Forest: A New REU Site Hosted by Texas A&M University

    Science.gov (United States)

    Houser, C.; Cahill, A. T.; Brooks, S.; Frauenfeld, O. W.; Lemmons, K.; McInnes, K. J.; Miller, G.; Moore, G. W.; Quiring, S.; Rapp, A. D.; Roark, E.; Schade, G. W.; Schumacher, C.; Tjoelker, M.; Washington-Allen, R. A.

    2011-12-01

    This National Science Foundation REU site hosted by Texas A&M University allows undergraduate students to conduct original research on various aspects of the ecohydrology of a tropical pre-montane forest at the Texas A&M Soltis Center for Research and Education in Central Costa Rica. Tropical pre-montane forests are biologically diverse ecosystems that depend on a combination of cloud and mist immersion (horizontal precipitation) in addition to orographic precipitation and the capture of this moisture by vegetation. There is a paucity of field studies to quantify the ecohydrology of tropical pre-montane forests at the (local) watershed scale, and a particular lack of studies to examine the ecohydrology of transitional and secondary forests at lower elevations. Working as part of interdisciplinary research clusters the students spent 6 weeks at the research station completing original research on spatial and temporal patterns of evapotranspiration, vegetation structure and biomass estimates, atmospheric boundary layer structure, soil trace gas flux, local and regional climate change, and aerosol effects on fog and rain formation. Preliminary results reveal a strong diurnal cycle in evapotranspiration, gas flux and boundary layer development superimposed across an elevation gradient and change in forest structure. This poster describes the logistical challenges of running an REU program abroad, and identifies how development activities, focus on research clusters and the opportunity to live and interact with a foreign culture greatly improved the research experience.

  15. Geospatial Assessment of Forest Fragmentation and its Implications for Ecological Processes in Tropical Forests

    Directory of Open Access Journals (Sweden)

    Adepoju Kayode Adewale

    2017-11-01

    Full Text Available The study assessed the patterns of spatio-temporal configuration imposed on a forest landscape in Southwestern Nigeria due to fragmentation for the period 1986 – 2010 in order to understand the relationship between landscape patterns and the ecological processes influencing the distribution of species in tropical forest environment. Time-series Landsat TM and ETM satellite images and forest inventory data were pre-processed and classified into four landuse/landcover categories using maximum likelihood classification algorithm. Fragstats software was used for the computation of seven landscape and six class level metrics to provide indicators of fragmentation and landscape connectivity from the classified images.

  16. Toward trait-based mortality models for tropical forests.

    Directory of Open Access Journals (Sweden)

    Mélaine Aubry-Kientz

    Full Text Available Tree mortality in tropical forests is a complex ecological process for which modelling approaches need to be improved to better understand, and then predict, the evolution of tree mortality in response to global change. The mortality model introduced here computes an individual probability of dying for each tree in a community. The mortality model uses the ontogenetic stage of the tree because youngest and oldest trees are more likely to die. Functional traits are integrated as proxies of the ecological strategies of the trees to permit generalization among all species in the community. Data used to parametrize the model were collected at Paracou study site, a tropical rain forest in French Guiana, where 20,408 trees have been censused for 18 years. A Bayesian framework was used to select useful covariates and to estimate the model parameters. This framework was developed to deal with sources of uncertainty, including the complexity of the mortality process itself and the field data, especially historical data for which taxonomic determinations were uncertain. Uncertainty about the functional traits was also considered, to maximize the information they contain. Four functional traits were strong predictors of tree mortality: wood density, maximum height, laminar toughness and stem and branch orientation, which together distinguished the light-demanding, fast-growing trees from slow-growing trees with lower mortality rates. Our modelling approach formalizes a complex ecological problem and offers a relevant mathematical framework for tropical ecologists to process similar uncertain data at the community level.

  17. Toward trait-based mortality models for tropical forests.

    Science.gov (United States)

    Aubry-Kientz, Mélaine; Hérault, Bruno; Ayotte-Trépanier, Charles; Baraloto, Christopher; Rossi, Vivien

    2013-01-01

    Tree mortality in tropical forests is a complex ecological process for which modelling approaches need to be improved to better understand, and then predict, the evolution of tree mortality in response to global change. The mortality model introduced here computes an individual probability of dying for each tree in a community. The mortality model uses the ontogenetic stage of the tree because youngest and oldest trees are more likely to die. Functional traits are integrated as proxies of the ecological strategies of the trees to permit generalization among all species in the community. Data used to parametrize the model were collected at Paracou study site, a tropical rain forest in French Guiana, where 20,408 trees have been censused for 18 years. A Bayesian framework was used to select useful covariates and to estimate the model parameters. This framework was developed to deal with sources of uncertainty, including the complexity of the mortality process itself and the field data, especially historical data for which taxonomic determinations were uncertain. Uncertainty about the functional traits was also considered, to maximize the information they contain. Four functional traits were strong predictors of tree mortality: wood density, maximum height, laminar toughness and stem and branch orientation, which together distinguished the light-demanding, fast-growing trees from slow-growing trees with lower mortality rates. Our modelling approach formalizes a complex ecological problem and offers a relevant mathematical framework for tropical ecologists to process similar uncertain data at the community level.

  18. Quantification and identification of lightning damage in tropical forests.

    Science.gov (United States)

    Yanoviak, Stephen P; Gora, Evan M; Burchfield, Jeffrey M; Bitzer, Phillip M; Detto, Matteo

    2017-07-01

    Accurate estimates of tree mortality are essential for the development of mechanistic forest dynamics models, and for estimating carbon storage and cycling. However, identifying agents of tree mortality is difficult and imprecise. Although lightning kills thousands of trees each year and is an important agent of mortality in some forests, the frequency and distribution of lightning-caused tree death remain unknown for most forests. Moreover, because all evidence regarding the effects of lightning on trees is necessarily anecdotal and post hoc, rigorous tests of hypotheses regarding the ecological effects of lightning are impossible. We developed a combined electronic sensor/camera-based system for the location and characterization of lightning strikes to the forest canopy in near real time and tested the system in the forest of Barro Colorado Island, Panama. Cameras mounted on towers provided continuous video recordings of the forest canopy that were analyzed to determine the locations of lightning strikes. We used a preliminary version of this system to record and locate 18 lightning strikes to the forest over a 3-year period. Data from field surveys of known lightning strike locations (obtained from the camera system) enabled us to develop a protocol for reliable, ground-based identification of suspected lightning damage to tropical trees. In all cases, lightning damage was relatively inconspicuous; it would have been overlooked by ground-based observers having no knowledge of the event. We identified three types of evidence that can be used to consistently identify lightning strike damage in tropical forests: (1) localized and directionally biased branch mortality associated with flashover among tree and sapling crowns, (2) mortality of lianas or saplings near lianas, and (3) scorched or wilting epiphytic and hemiepiphytic plants. The longitudinal trunk scars that are typical of lightning-damaged temperate trees were never observed in this study. Given the

  19. Rain-induced changes in soil CO2flux and microbial community composition in a tropical forest of China.

    Science.gov (United States)

    Deng, Qi; Hui, Dafeng; Chu, Guowei; Han, Xi; Zhang, Quanfa

    2017-07-17

    Rain-induced soil CO 2 pulse, a rapid excitation in soil CO 2 flux after rain, is ubiquitously observed in terrestrial ecosystems, yet the underlying mechanisms in tropical forests are still not clear. We conducted a rain simulation experiment to quantify rain-induced changes in soil CO 2 flux and microbial community composition in a tropical forest. Soil CO 2 flux rapidly increased by ~83% after rains, accompanied by increases in both bacterial (~51%) and fungal (~58%) Phospholipid Fatty Acids (PLFA) biomass. However, soil CO 2 flux and microbial community in the plots without litters showed limited response to rains. Direct releases of CO 2 from litter layer only accounted for ~19% increases in soil CO 2 flux, suggesting that the leaching of dissolved organic carbon (DOC) from litter layer to the topsoil is the major cause of rain-induced soil CO 2 pulse. In addition, rain-induced changes in soil CO 2 flux and microbial PLFA biomass decreased with increasing rain sizes, but they were positively correlated with litter-leached DOC concentration rather than total DOC flux. Our findings reveal an important role of litter-leached DOC input in regulating rain-induced soil CO 2 pulses and microbial community composition, and may have significant implications for CO 2 losses from tropical forest soils under future rainfall changes.

  20. Multiple pathways of commodity crop expansion in tropical forest landscapes

    Science.gov (United States)

    Meyfroidt, Patrick; Carlson, Kimberly M.; Fagan, Matthew E.; Gutiérrez-Vélez, Victor H.; Macedo, Marcia N.; Curran, Lisa M.; DeFries, Ruth S.; Dyer, George A.; Gibbs, Holly K.; Lambin, Eric F.; Morton, Douglas C.; Robiglio, Valentina

    2014-07-01

    Commodity crop expansion, for both global and domestic urban markets, follows multiple land change pathways entailing direct and indirect deforestation, and results in various social and environmental impacts. Here we compare six published case studies of rapid commodity crop expansion within forested tropical regions. Across cases, between 1.7% and 89.5% of new commodity cropland was sourced from forestlands. Four main factors controlled pathways of commodity crop expansion: (i) the availability of suitable forestland, which is determined by forest area, agroecological or accessibility constraints, and land use policies, (ii) economic and technical characteristics of agricultural systems, (iii) differences in constraints and strategies between small-scale and large-scale actors, and (iv) variable costs and benefits of forest clearing. When remaining forests were unsuitable for agriculture and/or policies restricted forest encroachment, a larger share of commodity crop expansion occurred by conversion of existing agricultural lands, and land use displacement was smaller. Expansion strategies of large-scale actors emerge from context-specific balances between the search for suitable lands; transaction costs or conflicts associated with expanding into forests or other state-owned lands versus smallholder lands; net benefits of forest clearing; and greater access to infrastructure in already-cleared lands. We propose five hypotheses to be tested in further studies: (i) land availability mediates expansion pathways and the likelihood that land use is displaced to distant, rather than to local places; (ii) use of already-cleared lands is favored when commodity crops require access to infrastructure; (iii) in proportion to total agricultural expansion, large-scale actors generate more clearing of mature forests than smallholders; (iv) property rights and land tenure security influence the actors participating in commodity crop expansion, the form of land use displacement

  1. Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+

    Science.gov (United States)

    Leitold, Veronika; Keller, Michael; Morton, Douglas C; Cook, Bruce D; Shimabukuro, Yosio E

    2015-12-01

    Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas with complex topography present a challenge for lidar remote sensing. We compared digital terrain models (DTM) derived from airborne lidar data from a mountainous region of the Atlantic Forest in Brazil to 35 ground control points measured with survey grade GNSS receivers. The terrain model generated from full-density (~20 returns m -2 ) data was highly accurate (mean signed error of 0.19 ± 0.97 m), while those derived from reduced-density datasets (8 m -2 , 4 m -2 , 2 m -2 and 1 m -2 ) were increasingly less accurate. Canopy heights calculated from reduced-density lidar data declined as data density decreased due to the inability to accurately model the terrain surface. For lidar return densities below 4 m -2 , the bias in height estimates translated into errors of 80-125 Mg ha -1 in predicted aboveground biomass. Given the growing emphasis on the use of airborne lidar for forest management, carbon monitoring, and conservation efforts, the results of this study highlight the importance of careful survey planning and consistent sampling for accurate quantification of aboveground biomass stocks and dynamics. Approaches that rely primarily on canopy height to estimate aboveground biomass are sensitive to DTM errors from variability in lidar sampling density.

  2. Substrates Preparation from Woody Tropical Waste Biomass for Biohydrogen Production

    Directory of Open Access Journals (Sweden)

    Dwi Susilaningsih

    2010-10-01

    Full Text Available Addressing to the global warming problem, energy crisis and pollution, hydrogen production by micro-organisms using biotechnological approach should be considered, since it fulfils the recent society requirement to safely produce, renewable and environmental friendly energy. Hydrogen is one of the most promising green energy sources, because it is easily converted to electricity and cleanly combustible. There are three types of micro-organisms for hydrogen production, the first is cyanobacteria through the photosynthesis process, the second is anaerobic bacteria, which use organic substances as electron donor and energy and convert them to hydrogen, the third is photosynthetic bacteria, somewhat between photosynthetic and anaerobic bacteria, which are capable of converting the organic substances to hydrogen at a fairly high rate. We propose to use the abundant waste biomasses in Indonesia for hydrogen production by the microbial system. Our focus research is the production of hydrogen from waste biomasses by two-stage fermentation systems, which combine the conversion process of monomer biomasses to lactic acid by Lactobacillus sp. and the conversion process of lactic acid to hydrogen by photosynthetic bacteria. In this research, two kind substrates preparation were apply for woody waste biomass such as chemical hydrolysis and biological methods with several treatments. The results of the substrate preparation state showed that hydrolyses process of biomasses using strong acid are yielded total sugar about 70-90% of previous original content. Moreover, hydrolyses process using weak/diluted acid are yielded total sugar about 4-30% of original sugar. Furthermore, the biological treatments of degradation of woody waste biomasses are yielded total sugar about 0-10% (by single culture and 10-50% (by consortium. Those hydrolysates substrates will use for fermentation two stages of lactate fermentation and conversion by photosynthetic bacteria in order

  3. Accuracy assessment of biomass and forested area classification from modis, landstat-tm satellite imagery and forest inventory plot data

    Science.gov (United States)

    Dumitru Salajanu; Dennis M. Jacobs

    2007-01-01

    The objective of this study was to determine how well forestfnon-forest and biomass classifications obtained from Landsat-TM and MODIS satellite data modeled with FIA plots, compare to each other and with forested area and biomass estimates from the national inventory data, as well as whether there is an increase in overall accuracy when pixel size (spatial resolution...

  4. Carbon, energy and forest biomass: new opportunities and needs for forest management in Italy

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available Forest biomass provides a relevant fraction of world energy needs, not only in developing Countries. In Italy, several factors are presently contributing to a new interest for this resource, ranging from regulatory quotas for renewables to the increasing price of fossil fuel to the emergence of a European carbon stock exchange. This focus on renewable resources constitutes an important opportunity for the forest sector and for society by and large, but because of the potential dimensions of the emerging market it also requires new planning instruments, in order to avoid a sudden and widespread resumption of coppice management and a reduction of standing carbon stock in forest ecosystems, which would run contrary to the objectives of the Kyoto Protocol. An example of the future demand for biomasses in Central Italy is presented, based on the possible use of fuelwood in new coal-fired power plants by the 'co-firing' technology.

  5. Grass allometry and estimation of above-ground biomass in tropical alpine tussock grasslands

    NARCIS (Netherlands)

    Oliveras Menor, I.; Eynden, van der M.; Malhi, Y.; Cahuana, N.; Menor, C.; Zamora, F.; Haugaasen, T.

    2014-01-01

    The puna/páramo grasslands span across the highest altitudes of the tropical Andes, and their ecosystem dynamics are still poorly understood. In this study we examined the above-ground biomass and developed species specific and multispecies power-law allometric equations for four tussock grass

  6. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    NARCIS (Netherlands)

    Haumann, F.A.; Batenburg, A.M.; Pieterse, G.; Gerbig, C.; Krol, M.C.; Rockmann, T.

    2013-01-01

    In this study, we identify a biomass-burning signal in molecular hydrogen (H-2) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H-2 and several other species as well as the H-2 isotopic composition in air samples that were collected in the BARCA

  7. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    NARCIS (Netherlands)

    Haumann, F.A.; Batenburg, A.M.; Pieterse, G.; Gerbig, C; Krol, M.C.; Röckmann, T.

    2013-01-01

    In this study, we identify a biomass-burning signal in molecular hydrogen (H2) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H2 and several other species as well as the H2 isotopic composition in air samples that were collected in the BARCA (Balanço

  8. Leaf litter arthropod responses to tropical forest restoration.

    Science.gov (United States)

    Cole, Rebecca J; Holl, Karen D; Zahawi, Rakan A; Wickey, Philipp; Townsend, Alan R

    2016-08-01

    Soil and litter arthropods represent a large proportion of tropical biodiversity and perform important ecosystem functions, but little is known about the efficacy of different tropical forest restoration strategies in facilitating their recovery in degraded habitats. We sampled arthropods in four 7- to 8-year-old restoration treatments and in nearby reference forests. Sampling was conducted during the wet and dry seasons using extractions from litter and pitfall samples. Restoration treatments were replicated in 50 × 50-m plots in four former pasture sites in southern Costa Rica: plantation - trees planted throughout the plot; applied nucleation/islands - trees planted in patches of different sizes; and natural regeneration - no tree planting. Arthropod abundance, measures of richness and diversity, and a number of functional groups were greater in the island treatment than in natural regeneration or plantation treatments and, in many cases, were similar to reference forest. Litter and pitfall morphospecies and functional group composition in all three restoration treatments were significantly different than reference sites, but island and plantation treatments showed more recovery than natural regeneration. Abundance and functional group diversity showed a much greater degree of recovery than community composition. Synthesis and applications: The less resource-intensive restoration strategy of planting tree islands was more effective than tree plantations in restoring arthropod abundance, richness, and functional diversity. None of the restoration strategies, however, resulted in similar community composition as reference forest after 8 years of recovery, highlighting the slow rate of recovery of arthropod communities after disturbance, and underscoring the importance of conservation of remnant forests in fragmented landscapes.

  9. Monitoring temporal Vegetation changes in Lao tropical forests

    International Nuclear Information System (INIS)

    Phompila, Chittana; Lewis, Megan; Clarke, Kenneth; Ostendorf, Bertram

    2014-01-01

    Studies on changes in vegetation are essential for understanding the interaction between humans and the environment. These studies provide key information for land use assessment, terrestrial ecosystem monitoring, carbon flux modelling and impacts of global climate change. The primary purpose of this study was to detect temporal vegetation changes in tropical forests in the southern part of Lao PDR from 2001-2012. The study investigated the annual vegetation phenological response of dominant land cover types across the study area and relationships to seasonal precipitation and temperature. Improved understanding of intra-annual patterns of vegetation variation was useful to detect longer term changes in vegetation. The breaks for additive season and trend (BFAST) approach was implemented to detect changes in these land cover types throughout the 2001-2012 period. We used the enhanced vegetation index (EVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) (MOD13Q1 products) and monthly rainfall and temperature data obtained from the Meteorology and Hydrology Department, Ministry of Agriculture-Forestry, published by Lao National Statistical Centre in this research. EVI well documented the annual seasonal growth of vegetation and clearly distinguished the characteristic phenology of four different land use types; native forest, plantation, agriculture and mixed wooded/cleared area. Native forests maintained high EVI throughout the year, while plantations, wooded/cleared areas and agriculture showed greater inter-annual variation, with minimum EVI at the end of the dry season in April and maximum EVI in September-October, around two months after the wet season peak in rainfall. The BFAST analysis detected abrupt temporal changes in vegetation in the tropical forests, especially in a large conversion of mixed wooded/cleared area into plantation. Within the study area from 2001-2012 there has been an overall decreasing trend of vegetation cover for

  10. Light Diffusion in the Tropical Dry Forest of Costa Rica

    Science.gov (United States)

    Calvo-Rodriguez, S.; Sanchez-Azofeifa, G. A.

    2016-06-01

    Leaf Area Index (LAI) has been defined as the total leaf area (one-sided) in relation to the ground. LAI has an impact on tree growth and recruitment through the interception of light, which in turn affects primary productivity. Even though many instruments exist for estimating LAI from ground, they are often laborious and costly to run continuously. Measurements of LAI from the field using traditional sensors (e.g., LAI-2000) require multiple visits to the field under very specific sky conditions, making them unsuitable to operate in inaccessible areas and forests with dense vegetation, as well as areas where persistent sunny conditions are the norm like tropical dry forests. With this context, we proposed a methodology to characterize light diffusion based on NDVI and LAI measurements taken from the field in two successional stages in the tropical dry forest of Santa Rosa National Park in Costa Rica. We estimate a "K" coefficient to characterize light diffusion by the canopy, based on field NDVI measurements derived from optical phenology instruments and MODIS NDVI. From the coefficients determined, we estimated LAI values and compared them with ground measurements of LAI. In both successional stages ground measurements of LAI had no significant difference to the tower-derived LAI and the estimated LAI from MODIS NDVI.

  11. LIGHT DIFFUSION IN THE TROPICAL DRY FOREST OF COSTA RICA

    Directory of Open Access Journals (Sweden)

    S. Calvo-Rodriguez

    2016-06-01

    Full Text Available Leaf Area Index (LAI has been defined as the total leaf area (one-sided in relation to the ground. LAI has an impact on tree growth and recruitment through the interception of light, which in turn affects primary productivity. Even though many instruments exist for estimating LAI from ground, they are often laborious and costly to run continuously. Measurements of LAI from the field using traditional sensors (e.g., LAI-2000 require multiple visits to the field under very specific sky conditions, making them unsuitable to operate in inaccessible areas and forests with dense vegetation, as well as areas where persistent sunny conditions are the norm like tropical dry forests. With this context, we proposed a methodology to characterize light diffusion based on NDVI and LAI measurements taken from the field in two successional stages in the tropical dry forest of Santa Rosa National Park in Costa Rica. We estimate a "K" coefficient to characterize light diffusion by the canopy, based on field NDVI measurements derived from optical phenology instruments and MODIS NDVI. From the coefficients determined, we estimated LAI values and compared them with ground measurements of LAI. In both successional stages ground measurements of LAI had no significant difference to the tower-derived LAI and the estimated LAI from MODIS NDVI.

  12. Local-Scale Mapping of Biomass in Tropical Lowland Pine Savannas Using ALOS PALSAR

    Directory of Open Access Journals (Sweden)

    Dimitrios Michelakis

    2014-09-01

    Full Text Available Fine-scale biomass maps offer forest managers the prospect of more detailed and locally accurate information for measuring, reporting and verification activities in contexts, such as sustainable forest management, carbon stock assessments and ecological studies of forest growth and change. In this study, we apply a locally validated method for estimating aboveground woody biomass (AGWB from Advanced Land Observing Satellite (ALOS Phased Array-type L-band Synthetic Aperture Radar (PALSAR data to produce an AGWB map for the lowland pine savannas of Belize at a spatial resolution of 100 m. Over 90% of these woodlands are predicted to have an AGWB below 60 tha−1, with the average woody biomass of these savannas estimated at 23.5 tha−1. By overlaying these spatial estimates upon previous thematic mapping of national land cover, we derive representative average biomass values of ~32 tha−1 and ~18 tha−1 for the previously qualitative classes of “denser” and “less dense” tree savannas. The predicted average biomass, from the mapping for savannas woodlands occurring within two of Belize’s larger protected areas, agree closely with previous biomass estimates for these areas based on ground surveys and forest inventories (error ≤20%. However, biomass estimates derived for these protected areas from two biomass maps produced at coarser resolutions (500 m and 1000 m from global datasets overestimated biomass (errors ≥275% in each dataset. The finer scale biomass mapping of both protected and unprotected areas provides evidence to suggest that protection has a positive effect upon woody biomass, with the mean AGWB higher in areas protected and managed for biodiversity (protected and passively managed (PRPM, 29.5 tha−1 compared to unprotected areas (UPR, 23.29 tha−1. These findings suggest that where sufficient ground data exists to build a reliable local relationship to radar backscatter, the more detailed biomass mapping that can be

  13. Conservation in a crowded place : forest and people on Mount Elgon Uganda

    NARCIS (Netherlands)

    Sassen, M.

    2014-01-01

    Key words: tropical forest, conservation management, local livelihoods, forest cover change, disturbance, fuelwood, forest structure, species richness, biomass, Mount Elgon   A growing world population has important consequences for forests. In this study I investigate how

  14. Plant and microbial controls on nitrogen retention and loss in a Humid Tropical Forest

    Energy Technology Data Exchange (ETDEWEB)

    Templer, P.; Silver, W.; Pett-Ridge, J.; DeAngelis, K.M.; Firestone, M.K.

    2009-09-15

    Humid tropical forests are generally characterized by the lack of nitrogen (N) limitation to net primary productivity, yet paradoxically have high potential for N loss. We conducted an intensive field experiment with {sup 15}NH{sub 4} and {sup 15}NO{sub 3} additions to highly weathered tropical forest soils to determine the relative importance of N retention and loss mechanisms. Over half of all the NH{sub 4}{sup +} produced from gross mineralization was rapidly converted to NO{sub 3}{sup -} during the process of gross nitrification. During the first 24 h plant roots took up 28 % of the N mineralized, dominantly as NH{sub 4}{sup +}, and were a greater sink for N than soil microbial biomass. Soil microbes were not a significant sink for added {sup 15}NH{sub 4}{sup +} or {sup 15}NO{sub 3}{sup -} during the first 24 hr, and only for {sup 15}NH{sub 4}{sup +} after 7 d. Patterns of microbial community composition, as determined by Terminal Restriction Fragment Length Polymorphism analysis, were weakly, but significantly correlated with nitrification and denitrification to N{sub 2}O. Rates of dissimilatory NO{sub 3}{sup -} reduction to NH{sub 4}{sup +} (DNRA) were high in this forest, accounting for up to 25 % of gross mineralization and 35 % of gross nitrification. DNRA was a major sink for NO{sub 3}{sup -} which may have contributed to the lower rates of N{sub 2}O and leaching losses. Despite considerable N conservation via DNRA and plant NH{sub 4}{sup +} uptake, the fate of approximately 45% of the NO{sub 3}{sup -} produced and 22% of the NH{sub 4}{sup +} produced were not measured in our fluxes, suggesting that other important pathways for N retention and loss (e.g., denitrification to N{sub 2}) are important in this system. The high proportion of mineralized N that was rapidly nitrified and the fates of that NO{sub 3}{sup -} highlight the key role of gross nitrification as a proximate control on N retention and loss in humid tropical forest soils. Furthermore, our

  15. Relationships among net primary productivity, nutrients and climate in tropical rain forest: A pan-tropical analysis

    Science.gov (United States)

    Cleveland, Cory C.; Townsend, Alan R.; Taylor, Philip; Alvarez-Clare, Silvia; Bustamante, Mercedes M.C.; Chuyong, George; Dobrowski, Solomon Z.; Grierson, Pauline; Harms, Kyle E.; Houlton, Benjamin Z.; Marklein, Alison; Parton, William; Porder, Stephen; Reed, Sasha C.; Sierra, Carlos A.; Silver, Whendee L.; Tanner, Edmund V.J.; Wieder, William R.

    2011-01-01

    Tropical rain forests play a dominant role in global biosphere-atmosphere CO2 exchange. Although climate and nutrient availability regulate net primary production (NPP) and decomposition in all terrestrial ecosystems, the nature and extent of such controls in tropical forests remain poorly resolved. We conducted a meta-analysis of carbon-nutrient-climate relationships in 113 sites across the tropical forest biome. Our analyses showed that mean annual temperature was the strongest predictor of aboveground NPP (ANPP) across all tropical forests, but this relationship was driven by distinct temperature differences between upland and lowland forests. Within lowland forests (nitrogen (N), litter decomposition rate (k), soil N and soil respiration were all directly related with total surface (0–10 cm) soil P concentrations. Our analysis provides some evidence that P availability regulates NPP and other ecosystem processes in lowland tropical forests, but more importantly, underscores the need for a series of large-scale nutrient manipulations – especially in lowland forests – to elucidate the most important nutrient interactions and controls.

  16. A Pervasive Role for Biomass Burning in Tropical High Ozonelow Water Structures

    Science.gov (United States)

    Anderson, Daniel C.; Nicely, Julie M.; Salawitch, Ross J.; Canty, Timothy P.; Dickerson, Russell R.; Hanisco, Thomas F.; Wolfe, Glenn M.; Apel, Eric C.; Atlas, Elliot; Bannon, Thomas; hide

    2016-01-01

    Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300-700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background. Models, satellite data and aircraft observations are used to show fires in tropical Africa and Southeast Asia are the dominant source of high O3 and that low H2O results from large-scale descent within the tropical troposphere. Previous explanations that attribute HOLW structures to transport from the stratosphere or mid-latitude troposphere are inconsistent with our observations. This study suggest a larger role for biomass burning in the radiative forcing of climate in the remote TWP than is commonly appreciated.

  17. Tropical Africa: Land Use, Biomass, and Carbon Estimates for 1980 (NDP-055)

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.

    2002-04-16

    This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980. The biomass data and carbon estimates are associated with woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with estimating historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth's land surface and is comprised of countries that are located in tropical Africa (Angola, Botswana, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Congo, Benin, Equatorial Guinea, Ethiopia, Djibouti, Gabon, Gambia, Ghana, Guinea, Ivory Coast, Kenya, Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Niger, Nigeria, Guinea-Bissau, Zimbabwe (Rhodesia), Rwanda, Senegal, Sierra Leone, Somalia, Sudan, Tanzania, Togo, Uganda, Burkina Faso (Upper Volta), Zaire, and Zambia). The database was developed using the GRID module in the ARC/INFO{trademark} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

  18. Biomass Energy Systems and Resources in Tropical Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Lugano (KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology (Sweden))

    2010-07-01

    Tanzania has a characteristic developing economy, which is dependent on agricultural productivity. About 90% of the total primary energy consumption of the country is from biomass. Since the biomass is mostly consumed at the household level in form of wood fuel, it is marginally contributing to the commercial energy supply. However, the country has abundant energy resources from hydro, biomass, natural gas, coal, uranium, solar, wind and geothermal. Due to reasons that include the limited technological capacity, most of these resources have not received satisfactory harnessing. For instance: out of the estimated 4.7GW macro hydro potential only 561MW have been developed; and none of the 650MW geothermal potential is being harnessed. Furthermore, besides the huge potential of biomass (12 million tons of oil equivalent), natural gas (45 million cubic metres), coal (1,200 million tones), high solar insolation (4.5 - 6.5 kWh/m2), 1,424km of coastal strip, and availability of good wind regime (> 4 m/s wind speed), they are marginally contributing to the production of commercial energy. Ongoing exploration work also reveals that the country has an active system of petroleum and uranium. On the other hand, after commissioning the 229 km natural gas pipeline from SongoSongo Island to Dar es Salaam, there are efforts to ensure a wider application in electricity generation, households, automotive and industry. Due to existing environmental concerns, biomass resource is an attractive future energy for the world, Tanzania inclusive. This calls for putting in place sustainable energy technologies, like gasification, for their harnessing. The high temperature gasification (HTAG) of biomass is a candidate technology since it has shown to produce improved syngas quality in terms of gas heating value that has less tar. This work was therefore initiated in order to contribute to efforts on realizing a commercial application of biomass in Tanzania. Particularly, the work aimed at

  19. Identifying tropical dry forests extent and succession via the use of machine learning techniques

    Science.gov (United States)

    Li, Wei; Cao, Sen; Campos-Vargas, Carlos; Sanchez-Azofeifa, Arturo

    2017-12-01

    Information on ecosystem services as a function of the successional stage for secondary tropical dry forests (TDFs) is scarce and limited. Secondary TDFs succession is defined as regrowth following a complete forest clearance for cattle growth or agriculture activities. In the context of large conservation initiatives, the identification of the extent, structure and composition of secondary TDFs can serve as key elements to estimate the effectiveness of such activities. As such, in this study we evaluate the use of a Hyperspectral MAPper (HyMap) dataset and a waveform LIDAR dataset for characterization of different levels of intra-secondary forests stages at the Santa Rosa National Park (SRNP) Environmental Monitoring Super Site located in Costa Rica. Specifically, a multi-task learning based machine learning classifier (MLC-MTL) is employed on the first shortwave infrared (SWIR1) of HyMap in order to identify the variability of aboveground biomass of secondary TDFs along a successional gradient. Our paper recognizes that the process of ecological succession is not deterministic but a combination of transitional forests types along a stochastic path that depends on ecological, edaphic, land use, and micro-meteorological conditions, and our results provide a new way to obtain the spatial distribution of three main types of TDFs successional stages.

  20. Human or Natural Disturbance: Landscape-Scale Dynamics of the Tropical Forests of Puerto Rico

    OpenAIRE

    Foster, David Russell; Fluet, M.; Boose, E. R.

    1999-01-01

    Increasingly, ecologists are recognizing that human disturbance has played an important role in tropical forest history and that many assumptions concerning the relative importance of natural processes warrant re-examination. To assess the historical role of broad-scale human vs. natural disturbance on an intensively studied tropical forest we undertook a landscape-level analysis of forest dynamics in the Luquillo Experimental Forest (LEF; 10 871 ha) in eastern Puerto Rico. Using aerial photo...

  1. Response of aquatic macrophyte biomass to limnological changes under water level fluctuation in tropical reservoirs

    Directory of Open Access Journals (Sweden)

    E. G. Moura Júnior

    2018-03-01

    Full Text Available Abstract We evaluated the response of the biomass of aquatic macrophytes under limnological changes after water level fluctuation (WLF of two tropical reservoirs (R1 and R2, located in northeastern Brazil. Initially we tested the hypothesis that post-WLF limnological conditions and biomass of macrophytes increase or decrease, depending on the variable or species. We monitored a 4 × 50 m permanent plot, in four expeditions per period (pre- or post-WLF, assessing species biomass and 10 limnological variables. We utilized 0.25 × 0.25 m quadrats for biomass. Once the effect of WLF in limnological variables and species biomass was confirmed, we utilized Canonical Correspondence Analysis to understand the relationship between limnological variables and species biomass. The abundant and/or dominant species in pre-WLF of R1 ( Pistia stratiotes, Eichhornia crassipes and Salvinia auriculata and R2 (Paspalidium geminatum and S. auriculata reduced their biomass post-WLF and were correlated with temperature, total phosphorous and nitrate. The reduced biomass of P. stratiotes, E. crassipes and S. auriculata in post-WLF widened resource availability, allowing coexistence of species. Therefore, we suggest that the change of limnological conditions in post-WLF in artificial lakes acts only as a moderator factor of the interspecific interaction (especially coexistence, without direct relation between these conditions and species biomass.

  2. Portable in-woods pyrolysis: Using forest biomass to reduce forest fuels, increase soil productivity, and sequester carbon

    Science.gov (United States)

    Deborah Page-Dumroese; Mark Coleman; Greg Jones; Tyron Venn; R. Kasten Dumroese; Nathanial Anderson; Woodam Chung; Dan Loeffler; Jim Archuleta; Mark Kimsey; Phil Badger; Terry Shaw; Kristin McElligott

    2009-01-01

    We describe the use of an in-woods portable pyrolysis unit that converts forest biomass to bio-oil and the application of the byproduct bio-char in a field trial. We also discuss how in-woods processing may reduce the need for long haul distances of lowvalue woody biomass and eliminate open, currently wasteful burning of forest biomass. If transportation costs can be...

  3. Biodiversity can help prevent malaria outbreaks in tropical forests.

    Directory of Open Access Journals (Sweden)

    Gabriel Zorello Laporta

    Full Text Available BACKGROUND: Plasmodium vivax is a widely distributed, neglected parasite that can cause malaria and death in tropical areas. It is associated with an estimated 80-300 million cases of malaria worldwide. Brazilian tropical rain forests encompass host- and vector-rich communities, in which two hypothetical mechanisms could play a role in the dynamics of malaria transmission. The first mechanism is the dilution effect caused by presence of wild warm-blooded animals, which can act as dead-end hosts to Plasmodium parasites. The second is diffuse mosquito vector competition, in which vector and non-vector mosquito species compete for blood feeding upon a defensive host. Considering that the World Health Organization Malaria Eradication Research Agenda calls for novel strategies to eliminate malaria transmission locally, we used mathematical modeling to assess those two mechanisms in a pristine tropical rain forest, where the primary vector is present but malaria is absent. METHODOLOGY/PRINCIPAL FINDINGS: The Ross-Macdonald model and a biodiversity-oriented model were parameterized using newly collected data and data from the literature. The basic reproduction number ([Formula: see text] estimated employing Ross-Macdonald model indicated that malaria cases occur in the study location. However, no malaria cases have been reported since 1980. In contrast, the biodiversity-oriented model corroborated the absence of malaria transmission. In addition, the diffuse competition mechanism was negatively correlated with the risk of malaria transmission, which suggests a protective effect provided by the forest ecosystem. There is a non-linear, unimodal correlation between the mechanism of dead-end transmission of parasites and the risk of malaria transmission, suggesting a protective effect only under certain circumstances (e.g., a high abundance of wild warm-blooded animals. CONCLUSIONS/SIGNIFICANCE: To achieve biological conservation and to eliminate

  4. Landscape context mediates avian habitat choice in tropical forest restoration.

    Directory of Open Access Journals (Sweden)

    J Leighton Reid

    Full Text Available Birds both promote and prosper from forest restoration. The ecosystem functions birds perform can increase the pace of forest regeneration and, correspondingly, increase the available habitat for birds and other forest-dependent species. The aim of this study was to learn how tropical forest restoration treatments interact with landscape tree cover to affect the structure and composition of a diverse bird assemblage. We sampled bird communities over two years in 13 restoration sites and two old-growth forests in southern Costa Rica. Restoration sites were established on degraded farmlands in a variety of landscape contexts, and each included a 0.25-ha plantation, island treatment (trees planted in patches, and unplanted control. We analyzed four attributes of bird communities including frugivore abundance, nectarivore abundance, migrant insectivore richness, and compositional similarity of bird communities in restoration plots to bird communities in old-growth forests. All four bird community variables were greater in plantations and/or islands than in control treatments. Frugivore and nectarivore abundance decreased with increasing tree cover in the landscape surrounding restoration plots, whereas compositional similarity to old-growth forests was greatest in plantations embedded in landscapes with high tree cover. Migrant insectivore richness was unaffected by landscape tree cover. Our results agree with previous studies showing that increasing levels of investment in active restoration are positively related to bird richness and abundance, but differences in the effects of landscape tree cover on foraging guilds and community composition suggest that trade-offs between biodiversity conservation and bird-mediated ecosystem functioning may be important for prioritizing restoration sites.

  5. Whole-ecosystem experimental manipulations of tropical forests

    Czech Academy of Sciences Publication Activity Database

    Fayle, Tom Maurice; Turner, E. C.; Basset, Yves; Ewers, R. M.; Reynolds, G.; Novotný, Vojtěch

    2015-01-01

    Roč. 30, č. 6 (2015), s. 334-346 ISSN 0169-5347 R&D Projects: GA ČR GA14-32302S; GA ČR(CZ) GA14-04258S; GA ČR GB14-36098G Grant - others:Euroepan Social Fund(CZ) CZ.1.07/2.3.00/20.0064 Institutional support: RVO:60077344 Keywords : tropical forests Subject RIV: EH - Ecology, Behaviour Impact factor: 16.735, year: 2015 http://www.cell.com/trends/ecology-evolution/pdf/S0169-5347(15)00069-5.pdf

  6. Medicinal plants popularly used in the Brazilian Tropical Atlantic Forest.

    Science.gov (United States)

    Di Stasi, L C; Oliveira, G P; Carvalhaes, M A; Queiroz, M; Tien, O S; Kakinami, S H; Reis, M S

    2002-02-01

    A survey of medicinal plants used by rural and urban inhabitants of the three cities of the Tropical Atlantic Forest, Region of Vale do Ribeira, State of São Paulo, Brazil was performed by means of 200 interviews with medicinal plant users and extractors and, traditional healers. One hundred fourteen herbal remedies were recorded and the following information reported: Latin, vernacular and English names, plant part used, forms of preparation and application of the herbal remedies, medicinal or food uses, areas of plant collection, economic importance (when available) and other data.

  7. Linking Above- and Belowground Dynamics in Tropical Urban Forests

    Science.gov (United States)

    Atkinson, E. E.; Marin-Spiotta, E.

    2013-12-01

    . timber plantation and subsequent forest regeneration) while the N-fixing species Leucaena leucocephala drove differences between these forests and younger forests (10-year old), which only recently regenerated. The 40-year old mixed-species forests, regardless of successional trajectory, both had higher soil organic C and N (40 × 6 Mg C/ha and 3.8 × 6 Mg N/ha) compared to younger forests (32 × 2 Mg C/ha and 2.9 × 0.2 Mg N/ha) and active pastures. Active pastures had the lowest soil organic C and N (22 × 6 Mg C/ha and 2.1 × 0.5 Mg N/ha). We found that each successional trajectory showed distinct soil microbial community composition. In addition, the recently regenerated younger forests, dominated by N-fixing tree species, had higher microbial biomass and higher rates of N-cycling enzyme activity (N-acetyl glucosaminida