WorldWideScience

Sample records for trmm ground validation

  1. Rainfall Product Evaluation for the TRMM Ground Validation Program

    Science.gov (United States)

    Amitai, E.; Wolff, D. B.; Robinson, M.; Silberstein, D. S.; Marks, D. A.; Kulie, M. S.; Fisher, B.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Evaluation of the Tropical Rainfall Measuring Mission (TRMM) satellite observations is conducted through a comprehensive Ground Validation (GV) Program. Standardized instantaneous and monthly rainfall products are routinely generated using quality-controlled ground based radar data from four primary GV sites. As part of the TRMM GV program, effort is being made to evaluate these GV products and to determine the uncertainties of the rainfall estimates. The evaluation effort is based on comparison to rain gauge data. The variance between the gauge measurement and the true averaged rain amount within the radar pixel is a limiting factor in the evaluation process. While monthly estimates are relatively simple to evaluate, the evaluation of the instantaneous products are much more of a challenge. Scattegrams of point comparisons between radar and rain gauges are extremely noisy for several reasons (e.g. sample volume discrepancies, timing and navigation mismatches, variability of Z(sub e)-R relationships), and therefore useless for evaluating the estimates. Several alternative methods, such as the analysis of the distribution of rain volume by rain rate as derived from gauge intensities and from reflectivities above the gauge network will be presented. Alternative procedures to increase the accuracy of the estimates and to reduce their uncertainties also will be discussed.

  2. Assessing the Relative Performance of Microwave-Based Satellite Rain Rate Retrievals Using TRMM Ground Validation Data

    Science.gov (United States)

    Wolff, David B.; Fisher, Brad L.

    2011-01-01

    Space-borne microwave sensors provide critical rain information used in several global multi-satellite rain products, which in turn are used for a variety of important studies, including landslide forecasting, flash flood warning, data assimilation, climate studies, and validation of model forecasts of precipitation. This study employs four years (2003-2006) of satellite data to assess the relative performance and skill of SSM/I (F13, F14 and F15), AMSU-B (N15, N16 and N17), AMSR-E (Aqua) and the TRMM Microwave Imager (TMI) in estimating surface rainfall based on direct instantaneous comparisons with ground-based rain estimates from Tropical Rainfall Measuring Mission (TRMM) Ground Validation (GV) sites at Kwajalein, Republic of the Marshall Islands (KWAJ) and Melbourne, Florida (MELB). The relative performance of each of these satellite estimates is examined via comparisons with space- and time-coincident GV radar-based rain rate estimates. Because underlying surface terrain is known to affect the relative performance of the satellite algorithms, the data for MELB was further stratified into ocean, land and coast categories using a 0.25deg terrain mask. Of all the satellite estimates compared in this study, TMI and AMSR-E exhibited considerably higher correlations and skills in estimating/observing surface precipitation. While SSM/I and AMSU-B exhibited lower correlations and skills for each of the different terrain categories, the SSM/I absolute biases trended slightly lower than AMSR-E over ocean, where the observations from both emission and scattering channels were used in the retrievals. AMSU-B exhibited the least skill relative to GV in all of the relevant statistical categories, and an anomalous spike was observed in the probability distribution functions near 1.0 mm/hr. This statistical artifact appears to be related to attempts by algorithm developers to include some lighter rain rates, not easily detectable by its scatter-only frequencies. AMSU

  3. Dry/Wet Conditions Monitoring Based on TRMM Rainfall Data and Its Reliability Validation over Poyang Lake Basin, China

    Directory of Open Access Journals (Sweden)

    Xianghu Li

    2013-11-01

    Full Text Available Local dry/wet conditions are of great concern in regional water resource and floods/droughts disaster risk management. Satellite-based precipitation products have greatly improved their accuracy and applicability and are expected to offer an alternative to ground rain gauges data. This paper investigated the capability of Tropical Rainfall Measuring Mission (TRMM rainfall data for monitoring the temporal and spatial variation of dry/wet conditions in Poyang Lake basin during 1998–2010, and validated its reliability with rain gauges data from 14 national meteorological stations in the basin. The results show that: (1 the daily TRMM rainfall data does not describe the occurrence and contribution rates of precipitation accurately, but monthly TRMM data have a good linear relationship with rain gauges rainfall data; (2 both the Z index and Standardized Precipitation Index (SPI based on monthly TRMM rainfall data oscillate around zero and show a consistent interannual variability as compared with rain gauges data; (3 the spatial pattern of moisture status, either in dry months or wet months, based on both the Z index and SPI using TRMM data, agree with the observed rainfall. In conclusion, the monthly TRMM rainfall data can be used for monitoring the variation and spatial distribution of dry/wet conditions in Poyang Lake basin.

  4. Validation of Satellite Precipitation (trmm 3B43) in Ecuadorian Coastal Plains, Andean Highlands and Amazonian Rainforest

    Science.gov (United States)

    Ballari, D.; Castro, E.; Campozano, L.

    2016-06-01

    Precipitation monitoring is of utmost importance for water resource management. However, in regions of complex terrain such as Ecuador, the high spatio-temporal precipitation variability and the scarcity of rain gauges, make difficult to obtain accurate estimations of precipitation. Remotely sensed estimated precipitation, such as the Multi-satellite Precipitation Analysis TRMM, can cope with this problem after a validation process, which must be representative in space and time. In this work we validate monthly estimates from TRMM 3B43 satellite precipitation (0.25° x 0.25° resolution), by using ground data from 14 rain gauges in Ecuador. The stations are located in the 3 most differentiated regions of the country: the Pacific coastal plains, the Andean highlands, and the Amazon rainforest. Time series, between 1998 - 2010, of imagery and rain gauges were compared using statistical error metrics such as bias, root mean square error, and Pearson correlation; and with detection indexes such as probability of detection, equitable threat score, false alarm rate and frequency bias index. The results showed that precipitation seasonality is well represented and TRMM 3B43 acceptably estimates the monthly precipitation in the three regions of the country. According to both, statistical error metrics and detection indexes, the coastal and Amazon regions are better estimated quantitatively than the Andean highlands. Additionally, it was found that there are better estimations for light precipitation rates. The present validation of TRMM 3B43 provides important results to support further studies on calibration and bias correction of precipitation in ungagged watershed basins.

  5. Validation Of TRMM For Hazard Assessment In The Remote Context Of Tropical Africa

    Science.gov (United States)

    Monsieurs, E.; Kirschbaum, D.; Tan, J.; Jacobs, L.; Kervyn, M.; Demoulin, A.; Dewitte, O.

    2017-12-01

    Accurate rainfall data is fundamental for understanding and mitigating the disastrous effects of many rainfall-triggered hazards, especially when one considers the challenges arising from climate change and rainfall variability. In tropical Africa in particular, the sparse operational rainfall gauging network hampers the ability to understand these hazards. Satellite rainfall estimates (SRE) can therefore be of great value. Yet, rigorous validation is required to identify the uncertainties when using SRE for hazard applications. We evaluated the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 Research Derived Daily Product from 1998 to 2017, at 0.25° x 0.25° spatial and 24 h temporal resolution. The validation was done over the western branch of the East African Rift, with the perspective of regional landslide hazard assessment in mind. Even though we collected an unprecedented dataset of 47 gauges with a minimum temporal resolution of 24 h, the sparse and heterogeneous temporal coverage in a region with high rainfall variability poses challenges for validation. In addition, the discrepancy between local-scale gauge data and spatially averaged ( 775 km²) TMPA data in the context of local convective storms and orographic rainfall is a crucial source of uncertainty. We adopted a flexible framework for SRE validation that fosters explorative research in a remote context. Results show that TMPA performs reasonably well during the rainy seasons for rainfall intensities controls on, and uncertainties of, TMPA revealed in this study. Moreover, it is found relevant in mapping regional-scale rainfall-triggered hazards that are in any case poorly covered by the sparse available gauges. We anticipate validation of TMPA's successor (Integrated Multi-satellitE Retrievals for Global Precipitation Measurement; 10 km × 10 km, half-hourly) using the proposed framework, as soon as this product will be available in early 2018 for the

  6. Monsoon Convective During the South China Sea Monsoon Experiment: Observations from Ground-Based Radar and the TRMM Satellite

    Science.gov (United States)

    Cifelli, Rob; Rickenbach, Tom; Halverson, Jeff; Keenan, Tom; Kucera, Paul; Atkinson, Lester; Fisher, Brad; Gerlach, John; Harris, Kathy; Kaufman, Cristina

    1999-01-01

    A main goal of the recent South China Sea Monsoon Experiment (SCSMEX) was to study convective processes associated with the onset of the Southeast Asian summer monsoon. The NASA TOGA C-band scanning radar was deployed on the Chinese research vessel Shi Yan #3 for two 20 day cruises, collecting dual-Doppler measurements in conjunction with the BMRC C-Pol dual-polarimetric radar on Dongsha Island. Soundings and surface meteorological data were also collected with an NCAR Integrated Sounding System (ISS). This experiment was the first major tropical field campaign following the launch of the Tropical Rainfall Measuring Mission (TRMM) satellite. These observations of tropical oceanic convection provided an opportunity to make comparisons between surface radar measurements and the Precipitation Radar (PR) aboard the TRMM satellite in an oceanic environment. Nearly continuous radar operations were conducted during two Intensive Observing Periods (IOPS) straddling the onset of the monsoon (5-25 May 1998 and 5-25 June 1998). Mesoscale lines of convection with widespread regions of both trailing and forward stratiform precipitation were observed following the onset of the active monsoon in the northern South China Sea region. The vertical structure of the convection during periods of strong westerly flow and relatively moist environmental conditions in the lower to mid-troposphere contrasted sharply with convection observed during periods of low level easterlies, weak shear, and relatively dry conditions in the mid to upper troposphere. Several examples of mesoscale convection will be shown from the ground (ship)-based and spaceborne radar data during times of TRMM satellite overpasses. Examples of pre-monsoon convection, characterized by isolated cumulonimbus and shallow, precipitating congestus clouds, will also be discussed.

  7. Evaluating Microphysics in Cloud-Resolving Models using TRMM and Ground-based Precipitation Radar Observations

    Science.gov (United States)

    Krueger, S. K.; Zulauf, M. A.; Li, Y.; Zipser, E. J.

    2005-05-01

    Global satellite datasets such as those produced by ISCCP, ERBE, and CERES provide strong observational constraints on cloud radiative properties. Such observations have been widely used for model evaluation, tuning, and improvement. Cloud radiative properties depend primarily on small, non-precipitating cloud droplets and ice crystals, yet the dynamical, microphysical and radiative processes which produce these small particles often involve large, precipitating hydrometeors. There now exists a global dataset of tropical cloud system precipitation feature (PF) properties, collected by TRMM and produced by Steve Nesbitt, that provides additional observational constraints on cloud system properties. We are using the TRMM PF dataset to evaluate the precipitation microphysics of two simulations of deep, precipitating, convective cloud systems: one is a 29-day summertime, continental case (ARM Summer 1997 SCM IOP, at the Southern Great Plains site); the second is a tropical maritime case: the Kwajalein MCS of 11-12 August 1999 (part of a 52-day simulation). Both simulations employed the same bulk, three-ice category microphysical parameterization (Krueger et al. 1995). The ARM simulation was executed using the UCLA/Utah 2D CRM, while the KWAJEX simulation was produced using the 3D CSU CRM (SAM). The KWAJEX simulation described above is compared with both the actual radar data and the TRMM statistics. For the Kwajalein MCS of 11 to 12 August 1999, there are research radar data available for the lifetime of the system. This particular MCS was large in size and rained heavily, but it was weak to average in measures of convective intensity, against the 5-year TRMM sample of 108. For the Kwajalein MCS simulation, the 20 dBZ contour is at 15.7 km and the 40 dBZ contour at 14.5 km! Of all 108 MCSs observed by TRMM, the highest value for the 40 dBZ contour is 8 km. Clearly, the high reflectivity cores are off scale compared with observed cloud systems in this area. A similar

  8. An Updated TRMM Composite Climatology of Tropical Rainfall and Its Validation

    Science.gov (United States)

    Wang, Jian-Jian; Adler, Robert F.; Huffman, George; Bolvin, David

    2013-01-01

    An updated 15-yr Tropical Rainfall Measuring Mission (TRMM) composite climatology (TCC) is presented and evaluated. This climatology is based on a combination of individual rainfall estimates made with data from the primaryTRMMinstruments: theTRMM Microwave Imager (TMI) and the precipitation radar (PR). This combination climatology of passive microwave retrievals, radar-based retrievals, and an algorithm using both instruments simultaneously provides a consensus TRMM-based estimate of mean precipitation. The dispersion of the three estimates, as indicated by the standard deviation sigma among the estimates, is presented as a measure of confidence in the final estimate and as an estimate of the uncertainty thereof. The procedures utilized by the compositing technique, including adjustments and quality-control measures, are described. The results give a mean value of the TCC of 4.3mm day(exp -1) for the deep tropical ocean beltbetween 10 deg N and 10 deg S, with lower values outside that band. In general, the TCC values confirm ocean estimates from the Global Precipitation Climatology Project (GPCP) analysis, which is based on passive microwave results adjusted for sampling by infrared-based estimates. The pattern of uncertainty estimates shown by sigma is seen to be useful to indicate variations in confidence. Examples include differences between the eastern and western portions of the Pacific Ocean and high values in coastal and mountainous areas. Comparison of the TCC values (and the input products) to gauge analyses over land indicates the value of the radar-based estimates (small biases) and the limitations of the passive microwave algorithm (relatively large biases). Comparison with surface gauge information from western Pacific Ocean atolls shows a negative bias (16%) for all the TRMM products, although the representativeness of the atoll gauges of open-ocean rainfall is still in question.

  9. TRMM-3B43 Bias Correction over the High Elevations of the Contiguous United States

    Science.gov (United States)

    Hashemi, H.; Nordin, K. M.; Lakshmi, V.; Knight, R. J.

    2016-12-01

    Precipitation can be quantified using a rain gauge network, or a remotely sensed precipitation product. Ultimately, the choice of dataset depends on the particular application, the catchment size, climate and the time period of study. In a region with a long record and a dense rain gauge network, the elevation-modified ground-based precipitation product, PRISM, has been found to work well. However, in poorly gauged regions the use of remotely sensed precipitation products is an absolute necessity. The Tropical Rainfall Measuring Mission (TRMM) has provided valuable precipitation datasets for hydrometeorological studies over the past two decades (1998-2015). One concern regarding the usage of TRMM data is the accuracy of the precipitation estimates, when compared to those obtained using PRISM. The reason for this concern is that TRMM and PRISM do not always agree and, typically, TRMM underestimates PRISM over the mountainous regions of the United States. In this study, we develop a correction function to improve the accuracy of the TRMM monthly product (TRMM-3B43) by estimating and removing the bias in the satellite data using the ground-based precipitation product, PRISM. We observe a strong relationship between the bias and land surface elevation; TRMM-3B43 tends to underestimate the PRISM product at altitudes greater than 1500 m above mean sea level (m.amsl) in the contiguous United States. A relationship is developed between TRMM-PRISM bias and elevation. The correction function is used to adjust the TRMM monthly precipitation using PRISM and elevation data. The model is calibrated using 25% of the available time period and the remaining 75% of the time period is used for validation. The corrected TRMM-3B43 product is verified for the high elevations over the contiguous United States and two local regions in the mountainous areas of the western United States. The results show a significant improvement in the accuracy of the TRMM product in the high elevations of

  10. Intercomparison of Vertical Structure of Storms Revealed by Ground-Based (NMQ and Spaceborne Radars (CloudSat-CPR and TRMM-PR

    Directory of Open Access Journals (Sweden)

    Veronica M. Fall

    2013-01-01

    Full Text Available Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR and Ku-band Precipitation Radar (PR, which are onboard NASA’s CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE. This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors’ type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts.

  11. Validation of Satellite Estimates (Tropical Rainfall Measuring Mission, TRMM for Rainfall Variability over the Pacific Slope and Coast of Ecuador

    Directory of Open Access Journals (Sweden)

    Bolívar Erazo

    2018-02-01

    Full Text Available A dense rain-gauge network within continental Ecuador was used to evaluate the quality of various products of rainfall data over the Pacific slope and coast of Ecuador (EPSC. A cokriging interpolation method is applied to the rain-gauge data yielding a gridded product at 5-km resolution covering the period 1965–2015. This product is compared with the Global Precipitation Climatology Centre (GPCC dataset, the Climatic Research Unit–University of East Anglia (CRU dataset, the Tropical Rainfall Measuring Mission (TRMM/TMPA 3B43 Version 7 dataset and the ERA-Interim Reanalysis. The analysis reveals that TRMM data show the most realistic features. The relative bias index (Rbias indicates that TRMM data is closer to the observations, mainly over lowlands (mean Rbias of 7% but have more limitations in reproducing the rainfall variability over the Andes (mean Rbias of −28%. The average RMSE and Rbias of 68.7 and −2.8% of TRMM are comparable with the GPCC (69.8 and 5.7% and CRU (102.3 and −2.3% products. This study also focuses on the rainfall inter-annual variability over the study region which experiences floods that have caused high economic losses during extreme El Niño events. Finally, our analysis evaluates the ability of TRMM data to reproduce rainfall events during El Niño years over the study area and the large basins of Esmeraldas and Guayas rivers. The results show that TRMM estimates report reasonable levels of heavy rainfall detection (for the extreme 1998 El Niño event over the EPSC and specifically towards the center-south of the EPSC (Guayas basin but present underestimations for the moderate El Niño of 2002–2003 event and the weak 2009–2010 event. Generally, the rainfall seasonal features, quantity and long-term climatology patterns are relatively well estimated by TRMM.

  12. GPM Ground Validation: Pre to Post-Launch Era

    Science.gov (United States)

    Petersen, Walt; Skofronick-Jackson, Gail; Huffman, George

    2015-04-01

    NASA GPM Ground Validation (GV) activities have transitioned from the pre to post-launch era. Prior to launch direct validation networks and associated partner institutions were identified world-wide, covering a plethora of precipitation regimes. In the U.S. direct GV efforts focused on use of new operational products such as the NOAA Multi-Radar Multi-Sensor suite (MRMS) for TRMM validation and GPM radiometer algorithm database development. In the post-launch, MRMS products including precipitation rate, accumulation, types and data quality are being routinely generated to facilitate statistical GV of instantaneous (e.g., Level II orbit) and merged (e.g., IMERG) GPM products. Toward assessing precipitation column impacts on product uncertainties, range-gate to pixel-level validation of both Dual-Frequency Precipitation Radar (DPR) and GPM microwave imager data are performed using GPM Validation Network (VN) ground radar and satellite data processing software. VN software ingests quality-controlled volumetric radar datasets and geo-matches those data to coincident DPR and radiometer level-II data. When combined MRMS and VN datasets enable more comprehensive interpretation of both ground and satellite-based estimation uncertainties. To support physical validation efforts eight (one) field campaigns have been conducted in the pre (post) launch era. The campaigns span regimes from northern latitude cold-season snow to warm tropical rain. Most recently the Integrated Precipitation and Hydrology Experiment (IPHEx) took place in the mountains of North Carolina and involved combined airborne and ground-based measurements of orographic precipitation and hydrologic processes underneath the GPM Core satellite. One more U.S. GV field campaign (OLYMPEX) is planned for late 2015 and will address cold-season precipitation estimation, process and hydrology in the orographic and oceanic domains of western Washington State. Finally, continuous direct and physical validation

  13. The GPM Ground Validation Program: Pre to Post-Launch

    Science.gov (United States)

    Petersen, W. A.

    2014-12-01

    NASA GPM Ground Validation (GV) activities have transitioned from the pre to post-launch era. Prior to launch direct validation networks and associated partner institutions were identified world-wide, covering a plethora of precipitation regimes. In the U.S. direct GV efforts focused on use of new operational products such as the NOAA Multi-Radar Multi-Sensor suite (MRMS) for TRMM validation and GPM radiometer algorithm database development. In the post-launch, MRMS products including precipitation rate, types and data quality are being routinely generated to facilitate statistical GV of instantaneous and merged GPM products. To assess precipitation column impacts on product uncertainties, range-gate to pixel-level validation of both Dual-Frequency Precipitation Radar (DPR) and GPM microwave imager data are performed using GPM Validation Network (VN) ground radar and satellite data processing software. VN software ingests quality-controlled volumetric radar datasets and geo-matches those data to coincident DPR and radiometer level-II data. When combined MRMS and VN datasets enable more comprehensive interpretation of ground-satellite estimation uncertainties. To support physical validation efforts eight (one) field campaigns have been conducted in the pre (post) launch era. The campaigns span regimes from northern latitude cold-season snow to warm tropical rain. Most recently the Integrated Precipitation and Hydrology Experiment (IPHEx) took place in the mountains of North Carolina and involved combined airborne and ground-based measurements of orographic precipitation and hydrologic processes underneath the GPM Core satellite. One more U.S. GV field campaign (OLYMPEX) is planned for late 2015 and will address cold-season precipitation estimation, process and hydrology in the orographic and oceanic domains of western Washington State. Finally, continuous direct and physical validation measurements are also being conducted at the NASA Wallops Flight Facility multi

  14. GPM ground validation via commercial cellular networks: an exploratory approach

    Science.gov (United States)

    Rios Gaona, Manuel Felipe; Overeem, Aart; Leijnse, Hidde; Brasjen, Noud; Uijlenhoet, Remko

    2016-04-01

    The suitability of commercial microwave link networks for ground validation of GPM (Global Precipitation Measurement) data is evaluated here. Two state-of-the-art rainfall products are compared over the land surface of the Netherlands for a period of 7 months, i.e., rainfall maps from commercial cellular communication networks and Integrated Multi-satellite Retrievals for GPM (IMERG). Commercial microwave link networks are nowadays the core component in telecommunications worldwide. Rainfall rates can be retrieved from measurements of attenuation between transmitting and receiving antennas. If adequately set up, these networks enable rainfall monitoring tens of meters above the ground at high spatiotemporal resolutions (temporal sampling of seconds to tens of minutes, and spatial sampling of hundreds of meters to tens of kilometers). The GPM mission is the successor of TRMM (Tropical Rainfall Measurement Mission). For two years now, IMERG offers rainfall estimates across the globe (180°W - 180°E and 60°N - 60°S) at spatiotemporal resolutions of 0.1° x 0.1° every 30 min. These two data sets are compared against a Dutch gauge-adjusted radar data set, considered to be the ground truth given its accuracy, spatiotemporal resolution and availability. The suitability of microwave link networks in satellite rainfall evaluation is of special interest, given the independent character of this technique, its high spatiotemporal resolutions and availability. These are valuable assets for water management and modeling of floods, landslides, and weather extremes; especially in places where rain gauge networks are scarce or poorly maintained, or where weather radar networks are too expensive to acquire and/or maintain.

  15. Ground-water models: Validate or invalidate

    Science.gov (United States)

    Bredehoeft, J.D.; Konikow, Leonard F.

    1993-01-01

    The word validation has a clear meaning to both the scientific community and the general public. Within the scientific community the validation of scientific theory has been the subject of philosophical debate. The philosopher of science, Karl Popper, argued that scientific theory cannot be validated, only invalidated. Popper’s view is not the only opinion in this debate; however, many scientists today agree with Popper (including the authors). To the general public, proclaiming that a ground-water model is validated carries with it an aura of correctness that we do not believe many of us who model would claim. We can place all the caveats we wish, but the public has its own understanding of what the word implies. Using the word valid with respect to models misleads the public; verification carries with it similar connotations as far as the public is concerned. Our point is this: using the terms validation and verification are misleading, at best. These terms should be abandoned by the ground-water community.

  16. Validation of TRMM 3B42 V6 for estimation of mean annual rainfall over ungauged area in semiarid climate

    DEFF Research Database (Denmark)

    Akbari, Abolghasem; Daryabor, Farshid; Samah, Azizan Abu

    2017-01-01

    the synoptic station (1PTRM), 3 TRMM points surrounding the synoptic station (3PTRM) and 5 TRMM points surrounding the synoptic station (5PTRM), using ArcGIS 10.2 software. The perfect and poor r were obtained at stations S08 and S19, with values of 0.92 and 0.26, respectively. According to the Nash...

  17. Quantifying Airborne Allergen Levels Before and After Rain Events Using TRMM/GPM and Ground-Sampled Data

    Science.gov (United States)

    Stewart, Randy M.

    2006-01-01

    Allergies affect millions of Americans, increasing health risks and also increasing absenteeism and reducing productivity in the workplace. Outdoor allergens, such as airborne pollens and mold spores, commonly trigger respiratory distress symptoms, but rainfall reduces the quantity of allergens in the air (EPA, 2003). The current NASA Tropical Rainfall Measuring Mission provides accurate information related to rain events. These capabilities will be further enhanced with the future Global Precipitation Measurement mission. This report examines the effectiveness of combining these NASA resources with established ground-based allergen/spore sampling systems to better understand the benefits that rain provides in removing allergens and spores from the air.

  18. Validation of the TRMM Multi Satellite Rainfall Product 3B42 and estimation of scavenging coefficients for (131)I and (137)Cs using TRMM 3B42 rainfall data.

    Science.gov (United States)

    Shrivastava, R; Dash, S K; Hegde, M N; Pradeepkumar, K S; Sharma, D N

    2014-12-01

    The TRMM rainfall product 3B42 is compared with rain gauge observations for Kaiga, India on monthly and seasonal time scales. This comparison is carried out for the years 2004-2007 spanning four monsoon seasons. A good correlation is obtained between the two data sets however; magnitude wise, the cumulative precipitation of the satellite product on monthly and seasonal time scales is deficient by almost 33-40% as compared to the rain gauge data. The satellite product is also compared with APHRODITE's Monsoon Asia data set on the same time scales. This comparison indicates a much better agreement since both these data sets represent an average precipitation over the same area. The scavenging coefficients for (131)I and (137)Cs are estimated using TRMM 3B42, rain gauge and APHRODITE data. The values obtained using TRMM 3B42 rainfall data compare very well with those obtained using rain gauge and APHRODITE data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. GPM GROUND VALIDATION CAMPAIGN REPORTS IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Campaign Reports IFloodS dataset consists of various reports filed by the scientists during the GPM Ground Validation Iowa Flood Studies...

  20. TRMM Applications for Rainfall-Induced Landslide Early Warning

    Science.gov (United States)

    Dok, A.; Fukuoka, H.; Hong, Y.

    2012-04-01

    Early warning system (EWS) is the most effective method in saving lives and reducing property damages resulted from the catastrophic landslides if properly implemented in populated areas of landslide-prone nations. For predicting the occurrence of landslides, it requires examination of empirical relationship between rainfall characteristics and past landslide occurrence. In developed countries like Japan and the US, precipitation is monitored by rain radars and ground-based rain gauge matrix. However, in developing regions like Southeast Asian countries, very limited number of rain gauges is available, and there is no implemented methodology for issuing effective warming of landslides yet. Correspondingly, satellite precipitation monitoring could be therefore a possible and promising solution for launching landslide quasi-real-time early warning system in those countries. It is due to the fact that TMPA (TRMM Multi-satellite Precipitation Analysis) can provides a globally calibration-based sequential scheme for combining precipitation estimates from multiple satellites, and gauge analyses where feasible, at fine scales (3-hourly with 0.25°x0.25° spatial resolution). It is available both after and in quasi-real time, calibrated by TRMM Combined Instrument and TRMM Microwave Imager precipitation product. However, validation of ground based rain gauge and TRMM satellite data in the vulnerable regions is still not yet operative. Snake-line/Critical-line and Soil Water Index (SWI) are used for issuing warning of landslide occurrence in Japan; whereas, Caine criterion is preferable in Europe and western nations. Herewith, it presents rainfall behavior which took place in Beichuan city (located on the 2008 Chinese Wenchuan earthquake fault), Hofu and Shobara cities in Japan where localized heavy rainfall attacked in 2009 and 2010, respectively, from TRMM 3B42RT correlated with ground based rain gauge data. The 1-day rainfall intensity and 15-day cumulative rainfall

  1. Spatial Downscaling of TRMM Precipitation using MODIS product in the Korean Peninsula

    Science.gov (United States)

    Cho, H.; Choi, M.

    2013-12-01

    Precipitation is a major driving force in the water cycle. But, it is difficult to provide spatially distributed precipitation data from isolated individual in situ. The Tropical Rainfall Monitoring Mission (TRMM) satellite can provide precipitation data with relatively coarse spatial resolution (0.25° scale) at daily basis. In order to overcome the coarse spatial resolution of TRMM precipitation products, we conducted a downscaling technique using a scaling parameter from the Moderate Resolution Imaging Spectroradiometers (MODIS) sensor. In this study, statistical relations between precipitation estimates derived from the TRMM satellite and the normalized difference vegetation index (NDVI) which is obtained from the MODIS sensor in TERRA satellite are found for different spatial scales on the Korean peninsula in northeast Asia. We obtain the downscaled precipitation mapping by regression equation between yearly TRMM precipitations values and annual average NDVI aggregating 1km to 25 degree. The downscaled precipitation is validated using time series of the ground measurements precipitation dataset provided by Korea Meteorological Organization (KMO) from 2002 to 2005. To improve the spatial downscaling of precipitation, we will conduct a study about correlation between precipitation and land surface temperature, perceptible water and other hydrological parameters.

  2. GPM GROUND VALIDATION CITATION VIDEOS IPHEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Citation Videos IPHEx data were collected during the Integrated Precipitation and Hydrology Experiment (IPHEx) in the Southern...

  3. GPM GROUND VALIDATION METEOROLOGICAL TOWER ENVIRONMENT CANADA GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Meteorological Tower Environment Canada GCPEx dataset provides temperature, relative humidity, 10 m winds, pressure and solar radiation...

  4. GPM GROUND VALIDATION PRECIPITATION VIDEO IMAGER (PVI) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Precipitation Video Imager (PVI) GCPEx dataset collected precipitation particle images and drop size distribution data from November 2011...

  5. GPM GROUND VALIDATION ENVIRONMENT CANADA (EC) RADIOSONDE GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Environment Canada (EC) Radiosonde GCPEx dataset provides measurements of pressure, temperature, humidity, and winds collected by Vaisala...

  6. GPM Ground Validation Southern Appalachian Rain Gauge IPHEx V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Southern Appalachian Rain Gauge IPHEx dataset was collected during the Integrated Precipitation and Hydrology Experiment (IPHEx) field...

  7. GPM Ground Validation Autonomous Parsivel Unit (APU) OLYMPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Autonomous Parsivel Unit (APU) OLYMPEX dataset was collected during the OLYMPEX field campaign held at Washington's Olympic Peninsula...

  8. GPM GROUND VALIDATION DUAL POLARIZATION RADIOMETER GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual Polarization Radiometer GCPEx dataset provides brightness temperature measurements at frequencies 90 GHz (not polarized) and 150 GHz...

  9. GPM GROUND VALIDATION AUTONOMOUS PARSIVEL UNIT (APU) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Autonomous Parsivel Unit (APU) GCPEx dataset was collected by the Autonomous Parsivel Unit (APU), which is an optical disdrometer that...

  10. GPM GROUND VALIDATION AUTONOMOUS PARSIVEL UNIT (APU) IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Autonomous Parsivel Unit (APU) IFLOODS dataset collected data from several sites in eastern Iowa during the spring of 2013. The APU dataset...

  11. GPM GROUND VALIDATION KCBW NEXRAD GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation KCBW NEXRAD GCPEx dataset was collected during January 9, 2012 to March 12, 2012 for the GPM Cold-season Precipitation Experiment (GCPEx)....

  12. GPM GROUND VALIDATION SATELLITE SIMULATED ORBITS LPVEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Satellite Simulated Orbits LPVEx dataset is available in the Orbital database, which takes account for the atmospheric profiles, the...

  13. GPM GROUND VALIDATION AUTONOMOUS PARSIVEL UNIT (APU) NSSTC V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Autonomous Parsivel Unit (APU) NSSTC dataset was collected by the Autonomous Parsivel Unit (APU), which is an optical disdrometer based on...

  14. GPM Ground Validation Navigation Data ER-2 OLYMPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA ER-2 Navigation Data OLYMPEX dataset supplies navigation data collected by the NASA ER-2 aircraft for flights that occurred during...

  15. GPM GROUND VALIDATION GCPEX SNOW MICROPHYSICS CASE STUDY V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation GCPEX Snow Microphysics Case Study characterizes the 3-D microphysical evolution and distribution of snow in context of the thermodynamic...

  16. NASA 3D Models: TRMM

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA) designed to monitor and study...

  17. Correction of TRMM 3B42V7 Based on Linear Regression Models over China

    Directory of Open Access Journals (Sweden)

    Shaohua Liu

    2016-01-01

    Full Text Available High temporal-spatial precipitation is necessary for hydrological simulation and water resource management, and remotely sensed precipitation products (RSPPs play a key role in supporting high temporal-spatial precipitation, especially in sparse gauge regions. TRMM 3B42V7 data (TRMM precipitation is an essential RSPP outperforming other RSPPs. Yet the utilization of TRMM precipitation is still limited by the inaccuracy and low spatial resolution at regional scale. In this paper, linear regression models (LRMs have been constructed to correct and downscale the TRMM precipitation based on the gauge precipitation at 2257 stations over China from 1998 to 2013. Then, the corrected TRMM precipitation was validated by gauge precipitation at 839 out of 2257 stations in 2014 at station and grid scales. The results show that both monthly and annual LRMs have obviously improved the accuracy of corrected TRMM precipitation with acceptable error, and monthly LRM performs slightly better than annual LRM in Mideastern China. Although the performance of corrected TRMM precipitation from the LRMs has been increased in Northwest China and Tibetan plateau, the error of corrected TRMM precipitation is still significant due to the large deviation between TRMM precipitation and low-density gauge precipitation.

  18. Hydrological Evaluation of TRMM Rainfall over the Upper Senegal River Basin

    Directory of Open Access Journals (Sweden)

    Ansoumana Bodian

    2016-04-01

    Full Text Available The availability of climatic data, especially on a daily time step, has become very rare in West Africa over the last few years due to the high costs of climate data monitoring. This scarcity of climatic data is a huge obstacle to conduct hydrological studies over some watersheds. In this context, our study aimed to evaluate the capacity of Tropical Rainfall Measuring Mission (TRMM satellite data to simulate the observed runoffs over the Bafing (the main important tributary of the Senegal River before their potential integration in hydrological studies. The conceptual hydrological model GR4J (modèle du Génie Rural (Agricultural Engineering Model à 4 paramètres Journalier (4 parameters Daily has been used, calibrated and validated over the 1961–1997 period with rainfall and Potential Evapotranspiration (PET as inputs. Then, the parameters that best reflect the rainfall-runoff relation, obtained during the cross-calibration-validation phase, were used to simulate runoff over the 1998–2004 period using observed and TRMM rainfalls. The findings of this study show that there is a high consistency between satellite-based estimates and ground-based observations of rainfall. Over the 1998–2004 simulation period, the two rainfall data series show quite satisfactorily results. The output hydrographs from satellite-based estimates and ground-based observations of rainfall coincide quite well with the shape of observed hydrographs with Nash-Sutcliffe Efficiency coefficient (NSE of 0.88 and 0.80 for observed rainfalls and TRMM rainfalls, respectively.

  19. Local figure-ground cues are valid for natural images.

    Science.gov (United States)

    Fowlkes, Charless C; Martin, David R; Malik, Jitendra

    2007-06-08

    Figure-ground organization refers to the visual perception that a contour separating two regions belongs to one of the regions. Recent studies have found neural correlates of figure-ground assignment in V2 as early as 10-25 ms after response onset, providing strong support for the role of local bottom-up processing. How much information about figure-ground assignment is available from locally computed cues? Using a large collection of natural images, in which neighboring regions were assigned a figure-ground relation by human observers, we quantified the extent to which figural regions locally tend to be smaller, more convex, and lie below ground regions. Our results suggest that these Gestalt cues are ecologically valid, and we quantify their relative power. We have also developed a simple bottom-up computational model of figure-ground assignment that takes image contours as input. Using parameters fit to natural image statistics, the model is capable of matching human-level performance when scene context limited.

  20. Comparison of TRMM and Global Precipitation Climatology Project (GPCP) Precipitation Analyses

    Science.gov (United States)

    Adler, Robert F.; Huffman, George J.; Bolvin, David; Nelkin, Eric; Curtis, Scott

    1999-01-01

    comparison. Global tropical and regional values will be compared. Both products will be compared to TRMM validation site data over land and water. The results should begin to determine the use of the TRMM estimates in the evaluation of the GPCP analysis.

  1. Validation and Comparison of One-Dimensional Ground Motion Methodologies

    International Nuclear Information System (INIS)

    B. Darragh; W. Silva; N. Gregor

    2006-01-01

    Both point- and finite-source stochastic one-dimensional ground motion models, coupled to vertically propagating equivalent-linear shear-wave site response models are validated using an extensive set of strong motion data as part of the Yucca Mountain Project. The validation and comparison exercises are presented entirely in terms of 5% damped pseudo absolute response spectra. The study consists of a quantitative analyses involving modeling nineteen well-recorded earthquakes, M 5.6 to 7.4 at over 600 sites. The sites range in distance from about 1 to about 200 km in the western US (460 km for central-eastern US). In general, this validation demonstrates that the stochastic point- and finite-source models produce accurate predictions of strong ground motions over the range of 0 to 100 km and for magnitudes M 5.0 to 7.4. The stochastic finite-source model appears to be broadband, producing near zero bias from about 0.3 Hz (low frequency limit of the analyses) to the high frequency limit of the data (100 and 25 Hz for response and Fourier amplitude spectra, respectively)

  2. GPM GROUND VALIDATION TWO-DIMENSIONAL VIDEO DISDROMETER (2DVD) IPHEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Two-Dimensional Video Disdrometer (2DVD) IPHEx dataset was collected during the GPM Ground Validation Integrated Precipitation and...

  3. GPM GROUND VALIDATION TWO-DIMENSIONAL VIDEO DISDROMETER (2DVD) IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Two-Dimensional Video Disdrometer (2DVD) IFloodS dataset was collected during the GPM Ground Validation Iowa Flood Studies (IFloodS) field...

  4. Comparison between TRMM PR and

    Indian Academy of Sciences (India)

    A comparison between TRMM PR rainfall estimates and rain gauge data from ANEEL and com- bined gauge/satellite ..... correctly the of the south Atlantic convergence ..... vapor, snow cover, and sea ice derived from SSM/I mea- surements ...

  5. VALIDASI DATA TRMM TERHADAP DATA CURAH HUJAN AKTUAL DI TIGA DAS DI INDONESIA

    Directory of Open Access Journals (Sweden)

    M. Djazim Syaifullah

    2015-01-01

    Full Text Available Validasi data TRMM telah dilakukan dengan data curah hujan di tiga DAS di wilayah Indonesia. Ketiga DAS tersebut adalah: DAS Citarum-Jawa Barat, DAS Sutami-Brantas Jawa Timur dan DAS Larona-Sulawesi Selatan. Dari analisis dua jenis tipe data TRMM NASA (3B42RT dan TRMM Jaxa (GSMap_NRT menunjukkan bahwa TRMM Jaxa lebih mendekati data pengamatan dibandingkan dengan TRMM NASA. Secara umum dari hasil analisis untuk ketiga DAS memperlihatkan bahwa nilai curah hujan TRMM Jaxa (GSMap_NRT mempunyai pola yang mengikuti curah hujan pengamatan (aktual meskipun nilainya cenderung di bawah perkiraan. Perbedaan ini salah satunya bisa diakibatkan karena pemasangan penakar hujan yang kurang representatif terhadap DAS sehingga rerata curah hujan wilayahnya kurang merepresentasikan DAS tersebut. Untuk plot scatter bulanan nilai korelasinya lebih baik dibandingkan dengan plot scatter harian (dari 0.13~0.14 meningkat menjadi 0.58~0.75 dan nilai RMSE menurun (dari rerata 11.6 mm/hari menjadi 7.6 mm/hari, sehingga analisis TRMM bulanan lebih merepresentasikan kondisi aktual.   TRMM data validation has been done with rainfall data in three watersheds of Indonesia. There are: Citarum (West Java, Sutami-Brantas (East Java and Larona (South Sulawesi. There are two types of TRMM data; TRMM NASA (3B42RT and TRMM Jaxa (GSMap_NRT. From the analysis of both types of the data indicate that the TRMM Jaxa closer to observed data. In general the results of analysis for all three catchments showed that the value of TRMM rainfall Jaxa (GSMap_NRT has better agreement to the pattern of observed rainfall data although it's value tend to under estimate. This difference could be caused due to the installation of the rain gauge less representative of catchment so that the average rainfall less territory represents the catchment. Scatter plot for the monthly data have better correlation coefficient than the daily plot (0.13~0.14 raise 0.58~0.75 and decreasing RMSE value (from average 11

  6. SP-100 from ground demonstration to flight validation

    International Nuclear Information System (INIS)

    Buden, D.

    1989-01-01

    The SP-100 program is in the midst of developing and demonstrating the technology of a liquid-metal-cooled fast reactor using thermoelectric thermal-to-electric conversion devices for space power applications in the range of tens to hundreds of kilowatts. The current ground engineering system (GES) design and development phase will demonstrate the readiness of the technology building blocks and the system to proceed to flight system validation. This phase includes the demonstration of a 2.4-MW(thermal) reactor in the nuclear assembly test (NAT) and aerospace subsystem in the integrated assembly test (IAT). The next phase in the SP-100 development, now being planned, is to be a flight demonstration of the readiness of the technology to be incorporated into future military and civilian missions. This planning will answer questions concerning the logical progression of the GES to the flight validation experiment. Important issues in planning the orderly transition include answering the need to plan for a second reactor ground test, the method to be used to test the SP-100 for acceptance for flight, the need for the IAT prior to the flight-test configuration design, the efficient use of facilities for GES and the flight experiment, and whether the NAT should be modified based on flight experiment planning

  7. The potential of ground gravity measurements to validate GRACE data

    Directory of Open Access Journals (Sweden)

    D. Crossley

    2003-01-01

    Full Text Available New satellite missions are returning high precision, time-varying, satellite measurements of the Earth’s gravity field. The GRACE mission is now in its calibration/- validation phase and first results of the gravity field solutions are imminent. We consider here the possibility of external validation using data from the superconducting gravimeters in the European sub-array of the Global Geodynamics Project (GGP as ‘ground truth’ for comparison with GRACE. This is a pilot study in which we use 14 months of 1-hour data from the beginning of GGP (1 July 1997 to 30 August 1998, when the Potsdam instrument was relocated to South Africa. There are 7 stations clustered in west central Europe, and one station, Metsahovi in Finland. We remove local tides, polar motion, local and global air pressure, and instrument drift and then decimate to 6-hour samples. We see large variations in the time series of 5–10µgal between even some neighboring stations, but there are also common features that correlate well over the 427-day period. The 8 stations are used to interpolate a minimum curvature (gridded surface that extends over the geographical region. This surface shows time and spatial coherency at the level of 2– 4µgal over the first half of the data and 1–2µgal over the latter half. The mean value of the surface clearly shows a rise in European gravity of about 3µgal over the first 150 days and a fairly constant value for the rest of the data. The accuracy of this mean is estimated at 1µgal, which compares favorably with GRACE predictions for wavelengths of 500 km or less. Preliminary studies of hydrology loading over Western Europe shows the difficulty of correlating the local hydrology, which can be highly variable, with large-scale gravity variations.Key words. GRACE, satellite gravity, superconducting gravimeter, GGP, ground truth

  8. Numerical simulation and experimental validation of aircraft ground deicing model

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2016-05-01

    Full Text Available Aircraft ground deicing plays an important role of guaranteeing the aircraft safety. In practice, most airports generally use as many deicing fluids as possible to remove the ice, which causes the waste of the deicing fluids and the pollution of the environment. Therefore, the model of aircraft ground deicing should be built to establish the foundation for the subsequent research, such as the optimization of the deicing fluid consumption. In this article, the heat balance of the deicing process is depicted, and the dynamic model of the deicing process is provided based on the analysis of the deicing mechanism. In the dynamic model, the surface temperature of the deicing fluids and the ice thickness are regarded as the state parameters, while the fluid flow rate, the initial temperature, and the injection time of the deicing fluids are treated as control parameters. Ignoring the heat exchange between the deicing fluids and the environment, the simplified model is obtained. The rationality of the simplified model is verified by the numerical simulation and the impacts of the flow rate, the initial temperature and the injection time on the deicing process are investigated. To verify the model, the semi-physical experiment system is established, consisting of the low-constant temperature test chamber, the ice simulation system, the deicing fluid heating and spraying system, the simulated wing, the test sensors, and the computer measure and control system. The actual test data verify the validity of the dynamic model and the accuracy of the simulation analysis.

  9. Design and Performance of Tropical Rainfall Measuring Mission (TRMM) Super NiCd Batteries

    Science.gov (United States)

    Ahmad, Anisa J.; Rao, Gopalakrishna M.; Jallice, Doris E.; Moran Vickie E.

    1999-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between NASA and the National Space Development Agency (NASDA) of Japan. The observatory is designed to monitor and study tropical rainfall and the associated release of energy that helps to power the global atmospheric circulation shaping both weather and climate around the globe. The spacecraft was launched from Japan on November 27,1997 via the NASDA H-2 launch vehicle. The TRMM Power Subsystem is a Peak Power Tracking system that can support the maximum TRMM load of 815 watts at the end of its three year life. The Power Subsystem consists of two 50 Ampere Hour Super NiCd batteries, Gallium Arsenide Solar Array and the Power System Electronics. This paper describes the TRMM Power Subsystem, battery design, cell and battery ground test performance, and in-orbit battery operations and performance.

  10. Evaluation of TRMM rainfall estimates over a large Indian river basin (Mahanadi

    Directory of Open Access Journals (Sweden)

    D. Kneis

    2014-07-01

    Full Text Available The paper examines the quality of satellite-based precipitation estimates for the lower Mahanadi River basin (eastern India. The considered data sets known as 3B42 and 3B42-RT (version 7/7A are routinely produced by the tropical rainfall measuring mission (TRMM from passive microwave and infrared recordings. While the 3B42-RT data are disseminated in real time, the gauge-adjusted 3B42 data set is published with a delay of some months. The quality of the two products was assessed in a two-step procedure. First, the correspondence between the remotely sensed precipitation rates and rain gauge data was evaluated at the sub-basin scale. Second, the quality of the rainfall estimates was assessed by analysing their performance in the context of rainfall–runoff simulation. At sub-basin level (4000 to 16 000 km2 the satellite-based areal precipitation estimates were found to be moderately correlated with the gauge-based counterparts (R2 of 0.64–0.74 for 3B42 and 0.59–0.72 for 3B42-RT. Significant discrepancies between TRMM data and ground observations were identified at high-intensity levels. The rainfall depth derived from rain gauge data is often not reflected by the TRMM estimates (hit rate 80 mm day-1. At the same time, the remotely sensed rainfall rates frequently exceed the gauge-based equivalents (false alarm ratios of 0.2–0.6. In addition, the real-time product 3B42-RT was found to suffer from a spatially consistent negative bias. Since the regionalisation of rain gauge data is potentially associated with a number of errors, the above results are subject to uncertainty. Hence, a validation against independent information, such as stream flow, was essential. In this case study, the outcome of rainfall–runoff simulation experiments was consistent with the above-mentioned findings. The best fit between observed and simulated stream flow was obtained if rain gauge data were used as model input (Nash–Sutcliffe index of 0.76–0.88 at

  11. Evolution of the JPSS Ground Project Calibration and Validation System

    Science.gov (United States)

    Purcell, Patrick; Chander, Gyanesh; Jain, Peyush

    2016-01-01

    The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administration's (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAA's mission to understand and predict changes in weather, climate, oceans, coasts, and space environments, which supports the Nation's economy and protection of lives and property. The National Aeronautics and Space Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems, on behalf of NOAA. The JPSS satellites are planned to fly in the afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. To support the JPSS Calibration and Validation (CalVal) node Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) services facilitate: Algorithm Integration and Checkout, Algorithm and Product Operational Tuning, Instrument Calibration, Product Validation, Algorithm Investigation, and Data Quality Support and Monitoring. GRAVITE is a mature, deployed system that currently supports the SNPP Mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is now a robust, stable, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards.

  12. GPM GROUND VALIDATION COMPOSITE SATELLITE OVERPASSES MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Composite Satellite Overpasses MC3E dataset provides satellite overpasses from the AQUA satellite during the Midlatitude Continental...

  13. GPM GROUND VALIDATION ENVIRONMENT CANADA (EC) MANUAL PRECIPITATION MEASUREMENTS GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Environment Canada (EC) Manual Precipitation Measurements GCPEx dataset was collected during the GPM Cold-season Precipitation Experiment...

  14. Improving a Spectral Bin Microphysical Scheme Using TRMM Satellite Observations

    Science.gov (United States)

    Li, Xiaowen; Tao, Wei-Kuo; Matsui, Toshihisa; Liu, Chuntao; Masunaga, Hirohiko

    2010-01-01

    Comparisons between cloud model simulations and observations are crucial in validating model performance and improving physical processes represented in the mod Tel.hese modeled physical processes are idealized representations and almost always have large rooms for improvements. In this study, we use data from two different sensors onboard TRMM (Tropical Rainfall Measurement Mission) satellite to improve the microphysical scheme in the Goddard Cumulus Ensemble (GCE) model. TRMM observed mature-stage squall lines during late spring, early summer in central US over a 9-year period are compiled and compared with a case simulation by GCE model. A unique aspect of the GCE model is that it has a state-of-the-art spectral bin microphysical scheme, which uses 33 different bins to represent particle size distribution of each of the seven hydrometeor species. A forward radiative transfer model calculates TRMM Precipitation Radar (PR) reflectivity and TRMM Microwave Imager (TMI) 85 GHz brightness temperatures from simulated particle size distributions. Comparisons between model outputs and observations reveal that the model overestimates sizes of snow/aggregates in the stratiform region of the squall line. After adjusting temperature-dependent collection coefficients among ice-phase particles, PR comparisons become good while TMI comparisons worsen. Further investigations show that the partitioning between graupel (a high-density form of aggregate), and snow (a low-density form of aggregate) needs to be adjusted in order to have good comparisons in both PR reflectivity and TMI brightness temperature. This study shows that long-term satellite observations, especially those with multiple sensors, can be very useful in constraining model microphysics. It is also the first study in validating and improving a sophisticated spectral bin microphysical scheme according to long-term satellite observations.

  15. Daily rainfall statistics of TRMM and CMORPH: A case for trans-boundary Gandak River basin

    Science.gov (United States)

    Kumar, Brijesh; Patra, Kanhu Charan; Lakshmi, Venkat

    2016-07-01

    Satellite precipitation products offer an opportunity to evaluate extreme events (flood and drought) for areas where rainfall data are not available or rain gauge stations are sparse. In this study, daily precipitation amount and frequency of TRMM 3B42V.7 and CMORPH products have been validated against daily rain gauge precipitation for the monsoon months (June-September or JJAS) from 2005-2010 in the trans-boundary Gandak River basin. The analysis shows that the both TRMM and CMORPH can detect rain and no-rain events, but they fail to capture the intensity of rainfall. The detection of precipitation amount is strongly dependent on the topography. In the plains areas, TRMM product is capable of capturing high-intensity rain events but in the hilly regions, it underestimates the amount of high-intensity rain events. On the other hand, CMORPH entirely fails to capture the high-intensity rain events but does well with low-intensity rain events in both hilly regions as well as the plain region. The continuous variable verification method shows better agreement of TRMM rainfall products with rain gauge data. TRMM fares better in the prediction of probability of occurrence of high-intensity rainfall events, but it underestimates intensity at high altitudes. This implies that TRMM precipitation estimates can be used for flood-related studies only after bias adjustment for the topography.

  16. GPM GROUND VALIDATION KICT NEXRAD MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validaiton KICT NEXRAD MC3E dataset was collected from April 22, 2011 to June 6, 2011 for the Midlatitude Continental Convective Clouds Experiment...

  17. Ground Validation Assessments of GPM Core Observatory Science Requirements

    Science.gov (United States)

    Petersen, Walt; Huffman, George; Kidd, Chris; Skofronick-Jackson, Gail

    2017-04-01

    NASA Global Precipitation Measurement (GPM) Mission science requirements define specific measurement error standards for retrieved precipitation parameters such as rain rate, raindrop size distribution, and falling snow detection on instantaneous temporal scales and spatial resolutions ranging from effective instrument fields of view [FOV], to grid scales of 50 km x 50 km. Quantitative evaluation of these requirements intrinsically relies on GPM precipitation retrieval algorithm performance in myriad precipitation regimes (and hence, assumptions related to physics) and on the quality of ground-validation (GV) data being used to assess the satellite products. We will review GPM GV products, their quality, and their application to assessing GPM science requirements, interleaving measurement and precipitation physical considerations applicable to the approaches used. Core GV data products used to assess GPM satellite products include 1) two minute and 30-minute rain gauge bias-adjusted radar rain rate products and precipitation types (rain/snow) adapted/modified from the NOAA/OU multi-radar multi-sensor (MRMS) product over the continental U.S.; 2) Polarimetric radar estimates of rain rate over the ocean collected using the K-Pol radar at Kwajalein Atoll in the Marshall Islands and the Middleton Island WSR-88D radar located in the Gulf of Alaska; and 3) Multi-regime, field campaign and site-specific disdrometer-measured rain/snow size distribution (DSD), phase and fallspeed information used to derive polarimetric radar-based DSD retrievals and snow water equivalent rates (SWER) for comparison to coincident GPM-estimated DSD and precipitation rates/types, respectively. Within the limits of GV-product uncertainty we demonstrate that the GPM Core satellite meets its basic mission science requirements for a variety of precipitation regimes. For the liquid phase, we find that GPM radar-based products are particularly successful in meeting bias and random error requirements

  18. Spatial downscaling algorithm of TRMM precipitation based on multiple high-resolution satellite data for Inner Mongolia, China

    Science.gov (United States)

    Duan, Limin; Fan, Keke; Li, Wei; Liu, Tingxi

    2017-12-01

    Daily precipitation data from 42 stations in Inner Mongolia, China for the 10 years period from 1 January 2001 to 31 December 2010 was utilized along with downscaled data from the Tropical Rainfall Measuring Mission (TRMM) with a spatial resolution of 0.25° × 0.25° for the same period based on the statistical relationships between the normalized difference vegetation index (NDVI), meteorological variables, and digital elevation models (https://en.wikipedia.org/wiki/Digital_elevation_model) (DEM) using the leave-one-out (LOO) cross validation method and multivariate step regression. The results indicate that (1) TRMM data can indeed be used to estimate annual precipitation in Inner Mongolia and there is a linear relationship between annual TRMM and observed precipitation; (2) there is a significant relationship between TRMM-based precipitation and predicted precipitation, with a spatial resolution of 0.50° × 0.50°; (3) NDVI and temperature are important factors influencing the downscaling of TRMM precipitation data for DEM and the slope is not the most significant factor affecting the downscaled TRMM data; and (4) the downscaled TRMM data reflects spatial patterns in annual precipitation reasonably well, showing less precipitation falling in west Inner Mongolia and more in the south and southeast. The new approach proposed here provides a useful alternative for evaluating spatial patterns in precipitation and can thus be applied to generate a more accurate precipitation dataset to support both irrigation management and the conservation of this fragile grassland ecosystem.

  19. Precipitation Analysis at Fine Time Scales using TRMM and Other Satellites: Realtime and Research Products and Applications

    Science.gov (United States)

    Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric; Curtis, Scott; Pierce, Harold; Gu, Guojon

    2004-01-01

    Quasi-global precipitation analyses at fine time scales (3-hr) are described. TRMM observations (radar and passive microwave) are used to calibrate polar-orbit microwave observations from SSM/I (and other satellites instruments, including AMSR and AMSU) and geosynchronous IR observations. The individual data sets are then merged using a priority order based on quality to form the TRMM Multi-satellite Precipitation Analysis (MPA). Raingauge information is used to help constrain the satellite-based estimates over land. The TRMM standard research product (Version 6 3B-42 of the TRMM products) will be available for the entire TRMM period (January 1998-present) by the end of 2004. The real-time version of this merged product has been produced over the past two years and is available on the U.S. TRMM web site (trmm.gsfc.nasa.gov) at 0.25 deg latitude-longitude resolution over the latitude range from 50 deg N-50 deg S. Validation of daily totals indicates good results, with limitations noted in mid-latitude winter over land and regions of shallow, orographic precipitation. Various applications of these estimates are described, including: 1) detecting potential floods in near real-time; 2) analyzing Indian Ocean precipitation variations related to the initiation of El Nino; 3) determining characteristics of the African monsoon; and 4) analysis of diurnal variations.

  20. Precipitation Analysis at Fine Time Scales using TRMM and Other Satellites: Real-time and Research Products and Applications

    Science.gov (United States)

    Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric; Curtis, Scott; Pierce, Harold; Gu, Guo-Jon

    2004-01-01

    Quasi-global precipitation analyses at fine time scales (3-hr) are described. TRMM observations (radar and passive microwave) are used to calibrate polar-orbit microwave observations from SSM/I (and other satellites instruments, including AMSR and AMSU) and geosynchronous IR observations. The individual data sets are then merged using a priority order based on quality to form the TRMM Multi-satellite Precipitation Analysis (MPA). Raingauge information is used to help constrain the satellite-based estimates over land. The TRMM standard research product (Version 6 3B-42 of the TRMM products) will be available for the entire TRMM period (January 1998-present) by the end of 2004. The real-time version of this merged product has been produced over the past two years and is available on the U.S. TRMM web site (trmm.gsfc.nasa.gov) at 0.25" latitude-longitude resolution over the latitude range from 5O0N-50"S. Validation of daily totals indicates good results, with limitations noted in mid-latitude winter over land and regions of shallow, orographic precipitation. Various applications of these estimates are described, includmg: 1) detecting potential floods in near real-time; 2) analyzing Indian Ocean precipitation variations related to the initiation of El Nino; 3) determining characteristics of the African monsoon; and 4) analysis of diurnal variations.

  1. GPM GROUND VALIDATION AIRBORNE SECOND GENERATION PRECIPITATION RADAR (APR-2) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Airborne Second Generation Precipitation Radar (APR-2) GCPEx dataset was collected during the GPM Cold-season Precipitation Experiment...

  2. GPM GROUND VALIDATION MCGILL W-BAND RADAR GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation McGill W-Band Radar GCPEx dataset was collected from February 1, 2012 to February 29, 2012 at the CARE site in Ontario, Canada as a part of...

  3. GPM GROUND VALIDATION ENVIRONMENT CANADA (EC) SNOW SURVEYS GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Environment Canada Snow Surveys GCPEx dataset was manually collected during the GPM Cold-season Precipitation Experiment (GCPEx), which...

  4. GPM GROUND VALIDATION DUAL POLARIZED C-BAND DOPPLER RADAR KING CITY GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual Polarized C-Band Doppler Radar King City GCPEx dataset has special Range Height Indicator (RHI) and sector scans of several dual...

  5. GPM GROUND VALIDATION JOSS-WALDVOGEL DISDROMETER (JW) NSSTC V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Joss-Waldvogel Disdrometer (JW) NSSTC dataset was collected by the Joss-Waldvogel (JW) disdrometer, which is an impact-type...

  6. GPM GROUND VALIDATION ADVANCED MICROWAVE RADIOMETER RAIN IDENTIFICATION (ADMIRARI) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Advanced Microwave Radiometer Rain Identification (ADMIRARI) GCPEx dataset measures brightness temperature at three frequencies (10.7, 21.0...

  7. GPM GROUND VALIDATION ENVIRONMENT CANADA (EC) VAISALA CEILOMETER GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Environment Canada (EC) VAISALA Ceilometer GCPEx dataset was collected during the GPM Cold-season Precipitation Experiment (GCPEx) in...

  8. GPM GROUND VALIDATION NCAR CLOUD MICROPHYSICS PARTICLE PROBES MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NCAR Cloud Microphysics Particle Probes MC3E dataset was collected during the Midlatitude Continental Convective Clouds Experiment (MC3E),...

  9. GPM GROUND VALIDATION CONICAL SCANNING MILLIMETER-WAVE IMAGING RADIOMETER (COSMIR) MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Conical Scanning Millimeter-wave Imaging Radiometer (COSMIR) MC3E dataset used the Conical Scanning Millimeter-wave Imaging Radiometer...

  10. GPM GROUND VALIDATION NASA MICRO RAIN RADAR (MRR) MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA Micro Rain Radar (MRR) MC3E dataset was collected by a Micro Rain Radar (MRR), which is a vertically pointing Doppler radar which...

  11. GPM GROUND VALIDATION CONICAL SCANNING MILLIMETER-WAVE IMAGING RADIOMETER (COSMIR) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Conical Scanning Millimeter-wave Imaging Radiometer (COSMIR) GCPEx dataset used the Conical Scanning Millimeter-wave Imaging Radiometer...

  12. GPM GROUND VALIDATION NASA ER-2 NAVIGATION DATA MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA ER-2 Navigation Data MC3E dataset contains information recorded by an on board navigation recorder (NavRec). In addition to typical...

  13. GPM GROUND VALIDATION OKLAHOMA CLIMATOLOGICAL SURVEY MESONET MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Oklahoma Climatological Survey Mesonet MC3E data were collected during the Midlatitude Continental Convective Clouds Experiment (MC3E) in...

  14. GPM GROUND VALIDATION NOAA UHF 449 PROFILER RAW DATA SPC FORMAT MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NOAA UHF 449 Profiler Raw Data SPC Format MC3E dataset was collected during the NASA supported Midlatitude Continental Convective Clouds...

  15. GPM GROUND VALIDATION NASA S-BAND DUAL POLARIMETRIC (NPOL) DOPPLER RADAR IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA S-Band Dual Polarimetric (NPOL) Doppler Radar IFloodS data set was collected from April 30, 2013 to June 16, 2013 near Traer, Iowa as...

  16. GPM GROUND VALIDATION SATELLITE SIMULATED ORBITS C3VP V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Satellite Simulated Orbits C3VP dataset is available in the Orbital database, which takes account for the atmospheric profiles, the...

  17. GPM GROUND VALIDATION SATELLITE SIMULATED ORBITS MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Satellite Simulated Orbits MC3E dataset is available in the Orbital database , which takes account for the atmospheric profiles, the...

  18. GPM GROUND VALIDATION SATELLITE SIMULATED ORBITS TWP-ICE V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Satellite Simulated Orbits TWP-ICE dataset is available in the Orbital database, which takes account for the atmospheric profiles, the...

  19. GPM GROUND VALIDATION NOAA S-BAND PROFILER MINUTE DATA MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NOAA S-Band Profiler Minute Data MC3E dataset was gathered during the Midlatitude Continental Convective Clouds Experiment (MC3E) in...

  20. TRMM Microwave Imager (TMI) Level 1 Raw and Calibrated Radiance Product (TRMM Products 1B11) V6

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) http://disc.sci.gsfc.nasa.gov/precipitation/secondary/instruments/trmm_instr.shtml/ is a joint U.S.-Japan satellite...

  1. Tropical Rainfall Measuring Mission (TRMM) Precipitation Data and Services for Research and Applications

    Science.gov (United States)

    Liu, Zhong; Ostrenga, Dana; Teng, William; Kempler, Steven

    2012-01-01

    Precipitation is a critical component of the Earth's hydrological cycle. Launched on 27 November 1997, TRMM is a joint U.S.-Japan satellite mission to provide the first detailed and comprehensive data set of the four-dimensional distribution of rainfall and latent heating over vastly under-sampled tropical and subtropical oceans and continents (40 S - 40 N). Over the past 14 years, TRMM has been a major data source for meteorological, hydrological and other research and application activities around the world. The purpose of this short article is to inform that the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) provides TRMM archive and near-real-time precipitation data sets and services for research and applications. TRMM data consist of orbital data from TRMM instruments at the sensor s resolution, gridded data at a range of spatial and temporal resolutions, subsets, ground-based instrument data, and ancillary data. Data analysis, display, and delivery are facilitated by the following services: (1) Mirador (data search and access); (2) TOVAS (TRMM Online Visualization and Analysis System); (3) OPeNDAP (Open-source Project for a Network Data Access Protocol); (4) GrADS Data Server (GDS); and (5) Open Geospatial Consortium (OGC) Web Map Service (WMS) for the GIS community. Precipitation data application services are available to support a wide variety of applications around the world. Future plans include enhanced and new services to address data related issues from the user community. Meanwhile, the GES DISC is preparing for the Global Precipitation Measurement (GPM) mission which is scheduled for launch in 2014.

  2. TRMM and Other Sources Rainfall Product (TRMM Product 3B43) V7

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint U.S.-Japan satellite mission to monitor tropical and subtropical precipitation and to estimate its...

  3. Sampling Errors in Monthly Rainfall Totals for TRMM and SSM/I, Based on Statistics of Retrieved Rain Rates and Simple Models

    Science.gov (United States)

    Bell, Thomas L.; Kundu, Prasun K.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Estimates from TRMM satellite data of monthly total rainfall over an area are subject to substantial sampling errors due to the limited number of visits to the area by the satellite during the month. Quantitative comparisons of TRMM averages with data collected by other satellites and by ground-based systems require some estimate of the size of this sampling error. A method of estimating this sampling error based on the actual statistics of the TRMM observations and on some modeling work has been developed. "Sampling error" in TRMM monthly averages is defined here relative to the monthly total a hypothetical satellite permanently stationed above the area would have reported. "Sampling error" therefore includes contributions from the random and systematic errors introduced by the satellite remote sensing system. As part of our long-term goal of providing error estimates for each grid point accessible to the TRMM instruments, sampling error estimates for TRMM based on rain retrievals from TRMM microwave (TMI) data are compared for different times of the year and different oceanic areas (to minimize changes in the statistics due to algorithmic differences over land and ocean). Changes in sampling error estimates due to changes in rain statistics due 1) to evolution of the official algorithms used to process the data, and 2) differences from other remote sensing systems such as the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I), are analyzed.

  4. Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR

    NARCIS (Netherlands)

    Dammers, E.; Shephard, M.W.; Palm, M.; Cady-Pereira, K.; Capps, S.; Lutsch, E.; Strong, K.; Hannigan, J.W.; Ortega, I.; Toon, G.C.; Stremme, W.; Grutter, M.; Jones, N.; Smale, D.; Siemons, J.; Hrpcek, K.; Tremblay, D.; Schaap, M.; Notholt, J.; Willem Erisman, J.

    2017-01-01

    Presented here is the validation of the CrIS (Cross-track Infrared Sounder) fast physical NH3 retrieval (CFPR) column and profile measurements using ground-based Fourier transform infrared (FTIR) observations. We use the total columns and profiles from seven FTIR sites in the Network for the

  5. Estimation of monthly-mean daily global solar radiation based on MODIS and TRMM products

    International Nuclear Information System (INIS)

    Qin, Jun; Chen, Zhuoqi; Yang, Kun; Liang, Shunlin; Tang, Wenjun

    2011-01-01

    Global solar radiation (GSR) is required in a large number of fields. Many parameterization schemes are developed to estimate it using routinely measured meteorological variables, since GSR is directly measured at a limited number of stations. Even so, meteorological stations are sparse, especially, in remote areas. Satellite signals (radiance at the top of atmosphere in most cases) can be used to estimate continuous GSR in space. However, many existing remote sensing products have a relatively coarse spatial resolution and these inversion algorithms are too complicated to be mastered by experts in other research fields. In this study, the artificial neural network (ANN) is utilized to build the mathematical relationship between measured monthly-mean daily GSR and several high-level remote sensing products available for the public, including Moderate Resolution Imaging Spectroradiometer (MODIS) monthly averaged land surface temperature (LST), the number of days in which the LST retrieval is performed in 1 month, MODIS enhanced vegetation index, Tropical Rainfall Measuring Mission satellite (TRMM) monthly precipitation. After training, GSR estimates from this ANN are verified against ground measurements at 12 radiation stations. Then, comparisons are performed among three GSR estimates, including the one presented in this study, a surface data-based estimate, and a remote sensing product by Japan Aerospace Exploration Agency (JAXA). Validation results indicate that the ANN-based method presented in this study can estimate monthly-mean daily GSR at a spatial resolution of about 5 km with high accuracy.

  6. The SCEC Broadband Platform: Open-Source Software for Strong Ground Motion Simulation and Validation

    Science.gov (United States)

    Silva, F.; Goulet, C. A.; Maechling, P. J.; Callaghan, S.; Jordan, T. H.

    2016-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a carefully integrated collection of open-source scientific software programs that can simulate broadband (0-100 Hz) ground motions for earthquakes at regional scales. The BBP can run earthquake rupture and wave propagation modeling software to simulate ground motions for well-observed historical earthquakes and to quantify how well the simulated broadband seismograms match the observed seismograms. The BBP can also run simulations for hypothetical earthquakes. In this case, users input an earthquake location and magnitude description, a list of station locations, and a 1D velocity model for the region of interest, and the BBP software then calculates ground motions for the specified stations. The BBP scientific software modules implement kinematic rupture generation, low- and high-frequency seismogram synthesis using wave propagation through 1D layered velocity structures, several ground motion intensity measure calculations, and various ground motion goodness-of-fit tools. These modules are integrated into a software system that provides user-defined, repeatable, calculation of ground-motion seismograms, using multiple alternative ground motion simulation methods, and software utilities to generate tables, plots, and maps. The BBP has been developed over the last five years in a collaborative project involving geoscientists, earthquake engineers, graduate students, and SCEC scientific software developers. The SCEC BBP software released in 2016 can be compiled and run on recent Linux and Mac OS X systems with GNU compilers. It includes five simulation methods, seven simulation regions covering California, Japan, and Eastern North America, and the ability to compare simulation results against empirical ground motion models (aka GMPEs). The latest version includes updated ground motion simulation methods, a suite of new validation metrics and a simplified command line user interface.

  7. TRMM/LIS and PR Observations and Thunderstorm Activity

    Science.gov (United States)

    Ohita, S.; Morimoto, T.; Kawasaki, Z. I.; Ushio, T.

    2005-12-01

    Thunderstorms observed by TRMM/PR and LIS have been investigating, and Lightning Research Group of Osaka University (LRG-OU) has unveiled several interesting features. Correlation between lightning activities and the snow depth of convective clouds may follow the power-five law. The power five law means that the flash density is a function of the snow-depth to power five. The definition of snow depth is the height of detectable cloud tops by TRMM/PR from the climatological freezing level, and it may be equivalent to the length of the portion where the solid phase precipitation particles exist. This is given by examining more than one million convective clouds, and we conclude that the power five law should be universal from the aspect of the statistic. Three thunderstorm active areas are well known as "Three World Chimneys", and those are the Central Africa, Amazon of the South America, and South East Asia. Thunderstorm activities in these areas are expected to contribute to the distribution of thermal energy around the equator to middle latitude regions. Moreover thunderstorm activity in the tropical region is believed to be related with the average temperature of our planet earth. That is why long term monitoring of lightning activity is required. After launching TRMM we have accumulated seven-year LIS observations, and statistics for three world chimneys are obtained. We have recognized the additional lightning active area, and that is around the Maracaibo lake in Venezuera. We conclude that this is because of geographical features of the Maracaibo lake and the continuous easterly trade wind. Lightning Activity during El Niño period is another interesting subject. LRGOU studies thunderstorm occurrences over west Indonesia and south China, and investigates the influence of El Nino on lightning . We compare the statistics between El Nino and non El Nino periods. We learn that the lightning activity during El Niño period is higher than non El Nino period instead

  8. TRMM Data Mining Service at the Goddard Earth Sciences (GES) DISC DAAC Tropical Rainfall Measuring Mission (TRMM)

    Science.gov (United States)

    2002-01-01

    TRMM has acquired more than four years of data since its launch in November 1997. All TRMM standard products are processed by the TRMM Science Data and Information System (TSDIS) and archived and distributed to general users by the GES DAAC. Table 1 shows the total archive and distribution as of February 28, 2002. The Utilization Ratio (UR), defined as the ratio of the number of distributed files to the number of archived files, of the TRMM standard products has been steadily increasing since 1998 and is currently at 6.98.

  9. Comparison of vertical ground reaction forces during overground and treadmill running. A validation study

    Directory of Open Access Journals (Sweden)

    Kluitenberg Bas

    2012-11-01

    Full Text Available Abstract Background One major drawback in measuring ground-reaction forces during running is that it is time consuming to get representative ground-reaction force (GRF values with a traditional force platform. An instrumented force measuring treadmill can overcome the shortcomings inherent to overground testing. The purpose of the current study was to determine the validity of an instrumented force measuring treadmill for measuring vertical ground-reaction force parameters during running. Methods Vertical ground-reaction forces of experienced runners (12 male, 12 female were obtained during overground and treadmill running at slow, preferred and fast self-selected running speeds. For each runner, 7 mean vertical ground-reaction force parameters of the right leg were calculated based on five successful overground steps and 30 seconds of treadmill running data. Intraclass correlations (ICC(3,1 and ratio limits of agreement (RLOA were used for further analysis. Results Qualitatively, the overground and treadmill ground-reaction force curves for heelstrike runners and non-heelstrike runners were very similar. Quantitatively, the time-related parameters and active peak showed excellent agreement (ICCs between 0.76 and 0.95, RLOA between 5.7% and 15.5%. Impact peak showed modest agreement (ICCs between 0.71 and 0.76, RLOA between 19.9% and 28.8%. The maximal and average loading-rate showed modest to excellent ICCs (between 0.70 and 0.89, but RLOA were higher (between 34.3% and 45.4%. Conclusions The results of this study demonstrated that the treadmill is a moderate to highly valid tool for the assessment of vertical ground-reaction forces during running for runners who showed a consistent landing strategy during overground and treadmill running. The high stride-to-stride variance during both overground and treadmill running demonstrates the importance of measuring sufficient steps for representative ground-reaction force values. Therefore, an

  10. Active debris removal GNC challenges over design and required ground validation

    Science.gov (United States)

    Colmenarejo, Pablo; Avilés, Marcos; di Sotto, Emanuele

    2015-06-01

    Because of the exponential growth of space debris, the access to space in the medium-term future is considered as being seriously compromised, particularly within LEO polar Sun-synchronous orbits and within geostationary orbits. The active debris removal (ADR) application poses new and challenging requirements on: first, the new required Guidance, Navigation and Control (GNC) technologies and, second, how to validate these new technologies before being applied in real missions. There is no doubt about the strong safety and collision risk aspects affecting the real operational ADR missions. But it shall be considered that even ADR demonstration missions will be affected by significant risk of collision during the demonstration, and that the ADR GNC systems/technologies to be used shall be well mature before using/demonstrating them in space. Specific and dedicated on-ground validation approaches, techniques and facilities are mandatory. The different ADR techniques can be roughly catalogued in three main groups (rigid capture, non-rigid capture and contactless). All of them have a strong impact on the GNC system of the active vehicle during the capture/proximity phase and, particularly, during the active vehicle/debris combo control phase after capture and during the de-orbiting phase. The main operational phases on an ADR scenario are: (1) ground controlled phase (ADR vehicle and debris are far), (2) fine orbit synchronization phase (ADR vehicle to reach debris ±V-bar), (3) short range phase (along track distance reduction till 10-100 s of metres), (4) terminal approach/capture phase and (5) de-orbiting. While phases 1-3 are somehow conventional and already addressed in detail during past/on-going studies related to rendezvous and/or formation flying, phases 4-5 are very specific and not mature in terms of GNC needed technologies and HW equipment. GMV is currently performing different internal activities and ESA studies/developments related to ADR mission, GNC and

  11. A proposed strategy for the validation of ground-water flow and solute transport models

    International Nuclear Information System (INIS)

    Davis, P.A.; Goodrich, M.T.

    1991-01-01

    Ground-water flow and transport models can be thought of as a combination of conceptual and mathematical models and the data that characterize a given system. The judgment of the validity or invalidity of a model depends both on the adequacy of the data and the model structure (i.e., the conceptual and mathematical model). This report proposes a validation strategy for testing both components independently. The strategy is based on the philosophy that a model cannot be proven valid, only invalid or not invalid. In addition, the authors believe that a model should not be judged in absence of its intended purpose. Hence, a flow and transport model may be invalid for one purpose but not invalid for another. 9 refs

  12. TRMM's Contribution to Our Knowledge of Climatology, Storms and Floods

    Science.gov (United States)

    Adler, Robert

    2007-01-01

    The Tropical Rainfall Measuring Mission (TRMM) has successfully completed nearly ten years in orbit. A brief review of the history and accomplishments of this joint mission between the U.S. and Japan is presented. Research highlights will focus on the seasonal cycle of a TRMM-based rainfall climatology, which takes advantage of the multiple rain estimates available from TRMM. Examples will be given of the use of TRMM data to diagnose the impact of man on precipitation patterns through urbanization and the effect of pollution. Use of TRMM data for tropical cyclone operational analysis in the U.S. will also be shown. Methods for generating 3-hourly rainfall information from multiple satellites using TRMM to calibrate all the information will be described as will application of such information to study extreme rainfall events and associated floods and landslides. These results will emphasize the breadth of science success achieved with the 10-year record of observations from the only rain radar and passive microwave instrument combination in space. The outlook for continued operation of the TRMM satellite and progress in TRMM science and applications will be addressed.

  13. A Ground-Based Validation System of Teleoperation for a Space Robot

    Directory of Open Access Journals (Sweden)

    Xueqian Wang

    2012-10-01

    Full Text Available Teleoperation of space robots is very important for future on-orbit service. In order to assure the task is accomplished successfully, ground experiments are required to verify the function and validity of the teleoperation system before a space robot is launched. In this paper, a ground-based validation subsystem is developed as a part of a teleoperation system. The subsystem is mainly composed of four parts: the input verification module, the onboard verification module, the dynamic and image workstation, and the communication simulator. The input verification module, consisting of hardware and software of the master, is used to verify the input ability. The onboard verification module, consisting of the same hardware and software as the onboard processor, is used to verify the processor's computing ability and execution schedule. In addition, the dynamic and image workstation calculates the dynamic response of the space robot and target, and generates emulated camera images, including the hand-eye cameras, global-vision camera and rendezvous camera. The communication simulator provides fidelity communication conditions, i.e., time delays and communication bandwidth. Lastly, we integrated a teleoperation system and conducted many experiments on the system. Experiment results show that the ground system is very useful for verified teleoperation technology.

  14. GPM GROUND VALIDATION DUAL-FREQUENCY DUAL-POLARIZED DOPPLER RADAR (D3R) IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual-frequency Dual-polarized Doppler Radar (D3R) IFloodS data set contain radar reflectivity and doppler velocity measurements. The D3R...

  15. Validation of OMI erythemal doses with multi-sensor ground-based measurements in Thessaloniki, Greece

    Science.gov (United States)

    Zempila, Melina Maria; Fountoulakis, Ilias; Taylor, Michael; Kazadzis, Stelios; Arola, Antti; Koukouli, Maria Elissavet; Bais, Alkiviadis; Meleti, Chariklia; Balis, Dimitrios

    2018-06-01

    The aim of this study is to validate the Ozone Monitoring Instrument (OMI) erythemal dose rates using ground-based measurements in Thessaloniki, Greece. In the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, a Yankee Environmental System UVB-1 radiometer measures the erythemal dose rates every minute, and a Norsk Institutt for Luftforskning (NILU) multi-filter radiometer provides multi-filter based irradiances that were used to derive erythemal dose rates for the period 2005-2014. Both these datasets were independently validated against collocated UV irradiance spectra from a Brewer MkIII spectrophotometer. Cloud detection was performed based on measurements of the global horizontal radiation from a Kipp & Zonen pyranometer and from NILU measurements in the visible range. The satellite versus ground observation validation was performed taking into account the effect of temporal averaging, limitations related to OMI quality control criteria, cloud conditions, the solar zenith angle and atmospheric aerosol loading. Aerosol optical depth was also retrieved using a collocated CIMEL sunphotometer in order to assess its impact on the comparisons. The effect of total ozone columns satellite versus ground-based differences on the erythemal dose comparisons was also investigated. Since most of the public awareness alerts are based on UV Index (UVI) classifications, an analysis and assessment of OMI capability for retrieving UVIs was also performed. An overestimation of the OMI erythemal product by 3-6% and 4-8% with respect to ground measurements is observed when examining overpass and noontime estimates respectively. The comparisons revealed a relatively small solar zenith angle dependence, with the OMI data showing a slight dependence on aerosol load, especially at high aerosol optical depth values. A mean underestimation of 2% in OMI total ozone columns under cloud-free conditions was found to lead to an overestimation in OMI erythemal

  16. Ground and Space Radar Volume Matching and Comparison Software

    Science.gov (United States)

    Morris, Kenneth; Schwaller, Mathew

    2010-01-01

    This software enables easy comparison of ground- and space-based radar observations. The software was initially designed to compare ground radar reflectivity from operational, ground based Sand C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite s Precipitation Radar (PR) instrument. The software is also applicable to other ground-based and space-based radars. The ground and space radar volume matching and comparison software was developed in response to requirements defined by the Ground Validation System (GVS) of Goddard s Global Precipitation Mission (GPM) project. This software innovation is specifically concerned with simplifying the comparison of ground- and spacebased radar measurements for the purpose of GPM algorithm and data product validation. This software is unique in that it provides an operational environment to routinely create comparison products, and uses a direct geometric approach to derive common volumes of space- and ground-based radar data. In this approach, spatially coincident volumes are defined by the intersection of individual space-based Precipitation Radar rays with the each of the conical elevation sweeps of the ground radar. Thus, the resampled volume elements of the space and ground radar reflectivity can be directly compared to one another.

  17. Mapping Annual Precipitation across Mainland China in the Period 2001–2010 from TRMM3B43 Product Using Spatial Downscaling Approach

    Directory of Open Access Journals (Sweden)

    Yuli Shi

    2015-05-01

    Full Text Available Spatially explicit precipitation data is often responsible for the prediction accuracy of hydrological and ecological models. Several statistical downscaling approaches have been developed to map precipitation at a high spatial resolution, which are mainly based on the valid conjugations between satellite-driven precipitation data and geospatial predictors. Performance of the existing approaches should be first evaluated before applying them to larger spatial extents with a complex terrain across different climate zones. In this paper, we investigate the statistical downscaling algorithms to derive the high spatial resolution maps of precipitation over continental China using satellite datasets, including the Normalized Distribution Vegetation Index (NDVI from the Moderate Resolution Imaging Spectroradiometer (MODIS, the Global Digital Elevation Model (GDEM from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER, and the rainfall product from the Tropical Rainfall Monitoring Mission (TRMM. We compare three statistical techniques (multiple linear regression, exponential regression, and Random Forest regression trees for modeling precipitation to better understand how the selected model types affect the prediction accuracy. Then, those models are implemented to downscale the original TRMM product (3B43; 0.25° resolution onto the finer grids (1 × 1 km2 of precipitation. Finally we validate the downscaled annual precipitation (a wet year 2001 and a dry year 2010 against the ground rainfall observations from 596 rain gauge stations over continental China. The result indicates that the downscaling algorithm based on the Random Forest regression outperforms, when compared to the linear regression and the exponential regression. It also shows that the addition of the residual terms does not significantly improve the accuracy of results for the RF model. The analysis of the variable importance reveals the NDVI related predictors

  18. Validation of OMI UV measurements against ground-based measurements at a station in Kampala, Uganda

    Science.gov (United States)

    Muyimbwa, Dennis; Dahlback, Arne; Stamnes, Jakob; Hamre, Børge; Frette, Øyvind; Ssenyonga, Taddeo; Chen, Yi-Chun

    2015-04-01

    We present solar ultraviolet (UV) irradiance data measured with a NILU-UV instrument at a ground site in Kampala (0.31°N, 32.58°E), Uganda for the period 2005-2014. The data were analyzed and compared with UV irradiances inferred from the Ozone Monitoring Instrument (OMI) for the same period. Kampala is located on the shores of lake Victoria, Africa's largest fresh water lake, which may influence the climate and weather conditions of the region. Also, there is an excessive use of worn cars, which may contribute to a high anthropogenic loading of absorbing aerosols. The OMI surface UV algorithm does not account for absorbing aerosols, which may lead to systematic overestimation of surface UV irradiances inferred from OMI satellite data. We retrieved UV index values from OMI UV irradiances and validated them against the ground-based UV index values obtained from NILU-UV measurements. The UV index values were found to follow a seasonal pattern similar to that of the clouds and the rainfall. OMI inferred UV index values were overestimated with a mean bias of about 28% under all-sky conditions, but the mean bias was reduced to about 8% under clear-sky conditions when only days with radiation modification factor (RMF) greater than 65% were considered. However, when days with RMF greater than 70, 75, and 80% were considered, OMI inferred UV index values were found to agree with the ground-based UV index values to within 5, 3, and 1%, respectively. In the validation we identified clouds/aerosols, which were present in 88% of the measurements, as the main cause of OMI inferred overestimation of the UV index.

  19. The Soil Moisture Dependence of TRMM Microwave Imager Rainfall Estimates

    Science.gov (United States)

    Seyyedi, H.; Anagnostou, E. N.

    2011-12-01

    This study presents an in-depth analysis of the dependence of overland rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) on the soil moisture conditions at the land surface. TMI retrievals are verified against rainfall fields derived from a high resolution rain-gauge network (MESONET) covering Oklahoma. Soil moisture (SOM) patterns are extracted based on recorded data from 2000-2007 with 30 minutes temporal resolution. The area is divided into wet and dry regions based on normalized SOM (Nsom) values. Statistical comparison between two groups is conducted based on recorded ground station measurements and the corresponding passive microwave retrievals from TMI overpasses at the respective MESONET station location and time. The zero order error statistics show that the Probability of Detection (POD) for the wet regions (higher Nsom values) is higher than the dry regions. The Falls Alarm Ratio (FAR) and volumetric FAR is lower for the wet regions. The volumetric missed rain for the wet region is lower than dry region. Analysis of the MESONET-to-TMI ratio values shows that TMI tends to overestimate for surface rainfall intensities less than 12 (mm/h), however the magnitude of the overestimation over the wet regions is lower than the dry regions.

  20. The Electromagnetic Field for a PEC Wedge Over a Grounded Dielectric Slab: 1. Formulation and Validation

    Science.gov (United States)

    Daniele, Vito G.; Lombardi, Guido; Zich, Rodolfo S.

    2017-12-01

    Complex scattering problems are often made by composite structures where wedges and penetrable substrates may interact at near field. In this paper (Part 1) together with its companion paper (Part 2) we study the canonical problem constituted of a Perfectly Electrically Conducting (PEC) wedge lying on a grounded dielectric slab with a comprehensive mathematical model based on the application of the Generalized Wiener-Hopf Technique (GWHT) with the help of equivalent circuital representations for linear homogenous regions (angular and layered regions). The proposed procedure is valid for the general case, and the papers focus on E-polarization. The solution is obtained using analytical and semianalytical approaches that reduce the Wiener-Hopf factorization to integral equations. Several numerical test cases validate the proposed method. The scope of Part 1 is to present the method and its validation applied to the problem. The companion paper Part 2 focuses on the properties of the solution, and it presents physical and engineering insights as Geometrical Theory of Diffraction (GTD)/Uniform Theory of Diffraction(UTD) coefficients, total far fields, modal fields, and excitation of surface and leaky waves for different kinds of source. The structure is of interest in antenna technologies and electromagnetic compatibility (tip on a substrate with guiding and antenna properties).

  1. Status Update on the GPM Ground Validation Iowa Flood Studies (IFloodS) Field Experiment

    Science.gov (United States)

    Petersen, Walt; Krajewski, Witold

    2013-04-01

    The overarching objective of integrated hydrologic ground validation activities supporting the Global Precipitation Measurement Mission (GPM) is to provide better understanding of the strengths and limitations of the satellite products, in the context of hydrologic applications. To this end, the GPM Ground Validation (GV) program is conducting the first of several hydrology-oriented field efforts: the Iowa Flood Studies (IFloodS) experiment. IFloodS will be conducted in the central to northeastern part of Iowa in Midwestern United States during the months of April-June, 2013. Specific science objectives and related goals for the IFloodS experiment can be summarized as follows: 1. Quantify the physical characteristics and space/time variability of rain (rates, DSD, process/"regime") and map to satellite rainfall retrieval uncertainty. 2. Assess satellite rainfall retrieval uncertainties at instantaneous to daily time scales and evaluate propagation/impact of uncertainty in flood-prediction. 3. Assess hydrologic predictive skill as a function of space/time scales, basin morphology, and land use/cover. 4. Discern the relative roles of rainfall quantities such as rate and accumulation as compared to other factors (e.g. transport of water in the drainage network) in flood genesis. 5. Refine approaches to "integrated hydrologic GV" concept based on IFloodS experiences and apply to future GPM Integrated GV field efforts. These objectives will be achieved via the deployment of the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars, University of Iowa X-band dual-polarimetric radars, a large network of paired rain gauge platforms with attendant soil moisture and temperature probes, a large network of both 2D Video and Parsivel disdrometers, and USDA-ARS gauge and soil-moisture measurements (in collaboration with the NASA SMAP mission). The aforementioned measurements will be used to complement existing operational WSR-88D S-band polarimetric radar measurements

  2. TRMM MICROWAVE IMAGER (TMI) WENTZ OCEAN PRODUCTS V3

    Data.gov (United States)

    National Aeronautics and Space Administration — The TRMM Microwave Imager (TMI) is a 5-channel, dual-polarized, passive microwave radiometer. Microwave radiation is emitted by the Earth's surface and by water...

  3. Development of Bread Board Model of TRMM precipitation radar

    Science.gov (United States)

    Okamoto, Ken'ichi; Ihara, Toshio; Kumagai, Hiroshi

    The active array radar was selected as a reliable candidate for the TRMM (Tropical Rainfall Measuring Mission) precipitation radar after the trade off studies performed by Communications Research Laboratory (CRL) in the US-Japan joint feasibility study of TRMM in 1987-1988. Main system parameters and block diagram for TRMM precipitation radar are shown as the result of feasibility study. CRL developed key devices for the active array precipitation radar such as 8-element slotted waveguide array antenna, the 5 bit PIN diode phase shifters, solid state power amplifiers and low noise amplifiers in 1988-1990. Integration of these key devices was made to compose 8-element Bread Board Model of TRMM precipitation radar.

  4. Validation of MOPITT carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC

    Science.gov (United States)

    Buchholz, Rebecca R.; Deeter, Merritt N.; Worden, Helen M.; Gille, John; Edwards, David P.; Hannigan, James W.; Jones, Nicholas B.; Paton-Walsh, Clare; Griffith, David W. T.; Smale, Dan; Robinson, John; Strong, Kimberly; Conway, Stephanie; Sussmann, Ralf; Hase, Frank; Blumenstock, Thomas; Mahieu, Emmanuel; Langerock, Bavo

    2017-06-01

    The Measurements of Pollution in the Troposphere (MOPITT) satellite instrument provides the longest continuous dataset of carbon monoxide (CO) from space. We perform the first validation of MOPITT version 6 retrievals using total column CO measurements from ground-based remote-sensing Fourier transform infrared spectrometers (FTSs). Validation uses data recorded at 14 stations, that span a wide range of latitudes (80° N to 78° S), in the Network for the Detection of Atmospheric Composition Change (NDACC). MOPITT measurements are spatially co-located with each station, and different vertical sensitivities between instruments are accounted for by using MOPITT averaging kernels (AKs). All three MOPITT retrieval types are analyzed: thermal infrared (TIR-only), joint thermal and near infrared (TIR-NIR), and near infrared (NIR-only). Generally, MOPITT measurements overestimate CO relative to FTS measurements, but the bias is typically less than 10 %. Mean bias is 2.4 % for TIR-only, 5.1 % for TIR-NIR, and 6.5 % for NIR-only. The TIR-NIR and NIR-only products consistently produce a larger bias and lower correlation than the TIR-only. Validation performance of MOPITT for TIR-only and TIR-NIR retrievals over land or water scenes is equivalent. The four MOPITT detector element pixels are validated separately to account for their different uncertainty characteristics. Pixel 1 produces the highest standard deviation and lowest correlation for all three MOPITT products. However, for TIR-only and TIR-NIR, the error-weighted average that includes all four pixels often provides the best correlation, indicating compensating pixel biases and well-captured error characteristics. We find that MOPITT bias does not depend on latitude but rather is influenced by the proximity to rapidly changing atmospheric CO. MOPITT bias drift has been bound geographically to within ±0.5 % yr-1 or lower at almost all locations.

  5. Validation of neural spike sorting algorithms without ground-truth information.

    Science.gov (United States)

    Barnett, Alex H; Magland, Jeremy F; Greengard, Leslie F

    2016-05-01

    The throughput of electrophysiological recording is growing rapidly, allowing thousands of simultaneous channels, and there is a growing variety of spike sorting algorithms designed to extract neural firing events from such data. This creates an urgent need for standardized, automatic evaluation of the quality of neural units output by such algorithms. We introduce a suite of validation metrics that assess the credibility of a given automatic spike sorting algorithm applied to a given dataset. By rerunning the spike sorter two or more times, the metrics measure stability under various perturbations consistent with variations in the data itself, making no assumptions about the internal workings of the algorithm, and minimal assumptions about the noise. We illustrate the new metrics on standard sorting algorithms applied to both in vivo and ex vivo recordings, including a time series with overlapping spikes. We compare the metrics to existing quality measures, and to ground-truth accuracy in simulated time series. We provide a software implementation. Metrics have until now relied on ground-truth, simulated data, internal algorithm variables (e.g. cluster separation), or refractory violations. By contrast, by standardizing the interface, our metrics assess the reliability of any automatic algorithm without reference to internal variables (e.g. feature space) or physiological criteria. Stability is a prerequisite for reproducibility of results. Such metrics could reduce the significant human labor currently spent on validation, and should form an essential part of large-scale automated spike sorting and systematic benchmarking of algorithms. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Monitoring Ground Subsidence in Hong Kong via Spaceborne Radar: Experiments and Validation

    Directory of Open Access Journals (Sweden)

    Yuxiao Qin

    2015-08-01

    Full Text Available The persistent scatterers interferometry (PSI technique is gradually becoming known for its capability of providing up to millimeter accuracy of measurement on ground displacement. Nevertheless, there is still quite a good amount of doubt regarding its correctness or accuracy. In this paper, we carried out an experiment corroborating the capability of the PSI technique with the help of a traditional survey method in the urban area of Hong Kong, China. Seventy three TerraSAR-X (TSX and TanDEM-X (TDX images spanning over four years are used for the data process. There are three aims of this study. The first is to generate a displacement map of urban Hong Kong and to check for spots with possible ground movements. This information will be provided to the local surveyors so that they can check these specific locations. The second is to validate if the accuracy of the PSI technique can indeed reach the millimeter level in this real application scenario. For validating the accuracy of PSI, four corner reflectors (CR were installed at a construction site on reclaimed land in Hong Kong. They were manually moved up or down by a few to tens of millimeters, and the value derived from the PSI analysis was compared to the true value. The experiment, carried out in unideal conditions, nevertheless proved undoubtedly that millimeter accuracy can be achieved by the PSI technique. The last is to evaluate the advantages and limitations of the PSI technique. Overall, the PSI technique can be extremely useful if used in collaboration with other techniques, so that the advantages can be highlighted and the drawbacks avoided.

  7. Validation of ozone monitoring instrument ultraviolet index against ground-based UV index in Kampala, Uganda.

    Science.gov (United States)

    Muyimbwa, Dennis; Dahlback, Arne; Ssenyonga, Taddeo; Chen, Yi-Chun; Stamnes, Jakob J; Frette, Øyvind; Hamre, Børge

    2015-10-01

    The Ozone Monitoring Instrument (OMI) overpass solar ultraviolet (UV) indices have been validated against the ground-based UV indices derived from Norwegian Institute for Air Research UV measurements in Kampala (0.31° N, 32.58° E, 1200 m), Uganda for the period between 2005 and 2014. An excessive use of old cars, which would imply a high loading of absorbing aerosols, could cause the OMI retrieval algorithm to overestimate the surface UV irradiances. The UV index values were found to follow a seasonal pattern with maximum values in March and October. Under all-sky conditions, the OMI retrieval algorithm was found to overestimate the UV index values with a mean bias of about 28%. When only days with radiation modification factor greater than or equal to 65%, 70%, 75%, and 80% were considered, the mean bias between ground-based and OMI overpass UV index values was reduced to 8%, 5%, 3%, and 1%, respectively. The overestimation of the UV index by the OMI retrieval algorithm was found to be mainly due to clouds and aerosols.

  8. TRMM 3-Hourly 0.25 deg. TRMM and Other-GPI Calibration Rainfall Data V7

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint U.S.-Japan satellite mission to monitor tropical and subtropical precipitation and to estimate its...

  9. TRMM Precipitation Radar (PR) Level 2 Surface Cross-Section Product (TRMM Product 2A21) V7

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint U.S.-Japan satellite mission to monitor tropical and subtropical precipitation and to estimate its...

  10. TRMM Precipitation Radar (PR) Level 2 Rainfall Rate and Profile Product (TRMM Product 2A25) V6

    Data.gov (United States)

    National Aeronautics and Space Administration — The TRMM Precipitation Radar (PR), the first of its kind in space, is an electronically scanning radar, operating at 13.8 GHz that measures the 3-D rainfall...

  11. Cross Validation of Rain Drop Size Distribution between GPM and Ground Based Polarmetric radar

    Science.gov (United States)

    Chandra, C. V.; Biswas, S.; Le, M.; Chen, H.

    2017-12-01

    Dual-frequency precipitation radar (DPR) on board the Global Precipitation Measurement (GPM) core satellite has reflectivity measurements at two independent frequencies, Ku- and Ka- band. Dual-frequency retrieval algorithms have been developed traditionally through forward, backward, and recursive approaches. However, these algorithms suffer from "dual-value" problem when they retrieve medium volume diameter from dual-frequency ratio (DFR) in rain region. To this end, a hybrid method has been proposed to perform raindrop size distribution (DSD) retrieval for GPM using a linear constraint of DSD along rain profile to avoid "dual-value" problem (Le and Chandrasekar, 2015). In the current GPM level 2 algorithm (Iguchi et al. 2017- Algorithm Theoretical Basis Document) the Solver module retrieves a vertical profile of drop size distributionn from dual-frequency observations and path integrated attenuations. The algorithm details can be found in Seto et al. (2013) . On the other hand, ground based polarimetric radars have been used for a long time to estimate drop size distributions (e.g., Gorgucci et al. 2002 ). In addition, coincident GPM and ground based observations have been cross validated using careful overpass analysis. In this paper, we perform cross validation on raindrop size distribution retrieval from three sources, namely the hybrid method, the standard products from the solver module and DSD retrievals from ground polarimetric radars. The results are presented from two NEXRAD radars located in Dallas -Fort Worth, Texas (i.e., KFWS radar) and Melbourne, Florida (i.e., KMLB radar). The results demonstrate the ability of DPR observations to produce DSD estimates, which can be used subsequently to generate global DSD maps. References: Seto, S., T. Iguchi, T. Oki, 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement mission's single/dual-frequency radar measurements. IEEE Transactions on Geoscience and

  12. Evaluation TRMM Rainfall Data In Hydrological Modeling For An Ungaged In Lhasa River Basin

    Science.gov (United States)

    Ji, H. J.; Liu, J.

    2017-12-01

    Evaluation TRMM Rainfall Data In Hydrological Modeling For An Ungaged In Lhasa River BasinHaijuan Ji1* Jintao Liu1,2 Shanshan Xu1___________________ 1College of Hydrology and Water Resources, Hohai University, Nanjing 210098, People's Republic of China 2State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, People's Republic of China ___________________ * Corresponding author. Tel.: +86-025-83786973; Fax: +86-025-83786606. E-mail address: Hhu201510@163.com (H.J. Ji). Abstract: The Tibetan Plateau plays an important role in regulating the regional hydrological processes due to its high elevations and being the headwaters of many major Asian river basins. If familiar with the distribution of hydrological characteristics, will help us improve the level of development and utilization the water resources. However, there exist glaciers and snow with few sites. It is significance for us to understand the glacier and snow hydrological process in order to recognize the evolution of water resources in the Tibetan. This manuscript takes Lhasa River as the study area, taking use of ground, remote sensing and assimilation data, taking advantage of high precision TRMM precipitation data and MODIS snow cover data, first, according to the data from ground station evaluation of TRMM data in the application of the accuracy of the Lhasa River, and based on MODIS data fusion of multi source microwave snow making cloudless snow products, which are used for discriminant and analysis glacier and snow regulation mechanism on day scale, add snow and glacier unit into xinanjing model, this model can simulate the study region's runoff evolution, parameter sensitivity even spatial variation of hydrological characteristics the next ten years on region grid scale. The results of hydrological model in Lhasa River can simulate the glacier and snow runoff variation in high cold region better, to enhance the predictive ability of the spring

  13. Analyzing coastal precipitation using TRMM observations

    Directory of Open Access Journals (Sweden)

    R. H. Heiblum

    2011-12-01

    Full Text Available The interaction between breezes and synoptic gradient winds, and surface friction increase in transition from sea to land can create persistent convergence zones nearby coastlines. The low level convergence of moist air promotes the dynamical and microphysical processes responsible for the formation of clouds and precipitation.

    Our work focuses on the winter seasons of 1998–2011 in the Eastern Mediterranean. During the winter the Mediterranean sea is usually warmer than the adjacent land, resulting in frequent occurrence of land breeze that opposes the common synoptic winds. Using rain-rate vertical profiles from the Tropical Rainfall Measurement Mission (TRMM satellite, we examined the spatial and temporal distribution of average hydrometeor mass in clouds as a function of the distance from coastlines.

    Results show that coastlines in the Eastern Mediterranean are indeed favored areas for precipitation formation. The intra-seasonal and diurnal changes in the distribution of hydrometeor mass indicate that the land breeze may likely be the main responsible mechanism behind our results.

  14. Method for validating cloud mask obtained from satellite measurements using ground-based sky camera.

    Science.gov (United States)

    Letu, Husi; Nagao, Takashi M; Nakajima, Takashi Y; Matsumae, Yoshiaki

    2014-11-01

    Error propagation in Earth's atmospheric, oceanic, and land surface parameters of the satellite products caused by misclassification of the cloud mask is a critical issue for improving the accuracy of satellite products. Thus, characterizing the accuracy of the cloud mask is important for investigating the influence of the cloud mask on satellite products. In this study, we proposed a method for validating multiwavelength satellite data derived cloud masks using ground-based sky camera (GSC) data. First, a cloud cover algorithm for GSC data has been developed using sky index and bright index. Then, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data derived cloud masks by two cloud-screening algorithms (i.e., MOD35 and CLAUDIA) were validated using the GSC cloud mask. The results indicate that MOD35 is likely to classify ambiguous pixels as "cloudy," whereas CLAUDIA is likely to classify them as "clear." Furthermore, the influence of error propagations caused by misclassification of the MOD35 and CLAUDIA cloud masks on MODIS derived reflectance, brightness temperature, and normalized difference vegetation index (NDVI) in clear and cloudy pixels was investigated using sky camera data. It shows that the influence of the error propagation by the MOD35 cloud mask on the MODIS derived monthly mean reflectance, brightness temperature, and NDVI for clear pixels is significantly smaller than for the CLAUDIA cloud mask; the influence of the error propagation by the CLAUDIA cloud mask on MODIS derived monthly mean cloud products for cloudy pixels is significantly smaller than that by the MOD35 cloud mask.

  15. Design and validation of inert homemade explosive simulants for ground penetrating radar

    Science.gov (United States)

    VanderGaast, Brian W.; McFee, John E.; Russell, Kevin L.; Faust, Anthony A.

    2015-05-01

    The Canadian Armed Forces (CAF) identified a requirement for inert simulants to act as improvised, or homemade, explosives (IEs) when training on, or evaluating, ground penetrating radar (GPR) systems commonly used in the detection of buried landmines and improvised explosive devices (IEDs). In response, Defence R and D Canada (DRDC) initiated a project to develop IE simulant formulations using commonly available inert materials. These simulants are intended to approximate the expected GPR response of common ammonium nitrate-based IEs, in particular ammonium nitrate/fuel oil (ANFO) and ammonium nitrate/aluminum (ANAl). The complex permittivity over the range of electromagnetic frequencies relevant to standard GPR systems was measured for bulk quantities of these three IEs that had been fabricated at DRDC Suffield Research Centre. Following these measurements, published literature was examined to find benign materials with both a similar complex permittivity, as well as other physical properties deemed desirable - such as low-toxicity, thermal stability, and commercial availability - in order to select candidates for subsequent simulant formulation. Suitable simulant formulations were identified for ANFO, with resulting complex permittivities measured to be within acceptable limits of target values. These IE formulations will now undergo end-user trials with CAF operators in order to confirm their utility. Investigations into ANAl simulants continues. This progress report outlines the development program, simulant design, and current validation results.

  16. TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece

    Science.gov (United States)

    Zempila, Melina-Maria; van Geffen, Jos H. G. M.; Taylor, Michael; Fountoulakis, Ilias; Koukouli, Maria-Elissavet; van Weele, Michiel; van der A, Ronald J.; Bais, Alkiviadis; Meleti, Charikleia; Balis, Dimitrios

    2017-06-01

    This study aims to cross-validate ground-based and satellite-based models of three photobiological UV effective dose products: the Commission Internationale de l'Éclairage (CIE) erythemal UV, the production of vitamin D in the skin, and DNA damage, using high-temporal-resolution surface-based measurements of solar UV spectral irradiances from a synergy of instruments and models. The satellite-based Tropospheric Emission Monitoring Internet Service (TEMIS; version 1.4) UV daily dose data products were evaluated over the period 2009 to 2014 with ground-based data from a Norsk Institutt for Luftforskning (NILU)-UV multifilter radiometer located at the northern midlatitude super-site of the Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (LAP/AUTh), in Greece. For the NILU-UV effective dose rates retrieval algorithm, a neural network (NN) was trained to learn the nonlinear functional relation between NILU-UV irradiances and collocated Brewer-based photobiological effective dose products. Then the algorithm was subjected to sensitivity analysis and validation. The correlation of the NN estimates with target outputs was high (r = 0. 988 to 0.990) and with a very low bias (0.000 to 0.011 in absolute units) proving the robustness of the NN algorithm. For further evaluation of the NILU NN-derived products, retrievals of the vitamin D and DNA-damage effective doses from a collocated Yankee Environmental Systems (YES) UVB-1 pyranometer were used. For cloud-free days, differences in the derived UV doses are better than 2 % for all UV dose products, revealing the reference quality of the ground-based UV doses at Thessaloniki from the NILU-UV NN retrievals. The TEMIS UV doses used in this study are derived from ozone measurements by the SCIAMACHY/Envisat and GOME2/MetOp-A satellite instruments, over the European domain in combination with SEVIRI/Meteosat-based diurnal cycle of the cloud cover fraction per 0. 5° × 0. 5° (lat × long) grid cells. TEMIS

  17. TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece

    Directory of Open Access Journals (Sweden)

    M.-M. Zempila

    2017-06-01

    Full Text Available This study aims to cross-validate ground-based and satellite-based models of three photobiological UV effective dose products: the Commission Internationale de l'Éclairage (CIE erythemal UV, the production of vitamin D in the skin, and DNA damage, using high-temporal-resolution surface-based measurements of solar UV spectral irradiances from a synergy of instruments and models. The satellite-based Tropospheric Emission Monitoring Internet Service (TEMIS; version 1.4 UV daily dose data products were evaluated over the period 2009 to 2014 with ground-based data from a Norsk Institutt for Luftforskning (NILU-UV multifilter radiometer located at the northern midlatitude super-site of the Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (LAP/AUTh, in Greece. For the NILU-UV effective dose rates retrieval algorithm, a neural network (NN was trained to learn the nonlinear functional relation between NILU-UV irradiances and collocated Brewer-based photobiological effective dose products. Then the algorithm was subjected to sensitivity analysis and validation. The correlation of the NN estimates with target outputs was high (r = 0. 988 to 0.990 and with a very low bias (0.000 to 0.011 in absolute units proving the robustness of the NN algorithm. For further evaluation of the NILU NN-derived products, retrievals of the vitamin D and DNA-damage effective doses from a collocated Yankee Environmental Systems (YES UVB-1 pyranometer were used. For cloud-free days, differences in the derived UV doses are better than 2 % for all UV dose products, revealing the reference quality of the ground-based UV doses at Thessaloniki from the NILU-UV NN retrievals. The TEMIS UV doses used in this study are derived from ozone measurements by the SCIAMACHY/Envisat and GOME2/MetOp-A satellite instruments, over the European domain in combination with SEVIRI/Meteosat-based diurnal cycle of the cloud cover fraction per 0. 5° × 0. 5

  18. Modified ground-truthing: an accurate and cost-effective food environment validation method for town and rural areas.

    Science.gov (United States)

    Caspi, Caitlin Eicher; Friebur, Robin

    2016-03-17

    A major concern in food environment research is the lack of accuracy in commercial business listings of food stores, which are convenient and commonly used. Accuracy concerns may be particularly pronounced in rural areas. Ground-truthing or on-site verification has been deemed the necessary standard to validate business listings, but researchers perceive this process to be costly and time-consuming. This study calculated the accuracy and cost of ground-truthing three town/rural areas in Minnesota, USA (an area of 564 miles, or 908 km), and simulated a modified validation process to increase efficiency without comprising accuracy. For traditional ground-truthing, all streets in the study area were driven, while the route and geographic coordinates of food stores were recorded. The process required 1510 miles (2430 km) of driving and 114 staff hours. The ground-truthed list of stores was compared with commercial business listings, which had an average positive predictive value (PPV) of 0.57 and sensitivity of 0.62 across the three sites. Using observations from the field, a modified process was proposed in which only the streets located within central commercial clusters (the 1/8 mile or 200 m buffer around any cluster of 2 stores) would be validated. Modified ground-truthing would have yielded an estimated PPV of 1.00 and sensitivity of 0.95, and would have resulted in a reduction in approximately 88 % of the mileage costs. We conclude that ground-truthing is necessary in town/rural settings. The modified ground-truthing process, with excellent accuracy at a fraction of the costs, suggests a new standard and warrants further evaluation.

  19. Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR

    Directory of Open Access Journals (Sweden)

    E. Dammers

    2017-07-01

    Full Text Available Presented here is the validation of the CrIS (Cross-track Infrared Sounder fast physical NH3 retrieval (CFPR column and profile measurements using ground-based Fourier transform infrared (FTIR observations. We use the total columns and profiles from seven FTIR sites in the Network for the Detection of Atmospheric Composition Change (NDACC to validate the satellite data products. The overall FTIR and CrIS total columns have a positive correlation of r  =  0.77 (N  =  218 with very little bias (a slope of 1.02. Binning the comparisons by total column amounts, for concentrations larger than 1.0  ×  1016 molecules cm−2, i.e. ranging from moderate to polluted conditions, the relative difference is on average ∼ 0–5 % with a standard deviation of 25–50 %, which is comparable to the estimated retrieval uncertainties in both CrIS and the FTIR. For the smallest total column range (< 1.0  × 1016 molecules cm−2 where there are a large number of observations at or near the CrIS noise level (detection limit the absolute differences between CrIS and the FTIR total columns show a slight positive column bias. The CrIS and FTIR profile comparison differences are mostly within the range of the single-level retrieved profile values from estimated retrieval uncertainties, showing average differences in the range of  ∼ 20 to 40 %. The CrIS retrievals typically show good vertical sensitivity down into the boundary layer which typically peaks at  ∼ 850 hPa (∼ 1.5 km. At this level the median absolute difference is 0.87 (std  =  ±0.08 ppb, corresponding to a median relative difference of 39 % (std  =  ±2 %. Most of the absolute and relative profile comparison differences are in the range of the estimated retrieval uncertainties. At the surface, where CrIS typically has lower sensitivity, it tends to overestimate in low-concentration conditions and underestimate

  20. Validation of strong-motion stochastic model using observed ground motion records in north-east India

    Directory of Open Access Journals (Sweden)

    Dipok K. Bora

    2016-03-01

    Full Text Available We focused on validation of applicability of semi-empirical technique (spectral models and stochastic simulation for the estimation of ground-motion characteristics in the northeastern region (NER of India. In the present study, it is assumed that the point source approximation in far field is valid. The one-dimensional stochastic point source seismological model of Boore (1983 (Boore, DM. 1983. Stochastic simulation of high frequency ground motions based on seismological models of the radiated spectra. Bulletin of Seismological Society of America, 73, 1865–1894. is used for modelling the acceleration time histories. Total ground-motion records of 30 earthquakes of magnitudes lying between MW 4.2 and 6.2 in NER India from March 2008 to April 2013 are used for this study. We considered peak ground acceleration (PGA and pseudospectral acceleration (response spectrum amplitudes with 5% damping ratio at three fundamental natural periods, namely: 0.3, 1.0, and 3.0 s. The spectral models, which work well for PGA, overestimate the pseudospectral acceleration. It seems that there is a strong influence of local site amplification and crustal attenuation (kappa, which control spectral amplitudes at different frequencies. The results would allow analysing regional peculiarities of ground-motion excitation and propagation and updating seismic hazard assessment, both the probabilistic and deterministic approaches.

  1. Comparison of vertical ground reaction forces during overground and treadmill running. A validation study

    NARCIS (Netherlands)

    Kluitenberg, Bas; Bredeweg, Steef W.; Zijlstra, Sjouke; Zijlstra, Wiebren; Buist, Ida

    2012-01-01

    Background: One major drawback in measuring ground-reaction forces during running is that it is time consuming to get representative ground-reaction force (GRF) values with a traditional force platform. An instrumented force measuring treadmill can overcome the shortcomings inherent to overground

  2. Adequacy of TRMM satellite rainfall data in driving the SWAT modeling of Tiaoxi catchment (Taihu lake basin, China)

    Science.gov (United States)

    Li, Dan; Christakos, George; Ding, Xinxin; Wu, Jiaping

    2018-01-01

    Spatial rainfall data is an essential input to Distributed Hydrological Models (DHM), and a significant contributor to hydrological model uncertainty. Model uncertainty is higher when rain gauges are sparse, as is often the case in practice. Currently, satellite-based precipitation products increasingly provide an alternative means to ground-based rainfall estimates, in which case a rigorous product assessment is required before implementation. Accordingly, the twofold objective of this work paper was the real-world assessment of both (a) the Tropical Rainfall Measuring Mission (TRMM) rainfall product using gauge data, and (b) the TRMM product's role in forcing data for hydrologic simulations in the area of the Tiaoxi catchment (Taihu lake basin, China). The TRMM rainfall products used in this study are the Version-7 real-time 3B42RT and the post-real-time 3B42. It was found that the TRMM rainfall data showed a superior performance at the monthly and annual scales, fitting well with surface observation-based frequency rainfall distributions. The Nash-Sutcliffe Coefficient of Efficiency (NSCE) and the relative bias ratio (BIAS) were used to evaluate hydrologic model performance. The satisfactory performance of the monthly runoff simulations in the Tiaoxi study supports the view that the implementation of real-time 3B42RT allows considerable room for improvement. At the same time, post-real-time 3B42 can be a valuable tool of hydrologic modeling, water balance analysis, and basin water resource management, especially in developing countries or at remote locations in which rainfall gauges are scarce.

  3. A validation of ground ambulance pre-hospital times modeled using geographic information systems.

    Science.gov (United States)

    Patel, Alka B; Waters, Nigel M; Blanchard, Ian E; Doig, Christopher J; Ghali, William A

    2012-10-03

    Evaluating geographic access to health services often requires determining the patient travel time to a specified service. For urgent care, many research studies have modeled patient pre-hospital time by ground emergency medical services (EMS) using geographic information systems (GIS). The purpose of this study was to determine if the modeling assumptions proposed through prior United States (US) studies are valid in a non-US context, and to use the resulting information to provide revised recommendations for modeling travel time using GIS in the absence of actual EMS trip data. The study sample contained all emergency adult patient trips within the Calgary area for 2006. Each record included four components of pre-hospital time (activation, response, on-scene and transport interval). The actual activation and on-scene intervals were compared with those used in published models. The transport interval was calculated within GIS using the Network Analyst extension of Esri ArcGIS 10.0 and the response interval was derived using previously established methods. These GIS derived transport and response intervals were compared with the actual times using descriptive methods. We used the information acquired through the analysis of the EMS trip data to create an updated model that could be used to estimate travel time in the absence of actual EMS trip records. There were 29,765 complete EMS records for scene locations inside the city and 529 outside. The actual median on-scene intervals were longer than the average previously reported by 7-8 minutes. Actual EMS pre-hospital times across our study area were significantly higher than the estimated times modeled using GIS and the original travel time assumptions. Our updated model, although still underestimating the total pre-hospital time, more accurately represents the true pre-hospital time in our study area. The widespread use of generalized EMS pre-hospital time assumptions based on US data may not be appropriate in a

  4. Validity of single term energy expression for ground state rotational band of even-even nuclei

    International Nuclear Information System (INIS)

    Sharma, S.; Kumar, R.; Gupta, J.B.

    2005-01-01

    Full text: There are large numbers of empirical studies of gs band of even-even nuclei in various mass regions. The Bohr-Mottelson's energy expression is E(I) = AX + BX 2 +CX 3 +... where X = I(I+1). The anharmonic vibrator energy expression is: E(I) = al + bl 2 + cl 3 SF model with energy expression: E(I)= pX + qI + rXI... where the terms represents the rotational, vibrational and R-V interaction energy, respectively. The validity f the various energy expressions with two terms had been tested by Sharma for light, medium and heavy mass regions using R I s. R 4 plots (where, spin I=6, 8, 10, 12), which are parameter independent. It was also noted, that of the goodness of energy expression can be judged with the minimum input of energies (i.e. only 2 parameters) and predictability's of the model p to high spins. Recently, Gupta et. al proposed a single term energy expression (SSTE) which was applied for rare earth region. This proposed power law reflected the unity of rotation - vibration in a different way and was successful in explaining the structure of gs-band. It will be useful for test the single term energy expression for light and heavy mass region. The single term expression for energy of ground state band can be written as: E I =axI b , where the index b and the coefficient a are the constant for the band. The values of b+1 and a 1 are as follows: b 1 =log(R 1 )/log(I/2) and a 1 =E I /I b ... The following results were gained: 1) The sharp variation in the value of index b at given spin will be an indication of the change in the shape of the nucleus; 2) The value of E I /I b is fairly constant with spin below back-bending, which reflects the stability of shape with spin; 3) This proposed power law is successful in explaining the structure of gs-band of nuclei

  5. Validation of Satellite AOD Data with the Ground PM10 Data over Islamabad Pakistan

    Science.gov (United States)

    Bulbul, Gufran; Shahid, Imran

    2016-07-01

    health. In this study, concentrations of PM10 will be monitored at different sites in H-12 sector and Kashmir Highway Islamabad using High volume air sampler and its chemical characterization will be done using Energy Dispersive XRF. The first application of satellite remote sensing for aerosol monitoring began in the mid-1970s to detect the desert particles above the ocean using data from Landsat, GOES, and AVHRR remote sensing satellites. Maps of Aerosol Optical Depth (AOD) over the ocean were produced using the 0.63 µm channel of Advanced Very High Resolution Radiometer (AVHRR) . Aerosols properties were retrieved using AVHRR. The useable range of wavelengths of spectrum (shorter wavelengths and the longer wavelengths) for the remote sensing of the aerosols particles is mostly restricted due to ozone and gaseous absorptions. The purpose of the study is to validate the satellite Aerosol Optical Depth (AOD) data for the regional and local scale for Pakistan Objectives • To quantify the concentration of PM10 • To investigate their elemental composition • To find out their possible sources • Validation with MODIS satellite AOD Methodology: PM10 concentration will be measured at different sites of NUST Islamabad, Pakistan using High volume air sampler an Air sampling equipment capable of sampling high volumes of air (typically 57,000 ft3 or 1,600 m3) at high flow rates (typically 1.13 m3/min or 40 ft3/min) over an extended sampling duration (typically 24 hrs). The sampling period will be of 24 hours. Particles in the PM10 size range are then collected on the filter(s) during the specified 24-h sampling period. Each sample filter will be weighed before and after sampling to determine the net weight (mass) gain of the collected PM10 sample (40 CFR Part 50, Appendix M, US EPA). Next step will be the chemical characterization. Element concentrations will be determined by energy dispersive X-ray fluorescence (ED-XRF) technique. The ED-XRF system uses an X-ray tube to

  6. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2002

    Science.gov (United States)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2003-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs. S. America ) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model. Review of other latent heating algorithms will be discussed in the workshop.

  7. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM rainfall products from December 1997 to November 2001

    Science.gov (United States)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2001. Rainfall, latent heating and radar reflectivity structures between El Nino (DE 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs. west Pacific, Africa vs. S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in strtaiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  8. Quantitative estimation of orographic precipitation over the Himalayas by using TRMM/PR and a dense network of rain gauges

    Science.gov (United States)

    Yatagai, A.

    2009-04-01

    Precipitation Radar (PR) data acquired by the Tropical Rainfall Measuring Mission (TRMM) over 10 years of observation were used to show the monthly rainfall patterns over the Himalayas. To validate and adjust these patterns, we used a dense network of rain gauges to measure daily precipitation over Nepal, Bangladesh, Bhutan, Pakistan, India, Myanmar, and China. We then compared TRMM/PR and rain gauge data in 0.05-degree grid cells (an approximately 5.5-km mesh). Compared with the rain gauge observations, the PR systematically underestimated precipitation by 28-38% in summer (July-September).Significant correlation between TRMM/PR and RG data was found for all months, but the correlation is relatively low in winter. The relationship is investigated for different elevation zones, and the PR was found to underestimate RG data in most zones, except for certain zones in February (250-1000m), March (0-1000m), and April (0-1500m). Monthly PR climatology was adjusted on the basis of monthly regressions between the two sets of data and depicted.

  9. Local spectral anisotropy is a valid cue for figure–ground organization in natural scenes

    OpenAIRE

    Ramenahalli, Sudarshan; Mihalas, Stefan; Niebur, Ernst

    2014-01-01

    An important step in the process of understanding visual scenes is its organization in different perceptual objects which requires figure-ground segregation. The determination which side of an occlusion boundary is figure (closer to the observer) and which is ground (further away from the observer) is made through a combination of global cues, like convexity, and local cues, like T-junctions. We here focus on a novel set of local cues in the intensity patterns along occlusion boundaries which...

  10. A Ground-based validation of GOSAT-observed atmospheric CO2 in Inner-Mongolian grasslands

    International Nuclear Information System (INIS)

    Qin, X; Lei, L; Zeng, Z; Kawasaki, M; Oohasi, M

    2014-01-01

    Atmospheric carbon dioxide (CO 2 ) is a long-lived greenhouse gas that significantly contributes to global warming. Long-term and continuous measurements of atmospheric CO 2 to investigate its global distribution and concentration variations are important for accurately understanding its potential climatic effects. Satellite measurements from space can offer atmospheric CO 2 data for climate change research. For that, ground-based measurements are required for validation and improving the precision of satellite-measured CO 2 . We implemented observation experiment of CO 2 column densities in the Xilinguole grasslands in Inner Mongolia, China, using a ground-based measurement system, which mainly consists of an optical spectrum analyzer (OSA), a sun tracker and a notebook controller. Measurements from our ground-based system were analyzed and compared with those from the Greenhouse gas Observation SATellite (GOSAT). The ground-based measurements had an average value of 389.46 ppm, which was 2.4 ppm larger than from GOSAT, with a standard deviation of 3.4 ppm. This result is slightly larger than the difference between GOSAT and the Total Carbon Column Observing Network (TCCON). This study highlights the usefulness of the ground-based OSA measurement system for analyzing atmospheric CO 2 column densities, which is expected to supplement the current TCCON network

  11. Complexity in the validation of ground-water travel time in fractured flow and transport systems

    International Nuclear Information System (INIS)

    Davies, P.B; Hunter, R.L.; Pickens, J.F.

    1991-02-01

    Ground-water travel time is a widely used concept in site assessment for radioactive waste disposal. While ground-water travel time was originally conceived to provide a simple performance measure for evaluating repository sites, its definition in many flow and transport environments is ambiguous. The US Department of Energy siting guidelines (10 CFR 960) define ground-water travel time as the time required for a unit volume of water to travel between two locations, calculated by dividing travel-path length by the quotient of average ground-water flux and effective porosity. Defining a meaningful effective porosity in a fractured porous material is a significant problem. Although the Waste Isolation Pilot Plant (WIPP) is not subject to specific requirements for ground-water travel time, travel times have been computed under a variety of model assumptions. Recently completed model analyses for WIPP illustrate the difficulties in applying a ground-water travel-time performance measure to flow and transport in fractured, fully saturated flow systems. 12 refs., 4 figs

  12. Complexity in the validation of ground-water travel time in fractured flow and transport systems

    International Nuclear Information System (INIS)

    Davies, P.B.; Hunter, R.L.; Pickens, J.F.

    1991-01-01

    Ground-water travel time is a widely used concept in site assessment for radioactive waste disposal. While ground-water travel time was originally conceived to provide a simple performance measure for evaluating repository sites, its definition in many flow and transport environments is ambiguous. The U.S. Department of Energy siting guidelines (10 CFR 960) define ground-water travel time as the time required for a unit volume of water to travel between two locations, calculated by dividing travel-path length by the quotient of average ground-water flux and effective porosity. Defining a meaningful effective porosity in a fractured porous material is a significant problem. Although the Waste Isolation Pilot Plant (WIPP) is not subject to specific requirements for ground-water travel time, travel times have been computed under a variety of model assumptions. Recently completed model analyses for WIPP illustrate the difficulties in applying a ground-water travel-time performance measure to flow and transport in fractured, fully saturated flow systems. Computer code used: SWIFT II (flow and transport code). 4 figs., 12 refs

  13. Validation of new CFD release by Ground-Coupled Heat Transfer Test Cases

    Directory of Open Access Journals (Sweden)

    Sehnalek Stanislav

    2017-01-01

    Full Text Available In this article is presented validation of ANSYS Fluent with IEA BESTEST Task 34. Article stars with outlook to the topic, afterward are described steady-state cases used for validation. Thereafter is mentioned implementation of these cases on CFD. Article is concluded with presentation of the simulated results with a comparison of those from already validated simulation software by IEA. These validation shows high correlation with an older version of tested ANSYS as well as with other main software. The paper ends by discussion with an outline of future research.

  14. Local spectral anisotropy is a valid cue for figure-ground organization in natural scenes.

    Science.gov (United States)

    Ramenahalli, Sudarshan; Mihalas, Stefan; Niebur, Ernst

    2014-10-01

    An important step in the process of understanding visual scenes is its organization in different perceptual objects which requires figure-ground segregation. The determination of which side of an occlusion boundary is figure (closer to the observer) and which is ground (further away from the observer) is made through a combination of global cues, like convexity, and local cues, like T-junctions. We here focus on a novel set of local cues in the intensity patterns along occlusion boundaries which we show to differ between figure and ground. Image patches are extracted from natural scenes from two standard image sets along the boundaries of objects and spectral analysis is performed separately on figure and ground. On the figure side, oriented spectral power orthogonal to the occlusion boundary significantly exceeds that parallel to the boundary. This "spectral anisotropy" is present only for higher spatial frequencies, and absent on the ground side. The difference in spectral anisotropy between the two sides of an occlusion border predicts which is the figure and which the background with an accuracy exceeding 60% per patch. Spectral anisotropy of close-by locations along the boundary co-varies but is largely independent over larger distances which allows to combine results from different image regions. Given the low cost of this strictly local computation, we propose that spectral anisotropy along occlusion boundaries is a valuable cue for figure-ground segregation. A data base of images and extracted patches labeled for figure and ground is made freely available. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Validation of CALIPSO space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece

    Directory of Open Access Journals (Sweden)

    R. E. Mamouri

    2009-09-01

    Full Text Available We present initial aerosol validation results of the space-borne lidar CALIOP -onboard the CALIPSO satellite- Level 1 attenuated backscatter coefficient profiles, using coincident observations performed with a ground-based lidar in Athens, Greece (37.9° N, 23.6° E. A multi-wavelength ground-based backscatter/Raman lidar system is operating since 2000 at the National Technical University of Athens (NTUA in the framework of the European Aerosol Research LIdar NETwork (EARLINET, the first lidar network for tropospheric aerosol studies on a continental scale. Since July 2006, a total of 40 coincidental aerosol ground-based lidar measurements were performed over Athens during CALIPSO overpasses. The ground-based measurements were performed each time CALIPSO overpasses the station location within a maximum distance of 100 km. The duration of the ground–based lidar measurements was approximately two hours, centred on the satellite overpass time. From the analysis of the ground-based/satellite correlative lidar measurements, a mean bias of the order of 22% for daytime measurements and of 8% for nighttime measurements with respect to the CALIPSO profiles was found for altitudes between 3 and 10 km. The mean bias becomes much larger for altitudes lower that 3 km (of the order of 60% which is attributed to the increase of aerosol horizontal inhomogeneity within the Planetary Boundary Layer, resulting to the observation of possibly different air masses by the two instruments. In cases of aerosol layers underlying Cirrus clouds, comparison results for aerosol tropospheric profiles become worse. This is attributed to the significant multiple scattering effects in Cirrus clouds experienced by CALIPSO which result in an attenuation which is less than that measured by the ground-based lidar.

  16. Validation of GOME (ERS-2) NO2 vertical column data with ground-based measurements at Issyk-Kul (Kyrgyzstan)

    Science.gov (United States)

    Ionov, D.; Sinyakov, V.; Semenov, V.

    Starting from 1995 the global monitoring of atmospheric nitrogen dioxide is carried out by the measurements of nadir-viewing GOME spectrometer aboard ERS-2 satellite. Continuous validation of that data by means of comparisons with well-controlled ground-based measurements is important to ensure the quality of GOME data products and improve related retrieval algorithms. At the station of Issyk-Kul (Kyrgyzstan) the ground-based spectroscopic observations of NO2 vertical column have been started since 1983. The station is located on the northern shore of Issyk-Kul lake, 1650 meters above the sea level (42.6 N, 77.0 E). The site is equipped with grating spectrometer for the twilight measurements of zenith-scattered solar radiation in the visible range, and applies the DOAS technique to retrieve NO2 vertical column. It is included in the list of NDSC stations as a complementary one. The present study is focused on validation of GOME NO2 vertical column data, based on 8-year comparison with correlative ground-based measurements at Issyk-Kul station in 1996-2003. Within the investigation, an agreement of both individual and monthly averaged GOME measurements with corresponding twilight ground-based observations is examined. Such agreement is analyzed with respect to different conditions (season, sun elevation), temporal/spatial criteria choice (actual overpass location, correction for diurnal variation) and data processing (GDP version 2.7, 3.0). In addition, NO2 vertical columns were integrated from simultaneous stratospheric profile measurements by NASA HALOE and SAGE-II/III satellite instruments and introduced to explain the differences with ground-based observations. In particular cases, NO2 vertical profiles retrieved from the twilight ground-based measurements at Issuk-Kul were also included into comparison. Overall, summertime GOME NO2 vertical columns were found to be systematicaly lower than ground-based data. This work was supported by International Association

  17. The accuracy of remotely-sensed IWC: An assessment from MLS, TRMM and CloudSat statistics

    Science.gov (United States)

    Wu, D. L.; Heymsfield, A. J.

    2006-12-01

    Understanding climate change requires accurate global cloud ice water content (IWC) measurements. Satellite remote sensing has been the major tool to provide such global observations, but the accuracy of deduced IWC depends on knowledge of cloud microphysics learned from in-situ samples. Because only limited number and type of ice clouds have been measured by in-situ sensors, the knowledge about cloud microphysics is incomplete, and the IWC accuracy from remote sensing can vary from 30% to 200% from case to case. Recent observations from MLS, TRMM and CloudSat allow us to evaluate consistency and accuracy of IWCs deduced from passive and active satellite techniques. In this study we conduct statistical analyses on the tropical and subtropical IWCs observed by MLS, TRMM and CloudSat. The probability density functions (PDFs) of IWC are found to depend on the volume size of averaging, and therefore data need to be averaged into the same volume in order for fair comparisons. Showing measurement noise, bias and sensitivity, the PDF is a better characterization than an average for evaluating IWC accuracy because an averaged IWC depends on cloud-detection threshold that can vary from sensor to sensor. Different thresholds will not only change the average value but also change cloud fraction and occurrence frequency. Our study shows that MLS and TRMM IWCs, despite large differences in sensitivity with little overlap, can still be compared under PDF. The two statistics are generally consistent within 50% at ~13 km, obeying an approximate lognormal distribution as suggested by some ground-based radar observations. MLS has sensitivity to IWC of 1-100 mg/m3 whereas TRMM can improve its sensitivity to IWC as low as 70 mg/m3 if the radar data are averaged properly for the equivalent volume of MLS samples. The proper statistical averaging requires full characteristics of IWC noise, which are not available for products normally derived from radar reflectivity, and therefore we

  18. Estimating and validating ground-based timber harvesting production through computer simulation

    Science.gov (United States)

    Jingxin Wang; Chris B. LeDoux

    2003-01-01

    Estimating ground-based timber harvesting systems production with an object oriented methodology was investigated. The estimation model developed generates stands of trees, simulates chain saw, drive-to-tree feller-buncher, swing-to-tree single-grip harvester felling, and grapple skidder and forwarder extraction activities, and analyzes costs and productivity. It also...

  19. A calibration system for measuring 3D ground truth for validation and error analysis of robot vision algorithms

    Science.gov (United States)

    Stolkin, R.; Greig, A.; Gilby, J.

    2006-10-01

    An important task in robot vision is that of determining the position, orientation and trajectory of a moving camera relative to an observed object or scene. Many such visual tracking algorithms have been proposed in the computer vision, artificial intelligence and robotics literature over the past 30 years. However, it is seldom possible to explicitly measure the accuracy of these algorithms, since the ground-truth camera positions and orientations at each frame in a video sequence are not available for comparison with the outputs of the proposed vision systems. A method is presented for generating real visual test data with complete underlying ground truth. The method enables the production of long video sequences, filmed along complicated six-degree-of-freedom trajectories, featuring a variety of objects and scenes, for which complete ground-truth data are known including the camera position and orientation at every image frame, intrinsic camera calibration data, a lens distortion model and models of the viewed objects. This work encounters a fundamental measurement problem—how to evaluate the accuracy of measured ground truth data, which is itself intended for validation of other estimated data. Several approaches for reasoning about these accuracies are described.

  20. Impact on TRMM Products of Conversion to Linux

    Science.gov (United States)

    Stocker, Erich Franz; Kwiatkowski, John

    2008-01-01

    In June 2008, TRMM data processing will be assumed by the Precipitation Processing System (PPS). This change will also mean a change in the hardware production environment from an SGI 32 bit IRIX processing environment to a Linux (Beowulf) 64 bit processing environment. This change of platform and operating system addressing (32 to 64) has some influence on data values in the TRMM data products. This paper will describe the transition architecture and scheduling. It will also provide an analysis of what the nature of the product differences will be. It will demonstrate that the differences are not scientifically significant and are generally not visible. However, they are not always identical with those which the SGI would produce.

  1. Climate and Lightning: An updated TRMM-LIS Analysis

    Science.gov (United States)

    Petersen, Walter A.; Buechler, D. E.

    2009-01-01

    The TRMM Lightning Imaging Sensor (LIS) has sampled global tropical and sub-tropical lightning flash densities for approximately 11 years. These data were originally processed and results presented by the authors in the 3rd AMS MALD Conference held in 2007 using both pre and post TRMM-boost lightning data. These data were normalized for the orbit boost by scaling the pre-boost data by a fixed constant based on the different swath areas for the pre and post-boost years (post-boost after 2001). Inevitably, one must question this simple approach to accounting for the orbit boost when sampling such a noisy quantity. Hence we are in the process of reprocessing the entire 11-year TRMM LIS dataset to reduce the orbit swath of the post-boost era to that of the pre-boost in order to eliminate sampling bias in the dataset. Study of the diurnal/seasonal/annual sampling suggests that those biases are already minimal and should not contribute to error in examination of annual trends. We will present new analysis of the 11-year annual trends in total lightning flash density for all latitudinal belts and select regions/regimes of the tropics as related to conventional climate signals and precipitation contents in the same period. The results should enable us to address, in some fashion, the sensitivity of the lightning flash density to subtle changes in climate.

  2. Dynamic Hydrological Modeling in Drylands with TRMM Based Rainfall

    Directory of Open Access Journals (Sweden)

    Elena Tarnavsky

    2013-12-01

    Full Text Available This paper introduces and evaluates DryMOD, a dynamic water balance model of the key hydrological process in drylands that is based on free, public-domain datasets. The rainfall model of DryMOD makes optimal use of spatially disaggregated Tropical Rainfall Measuring Mission (TRMM datasets to simulate hourly rainfall intensities at a spatial resolution of 1-km. Regional-scale applications of the model in seasonal catchments in Tunisia and Senegal characterize runoff and soil moisture distribution and dynamics in response to varying rainfall data inputs and soil properties. The results highlight the need for hourly-based rainfall simulation and for correcting TRMM 3B42 rainfall intensities for the fractional cover of rainfall (FCR. Without FCR correction and disaggregation to 1 km, TRMM 3B42 based rainfall intensities are too low to generate surface runoff and to induce substantial changes to soil moisture storage. The outcomes from the sensitivity analysis show that topsoil porosity is the most important soil property for simulation of runoff and soil moisture. Thus, we demonstrate the benefit of hydrological investigations at a scale, for which reliable information on soil profile characteristics exists and which is sufficiently fine to account for the heterogeneities of these. Where such information is available, application of DryMOD can assist in the spatial and temporal planning of water harvesting according to runoff-generating areas and the runoff ratio, as well as in the optimization of agricultural activities based on realistic representation of soil moisture conditions.

  3. Delineation of Rain Areas with TRMM Microwave Observations Based on PNN

    Directory of Open Access Journals (Sweden)

    Shiguang Xu

    2014-12-01

    Full Text Available False alarm and misdetected precipitation are prominent drawbacks of high-resolution satellite precipitation datasets, and they usually lead to serious uncertainty in hydrological and meteorological applications. In order to provide accurate rain area delineation for retrieving high-resolution precipitation datasets using satellite microwave observations, a probabilistic neural network (PNN-based rain area delineation method was developed with rain gauge observations over the Yangtze River Basin and three parameters, including polarization corrected temperature at 85 GHz, difference of brightness temperature at vertically polarized 37 and 19 GHz channels (termed as TB37V and TB19V, respectively and the sum of TB37V and TB19V derived from the observations of the Tropical Rainfall Measuring Mission (TRMM Microwave Imager (TMI. The PNN method was validated with independent samples, and the performance of this method was compared with dynamic cluster K-means method, TRMM Microwave Imager (TMI Level 2 Hydrometeor Profile Product and the threshold method used in the Scatter Index (SI, a widely used microwave-based precipitation retrieval algorithm. Independent validation indicated that the PNN method can provide more reasonable rain areas than the other three methods. Furthermore, the precipitation volumes estimated by the SI algorithm were significantly improved by substituting the PNN method for the threshold method in the traditional SI algorithm. This study suggests that PNN is a promising way to obtain reasonable rain areas with satellite observations, and the development of an accurate rain area delineation method deserves more attention for improving the accuracy of satellite precipitation datasets.

  4. Concurrent Validity of Physiological Cost Index in Walking over Ground and during Robotic Training in Subacute Stroke Patients

    Directory of Open Access Journals (Sweden)

    Anna Sofia Delussu

    2014-01-01

    Full Text Available Physiological Cost Index (PCI has been proposed to assess gait demand. The purpose of the study was to establish whether PCI is a valid indicator in subacute stroke patients of energy cost of walking in different walking conditions, that is, over ground and on the Gait Trainer (GT with body weight support (BWS. The study tested if correlations exist between PCI and ECW, indicating validity of the measure and, by implication, validity of PCI. Six patients (patient group (PG with subacute stroke and 6 healthy age- and size-matched subjects as control group (CG performed, in a random sequence in different days, walking tests overground and on the GT with 0, 30, and 50% BWS. There was a good to excellent correlation between PCI and ECW in the observed walking conditions: in PG Pearson correlation was 0.919 (p<0.001; in CG Pearson correlation was 0.852 (p<0.001. In conclusion, the high significant correlations between PCI and ECW, in all the observed walking conditions, suggest that PCI is a valid outcome measure in subacute stroke patients.

  5. Concurrent validity of Physiological Cost Index in walking over ground and during robotic training in subacute stroke patients.

    Science.gov (United States)

    Delussu, Anna Sofia; Morone, Giovanni; Iosa, Marco; Bragoni, Maura; Paolucci, Stefano; Traballesi, Marco

    2014-01-01

    Physiological Cost Index (PCI) has been proposed to assess gait demand. The purpose of the study was to establish whether PCI is a valid indicator in subacute stroke patients of energy cost of walking in different walking conditions, that is, over ground and on the Gait Trainer (GT) with body weight support (BWS). The study tested if correlations exist between PCI and ECW, indicating validity of the measure and, by implication, validity of PCI. Six patients (patient group (PG)) with subacute stroke and 6 healthy age- and size-matched subjects as control group (CG) performed, in a random sequence in different days, walking tests overground and on the GT with 0, 30, and 50% BWS. There was a good to excellent correlation between PCI and ECW in the observed walking conditions: in PG Pearson correlation was 0.919 (p < 0.001); in CG Pearson correlation was 0.852 (p < 0.001). In conclusion, the high significant correlations between PCI and ECW, in all the observed walking conditions, suggest that PCI is a valid outcome measure in subacute stroke patients.

  6. Improving the Statistical Modeling of the TRMM Extreme Precipitation Monitoring System

    Science.gov (United States)

    Demirdjian, L.; Zhou, Y.; Huffman, G. J.

    2016-12-01

    This project improves upon an existing extreme precipitation monitoring system based on the Tropical Rainfall Measuring Mission (TRMM) daily product (3B42) using new statistical models. The proposed system utilizes a regional modeling approach, where data from similar grid locations are pooled to increase the quality and stability of the resulting model parameter estimates to compensate for the short data record. The regional frequency analysis is divided into two stages. In the first stage, the region defined by the TRMM measurements is partitioned into approximately 27,000 non-overlapping clusters using a recursive k-means clustering scheme. In the second stage, a statistical model is used to characterize the extreme precipitation events occurring in each cluster. Instead of utilizing the block-maxima approach used in the existing system, where annual maxima are fit to the Generalized Extreme Value (GEV) probability distribution at each cluster separately, the present work adopts the peak-over-threshold (POT) method of classifying points as extreme if they exceed a pre-specified threshold. Theoretical considerations motivate the use of the Generalized-Pareto (GP) distribution for fitting threshold exceedances. The fitted parameters can be used to construct simple and intuitive average recurrence interval (ARI) maps which reveal how rare a particular precipitation event is given its spatial location. The new methodology eliminates much of the random noise that was produced by the existing models due to a short data record, producing more reasonable ARI maps when compared with NOAA's long-term Climate Prediction Center (CPC) ground based observations. The resulting ARI maps can be useful for disaster preparation, warning, and management, as well as increased public awareness of the severity of precipitation events. Furthermore, the proposed methodology can be applied to various other extreme climate records.

  7. An Experimental Facility to Validate Ground Source Heat Pump Optimisation Models for the Australian Climate

    Directory of Open Access Journals (Sweden)

    Yuanshen Lu

    2017-01-01

    Full Text Available Ground source heat pumps (GSHPs are one of the most widespread forms of geothermal energy technology. They utilise the near-constant temperature of the ground below the frost line to achieve energy-efficiencies two or three times that of conventional air-conditioners, consequently allowing a significant offset in electricity demand for space heating and cooling. Relatively mature GSHP markets are established in Europe and North America. GSHP implementation in Australia, however, is limited, due to high capital price, uncertainties regarding optimum designs for the Australian climate, and limited consumer confidence in the technology. Existing GSHP design standards developed in the Northern Hemisphere are likely to lead to suboptimal performance in Australia where demand might be much more cooling-dominated. There is an urgent need to develop Australia’s own GSHP system optimisation principles on top of the industry standards to provide confidence to bring the GSHP market out of its infancy. To assist in this, the Queensland Geothermal Energy Centre of Excellence (QGECE has commissioned a fully instrumented GSHP experimental facility in Gatton, Australia, as a publically-accessible demonstration of the technology and a platform for systematic studies of GSHPs, including optimisation of design and operations. This paper presents a brief review on current GSHP use in Australia, the technical details of the Gatton GSHP facility, and an analysis on the observed cooling performance of this facility to date.

  8. Use of a tibial accelerometer to measure ground reaction force in running: A reliability and validity comparison with force plates.

    Science.gov (United States)

    Raper, Damian P; Witchalls, Jeremy; Philips, Elissa J; Knight, Emma; Drew, Michael K; Waddington, Gordon

    2018-01-01

    The use of microsensor technologies to conduct research and implement interventions in sports and exercise medicine has increased recently. The objective of this paper was to determine the validity and reliability of the ViPerform as a measure of load compared to vertical ground reaction force (GRF) as measured by force plates. Absolute reliability assessment, with concurrent validity. 10 professional triathletes ran 10 trials over force plates with the ViPerform mounted on the mid portion of the medial tibia. Calculated vertical ground reaction force data from the ViPerform was matched to the same stride on the force plate. Bland-Altman (BA) plot of comparative measure of agreement was used to assess the relationship between the calculated load from the accelerometer and the force plates. Reliability was calculated by intra-class correlation coefficients (ICC) with 95% confidence intervals. BA plot indicates minimal agreement between the measures derived from the force plate and ViPerform, with variation at an individual participant plot level. Reliability was excellent (ICC=0.877; 95% CI=0.825-0.917) in calculating the same vertical GRF in a repeated trial. Standard error of measure (SEM) equalled 99.83 units (95% CI=82.10-119.09), which, in turn, gave a minimum detectable change (MDC) value of 276.72 units (95% CI=227.32-330.07). The ViPerform does not calculate absolute values of vertical GRF similar to those measured by a force plate. It does provide a valid and reliable calculation of an athlete's lower limb load at constant velocity. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. Modelling floor heating systems using a validated two-dimensional ground coupled numerical model

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Kragh, Jesper; Roots, Peter

    2005-01-01

    This paper presents a two-dimensional simulation model of the heat losses and tempera-tures in a slab on grade floor with floor heating which is able to dynamically model the floor heating system. The aim of this work is to be able to model, in detail, the influence from the floor construction...... the floor. This model can be used to design energy efficient houses with floor heating focusing on the heat loss through the floor construction and foundation. It is found that it is impor-tant to model the dynamics of the floor heating system to find the correct heat loss to the ground, and further......, that the foundation has a large impact on the energy consumption of buildings heated by floor heating. Consequently, this detail should be in focus when designing houses with floor heating....

  10. Combined TRMM Microwave Imager (TMI) and Precipitation Radar (PR) Gridded Orbital Data Set (G2A12) V6

    Data.gov (United States)

    National Aeronautics and Space Administration — The TRMM Microwave Imager (TMI) Gridded Orbital rainfall data, a special product derived from the TRMM standard product, TMI rain profile (2A-12), and mapped to a...

  11. Combined TRMM Microwave Imager (TMI) and Precipitation Radar (PR) Gridded Orbital Data Set (G2B31) V6

    Data.gov (United States)

    National Aeronautics and Space Administration — Combined TRMM Microwave Imager (TMI) and Precipitation Radar (PR) gridded orbital rainfall data, is a special product derived from the TRMM standard product (2B-31)...

  12. Cloud-to-Ground Lightning Estimates Derived from SSMI Microwave Remote Sensing and NLDN

    Science.gov (United States)

    Winesett, Thomas; Magi, Brian; Cecil, Daniel

    2015-01-01

    Lightning observations are collected using ground-based and satellite-based sensors. The National Lightning Detection Network (NLDN) in the United States uses multiple ground sensors to triangulate the electromagnetic signals created when lightning strikes the Earth's surface. Satellite-based lightning observations have been made from 1998 to present using the Lightning Imaging Sensor (LIS) on the NASA Tropical Rainfall Measuring Mission (TRMM) satellite, and from 1995 to 2000 using the Optical Transient Detector (OTD) on the Microlab-1 satellite. Both LIS and OTD are staring imagers that detect lightning as momentary changes in an optical scene. Passive microwave remote sensing (85 and 37 GHz brightness temperatures) from the TRMM Microwave Imager (TMI) has also been used to quantify characteristics of thunderstorms related to lightning. Each lightning detection system has fundamental limitations. TRMM satellite coverage is limited to the tropics and subtropics between 38 deg N and 38 deg S, so lightning at the higher latitudes of the northern and southern hemispheres is not observed. The detection efficiency of NLDN sensors exceeds 95%, but the sensors are only located in the USA. Even if data from other ground-based lightning sensors (World Wide Lightning Location Network, the European Cooperation for Lightning Detection, and Canadian Lightning Detection Network) were combined with TRMM and NLDN, there would be enormous spatial gaps in present-day coverage of lightning. In addition, a globally-complete time history of observed lightning activity is currently not available either, with network coverage and detection efficiencies varying through the years. Previous research using the TRMM LIS and Microwave Imager (TMI) showed that there is a statistically significant correlation between lightning flash rates and passive microwave brightness temperatures. The physical basis for this correlation emerges because lightning in a thunderstorm occurs where ice is first

  13. Data Visualization and Analysis Tools for the Global Precipitation Measurement (GPM) Validation Network

    Science.gov (United States)

    Morris, Kenneth R.; Schwaller, Mathew

    2010-01-01

    The Validation Network (VN) prototype for the Global Precipitation Measurement (GPM) Mission compares data from the Tropical Rainfall Measuring Mission (TRMM) satellite Precipitation Radar (PR) to similar measurements from U.S. and international operational weather radars. This prototype is a major component of the GPM Ground Validation System (GVS). The VN provides a means for the precipitation measurement community to identify and resolve significant discrepancies between the ground radar (GR) observations and similar satellite observations. The VN prototype is based on research results and computer code described by Anagnostou et al. (2001), Bolen and Chandrasekar (2000), and Liao et al. (2001), and has previously been described by Morris, et al. (2007). Morris and Schwaller (2009) describe the PR-GR volume-matching algorithm used to create the VN match-up data set used for the comparisons. This paper describes software tools that have been developed for visualization and statistical analysis of the original and volume matched PR and GR data.

  14. Daily rainfall statistics of TRMM and CMORPH: A case for trans ...

    Indian Academy of Sciences (India)

    6 product ... TRMM fares better in the prediction of probability of occurrence of high-intensity ... TRMM precipitation estimates can be used for flood-related studies only after bias adjustment for the topography. 1. ... daily time step for climate change and extreme ... spatial distributions of rain gauges and the consis- tency in the ...

  15. TRMM Visible and Infrared Scanner Calibrated Radiances L1B 1.5 hours V7 (TRMM_1B01) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — This TRMM Visible and Infrared Scanner (VIRS) Level 1B Calibrated Radiance Product (1B01) contains calibrated radiances and auxiliary geolocation information from...

  16. GHRSST Level 2P Global Subskin Sea Surface Temperature from TRMM Microwave Imager (TMI) onboard Tropical Rainfall Measurement Mission (TRMM) satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GDS2 Version -The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to the Special Sensor...

  17. A spike sorting toolbox for up to thousands of electrodes validated with ground truth recordings in vitro and in vivo

    Science.gov (United States)

    Lefebvre, Baptiste; Deny, Stéphane; Gardella, Christophe; Stimberg, Marcel; Jetter, Florian; Zeck, Guenther; Picaud, Serge; Duebel, Jens

    2018-01-01

    In recent years, multielectrode arrays and large silicon probes have been developed to record simultaneously between hundreds and thousands of electrodes packed with a high density. However, they require novel methods to extract the spiking activity of large ensembles of neurons. Here, we developed a new toolbox to sort spikes from these large-scale extracellular data. To validate our method, we performed simultaneous extracellular and loose patch recordings in rodents to obtain ‘ground truth’ data, where the solution to this sorting problem is known for one cell. The performance of our algorithm was always close to the best expected performance, over a broad range of signal-to-noise ratios, in vitro and in vivo. The algorithm is entirely parallelized and has been successfully tested on recordings with up to 4225 electrodes. Our toolbox thus offers a generic solution to sort accurately spikes for up to thousands of electrodes. PMID:29557782

  18. The 183-WSL Fast Rain Rate Retrieval Algorithm. Part II: Validation Using Ground Radar Measurements

    Science.gov (United States)

    Laviola, Sante; Levizzani, Vincenzo

    2014-01-01

    The Water vapour Strong Lines at 183 GHz (183-WSL) algorithm is a method for the retrieval of rain rates and precipitation type classification (convectivestratiform), that makes use of the water vapor absorption lines centered at 183.31 GHz of the Advanced Microwave Sounding Unit module B (AMSU-B) and of the Microwave Humidity Sounder (MHS) flying on NOAA-15-18 and NOAA-19Metop-A satellite series, respectively. The characteristics of this algorithm were described in Part I of this paper together with comparisons against analogous precipitation products. The focus of Part II is the analysis of the performance of the 183-WSL technique based on surface radar measurements. The ground truth dataset consists of 2.5 years of rainfall intensity fields from the NIMROD European radar network which covers North-Western Europe. The investigation of the 183-WSL retrieval performance is based on a twofold approach: 1) the dichotomous statistic is used to evaluate the capabilities of the method to identify rain and no-rain clouds; 2) the accuracy statistic is applied to quantify the errors in the estimation of rain rates.The results reveal that the 183-WSL technique shows good skills in the detection of rainno-rain areas and in the quantification of rain rate intensities. The categorical analysis shows annual values of the POD, FAR and HK indices varying in the range 0.80-0.82, 0.330.36 and 0.39-0.46, respectively. The RMSE value is 2.8 millimeters per hour for the whole period despite an overestimation in the retrieved rain rates. Of note is the distribution of the 183-WSL monthly mean rain rate with respect to radar: the seasonal fluctuations of the average rainfalls measured by radar are reproduced by the 183-WSL. However, the retrieval method appears to suffer for the winter seasonal conditions especially when the soil is partially frozen and the surface emissivity drastically changes. This fact is verified observing the discrepancy distribution diagrams where2the 183-WSL

  19. Assessment of Precipitation Data Generated by GPM and TRMM Satellites

    Directory of Open Access Journals (Sweden)

    Luísa Carolina Silva Lelis

    Full Text Available Abstract This study aimed to verify the performance of the information produced by the GPM (Global Precipitation Measurement mission and TRMM (Tropical Rainfall Measurement Mission on the eastern region of São Paulo state, based on a comparison of rainfall data from DAEE (Department of Waters and Electric Energy of São Paulo State. The comparison was done by comparing spatially aggregated information from both sources. In order to analyze the results, we measured: (1 Relative Difference, (2 BIAS and (3 Root Mean Square Error (RMSE. It was found that the relative differences were in the range of -20% to 20% for both missions. Analyzing the BIAS for both satellites it was observed that 68% of the measurements were overestimated. The highest agreement was obtained for the mesoregion of Campinas and the lowest for Araraquara. In the TRMM, the lowest RMSE values were found in the Araraquara mesoregion and the highest in Piracicaba. In the GPM the closest measured values were observed in the Piracicaba mesoregion, while the most distant values were identified in Araraquara. All the analyzes of this work demonstrated similarity between the errors generated by both satellites. New comparison studies are needed to better understand the products.

  20. Investigations and model validation of a ground-coupled heat pump for the combination with solar collectors

    International Nuclear Information System (INIS)

    Pärisch, Peter; Mercker, Oliver; Warmuth, Jonas; Tepe, Rainer; Bertram, Erik; Rockendorf, Gunter

    2014-01-01

    The operation of ground-coupled heat pumps in combination with solar collectors requires comprising knowledge of the heat pump behavior under non-standard conditions. Especially higher temperatures and varying flow rates in comparison to non-solar systems have to be taken into account. Furthermore the dynamic behavior becomes more important. At ISFH, steady-state and dynamic tests of a typical brine/water heat pump have been carried out in order to analyze its behavior under varying operation conditions. It has been shown, that rising source temperatures do only significantly increase the coefficient of performance (COP), if the source temperature is below 10–20 °C, depending on the temperature lift between source and sink. The flow rate, which has been varied both on the source and the sink side, only showed a minor influence on the exergetic efficiency. Additionally a heat pump model for TRNSYS has been validated under non-standard conditions. The results are assessed by means of TRNSYS simulations. -- Highlights: • A brine/water heat pump was tested under steady-state and transient conditions. • Decline of exergetic efficiency at low temperature lifts, no influence of flow rate. • Expected improvement by reciprocating compressor and electronic expansion valve for solar assisted heat source. • A TRNSYS black box model (YUM) was validated and a flow rate correction was proven • The start-up behavior is a very important parameter for system simulations

  1. The SCEC Broadband Platform: A Collaborative Open-Source Software Package for Strong Ground Motion Simulation and Validation

    Science.gov (United States)

    Silva, F.; Maechling, P. J.; Goulet, C. A.; Somerville, P.; Jordan, T. H.

    2014-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving geoscientists, earthquake engineers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform (BBP) is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms for a well-observed historical earthquake. Then, the BBP calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results

  2. Three-dimensional fusion of spaceborne and ground radar reflectivity data using a neural network-based approach

    Science.gov (United States)

    Kou, Leilei; Wang, Zhuihui; Xu, Fen

    2018-03-01

    The spaceborne precipitation radar onboard the Tropical Rainfall Measuring Mission satellite (TRMM PR) can provide good measurement of the vertical structure of reflectivity, while ground radar (GR) has a relatively high horizontal resolution and greater sensitivity. Fusion of TRMM PR and GR reflectivity data may maximize the advantages from both instruments. In this paper, TRMM PR and GR reflectivity data are fused using a neural network (NN)-based approach. The main steps included are: quality control of TRMM PR and GR reflectivity data; spatiotemporal matchup; GR calibration bias correction; conversion of TRMM PR data from Ku to S band; fusion of TRMM PR and GR reflectivity data with an NN method; interpolation of reflectivity data that are below PR's sensitivity; blind areas compensation with a distance weighting-based merging approach; combination of three types of data: data with the NN method, data below PR's sensitivity and data within compensated blind areas. During the NN fusion step, the TRMM PR data are taken as targets of the training NNs, and gridded GR data after horizontal downsampling at different heights are used as the input. The trained NNs are then used to obtain 3D high-resolution reflectivity from the original GR gridded data. After 3D fusion of the TRMM PR and GR reflectivity data, a more complete and finer-scale 3D radar reflectivity dataset incorporating characteristics from both the TRMM PR and GR observations can be obtained. The fused reflectivity data are evaluated based on a convective precipitation event through comparison with the high resolution TRMM PR and GR data with an interpolation algorithm.

  3. Metrology of ground-based satellite validation: co-location mismatch and smoothing issues of total ozone comparisons

    Directory of Open Access Journals (Sweden)

    T. Verhoelst

    2015-12-01

    Full Text Available Comparisons with ground-based correlative measurements constitute a key component in the validation of satellite data on atmospheric composition. The error budget of these comparisons contains not only the measurement errors but also several terms related to differences in sampling and smoothing of the inhomogeneous and variable atmospheric field. A versatile system for Observing System Simulation Experiments (OSSEs, named OSSSMOSE, is used here to quantify these terms. Based on the application of pragmatic observation operators onto high-resolution atmospheric fields, it allows a simulation of each individual measurement, and consequently, also of the differences to be expected from spatial and temporal field variations between both measurements making up a comparison pair. As a topical case study, the system is used to evaluate the error budget of total ozone column (TOC comparisons between GOME-type direct fitting (GODFITv3 satellite retrievals from GOME/ERS2, SCIAMACHY/Envisat, and GOME-2/MetOp-A, and ground-based direct-sun and zenith–sky reference measurements such as those from Dobsons, Brewers, and zenith-scattered light (ZSL-DOAS instruments, respectively. In particular, the focus is placed on the GODFITv3 reprocessed GOME-2A data record vs. the ground-based instruments contributing to the Network for the Detection of Atmospheric Composition Change (NDACC. The simulations are found to reproduce the actual measurements almost to within the measurement uncertainties, confirming that the OSSE approach and its technical implementation are appropriate. This work reveals that many features of the comparison spread and median difference can be understood as due to metrological differences, even when using strict co-location criteria. In particular, sampling difference errors exceed measurement uncertainties regularly at most mid- and high-latitude stations, with values up to 10 % and more in extreme cases. Smoothing difference errors only

  4. ESTIMATING THE BENEFIT OF TRMM TROPICAL CYCLONE DATA IN SAVING LIVES

    Science.gov (United States)

    Adler, Robert F.

    2005-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is a joint NASA/JAXA research mission launched in late 1997 to improve our knowledge of tropical rainfall processes and climatology (Kummerow et ai., 2000; Adler et ai., 2003). In addition to being a highly successful research mission, its data are available in real time and operational weather agencies in the U.S. and internationally are using TRMM data and images to monitor and forecast hazardous weather (tropical cyclones, floods, etc.). For example, in 2004 TRMM data were used 669 times for determining tropical cyclone location fixes (National Research Council, 2004). TRMM flies at a relatively low altitude, 400 km, and requires orbit adjustment maneuvers to maintain altitude against the small drag of the atmosphere. There is enough fuel used for these maneuvers remaining on TRMM for the satellite to continue flying until 2011-12. However, most of the remaining fuel may be used to perform a controlled re-entry of the satellite into the Pacific Ocean. The fuel threshold for this operation will be reached in the summer of 2005, although the maneuver would actually occur in late 2006 or 2007. The full science mission would end in 2005 under the controlled re-entry option. This re-entry option is related to the estimated probability of injury (1/5,000) that might occur during an uncontrolled re-entry of the satellite. If the estimated probability of injury exceeds 1/10,000 a satellite is a candidate for a possible controlled re-entry. In the TRMM case the NASA Safety Office examined the related issues and concluded that, although TRMM exceeded the formal threshold, the use of TRMM data in the monitoring and forecasting of hazardous weather gave a public safety benefit that compensated for TRMM slightly exceeding the orbital debris threshold (Martin, 2002). This conclusion was based in part on results of an independent panel during a workshop on benefits of TRMM data in concluded that the benefit of TRMM data in saving

  5. Indonesia sea surface temperature from TRMM Microwave Imaging (TMI) sensor

    Science.gov (United States)

    Marini, Y.; Setiawan, K. T.

    2018-05-01

    We analysis the Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI) data to monitor the sea surface temperature (SST) of Indonesia waters for a decade of 2005-2014. The TMI SST data shows the seasonal and interannual SST in Indonesian waters. In general, the SST average was highest in March-May period with SST average was 29.4°C, and the lowest was in June – August period with the SST average was 28.5°C. The monthly SST average fluctuation of Indonesian waters for 10 years tends to increase. The lowest SST average of Indonesia occurred in August 2006 with the SST average was 27.6° C, while the maximum occurred in May 2014 with the monthly SST average temperature was 29.9 ° C.

  6. TRMM and Its Connection to the Global Water Cycle

    Science.gov (United States)

    Kummerow, Christian; Hong, Ye

    1999-01-01

    The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. The TRMM orbit is inclined 35' leading to good sampling in the tropics and a rapid precession to study the diurnal cycle of precipitation. The precipitation instrument complement consists of the first rain radar to be flown in space (PR), a multi-channel passive microwave sensor (TMI) and a five-channel VIS/IR (VIRS) sensor. The precipitation radar operates at a frequency of 13.6 GHz. The swath width is 220 km, with a horizontal resolution of 4 km and the vertical resolution of 250 in. The minimum detectable signal from the precipitation radar has been measured at 17 dBZ. The TMI instrument is designed similar to the SSM/I with two important changes. The 22.235 GHz water vapor absorption channel of the SSM/I was moved to 21.3 GHz in order to avoid saturation in the tropics and 10.7 GHz V&H polarized channels were added to expand the dynamic range of rainfall estimates. The resolution of the TMI varies from 4.6 km at 85 GHz to 36 km at 10.7 GHz. The visible and infrared sensor (VIRS) measures radiation at 0.63, 1.6, 3.75, 10.8 and 12.0 microns. The spatial resolution of all five VIRS channels is 2 km at nadir. In addition to the three primary rainfall instruments, TRMM will also carry a Lightning Imaging Sensor (LIS) and a Clouds and the Earth's Radiant Energy System (CERES) instrument.

  7. Environmental Characteristics of Convective Systems During TRMM-LBA

    Science.gov (United States)

    Halverson, Jeffrey B.; Rickenbach, Thomas; Roy, Biswadev; Pierce, Harold; Williams, Earle; Einaudi, Franco (Technical Monitor)

    2001-01-01

    In this paper, data collected from 51 days of continual upper atmospheric soundings and TOGA radar at ABRACOS Hill during the TRMM-LBA experiment are used to describe the mean thermodynamic and kinematic airmass properties of wet season convection over Rondonia, Brazil. Distinct multi-day easterly and westerly lower tropospheric wind regimes occurred during the campaign with contrasting airmass characteristics. Westerly wind periods featured modest CAPE (1000 J/kg), moist conditions (>90% RH) extending through 700 mb and shallow (900 mb) speed shear on the order of 10(exp -4)/s. This combination of characteristics promoted convective systems that featured a relatively large fraction of stratiform rainfall and weak convection nearly devoid of lightning. The environment is very similar to the general airmass conditions experienced during the Darwin, Australia monsoon convective regime. In contrast, easterly regime convective systems were more strongly electrified and featured larger convective rain rates and reduced stratiform rainfall fraction. These systems formed in an environment with significantly larger CAPE (1500 J/kg), drier lower and middle level humidities (in the lowest 1-2 km, thus contributing to a more explosive growth of convection. The time series of low- and mid-level averaged humidity exhibited marked variability between westerly and easterly regimes and was characterized by low frequency (i.e., multi-day to weekly) oscillations. The synoptic scale origins of these moisture fluctuations are examined, which include the effects of variable low-level airmass trajectories and upper-level, westward migrating cyclonic vortices. The results reported herein provide an environmental context for ongoing dual Doppler analyses and numerical modeling case studies of individual TRMM-LBA convective systems.

  8. Validating MODIS and Sentinel-2 NDVI Products at a Temperate Deciduous Forest Site Using Two Independent Ground-Based Sensors.

    Science.gov (United States)

    Lange, Maximilian; Dechant, Benjamin; Rebmann, Corinna; Vohland, Michael; Cuntz, Matthias; Doktor, Daniel

    2017-08-11

    Quantifying the accuracy of remote sensing products is a timely endeavor given the rapid increase in Earth observation missions. A validation site for Sentinel-2 products was hence established in central Germany. Automatic multispectral and hyperspectral sensor systems were installed in parallel with an existing eddy covariance flux tower, providing spectral information of the vegetation present at high temporal resolution. Normalized Difference Vegetation Index (NDVI) values from ground-based hyperspectral and multispectral sensors were compared with NDVI products derived from Sentinel-2A and Moderate-resolution Imaging Spectroradiometer (MODIS). The influence of different spatial and temporal resolutions was assessed. High correlations and similar phenological patterns between in situ and satellite-based NDVI time series demonstrated the reliability of satellite-based phenological metrics. Sentinel-2-derived metrics showed better agreement with in situ measurements than MODIS-derived metrics. Dynamic filtering with the best index slope extraction algorithm was nevertheless beneficial for Sentinel-2 NDVI time series despite the availability of quality information from the atmospheric correction procedure.

  9. Validation of Atmosphere/Ionosphere Signals Associated with Major Earthquakes by Multi-Instrument Space-Borne and Ground Observations

    Science.gov (United States)

    Ouzounov, Dimitar; Pulinets, Sergey; Hattori, Katsumi; Parrot, Michel; Liu, J. Y.; Yang, T. F.; Arellano-Baeza, Alonso; Kafatos, M.; Taylor, Patrick

    2012-01-01

    regions of the atmosphere and the modifications, by dc electric fields, in the ionosphere-atmosphere electric circuit. We retrospectively analyzed temporal and spatial variations of four different physical parameters (gas/radon counting rate, lineaments change, long-wave radiation transitions and ionospheric electron density/plasma variations) characterizing the state of the lithosphere/atmosphere coupling several days before the onset of the earthquakes. Validation processes consist in two phases: A. Case studies for seven recent major earthquakes: Japan (M9.0, 2011), China (M7.9, 2008), Italy (M6.3, 2009), Samoa (M7, 2009), Haiti (M7.0, 2010) and, Chile (M8.8, 2010) and B. A continuous retrospective analysis was preformed over two different regions with high seismicity- Taiwan and Japan for 2003-2009. Satellite, ground surface, and troposphere data were obtained from Terra/ASTER, Aqua/AIRS, POES and ionospheric variations from DEMETER and COSMIC-I data. Radon and GPS/TEC were obtaining from monitoring sites in Taiwan, Japan and Italy and from global ionosphere maps (GIM) respectively. Our analysis of ground and satellite data during the occurrence of 7 global earthquakes has shown the presence of anomalies in the atmosphere. Our results for Tohoku M9.0 earthquake show that on March 7th, 2011 (4 days before the main shock and 1 day before the M7.2 foreshock of March 8, 2011) a rapid increase of emitted infrared radiation was observed by the satellite data and an anomaly was developed near the epicenter. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. From March 3 to 11 a large increase in electron concentration was recorded at all four Japanese ground-based ionosondes, which returned to normal after the main earthquake. Similar approach for analyzing atmospheric and ionospheric parameters has been applied for China (M7.9, 2008), Italy (M6.3, 2009), Samoa (M7, 2009), Haiti (M7.0, 2010) and Chile (M8.8, 2010

  10. Development and Experimental Validation of a TRNSYS Dynamic Tool for Design and Energy Optimization of Ground Source Heat Pump Systems

    Directory of Open Access Journals (Sweden)

    Félix Ruiz-Calvo

    2017-09-01

    Full Text Available Ground source heat pump (GSHP systems stand for an efficient technology for renewable heating and cooling in buildings. To optimize not only the design but also the operation of the system, a complete dynamic model becomes a highly useful tool, since it allows testing any design modifications and different optimization strategies without actually implementing them at the experimental facility. Usually, this type of systems presents strong dynamic operating conditions. Therefore, the model should be able to predict not only the steady-state behavior of the system but also the short-term response. This paper presents a complete GSHP system model based on an experimental facility, located at Universitat Politècnica de València. The installation was constructed in the framework of a European collaborative project with title GeoCool. The model, developed in TRNSYS, has been validated against experimental data, and it accurately predicts both the short- and long-term behavior of the system.

  11. A TRMM/GPM retrieval of the total mean generator current for the global electric circuit

    Science.gov (United States)

    Peterson, Michael; Deierling, Wiebke; Liu, Chuntao; Mach, Douglas; Kalb, Christina

    2017-09-01

    A specialized satellite version of the passive microwave electric field retrieval algorithm (Peterson et al., 2015) is applied to observations from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) satellites to estimate the generator current for the Global Electric Circuit (GEC) and compute its temporal variability. By integrating retrieved Wilson currents from electrified clouds across the globe, we estimate a total mean current of between 1.4 kA (assuming the 7% fraction of electrified clouds producing downward currents measured by the ER-2 is representative) to 1.6 kA (assuming all electrified clouds contribute to the GEC). These current estimates come from all types of convective weather without preference, including Electrified Shower Clouds (ESCs). The diurnal distribution of the retrieved generator current is in excellent agreement with the Carnegie curve (RMS difference: 1.7%). The temporal variability of the total mean generator current ranges from 110% on semi-annual timescales (29% on an annual timescale) to 7.5% on decadal timescales with notable responses to the Madden-Julian Oscillation and El Nino Southern Oscillation. The geographical distribution of current includes significant contributions from oceanic regions in addition to the land-based tropical chimneys. The relative importance of the Americas and Asia chimneys compared to Africa is consistent with the best modern ground-based observations and further highlights the importance of ESCs for the GEC.

  12. Daily TRMM and Others Rainfall Estimate (3B42 V7 derived) V7

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Rainfall Measuring Mission (TRMM) is a joint U.S.-Japan satellite mission to monitor tropical and subtropical precipitation and to estimate its...

  13. On the Tropical Rainfall Measuring Mission (TRMM): Bringing NASA's Earth System Science Program to the Classroom

    Science.gov (United States)

    Shepherd, J. Marshall

    1998-01-01

    The Tropical Rainfall Measuring Mission is the first mission dedicated to measuring tropical and subtropical rainfall using a variety of remote sensing instrumentation, including the first spaceborne rain-measuring radar. Since the energy released when tropical rainfall occurs is a primary "fuel" supply for the weather and climate "engine"; improvements in computer models which predict future weather and climate states may depend on better measurements of global tropical rainfall and its energy. In support of the STANYS conference theme of Education and Space, this presentation focuses on one aspect of NASA's Earth Systems Science Program. We seek to present an overview of the TRMM mission. This overview will discuss the scientific motivation for TRMM, the TRMM instrument package, and recent images from tropical rainfall systems and hurricanes. The presentation also targets educational components of the TRMM mission in the areas of weather, mathematics, technology, and geography that can be used by secondary school/high school educators in the classroom.

  14. Estimation of High-Frequency Earth-Space Radio Wave Signals via Ground-Based Polarimetric Radar Observations

    Science.gov (United States)

    Bolen, Steve; Chandrasekar, V.

    2002-01-01

    Expanding human presence in space, and enabling the commercialization of this frontier, is part of the strategic goals for NASA's Human Exploration and Development of Space (HEDS) enterprise. Future near-Earth and planetary missions will support the use of high-frequency Earth-space communication systems. Additionally, increased commercial demand on low-frequency Earth-space links in the S- and C-band spectra have led to increased interest in the use of higher frequencies in regions like Ku and Ka-band. Attenuation of high-frequency signals, due to a precipitating medium, can be quite severe and can cause considerable disruptions in a communications link that traverses such a medium. Previously, ground radar measurements were made along the Earth-space path and compared to satellite beacon data that was transmitted to a ground station. In this paper, quantitative estimation of the attenuation along the propagation path is made via inter-comparisons of radar data taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and ground-based polarimetric radar observations. Theoretical relationships between the expected specific attenuation (k) of spaceborne measurements with ground-based measurements of reflectivity (Zh) and differential propagation phase shift (Kdp) are developed for various hydrometeors that could be present along the propagation path, which are used to estimate the two-way path-integrated attenuation (PIA) on the PR return echo. Resolution volume matching and alignment of the radar systems is performed, and a direct comparison of PR return echo with ground radar attenuation estimates is made directly on a beam-by-beam basis. The technique is validated using data collected from the TExas and Florida UNderflights (TEFLUN-B) experiment and the TRMM large Biosphere-Atmosphere experiment in Amazonia (LBA) campaign. Attenuation estimation derived from this method can be used for strategiC planning of communication systems for

  15. Modelling flow and heat transfer through unsaturated chalk - Validation with experimental data from the ground surface to the aquifer

    Science.gov (United States)

    Thiéry, Dominique; Amraoui, Nadia; Noyer, Marie-Luce

    2018-01-01

    During the winter and spring of 2000-2001, large floods occurred in northern France (Somme River Basin) and southern England (Patcham area of Brighton) in valleys that are developed on Chalk outcrops. The floods durations were particularly long (more than 3 months in the Somme Basin) and caused significant damage in both countries. To improve the understanding of groundwater flooding in Chalk catchments, an experimental site was set up in the Hallue basin, which is located in the Somme River Basin (France). Unsaturated fractured chalk formation overlying the Chalk aquifer was monitored to understand its reaction to long and heavy rainfall events when it reaches a near saturation state. The water content and soil temperature were monitored to a depth of 8 m, and the matrix pressure was monitored down to the water table, 26.5 m below ground level. The monitoring extended over a 2.5-year period (2006-2008) under natural conditions and during two periods when heavy, artificial infiltration was induced. The objective of the paper is to describe a vertical numerical flow model based on Richards' equation using these data that was developed to simulate infiltrating rainwater flow from the ground surface to the saturated aquifer. The MARTHE computer code, which models the unsaturated-saturated continuum, was adapted to reproduce the monitored high saturation periods. Composite constitutive functions (hydraulic conductivity-saturation and pressure-saturation) that integrate the increase in hydraulic conductivity near saturation and extra available porosity resulting from fractures were introduced into the code. Using these composite constitutive functions, the model was able to accurately simulate the water contents and pressures at all depths over the entire monitored period, including the infiltration tests. The soil temperature was also accurately simulated at all depths, except during the infiltrations tests, which contributes to the model validation. The model was used

  16. Interannual Variability of the Tropical Water Cycle: Capabilities in the TRMM Era and Challenges for GPM

    Science.gov (United States)

    Robertson, Franklin R.

    2003-01-01

    Considerable uncertainty surrounds the issue of whether precipitation over the tropical oceans (30" NE) systematically changes with interannual sea-surface temperature (SST) anomalies that accompany El Nino (warm) and La Nina (cold) events. Although it is well documented that El Nino-Southern Oscillation (ENSO) events with marked SST changes over the tropical oceans, produce significant regional changes in precipitation, water vapor, and radiative fluxes in the tropics, we still cannot yet adequately quantify the associated net integrated changes to water and heat balance over the entire tropical oceanic or land sectors. Robertson et al., [2001 GRL] for example, showed that substantial disagreement exists among contemporary satellite estimates of interannual variations in tropical rainfall that are associated with SST changes. Berg et al., [2002 J. Climate] have documented the distinct differences between precipitation structure over the eastern and western Pacific ITCZ and noted how various satellite precipitation algorithms may respond quite differently to ENSO modulations of these precipitation regimes. Resolving this uncertainty is important since precipitation and latent heat release variations over land and ocean sectors are key components of the tropical heat balance in its most aggregated form. Rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) averaged over the tropical oceans have not solved this issue and, in fact, show marked differences with estimates from two TRMM Microwave Imager (TMI) passive microwave algorithms. In this paper we will focus on findings that uncertainties in microphysical assumptions necessitated by the single-frequency PR measurement pose difficulties for detecting climate-related precipitation signals. Recent work has shown that path-integrated attenuation derived from the effects of precipitation on the radar return from the ocean surface exhibits interannual variability that agrees

  17. Florida Agriculture - Utilizing TRMM to Analyze Sea Breeze Thunderstorm Patterns During El Nino Southern Oscillations and Their Effects Upon Available Fresh Water for South Florida Agricultural Planning and Management

    Science.gov (United States)

    Billiot, Amanda; Lee, Lucas; McKee, Jake; Cooley, Zachary Clayton; Mitchell, Brandie

    2010-01-01

    This project utilizes Tropical Rainfall Measuring Mission (TRMM) and Landsat satellite data to assess the impact of sea breeze precipitation upon areas of agricultural land use in southern Florida. Water is a critical resource to agriculture, and the availability of water for agricultural use in Florida continues to remain a key issue. Recent projections of statewide water use by 2020 estimate that 9.3 billion gallons of water per day will be demanded, and agriculture represents 47% of this demand (Bronson 2003). Farmers have fewer options for water supplies than public users and are often limited to using available supplies from surface and ground water sources which depend in part upon variable weather patterns. Sea breeze thunderstorms are responsible for much of the rainfall delivered to Florida during the wet season (May-October) and have been recognized as an important overall contributor of rainfall in southern Florida (Almeida 2003). TRMM satellite data was used to analyze how sea breeze-induced thunderstorms during El Nino and La Nina affected interannual patterns of precipitation in southern Florida from 1998-2009. TRMM's Precipitation Radar and Microwave Imager provide data to quantify water vapor in the atmosphere, precipitation rates and intensity, and the distribution of precipitation. Rainfall accumulation data derived from TRMM and other microwave sensors were used to analyze the temporal and spatial variations of rainfall during each phase of the El Nino Southern Oscillation (ENSO). Through the use of TRMM and Landsat, slight variations were observed, but it was determined that neither sea breeze nor total rainfall patterns in South Florida were strongly affected by ENSO during the study period. However, more research is needed to characterize the influence of ENSO on summer weather patterns in South Florida. This research will provide the basis for continued observations and study with the Global Precipitation Measurement Mission.

  18. Validation of low-volume enrichment protocols for detection of Escherichia coli O157 in raw ground beef components, using commercial kits.

    Science.gov (United States)

    Ahmed, Imtiaz; Hughes, Denise; Jenson, Ian; Karalis, Tass

    2009-03-01

    Testing of beef destined for use in ground beef products for the presence of Escherichia coli O157:H7 has become an important cornerstone of control and verification activities within many meat supply chains. Validation of the ability of methods to detect low levels of E. coli O157:H7 is critical to confidence in test systems. Many rapid methods have been validated against standard cultural methods for 25-g samples. In this study, a number of previously validated enrichment broths and commercially available test kits were validated for the detection of low numbers of E. coli O157:H7 in 375-g samples of raw ground beef component matrices using 1 liter of enrichment broth (large-sample:low-volume enrichment protocol). Standard AOAC International methods for 25-g samples in 225 ml of enrichment broth, using the same media, incubation conditions, and test kits, were used as reference methods. No significant differences were detected in the ability of any of the tests to detect low levels of E. coli O157:H7 in samples of raw ground beef components when enriched according to standard or large-sample:low-volume enrichment protocols. The use of large-sample:low-volume enrichment protocols provides cost savings for media and logistical benefits when handling and incubating large numbers of samples.

  19. TRMM On-Orbit Performance Reassessed After Control Change

    Science.gov (United States)

    Bilanow, Stephen

    2006-01-01

    The Tropical Rainfall Measuring Mission (TRMM) spacecraft, a joint mission between the U.S. and Japan, launched onboard an H-I1 rocket on November 27, 1997, and transitioned in August, 2001, from an average operating altitude of 350 kilometers to 402.5 kilometers. Due to problems using the Earth Sensor Assembly (ESA) at the higher altitude, TRMM switched to a backup attitude control mode. Prior to the orbit boost TRMM controlled pitch and roll to the local vertical using ESA measurements while using gyro data to propagate yaw attitude between yaw updates from the Sun sensors. After the orbit boost, a Kalman filter used 3-axis gyro data with Sun sensor and magnetometers to estimate onboard attitude. While originally intended to meet a degraded attitude accuracy of 0.7 degrees, the new control mode met the original 0.2 degree attitude accuracy requirement after improving onboard ephemeris prediction and adjusting the magnetometer calibration onboard. Independent roll attitude checks using a science instrument, the Precipitation Radar (PR) which was built in Japan, provided a novel insight into the pointing performance. The PR data helped identify the pointing errors after the orbit boost, track the performance improvements, and show subtle effects from ephemeris errors and gyro bias errors. It also helped identify average bias trends throughout the mission. Roll errors tracked by the PR from sample orbits pre-boost and post-boost are shown in Figure 1. Prior to the orbit boost, the largest attitude errors were due to occasional interference in the ESA. These errors were sometime larger than 0.2 degrees in pitch and roll, but usually less, as estimated from a comprehensive review of the attitude excursions using gyro data. Sudden jumps in the onboard roll show up as spikes in the reported attitude since the control responds within tens of seconds to null the pointing error. The PR estimated roll tracks well with an estimate of the roll history propagated using gyro

  20. Rainfall Modification by Urban Areas: New Perspectives from TRMM

    Science.gov (United States)

    Shepherd, J. Marshall; Pierce, Harold F.; Negri, Andrew

    2002-01-01

    Data from the Tropical Rainfall Measuring Mission's (TRMM) Precipitation Radar (PR) were employed to identify warm season rainfall (1998-2000) patterns around Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas. Results reveal an average increase of -28% in monthly rainfall rates within 30-60 kilometers downwind of the metropolis with a modest increase of 5.6% over the metropolis. Portions of the downwind area exhibit increases as high as 51%. The percentage changes are relative to an upwind control area. It was also found that maximum rainfall rates in the downwind impact area exceeded the mean value in the upwind control area by 48% - 116%. The maximum value was generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. Results are consistent with METROMEX studies of St. Louis almost two decades ago and with more recent studies near Atlanta. Future work is extending the investigation to Phoenix, Arizona, an arid U.S. city, and several international cities like Mexico City, Johannesburg, and Brasilia. The study establishes the possibility of utilizing satellite-based rainfall estimates for examining rainfall modification by urban areas on global scales and over longer time periods. Such research has implications for weather forecasting, urban planning, water resource management, and understanding human impact on the environment and climate.

  1. A TRMM-Calibrated Infrared Rainfall Algorithm Applied Over Brazil

    Science.gov (United States)

    Negri, A. J.; Xu, L.; Adler, R. F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The development of a satellite infrared technique for estimating convective and stratiform rainfall and its application in studying the diurnal variability of rainfall in Amazonia are presented. The Convective-Stratiform. Technique, calibrated by coincident, physically retrieved rain rates from the Tropical Rain Measuring Mission (TRMM) Microwave Imager (TMI), is applied during January to April 1999 over northern South America. The diurnal cycle of rainfall, as well as the division between convective and stratiform rainfall is presented. Results compare well (a one-hour lag) with the diurnal cycle derived from Tropical Ocean-Global Atmosphere (TOGA) radar-estimated rainfall in Rondonia. The satellite estimates reveal that the convective rain constitutes, in the mean, 24% of the rain area while accounting for 67% of the rain volume. The effects of geography (rivers, lakes, coasts) and topography on the diurnal cycle of convection are examined. In particular, the Amazon River, downstream of Manaus, is shown to both enhance early morning rainfall and inhibit afternoon convection. Monthly estimates from this technique, dubbed CST/TMI, are verified over a dense rain gage network in the state of Ceara, in northeast Brazil. The CST/TMI showed a high bias equal to +33% of the gage mean, indicating that possibly the TMI estimates alone are also high. The root mean square difference (after removal of the bias) equaled 36.6% of the gage mean. The correlation coefficient was 0.77 based on 72 station-months.

  2. Bridging Ground Validation and Algorithms: Using Scattering and Integral Tables to Incorporate Observed DSD Correlations into Satellite Algorithms

    Science.gov (United States)

    Williams, C. R.

    2012-12-01

    The NASA Global Precipitation Mission (GPM) raindrop size distribution (DSD) Working Group is composed of NASA PMM Science Team Members and is charged to "investigate the correlations between DSD parameters using Ground Validation (GV) data sets that support, or guide, the assumptions used in satellite retrieval algorithms." Correlations between DSD parameters can be used to constrain the unknowns and reduce the degrees-of-freedom in under-constrained satellite algorithms. Over the past two years, the GPM DSD Working Group has analyzed GV data and has found correlations between the mass-weighted mean raindrop diameter (Dm) and the mass distribution standard deviation (Sm) that follows a power-law relationship. This Dm-Sm power-law relationship appears to be robust and has been observed in surface disdrometer and vertically pointing radar observations. One benefit of a Dm-Sm power-law relationship is that a three parameter DSD can be modeled with just two parameters: Dm and Nw that determines the DSD amplitude. In order to incorporate observed DSD correlations into satellite algorithms, the GPM DSD Working Group is developing scattering and integral tables that can be used by satellite algorithms. Scattering tables describe the interaction of electromagnetic waves on individual particles to generate cross sections of backscattering, extinction, and scattering. Scattering tables are independent of the distribution of particles. Integral tables combine scattering table outputs with DSD parameters and DSD correlations to generate integrated normalized reflectivity, attenuation, scattering, emission, and asymmetry coefficients. Integral tables contain both frequency dependent scattering properties and cloud microphysics. The GPM DSD Working Group has developed scattering tables for raindrops at both Dual Precipitation Radar (DPR) frequencies and at all GMI radiometer frequencies less than 100 GHz. Scattering tables include Mie and T-matrix scattering with H- and V

  3. CERES ERBE-like Instantaneous TOA Estimates (ES-8) in HDF (CER_ES8_TRMM-PFM_Edition2)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The ES-8 archival data product contains a 24-hour, single-satellite, instantaneous view of scanner fluxes at the top-of-atmosphere (TOA) reduced from spacecraft altitude unfiltered radiances using Earth Radiation Budget Experiment (ERBE) scanner Inversion algorithms and the ERBE shortwave (SW) and longwave (LW) Angular Distribution Models (ADMs). The ES-8 also includes the total (TOT), SW, LW, and window (WN) channel radiometric data; SW, LW, and WN unfiltered radiance values; and the ERBE scene identification for each measurement. These data are organized according to the CERES 3.3-second scan into 6.6-second records. As long as there is one valid scanner measurement within a record, the ES-8 record will be generated. The following CERES ES8 data sets are currently available: CER_ES8_TRMM-PFM_Edition1 CER_ES8_TRMM-PFM_Edition2 CER_ES8_TRMM-PFM_Transient-Ops2 CER_ES8_Terra-FM1_Edition1 CER_ES8_Terra-FM2_Edition1 CER_ES8_Terra-FM1_Edition2 CER_ES8_Terra-FM2_Edition2 CER_ES8_Aqua-FM3_Edition1 CER_ES8_Aqua-FM4_Edition1 CER_ES8_Aqua-FM3_Edition2 CER_ES8_Aqua-FM4_Edition2 CER_ES8_Aqua-FM3_Edition1-CV CER_ES8_Aqua-FM4_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV CER_ES8_Terra-FM1_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  4. Evaluation of IMERG and TRMM 3B43 Monthly Precipitation Products over Mainland China

    Directory of Open Access Journals (Sweden)

    Fengrui Chen

    2016-06-01

    Full Text Available As the successor of the Tropical Rainfall Measuring Mission (TRMM, the Global Precipitation Measurement (GPM mission significantly improves the spatial resolution of precipitation estimates from 0.25° to 0.1°. The present study analyzed the error structures of Integrated Multisatellite Retrievals for GPM (IMERG monthly precipitation products over Mainland China from March 2014 to February 2015 using gauge measurements at multiple spatiotemporal scales. Moreover, IMERG products were also compared with TRMM 3B43 products. The results show that: (1 overall, IMERG can capture the spatial patterns of precipitation over China well. It performs a little better than TRMM 3B43 at seasonal and monthly scales; (2 the performance of IMERG varies greatly spatially and temporally. IMERG performs better at low latitudes than at middle latitudes, and shows worse performance in winter than at other times; (3 compared with TRMM 3B43, IMERG significantly improves the estimation accuracy of precipitation over the Xinjiang region and the Qinghai-Tibetan Plateau, especially over the former where IMERG increases Pearson correlation coefficient by 0.18 and decreases root-mean-square error by 54.47 mm for annual precipitation estimates. However, most IMERG products over these areas are unreliable; and (4 IMERG shows poor performance in winter as TRMM 3B43 even if GPM improved its ability to sense frozen precipitation. Most of them over North China are unreliable during this period.

  5. Predictive modeling of cholera using GRACE and TRMM satellite data

    Science.gov (United States)

    Jutla, A.; Akanda, A. S. S.; Colwell, R. R.

    2015-12-01

    Cholera outbreaks can be classified in three forms- epidemic (sudden or seasonal outbreaks), endemic (recurrence and persistence of the disease for several consecutive years) and mixed-mode endemic (combination of certain epidemic and endemic conditions) with significant spatial and temporal heterogeneity. Endemic cholera is related to floods and droughts in regions where water and sanitation infrastructure are inadequate or insufficient. With more than a decade of terrestrial water storage (TWS) data obtained from Gravity Recovery and Climate Experiment (GRACE), understanding dynamics of river discharge is now feasible. We explored lead-lag relationships between TWS in the Ganges-Brahmaputra-Meghna (GBM) basin and endemic cholera in Bangladesh. Since bimodal seasonal peaks in cholera in Bangladesh occur during the spring and autumn season, two separate models, between TWS and disease time series (2002 to 2010) were developed. TWS, hence water availability, showed an asymmetrical, strong association with spring (τ=-0.53; pcholera prevalence up to five to six months in advance. One unit (cm of water) decrease in water availability in the basin increased odds of above normal cholera by 24% [confidence interval (CI) 20-31%; pcholera in the autumn by 29% [CI:22-33%; pcholera is related with warm temperatures and heavy rainfall. Using TRMM data for several locations in Asia and Africa, probability of cholera increases 18% [CI:15-23%; p<0.05] after heavy precipitation resulted in a societal conditions where access to safe water and sanitation was disrupted. Results from mechanistic modeling framework using systems approach that include satellite based hydroclimatic information with tradition disease transmission models will also be presented.

  6. Reduced precipitation over large water bodies in the Brazilian Amazon shown from TRMM data

    Science.gov (United States)

    Paiva, Rodrigo Cauduro Dias; Buarque, Diogo Costa; Clarke, Robin T.; Collischonn, Walter; Allasia, Daniel Gustavo

    2011-02-01

    Tropical Rainfall Measurement Mission (TRMM) data show lower rainfall over large water bodies in the Brazilian Amazon. Mean annual rainfall (P), number of wet days (rainfall > 2 mm) (W) and annual rainfall accumulated over 3-hour time intervals (P3hr) were computed from TRMM 3B42 data for 1998-2009. Reduced rainfall was marked over the Rio Solimões/Amazon, along most Amazon tributaries and over the Balbina reservoir. In a smaller test area, a heuristic argument showed that P and W were reduced by 5% and 6.5% respectively. Allowing for TRMM 3B42 spatial resolution, the reduction may be locally greater. Analyses of diurnal rainfall patterns showed that rainfall is lowest over large rivers during the afternoon, when most rainfall is convective, but at night and early morning the opposite occurs, with increased rainfall over rivers, although this pattern is less marked. Rainfall patterns reported from studies of smaller Amazonian regions therefore exist more widely.

  7. A Model for Estimation of Rain Rate on Tropical Land from TRMM Microwave Imager Radiometer Observations

    OpenAIRE

    C., PRABHAKARA; R., IACOVAZZI; J. M., YOO; K. M., KIM; NASA Goddard Space Flight Center; Center for Research on the Changing Earth System; EWHA Womans University; Science Systems and Applications, Inc.

    2005-01-01

    Over the tropical land regions scatter plots of the rain rate (R_), deduced from the TRMM Precipitation Radar (PR) versus the observed 85GHz brightness temperature (T_) made by the TRMM Microwave Imager (TMI) radiometer, for a period of a season over a given geographic region of 3°×5°(lat×lon), indicate that there are two maxima in rain rate. One strong maximum occurs when T_ has a value of about 220K, and the other weaker one when T_ is much colder ~150K. Also these two maxima are vividly re...

  8. Smoke Management: Toward a Data Base to Validate PB-Piedmont - Numerical Simulation of Smoke on the Ground at Night

    Science.gov (United States)

    Gary L. Achtemeier

    1999-01-01

    The use of fire for controlled burning to meet objectives for silviculture or for ecosystem management carries the risk of liability for smoke. Near-ground smoke can degrade air quality, reduce visibility, aggravate health problems, and create a general nuisance. At night, smoke can locally limit visibility over roadways creating serious hazards to transportation. PB-...

  9. Validation of the AGDISP model for predicting airborne atrazine spray drift: a South African ground application case study

    CSIR Research Space (South Africa)

    Nsibande, SA

    2015-06-01

    Full Text Available Air dispersion software models for evaluating pesticide spray drift during application have been developed that can potentially serve as a cheaper convenient alternative to field monitoring campaigns. Such models require validation against field...

  10. Relative Contributions of Electrified Shower Clouds and Thunderstorms to the Global Circuit: Can 10 Years of TRMM Data Help Solve an Old Puzzle? (Invited)

    Science.gov (United States)

    Zipser, E. J.; Liu, C.; Williams, E.; Burns, G. B.

    2010-12-01

    The long-standing mainstay of support for C.T.R. Wilson’s global circuit hypothesis is the similarity between the diurnal variation of thunderstorm days in universal time, and the Carnegie curve of electrical potential gradient (Whipple, 1929). This rough agreement has sustained the widespread view that thunderstorms are the “batteries” for the global electrical circuit. This study utilizes 10 years of Tropical Rainfall Measuring Mission (TRMM) observations to quantify the global occurrence of thunderstorms with much better accuracy and validate the comparison by Whipple 80 years ago. The results support Wilson’s (1920) original ideas that both thunderstorms and electrified shower clouds contribute to the DC global circuit by virtue of negative charge carried downward by precipitation. First, the precipitation features (PFs) are defined by grouping the pixels with rain using 10 years of TRMM observations. Thunderstorms are identified from these PFs with lightning flashes observed by the Lightning Imaging Sensor. PFs without lightning flashes but with the 30 dBZ radar echo top temperature below -10oC over land and -17 oC over ocean are selected as possibly electrified shower clouds. The universal diurnal variation of rainfall, raining area from the thunderstorms and possibly electrified shower clouds in different seasons are derived and compared with the diurnal variations of the electric field observed at Vostok, Antarctica. The result shows a substantially better match from the updated diurnal variations of the thunderstorm area to the Carnegie curve than Whipple showed. One reason for the improvement is that the TRMM data are able to distinguish the relatively larger contributions from electrified shower clouds than thunderstorms over tropical oceans and over the Amazon. Potential further refinements to the current algorithm defining electrified convective cells are discussed.

  11. In-Situ Load System for Calibrating and Validating Aerodynamic Properties of Scaled Aircraft in Ground-Based Aerospace Testing Applications

    Science.gov (United States)

    Commo, Sean A. (Inventor); Lynn, Keith C. (Inventor); Landman, Drew (Inventor); Acheson, Michael J. (Inventor)

    2016-01-01

    An In-Situ Load System for calibrating and validating aerodynamic properties of scaled aircraft in ground-based aerospace testing applications includes an assembly having upper and lower components that are pivotably interconnected. A test weight can be connected to the lower component to apply a known force to a force balance. The orientation of the force balance can be varied, and the measured forces from the force balance can be compared to applied loads at various orientations to thereby develop calibration factors.

  12. Utilizing TRMM to Analyze Sea Breeze Thunderstorm Patterns During El Nino Southern Oscillations and Their Effects upon Available Fresh Water for South Florida Agricultural Planning and Management

    Science.gov (United States)

    Cooley, Clayton; Billiot, Amanda; Lee, Lucas; McKee, Jake

    2010-01-01

    Water is in high demand for farmers regardless of where you go. Unfortunately, farmers in southern Florida have fewer options for water supplies than public users and are often limited to using available supplies from surface and ground water sources which depend in part upon variable weather patterns. There is an interest by the agricultural community about the effect weather has on usable surface water, however, research into viable weather patterns during La Nina and El Nino has yet to be researched. Using rainfall accumulation data from NASA Tropical Rainfall Measurement Mission (TRMM) satellite, this project s purpose was to assess the influence of El Nino and La Nina Oscillations on sea breeze thunderstorm patterns, as well as general rainfall patterns during the summer season in South Florida. Through this research we were able to illustrate the spatial and temporal variations in rainfall accumulation for each oscillation in relation to major agricultural areas. The study period for this project is from 1998, when TRMM was first launched, to 2009. Since sea breezes in Florida typically occur in the months of May through October, these months were chosen to be the months of the study. During this time, there were five periods of El Nino and two periods of La Nina, with a neutral period separating each oscillation. In order to eliminate rainfall from systems other than sea breeze thunderstorms, only days that were conducive to the development of a sea breeze front were selected.

  13. Spatial Downscaling of TRMM Precipitation Using Geostatistics and Fine Scale Environmental Variables

    Directory of Open Access Journals (Sweden)

    No-Wook Park

    2013-01-01

    Full Text Available A geostatistical downscaling scheme is presented and can generate fine scale precipitation information from coarse scale Tropical Rainfall Measuring Mission (TRMM data by incorporating auxiliary fine scale environmental variables. Within the geostatistical framework, the TRMM precipitation data are first decomposed into trend and residual components. Quantitative relationships between coarse scale TRMM data and environmental variables are then estimated via regression analysis and used to derive trend components at a fine scale. Next, the residual components, which are the differences between the trend components and the original TRMM data, are then downscaled at a target fine scale via area-to-point kriging. The trend and residual components are finally added to generate fine scale precipitation estimates. Stochastic simulation is also applied to the residual components in order to generate multiple alternative realizations and to compute uncertainty measures. From an experiment using a digital elevation model (DEM and normalized difference vegetation index (NDVI, the geostatistical downscaling scheme generated the downscaling results that reflected detailed characteristics with better predictive performance, when compared with downscaling without the environmental variables. Multiple realizations and uncertainty measures from simulation also provided useful information for interpretations and further environmental modeling.

  14. Global Precipitation Measurement. Report 7; Bridging from TRMM to GPM to 3-Hourly Precipitation Estimates

    Science.gov (United States)

    Shepherd, J. Marshall; Smith, Eric A.; Adams, W. James (Editor)

    2002-01-01

    Historically, multi-decadal measurements of precipitation from surface-based rain gauges have been available over continents. However oceans remained largely unobserved prior to the beginning of the satellite era. Only after the launch of the first Defense Meteorological Satellite Program (DMSP) satellite in 1987 carrying a well-calibrated and multi-frequency passive microwave radiometer called Special Sensor Microwave/Imager (SSM/I) have systematic and accurate precipitation measurements over oceans become available on a regular basis; see Smith et al. (1994, 1998). Recognizing that satellite-based data are a foremost tool for measuring precipitation, NASA initiated a new research program to measure precipitation from space under its Mission to Planet Earth program in the 1990s. As a result, the Tropical Rainfall Measuring Mission (TRMM), a collaborative mission between NASA and NASDA, was launched in 1997 to measure tropical and subtropical rain. See Simpson et al. (1996) and Kummerow et al. (2000). Motivated by the success of TRMM, and recognizing the need for more comprehensive global precipitation measurements, NASA and NASDA have now planned a new mission, i.e., the Global Precipitation Measurement (GPM) mission. The primary goal of GPM is to extend TRMM's rainfall time series while making substantial improvements in precipitation observations, specifically in terms of measurement accuracy, sampling frequency, Earth coverage, and spatial resolution. This report addresses four fundamental questions related to the transition from current to future global precipitation observations as denoted by the TRMM and GPM eras, respectively.

  15. Performance of a rain retrieval algorithm using TRMM data in the Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    D. Katsanos

    2006-01-01

    Full Text Available This study aims to make a regional characterization of the performance of the rain retrieval algorithm BRAIN. This algorithm estimates the rain rate from brightness temperatures measured by the TRMM Microwave Imager (TMI onboard the TRMM satellite. In this stage of the study, a comparison between the rain estimated from Precipitation Radar (PR onboard TRMM (2A25 version 5 and the rain retrieved by the BRAIN algorithm is presented, for about 30 satellite overpasses over the Central and Eastern Mediterranean during the period October 2003–March 2004, in order to assess the behavior of the algorithm in the Eastern Mediterranean region. BRAIN was built and tested using PR rain estimates distributed randomly over the whole TRMM sampling region. Characterization of the differences between PR and BRAIN over a specific region is thus interesting because it might show some local trend for one or the other of the instrument. The checking of BRAIN results against the PR rain-estimate appears to be consistent with former results i.e. a somewhat marked discrepancy for the highest rain rates. This difference arises from a known problem that affect rain retrieval based on passive microwave radiometers measurements, but some of the higher radar rain rates could also be questioned. As an independent test, a good correlation between the rain retrieved by BRAIN and lighting data (obtained by the UK Met. Office long range detection system is also emphasized in the paper.

  16. Ground-motion modeling of the 1906 San Francisco earthquake, part I: Validation using the 1989 Loma Prieta earthquake

    Science.gov (United States)

    Aagaard, Brad T.; Brocher, T.M.; Dolenc, D.; Dreger, D.; Graves, R.W.; Harmsen, S.; Hartzell, S.; Larsen, S.; Zoback, M.L.

    2008-01-01

    We compute ground motions for the Beroza (1991) and Wald et al. (1991) source models of the 1989 magnitude 6.9 Loma Prieta earthquake using four different wave-propagation codes and recently developed 3D geologic and seismic velocity models. In preparation for modeling the 1906 San Francisco earthquake, we use this well-recorded earthquake to characterize how well our ground-motion simulations reproduce the observed shaking intensities and amplitude and durations of recorded motions throughout the San Francisco Bay Area. All of the simulations generate ground motions consistent with the large-scale spatial variations in shaking associated with rupture directivity and the geologic structure. We attribute the small variations among the synthetics to the minimum shear-wave speed permitted in the simulations and how they accommodate topography. Our long-period simulations, on average, under predict shaking intensities by about one-half modified Mercalli intensity (MMI) units (25%-35% in peak velocity), while our broadband simulations, on average, under predict the shaking intensities by one-fourth MMI units (16% in peak velocity). Discrepancies with observations arise due to errors in the source models and geologic structure. The consistency in the synthetic waveforms across the wave-propagation codes for a given source model suggests the uncertainty in the source parameters tends to exceed the uncertainty in the seismic velocity structure. In agreement with earlier studies, we find that a source model with slip more evenly distributed northwest and southeast of the hypocenter would be preferable to both the Beroza and Wald source models. Although the new 3D seismic velocity model improves upon previous velocity models, we identify two areas needing improvement. Nevertheless, we find that the seismic velocity model and the wave-propagation codes are suitable for modeling the 1906 earthquake and scenario events in the San Francisco Bay Area.

  17. Multi-body simulation of a canine hind limb: model development, experimental validation and calculation of ground reaction forces

    Directory of Open Access Journals (Sweden)

    Wefstaedt Patrick

    2009-11-01

    Full Text Available Abstract Background Among other causes the long-term result of hip prostheses in dogs is determined by aseptic loosening. A prevention of prosthesis complications can be achieved by an optimization of the tribological system which finally results in improved implant duration. In this context a computerized model for the calculation of hip joint loadings during different motions would be of benefit. In a first step in the development of such an inverse dynamic multi-body simulation (MBS- model we here present the setup of a canine hind limb model applicable for the calculation of ground reaction forces. Methods The anatomical geometries of the MBS-model have been established using computer tomography- (CT- and magnetic resonance imaging- (MRI- data. The CT-data were collected from the pelvis, femora, tibiae and pads of a mixed-breed adult dog. Geometric information about 22 muscles of the pelvic extremity of 4 mixed-breed adult dogs was determined using MRI. Kinematic and kinetic data obtained by motion analysis of a clinically healthy dog during a gait cycle (1 m/s on an instrumented treadmill were used to drive the model in the multi-body simulation. Results and Discussion As a result the vertical ground reaction forces (z-direction calculated by the MBS-system show a maximum deviation of 1.75%BW for the left and 4.65%BW for the right hind limb from the treadmill measurements. The calculated peak ground reaction forces in z- and y-direction were found to be comparable to the treadmill measurements, whereas the curve characteristics of the forces in y-direction were not in complete alignment. Conclusion In conclusion, it could be demonstrated that the developed MBS-model is suitable for simulating ground reaction forces of dogs during walking. In forthcoming investigations the model will be developed further for the calculation of forces and moments acting on the hip joint during different movements, which can be of help in context with the in

  18. A 2.5D finite element and boundary element model for the ground vibration from trains in tunnels and validation using measurement data

    Science.gov (United States)

    Jin, Qiyun; Thompson, David J.; Lurcock, Daniel E. J.; Toward, Martin G. R.; Ntotsios, Evangelos

    2018-05-01

    A numerical model is presented for the ground-borne vibration produced by trains running in tunnels. The model makes use of the assumption that the geometry and material properties are invariant in the axial direction. It is based on the so-called two-and-a-half dimensional (2.5D) coupled Finite Element and Boundary Element methodology, in which a two-dimensional cross-section is discretised into finite elements and boundary elements and the third dimension is represented by a Fourier transform over wavenumbers. The model is applied to a particular case of a metro line built with a cast-iron tunnel lining. An equivalent continuous model of the tunnel is developed to allow it to be readily implemented in the 2.5D framework. The tunnel structure and the track are modelled using solid and beam finite elements while the ground is modelled using boundary elements. The 2.5D track-tunnel-ground model is coupled with a train consisting of several vehicles, which are represented by multi-body models. The response caused by the passage of a train is calculated as the sum of the dynamic component, excited by the combined rail and wheel roughness, and the quasi-static component, induced by the constant moving axle loads. Field measurements have been carried out to provide experimental validation of the model. These include measurements of the vibration of the rail, the tunnel invert and the tunnel wall. In addition, simultaneous measurements were made on the ground surface above the tunnel. Rail roughness and track characterisation measurements were also made. The prediction results are compared with measured vibration obtained during train passages, with good agreement.

  19. Use of GOES, SSM/I, TRMM Satellite Measurements Estimating Water Budget Variations in Gulf of Mexico - Caribbean Sea Basins

    Science.gov (United States)

    Smith, Eric A.

    2004-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system designed to obtain the atmospheric water budget over the open ocean. A combination of 3ourly-sampled monthly datasets derived from the GOES-8 5-channel Imager, the TRMM TMI radiometer, and the DMSP 7-channel passive microwave radiometers (SSM/I) have been acquired for the combined Gulf of Mexico-Caribbean Sea basin. Whereas the methodology has been tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the TRMM and SSM/I passive microwave measurements in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, the intent is to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is validated by cross-checking all the algorithm components through multiple- algorithm retrieval intercomparisons. A further check on the validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithms to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin, although it is fair to say that these checks are more effective m identifying problems in estimating vapor transports from a leaky operational radiosonde network than in verifying

  20. ASSESSMENT OF SEA ICE FREEBOARD AND THICKNESS IN MCMURDO SOUND, ANTARCTICA, DERIVED BY GROUND VALIDATED SATELLITE ALTIMETER DATA

    Directory of Open Access Journals (Sweden)

    D. Price

    2012-07-01

    Full Text Available This investigation employs the use of ICESat to derive freeboard measurements in McMurdo Sound in the western Ross Sea, Antarctica, for the time period 2003-2009. Methods closely follow those previously presented in the literature but are complemented by a good understanding of general sea ice characteristics in the study region from extensive temporal ground investigations but with limited spatial coverage. The aim of remote sensing applications in this area is to expand the good knowledge of sea ice characteristics within these limited areas to the wider McMurdo Sound and western Ross Sea region. The seven year Austral Spring (September, October, and November investigation is presented for sea ice freeboard alone. An interannual comparison of mean freeboard indicates an increase in multiyear sea ice freeboard from 1.08 m in 2003 to 1.15 m in 2009 with positive and negative variation in between. No significant trend was detected for first year sea ice freeboard. Further, an Envisat imagery investigation complements the freeboard assessment. The multiyear sea ice was observed to increase by 254 % of its original 2003 area, as firstyear sea ice persisted through the 2004 melt season into 2005. This maximum coverage then gradually diminished by 2009 to 20 % above the original 2003 value. The mid study period increase is likely attributed to the passage of iceberg B-15A minimising oceanic pressures and preventing sea ice breakout in the region.

  1. Tropical Rainfall Analysis Using TRMM in Combination With Other Satellite Gauge Data: Comparison with Global Precipitation Climatology Project (GPCP) Results

    Science.gov (United States)

    Adler, Robert F.; Huffman, George J.; Bolvin, David; Nelkin, Eric; Curtis, Scott

    1999-01-01

    This paper describes recent results of using Tropical Rainfall Measuring Mission (TRMM) information as the key calibration tool in a merged analysis on a 1 deg x 1 deg latitude/longitude monthly scale based on multiple satellite sources and raingauge analysis. The procedure used to produce the GPCP data set is a stepwise approach which first combines the satellite low-orbit microwave and geosynchronous IR observations into a "multi-satellite" product and than merges that result with the raingauge analysis. Preliminary results produced with the still-stabilizing TRMM algorithms indicate that TRMM shows tighter spatial gradients in tropical rain maxima with higher peaks in the center of the maxima. The TRMM analyses will be used to evaluate the evolution of the 1998 ENSO variations, again in comparison with the GPCP analyses.

  2. M3 version 3.0: Verification and validation; Hydrochemical model of ground water at repository site

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Javier B. (Dept. of Earth Sciences, Univ. of Zaragoza, Zaragoza (Spain)); Laaksoharju, Marcus (Geopoint AB, Sollentuna (Sweden)); Skaarman, Erik (Abscondo, Bromma (Sweden)); Gurban, Ioana (3D-Terra (Canada))

    2009-01-15

    Hydrochemical evaluation is a complex type of work that is carried out by specialists. The outcome of this work is generally presented as qualitative models and process descriptions of a site. To support and help to quantify the processes in an objective way, a multivariate mathematical tool entitled M3 (Multivariate Mixing and Mass balance calculations) has been constructed. The computer code can be used to trace the origin of the groundwater, and to calculate the mixing proportions and mass balances from groundwater data. The M3 code is a groundwater response model, which means that changes in the groundwater chemistry in terms of sources and sinks are traced in relation to an ideal mixing model. The complexity of the measured groundwater data determines the configuration of the ideal mixing model. Deviations from the ideal mixing model are interpreted as being due to reactions. Assumptions concerning important mineral phases altering the groundwater or uncertainties associated with thermodynamic constants do not affect the modelling because the calculations are solely based on the measured groundwater composition. M3 uses the opposite approach to that of many standard hydrochemical models. In M3, mixing is evaluated and calculated first. The constituents that cannot be described by mixing are described by reactions. The M3 model consists of three steps: the first is a standard principal component analysis, followed by mixing and finally mass balance calculations. The measured groundwater composition can be described in terms of mixing proportions (%), while the sinks and sources of an element associated with reactions are reported in mg/L. This report contains a set of verification and validation exercises with the intention of building confidence in the use of the M3 methodology. At the same time, clear answers are given to questions related to the accuracy and the precision of the results, including the inherent uncertainties and the errors that can be made

  3. Evaluation of TRMM 3B42 V7 Rainfall Product over the Oum Er Rbia Watershed in Morocco

    OpenAIRE

    Hamza Ouatiki; Abdelghani Boudhar; Yves Tramblay; Lionel Jarlan; Tarik Benabdelouhab; Lahoucine Hanich; M. Rachid El Meslouhi; Abdelghani Chehbouni

    2017-01-01

    In arid and semi-arid areas, rainfall is often characterized by a strong spatial and temporal variability. These environmental factors, combined with the sparsity of the measurement networks in developing countries, constitute real constraints for water resources management. In recent years, several spatial rainfall measurement sources have become available, such as TRMM data (Tropical Rainfall Measurement Mission). In this study, the TRMM 3B42 Version 7 product was evaluated using rain gauge...

  4. Forward Modeling and validation of a new formulation to compute self-potential signals associated with ground water flow

    Directory of Open Access Journals (Sweden)

    A. Bolève

    2007-10-01

    Full Text Available The classical formulation of the coupled hydroelectrical flow in porous media is based on a linear formulation of two coupled constitutive equations for the electrical current density and the seepage velocity of the water phase and obeying Onsager's reciprocity. This formulation shows that the streaming current density is controlled by the gradient of the fluid pressure of the water phase and a streaming current coupling coefficient that depends on the so-called zeta potential. Recently a new formulation has been introduced in which the streaming current density is directly connected to the seepage velocity of the water phase and to the excess of electrical charge per unit pore volume in the porous material. The advantages of this formulation are numerous. First this new formulation is more intuitive not only in terms of establishing a constitutive equation for the generalized Ohm's law but also in specifying boundary conditions for the influence of the flow field upon the streaming potential. With the new formulation, the streaming potential coupling coefficient shows a decrease of its magnitude with permeability in agreement with published results. The new formulation has been extended in the inertial laminar flow regime and to unsaturated conditions with applications to the vadose zone. This formulation is suitable to model self-potential signals in the field. We investigate infiltration of water from an agricultural ditch, vertical infiltration of water into a sinkhole, and preferential horizontal flow of ground water in a paleochannel. For the three cases reported in the present study, a good match is obtained between finite element simulations performed and field observations. Thus, this formulation could be useful for the inverse mapping of the geometry of groundwater flow from self-potential field measurements.

  5. Proof-of-Concept of a Networked Validation Environment for Distributed Air/Ground NextGen Concepts

    Science.gov (United States)

    Grisham, James; Larson, Natalie; Nelson, Justin; Reed, Joshua; Suggs, Marvin; Underwood, Matthew; Papelis, Yiannis; Ballin, Mark G.

    2013-01-01

    The National Airspace System (NAS) must be improved to increase capacity, reduce flight delays, and minimize environmental impacts of air travel. NASA has been tasked with aiding the Federal Aviation Administration (FAA) in NAS modernization. Automatic Dependent Surveillance-Broadcast (ADS-B) is an enabling technology that is fundamental to realization of the Next Generation Air Transportation System (NextGen). Despite the 2020 FAA mandate requiring ADS-B Out equipage, airspace users are lacking incentives to equip with the requisite ADS-B avionics. A need exists to validate in flight tests advanced concepts of operation (ConOps) that rely on ADS-B and other data links without requiring costly equipage. A potential solution is presented in this paper. It is possible to emulate future data link capabilities using the existing in-flight Internet and reduced-cost test equipment. To establish proof-of-concept, a high-fidelity traffic operations simulation was modified to include a module that simulated Internet transmission of ADS-B messages. An advanced NASA ConOp, Flight Deck Interval Management (FIM), was used to evaluate technical feasibility. A preliminary assessment of the effects of latency and dropout rate on FIM was performed. Flight hardware that would be used by proposed test environment was connected to the simulation so that data transfer from aircraft systems to test equipment could be verified. The results indicate that the FIM ConOp, and therefore, many other advanced ConOps with equal or lesser response characteristics and data requirements, can be evaluated in flight using the proposed concept.

  6. Evaluation of TRMM 3B42V7 product on extreme precipitation measurements over peninsular Malaysia

    Science.gov (United States)

    Paska, Jacquoelyne; Lau, Alvin M. S.; Tan, Mou Leong; Tan, Kok Chooi

    2017-10-01

    Climate variability has become a matter worth our attention as this issue has unveiled to the extreme water-related disasters such as flood and drought. Increments in heavy precipitation have happened over the past century and future climate scenarios show that it may alter the recurrence, timing, force, and length of these occasions. Satellite precipitation products (SPPs) could be used as representation of precipitation over a large region. This could be useful for the monitoring of the precipitation pattern as well as extreme events. Nevertheless, application of these products in monitoring extreme precipitation is still limited because insufficiency of quality assessment. This study aims to evaluate the performance of the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42V7 product in capturing the behavior of extreme precipitation events over Peninsular Malaysia from 2000 to 2015. Four extreme precipitation indices, in two general categories of absolute threshold (R10mm, R20mm and R50mm) and maximum (Rx1d) indices that recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI) were used. General evaluation has shown that the TRMM 3B42V7 product performed good on the measurements of monthly and annual precipitation. In the respect of extreme precipitation measurements, weak to moderate positive correlations were found between the TRMM 3B42 product and rain gauges over Peninsular Malaysia. The TRMM 3B42V7 product overestimated the R10mm and R20mm indices, while an underestimation was found for the R50mm and Rx1d indices.

  7. Estimation of Rainfall Associated with Typhoons over the Ocean Using TRMM/TMI and Numerical Models

    Directory of Open Access Journals (Sweden)

    Nan-Ching Yeh

    2015-11-01

    Full Text Available This study quantitatively estimated the precipitation associated with a typhoon in the northwestern Pacific Ocean by using a physical algorithm which included the Weather Research and Forecasting model, Radiative Transfer for TIROS Operational Vertical Sounder model, and data from the Tropical Rainfall Measuring Mission (TRMM/TRMM Microwave Imager (TMI and TRMM/Precipitation Radar (PR. First, a prior probability distribution function (PDF was constructed using over three million rain rate retrievals from the TRMM/PR data for the period 2002–2010 over the northwestern Pacific Ocean. Subsequently, brightness temperatures for 15 typhoons that occurred over the northwestern Pacific Ocean were simulated using a microwave radiative transfer model and a conditional PDF was obtained for these typhoons. The aforementioned physical algorithm involved using a posterior PDF. A posterior PDF was obtained by combining the prior and conditional PDFs. Finally, the rain rate associated with a typhoon was estimated by inputting the observations of the TMI (attenuation indices at 10, 19, 37 GHz into the posterior PDF (lookup table. Results based on rain rate retrievals indicated that rainband locations with the heaviest rainfall showed qualitatively similar horizontal distributions. The correlation coefficient and root-mean-square error of the rain rate estimation were 0.63 and 4.45 mm·h−1, respectively. Furthermore, the correlation coefficient and root-mean-square error for convective rainfall were 0.78 and 7.25 mm·h−1, respectively, and those for stratiform rainfall were 0.58 and 9.60 mm·h−1, respectively. The main contribution of this study is introducing an approach to quickly and accurately estimate the typhoon precipitation, and remove the need for complex calculations.

  8. Nondestructive examination of the Tropical Rainfall Measuring Mission (TRMM) reaction control subsystem (RCS) propellant tanks

    Science.gov (United States)

    Free, James M.

    1993-01-01

    This paper assesses the feasibility of using eddy current nondestructive examination to determine flaw sizes in completely assembled hydrazine propellant tanks. The study was performed by the NASA Goddard Space Flight Center for the Tropical Rainfall Measuring Mission (TRMM) project to help determine whether existing propellant tanks could meet the fracture analysis requirements of the current pressure vessel specification, MIL-STD-1522A and, therefore be used on the TRMM spacecraft. After evaluating several nondestructive test methods, eddy current testing was selected as the most promising method for determining flaw sizes on external and internal surfaces of completely assembled tanks. Tests were conducted to confirm the detection capability of the eddy current NDE, procedures were developed to inspect two candidate tanks, and the test support equipment was designed. The non-spherical tank eddy current NDE test program was terminated when the decision was made to procure new tanks for the TRMM propulsion subsystem. The information on the development phase of this test program is presented in this paper as a reference for future investigation on the subject.

  9. Tropical Rainfall Measuring Mission (TRMM) and the Future of Rainfall Estimation from Space

    Science.gov (United States)

    Kakar, Ramesh; Adler, Robert; Smith, Eric; Starr, David OC. (Technical Monitor)

    2001-01-01

    Tropical rainfall is important in the hydrological cycle and to the lives and welfare of humans. Three-fourths of the energy that drives the atmospheric wind circulation comes from the latent heat released by tropical precipitation. Recognizing the importance of rain in the tropics, NASA for the U.S.A. and NASDA for Japan have partnered in the design, construction and flight of a satellite mission to measure tropical rainfall and calculate the associated latent heat release. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched on November 27, 1997, and data from all the instruments first became available approximately 30 days after launch. Since then, much progress has been made in the calibration of the sensors, the improvement of the rainfall algorithms and applications of these results to areas such as Data Assimilation and model initialization. TRMM has reduced the uncertainty of climatological rainfall in tropics by over a factor of two, therefore establishing a standard for comparison with previous data sets and climatologies. It has documented the diurnal variation of precipitation over the oceans, showing a distinct early morning peak and this satellite mission has shown the utility of precipitation information for the improvement of numerical weather forecasts and climate modeling. This paper discusses some promising applications using TRMM data and introduces a measurement concept being discussed by NASA/NASDA and ESA for the future of rainfall estimation from space.

  10. Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: validation of the technique through correlative comparisons

    Directory of Open Access Journals (Sweden)

    F. Hendrick

    2004-01-01

    Full Text Available A retrieval algorithm based on the Optimal Estimation Method (OEM has been developed in order to provide vertical distributions of NO2 in the stratosphere from ground-based (GB zenith-sky UV-visible observations. It has been applied to observational data sets from the NDSC (Network for Detection of Stratospheric Change stations of Harestua (60° N, 10° E and Andøya (69° N, 16° E in Norway. The information content and retrieval errors have been analyzed following a formalism used for characterizing ozone profiles retrieved from solar infrared absorption spectra. In order to validate the technique, the retrieved NO2 vertical profiles and columns have been compared to correlative balloon and satellite observations. Such extensive validation of the profile and column retrievals was not reported in previously published work on the profiling from GB UV-visible measurements. A good agreement - generally better than 25% - has been found with the SAOZ (Système d'Analyse par Observations Zénithales and DOAS (Differential Optical Absorption Spectroscopy balloons. A similar agreement has been reached with correlative satellite data from the HALogen Occultation Experiment (HALOE and Polar Ozone and Aerosol Measurement (POAM III instruments above 25km of altitude. Below 25km, a systematic underestimation - by up to 40% in some cases - of both HALOE and POAM III profiles by our GB profile retrievals has been observed, pointing out more likely a limitation of both satellite instruments at these altitudes. We have concluded that our study strengthens our confidence in the reliability of the retrieval of vertical distribution information from GB UV-visible observations and offers new perspectives in the use of GB UV-visible network data for validation purposes.

  11. Validation of POLDER/ADEOS data using a ground-based lidar network: Preliminary results for semi-transparent and cirrus clouds

    Science.gov (United States)

    Chepfer, H.; Sauvage, L.; Flamant, P. H.; Pelon, J.; Goloub, P.; Brogniez, G.; spinhirne, J.; Lavorato, M.; Sugimoto, N.

    1998-01-01

    At mid and tropical latitudes, cirrus clouds are present more than 50% of the time in satellites observations. Due to their large spatial and temporal coverage, and associated low temperatures, cirrus clouds have a major influence on the Earth-Ocean-Atmosphere energy balance through their effects on the incoming solar radiation and outgoing infrared radiation. At present the impact of cirrus clouds on climate is well recognized but remains to be asserted more precisely, for their optical and radiative properties are not very well known. In order to understand the effects of cirrus clouds on climate, their optical and radiative characteristics of these clouds need to be determined accurately at different scales in different locations i.e. latitude. Lidars are well suited to observe cirrus clouds, they can detect very thin and semi-transparent layers, and retrieve the clouds geometrical properties i.e. altitude and multilayers, as well as radiative properties i.e. optical depth, backscattering phase functions of ice crystals. Moreover the linear depolarization ratio can give information on the ice crystal shape. In addition, the data collected with an airborne version of POLDER (POLarization and Directionality of Earth Reflectances) instrument have shown that bidirectional polarized measurements can provide information on cirrus cloud microphysical properties (crystal shapes, preferred orientation in space). The spaceborne version of POLDER-1 has been flown on ADEOS-1 platform during 8 months (October 96 - June 97), and the next POLDER-2 instrument will be launched in 2000 on ADEOS-2. The POLDER-1 cloud inversion algorithms are currently under validation. For cirrus clouds, a validation based on comparisons between cloud properties retrieved from POLDER-1 data and cloud properties inferred from a ground-based lidar network is currently under consideration. We present the first results of the validation.

  12. Validation and Error Characterization for the Global Precipitation Measurement

    Science.gov (United States)

    Bidwell, Steven W.; Adams, W. J.; Everett, D. F.; Smith, E. A.; Yuter, S. E.

    2003-01-01

    The Global Precipitation Measurement (GPM) is an international effort to increase scientific knowledge on the global water cycle with specific goals of improving the understanding and the predictions of climate, weather, and hydrology. These goals will be achieved through several satellites specifically dedicated to GPM along with the integration of numerous meteorological satellite data streams from international and domestic partners. The GPM effort is led by the National Aeronautics and Space Administration (NASA) of the United States and the National Space Development Agency (NASDA) of Japan. In addition to the spaceborne assets, international and domestic partners will provide ground-based resources for validating the satellite observations and retrievals. This paper describes the validation effort of Global Precipitation Measurement to provide quantitative estimates on the errors of the GPM satellite retrievals. The GPM validation approach will build upon the research experience of the Tropical Rainfall Measuring Mission (TRMM) retrieval comparisons and its validation program. The GPM ground validation program will employ instrumentation, physical infrastructure, and research capabilities at Supersites located in important meteorological regimes of the globe. NASA will provide two Supersites, one in a tropical oceanic and the other in a mid-latitude continental regime. GPM international partners will provide Supersites for other important regimes. Those objectives or regimes not addressed by Supersites will be covered through focused field experiments. This paper describes the specific errors that GPM ground validation will address, quantify, and relate to the GPM satellite physical retrievals. GPM will attempt to identify the source of errors within retrievals including those of instrument calibration, retrieval physical assumptions, and algorithm applicability. With the identification of error sources, improvements will be made to the respective calibration

  13. On validation of the rain climatic zone designations for Nigeria

    Science.gov (United States)

    Obiyemi, O. O.; Ibiyemi, T. S.; Ojo, J. S.

    2017-07-01

    In this paper, validation of rain climatic zone classifications for Nigeria is presented based on global radio-climatic models by the International Telecommunication Union-Radiocommunication (ITU-R) and Crane. Rain rate estimates deduced from several ground-based measurements and those earlier estimated from the precipitation index on the Tropical Rain Measurement Mission (TRMM) were employed for the validation exercise. Although earlier classifications indicated that Nigeria falls into zones P, Q, N, and K for the ITU-R designations, and zones E and H for Crane's climatic zone designations, the results however confirmed that the rain climatic zones across Nigeria can only be classified into four, namely P, Q, M, and N for the ITU-R designations, while the designations by Crane exhibited only three zones, namely E, G, and H. The ITU-R classification was found to be more suitable for planning microwave and millimeter wave links across Nigeria. The research outcomes are vital in boosting the confidence level of system designers in using the ITU-R designations as presented in the map developed for the rain zone designations for estimating the attenuation induced by rain along satellite and terrestrial microwave links over Nigeria.

  14. Evaluation of Version-7 TRMM Multi-Satellite Precipitation Analysis Product during the Beijing Extreme Heavy Rainfall Event of 21 July 2012

    Directory of Open Access Journals (Sweden)

    Yong Huang

    2013-12-01

    Full Text Available The latest Version-7 (V7 Tropical Rainfall Measuring Mission (TRMM Multi-satellite Precipitation Analysis (TMPA products were released by the National Aeronautics and Space Administration (NASA in December of 2012. Their performance on different climatology, locations, and precipitation types is of great interest to the satellite-based precipitation community. This paper presents a study of TMPA precipitation products (3B42RT and 3B42V7 for an extreme precipitation event in Beijing and its adjacent regions (from 00:00 UTC 21 July 2012 to 00:00 UTC 22 July 2012. Measurements from a dense rain gauge network were used as the ground truth to evaluate the latest TMPA products. Results are summarized as follows. Compared to rain gauge measurements, both 3B42RT and 3B42V7 generally captured the rainfall spatial and temporal pattern, having a moderate spatial correlation coefficient (CC, 0.6 and high CC values (0.88 over the broader Hebei, Beijing and Tianjin (HBT regions, but the rainfall peak is 6 h ahead of gauge observations. Overall, 3B42RT showed higher estimation than 3B42V7 over both HBT and Beijing. At the storm center, both 3B42RT and 3B42V7 presented a relatively large deviation from the temporal variation of rainfall and underestimated the storm by 29.02% and 36.07%, respectively. The current study suggests that the latest TMPA products still have limitations in terms of resolution and accuracy, especially for this type of extreme event within a latitude area on the edge of coverage of TRMM precipitation radar and microwave imager. Therefore, TMPA users should be cautious when 3B42RT and 3B42V7 are used to model, monitor, and forecast both flooding hazards in the Beijing urban area and landslides in the mountainous west and north of Beijing.

  15. Estimates of evapotranspiration for riparian sites (Eucalyptus) in the Lower Murray -Darling Basin using ground validated sap flow and vegetation index scaling techniques

    Science.gov (United States)

    Doody, T.; Nagler, P. L.; Glenn, E. P.

    2014-12-01

    Water accounting is becoming critical globally, and balancing consumptive water demands with environmental water requirements is especially difficult in in arid and semi-arid regions. Within the Murray-Darling Basin (MDB) in Australia, riparian water use has not been assessed across broad scales. This study therefore aimed to apply and validate an existing U.S. riparian ecosystem evapotranspiration (ET) algorithm for the MDB river systems to assist water resource managers to quantify environmental water needs over wide ranges of niche conditions. Ground-based sap flow ET was correlated with remotely sensed predictions of ET, to provide a method to scale annual rates of water consumption by riparian vegetation over entire irrigation districts. Sap flux was measured at nine locations on the Murrumbidgee River between July 2011 and June 2012. Remotely sensed ET was calculated using a combination of local meteorological estimates of potential ET (ETo) and rainfall and MODIS Enhanced Vegetation Index (EVI) from selected 250 m resolution pixels. The sap flow data correlated well with MODIS EVI. Sap flow ranged from 0.81 mm/day to 3.60 mm/day and corresponded to a MODIS-based ET range of 1.43 mm/day to 2.42 mm/day. We found that mean ET across sites could be predicted by EVI-ETo methods with a standard error of about 20% across sites, but that ET at any given site could vary much more due to differences in aquifer and soil properties among sites. Water use was within range of that expected. We conclude that our algorithm developed for US arid land crops and riparian plants is applicable to this region of Australia. Future work includes the development of an adjusted algorithm using these sap flow validated results.

  16. Concurrent validity and reliability of using ground reaction force and center of pressure parameters in the determination of leg movement initiation during single leg lift.

    Science.gov (United States)

    Aldabe, Daniela; de Castro, Marcelo Peduzzi; Milosavljevic, Stephan; Bussey, Melanie Dawn

    2016-09-01

    Postural adjustment evaluations during single leg lift requires the initiation of heel lift (T1) identification. T1 measured by means of motion analyses system is the most reliable approach. However, this method involves considerable workspace, expensive cameras, and time processing data and setting up laboratory. The use of ground reaction forces (GRF) and centre of pressure (COP) data is an alternative method as its data processing and setting up is less time consuming. Further, kinetic data is normally collected using frequency samples higher than 1000Hz whereas kinematic data are commonly captured using 50-200Hz. This study describes the concurrent-validity and reliability of GRF and COP measurements in determining T1, using a motion analysis system as reference standard. Kinematic and kinetic data during single leg lift were collected from ten participants. GRF and COP data were collected using one and two force plates. Displacement of a single heel marker was captured by means of ten Vicon(©) cameras. Kinetic and kinematic data were collected using a sample frequency of 1000Hz. Data were analysed in two stages: identification of key events in the kinetic data, and assessing concurrent validity of T1 based on the chosen key events with T1 provided by the kinematic data. The key event presenting the least systematic bias, along with a narrow 95% CI and limits of agreement against the reference standard T1, was the Baseline COPy event. Baseline COPy event was obtained using one force plate and presented excellent between-tester reliability. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2008-05-01

    Full Text Available The Atmospheric Chemistry Experiment (ACE mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO, a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS. This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006. We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES as well as limb-viewing remote sensors (MIPAS, SMR and MLS were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above. These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km, than 30% in the lower stratosphere (12–30 km, and than 25% from 30 to 100 km.

  18. Evaluation of TRMM 3B42 V7 Rainfall Product over the Oum Er Rbia Watershed in Morocco

    Directory of Open Access Journals (Sweden)

    Hamza Ouatiki

    2017-01-01

    Full Text Available In arid and semi-arid areas, rainfall is often characterized by a strong spatial and temporal variability. These environmental factors, combined with the sparsity of the measurement networks in developing countries, constitute real constraints for water resources management. In recent years, several spatial rainfall measurement sources have become available, such as TRMM data (Tropical Rainfall Measurement Mission. In this study, the TRMM 3B42 Version 7 product was evaluated using rain gauges measurements from 19 stations in the Oum-Er-Bia (OER basin located in the center of Morocco. The relevance of the TRMM product was tested by direct comparison with observations at different time scales (daily, monthly, and annual between 1998 and 2010. Results show that the satellite product provides poor estimations of rainfall at the daily time scale giving an average Pearson correlation coefficient (r of 0.2 and average Root Mean Square Error (RMSE of 10 mm. However, the accuracy of TRMM rainfall is improved when temporally averaged to monthly time scale (r of 0.8 and RMSE of 28 mm or annual time scale (r of 0.71 and RMSE of 157 mm. Moreover, improved correlation with observed data was obtained for data spatially averaged at the watershed scale. Therefore, at the monthly and annual time scales, TRMM data can be a useful source of rainfall data for water resources monitoring and management in ungauged basins in semi-arid regions.

  19. NEPR Ground Validation Points 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This shapefile denotes the location of underwater photos and videos taken in shallow water (0-35m) benthic habitats surrounding Northeast Puerto Rico and Culebra...

  20. OMI satellite observed formaldehyde column from 2006 to 2015 over Xishuangbanna, southwest China, and validation using ground based zenith-sky DOAS.

    Science.gov (United States)

    Liu, Rui; Feng, Tao; Wang, Shanshan; Shi, Chanzhen; Guo, Yanlin; Nan, Jialiang; Deng, Yun; Zhou, Bin

    2018-02-01

    Formaldehyde (HCHO) provides a proxy to reveal the isoprene and biogenic volatile organic compounds emission which plays important roles in atmospheric chemical process and climate change. The ground-based observation with zenith-sky DOAS is carried out in order to validate the HCHO columns from OMI. It has a good correlation of 0.71678 between the HCHO columns from two sources. Then we use the OMI HCHO columns from January 2006 to December 2015 to indicate the interannual variation and spatial distribution in Xishuangbanna. The HCHO concentration peaks appeared in March or April for each year significantly corresponding to the intensive fire counts at the same time, which illustrate that the high HCHO columns are strongly influenced by the biomass burning in spring. Temperature and precipitation are also the important influence factors in the seasonal variation when there is nearly no biomass burning. The spatial patterns over the past ten years strengthen the deduction from the temporal variation and show the relationship with land cover and land use, elevation and population density. It is concluded that the biogenic activity plays a role in controlling the background level of HCHO in Xishuangbanna, while biomass burning is the main driving force of high HCHO concentration. And forests are greater contributor to HCHO rather than rubber trees which cover over 20% of the land in the region. Moreover, uncertainties from HCHO slant column retrieval and AMFs calculation are discussed in detail. Copyright © 2017. Published by Elsevier B.V.

  1. Quality assessment of the Ozone_cci Climate Research Data Package (release 2017 – Part 1: Ground-based validation of total ozone column data products

    Directory of Open Access Journals (Sweden)

    K. Garane

    2018-03-01

    Full Text Available The GOME-type Total Ozone Essential Climate Variable (GTO-ECV is a level-3 data record, which combines individual sensor products into one single cohesive record covering the 22-year period from 1995 to 2016, generated in the frame of the European Space Agency's Climate Change Initiative Phase II. It is based on level-2 total ozone data produced by the GODFIT (GOME-type Direct FITting v4 algorithm as applied to the GOME/ERS-2, OMI/Aura, SCIAMACHY/Envisat and GOME-2/Metop-A and Metop-B observations. In this paper we examine whether GTO-ECV meets the specific requirements set by the international climate–chemistry modelling community for decadal stability long-term and short-term accuracy. In the following, we present the validation of the 2017 release of the Climate Research Data Package Total Ozone Column (CRDP TOC at both level 2 and level 3. The inter-sensor consistency of the individual level-2 data sets has mean differences generally within 0.5 % at moderate latitudes (±50°, whereas the level-3 data sets show mean differences with respect to the OMI reference data record that span between −0.2 ± 0.9 % (for GOME-2B and 1.0 ± 1.4 % (for SCIAMACHY. Very similar findings are reported for the level-2 validation against independent ground-based TOC observations reported by Brewer, Dobson and SAOZ instruments: the mean bias between GODFIT v4 satellite TOC and the ground instrument is well within 1.0 ± 1.0 % for all sensors, the drift per decade spans between −0.5 % and 1.0 ± 1.0 % depending on the sensor, and the peak-to-peak seasonality of the differences ranges from ∼ 1 % for GOME and OMI to  ∼ 2 % for SCIAMACHY. For the level-3 validation, our first goal was to show that the level-3 CRDP produces findings consistent with the level-2 individual sensor comparisons. We show a very good agreement with 0.5 to 2 % peak-to-peak amplitude for the monthly mean difference time series and a

  2. Quality assessment of the Ozone_cci Climate Research Data Package (release 2017) - Part 1: Ground-based validation of total ozone column data products

    Science.gov (United States)

    Garane, Katerina; Lerot, Christophe; Coldewey-Egbers, Melanie; Verhoelst, Tijl; Elissavet Koukouli, Maria; Zyrichidou, Irene; Balis, Dimitris S.; Danckaert, Thomas; Goutail, Florence; Granville, Jose; Hubert, Daan; Keppens, Arno; Lambert, Jean-Christopher; Loyola, Diego; Pommereau, Jean-Pierre; Van Roozendael, Michel; Zehner, Claus

    2018-03-01

    The GOME-type Total Ozone Essential Climate Variable (GTO-ECV) is a level-3 data record, which combines individual sensor products into one single cohesive record covering the 22-year period from 1995 to 2016, generated in the frame of the European Space Agency's Climate Change Initiative Phase II. It is based on level-2 total ozone data produced by the GODFIT (GOME-type Direct FITting) v4 algorithm as applied to the GOME/ERS-2, OMI/Aura, SCIAMACHY/Envisat and GOME-2/Metop-A and Metop-B observations. In this paper we examine whether GTO-ECV meets the specific requirements set by the international climate-chemistry modelling community for decadal stability long-term and short-term accuracy. In the following, we present the validation of the 2017 release of the Climate Research Data Package Total Ozone Column (CRDP TOC) at both level 2 and level 3. The inter-sensor consistency of the individual level-2 data sets has mean differences generally within 0.5 % at moderate latitudes (±50°), whereas the level-3 data sets show mean differences with respect to the OMI reference data record that span between -0.2 ± 0.9 % (for GOME-2B) and 1.0 ± 1.4 % (for SCIAMACHY). Very similar findings are reported for the level-2 validation against independent ground-based TOC observations reported by Brewer, Dobson and SAOZ instruments: the mean bias between GODFIT v4 satellite TOC and the ground instrument is well within 1.0 ± 1.0 % for all sensors, the drift per decade spans between -0.5 % and 1.0 ± 1.0 % depending on the sensor, and the peak-to-peak seasonality of the differences ranges from ˜ 1 % for GOME and OMI to ˜ 2 % for SCIAMACHY. For the level-3 validation, our first goal was to show that the level-3 CRDP produces findings consistent with the level-2 individual sensor comparisons. We show a very good agreement with 0.5 to 2 % peak-to-peak amplitude for the monthly mean difference time series and a negligible drift per decade of the differences in the Northern Hemisphere

  3. Evaluation of rainfall retrievals from SEVIRI reflectances over West Africa using TRMM-PR and CMORPH

    Science.gov (United States)

    Wolters, E. L. A.; van den Hurk, B. J. J. M.; Roebeling, R. A.

    2011-02-01

    This paper describes the evaluation of the KNMI Cloud Physical Properties - Precipitation Properties (CPP-PP) algorithm over West Africa. The algorithm combines condensed water path (CWP), cloud phase (CPH), cloud particle effective radius (re), and cloud-top temperature (CTT) retrievals from visible, near-infrared and thermal infrared observations of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellites to estimate rain occurrence frequency and rain rate. For the 2005 and 2006 monsoon seasons, it is investigated whether the CPP-PP algorithm is capable of retrieving rain occurrence frequency and rain rate over West Africa with sufficient accuracy, using Tropical Monsoon Measurement Mission Precipitation Radar (TRMM-PR) as reference. As a second goal, it is assessed whether SEVIRI is capable of monitoring the seasonal and daytime evolution of rainfall during the West African monsoon (WAM), using Climate Prediction Center Morphing Technique (CMORPH) rainfall observations. The SEVIRI-detected rainfall area agrees well with TRMM-PR, with the areal extent of rainfall by SEVIRI being ~10% larger than from TRMM-PR. The mean retrieved rain rate from CPP-PP is about 8% higher than from TRMM-PR. Examination of the TRMM-PR and CPP-PP cumulative frequency distributions revealed that differences between CPP-PP and TRMM-PR are generally within +/-10%. Relative to the AMMA rain gauge observations, CPP-PP shows very good agreement up to 5 mm h-1. However, at higher rain rates (5-16 mm h-1) CPP-PP overestimates compared to the rain gauges. With respect to the second goal of this paper, it was shown that both the accumulated precipitation and the seasonal progression of rainfall throughout the WAM is in good agreement with CMORPH, although CPP-PP retrieves higher amounts in the coastal region of West Africa. Using latitudinal Hovmüller diagrams, a fair correspondence between CPP-PP and CMORPH was found, which is reflected

  4. Evaluation of rainfall retrievals from SEVIRI reflectances over West Africa using TRMM-PR and CMORPH

    Directory of Open Access Journals (Sweden)

    E. L. A. Wolters

    2011-02-01

    Full Text Available This paper describes the evaluation of the KNMI Cloud Physical Properties – Precipitation Properties (CPP-PP algorithm over West Africa. The algorithm combines condensed water path (CWP, cloud phase (CPH, cloud particle effective radius (re, and cloud-top temperature (CTT retrievals from visible, near-infrared and thermal infrared observations of the Spinning Enhanced Visible and Infrared Imager (SEVIRI onboard the Meteosat Second Generation (MSG satellites to estimate rain occurrence frequency and rain rate. For the 2005 and 2006 monsoon seasons, it is investigated whether the CPP-PP algorithm is capable of retrieving rain occurrence frequency and rain rate over West Africa with sufficient accuracy, using Tropical Monsoon Measurement Mission Precipitation Radar (TRMM-PR as reference. As a second goal, it is assessed whether SEVIRI is capable of monitoring the seasonal and daytime evolution of rainfall during the West African monsoon (WAM, using Climate Prediction Center Morphing Technique (CMORPH rainfall observations. The SEVIRI-detected rainfall area agrees well with TRMM-PR, with the areal extent of rainfall by SEVIRI being ~10% larger than from TRMM-PR. The mean retrieved rain rate from CPP-PP is about 8% higher than from TRMM-PR. Examination of the TRMM-PR and CPP-PP cumulative frequency distributions revealed that differences between CPP-PP and TRMM-PR are generally within +/−10%. Relative to the AMMA rain gauge observations, CPP-PP shows very good agreement up to 5 mm h−1. However, at higher rain rates (5–16 mm h−1 CPP-PP overestimates compared to the rain gauges. With respect to the second goal of this paper, it was shown that both the accumulated precipitation and the seasonal progression of rainfall throughout the WAM is in good agreement with CMORPH, although CPP-PP retrieves higher amounts in the coastal region of West Africa. Using latitudinal Hovmüller diagrams, a fair

  5. ENSO Related Inter-Annual Lightning Variability from the Full TRMM LIS Lightning Climatology

    Science.gov (United States)

    Clark, Austin; Cecil, Daniel

    2018-01-01

    The El Nino/Southern Oscillation (ENSO) contributes to inter-annual variability of lightning production more than any other atmospheric oscillation. This study further investigated how ENSO phase affects lightning production in the tropics and subtropics using the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS). Lightning data were averaged into mean annual warm, cold, and neutral 'years' for analysis of the different phases and compared to model reanalysis data. An examination of the regional sensitivities and preliminary analysis of three locations was conducted using model reanalysis data to determine the leading convective mechanisms in these areas and how they might respond to the ENSO phases

  6. Standard Deviation of Spatially-Averaged Surface Cross Section Data from the TRMM Precipitation Radar

    Science.gov (United States)

    Meneghini, Robert; Jones, Jeffrey A.

    2010-01-01

    We investigate the spatial variability of the normalized radar cross section of the surface (NRCS or Sigma(sup 0)) derived from measurements of the TRMM Precipitation Radar (PR) for the period from 1998 to 2009. The purpose of the study is to understand the way in which the sample standard deviation of the Sigma(sup 0) data changes as a function of spatial resolution, incidence angle, and surface type (land/ocean). The results have implications regarding the accuracy by which the path integrated attenuation from precipitation can be inferred by the use of surface scattering properties.

  7. Cross-validation of IASI/MetOp derived tropospheric δD with TES and ground-based FTIR observations

    Science.gov (United States)

    Lacour, J.-L.; Clarisse, L.; Worden, J.; Schneider, M.; Barthlott, S.; Hase, F.; Risi, C.; Clerbaux, C.; Hurtmans, D.; Coheur, P.-F.

    2015-03-01

    The Infrared Atmospheric Sounding Interferometer (IASI) flying onboard MetOpA and MetOpB is able to capture fine isotopic variations of the HDO to H2O ratio (δD) in the troposphere. Such observations at the high spatio-temporal resolution of the sounder are of great interest to improve our understanding of the mechanisms controlling humidity in the troposphere. In this study we aim to empirically assess the validity of our error estimation previously evaluated theoretically. To achieve this, we compare IASI δD retrieved profiles with other available profiles of δD, from the TES infrared sounder onboard AURA and from three ground-based FTIR stations produced within the MUSICA project: the NDACC (Network for the Detection of Atmospheric Composition Change) sites Kiruna and Izaña, and the TCCON site Karlsruhe, which in addition to near-infrared TCCON spectra also records mid-infrared spectra. We describe the achievable level of agreement between the different retrievals and show that these theoretical errors are in good agreement with empirical differences. The comparisons are made at different locations from tropical to Arctic latitudes, above sea and above land. Generally IASI and TES are similarly sensitive to δD in the free troposphere which allows one to compare their measurements directly. At tropical latitudes where IASI's sensitivity is lower than that of TES, we show that the agreement improves when taking into account the sensitivity of IASI in the TES retrieval. For the comparison IASI-FTIR only direct comparisons are performed because the sensitivity profiles of the two observing systems do not allow to take into account their differences of sensitivity. We identify a quasi negligible bias in the free troposphere (-3‰) between IASI retrieved δD with the TES, which are bias corrected, but important with the ground-based FTIR reaching -47‰. We also suggest that model-satellite observation comparisons could be optimized with IASI thanks to its high

  8. Quantitative precipitation climatology over the Himalayas by using Precipitation Radar on Tropical Rainfall Measuring Mission (TRMM) and a dense network of rain-gauges

    Science.gov (United States)

    Yatagai, A.

    2010-09-01

    Quantified grid observation data at a reasonable resolution are indispensable for environmental monitoring as well as for predicting future change of mountain environment. However quantified datasets have not been available for the Himalayan region. Hence we evaluate climatological precipitation data around the Himalayas by using Precipitation Radar (PR) data acquired by the Tropical Rainfall Measuring Mission (TRMM) over 10 years of observation. To validate and adjust these patterns, we used a dense network of rain gauges collected by the Asian Precipitation—Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE Water Resources) project (http://www.chikyu.ac.jp/precip/). We used more than 2600 stations which have more than 10-year monthly precipitation over the Himalayan region (75E-105E, 20-36N) including country data of Nepal, Bangladesh, Bhutan, Pakistan, India, Myanmar, and China. The region we studied is so topographically complicated that horizontal patterns are not uniform. Therefore, every path data of PR2A25 (near-surface rain) was averaged in a 0.05-degree grid and a 10-year monthly average was computed (hereafter we call PR). On the other hand, for rain-gauge, we first computed cell averages if each 0.05-degree grid cell has 10 years observation or more. Here we refer to the 0.05-degree rain-gauge climatology data as RG data. On the basis of comparisons between the RG and PR composite values, we defined the parameters of the regressions to correct the monthly climatology value based on the rain gauge observations. Compared with the RG, the PR systematically underestimated precipitation by 28-38% in summer (July-September). Significant correlation between TRMM/PR and rain-gauge data was found for all months, but the correlation is relatively low in winter. The relationship is investigated for different elevation zones, and the PR was found to underestimate RG data in most zones, except for certain zones in

  9. Reflectance conversion methods for the VIS/NIR imaging spectrometer aboard the Chang'E-3 lunar rover: based on ground validation experiment data

    International Nuclear Information System (INIS)

    Liu Bin; Liu Jian-Zhong; Zhang Guang-Liang; Zou Yong-Liao; Ling Zong-Cheng; Zhang Jiang; He Zhi-Ping; Yang Ben-Yong

    2013-01-01

    The second phase of the Chang'E Program (also named Chang'E-3) has the goal to land and perform in-situ detection on the lunar surface. A VIS/NIR imaging spectrometer (VNIS) will be carried on the Chang'E-3 lunar rover to detect the distribution of lunar minerals and resources. VNIS is the first mission in history to perform in-situ spectral measurement on the surface of the Moon, the reflectance data of which are fundamental for interpretation of lunar composition, whose quality would greatly affect the accuracy of lunar element and mineral determination. Until now, in-situ detection by imaging spectrometers was only performed by rovers on Mars. We firstly review reflectance conversion methods for rovers on Mars (Viking landers, Pathfinder and Mars Exploration rovers, etc). Secondly, we discuss whether these conversion methods used on Mars can be applied to lunar in-situ detection. We also applied data from a laboratory bidirectional reflectance distribution function (BRDF) using simulated lunar soil to test the availability of this method. Finally, we modify reflectance conversion methods used on Mars by considering differences between environments on the Moon and Mars and apply the methods to experimental data obtained from the ground validation of VNIS. These results were obtained by comparing reflectance data from the VNIS measured in the laboratory with those from a standard spectrometer obtained at the same time and under the same observing conditions. The shape and amplitude of the spectrum fits well, and the spectral uncertainty parameters for most samples are within 8%, except for the ilmenite sample which has a low albedo. In conclusion, our reflectance conversion method is suitable for lunar in-situ detection.

  10. Two-Column Aerosol Project (TCAP): Ground-Based Radiation and Aerosol Validation Using the NOAA Mobile SURFRAD Station Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, Joseph [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); Lantz, Kathy [Univ. of Colorado, Boulder, CO (United States)

    2016-05-01

    The National Oceanic and Atmospheric Administration (NOAA) is preparing for the launch of the Geostationary Operational Environmental Satellite R-Series (GOES-R) satellite in 2015. This satellite will feature higher time (5-minute versus 30-minute sampling) and spatial resolution (0.5 km vs 1 km in the visible channel) than current GOES instruments provide. NOAA’s National Environmental Satellite Data and Information Service has funded the Global Monitoring Division at the Earth System Research Laboratory to provide ground-based validation data for many of the new and old products the new GOES instruments will retrieve specifically related to radiation at the surface and aerosol and its extensive and intensive properties in the column. The Two-Column Aerosol Project (TCAP) had an emphasis on aerosol; therefore, we asked to be involved in this campaign to de-bug our new instrumentation and to provide a new capability that the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Mobile Facilities (AMF) did not possess, namely surface albedo measurement out to 1625 nm. This gave us a chance to test remote operation of our new multi-filter rotating shadowband radiometer/multi-filter radiometer (MFRSR/MFR) combination. We did not deploy standard broadband shortwave and longwave radiation instrumentation because ARM does this as part of every AMF deployment. As it turned out, the ARM standard MFRSR had issues, and we were able to provide the aerosol column data for the first 2 months of the campaign covering the summer flight phase of the deployment. Using these data, we were able to work with personnel at Pacific Northwest National Laboratory (PNNL) to retrieve not only aerosol optical depth (AOD), but single scattering albedo and asymmetry parameter, as well.

  11. Differences in rain rate intensities between TRMM observations and community atmosphere model simulations

    Science.gov (United States)

    Deng, Yi; Bowman, Kenneth P.; Jackson, Charles

    2007-01-01

    Precipitation related latent heating is important in driving the atmospheric general circulation and in generating intraseasonal to decadal atmospheric variability. Our ability to project future climate change, especially trends in costly precipitation extremes, hinges upon whether coupled GCMs capture processes that affect precipitation characteristics. Our study compares the tropical-subtropical precipitation characteristics of simulations by the NCAR CAM3.1 atmospheric GCM and observations derived from the NASA Tropical Rainfall Measuring Mission (TRMM) satellite. Despite a fairly good simulation of the annual mean rain rate, CAM rains about 10-50% more often than the real world and fails to capture heavy rainfall associated with deep convective systems over subtropical South America and U.S. Southern Plains. When it rains, there is a likelihood of 0.96-1.0 that it rains lightly in the model, compared to values of 0.84-1.0 in TRMM data. On the other hand, the likelihood of the occurrence of moderate to heavy rainfall is an order of magnitude higher in observations (0.12-0.2) than that in the model (model compensates for the lack of heavy precipitation through raining more frequently within the light rain category, which leads to an annual rainfall amount close to what is observed. CAM captures the qualitative change of rain rate PDF from a "dry" oceanic to a "wet" oceanic region, but it fails to simulate the change of precipitation characteristics from an oceanic region to a land region where thunderstorm rainfall dominates.

  12. TRMM Satellite Algorithm Estimates to Represent the Spatial Distribution of Rainstorms

    Directory of Open Access Journals (Sweden)

    Patrick Marina

    2017-01-01

    Full Text Available On-site measurements from rain gauge provide important information for the design, construction, and operation of water resources engineering projects, groundwater potentials, and the water supply and irrigation systems. A dense gauging network is needed to accurately characterize the variation of rainfall over a region, unfitting for conditions with limited networks, such as in Sarawak, Malaysia. Hence, satellite-based algorithm estimates are introduced as an innovative solution to these challenges. With accessibility to dataset retrievals from public domain websites, it has become a useful source to measure rainfall for a wider coverage area at finer temporal resolution. This paper aims to investigate the rainfall estimates prepared by Tropical Rainfall Measuring Mission (TRMM to explain whether it is suitable to represent the distribution of extreme rainfall in Sungai Sarawak Basin. Based on the findings, more uniform correlations for the investigated storms can be observed for low to medium altitude (>40 MASL. It is found for the investigated events of Jan 05-11, 2009: the normalized root mean square error (NRMSE = 36.7 %; and good correlation (CC = 0.9. These findings suggest that satellite algorithm estimations from TRMM are suitable to represent the spatial distribution of extreme rainfall.

  13. Analysis of TRMM-LIS Lightning and Related Microphysics Using a Cell-Scale Database

    Science.gov (United States)

    Leroy, Anita; Petersen, Walter A.

    2010-01-01

    Previous studies of tropical lightning activity using Tropical Rainfall Measurement Mission (TRMM) Lightning Imaging Sensor (LIS) data performed analyses of lightning behavior over mesoscale "feature" scales or over uniform grids. In order to study lightning and the governing ice microphysics intrinsic to thunderstorms at a more process-specific scale (i.e., the scale over which electrification processes and lightning occur in a "unit" thunderstorm), a new convective cell-scale database was developed by analyzing and refining the University of Utah's Precipitation Features database and retaining precipitation data parameters computed from the TRMM precipitation radar (PR), microwave imager (TMI) and LIS instruments. The resulting data base was to conduct a limited four-year study of tropical continental convection occurring over the Amazon Basin, Congo, Maritime Continent and the western Pacific Ocean. The analysis reveals expected strong correlations between lightning flash counts per cell and ice proxies, such as ice water path, minimum and average 85GHz brightness temperatures, and 18dBz echo top heights above the freezing level in all regimes, as well as regime-specific relationships between lighting flash counts and PR-derived surface rainfall rates. Additionally, radar CFADs were used to partition the 3D structure of cells in each regime at different flash counts. The resulting cell-scale analyses are compared to previous mesoscale feature and gridded studies wherever possible.

  14. A satellite simulator for TRMM PR applied to climate model simulations

    Science.gov (United States)

    Spangehl, T.; Schroeder, M.; Bodas-Salcedo, A.; Hollmann, R.; Riley Dellaripa, E. M.; Schumacher, C.

    2017-12-01

    Climate model simulations have to be compared against observation based datasets in order to assess their skill in representing precipitation characteristics. Here we use a satellite simulator for TRMM PR in order to evaluate simulations performed with MPI-ESM (Earth system model of the Max Planck Institute for Meteorology in Hamburg, Germany) performed within the MiKlip project (https://www.fona-miklip.de/, funded by Federal Ministry of Education and Research in Germany). While classical evaluation methods focus on geophysical parameters such as precipitation amounts, the application of the satellite simulator enables an evaluation in the instrument's parameter space thereby reducing uncertainties on the reference side. The CFMIP Observation Simulator Package (COSP) provides a framework for the application of satellite simulators to climate model simulations. The approach requires the introduction of sub-grid cloud and precipitation variability. Radar reflectivities are obtained by applying Mie theory, with the microphysical assumptions being chosen to match the atmosphere component of MPI-ESM (ECHAM6). The results are found to be sensitive to the methods used to distribute the convective precipitation over the sub-grid boxes. Simple parameterization methods are used to introduce sub-grid variability of convective clouds and precipitation. In order to constrain uncertainties a comprehensive comparison with sub-grid scale convective precipitation variability which is deduced from TRMM PR observations is carried out.

  15. Validation of the IASI operational CH4 and N2O products using ground-based Fourier Transform Spectrometer: preliminary results at the Izaña Observatory (28ºN, 17ºW

    Directory of Open Access Journals (Sweden)

    Omaira García

    2014-01-01

    Full Text Available Within the project VALIASI (VALidation of IASI level 2 products the validation of the IASI operational atmospheric trace gas products (total column amounts of H2O, O3, CH4, N2O, CO2 and CO as well H2O and O3 profiles will be carried out. Ground-based FTS (Fourier Transform Spectrometer trace gas measurements made in the framework of NDACC (Network for the Detection of Atmospheric Composition Change serve as the validation reference. In this work, we will present the validation methodology developed for this project and show the first intercomparison results obtained for the Izaña Atmospheric Observatory between 2008 and 2012. As example, we will focus on two of the most important greenhouse gases, CH4 and N2O.

  16. Quantifying Uncertainty in Instantaneous Orbital Data Products of TRMM over Indian Subcontinent

    Science.gov (United States)

    Jayaluxmi, I.; Nagesh, D.

    2013-12-01

    In the last 20 years, microwave radiometers have taken satellite images of earth's weather proving to be a valuable tool for quantitative estimation of precipitation from space. However, along with the widespread acceptance of microwave based precipitation products, it has also been recognized that they contain large uncertainties. While most of the uncertainty evaluation studies focus on the accuracy of rainfall accumulated over time (e.g., season/year), evaluation of instantaneous rainfall intensities from satellite orbital data products are relatively rare. These instantaneous products are known to potentially cause large uncertainties during real time flood forecasting studies at the watershed scale. Especially over land regions, where the highly varying land surface emissivity offer a myriad of complications hindering accurate rainfall estimation. The error components of orbital data products also tend to interact nonlinearly with hydrologic modeling uncertainty. Keeping these in mind, the present study fosters the development of uncertainty analysis using instantaneous satellite orbital data products (version 7 of 1B11, 2A25, 2A23) derived from the passive and active sensors onboard Tropical Rainfall Measuring Mission (TRMM) satellite, namely TRMM microwave imager (TMI) and Precipitation Radar (PR). The study utilizes 11 years of orbital data from 2002 to 2012 over the Indian subcontinent and examines the influence of various error sources on the convective and stratiform precipitation types. Analysis conducted over the land regions of India investigates three sources of uncertainty in detail. These include 1) Errors due to improper delineation of rainfall signature within microwave footprint (rain/no rain classification), 2) Uncertainty offered by the transfer function linking rainfall with TMI low frequency channels and 3) Sampling errors owing to the narrow swath and infrequent visits of TRMM sensors. Case study results obtained during the Indian summer

  17. TRMM Version 7 Level 3 Gridded Monthly Accumulations of GPROF Precipitation Retrievals

    Science.gov (United States)

    Stocker, E. F.; Kelley, O. A.

    2012-01-01

    In July 2011, improved versions of the retrieval algorithms were approved for TRMM. All data starting with June 2011 are produced only with the version 7 code. At the same time, version 7 reprocessing of all TRMM mission data was started. By the end of August 2011, the 14+ years of the reprocessed mission data became available online to users. This reprocessing provided the opportunity to redo and enhance upon an analysis of V7 impacts on L3 data accumulations that was presented at the 2010 EGU General Assembly. This paper will discuss the impact of algorithm changes made in th GPROF retrieval on the Level 2 swath products. Perhaps the most important change in that retrieval was to replacement of a model based a priori database with one created from Precipitation Radar (PR) and TMI brightness temperature (Tb) data. The radar pays a major role in the V7 GPROF (GPROF2010) in determining existence of rain. The level 2 retrieval algorithm also introduced a field providing the probability of rain. This combined use of the PR has some impact on the retrievals and created areas, particularly over ocean, where many areas of low-probability precipitation are retrieved whereas in version 6, these areas contained zero rain rates. This paper will discuss how these impacts get translated to the space/time averaged monthly products that use the GPROF retrievals. The level 3 products discussed are the gridded text product 3G68 and the standard 3A12 and 3B31 products. The paper provides an overview of the changes and explanation of how the level 3 products dealt with the change in the retrieval approach. Using the .25 deg x .25 degree grid, the paper will show that agreement between the swath product and the level 3 remains very high. It will also present comparisons of V6 and V7 GPROF retrievals as seen both at the swath level and the level 3 time/space gridded accumulations. It will show that the various L3 products based on GPROF level 2 retrievals are in close agreement. The

  18. Stochastic ground motion simulation

    Science.gov (United States)

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  19. ENSO Related Interannual Lightning Variability from the Full TRMM LIS Lightning Climatology

    Science.gov (United States)

    Clark, Austin; Cecil, Daniel J.

    2018-01-01

    It has been shown that the El Nino/Southern Oscillation (ENSO) contributes to inter-annual variability of lightning production in the tropics and subtropics more than any other atmospheric oscillation. This study further investigated how ENSO phase affects lightning production in the tropics and subtropics. Using the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) and the Oceanic Nino Index (ONI) for ENSO phase, lightning data were averaged into corresponding mean annual warm, cold, and neutral 'years' for analysis of the different phases. An examination of the regional sensitivities and preliminary analysis of three locations was conducted using model reanalysis data to determine the leading convective mechanisms in these areas and how they might respond to the ENSO phases. These processes were then studied for inter-annual variance and subsequent correlation to ENSO during the study period to best describe the observed lightning deviations from year to year at each location.

  20. Monitoring mass changes in the Volta River basin using GRACE satellite gravity and TRMM precipitation

    Directory of Open Access Journals (Sweden)

    Vagner G. Ferreira

    Full Text Available GRACE satellite gravity data was used to estimate mass changes within the Volta River basin in West African for the period of January, 2005 to December, 2010. We also used the precipitation data from the Tropical Rainfall Measurement Mission (TRMM to determine relative contributions source to the seasonal hydrological balance within the Volta River basin. We found out that the seasonal mass change tends to be detected by GRACE for periods from 1 month in the south to 4 months in the north of the basin after the rainfall events. The results suggested a significant gain in water storage in the basin at reference epoch 2007.5 and a dominant annual cycle for the period under consideration for both in the mass changes and rainfall time series. However, there was a low correlation between mass changes and rainfall implying that there must be other processes which cause mass changes without rainfall in the upstream of the Volta River basin.

  1. Assessment of TRMM 3B43 product for drought monitoring in Singapore

    Science.gov (United States)

    Tan, Mou Leong; Chua, Vivien P.; Tan, Kok Chooi; Brindha, K.

    2017-10-01

    Drought is one of the most hazardous natural disasters for human beings and the environment. Using only rain gauge is insufficient to monitor the drought pattern effectively as it impacts large areas. This situation is more critical on small island countries, with limited rain gauges for monitoring drought pattern over the ocean regions. This study aims to assess the capability of Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B43 product in monitoring drought in Singapore from 1998 to 2014. The Standardized Precipitation Index (SPI) at various time-scales is used for identifying drought patterns. Results show moderate to good correlations between TMPA- 3B43 and rain gauges in the SPI estimations. Besides that, TMPA-3B43 exhibits a similar temporal drought behavior as the rain gauges. These findings indicate the TMPA 3B43 product as a very useful tool to study drought pattern over Singapore.

  2. Relationships Between Long-Range Lightning Networks and TRMM/LIS Observations

    Science.gov (United States)

    Rudlosky, Scott D.; Holzworth, Robert H.; Carey, Lawrence D.; Schultz, Chris J.; Bateman, Monte; Cummins, Kenneth L.; Cummins, Kenneth L.; Blakeslee, Richard J.; Goodman, Steven J.

    2012-01-01

    Recent advances in long-range lightning detection technologies have improved our understanding of thunderstorm evolution in the data sparse oceanic regions. Although the expansion and improvement of long-range lightning datasets have increased their applicability, these applications (e.g., data assimilation, atmospheric chemistry, and aviation weather hazards) require knowledge of the network detection capabilities. The present study intercompares long-range lightning data with observations from the Lightning Imaging Sensor (LIS) aboard the Tropical Rainfall Measurement Mission (TRMM) satellite. The study examines network detection efficiency and location accuracy relative to LIS observations, describes spatial variability in these performance metrics, and documents the characteristics of LIS flashes that are detected by the long-range networks. Improved knowledge of relationships between these datasets will allow researchers, algorithm developers, and operational users to better prepare for the spatial and temporal coverage of the upcoming GOES-R Geostationary Lightning Mapper (GLM).

  3. Evaluation of TRMM satellite-based precipitation indexes for flood forecasting over Riyadh City, Saudi Arabia

    Science.gov (United States)

    Tekeli, Ahmet Emre; Fouli, Hesham

    2016-10-01

    Floods are among the most common disasters harming humanity. In particular, flash floods cause hazards to life, property and any type of structures. Arid and semi-arid regions are equally prone to flash floods like regions with abundant rainfall. Despite rareness of intensive and frequent rainfall events over Kingdom of Saudi Arabia (KSA); an arid/semi-arid region, occasional flash floods occur and result in large amounts of damaging surface runoff. The flooding of 16 November, 2013 in Riyadh; the capital city of KSA, resulted in killing some people and led to much property damage. The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) Real Time (RT) data (3B42RT) are used herein for flash flood forecasting. 3B42RT detected high-intensity rainfall events matching with the distribution of observed floods over KSA. A flood early warning system based on exceedance of threshold limits on 3B42RT data is proposed for Riyadh. Three different indexes: Constant Threshold (CT), Cumulative Distribution Functions (CDF) and Riyadh Flood Precipitation Index (RFPI) are developed using 14-year 3B42RT data from 2000 to 2013. RFPI and CDF with 90% captured the three major flooding events that occurred in February 2005, May 2010 and November 2013 in Riyadh. CT with 3 mm/h intensity indicated the 2013 flooding, but missed those of 2005 and 2010. The methodology implemented herein is a first-step simple and accurate way for flash flood forecasting over Riyadh. The simplicity of the methodology enables its applicability for the TRMM follow-on missions like Global Precipitation Measurement (GPM) mission.

  4. A Model for Estimation of Rain Rate on Tropical Land from TRMM Microwave Imager Radiometer Observations

    Science.gov (United States)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Kim, Kyu-Myong

    2004-01-01

    Over the tropical land regions observations of the 85 GHz brightness temperature (T(sub 85v)) made by the TRMM Microwave Imager (TMI) radiometer when analyzed with the help of rain rate (R(sub pR)) deduced from the TRMM Precipitation Radar (PR) indicate that there are two maxima in rain rate. One strong maximum occurs when T(sub 85) has a value of about 220 K and the other weaker one when T(sub 85v) is much colder approx. 150 K. Together with the help of earlier studies based on airborne Doppler Radar observations and radiative transfer theoretical simulations, we infer the maximum near 220 K is a result of relatively weak scattering due to super cooled rain drops and water coated ice hydrometeors associated with a developing thunderstorm (Cb) that has a strong updraft. The other maximum is associated with strong scattering due to ice particles that are formed when the updraft collapses and the rain from the Cb is transit2oning from convective type to stratiform type. Incorporating these ideas and with a view to improve the estimation of rain rate from existing operational method applicable to the tropical land areas, we have developed a rain retrieval model. This model utilizes two parameters, that have a horizontal scale of approx. 20km, deduced from the TMI measurements at 19, 21 and 37 GHz (T(sub 19v), T(sub 21v), T(sub 37v). The third parameter in the model, namely the horizontal gradient of brightness temperature within the 20 km scale, is deduced from TMI measurements at 85 GHz. Utilizing these parameters our retrieval model is formulated to yield instantaneous rain rate on a scale of 20 km and seasonal average on a mesoscale that agree well with that of the PR.

  5. Variations of Precipitation Structure and Microwave Tbs During the Evolution of a Hailstorm from TRMM Observations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, a hailstorm occurring on 9 May 1999 in Huanghuai region was studied by using the combined data from the precipitation radar (PR), microwave image (TMI), and visible infrared scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) satellite. According to the 3-orbit observations of 5-h duration from the TRMM satellite, the variation characteristics of the precipitation structures as well as cloud top temperature and microwave signals of the precipitating cloud were comprehensively analyzed during the evolution of hailstorm. The results show that the precipitation is obviously converted from early hail cloud with strong convection into the later storm cloud with weak convection. For hail cloud, there exists some strong convective cells, and the heavy solid precipitation is shown at the middle-top levels so that the contribution of rainfall amount above the freezing-layer to the column precipitation amount is rather larger than that within the melting-layer. However, for storm cloud, the convective cells are surrounded by the large area of stratiform precipitation, and the precipitation thickness gradually decreases, and the rainfall above the freezing-layer obviously reduces and the contribution of rainfall amount within the melting-layer rapidly increases. Therefore, the larger ratio of rainfall amount above the freezing layer to column precipitation amount is, the more convective the cloud is; reversely, the larger proportion of rainfall below the melting layer is, the more stable the stratiform cloud is. The different changing trends of microwave signals at different precipitation stages show that it is better to consider the structures and stages of precipitating cloud to choose the optimal microwave channels to retrieve surface rainfall.

  6. Soil erosion assessment of a Himalayan river basin using TRMM data

    Science.gov (United States)

    Pandey, A.; Mishra, S. K.; Gautam, A. K.; Kumar, D.

    2015-04-01

    In this study, an attempt has been made to assess the soil erosion of a Himalayan river basin, the Karnali basin, Nepal, using rainfall erosivity (R-factor) derived from satellite-based rainfall estimates (TRMM-3B42 V7). Average annual sediment yield was estimated using the well-known Universal Soil Loss Equation (USLE). The eight-year annual average rainfall erosivity factor (R) for the Karnali River basin was found to be 2620.84 MJ mm ha-1 h-1 year-1. Using intensity-erosivity relationships and eight years of the TRMM daily rainfall dataset (1998-2005), average annual soil erosion was also estimated for Karnali River basin. The minimum and maximum values of the rainfall erosivity factor were 1108.7 and 4868.49 MJ mm ha-1 h-1 year-1, respectively, during the assessment period. The average annual soil loss of the Karnali River basin was found to be 38.17 t ha-1 year-1. Finally, the basin area was categorized according to the following scale of erosion severity classes: Slight (0 to 5 t ha-1 year-1), Moderate (5 to 10 t ha-1 year-1), High (10 to 20 t ha-1 year-1), Very High (20 to 40 t ha-1 year-1), Severe (40 to 80 t ha-1 year-1) and Very Severe (>80 t ha-1 year-1). About 30.86% of the river basin area was found to be in the slight erosion class. The areas covered by the moderate, high, very high, severe and very severe erosion potential zones were 13.09%, 6.36%, 11.09%, 22.02% and 16.64% respectively. The study revealed that approximately 69% of the Karnali River basin needs immediate attention from a soil conservation point of view.

  7. Relationships between the Raindrop Size Distribution and Properties of the Environment and Clouds Inferred from TRMM

    Science.gov (United States)

    Munchak, Stephen Joseph; Kummerow, Christian; Elsaesser, Gregory

    2013-01-01

    Variability in the raindrop sized distribution (DSD) has long been recognized as a source of uncertainty in relationships between radar reflectivity Z and rain rate R. In this study, we analyze DSD retrievals from two years of data gathered by the Tropical Rainfall Measuring Mission (TRMM) satellite and processed with a combined radar-radiometer retrieval algorithm over the global oceans equatorward of 35?. Numerous variables describing properties of each reflectivity profile, large-scale organization, and the background environment are examined for relationships to the reflectivity-normalized median drop diameter, epsilonDSD. In general, we find that higher freezing levels and relative humidities are associated with smaller epsilonDSD. Within a given environment, the mesoscale organization of precipitation and the vertical profile of reflectivity are associated with DSD characteristics. In the tropics, the smallest epsilonDSD values are found in large but shallow convective systems, where warm rain formation processes are thought to be predominant, whereas larger sizes are found in the stratiform regions of organized deep convection. In the extratropics, the largest epsilonDSD values are found in the scattered convection that occurs when cold, dry continental air moves over the much warmer ocean after the passage of a cold front. The geographical distribution of the retrieved DSDs is consistent with many of the observed regional Z-R relationships found in the literature as well as discrepancies between the TRMM radar-only and radiometer-only precipitation products. In particular, mid-latitude and tropical regions near land tend to have larger drops for a given reflectivity, whereas the smallest drops are found in the eastern Pacific Intertropical Convergence Zone.

  8. Social Connectedness and Perceived Listening Effort in Adult Cochlear Implant Users: A Grounded Theory to Establish Content Validity for a New Patient-Reported Outcome Measure.

    Science.gov (United States)

    Hughes, Sarah E; Hutchings, Hayley A; Rapport, Frances L; McMahon, Catherine M; Boisvert, Isabelle

    2018-02-08

    Individuals with hearing loss often report a need for increased effort when listening, particularly in challenging acoustic environments. Despite audiologists' recognition of the impact of listening effort on individuals' quality of life, there are currently no standardized clinical measures of listening effort, including patient-reported outcome measures (PROMs). To generate items and content for a new PROM, this qualitative study explored the perceptions, understanding, and experiences of listening effort in adults with severe-profound sensorineural hearing loss before and after cochlear implantation. Three focus groups (1 to 3) were conducted. Purposive sampling was used to recruit 17 participants from a cochlear implant (CI) center in the United Kingdom. The participants included adults (n = 15, mean age = 64.1 years, range 42 to 84 years) with acquired severe-profound sensorineural hearing loss who satisfied the UK's national candidacy criteria for cochlear implantation and their normal-hearing significant others (n = 2). Participants were CI candidates who used hearing aids (HAs) and were awaiting CI surgery or CI recipients who used a unilateral CI or a CI and contralateral HA (CI + HA). Data from a pilot focus group conducted with 2 CI recipients were included in the analysis. The data, verbatim transcripts of the focus group proceedings, were analyzed qualitatively using constructivist grounded theory (GT) methodology. A GT of listening effort in cochlear implantation was developed from participants' accounts. The participants provided rich, nuanced descriptions of the complex and multidimensional nature of their listening effort. Interpreting and integrating these descriptions through GT methodology, listening effort was described as the mental energy required to attend to and process the auditory signal, as well as the effort required to adapt to, and compensate for, a hearing loss. Analyses also suggested that listening effort for most participants was

  9. Technical Note: Validation of Odin/SMR limb observations of ozone, comparisons with OSIRIS, POAM III, ground-based and balloon-borne instruments

    Directory of Open Access Journals (Sweden)

    F. Jégou

    2008-06-01

    Full Text Available The Odin satellite carries two instruments capable of determining stratospheric ozone profiles by limb sounding: the Sub-Millimetre Radiometer (SMR and the UV-visible spectrograph of the OSIRIS (Optical Spectrograph and InfraRed Imager System instrument. A large number of ozone profiles measurements were performed during six years from November 2001 to present. This ozone dataset is here used to make quantitative comparisons with satellite measurements in order to assess the quality of the Odin/SMR ozone measurements. In a first step, we compare Swedish SMR retrievals version 2.1, French SMR ozone retrievals version 222 (both from the 501.8 GHz band, and the OSIRIS retrievals version 3.0, with the operational version 4.0 ozone product from POAM III (Polar Ozone Atmospheric Measurement. In a second step, we refine the Odin/SMR validation by comparisons with ground-based instruments and balloon-borne observations. We use observations carried out within the framework of the Network for Detection of Atmospheric Composition Change (NDACC and balloon flight missions conducted by the Canadian Space Agency (CSA, the Laboratoire de Physique et de Chimie de l'{}Environnement (LPCE, Orléans, France, and the Service d'Aéronomie (SA, Paris, France. Coincidence criteria were 5° in latitude×10° in longitude, and 5 h in time in Odin/POAM III comparisons, 12 h in Odin/NDACC comparisons, and 72 h in Odin/balloons comparisons. An agreement is found with the POAM III experiment (10–60 km within −0.3±0.2 ppmv (bias±standard deviation for SMR (v222, v2.1 and within −0.5±0.2 ppmv for OSIRIS (v3.0. Odin ozone mixing ratio products are systematically slightly lower than the POAM III data and show an ozone maximum lower by 1–5 km in altitude. The comparisons with the NDACC data (10–34 km for ozonesonde, 10–50 km for lidar, 10–60 for microwave instruments yield a good agreement within −0.15±0.3 ppmv for the SMR data and −0.3±0.3 ppmv

  10. Application of TRMM PR and TMI Measurements to Assess Cloud Microphysical Schemes in the MM5 Model for a Winter Storm

    Science.gov (United States)

    Han, Mei; Braun, Scott A.; Olson, William S.; Persson, P. Ola G.; Bao, Jian-Wen

    2009-01-01

    Seen by the human eye, precipitation particles are commonly drops of rain, flakes of snow, or lumps of hail that reach the ground. Remote sensors and numerical models usually deal with information about large collections of rain, snow, and hail (or graupel --also called soft hail ) in a volume of air. Therefore, the size and number of the precipitation particles and how particles interact, evolve, and fall within the volume of air need to be represented using physical laws and mathematical tools, which are often implemented as cloud and precipitation microphysical parameterizations in numerical models. To account for the complexity of the precipitation physical processes, scientists have developed various types of such schemes in models. The accuracy of numerical weather forecasting may vary dramatically when different types of these schemes are employed. Therefore, systematic evaluations of cloud and precipitation schemes are of great importance for improvement of weather forecasts. This study is one such endeavor; it pursues quantitative assessment of all the available cloud and precipitation microphysical schemes in a weather model (MM5) through comparison with the observations obtained by National Aeronautics and Space Administration (NASA) s and Japan Aerospace Exploration Agency (JAXA) s Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and microwave imager (TMI). When satellite sensors (like PR or TMI) detect information from precipitation particles, they cannot directly observe the microphysical quantities (e.g., water species phase, density, size, and amount etc.). Instead, they tell how much radiation is absorbed by rain, reflected away from the sensor by snow or graupel, or reflected back to the satellite. On the other hand, the microphysical quantities in the model are usually well represented in microphysical schemes and can be converted to radiative properties that can be directly compared to the corresponding PR and TMI observations

  11. GHRSST Level 2P Regional Subskin Sea Surface Temperature from the Tropical Rainfall Mapping Mission (TRMM) Microwave Imager (TMI) for the Atlantic Ocean (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to SSM/I, that contains lower...

  12. GHRSST L2P Gridded Global Subskin Sea Surface Temperature from the Tropical Rainfall Mapping Mission (TRMM) Microwave Imager (TMI) (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to SSM/I, that contains lower...

  13. An Assessment of Satellite-Derived Rainfall Products Relative to Ground Observations over East Africa

    Directory of Open Access Journals (Sweden)

    Margaret Wambui Kimani

    2017-05-01

    Full Text Available Accurate and consistent rainfall observations are vital for climatological studies in support of better agricultural and water management decision-making and planning. In East Africa, accurate rainfall estimation with an adequate spatial distribution is limited due to sparse rain gauge networks. Satellite rainfall products can potentially play a role in increasing the spatial coverage of rainfall estimates; however, their performance needs to be understood across space–time scales and factors relating to their errors. This study assesses the performance of seven satellite products: Tropical Applications of Meteorology using Satellite and ground-based observations (TAMSAT, African Rainfall Climatology And Time series (TARCAT, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS, Tropical Rainfall Measuring Mission (TRMM-3B43, Climate Prediction Centre (CPC Morphing technique (CMORPH, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Climate Data Record (PERSIANN-CDR, CPC Merged Analysis of Precipitation (CMAP, and Global Precipitation Climatology Project (GPCP, using locally developed gridded (0.05° rainfall data for 15 years (1998–2012 over East Africa. The products’ assessments were done at monthly and yearly timescales and were remapped to the gridded rain gauge data spatial scale during the March to May (MAM and October to December (OND rainy seasons. A grid-based statistical comparison between the two datasets was used, but only pixel values located at the rainfall stations were considered for validation. Additionally, the impact of topography on the performance of the products was assessed by analyzing the pixels in areas of highest negative bias. All the products could substantially replicate rainfall patterns, but their differences are mainly based on retrieving high rainfall amounts, especially of localized orographic types. The products exhibited systematic errors, which

  14. Forest fire danger index based on modifying Nesterov Index, fuel, and anthropogenic activities using MODIS TERRA, AQUA and TRMM satellite datasets

    Science.gov (United States)

    Suresh Babu, K. V.; Roy, Arijit; Ramachandra Prasad, P.

    2016-05-01

    Forest fire has been regarded as one of the major causes of degradation of Himalayan forests in Uttarakhand. Forest fires occur annually in more than 50% of forests in Uttarakhand state, mostly due to anthropogenic activities and spreads due to moisture conditions and type of forest fuels. Empirical drought indices such as Keetch-Byram drought index, the Nesterov index, Modified Nesterov index, the Zhdanko index which belongs to the cumulative type and the Angstrom Index which belongs to the daily type have been used throughout the world to assess the potential fire danger. In this study, the forest fire danger index has been developed from slightly modified Nesterov index, fuel and anthropogenic activities. Datasets such as MODIS TERRA Land Surface Temperature and emissivity (MOD11A1), MODIS AQUA Atmospheric profile product (MYD07) have been used to determine the dew point temperature and land surface temperature. Precipitation coefficient has been computed from Tropical Rainfall measuring Mission (TRMM) product (3B42RT). Nesterov index has been slightly modified according to the Indian context and computed using land surface temperature, dew point temperature and precipitation coefficient. Fuel type danger index has been derived from forest type map of ISRO based on historical fire location information and disturbance danger index has been derived from disturbance map of ISRO. Finally, forest fire danger index has been developed from the above mentioned indices and MODIS Thermal anomaly product (MOD14) has been used for validating the forest fire danger index.

  15. Summary of Symposium on Cloud Systems, Hurricanes and TRMM: Celebration of Dr. Joanne Simpson's Career, The First Fifty Years

    Science.gov (United States)

    Tao, W.-K.; Adler, R.; Braun, S.; Einaudi, F.; Ferrier, B.; Halverson, J.; Heymsfield, G.; Kummerow, C.; Negri, A.; Kakar, R.; hide

    2000-01-01

    A symposium celebrating the first 50 years of Dr. Joanne Simpson's career took place at the NASA/Goddard Space Flight Center from December 1 - 3, 1999. This symposium consisted of presentations that focused on: historical and personal points of view concerning Dr. Simpson's research career, her interactions with the American Meteorological Society, and her leadership in TRMM; scientific interactions with Dr. Simpson that influenced personal research; research related to observations and modeling of clouds, cloud systems and hurricanes; and research related to the Tropical Rainfall Measuring Mission (TRMM). There were a total of 36 presentations and 103 participants from the US, Japan and Australia. The specific presentations during the symposium are summarized in this paper.

  16. Applying Advances in GPM Radiometer Intercalibration and Algorithm Development to a Long-Term TRMM/GPM Global Precipitation Dataset

    Science.gov (United States)

    Berg, W. K.

    2016-12-01

    The Global Precipitation Mission (GPM) Core Observatory, which was launched in February of 2014, provides a number of advances for satellite monitoring of precipitation including a dual-frequency radar, high frequency channels on the GPM Microwave Imager (GMI), and coverage over middle and high latitudes. The GPM concept, however, is about producing unified precipitation retrievals from a constellation of microwave radiometers to provide approximately 3-hourly global sampling. This involves intercalibration of the input brightness temperatures from the constellation radiometers, development of an apriori precipitation database using observations from the state-of-the-art GPM radiometer and radars, and accounting for sensor differences in the retrieval algorithm in a physically-consistent way. Efforts by the GPM inter-satellite calibration working group, or XCAL team, and the radiometer algorithm team to create unified precipitation retrievals from the GPM radiometer constellation were fully implemented into the current version 4 GPM precipitation products. These include precipitation estimates from a total of seven conical-scanning and six cross-track scanning radiometers as well as high spatial and temporal resolution global level 3 gridded products. Work is now underway to extend this unified constellation-based approach to the combined TRMM/GPM data record starting in late 1997. The goal is to create a long-term global precipitation dataset employing these state-of-the-art calibration and retrieval algorithm approaches. This new long-term global precipitation dataset will incorporate the physics provided by the combined GPM GMI and DPR sensors into the apriori database, extend prior TRMM constellation observations to high latitudes, and expand the available TRMM precipitation data to the full constellation of available conical and cross-track scanning radiometers. This combined TRMM/GPM precipitation data record will thus provide a high-quality high

  17. Application of Statistical Methods of Rain Rate Estimation to Data From The TRMM Precipitation Radar

    Science.gov (United States)

    Meneghini, R.; Jones, J. A.; Iguchi, T.; Okamoto, K.; Liao, L.; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    The TRMM Precipitation Radar is well suited to statistical methods in that the measurements over any given region are sparsely sampled in time. Moreover, the instantaneous rain rate estimates are often of limited accuracy at high rain rates because of attenuation effects and at light rain rates because of receiver sensitivity. For the estimation of the time-averaged rain characteristics over an area both errors are relevant. By enlarging the space-time region over which the data are collected, the sampling error can be reduced. However. the bias and distortion of the estimated rain distribution generally will remain if estimates at the high and low rain rates are not corrected. In this paper we use the TRMM PR data to investigate the behavior of 2 statistical methods the purpose of which is to estimate the rain rate over large space-time domains. Examination of large-scale rain characteristics provides a useful starting point. The high correlation between the mean and standard deviation of rain rate implies that the conditional distribution of this quantity can be approximated by a one-parameter distribution. This property is used to explore the behavior of the area-time-integral (ATI) methods where fractional area above a threshold is related to the mean rain rate. In the usual application of the ATI method a correlation is established between these quantities. However, if a particular form of the rain rate distribution is assumed and if the ratio of the mean to standard deviation is known, then not only the mean but the full distribution can be extracted from a measurement of fractional area above a threshold. The second method is an extension of this idea where the distribution is estimated from data over a range of rain rates chosen in an intermediate range where the effects of attenuation and poor sensitivity can be neglected. The advantage of estimating the distribution itself rather than the mean value is that it yields the fraction of rain contributed by

  18. Growth and inactivation of Salmonella enterica and Listeria monocytogenes in broth and validation in ground pork meat during simulated home storage abusive temperature and home pan-frying

    Directory of Open Access Journals (Sweden)

    Xiang eWang

    2015-10-01

    Full Text Available Ground pork meat with natural microbiota and inoculated with low initial densities (1-10 or 10-100 CFU/g of Salmonella enterica or Listeria monocytogenes was stored under abusive temperature at 10°C and thermally treated by a simulated home pan-frying procedure. The growth and inactivation characteristics were also evaluated in broth. In ground pork meat, the population of S. enterica increased by less than one log after 12-days of storage at 10°C, whereas L. monocytogenes increased by 2.3 to 2.8 log units. No unusual intrinsic heat resistance of the pathogens was noted when tested in broth at 60°C although shoulders were observed on the inactivation curves of L. monocytogenes. After growth of S. enterica and L. monocytogenes at 10°C for 5 days to levels of 1.95 log CFU/g and 3.10 log CFU/g, respectively, in ground pork meat, their inactivation in the burger subjected to a simulated home pan-frying was studied. After thermal treatment S. enterica was undetectable but L. monocytogenes was recovered in three out of six of the 25 g burger samples. Overall, the present study shows that data on growth and inactivation of broths are indicative but may underestimate as well as overestimate behavior of pathogens and thus need confirmation in food matrix conditions to assess food safety in reasonably foreseen abusive conditions of storage and usual home pan-frying of of meat burgers in Belgium.

  19. From TRMM to GPM: How well can heavy rainfall be detected from space?

    Science.gov (United States)

    Prakash, Satya; Mitra, Ashis K.; Pai, D. S.; AghaKouchak, Amir

    2016-02-01

    In this study, we investigate the capabilities of the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and the recently released Integrated Multi-satellitE Retrievals for GPM (IMERG) in detecting and estimating heavy rainfall across India. First, the study analyzes TMPA data products over a 17-year period (1998-2014). While TMPA and reference gauge-based observations show similar mean monthly variations of conditional heavy rainfall events, the multi-satellite product systematically overestimates its inter-annual variations. Categorical as well as volumetric skill scores reveal that TMPA over-detects heavy rainfall events (above 75th percentile of reference data), but it shows reasonable performance in capturing the volume of heavy rain across the country. An initial assessment of the GPM-based multi-satellite IMERG precipitation estimates for the southwest monsoon season shows notable improvements over TMPA in capturing heavy rainfall over India. The recently released IMERG shows promising results to help improve modeling of hydrological extremes (e.g., floods and landslides) using satellite observations.

  20. Precipitation Climatology over Mediterranean Basin from Ten Years of TRMM Measurements

    Science.gov (United States)

    Mehta, Amita V.; Yang, Song

    2008-01-01

    Climatological features of mesoscale rain activities over the Mediterranean region between 5 W-40 E and 28 N-48 N are examined using the Tropical Rainfall Measuring Mission (TRMM) 3B42 and 2A25 rain products. The 3B42 rainrates at 3-hourly, 0.25 deg x 0.25 deg spatial resolution for the last 10 years (January 1998 to July 2007) are used to form and analyze the 5-day mean and monthly mean climatology of rainfall. Results show considerable regional and seasonal differences of rainfall over the Mediterranean Region. The maximum rainfall (3-5 mm/day) occurs over the mountain regions of Europe, while the minimum rainfall is observed over North Africa (approximately 0.5 mm/day). The main rainy season over the Mediterranean Sea extends from October to March, with maximum rainfall occurring during November-December. Over the Mediterranean Sea, an average rainrate of approximately 1-2 mm/day is observed, but during the rainy season there is 20% larger rainfall over the western Mediterranean Sea than that over the eastern Mediterranean Sea. During the rainy season, mesoscale rain systems generally propagate from west to east and from north to south over the Mediterranean region, likely to be associated with Mediterranean cyclonic disturbances resulting from interactions among large-scale circulation, orography, and land-sea temperature contrast.

  1. Satellite-based Flood Modeling Using TRMM-based Rainfall Products

    Directory of Open Access Journals (Sweden)

    Greg Easson

    2007-12-01

    Full Text Available Increasingly available and a virtually uninterrupted supply of satellite-estimatedrainfall data is gradually becoming a cost-effective source of input for flood predictionunder a variety of circumstances. However, most real-time and quasi-global satelliterainfall products are currently available at spatial scales ranging from 0.25o to 0.50o andhence, are considered somewhat coarse for dynamic hydrologic modeling of basin-scaleflood events. This study assesses the question: what are the hydrologic implications ofuncertainty of satellite rainfall data at the coarse scale? We investigated this question onthe 970 km2 Upper Cumberland river basin of Kentucky. The satellite rainfall productassessed was NASA’s Tropical Rainfall Measuring Mission (TRMM Multi-satellitePrecipitation Analysis (TMPA product called 3B41RT that is available in pseudo real timewith a latency of 6-10 hours. We observed that bias adjustment of satellite rainfall data canimprove application in flood prediction to some extent with the trade-off of more falsealarms in peak flow. However, a more rational and regime-based adjustment procedureneeds to be identified before the use of satellite data can be institutionalized among floodmodelers.

  2. Comparison of CERES Cloud Properties Derived from Aqua and Terra MODIS Data and TRMM VIRS Radiances

    Science.gov (United States)

    Minnis, P.; Young, D. F.; Sun-Mack, S.; Trepte, Q. Z.; Chen, Y.; Heck, P. W.; Wielicki, B. A.

    2003-12-01

    The Clouds and Earth's Radiant Energy System (CERES) Project is obtaining Earth radiation budget measurements of unprecedented accuracy as a result of improved instruments and an analysis system that combines simultaneous, high-resolution cloud property retrievals with the broadband radiance data. The cloud properties are derived from three different satellite imagers: the Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) and the Moderate Resolution Imaging Spectroradiometers (MODIS) on the Aqua and Terra satellites. A single set of consistent algorithms using the 0.65, 1.6 or 2.1, 3.7, 10.8, and 12.0-æm channels are applied to all three imagers. The cloud properties include, cloud coverage, height, thickness, temperature, optical depth, phase, effective particle size, and liquid or ice water path. Because each satellite is in a different orbit, the results provide information on the diurnal cycle of cloud properties. Initial intercalibrations show excellent consistency between the three images except for some differences of ~ 1K between the 3.7-æm channel on Terra and those on VIRS and Aqua. The derived cloud properties are consistent with the known diurnal characteristics of clouds in different areas. These datasets should be valuable for exploring the role of clouds in the radiation budget and hydrological cycle.

  3. Hydrologic Evaluation of TRMM Multisatellite Precipitation Analysis for Nanliu River Basin in Humid Southwestern China.

    Science.gov (United States)

    Zhao, Yinjun; Xie, Qiongying; Lu, Yuan; Hu, Baoqing

    2017-06-01

    The accuracy of Tropical Rainfall Measuring Mission (TRMM) multi-satellite precipitation analysis (TMPA) daily accumulated precipitation products (3B42RTV7 and 3B42V7) was evaluated for a small basin (the Nanliu river basin). A direct comparison was performed against gauge observations from a period of 9 years (2000-2009) at temporal and spatial scales. The results show that the temporal-spatial precipitation characteristics of the Nanliu river basin are highly consistent with 3B42V7 relative to 3B42RTV7, with higher correlation coefficient (CC) approximately 0.9 at all temporal scales except for the daily scale and a lower relative bias percentage. 3B42V7 slightly overestimates precipitation at all temporal scales except the yearly scale; it slightly underestimates the precipitation at the daily spatial scale. The results also reveal that the precision of TMPA products increases with longer time-aggregated data, and the detection capability of daily TMPA precipitation products are enhanced by augmentation with daily precipitation rates. In addition, daily TMPA products were input into the Xin'anjiang hydrologic model; the results show that 3B42V7-based simulated outputs were well in line with actual stream flow observations, with a high CC (0.90) and Nash-Sutcliffe efficiency coefficient (NSE, 0.79), and the results adequately captured the pattern of the observed flow curve.

  4. Grounded theory.

    Science.gov (United States)

    Harris, Tina

    2015-04-29

    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.

  5. Ground-based remote sensing of HDO/H2O ratio profiles: introduction and validation of an innovative retrieval approach

    Science.gov (United States)

    Schneider, M.; Hase, F.; Blumenstock, T.

    2006-10-01

    We propose an innovative approach for analysing ground-based FTIR spectra which allows us to detect variabilities of lower and middle/upper tropospheric HDO/H2O ratios. We show that the proposed method is superior to common approaches. We estimate that lower tropospheric HDO/H2O ratios can be detected with a noise to signal ratio of 15% and middle/upper tropospheric ratios with a noise to signal ratio of 50%. The method requires the inversion to be performed on a logarithmic scale and to introduce an inter-species constraint. While common methods calculate the isotope ratio posterior to an independent, optimal estimation of the HDO and H2O profile, the proposed approach is an optimal estimator for the ratio itself. We apply the innovative approach to spectra measured continuously during 15 months and present, for the first time, an annual cycle of tropospheric HDO/H2O ratio profiles as detected by ground-based measurements. Outliers in the detected middle/upper tropospheric ratios are interpreted by backward trajectories.

  6. Cross-validation Methodology between Ground and GPM Satellite-based Radar Rainfall Product over Dallas-Fort Worth (DFW) Metroplex

    Science.gov (United States)

    Chen, H.; Chandrasekar, V.; Biswas, S.

    2015-12-01

    Over the past two decades, a large number of rainfall products have been developed based on satellite, radar, and/or rain gauge observations. However, to produce optimal rainfall estimation for a given region is still challenging due to the space time variability of rainfall at many scales and the spatial and temporal sampling difference of different rainfall instruments. In order to produce high-resolution rainfall products for urban flash flood applications and improve the weather sensing capability in urban environment, the center for Collaborative Adaptive Sensing of the Atmosphere (CASA), in collaboration with National Weather Service (NWS) and North Central Texas Council of Governments (NCTCOG), has developed an urban radar remote sensing network in DFW Metroplex. DFW is the largest inland metropolitan area in the U.S., that experiences a wide range of natural weather hazards such as flash flood and hailstorms. The DFW urban remote sensing network, centered by the deployment of eight dual-polarization X-band radars and a NWS WSR-88DP radar, is expected to provide impacts-based warning and forecasts for benefit of the public safety and economy. High-resolution quantitative precipitation estimation (QPE) is one of the major goals of the development of this urban test bed. In addition to ground radar-based rainfall estimation, satellite-based rainfall products for this area are also of interest for this study. Typical example is the rainfall rate product produced by the Dual-frequency Precipitation Radar (DPR) onboard Global Precipitation Measurement (GPM) Core Observatory satellite. Therefore, cross-comparison between ground and space-based rainfall estimation is critical to building an optimal regional rainfall system, which can take advantages of the sampling differences of different sensors. This paper presents the real-time high-resolution QPE system developed for DFW urban radar network, which is based upon the combination of S-band WSR-88DP and X

  7. MAX-DOAS measurements in southern China: retrieval of aerosol extinctions and validation using ground-based in-situ data

    Directory of Open Access Journals (Sweden)

    X. Li

    2010-03-01

    Full Text Available We performed MAX-DOAS measurements during the PRiDe-PRD2006 campaign in the Pearl River Delta region 50 km north of Guangzhou, China, for 4 weeks in June 2006. We used an instrument sampling at 7 different elevation angles between 3° and 90°. During 9 cloud-free days, differential slant column densities (DSCDs of O4 (O2 dimer absorptions between 351 nm and 389 nm were evaluated for 6 elevation angles. Here, we show that radiative transfer modeling of the DSCDS can be used to retrieve the aerosol extinction and the height of the boundary layer. A comparison of the aerosol extinction with simultaneously recorded, ground based nephelometer data shows excellent agreement.

  8. Assessment of TRMM Products and Their Influence on Hydrologic Models within the Middle East and North Africa (MENA) Region Using the Soil and Water Assessment Tool (SWAT)

    Science.gov (United States)

    Milewski, A.; El Kadiri, R.; Durham, M. C.

    2013-12-01

    Satellite remote sensing datasets have been increasingly employed as an ancillary source of essential hydrologic measurements used for the modeling of hydrologic fluxes. Precipitation is one of the most important meteorological forcing parameter in hydrological investigations and land surface modeling, yet it is largely unknown or misused in water budgets and hydrologic models. The Tropical Rainfall Measurement Mission (TRMM) satellite products are widely being used by the scientific community due to the general spatial and temporal paucity of precipitation data in many parts of world and particularly in the Middle East and North Africa (MENA) region. This research utilized a two-fold approach towards understanding the accuracy of satellite-based rainfall and its application in hydrologic models First, we evaluated the uncertainty, accuracy, and precision of various rainfall satellite products (i.e. TRMM 3B42 V6, TRMM 3B42 V7, TRMM 3B42 V7a and TRMM 3B42 RT) in comparison to in situ gauge data from more than 150 rain gauges in Morocco and across the MENA region. Our analyses extend over many parts of the MENA region in order to assess the effect that different climatic regimes and topographic characteristics have on each TRMM product. Secondly, we analyzed and compared the hydrologic fluxes produced from different modeling inputs for several watersheds within the MENA region. SWAT (Soil and Water Assessment Tool) hydrologic models have been developed for the Oum Er Rbia (Morocco), Asyuti (Egypt), and the Sakarya (Turkey) watersheds. SWAT models produced for each watershed include, one model for each of the four satellite TRMM product (STBM-V6, STBM-V7, STBM-V7a, and STBM-RT) and one model for rain gauge based model (RGBM). Findings indicate the best correlation between field-based and satellite-based rainfall measurements is the TRMM V7a (Pearson coefficient: 0.875) product, followed by TRMM V7 (Pearson coefficient: 0.84), then TRMM V6 (Pearson coefficient: 0

  9. CERES Single Scanner Satellite Footprint, TOA, Surface Fluxes and Clouds (SSF)- Test data in HDF (CER_SSF_TRMM-PFM-VIRS_Subset-Edition1)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop

  10. CERES Single Scanner Satellite Footprint, TOA, Surface Fluxes and Clouds (SSF) data in HDF (CER_SSF_TRMM-PFM-VIRS_Edition1)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SSF combines instantaneous CERES data with scene information from a higher-resolution imager such as Visible/Infrared Scanner (VIRS) on TRMM or Moderate-Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Scene identification and cloud properties are defined at the higher imager resolution and these data are averaged over the larger CERES footprint. For each CERES footprint, the SSF contains the number of cloud layers and for each layer the cloud amount, height, temperature, pressure, optical depth, emissivity, ice and liquid water path, and water particle size. The SSF also contains the CERES filtered radiances for the total, shortwave (SW), and window (WN) channels and the unfiltered SW, longwave (LW), and WN radiances. The SW, LW, and WN radiances at spacecraft altitude are converted to Top-of-the-Atmosphere (TOA) fluxes based on the imager defined scene. These TOA fluxes are used to estimate surface fluxes. Only footprints with adequate imager coverage are included on CER_SSF_TRMM-PFM-VIRS_Subset_Edition1the SSF which is much less than the full set of footprints on the CERES ES-8 product. The following CERES SSF data sets are currently available: CER_SSF_TRMM-PFM-VIRS_Edition1 CER_SSF_TRMM-PFM-VIRS_Subset_Edition1 CER_SSF_TRMM-PFM-VIRS_Edition2A CER_SSF_TRMM-SIM-VIRS_Edition2_VIRSonly CER_SSF_TRMM-PFM-VIRS_Edition2A-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B-TransOps CER_SSF_TRMM-PFM-VIRS_Edition2B CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition1A CER_SSF_Terra-FM1-MODIS_Edition2A CER_SSF_Terra-FM2-MODIS_Edition2A CER_SSF_Terra-FM1-MODIS_Edition2B CER_SSF_Terra-FM2-MODIS_Edition2B CER_SSF_Aqua-FM4-MODIS_Beta1 CER_SSF_Aqua-FM3-MODIS_Beta2 CER_SSF_Aqua-FM4-MODIS_Beta2. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop

  11. Sensitivity of Distributed Hydrologic Simulations to Ground and Satellite Based Rainfall Products

    Directory of Open Access Journals (Sweden)

    Singaiah Chintalapudi

    2014-05-01

    Full Text Available In this study, seven precipitation products (rain gauges, NEXRAD MPE, PERSIANN 0.25 degree, PERSIANN CCS-3hr, PERSIANN CCS-1hr, TRMM 3B42V7, and CMORPH were used to force a physically-based distributed hydrologic model. The model was driven by these products to simulate the hydrologic response of a 1232 km2 watershed in the Guadalupe River basin, Texas. Storm events in 2007 were used to analyze the precipitation products. Comparison with rain gauge observations reveals that there were significant biases in the satellite rainfall products and large variations in the estimated amounts. The radar basin average precipitation compared very well with the rain gauge product while the gauge-adjusted TRMM 3B42V7 precipitation compared best with observed rainfall among all satellite precipitation products. The NEXRAD MPE simulated streamflows matched the observed ones the best yielding the highest Nash-Sutcliffe Efficiency correlation coefficient values for both the July and August 2007 events. Simulations driven by TRMM 3B42V7 matched the observed streamflow better than other satellite products for both events. The PERSIANN coarse resolution product yielded better runoff results than the higher resolution product. The study reveals that satellite rainfall products are viable alternatives when rain gauge or ground radar observations are sparse or non-existent.

  12. CERES BiDirectional Scans (BDS) data in HDF (CER_BDS_TRMM-PFM_Edition1)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    Each BiDirectional Scans (BDS) data product contains twenty-four hours of Level-1b data for each CERES scanner instrument mounted on each spacecraft. The BDS includes samples taken in normal and short Earth scan elevation profiles in both fixed and rotating azimuth scan modes (including space, internal calibration, and solar calibration views). The BDS contains Level-0 raw (unconverted) science and instrument data as well as the geolocated converted science and instrument data. The BDS contains additional data not found in the Level-0 input file, including converted satellite position and velocity data, celestial data, converted digital status data, and parameters used in the radiance count conversion equations. The following CERES BDS data sets are currently available: CER_BDS_TRMM-PFM_Edition1 CER_BDS_Terra-FM1_Edition1 CER_BDS_Terra-FM2_Edition1 CER_BDS_Terra-FM1_Edition2 CER_BDS_Terra-FM2_Edition2 CER_BDS_Aqua-FM3_Edition1 CER_BDS_Aqua-FM4_Edition1 CER_BDS_Aqua-FM3_Edition2 CER_BDS_Aqua-FM4_Edition2 CER_BDS_Aqua-FM3_Edition1-CV CER_BDS_Aqua-FM4_Edition1-CV CER_BDS_Terra-FM1_Edition1-CV CER_BDS_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2000-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  13. Decadal Seasonal Shifts of Precipitation and Temperature in TRMM and AIRS Data

    Science.gov (United States)

    Savtchenko, Andrey; Huffman, George; Meyer, David; Vollmer, Bruce

    2018-01-01

    We present results from an analysis of seasonal phase shifts in the global precipitation and surface temperatures. We use data from the TRMM (Tropical Rainfall Measuring Mission) Multi-satellite Precipitation Algorithm (TMPA), and the Atmospheric Infrared Sounder (AIRS) on Aqua satellite, all hosted at NASA Goddard Earth Science Data and Information Services Center (GES DISC). We explore the information content and data usability by first aggregating daily grids from the entire records of both missions to pentad (5-day) series which are then processed using Singular Value Decomposition approach. A strength of this approach is the normalized principal components that can then be easily converted from real to complex time series. Thus, we can separate the most informative, the seasonal, components and analyze unambiguously for potential seasonal phase drifts. TMPA and AIRS records represent correspondingly 20 and 15 years of data, which allows us to run simple “phase learning†from the first 5 years of records and use it as reference. The most recent 5 years are then phase-compared with the reference. We demonstrate that the seasonal phase of global precipitation and surface temperatures has been stable in the past two decades. However, a small global trend of delayed precipitation, and earlier arrival of surface temperatures seasons, are detectable at 95% confidence level. Larger phase shifts are detectable at regional level, in regions recognizable from the Eigen vectors to having strong seasonal patterns. For instance, in Central North America, including the North American Monsoon region, confident phase shifts of 1-2 days per decade are detected at 95% confidence level. While seemingly symbolic, these shifts are indicative of larger changes in the Earth Climate System. We thus also demonstrate a potential usability scenario of Earth Science Data Records curated at the NASA GES DISC in partnership with Earth Science Missions.

  14. Revisiting the iris effect of tropical cirrus clouds with TRMM and A-Train satellite data

    Science.gov (United States)

    Choi, Yong-Sang; Kim, WonMoo; Yeh, Sang-Wook; Masunaga, Hirohiko; Kwon, Min-Jae; Jo, Hyun-Su; Huang, Lei

    2017-06-01

    Just as the iris of human eye controls the light influx (iris effect), tropical anvil cirrus clouds may regulate the Earth's surface warming by controlling outgoing longwave radiation. This study examines this possible effect with monthly satellite observations such as Tropical Rainfall Measuring Mission (TRMM) precipitation, Moderate Resolution Imaging Spectroradiometer cirrus fraction, and Clouds and the Earth's Radiant Energy System top-of-the-atmosphere radiative fluxes averaged over different tropical domains from March 2000 to October 2014. To confirm that high-level cirrus is relevant to this study, Cloud-Aerosol Lidar with Orthogonal Polarization high cloud observations were also analyzed from June 2006 to December 2015. Our analysis revealed that the increase in sea surface temperature in the tropical western Pacific tends to concentrate convective cloud systems. This concentration effect very likely induces the significant reduction of both stratiform rain rate and cirrus fraction, without appreciable change in the convective rain rate. This reduction of stratiform rain rate and cirrus fraction cannot be found over its subregion or the tropical eastern Pacific, where the concentration effect of anvil cirrus is weak. Consistently, over the tropical western Pacific, the higher ratio of convective rain rate to total rain rate (i.e., precipitation efficiency) significantly correlates with warmer sea surface temperature and lower cirrus fraction. The reduced cirrus eventually increased outgoing longwave radiation to a greater degree than absorbed solar radiation. Finally, the negative relationship between precipitation efficiency and cirrus fraction tends to correspond to a low global equilibrium climate sensitivity in the models in the Coupled Model Intercomparison Project Phase 5. This suggests that tropical anvil cirrus clouds exert a negative climate feedback in strong association with precipitation efficiency.

  15. Intercomparison of PERSIANN-CDR and TRMM-3B42V7 precipitation estimates at monthly and daily time scales

    Science.gov (United States)

    Katiraie-Boroujerdy, Pari-Sima; Akbari Asanjan, Ata; Hsu, Kuo-lin; Sorooshian, Soroosh

    2017-09-01

    In the first part of this paper, monthly precipitation data from Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) and Tropical Rainfall Measuring Mission 3B42 algorithm Version 7 (TRMM-3B42V7) are evaluated over Iran using the Generalized Three-Cornered Hat (GTCH) method which is self-sufficient of reference data as input. Climate Data Unit (CRU) is added to the GTCH evaluations as an independent gauge-based dataset thus, the minimum requirement of three datasets for the model is satisfied. To ensure consistency of all datasets, the two satellite products were aggregated to 0.5° spatial resolution, which is the minimum resolution of CRU. The results show that the PERSIANN-CDR has higher Signal to Noise Ratio (SNR) than TRMM-3B42V7 for the monthly rainfall estimation, especially in the northern half of the country. All datasets showed low SNR in the mountainous area of southwestern Iran, as well as the arid parts in the southeast region of the country. Additionally, in order to evaluate the efficacy of PERSIANN-CDR and TRMM-3B42V7 in capturing extreme daily-precipitation amounts, an in-situ rain-gauge dataset collected by the Islamic Republic of the Iran Meteorological Organization (IRIMO) was employed. Given the sparsity of the rain gauges, only 0.25° pixels containing three or more gauges were used for this evaluation. There were 228 such pixels where daily and extreme rainfall from PERSIANN-CDR and TRMM-3B42V7 could be compared. However, TRMM-3B42V7 overestimates most of the intensity indices (correlation coefficients; R between 0.7648-0.8311, Root Mean Square Error; RMSE between 3.29mm/day-21.2mm/5day); PERSIANN-CDR underestimates these extremes (R between 0.6349-0.7791 and RMSE between 3.59mm/day-30.56mm/5day). Both satellite products show higher correlation coefficients and lower RMSEs for the annual mean of consecutive dry spells than wet spells. The results show that TRMM-3B42V7

  16. Validation of the Atmospheric Chemistry Experiment (ACE version 2.2 temperature using ground-based and space-borne measurements

    Directory of Open Access Journals (Sweden)

    R. J. Sica

    2008-01-01

    Full Text Available An ensemble of space-borne and ground-based instruments has been used to evaluate the quality of the version 2.2 temperature retrievals from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS. The agreement of ACE-FTS temperatures with other sensors is typically better than 2 K in the stratosphere and upper troposphere and 5 K in the lower mesosphere. There is evidence of a systematic high bias (roughly 3–6 K in the ACE-FTS temperatures in the mesosphere, and a possible systematic low bias (roughly 2 K in ACE-FTS temperatures near 23 km. Some ACE-FTS temperature profiles exhibit unphysical oscillations, a problem fixed in preliminary comparisons with temperatures derived using the next version of the ACE-FTS retrieval software. Though these relatively large oscillations in temperature can be on the order of 10 K in the mesosphere, retrieved volume mixing ratio profiles typically vary by less than a percent or so. Statistical comparisons suggest these oscillations occur in about 10% of the retrieved profiles. Analysis from a set of coincident lidar measurements suggests that the random error in ACE-FTS version 2.2 temperatures has a lower limit of about ±2 K.

  17. TRMM On-Orbit Performance Re-Accessed After Control Change

    Science.gov (United States)

    Bilanow, Steve

    2006-01-01

    The Tropical Rainfall Measuring Mission (TRMM) spacecraft, a joint mission between the U.S. and Japan, launched onboard an HI1 rocket on November 27,1997 and transitioned in August, 2001 from an average operating altitude of 350 kilometers to 402.5 kilometers. Due to problems using the Earth Sensor Assembly (ESA) at the higher altitude, TRMM switched to a backup attitude control mode. Prior to the orbit boost TRMM controlled pitch and roll to the local vertical using ESA measurements while using gyro data to propagate yaw attitude between yaw updates from the Sun sensors. After the orbit boost, a Kalman filter used 3-axis gyro data with Sun sensor and magnetometers to estimate onboard attitude. While originally intended to meet a degraded attitude accuracy of 0.7 degrees, the new control mode met the original 0.2 degree attitude accuracy requirement after improving onboard ephemeris prediction and adjusting the magnetometer calibration onboard. Independent roll attitude checks using a science instrument, the Precipitation Radar (PR) which was built in Japan, provided a novel insight into the pointing performance. The PR data helped identify the pointing errors after the orbit boost, track the performance improvements, and show subtle effects from ephemeris errors and gyro bias errors. It also helped identify average bias trends throughout the mission. Roll errors tracked by the PR from sample orbits pre-boost and post-boost are shown in Figure 1. Prior to the orbit boost the largest attitude errors were due to occasional interference in the ESA. These errors were sometime larger than 0.2 degrees in pitch and roll, but usually less, as estimated from a comprehensive review of the attitude excursions using gyro data. Sudden jumps in the onboard roll show up as spikes in the reported attitude since the control responds within tens of seconds to null the pointing error. The PR estimated roll tracks well with an estimate of the roll history propagated using gyro data

  18. On the use of MODIS and TRMM products to simulate hydrological processes in the La Plata Basin

    Science.gov (United States)

    Saavedra Valeriano, O. C.; Koike, T.; Berbery, E. H.

    2009-12-01

    La Plata basin is targeted to establish a distributed water-energy balance model using NASA and JAXA satellite products to estimate fluxes like the river discharge at sub-basin scales. The coupled model is called the Water and Energy Budget-based Distributed Hydrological Model (WEB-DHM), already tested with success in the Little Washita basin, Oklahoma, and the upper Tone River in Japan. The model demonstrated the ability to reproduce point-scale energy fluxes, CO2 flux, and river discharges. Moreover, the model showed the ability to predict the basin-scale surface soil moisture evolution in a spatially distributed fashion. In the context of the La Plata Basin, the first step was to set-up the water balance component of the distributed hydrological model of the entire basin using available global geographical data sets. The geomorphology of the basin was extracted using 1-km DEM resolution (obtained from EROS, Hydro 1K). The total delineated watershed reached 3.246 millions km2, identifying 145 sub-basins with a computing grid of 10-km. The distribution of land cover, land surface temperature, LAI and FPAR were obtained from MODIS products. In a first instance, the model was forced by gridded rainfall from the Climate Prediction Center (derived from available rain gauges) and satellite precipitation from TRMM 3B42 (NASA & JAXA). The simulated river discharge using both sources of data was compared and the overall low flow and normal peaks were identified. It was found that the extreme peaks tend to be overestimated when using TRMM 3B42. However, TRMM data allows tracking rainfall patterns which might be missed by the sparse distribution of rain gauges over some areas of the basin.

  19. Integration of SRTM and TRMM date into the GIS-based hydrological model for the purpose of flood modelling

    Science.gov (United States)

    Akbari, A.; Abu Samah, A.; Othman, F.

    2012-04-01

    Due to land use and climate changes, more severe and frequent floods occur worldwide. Flood simulation as the first step in flood risk management can be robustly conducted with integration of GIS, RS and flood modeling tools. The primary goal of this research is to examine the practical use of public domain satellite data and GIS-based hydrologic model. Firstly, database development process is described. GIS tools and techniques were used in the light of relevant literature to achieve the appropriate database. Watershed delineation and parameterizations were carried out using cartographic DEM derived from digital topography at a scale of 1:25 000 with 30 m cell size and SRTM elevation data at 30 m cell size. The SRTM elevation dataset is evaluated and compared with cartographic DEM. With the assistance of statistical measures such as Correlation coefficient (r), Nash-Sutcliffe efficiency (NSE), Percent Bias (PBias) or Percent of Error (PE). According to NSE index, SRTM-DEM can be used for watershed delineation and parameterization with 87% similarity with Topo-DEM in a complex and underdeveloped terrains. Primary TRMM (V6) data was used as satellite based hytograph for rainfall-runoff simulation. The SCS-CN approach was used for losses and kinematic routing method employed for hydrograph transformation through the reaches. It is concluded that TRMM estimates do not give adequate information about the storms as it can be drawn from the rain gauges. Event-based flood modeling using HEC-HMS proved that SRTM elevation dataset has the ability to obviate the lack of terrain data for hydrologic modeling where appropriate data for terrain modeling and simulation of hydrological processes is unavailable. However, TRMM precipitation estimates failed to explain the behavior of rainfall events and its resultant peak discharge and time of peak.

  20. Monsoon Convection during the South China Sea Monsoon Experiment Observed from Shipboard Radar and the TRMM Satellite

    Science.gov (United States)

    Rickenbach, Tom; Cifelli, Rob; Halverson, Jeff; Kucera, Paul; Atkinson, Lester; Fisher, Brad; Gerlach, John; Harris, Kathy; Kaufman, Cristina; Liu, Ching-Hwang; hide

    1999-01-01

    A main goal of the recent South China Sea Monsoon Experiment (SCSMEX) was to study convective processes associated with the onset of the Southeast Asian summer monsoon. The NASA TOGA C-band scanning radar was deployed on the Chinese research vessel Shi Yan #3 for two 20 day cruises, collecting dual-Doppler measurements in conjunction with the BMRC C-Pol dual-polarimetric radar on Dongsha Island. Soundings and surface meteorological data were also collected with an NCAR Integrated Sounding System (ISS). This experiment was the first major tropical field campaign following the launch of the Tropical Rainfall Measuring Mission (TRMM) satellite. These observations of tropical oceanic convection provided an opportunity to make comparisons between surface radar measurements and the Precipitation Radar (PR) aboard the TRMM satellite in an oceanic environment. Nearly continuous radar operations were conducted during two Intensive Observing Periods (IOPS) straddling the onset of the monsoon (5-25 May 1998 and 5-25 June 1998). Mesoscale lines of convection with widespread regions of both trailing and forward stratiform precipitation were observed during the active monsoon periods in a southwesterly flow regime. Several examples of mesoscale convection will be shown from ship-based and spacebome radar reflectivity data during times of TRMM satellite overpasses. Further examples of pre-monsoon convection, characterized by isolated cumulonimbus and shallow, precipitating congestus clouds, will be discussed. A strong waterspout was observed very near the ship from an isolated cell in the pre-monsoon period, and was well documented with photography, radar, sounding, and sounding data.

  1. Correlative 3D-imaging of Pipistrellus penis micromorphology: Validating quantitative microCT images with undecalcified serial ground section histomorphology.

    Science.gov (United States)

    Herdina, Anna Nele; Plenk, Hanns; Benda, Petr; Lina, Peter H C; Herzig-Straschil, Barbara; Hilgers, Helge; Metscher, Brian D

    2015-06-01

    Detailed knowledge of histomorphology is a prerequisite for the understanding of function, variation, and development. In bats, as in other mammals, penis and baculum morphology are important in species discrimination and phylogenetic studies. In this study, nondestructive 3D-microtomographic (microCT, µCT) images of bacula and iodine-stained penes of Pipistrellus pipistrellus were correlated with light microscopic images from undecalcified surface-stained ground sections of three of these penes of P. pipistrellus (1 juvenile). The results were then compared with µCT-images of bacula of P. pygmaeus, P. hanaki, and P. nathusii. The Y-shaped baculum in all studied Pipistrellus species has a proximal base with two club-shaped branches, a long slender shaft, and a forked distal tip. The branches contain a medullary cavity of variable size, which tapers into a central canal of variable length in the proximal baculum shaft. Both are surrounded by a lamellar and a woven bone layer and contain fatty marrow and blood vessels. The distal shaft consists of woven bone only, without a vascular canal. The proximal ends of the branches are connected with the tunica albuginea of the corpora cavernosa via entheses. In the penis shaft, the corpus spongiosum-surrounded urethra lies in a ventral grove of the corpora cavernosa, and continues in the glans under the baculum. The glans penis predominantly comprises an enlarged corpus spongiosum, which surrounds urethra and baculum. In the 12 studied juvenile and subadult P. pipistrellus specimens the proximal branches of the baculum were shorter and without marrow cavity, while shaft and distal tip appeared already fully developed. The present combination with light microscopic images from one species enabled a more reliable interpretation of histomorphological structures in the µCT-images from all four Pipistrellus species. © 2015 Wiley Periodicals, Inc.

  2. Does the GPM mission improve the systematic error component in satellite rainfall estimates over TRMM? An evaluation at a pan-India scale

    Science.gov (United States)

    Beria, Harsh; Nanda, Trushnamayee; Singh Bisht, Deepak; Chatterjee, Chandranath

    2017-12-01

    The last couple of decades have seen the outburst of a number of satellite-based precipitation products with Tropical Rainfall Measuring Mission (TRMM) as the most widely used for hydrologic applications. Transition of TRMM into the Global Precipitation Measurement (GPM) promises enhanced spatio-temporal resolution along with upgrades to sensors and rainfall estimation techniques. The dependence of systematic error components in rainfall estimates of the Integrated Multi-satellitE Retrievals for GPM (IMERG), and their variation with climatology and topography, was evaluated over 86 basins in India for year 2014 and compared with the corresponding (2014) and retrospective (1998-2013) TRMM estimates. IMERG outperformed TRMM for all rainfall intensities across a majority of Indian basins, with significant improvement in low rainfall estimates showing smaller negative biases in 75 out of 86 basins. Low rainfall estimates in TRMM showed a systematic dependence on basin climatology, with significant overprediction in semi-arid basins, which gradually improved in the higher rainfall basins. Medium and high rainfall estimates of TRMM exhibited a strong dependence on basin topography, with declining skill in higher elevation basins. The systematic dependence of error components on basin climatology and topography was reduced in IMERG, especially in terms of topography. Rainfall-runoff modeling using the Variable Infiltration Capacity (VIC) model over two flood-prone basins (Mahanadi and Wainganga) revealed that improvement in rainfall estimates in IMERG did not translate into improvement in runoff simulations. More studies are required over basins in different hydroclimatic zones to evaluate the hydrologic significance of IMERG.

  3. Does the GPM mission improve the systematic error component in satellite rainfall estimates over TRMM? An evaluation at a pan-India scale

    Directory of Open Access Journals (Sweden)

    H. Beria

    2017-12-01

    Full Text Available The last couple of decades have seen the outburst of a number of satellite-based precipitation products with Tropical Rainfall Measuring Mission (TRMM as the most widely used for hydrologic applications. Transition of TRMM into the Global Precipitation Measurement (GPM promises enhanced spatio-temporal resolution along with upgrades to sensors and rainfall estimation techniques. The dependence of systematic error components in rainfall estimates of the Integrated Multi-satellitE Retrievals for GPM (IMERG, and their variation with climatology and topography, was evaluated over 86 basins in India for year 2014 and compared with the corresponding (2014 and retrospective (1998–2013 TRMM estimates. IMERG outperformed TRMM for all rainfall intensities across a majority of Indian basins, with significant improvement in low rainfall estimates showing smaller negative biases in 75 out of 86 basins. Low rainfall estimates in TRMM showed a systematic dependence on basin climatology, with significant overprediction in semi-arid basins, which gradually improved in the higher rainfall basins. Medium and high rainfall estimates of TRMM exhibited a strong dependence on basin topography, with declining skill in higher elevation basins. The systematic dependence of error components on basin climatology and topography was reduced in IMERG, especially in terms of topography. Rainfall-runoff modeling using the Variable Infiltration Capacity (VIC model over two flood-prone basins (Mahanadi and Wainganga revealed that improvement in rainfall estimates in IMERG did not translate into improvement in runoff simulations. More studies are required over basins in different hydroclimatic zones to evaluate the hydrologic significance of IMERG.

  4. Using High Frequency Passive Microwave, A-train, and TRMM Data to Evaluate Hydrometer Structure in the NASA GEOS-5 Data Assimilation System

    Science.gov (United States)

    Robertson, Franklin; Bacmeister, Julio; Bosilovich, Michael; Pittman, Jasna

    2007-01-01

    Validating water vapor and prognostic condensate in global models remains a challenging research task. Model parameterizations are still subject to a large number of tunable parameters; furthermore, accurate and representative in situ observations are very sparse, and satellite observations historically have significant quantitative uncertainties. Progress on improving cloud / hydrometeor fields in models stands to benefit greatly from the growing inventory ofA-Train data sets. ill the present study we are using a variety of complementary satellite retrievals of hydrometeors to examine condensate produced by the emerging NASA Modem Era Retrospective Analysis for Research and Applications, MERRA, and its associated atmospheric general circulation model GEOS5. Cloud and precipitation are generated by both grid-scale prognostic equations and by the Relaxed Arakawa-Schubert (RAS) diagnostic convective parameterization. The high frequency channels (89 to 183.3 GHz) from AMSU-B and MRS on NOAA polar orbiting satellites are being used to evaluate the climatology and variability of precipitating ice from tropical convective anvils. Vertical hydrometeor structure from the Tropical Rainfall Measuring Mission (TRMM) and CloudSat radars are used to develop statistics on vertical hydrometeor structure in order to better interpret the extensive high frequency passive microwave climatology. Cloud liquid and ice water path data retrieved from the Moderate Resolution Imaging Spectroradiometer, MODIS, are used to investigate relationships between upper level cloudiness and tropical deep convective anvils. Together these data are used to evaluate cloud / ice water path, gross aspects of vertical hydrometeor structure, and the relationship between cloud extent and surface precipitation that the MERRA reanalysis must capture.

  5. Variations and Trends in Global and Regional Precipitation Based on the 22-year GPCP (Global Precipitation Climatology Project) and Three-year TRMM (Tropical Rainfall Measuring Mission) Data Sets

    Science.gov (United States)

    Adler, R.; Curtis, S.; Huffman, G.; Bolvin, D.; Nelkin, E.

    2001-05-01

    . Further to the west a negative anomaly extends southeastward again from the Maritime Continent across the South Pacific and through the Drake Passage. In the Southern Hemisphere an anomaly feature is shown to spiral into the Antarctica land mass. The extremes of ENSO-related anomalies are also examined and indicate that globally, during both El Nino and La Nina, more extremes of precipitation ( both wet and dry) occur than during the "neutral" regime, with the El Nino regime showing larger magnitudes. The distribution is different for the globe as a whole and when the area is restricted to just land. The recent (1998-present) TRMM observations are compared with the similar period of GPCP analyses with very good agreement in terms of pattern and generally good agreement with regard to magnitude. However, there still are differences among the individual TRMM products using passive and active microwave techniques and these need to be resolved before longer-term products such as the GPCP analyses can be validated.

  6. Validation of S-NPP VIIRS Day-Night Band and M Bands Performance Using Ground Reference Targets of Libya 4 and Dome C

    Science.gov (United States)

    Chen, Xuexia; Wu, Aisheng; Xiong, Xiaoxiong; Lei, Ning; Wang, Zhipeng; Chiang, Kwofu

    2015-01-01

    This paper provides methodologies developed and implemented by the NASA VIIRS Calibration Support Team (VCST) to validate the S-NPP VIIRS Day-Night band (DNB) and M bands calibration performance. The Sensor Data Records produced by the Interface Data Processing Segment (IDPS) and NASA Land Product Evaluation and Algorithm Testing Element (PEATE) are acquired nearly nadir overpass for Libya 4 desert and Dome C snow surfaces. In the past 3.5 years, the modulated relative spectral responses (RSR) change with time and lead to 3.8% increase on the DNB sensed solar irradiance and 0.1% or less increases on the M4-M7 bands. After excluding data before April 5th, 2013, IDPS DNB radiance and reflectance data are consistent with Land PEATE data with 0.6% or less difference for Libya 4 site and 2% or less difference for Dome C site. These difference are caused by inconsistent LUTs and algorithms used in calibration. In Libya 4 site, the SCIAMACHY spectral and modulated RSR derived top of atmosphere (TOA) reflectance are compared with Land PEATE TOA reflectance and they indicate a decrease of 1.2% and 1.3%, respectively. The radiance of Land PEATE DNB are compared with the simulated radiance from aggregated M bands (M4, M5, and M7). These data trends match well with 2% or less difference for Libya 4 site and 4% or less difference for Dome C. This study demonstrate the consistent quality of DNB and M bands calibration for Land PEATE products during operational period and for IDPS products after April 5th, 2013.

  7. Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA performance in the Central Andes region and its dependency on spatial and temporal resolution

    Directory of Open Access Journals (Sweden)

    M. L. M. Scheel

    2011-08-01

    Full Text Available Climate time series are of major importance for base line studies for climate change impact and adaptation projects. However, for instance, in mountain regions and in developing countries there exist significant gaps in ground based climate records in space and time. Specifically, in the Peruvian Andes spatially and temporally coherent precipitation information is a prerequisite for ongoing climate change adaptation projects in the fields of water resources, disasters and food security. The present work aims at evaluating the ability of Tropical Rainfall Measurement Mission (TRMM Multi-satellite Precipitation Analysis (TMPA to estimate precipitation rates at daily 0.25° × 0.25° scale in the Central Andes and the dependency of the estimate performance on changing spatial and temporal resolution. Comparison of the TMPA product with gauge measurements in the regions of Cuzco, Peru and La Paz, Bolivia were carried out and analysed statistically. Large biases are identified in both investigation areas in the estimation of daily precipitation amounts. The occurrence of strong precipitation events was well assessed, but their intensities were underestimated. TMPA estimates for La Paz show high false alarm ratio.

    The dependency of the TMPA estimate quality with changing resolution was analysed by comparisons of 1-, 7-, 15- and 30-day sums for Cuzco, Peru. The correlation of TMPA estimates with ground data increases strongly and almost linearly with temporal aggregation. The spatial aggregation to 0.5°, 0.75° and 1° grid box averaged precipitation and its comparison to gauge data of the same areas revealed no significant change in correlation coefficients and estimate performance.

    In order to profit from the TMPA combination product on a daily basis, a procedure to blend it with daily precipitation gauge measurements is proposed.

    Different sources of errors and uncertainties introduced by the sensors, sensor

  8. Similarities and Improvements of GPM Dual-Frequency Precipitation Radar (DPR upon TRMM Precipitation Radar (PR in Global Precipitation Rate Estimation, Type Classification and Vertical Profiling

    Directory of Open Access Journals (Sweden)

    Jinyu Gao

    2017-11-01

    Full Text Available Spaceborne precipitation radars are powerful tools used to acquire adequate and high-quality precipitation estimates with high spatial resolution for a variety of applications in hydrological research. The Global Precipitation Measurement (GPM mission, which deployed the first spaceborne Ka- and Ku-dual frequency radar (DPR, was launched in February 2014 as the upgraded successor of the Tropical Rainfall Measuring Mission (TRMM. This study matches the swath data of TRMM PR and GPM DPR Level 2 products during their overlapping periods at the global scale to investigate their similarities and DPR’s improvements concerning precipitation amount estimation and type classification of GPM DPR over TRMM PR. Results show that PR and DPR agree very well with each other in the global distribution of precipitation, while DPR improves the detectability of precipitation events significantly, particularly for light precipitation. The occurrences of total precipitation and the light precipitation (rain rates < 1 mm/h detected by GPM DPR are ~1.7 and ~2.53 times more than that of PR. With regard to type classification, the dual-frequency (Ka/Ku and single frequency (Ku methods performed similarly. In both inner (the central 25 beams and outer swaths (1–12 beams and 38–49 beams of DPR, the results are consistent. GPM DPR improves precipitation type classification remarkably, reducing the misclassification of clouds and noise signals as precipitation type “other” from 10.14% of TRMM PR to 0.5%. Generally, GPM DPR exhibits the same type division for around 82.89% (71.02% of stratiform (convective precipitation events recognized by TRMM PR. With regard to the freezing level height and bright band (BB height, both radars correspond with each other very well, contributing to the consistency in stratiform precipitation classification. Both heights show clear latitudinal dependence. Results in this study shall contribute to future development of spaceborne

  9. CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations

    Science.gov (United States)

    Mugnai, A.; Smith, E. A.; Tripoli, G. J.; Bizzarri, B.; Casella, D.; Dietrich, S.; Di Paola, F.; Panegrossi, G.; Sanò, P.

    2013-04-01

    Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) is a EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) program, designed to deliver satellite products of hydrological interest (precipitation, soil moisture and snow parameters) over the European and Mediterranean region to research and operations users worldwide. Six satellite precipitation algorithms and concomitant precipitation products are the responsibility of various agencies in Italy. Two of these algorithms have been designed for maximum accuracy by restricting their inputs to measurements from conical and cross-track scanning passive microwave (PMW) radiometers mounted on various low Earth orbiting satellites. They have been developed at the Italian National Research Council/Institute of Atmospheric Sciences and Climate in Rome (CNR/ISAC-Rome), and are providing operational retrievals of surface rain rate and its phase properties. Each of these algorithms is physically based, however, the first of these, referred to as the Cloud Dynamics and Radiation Database (CDRD) algorithm, uses a Bayesian-based solution solver, while the second, referred to as the PMW Neural-net Precipitation Retrieval (PNPR) algorithm, uses a neural network-based solution solver. Herein we first provide an overview of the two initial EU research and applications programs that motivated their initial development, EuroTRMM and EURAINSAT (European Satellite Rainfall Analysis and Monitoring at the Geostationary Scale), and the current H-SAF program that provides the framework for their operational use and continued development. We stress the relevance of the CDRD and PNPR algorithms and their precipitation products in helping secure the goals of H-SAF's scientific and operations agenda, the former helpful as a secondary calibration reference to other algorithms in H-SAF's complete mix of algorithms. Descriptions of the algorithms' designs are provided

  10. CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations

    Directory of Open Access Journals (Sweden)

    A. Mugnai

    2013-04-01

    Full Text Available Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF is a EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites program, designed to deliver satellite products of hydrological interest (precipitation, soil moisture and snow parameters over the European and Mediterranean region to research and operations users worldwide. Six satellite precipitation algorithms and concomitant precipitation products are the responsibility of various agencies in Italy. Two of these algorithms have been designed for maximum accuracy by restricting their inputs to measurements from conical and cross-track scanning passive microwave (PMW radiometers mounted on various low Earth orbiting satellites. They have been developed at the Italian National Research Council/Institute of Atmospheric Sciences and Climate in Rome (CNR/ISAC-Rome, and are providing operational retrievals of surface rain rate and its phase properties. Each of these algorithms is physically based, however, the first of these, referred to as the Cloud Dynamics and Radiation Database (CDRD algorithm, uses a Bayesian-based solution solver, while the second, referred to as the PMW Neural-net Precipitation Retrieval (PNPR algorithm, uses a neural network-based solution solver. Herein we first provide an overview of the two initial EU research and applications programs that motivated their initial development, EuroTRMM and EURAINSAT (European Satellite Rainfall Analysis and Monitoring at the Geostationary Scale, and the current H-SAF program that provides the framework for their operational use and continued development. We stress the relevance of the CDRD and PNPR algorithms and their precipitation products in helping secure the goals of H-SAF's scientific and operations agenda, the former helpful as a secondary calibration reference to other algorithms in H-SAF's complete mix of algorithms. Descriptions of the algorithms' designs are

  11. Ground water

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.

    1982-01-01

    The subject is discussed under the headings: background and theory (introduction; fractionation in the hydrosphere; mobility factors; radioisotope evolution and aquifer classification; aquifer disequilibria and geochemical fronts); case studies (introduction; (a) conservative, and (b) non-conservative, behaviour); ground water dating applications (general requirements; radon and helium; radium isotopes; uranium isotopes). (U.K.)

  12. Ground water

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.

    1992-01-01

    The great variations in concentrations and activity ratios of 234 U/ 238 U in ground waters and the features causing elemental and isotopic mobility in the hydrosphere are discussed. Fractionation processes and their application to hydrology and other environmental problems such as earthquake, groundwater and aquifer dating are described. (UK)

  13. Ground Validation GPS for American Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project is a cooperative effort among the National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Monitoring and Assessment; the...

  14. Ground Validation GPS of the Mariana Archipelago

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project is a cooperative effort among the National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Monitoring and Assessment; the...

  15. Global Lightning Climatology from the Tropical Rainfall Measuring Mission (TRMM), Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD)

    Science.gov (United States)

    Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.

    2015-01-01

    The Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) has been collecting observations of total lightning in the global tropics and subtropics (roughly 38 deg S - 38 deg N) since December 1997. A similar instrument, the Optical Transient Detector, operated from 1995-2000 on another low earth orbit satellite that also saw high latitudes. Lightning data from these instruments have been used to create gridded climatologies and time series of lightning flash rate. These include a 0.5 deg resolution global annual climatology, and lower resolution products describing the annual cycle and the diurnal cycle. These products are updated annually. Results from the update through 2013 will be shown at the conference. The gridded products are publicly available for download. Descriptions of how each product can be used will be discussed, including strengths, weaknesses, and caveats about the smoothing and sampling used in various products.

  16. Ground Pollution Science

    International Nuclear Information System (INIS)

    Oh, Jong Min; Bae, Jae Geun

    1997-08-01

    This book deals with ground pollution science and soil science, classification of soil and fundamentals, ground pollution and human, ground pollution and organic matter, ground pollution and city environment, environmental problems of the earth and ground pollution, soil pollution and development of geological features of the ground, ground pollution and landfill of waste, case of measurement of ground pollution.

  17. TMI/TRMM precipitation and uncertainty (TMPA) L3 3 hour 0.25 degree x 0.25 degree V001 (WC_MULTISEN_PREC_025) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — TMI/TRMM precipitation and uncertainty (TMPA) L3 3 hour 0.25 degree x 0.25 degree V001 provides estimates of accumulated precipitation from the Tropical Rainfall...

  18. Communication grounding facility

    International Nuclear Information System (INIS)

    Lee, Gye Seong

    1998-06-01

    It is about communication grounding facility, which is made up twelve chapters. It includes general grounding with purpose, materials thermal insulating material, construction of grounding, super strength grounding method, grounding facility with grounding way and building of insulating, switched grounding with No. 1A and LCR, grounding facility of transmission line, wireless facility grounding, grounding facility in wireless base station, grounding of power facility, grounding low-tenton interior power wire, communication facility of railroad, install of arrester in apartment and house, install of arrester on introduction and earth conductivity and measurement with introduction and grounding resistance.

  19. On the Land-Ocean Contrast of Tropical Convection and Microphysics Statistics Derived from TRMM Satellite Signals and Global Storm-Resolving Models

    Science.gov (United States)

    Matsui, Toshihisa; Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Satoh, Masaki; Hashino, Tempei; Kubota, Takuji

    2016-01-01

    A 14-year climatology of Tropical Rainfall Measuring Mission (TRMM) collocated multi-sensor signal statistics reveal a distinct land-ocean contrast as well as geographical variability of precipitation type, intensity, and microphysics. Microphysics information inferred from the TRMM precipitation radar and Microwave Imager (TMI) show a large land-ocean contrast for the deep category, suggesting continental convective vigor. Over land, TRMM shows higher echo-top heights and larger maximum echoes, suggesting taller storms and more intense precipitation, as well as larger microwave scattering, suggesting the presence of morelarger frozen convective hydrometeors. This strong land-ocean contrast in deep convection is invariant over seasonal and multi-year time-scales. Consequently, relatively short-term simulations from two global storm-resolving models can be evaluated in terms of their land-ocean statistics using the TRMM Triple-sensor Three-step Evaluation via a satellite simulator. The models evaluated are the NASA Multi-scale Modeling Framework (MMF) and the Non-hydrostatic Icosahedral Cloud Atmospheric Model (NICAM). While both simulations can represent convective land-ocean contrasts in warm precipitation to some extent, near-surface conditions over land are relatively moisture in NICAM than MMF, which appears to be the key driver in the divergent warm precipitation results between the two models. Both the MMF and NICAM produced similar frequencies of large CAPE between land and ocean. The dry MMF boundary layer enhanced microwave scattering signals over land, but only NICAM had an enhanced deep convection frequency over land. Neither model could reproduce a realistic land-ocean contrast in in deep convective precipitation microphysics. A realistic contrast between land and ocean remains an issue in global storm-resolving modeling.

  20. Two-Step Downscaling of Trmm 3b43 V7 Precipitation in Contrasting Climatic Regions With Sparse Monitoring: The Case of Ecuador in Tropical South America

    Directory of Open Access Journals (Sweden)

    Jacinto Ulloa

    2017-07-01

    Full Text Available Spatial prediction of precipitation with high resolution is a challenging task in regions with strong climate variability and scarce monitoring. For this purpose, the quasi-continuous supply of information from satellite imagery is commonly used to complement in situ data. However, satellite images of precipitation are available at coarse resolutions, and require adequate methods for spatial downscaling and calibration. The objective of this paper is to introduce and evaluate a 2-step spatial downscaling approach for monthly precipitation applied to TRMM 3B43 (from 0 . 25 ∘ ≈ 27 km to 5 km resolution, resulting in 5 downscaled products for the period 01-2001/12-2011. The methodology was evaluated in 3 contrasting climatic regions of Ecuador. In step 1, bilinear resampling was applied over TRMM, and used as a reference product. The second step introduces further variability, and consists of four alternative gauge-satellite merging methods: (1 regression with in situ stations, (2 regression kriging with in situ stations, (3 regression with in situ stations and auxiliary variables, and (4 regression kriging with in situ stations and auxiliary variables. The first 2 methods only use the resampled TRMM data set as an independent variable. The last 2 methods enrich these models with auxiliary environmental factors, incorporating atmospheric and land variables. The results showed that no product outperforms the others in every region. In general, the methods with residual kriging correction outperformed the regression models. Regression kriging with situ data provided the best representation in the Coast, while regression kriging with in situ and auxiliary data generated the best results in the Andes. In the Amazon, no product outperformed the resampled TRMM images, probably due to the low density of in situ stations. These results are relevant to enhance satellite precipitation, depending on the availability of in situ data, auxiliary satellite

  1. 'Grounded' Politics

    DEFF Research Database (Denmark)

    Schmidt, Garbi

    2012-01-01

    play within one particular neighbourhood: Nørrebro in the Danish capital, Copenhagen. The article introduces the concept of grounded politics to analyse how groups of Muslim immigrants in Nørrebro use the space, relationships and history of the neighbourhood for identity political statements....... The article further describes how national political debates over the Muslim presence in Denmark affect identity political manifestations within Nørrebro. By using Duncan Bell’s concept of mythscape (Bell, 2003), the article shows how some political actors idealize Nørrebro’s past to contest the present...... ethnic and religious diversity of the neighbourhood and, further, to frame what they see as the deterioration of genuine Danish identity....

  2. Validation of ACE-FTS v2.2 measurements of HCl, HF, CCl3F and CCl2F2 using space-, balloon- and ground-based instrument observations

    Directory of Open Access Journals (Sweden)

    C. Servais

    2008-10-01

    Full Text Available Hydrogen chloride (HCl and hydrogen fluoride (HF are respectively the main chlorine and fluorine reservoirs in the Earth's stratosphere. Their buildup resulted from the intensive use of man-made halogenated source gases, in particular CFC-11 (CCl3F and CFC-12 (CCl2F2, during the second half of the 20th century. It is important to continue monitoring the evolution of these source gases and reservoirs, in support of the Montreal Protocol and also indirectly of the Kyoto Protocol. The Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS is a space-based instrument that has been performing regular solar occultation measurements of over 30 atmospheric gases since early 2004. In this validation paper, the HCl, HF, CFC-11 and CFC-12 version 2.2 profile data products retrieved from ACE-FTS measurements are evaluated. Volume mixing ratio profiles have been compared to observations made from space by MLS and HALOE, and from stratospheric balloons by SPIRALE, FIRS-2 and Mark-IV. Partial columns derived from the ACE-FTS data were also compared to column measurements from ground-based Fourier transform instruments operated at 12 sites. ACE-FTS data recorded from March 2004 to August 2007 have been used for the comparisons. These data are representative of a variety of atmospheric and chemical situations, with sounded air masses extending from the winter vortex to summer sub-tropical conditions. Typically, the ACE-FTS products are available in the 10–50 km altitude range for HCl and HF, and in the 7–20 and 7–25 km ranges for CFC-11 and -12, respectively. For both reservoirs, comparison results indicate an agreement generally better than 5–10% above 20 km altitude, when accounting for the known offset affecting HALOE measurements of HCl and HF. Larger positive differences are however found for comparisons with single profiles from FIRS-2 and SPIRALE. For CFCs, the few coincident measurements available suggest that the differences

  3. Warm Rain Processes Over the Tropical Oceans and Implications on Climate Change: Results from TRMM and GOES GCM

    Science.gov (United States)

    Lau, William K. M.; Wu, H. T.

    2004-01-01

    In this talk, we will first show results from TRMM data regarding the characteristics of warm rains over the tropical oceans, and the dependence of rate of warm rain production on sea surface temperature. Results lead to the hypothesis that warm rain production efficiency, i.e., autoconversion, may be increased in a warm climate. We use the GEOS-II GCM to test this hypothesis. Our modeling results show that in a climate with increased rate of autoconversion, the total rain amount is increased, with warm rain contributing to a larger portion of the increase. The abundant rainout of warm precipitation causes a reduction of low and middle cloud amount due to rainout, and reduced high clouds due to less water vapor available for ice-phase convection. However, clod radiation feedback caused by the increased rainfall efficiency, leads to differential vertical heating/cooling producing a more unstable atmosphere, allowing, more intense, but isolated penetrative convection, with contracted anvils to develop. Results also show that increased autoconversion reduces the convective adjustment time scale, resulting in faster recycling of atmospheric water. Most interestingly, the increased low level heating associated with warm rain leads to more energetic Madden and Julian oscillations in the tropics, with well-defined eastward propagation. While reducing the autoconversion leads to an abundant mix of westward and eastward tropical disturbances on daily to weekly time scales. The crucial link of precipitation microphysical processes to climate change including the effects of aerosols will be discussed.

  4. Warm Rain Processes over the Tropical Oceans and Implications on Climate Change: Results from TRMM and GEOS GCM

    Science.gov (United States)

    Lau, William K. M.; Wu, H. T.

    2004-01-01

    In this talk, we will first show results from TRMM data regarding the characteristics of warm rains over the tropical oceans, and the dependence of rate of warm rain production on sea surface temperature. Results lead to the hypothesis that warm rain production efficiency, i.e., autoconversion, may be increased in a warm climate. We use the GEOS-II GCM to test this hypothesis. Our modeling results show that in a climate with increased rate of autoconversion, the total rain amount is increased, with warm rain contributing to larger portion of the increase. The abundant rainout of warm precipitation causes a reduction of low and middle cloud amount due to rainout, and reduced high clouds due to less water vapor available for ice-phase convection. However, clod radiation feedback caused by the increased rainfall efficiency, leads to differential vertical heating/cooling producing a more unstable atmosphere, allowing, more intense, but isolated penetrative convection, with contracted anvils to develop. Results also show that increased autoconversion reduces the convective adjustment time scale, resulting in faster recycling of atmospheric water. Most interestingly, the increased low level heating associated with warm rain leads to more energetic Madden and Julian oscillations in the tropics, with well-defined eastward propagation. While reducing the autoconversion leads to an abundant mix of westward and eastward tropical disturbances on daily to weekly time scales. The crucial link of precipitation microphysical processes to climate change including the effects of aerosols will be discussed.

  5. Influence of the Three Gorges Project on the Water Resource Components of Poyang Lake Watershed: Observations from TRMM and GRACE

    Directory of Open Access Journals (Sweden)

    Xiaobin Cai

    2015-01-01

    Full Text Available The Three Gorges Project (TGP has received many criticisms about its potential effects on the changes in the downstream ecosystems. Poyang Lake is the largest body of water downstream of the TGP, and it is not immune to these changes. TRMM and GRACE data were introduced in this study to estimate river-lake water exchange, from which the hydrological responses of Poyang Lake could be identified. A significant decreasing trend of the runoff coefficient has been observed since 2003, resulting in 6.02 km3 more water discharge from the lake into the Yangtze River than under normal conditions. No significant interannual changes occurred in the water level or local precipitation, and GRACE observations revealed that groundwater discharge appeared to be the most likely compensation for the water loss. A novel approach, namely, the groundwater abnormality index (GAI, was developed to depict the water exchange using GRACE and surface water observations. Lower than normal GAIs were found between 2003 and 2005, reaching a minimum of −29.26 in October 2003, corresponding to ten times of the mean GAI during 2006–2012, clearly indicating a significant water exchange in Poyang Lake Basin from groundwater to surface water after the TGP impoundment.

  6. Sensitivity of Spaceborne and Ground Radar Comparison Results to Data Analysis Methods and Constraints

    Science.gov (United States)

    Morris, Kenneth R.; Schwaller, Mathew

    2011-01-01

    With the availability of active weather radar observations from space from the Precipitation Radar (PR) on board the Tropical Rainfall Measuring Mission (TR.MM) satellite, numerous studies have been performed comparing PR reflectivity and derived rain rates to similar observations from ground-based weather radars (GR). These studies have used a variety of algorithms to compute matching PR and GR volumes for comparison. Most studies have used a fixed 3-dimensional Cartesian grid centered on the ground radar, onto which the PR and GR data are interpolated using a proprietary approach and/or commonly available GR analysis software (e.g., SPRINT, REORDER). Other studies have focused on the intersection of the PR and GR viewing geometries either explicitly or using a hybrid of the fixed grid and PR/GR common fields of view. For the Dual-Frequency Precipitation Radar (DPR) of the upcoming Global Precipitation Measurement (GPM) mission, a prototype DPR/GR comparison algorithm based on similar TRMM PR data has been developed that defines the common volumes in terms of the geometric intersection of PR and GR rays, where smoothing of the PR and GR data are minimized and no interpolation is performed. The PR and GR volume-averaged reflectivity values of each sample volume are accompanied by descriptive metadata, for attributes including the variability and maximum of the reflectivity within the sample volume, and the fraction of range gates in the sample average having reflectivity values above an adjustable detection threshold (typically taken to be 18 dBZ for the PR). Sample volumes are further characterized by rain type (Stratiform or Convective), proximity to the melting layer, underlying surface (land/water/mixed), and the time difference between the PR and GR observations. The mean reflectivity differences between the PR and GR can differ between data sets produced by the different analysis methods; and for the GPM prototype, by the type of constraints and

  7. Evidence of Urban Precipitation Anomalies from Satellite and Ground-Based Measurements

    Science.gov (United States)

    Shepherd, J. Marshall; Manyin, M.; Negri, Andrew

    2004-01-01

    Urbanization is one of the extreme cases of land use change. Most of world's population has moved to urban areas. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025, 60% of the world's population will live in cities. Human activity in urban environments also alters weather and climate processes. However, our understanding of urbanization on the total Earth-weather-climate system is incomplete. Recent literature continues to provide evidence that anomalies in precipitation exist over and downwind of major cities. Current and future research efforts are actively seeking to verify these literature findings and understand potential cause-effect relationships. The novelty of this study is that it utilizes rainfall data from multiple satellite data sources (e.g. TRMM precipitation radar, TRMM-geosynchronous-rain gauge merged product, and SSM/I) and ground-based measurements to identify spatial anomalies and temporal trends in precipitation for cities around the world. Early results will be presented and placed within the context of weather prediction, climate assessment, and societal applications.

  8. Ground Radar Polarimetric Observations of High-Frequency Earth-Space Communication Links

    Science.gov (United States)

    Bolen, Steve; Chandrasekar, V.; Benjamin, Andrew

    2002-01-01

    Strategic roadmaps for NASA's Human Exploration and Development of Space (REDS) enterprise support near-term high-frequency communication systems that provide moderate to high data rates with dependable service. Near-earth and human planetary exploration will baseline Ka-Band, but may ultimately require the use of even higher frequencies. Increased commercial demand on low-frequency earth-space bands has also led to increased interest in the use of higher frequencies in regions like K u - and K,- band. Data is taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), which operates at 13.8 GHz, and the true radar reflectivity profile is determined along the PR beam via low-frequency ground based polarimetric observations. The specific differential phase (Kdp) is measured along the beam and a theoretical model is used to determine the expected specific attenuation (k). This technique, called the k-Kdp method, uses a Fuzzy-Logic model to determine the hydrometeor type along the PR beam from which the appropriate k-Kdp relationship is used to determine k and, ultimately, the total path-integrated attenuation (PIA) on PR measurements. Measurements from PR and the NCAR S-POL radar were made during the TEFLUN-B experiment that took place near Melbourne, FL in 1998, and the TRMM-LBA campaign near Ji-Parana, Brazil in 1999.

  9. CERES ERBE-like Monthly Regional Averages (ES-9) in HDF (CER_ES9_TRMM-PFM_Edition1)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The ERBE-like Monthly Regional Averages (ES-9) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-9 is also produced for combinations of scanner instruments. All instantaneous shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-8 product for a month are sorted by 2.5-degree spatial regions, by day number, and by the local hour of observation. The mean of the instantaneous fluxes for a given region-day-hour bin is determined and recorded on the ES-9 along with other flux statistics and scene information. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The ES-9 also contains hourly average fluxes for the month and an overall monthly average for each region. These average fluxes are given for both clear-sky and total-sky scenes. The following CERES ES9 data sets are currently available: CER_ES9_FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition1 CER_ES9_PFM+FM1+FM2_Edition2 CER_ES9_PFM+FM1_Edition1 CER_ES9_PFM+FM2_Edition1 CER_ES9_PFM+FM1_Edition2 CER_ES9_PFM+FM2_Edition2 CER_ES9_TRMM-PFM_Edition1 CER_ES9_TRMM-PFM_Edition2 CER_ES9_Terra-FM1_Edition1 CER_ES9_Terra-FM2_Edition1 CER_ES9_FM1+FM2_Edition2 CER_ES9_Terra-FM1_Edition2 CER_ES9_Terra-FM2_Edition2 CER_ES9_Aqua-FM3_Edition1 CER_ES9_Aqua-FM4_Edition1 CER_ES9_FM1+FM2+FM3+FM4_Edition1 CER_ES9_Aqua-FM3_Edition2 CER_ES9_Aqua-FM4_Edition2 CER_ES9_FM1+FM3_Edition2 CER_ES9_FM1+FM4_Edition2 CER_ES9_Aqua-FM3_Edition1-CV CER_ES9_Aqua-FM4_Edition1-CV CER_ES9_Terra-FM1_Edition1-CV CER_ES9_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=1998-08-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost

  10. CERES ERBE-like Instantaneous TOA Estimates (ES-8) in HDF (CER_ES4_TRMM-PFM_Edition1)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    The ERBE-like Monthly Geographical Averages (ES-4) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The ES-4 is also produced for combinations of scanner instruments. For each observed 2.5-degree spatial region, the daily average, the hourly average over the month, and the overall monthly average of shortwave and longwave fluxes at the Top-of-the-Atmosphere (TOA) from the CERES ES-9 product are spatially nested up from 2.5-degree regions to 5- and 10-degree regions, to 2.5-, 5-, and 10-degree zonal averages, and to global monthly averages. For each nested area, the albedo and net flux are given. For each region, the daily average flux is estimated from an algorithm that uses the available hourly data, scene identification data, and diurnal models. This algorithm is 'like' the algorithm used for the Earth Radiation Budget Experiment (ERBE). The following CERES ES4 data sets are currently available: CER_ES4_FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition1 CER_ES4_PFM+FM1+FM2_Edition2 CER_ES4_PFM+FM1_Edition1 CER_ES4_PFM+FM2_Edition1 CER_ES4_TRMM-PFM_Edition1 CER_ES4_TRMM-PFM_Edition2 CER_ES4_Terra-FM1_Edition1 CER_ES4_Terra-FM2_Edition1 CER_ES4_FM1+FM2_Edition2 CER_ES4_Terra-FM1_Edition2 CER_ES4_Terra-FM2_Edition2 CER_ES4_Aqua-FM3_Edition1 CER_ES4_Aqua-FM4_Edition1 CER_ES4_FM1+FM2+FM3+FM4_Edition1 CER_ES4_Aqua-FM3_Edition2 CER_ES4_Aqua-FM4_Edition2 CER_ES4_FM1+FM3_Edition2 CER_ES4_FM1+FM4_Edition2 CER_ES4_PFM+FM1_Edition2 CER_ES4_PFM+FM2_Edition2 CER_ES4_Aqua-FM3_Edition1-CV CER_ES4_Aqua-FM4_Edition1-CV CER_ES4_Terra-FM1_Edition1-CV CER_ES4_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=1998-08-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=2.5 degree; Longitude_Resolution=2.5 degree; Horizontal

  11. Applications of TRMM-based Multi-Satellite Precipitation Estimation for Global Runoff Simulation: Prototyping a Global Flood Monitoring System

    Science.gov (United States)

    Hong, Yang; Adler, Robert F.; Huffman, George J.; Pierce, Harold

    2008-01-01

    Advances in flood monitoring/forecasting have been constrained by the difficulty in estimating rainfall continuously over space (catchment-, national-, continental-, or even global-scale areas) and flood-relevant time scale. With the recent availability of satellite rainfall estimates at fine time and space resolution, this paper describes a prototype research framework for global flood monitoring by combining real-time satellite observations with a database of global terrestrial characteristics through a hydrologically relevant modeling scheme. Four major components included in the framework are (1) real-time precipitation input from NASA TRMM-based Multi-satellite Precipitation Analysis (TMPA); (2) a central geospatial database to preprocess the land surface characteristics: water divides, slopes, soils, land use, flow directions, flow accumulation, drainage network etc.; (3) a modified distributed hydrological model to convert rainfall to runoff and route the flow through the stream network in order to predict the timing and severity of the flood wave, and (4) an open-access web interface to quickly disseminate flood alerts for potential decision-making. Retrospective simulations for 1998-2006 demonstrate that the Global Flood Monitor (GFM) system performs consistently at both station and catchment levels. The GFM website (experimental version) has been running at near real-time in an effort to offer a cost-effective solution to the ultimate challenge of building natural disaster early warning systems for the data-sparse regions of the world. The interactive GFM website shows close-up maps of the flood risks overlaid on topography/population or integrated with the Google-Earth visualization tool. One additional capability, which extends forecast lead-time by assimilating QPF into the GFM, also will be implemented in the future.

  12. Rain Characteristics and Large-Scale Environments of Precipitation Objects with Extreme Rain Volumes from TRMM Observations

    Science.gov (United States)

    Zhou, Yaping; Lau, William K M.; Liu, Chuntao

    2013-01-01

    This study adopts a "precipitation object" approach by using 14 years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Feature (PF) and National Centers for Environmental Prediction (NCEP) reanalysis data to study rainfall structure and environmental factors associated with extreme heavy rain events. Characteristics of instantaneous extreme volumetric PFs are examined and compared to those of intermediate and small systems. It is found that instantaneous PFs exhibit a much wider scale range compared to the daily gridded precipitation accumulation range. The top 1% of the rainiest PFs contribute over 55% of total rainfall and have 2 orders of rain volume magnitude greater than those of the median PFs. We find a threshold near the top 10% beyond which the PFs grow exponentially into larger, deeper, and colder rain systems. NCEP reanalyses show that midlevel relative humidity and total precipitable water increase steadily with increasingly larger PFs, along with a rapid increase of 500 hPa upward vertical velocity beyond the top 10%. This provides the necessary moisture convergence to amplify and sustain the extreme events. The rapid increase in vertical motion is associated with the release of convective available potential energy (CAPE) in mature systems, as is evident in the increase in CAPE of PFs up to 10% and the subsequent dropoff. The study illustrates distinct stages in the development of an extreme rainfall event including: (1) a systematic buildup in large-scale temperature and moisture, (2) a rapid change in rain structure, (3) explosive growth of the PF size, and (4) a release of CAPE before the demise of the event.

  13. A global lightning parameterization based on statistical relationships among environmental factors, aerosols, and convective clouds in the TRMM climatology

    Science.gov (United States)

    Stolz, Douglas C.; Rutledge, Steven A.; Pierce, Jeffrey R.; van den Heever, Susan C.

    2017-07-01

    The objective of this study is to determine the relative contributions of normalized convective available potential energy (NCAPE), cloud condensation nuclei (CCN) concentrations, warm cloud depth (WCD), vertical wind shear (SHEAR), and environmental relative humidity (RH) to the variability of lightning and radar reflectivity within convective features (CFs) observed by the Tropical Rainfall Measuring Mission (TRMM) satellite. Our approach incorporates multidimensional binned representations of observations of CFs and modeled thermodynamics, kinematics, and CCN as inputs to develop approximations for total lightning density (TLD) and the average height of 30 dBZ radar reflectivity (AVGHT30). The results suggest that TLD and AVGHT30 increase with increasing NCAPE, increasing CCN, decreasing WCD, increasing SHEAR, and decreasing RH. Multiple-linear approximations for lightning and radar quantities using the aforementioned predictors account for significant portions of the variance in the binned data set (R2 ≈ 0.69-0.81). The standardized weights attributed to CCN, NCAPE, and WCD are largest, the standardized weight of RH varies relative to other predictors, while the standardized weight for SHEAR is comparatively small. We investigate these statistical relationships for collections of CFs within various geographic areas and compare the aerosol (CCN) and thermodynamic (NCAPE and WCD) contributions to variations in the CF population in a partial sensitivity analysis based on multiple-linear regression approximations computed herein. A global lightning parameterization is developed; the average difference between predicted and observed TLD decreases from +21.6 to +11.6% when using a hybrid approach to combine separate approximations over continents and oceans, thus highlighting the need for regionally targeted investigations in the future.

  14. Evaluating the Performance of the Goddard Multi-Scale Modeling Framework against GPM, TRMM and CloudSat/CALIPSO Products

    Science.gov (United States)

    Chern, J. D.; Tao, W. K.; Lang, S. E.; Matsui, T.; Mohr, K. I.

    2014-12-01

    Four six-month (March-August 2014) experiments with the Goddard Multi-scale Modeling Framework (MMF) were performed to study the impacts of different Goddard one-moment bulk microphysical schemes and large-scale forcings on the performance of the MMF. Recently a new Goddard one-moment bulk microphysics with four-ice classes (cloud ice, snow, graupel, and frozen drops/hail) has been developed based on cloud-resolving model simulations with large-scale forcings from field campaign observations. The new scheme has been successfully implemented to the MMF and two MMF experiments were carried out with this new scheme and the old three-ice classes (cloud ice, snow graupel) scheme. The MMF has global coverage and can rigorously evaluate microphysics performance for different cloud regimes. The results show MMF with the new scheme outperformed the old one. The MMF simulations are also strongly affected by the interaction between large-scale and cloud-scale processes. Two MMF sensitivity experiments with and without nudging large-scale forcings to those of ERA-Interim reanalysis were carried out to study the impacts of large-scale forcings. The model simulated mean and variability of surface precipitation, cloud types, cloud properties such as cloud amount, hydrometeors vertical profiles, and cloud water contents, etc. in different geographic locations and climate regimes are evaluated against GPM, TRMM, CloudSat/CALIPSO satellite observations. The Goddard MMF has also been coupled with the Goddard Satellite Data Simulation Unit (G-SDSU), a system with multi-satellite, multi-sensor, and multi-spectrum satellite simulators. The statistics of MMF simulated radiances and backscattering can be directly compared with satellite observations to assess the strengths and/or deficiencies of MMF simulations and provide guidance on how to improve the MMF and microphysics.

  15. CERES cloud property retrievals from imagers on TRMM, Terra, and Aqua

    Science.gov (United States)

    Minnis, Patrick; Young, David F.; Sun-Mack, Sunny; Heck, Patrick W.; Doelling, David R.; Trepte, Qing Z.

    2004-02-01

    The micro- and macrophysical properties of clouds play a crucial role in Earth"s radiation budget. The NASA Clouds and Earth"s Radiant Energy System (CERES) is providing simultaneous measurements of the radiation and cloud fields on a global basis to improve the understanding and modeling of the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. Cloud properties derived for CERES from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites are compared to ensure consistency between the products to ensure the reliability of the retrievals from multiple platforms at different times of day. Comparisons of cloud fraction, height, optical depth, phase, effective particle size, and ice and liquid water paths from the two satellites show excellent consistency. Initial calibration comparisons are also very favorable. Differences between the Aqua and Terra results are generally due to diurnally dependent changes in the clouds. Additional algorithm refinement is needed over the polar regions for Aqua and at night over those same areas for Terra. The results should be extremely valuable for model validation and improvement and for improving our understanding of the relationship between clouds and the radiation budget.

  16. Ground water '89

    International Nuclear Information System (INIS)

    1989-01-01

    The proceedings of the 5th biennial symposium of the Ground Water Division of the Geological Society of South Africa are presented. The theme of the symposium was ground water and mining. Papers were presented on the following topics: ground water resources; ground water contamination; chemical analyses of ground water and mining and its influece on ground water. Separate abstracts were prepared for 5 of the papers presented. The remaining papers were considered outside the subject scope of INIS

  17. Evaluation of Heavy Precipitation Simulated by the WRF Model Using 4D-Var Data Assimilation with TRMM 3B42 and GPM IMERG over the Huaihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Lu Yi

    2018-04-01

    Full Text Available To obtain independent, consecutive, and high-resolution precipitation data, the four-dimensional variational (4D-Var method was applied to directly assimilate satellite precipitation products into the Weather Research and Forecasting (WRF model. The precipitation products of the Tropical Rainfall Measuring Mission 3B42 (TRMM 3B42 and its successor, the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM IMERG were assimilated in this study. Two heavy precipitation events that occurred over the Huaihe River basin in eastern China were studied. Before assimilation, the WRF model simulations were first performed with different forcing data to select more suitable forcing data and determine the control experiments for the subsequent assimilation experiments. Then, TRMM 3B42 and GPM IMERG were separately assimilated into the WRF. The simulated precipitation results in the outer domain (D01, with a 27-km resolution, and the inner domain (D02, with a 9-km resolution, were evaluated in detail. The assessments showed that (1 4D-Var with TRMM 3B42 or GPM IMERG could both significantly improve WRF precipitation predictions at a time interval of approximately 12 h; (2 the WRF simulated precipitation assimilated with GPM IMERG outperformed the one with TRMM 3B42; (3 for the WRF output precipitation assimilated with GPM IMERG over D02, which has spatiotemporal resolutions of 9 km and 50 s, the correlation coefficients of the studied events in August and November were 0.74 and 0.51, respectively, at the point and daily scales, and the mean Heidke skill scores for the two studied events both reached 0.31 at the grid and hourly scales. This study can provide references for the assimilation of TRMM 3B42 or GPM IMERG into the WRF model using 4D-Var, which is especially valuable for hydrological applications of GPM IMERG during the transition period from the TRMM era into the GPM era.

  18. Model-based studies into ground water movement, with water density depending on salt content. Case studies and model validation with respect to the long-term safety of radwaste repositories. Final report

    International Nuclear Information System (INIS)

    Schelkes, K.

    1995-12-01

    Near-to-reality studies into ground water movement in the environment of planned radwaste repositories have to take into account that the flow conditions are influenced by the water density which in turn depends on the salt content. Based on results from earlier studies, computer programs were established that allow computation and modelling of ground water movement in salt water/fresh water systems, and the programs were tested and improved according to progress of the studies performed under the INTRAVAL international project. The computed models of ground water movement in the region of the Gorlebener Rinne showed for strongly simplified model profiles that the developing salinity distribution varies very sensitively in response to the applied model geometry, initial input data for salinity distribution, time frame of the model, and size of the transversal dispersion length. The WIPP 2 INTRAVAL experiment likewise studied a large-area ground water movement system influenced by salt water. Based on the concept of a hydraulically closed, regional ground water system (basin model), a sectional profile was worked out covering all relevant layers of the cap rock above the salt formation planned to serve as a repository. The model data derived to describe the salt water/fresh water movements in this profile resulted in essential enlargements and modifications of the ROCKFLOW computer program applied, (relating to input data for dispersion modelling, particle-tracker, computer graphics interface), and yielded important information for the modelling of such systems (relating to initial pressure data at the upper margin, network enhancement for important concentration boundary conditions, or treatment of permeability contrasts). (orig.) [de

  19. Assessment of GPM and TRMM Multi-Satellite Precipitation Products in Streamflow Simulations in a Data-Sparse Mountainous Watershed in Myanmar

    Directory of Open Access Journals (Sweden)

    Fei Yuan

    2017-03-01

    Full Text Available Satellite precipitation products from the Global Precipitation Measurement (GPM mission and its predecessor the Tropical Rainfall Measuring Mission (TRMM are a critical data source for hydrological applications in ungauged basins. This study conducted an initial and early evaluation of the performance of the Integrated Multi-satellite Retrievals for GPM (IMERG final run and the TRMM Multi-satellite Precipitation Analysis 3B42V7 precipitation products, and their feasibility in streamflow simulations in the Chindwin River basin, Myanmar, from April 2014 to December 2015 was also assessed. Results show that, although IMERG and 3B42V7 can potentially capture the spatiotemporal patterns of historical precipitation, the two products contain considerable errors. Compared with 3B42V7, no significant improvements were found in IMERG. Moreover, 3B42V7 outperformed IMERG at daily and monthly scales and in heavy rain detections at four out of five gauges. The large errors in IMERG and 3B42V7 distinctly propagated to streamflow simulations via the Xinanjiang hydrological model, with a significant underestimation of total runoff and high flows. The bias correction of the satellite precipitation effectively improved the streamflow simulations. The 3B42V7-based streamflow simulations performed better than the gauge-based simulations. In general, IMERG and 3B42V7 are feasible for use in streamflow simulations in the study area, although 3B42V7 is better suited than IMERG.

  20. Assessing Radiometric Stability of the 17-Plus-Year TRMM Microwave Imager 1B11 Version-8 (GPM05 Brightness Temperature Product

    Directory of Open Access Journals (Sweden)

    Ruiyao Chen

    2017-12-01

    Full Text Available The NASA Tropical Rainfall Measuring Mission (TRMM Microwave Imager (TMI has produced a 17-plus-year time-series of calibrated microwave radiances that have remarkable value for investigating the effects of the Earth’s climate change over the tropics. Recently, the Global Precipitation Measurement (GPM Inter-Satellite Radiometric Calibration (XCAL Working Group have performed various calibration and corrections that yielded the legacy TMI 1B11 Version 8 (also called GPM05 brightness temperature product, which will be released in late 2017 by the NASA Precipitation Processing System. Since TMI served as the radiometric transfer standard for the TRMM constellation microwave radiometer sensors, it is important to document its accuracy. In this paper, the various improvements applied to TMI 1B11 V8 are summarized, and the radiometric calibration stability is evaluated by comparisons with a radiative transfer model and by XCAL evaluations with the Global Precipitation Measuring Microwave Imager during their 13-month overlap period. Evaluation methods will be described and results will be presented, which demonstrate that TMI has achieved a radiometric stability level of a few deciKelvin over almost two decades.

  1. Accessing the capability of TRMM 3B42 V7 to simulate streamflow during extreme rain events: Case study for a Himalayan River Basin

    Science.gov (United States)

    Kumar, Brijesh; Lakshmi, Venkat

    2018-03-01

    The paper examines the quality of Tropical Rainfall Monitoring Mission (TRMM) 3B42 V7 precipitation product to simulate the streamflow using Soil Water Assessment Tool (SWAT) model for various rainfall intensities over the Himalayan region. The SWAT model has been set up for Gandak River Basin with 41 sub-basins and 420 HRUs. Five stream gauge locations are used to simulate the streamflow for a time span of 10 years (2000-2010). Daily streamflow for the simulation period is collected from Central Water Commission (CWC), India and Department of Hydrology and Meteorology (DHM), Nepal. The simulation results are found good in terms of Nash-Sutcliffe efficiency (NSE) {>}0.65, coefficient of determination (R2) {>}0.67 and Percentage Bias (PBIAS){}124.4 mm/d). The PBIAS and RSR show that TRMM simulated streamflow is suitable for moderate to heavy rainfall intensities. However, it does not perform well for light- and extremely-heavy rainfall intensities. The finding of the present work is useful for the problems related to water resources management, irrigation planning and hazard analysis over the Himalayan regions.

  2. Understanding the Global Water and Energy Cycle Through Assimilation of Precipitation-Related Observations: Lessons from TRMM and Prospects for GPM

    Science.gov (United States)

    Hou, Arthur; Zhang, Sara; daSilva, Arlindo; Li, Frank; Atlas, Robert (Technical Monitor)

    2002-01-01

    Understanding the Earth's climate and how it responds to climate perturbations relies on what we know about how atmospheric moisture, clouds, latent heating, and the large-scale circulation vary with changing climatic conditions. The physical process that links these key climate elements is precipitation. Improving the fidelity of precipitation-related fields in global analyses is essential for gaining a better understanding of the global water and energy cycle. In recent years, research and operational use of precipitation observations derived from microwave sensors such as the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager and Special Sensor Microwave/Imager (SSM/I) have shown the tremendous potential of using these data to improve global modeling, data assimilation, and numerical weather prediction. We will give an overview of the benefits of assimilating TRMM and SSM/I rain rates and discuss developmental strategies for using space-based rainfall and rainfall-related observations to improve forecast models and climate datasets in preparation for the proposed multi-national Global Precipitation Mission (GPM).

  3. Shallow and Deep Latent Heating Modes Over Tropical Oceans Observed with TRMM PR Spectral Latent Heating Data

    Science.gov (United States)

    Takayabu, Yukari N.; Shige, Shoichi; Tao, Wei-Kuo; Hirota, Nagio

    2010-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. Three-dimensional distributions of latent heating estimated from Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR)utilizing the Spectral Latent Heating (SLH) algorithm are analyzed. Mass-weighted and vertically integrated latent heating averaged over the tropical oceans is estimated as approx.72.6 J/s (approx.2.51 mm/day), and that over tropical land is approx.73.7 J/s (approx.2.55 mm/day), for 30degN-30degS. It is shown that non-drizzle precipitation over tropical and subtropical oceans consists of two dominant modes of rainfall systems, deep systems and congestus. A rough estimate of shallow mode contribution against the total heating is about 46.7 % for the average tropical oceans, which is substantially larger than 23.7 % over tropical land. While cumulus congestus heating linearly correlates with the SST, deep mode is dynamically bounded by large-scale subsidence. It is notable that substantial amount of rain, as large as 2.38 mm day-1 in average, is brought from congestus clouds under the large-scale subsiding circulation. It is also notable that even in the region with SST warmer than 28 oC, large-scale subsidence effectively suppresses the deep convection, remaining the heating by congestus clouds. Our results support that the entrainment of mid-to-lower-tropospheric dry air, which accompanies the large

  4. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  5. Ground states of a spin-boson model

    International Nuclear Information System (INIS)

    Amann, A.

    1991-01-01

    Phase transition with respect to ground states of a spin-boson Hamiltonian are investigated. The spin-boson model under discussion consists of one spin and infinitely many bosons with a dipole-type coupling. It is shown that the order parameter of the model vanishes with respect to arbitrary ground states if it vanishes with respect to ground states obtained as (biased) temperature to zero limits of thermic equilibrium states. The ground states of the latter special type have been investigated by H. Spohn. Spohn's respective phase diagrams are therefore valid for arbitrary ground states. Furthermore, disjointness of ground states in the broken symmetry regime is examined

  6. Explicating Validity

    Science.gov (United States)

    Kane, Michael T.

    2016-01-01

    How we choose to use a term depends on what we want to do with it. If "validity" is to be used to support a score interpretation, validation would require an analysis of the plausibility of that interpretation. If validity is to be used to support score uses, validation would require an analysis of the appropriateness of the proposed…

  7. Características de cristais de gelo observados em um sistema de nuvens na Amazônia durante o experimento TRMM-LBA Characteristics of ice crystals observed in a cloud system over the Amazon during the TRMM-LBA experiment

    Directory of Open Access Journals (Sweden)

    Alexandre Araujo Costa

    2012-07-01

    Full Text Available Durante os meses de janeiro e fevereiro de 1999 foi realizada a campanha do TRMM/LBA (Tropical Rainfall Measuring Mission/Large Scale Biosphere-Atmosphere Experiment in Amazonia, na qual foram investigadas propriedades microfísicas de nuvens convectivas profundas. Este experimento fez parte de um esforço internacional para calibrar os equipamentos, no satélite TRMM, com o objetivo de estudar processos físicos tais como precipitação, radiação e eletricidade atmosférica. Os dados utilizados neste trabalho foram obtidos por instrumentos instalados na aeronave Citation II pertencente à Universidade de Dakota do Norte, USA, que incluem um conjunto de sondas espectrométricas, as quais medem a concentração e tamanho de partículas de gelo e de água, com destaque para a sonda bidimensional 2DC (Two-dimensional Cloud probe. Esta sonda identifica não apenas concentração e tamanho dos hidrometeoros, mas também as diferentes formas dos cristais de gelo. A aeronave realizou diversos vôos no experimento TRMM/LBA, sendo escolhido para análise o dia 10 de fevereiro de 1999. Foram observados cristais de gelo com uma grande variedade de formas e dimensões. Verificou-se certa concordância entre a forma dos cristais e os padrões de temperatura e umidade presente no ambiente, assim como foram observadas superposições de hábitos de cristais, sugerindo a existência de mistura entre diferentes regiões das nuvens e indicando que a sedimentação dos cristais pode ter grande importância para a evolução das propriedades microfísicas de nuvens convectivas profundas. Foi observado que a distribuição de tamanho dos cristais de gelo em função do diâmetro segue uma lei de potência.During the months of January and February 1999, the TRMM/LBA (Tropical Rainfall Measuring Mission/Large Scale Biosphere-Atmosphere Experiment in Amazonia campaign took place, in which microphysical properties of deep convective clouds were investigated. The

  8. Electrical Subsurface Grounding Analysis

    International Nuclear Information System (INIS)

    J.M. Calle

    2000-01-01

    The purpose and objective of this analysis is to determine the present grounding requirements of the Exploratory Studies Facility (ESF) subsurface electrical system and to verify that the actual grounding system and devices satisfy the requirements

  9. The ground based plan

    International Nuclear Information System (INIS)

    1989-01-01

    The paper presents a report of ''The Ground Based Plan'' of the United Kingdom Science and Engineering Research Council. The ground based plan is a plan for research in astronomy and planetary science by ground based techniques. The contents of the report contains a description of:- the scientific objectives and technical requirements (the basis for the Plan), the present organisation and funding for the ground based programme, the Plan, the main scientific features and the further objectives of the Plan. (U.K.)

  10. Constructivist Grounded Theory?

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser, PhD, Hon. PhD

    2012-06-01

    Full Text Available AbstractI refer to and use as scholarly inspiration Charmaz’s excellent article on constructivist grounded theory as a tool of getting to the fundamental issues on why grounded theory is not constructivist. I show that constructivist data, if it exists at all, is a very, very small part of the data that grounded theory uses.

  11. Communication, concepts and grounding

    NARCIS (Netherlands)

    van der Velde, Frank; van der Velde, F.

    2015-01-01

    This article discusses the relation between communication and conceptual grounding. In the brain, neurons, circuits and brain areas are involved in the representation of a concept, grounding it in perception and action. In terms of grounding we can distinguish between communication within the brain

  12. Tropical cloud and precipitation regimes as seen from near-simultaneous TRMM, CloudSat, and CALIPSO observations and comparison with ISCCP

    Science.gov (United States)

    Luo, Zhengzhao Johnny; Anderson, Ricardo C.; Rossow, William B.; Takahashi, Hanii

    2017-06-01

    Although Tropical Rainfall Measuring Mission (TRMM) and CloudSat/CALIPSO fly in different orbits, they frequently cross each other so that for the period between 2006 and 2010, a total of 15,986 intersect lines occurred within 20 min of each other from 30°S to 30°N, providing a rare opportunity to study tropical cloud and precipitation regimes and their internal vertical structure from near-simultaneous measurements by these active sensors. A k-means cluster analysis of TRMM and CloudSat matchups identifies three tropical cloud and precipitation regimes: the first two regimes correspond to, respectively, organized deep convection with heavy rain and cirrus anvils with moderate rain; the third regime is a convectively suppressed regime that can be further divided into three subregimes, which correspond to, respectively, stratocumulus clouds with drizzle, cirrus overlying low clouds, and nonprecipitating cumulus. Inclusion of CALIPSO data adds to the dynamic range of cloud properties and identifies one more cluster; subcluster analysis further identifies a thin, midlevel cloud regime associated with tropical mountain ranges. The radar-lidar cloud regimes are compared with the International Satellite Cloud Climatology Project (ISCCP) weather states (WSs) for the extended tropics. Focus is placed on the four convectively active WSs, namely, WS1-WS4. ISCCP WS1 and WS2 are found to be counterparts of Regime 1 and Regime 2 in radar-lidar observations, respectively. ISCCP WS3 and WS4, which are mainly isolated convection and broken, detached cirrus, do not have a strong association with any individual radar and lidar regimes, a likely effect of the different sampling strategies between ISCCP and active sensors and patchy cloudiness of these WSs.

  13. Rigour and grounded theory.

    Science.gov (United States)

    Cooney, Adeline

    2011-01-01

    This paper explores ways to enhance and demonstrate rigour in a grounded theory study. Grounded theory is sometimes criticised for a lack of rigour. Beck (1993) identified credibility, auditability and fittingness as the main standards of rigour for qualitative research methods. These criteria were evaluated for applicability to a Straussian grounded theory study and expanded or refocused where necessary. The author uses a Straussian grounded theory study (Cooney, In press) to examine how the revised criteria can be applied when conducting a grounded theory study. Strauss and Corbin (1998b) criteria for judging the adequacy of a grounded theory were examined in the context of the wider literature examining rigour in qualitative research studies in general and grounded theory studies in particular. A literature search for 'rigour' and 'grounded theory' was carried out to support this analysis. Criteria are suggested for enhancing and demonstrating the rigour of a Straussian grounded theory study. These include: cross-checking emerging concepts against participants' meanings, asking experts if the theory 'fit' their experiences, and recording detailed memos outlining all analytical and sampling decisions. IMPLICATIONS FOR RESEARCH PRACTICE: The criteria identified have been expressed as questions to enable novice researchers to audit the extent to which they are demonstrating rigour when writing up their studies. However, it should not be forgotten that rigour is built into the grounded theory method through the inductive-deductive cycle of theory generation. Care in applying the grounded theory methodology correctly is the single most important factor in ensuring rigour.

  14. Back Radiation Suppression through a Semitransparent Ground Plane for a mm-Wave Patch Antenna

    KAUST Repository

    Klionovski, Kirill; Shamim, Atif

    2017-01-01

    by a round semitransparent ground plane. The semitransparent ground plane has been realized using a low-cost carbon paste on a Kapton film. Experimental results match closely with those of simulations and validate the overall concept.

  15. [Introduction to grounded theory].

    Science.gov (United States)

    Wang, Shou-Yu; Windsor, Carol; Yates, Patsy

    2012-02-01

    Grounded theory, first developed by Glaser and Strauss in the 1960s, was introduced into nursing education as a distinct research methodology in the 1970s. The theory is grounded in a critique of the dominant contemporary approach to social inquiry, which imposed "enduring" theoretical propositions onto study data. Rather than starting from a set theoretical framework, grounded theory relies on researchers distinguishing meaningful constructs from generated data and then identifying an appropriate theory. Grounded theory is thus particularly useful in investigating complex issues and behaviours not previously addressed and concepts and relationships in particular populations or places that are still undeveloped or weakly connected. Grounded theory data analysis processes include open, axial and selective coding levels. The purpose of this article was to explore the grounded theory research process and provide an initial understanding of this methodology.

  16. Ground Truth Collections at the MTI Core Sites

    International Nuclear Information System (INIS)

    Garrett, A.J.

    2001-01-01

    The Savannah River Technology Center (SRTC) selected 13 sites across the continental US and one site in the western Pacific to serve as the primary or core site for collection of ground truth data for validation of MTI science algorithms. Imagery and ground truth data from several of these sites are presented in this paper. These sites are the Comanche Peak, Pilgrim and Turkey Point power plants, Ivanpah playas, Crater Lake, Stennis Space Center and the Tropical Western Pacific ARM site on the island of Nauru. Ground truth data includes water temperatures (bulk and skin), radiometric data, meteorological data and plant operating data. The organizations that manage these sites assist SRTC with its ground truth data collections and also give the MTI project a variety of ground truth measurements that they make for their own purposes. Collectively, the ground truth data from the 14 core sites constitute a comprehensive database for science algorithm validation

  17. The Grounded Theory Bookshelf

    Directory of Open Access Journals (Sweden)

    Vivian B. Martin, Ph.D.

    2005-03-01

    Full Text Available Bookshelf will provide critical reviews and perspectives on books on theory and methodology of interest to grounded theory. This issue includes a review of Heaton’s Reworking Qualitative Data, of special interest for some of its references to grounded theory as a secondary analysis tool; and Goulding’s Grounded Theory: A practical guide for management, business, and market researchers, a book that attempts to explicate the method and presents a grounded theory study that falls a little short of the mark of a fully elaborated theory.Reworking Qualitative Data, Janet Heaton (Sage, 2004. Paperback, 176 pages, $29.95. Hardcover also available.

  18. Hot Ground Vibration Tests

    Data.gov (United States)

    National Aeronautics and Space Administration — Ground vibration tests or modal surveys are routinely conducted to support flutter analysis for subsonic and supersonic vehicles. However, vibration testing...

  19. FACTAR validation

    International Nuclear Information System (INIS)

    Middleton, P.B.; Wadsworth, S.L.; Rock, R.C.; Sills, H.E.; Langman, V.J.

    1995-01-01

    A detailed strategy to validate fuel channel thermal mechanical behaviour codes for use of current power reactor safety analysis is presented. The strategy is derived from a validation process that has been recently adopted industry wide. Focus of the discussion is on the validation plan for a code, FACTAR, for application in assessing fuel channel integrity safety concerns during a large break loss of coolant accident (LOCA). (author)

  20. Efektivitas Instagram Common Grounds

    OpenAIRE

    Wifalin, Michelle

    2016-01-01

    Efektivitas Instagram Common Grounds merupakan rumusan masalah yang diambil dalam penelitian ini. Efektivitas Instagram diukur menggunakan Customer Response Index (CRI), dimana responden diukur dalam berbagai tingkatan, mulai dari awareness, comprehend, interest, intentions dan action. Tingkatan respons inilah yang digunakan untuk mengukur efektivitas Instagram Common Grounds. Teori-teori yang digunakan untuk mendukung penelitian ini yaitu teori marketing Public Relations, teori iklan, efekti...

  1. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  2. A brief report on the development of a theoretically-grounded intervention to promote patient autonomy and self-management of physiotherapy patients: face validity and feasibility of implementation.

    Science.gov (United States)

    Matthews, James; Hall, Amanda M; Hernon, Marian; Murray, Aileen; Jackson, Ben; Taylor, Ian; Toner, John; Guerin, Suzanne; Lonsdale, Chris; Hurley, Deirdre A

    2015-07-05

    Clinical practice guidelines for the treatment of low back pain suggest the inclusion of a biopsychosocial approach in which patient self-management is prioritized. While many physiotherapists recognise the importance of evidence-based practice, there is an evidence practice gap that may in part be due to the fact that promoting self-management necessitates change in clinical behaviours. Evidence suggests that a patient's motivation and maintenance of self-management behaviours can be positively influenced by the clinician's use of an autonomy supportive communication style. Therefore, the aim of this study was to develop and pilot-test the feasibility of a theoretically derived implementation intervention to support physiotherapists in using an evidence-based autonomy supportive communication style in practice for promoting patient self-management in clinical practice. A systematic process was used to develop the intervention and pilot-test its feasibility in primary care physiotherapy. The development steps included focus groups to identify barriers and enablers for implementation, the theoretical domains framework to classify determinants of change, a behaviour change technique taxonomy to select appropriate intervention components, and forming a testable theoretical model. Face validity and acceptability of the intervention was pilot-tested with two physiotherapists and monitoring their communication with patients over a three-month timeframe. Using the process described above, eight barriers and enablers for implementation were identified. To address these barriers and enablers, a number of intervention components were selected ranging from behaviour change techniques such as, goal-setting, self-monitoring and feedback to appropriate modes of intervention delivery (i.e. continued education meetings and audit and feedback focused coaching). Initial pilot-testing revealed the acceptability of the intervention to recipients and highlighted key areas for

  3. The Grounded Theory Bookshelf

    Directory of Open Access Journals (Sweden)

    Dr. Alvita Nathaniel, DSN, APRN, BC

    2005-06-01

    Full Text Available The Grounded Theory Perspective III: Theoretical Coding, Barney G. Glaser (Sociology Press, 2005. Not intended for a beginner, this book further defi nes, describes, and explicates the classic grounded theory (GT method. Perspective III lays out various facets of theoretical coding as Glaser meticulously distinguishes classic GT from other subsequent methods. Developed many years after Glaser’s classic GT, these methods, particularly as described by Strauss and Corbin, adopt the grounded theory name and engender ongoing confusion about the very premises of grounded theory. Glaser distinguishes between classic GT and the adscititious methods in his writings, referring to remodeled grounded theory and its offshoots as Qualitative Data Analysis (QDA models.

  4. Communication, concepts and grounding.

    Science.gov (United States)

    van der Velde, Frank

    2015-02-01

    This article discusses the relation between communication and conceptual grounding. In the brain, neurons, circuits and brain areas are involved in the representation of a concept, grounding it in perception and action. In terms of grounding we can distinguish between communication within the brain and communication between humans or between humans and machines. In the first form of communication, a concept is activated by sensory input. Due to grounding, the information provided by this communication is not just determined by the sensory input but also by the outgoing connection structure of the conceptual representation, which is based on previous experiences and actions. The second form of communication, that between humans or between humans and machines, is influenced by the first form. In particular, a more successful interpersonal communication might require forms of situated cognition and interaction in which the entire representations of grounded concepts are involved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. BUSTED BUTTE TEST FACILITY GROUND SUPPORT CONFIRMATION ANALYSIS

    International Nuclear Information System (INIS)

    Bonabian, S.

    1998-01-01

    The main purpose and objective of this analysis is to confirm the validity of the ground support design for Busted Butte Test Facility (BBTF). The highwall stability and adequacy of highwall and tunnel ground support is addressed in this analysis. The design of the BBTF including the ground support system was performed in a separate document (Reference 5.3). Both in situ and seismic loads are considered in the evaluation of the highwall and the tunnel ground support system. In this analysis only the ground support designed in Reference 5.3 is addressed. The additional ground support installed (still work in progress) by the constructor is not addressed in this analysis. This additional ground support was evaluated by the A/E during a site visit and its findings and recommendations are addressed in this analysis

  6. Structural Design and Response in Collision and Grounding

    DEFF Research Database (Denmark)

    Brown, Alan; Tikka, Kirsi; Daidola, John C.

    2000-01-01

    on Collision and Grounding of Ships, to be held in Copenhagen, July 1-3,2001, will also present and discuss many of the results of this panel and other related research. The paper discusses four primary areas of panel work: collision and grounding models, data, accident scenarios and design applications....... A probabilistic framework for assessing the crashworthiness of ships is presented. Results obtained from various grounding and collision models are compared to validating cases and to each other. Data necessary for proper model validation and probabilistic accident scenario development are identified. Deformable...

  7. A Multi-Year Data Set of Cloud Properties Derived for CERES from Aqua, Terra, and TRMM

    Science.gov (United States)

    Minnis, Patrick; Sunny Sun-Mack; Trepte, Quinz Z.; Yan Chen; Brown, Richard R.; Gibson, Sharon C.; Heck, Michael L.; Dong, Xiquan; Xi, Baike

    2007-01-01

    The Clouds and Earth's Radiant Energy System (CERES) Project is producing a suite of cloud properties from high-resolution imagers on several satellites and matching them precisely with broadband radiance data to study the influence of clouds and radiation on climate. The cloud properties generally compare well with independent validation sources. Distinct differences are found between the CERES cloud properties and those derived with other algorithms from the same imager data. CERES products will be updated beginning in late 2006.

  8. Adding Theoretical Grounding to Grounded Theory: Toward Multi-Grounded Theory

    OpenAIRE

    Göran Goldkuhl; Stefan Cronholm

    2010-01-01

    The purpose of this paper is to challenge some of the cornerstones of the grounded theory approach and propose an extended and alternative approach for data analysis and theory development, which the authors call multi-grounded theory (MGT). A multi-grounded theory is not only empirically grounded; it is also grounded in other ways. Three different grounding processes are acknowledged: theoretical, empirical, and internal grounding. The authors go beyond the pure inductivist approach in GT an...

  9. Grounding of SNS Accelerator Structure

    CERN Document Server

    Holik, Paul S

    2005-01-01

    Description of site general grounding network. RF grounding network enhancement underneath the klystron gallery building. Grounding network of the Ring Systems with ground breaks in the Ring Tunnel. Grounding and Bonding of R&D accelerator equipment. SNS Building lightning protection.

  10. 77 FR 27135 - HACCP Systems Validation

    Science.gov (United States)

    2012-05-09

    ... validation, the journal article should identify E.coli O157:H7 and other pathogens as the hazard that the..., or otherwise processes ground beef may determine that E. coli O157:H7 is not a hazard reasonably... specifications that require that the establishment's suppliers apply validated interventions to address E. coli...

  11. Airfield Ground Safety

    National Research Council Canada - National Science Library

    Petrescu, Jon

    2000-01-01

    .... The system developed under AGS, called the Ground Safety Tracking and Reporting System, uses multisensor data fusion from in-pavement inductive loop sensors to address a critical problem affecting out nation's airports: runway incursions...

  12. Grounded meets floating

    Science.gov (United States)

    Walker, Ryan T.

    2018-04-01

    A comprehensive assessment of grounding-line migration rates around Antarctica, covering a third of the coast, suggests retreat in considerable portions of the continent, beyond the rates expected from adjustment following the Last Glacial Maximum.

  13. Ground water and earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ts' ai, T H

    1977-11-01

    Chinese folk wisdom has long seen a relationship between ground water and earthquakes. Before an earthquake there is often an unusual change in the ground water level and volume of flow. Changes in the amount of particulate matter in ground water as well as changes in color, bubbling, gas emission, and noises and geysers are also often observed before earthquakes. Analysis of these features can help predict earthquakes. Other factors unrelated to earthquakes can cause some of these changes, too. As a first step it is necessary to find sites which are sensitive to changes in ground stress to be used as sensor points for predicting earthquakes. The necessary features are described. Recording of seismic waves of earthquake aftershocks is also an important part of earthquake predictions.

  14. Relational grounding facilitates development of scientifically useful multiscale models

    Directory of Open Access Journals (Sweden)

    Lam Tai

    2011-09-01

    Full Text Available Abstract We review grounding issues that influence the scientific usefulness of any biomedical multiscale model (MSM. Groundings are the collection of units, dimensions, and/or objects to which a variable or model constituent refers. To date, models that primarily use continuous mathematics rely heavily on absolute grounding, whereas those that primarily use discrete software paradigms (e.g., object-oriented, agent-based, actor typically employ relational grounding. We review grounding issues and identify strategies to address them. We maintain that grounding issues should be addressed at the start of any MSM project and should be reevaluated throughout the model development process. We make the following points. Grounding decisions influence model flexibility, adaptability, and thus reusability. Grounding choices should be influenced by measures, uncertainty, system information, and the nature of available validation data. Absolute grounding complicates the process of combining models to form larger models unless all are grounded absolutely. Relational grounding facilitates referent knowledge embodiment within computational mechanisms but requires separate model-to-referent mappings. Absolute grounding can simplify integration by forcing common units and, hence, a common integration target, but context change may require model reengineering. Relational grounding enables synthesis of large, composite (multi-module models that can be robust to context changes. Because biological components have varying degrees of autonomy, corresponding components in MSMs need to do the same. Relational grounding facilitates achieving such autonomy. Biomimetic analogues designed to facilitate translational research and development must have long lifecycles. Exploring mechanisms of normal-to-disease transition requires model components that are grounded relationally. Multi-paradigm modeling requires both hyperspatial and relational grounding.

  15. Detecting Climate Signals in Precipitation Extremes from TRMM (1998-2013) - Increasing Contrast Between Wet and Dry Extremes During the "Global Warming Hiatus"

    Science.gov (United States)

    Wu, Huey-Tzu Jenny; Lau, William K.-M.

    2016-01-01

    We investigate changes in daily precipitation extremes using Tropical Rainfall Measuring Mission (TRMM) data (1998-2013), which coincides with the "global warming hiatus." Results show a change in probability distribution functions of local precipitation events (LPEs) during this period consistent with previous global warming studies, indicating increasing contrast between wet and dry extremes, with more intense LPE, less moderate LPE, and more dry (no rain) days globally. Analyses for land and ocean separately reveal more complex and nuanced changes over land, characterized by a strong positive trend (+12.0% per decade, 99% confidence level (c.l.)) in frequency of extreme LPEs over the Northern Hemisphere extratropics during the wet season but a negative global trend (-6.6% per decade, 95% c.l.) during the dry season. A significant global drying trend (3.2% per decade, 99% c.l.) over land is also found during the dry season. Regions of pronounced increased dry events include western and central U.S., northeastern Asia, and Southern Europe/Mediterranean.

  16. Similarity and Error Intercomparison of the GPM and Its Predecessor-TRMM Multisatellite Precipitation Analysis Using the Best Available Hourly Gauge Network over the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Yingzhao Ma

    2016-07-01

    Full Text Available The performance of Day-1 Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM mission (IMERG and its predecessor, the Tropical Rainfall Measuring Mission (TRMM Multisatellite Precipitation Analysis 3B42 Version 7 (3B42V7, was cross-evaluated using data from the best-available hourly gauge network over the Tibetan Plateau (TP. Analyses of three-hourly rainfall estimates in the warm season of 2014 reveal that IMERG shows appreciably better correlations and lower errors than 3B42V7, though with very similar spatial patterns for all assessment indicators. IMERG also appears to detect light rainfall better than 3B42V7. However, IMERG shows slightly lower POD than 3B42V7 for elevations above 4200 m. Both IMERG and 3B42V7 successfully capture the northward dynamic life cycle of the Indian monsoon reasonably well over the TP. In particular, the relatively light rain from early and end Indian monsoon moisture surge events often fails to be captured by the sparsely-distributed gauges. In spite of limited snowfall field observations, IMERG shows the potential of detecting solid precipitation, which cannot be retrieved from the 3B42V7 products.

  17. Strong ground motion prediction using virtual earthquakes.

    Science.gov (United States)

    Denolle, M A; Dunham, E M; Prieto, G A; Beroza, G C

    2014-01-24

    Sedimentary basins increase the damaging effects of earthquakes by trapping and amplifying seismic waves. Simulations of seismic wave propagation in sedimentary basins capture this effect; however, there exists no method to validate these results for earthquakes that have not yet occurred. We present a new approach for ground motion prediction that uses the ambient seismic field. We apply our method to a suite of magnitude 7 scenario earthquakes on the southern San Andreas fault and compare our ground motion predictions with simulations. Both methods find strong amplification and coupling of source and structure effects, but they predict substantially different shaking patterns across the Los Angeles Basin. The virtual earthquake approach provides a new approach for predicting long-period strong ground motion.

  18. Yet Another Puzzle of Ground

    NARCIS (Netherlands)

    Korbmacher, J.

    2015-01-01

    We show that any predicational theory of partial ground that extends a standard theory of syntax and that proves some commonly accepted principles for partial ground is inconsistent. We suggest a way to obtain a consistent predicational theory of ground.

  19. St. John Shallow-water Ground Validation Sites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic habitat maps of the nearshore marine environment of St. John, U.S. Virgin Islands were created by visual interpretation of remotely sensed imagery. The...

  20. GPM GROUND VALIDATION AUTONOMOUS PARSIVEL UNIT (APU) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Autonomous Parsivel Unit (APU) is an optical disdrometer based on single particle extinction that measures particle size and fall velocity. This APU consists of...

  1. Northeast Puerto Rico and Culebra Island Ground Validation Points 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This shapefile denotes the location of underwater photos and videos taken in shallow water (0-35m) benthic habitats surrounding Northeast Puerto Rico and Culebra...

  2. GPM GROUND VALIDATION PAWNEE RADAR MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Pawnee radar data for the Midlatitude Continental Convective Clouds Experiment (MC3E) held in Oklahoma were collected on May 24, 2011 to support the CHILL radar...

  3. GPM GROUND VALIDATION UND CITATION CLOUD MICROPHYSICS GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The University of North Dakota (UND) Cessna Citation aircraft, an in-situ platform for the GCPEX campaign, carried a suite of instruments for measurements of cloud...

  4. St. John Benthic Habitat Mapping - Moderate Depth Ground Validation Sites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic habitats of the moderate-depth marine environment in and around the Virgin Islands Coral Reef National Monument were mapped using a combination of...

  5. GPM GROUND VALIDATION SATELLITE SIMULATED ORBITS LPVEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Satellite Simulator database is available for several campaigns: Light Precipitation Evaluation Experiment (LPVEX), Midlatitude Continental Convective Clouds...

  6. GPM GROUND VALIDATION CHILL RADAR MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CHILL radar data for the Midlatitude Continental Convective Clouds Experiment (MC3E) held in Oklahoma were collected while the NASA ER-2 aircraft conducted a...

  7. Validation philosophy

    International Nuclear Information System (INIS)

    Vornehm, D.

    1994-01-01

    To determine when a set of calculations falls within an umbrella of an existing validation documentation, it is necessary to generate a quantitative definition of range of applicability (our definition is only qualitative) for two reasons: (1) the current trend in our regulatory environment will soon make it impossible to support the legitimacy of a validation without quantitative guidelines; and (2) in my opinion, the lack of support by DOE for further critical experiment work is directly tied to our inability to draw a quantitative open-quotes line-in-the-sandclose quotes beyond which we will not use computer-generated values

  8. Move of ground water

    International Nuclear Information System (INIS)

    Kimura, Shigehiko

    1983-01-01

    As a ground water flow which is difficult to explain by Darcy's theory, there is stagnant water in strata, which moves by pumping and leads to land subsidence. This is now a major problem in Japan. Such move on an extensive scale has been investigated in detail by means of 3 H such as from rainfall in addition to ordinary measurement. The move of ground water is divided broadly into that in an unsaturated stratum from ground surface to water-table and that in a saturated stratum below the water-table. The course of the analyses made so far by 3 H contained in water, and the future trend of its usage are described. A flow model of regarding water as plastic fluid and its flow as channel assembly may be available for some flow mechanism which is not possible to explain with Darcy's theory. (Mori, K.)

  9. Ground motion predictions

    Energy Technology Data Exchange (ETDEWEB)

    Loux, P C [Environmental Research Corporation, Alexandria, VA (United States)

    1969-07-01

    Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)

  10. Ground motion predictions

    International Nuclear Information System (INIS)

    Loux, P.C.

    1969-01-01

    Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)

  11. Graphene ground states

    Science.gov (United States)

    Friedrich, Manuel; Stefanelli, Ulisse

    2018-06-01

    Graphene is locally two-dimensional but not flat. Nanoscale ripples appear in suspended samples and rolling up often occurs when boundaries are not fixed. We address this variety of graphene geometries by classifying all ground-state deformations of the hexagonal lattice with respect to configurational energies including two- and three-body terms. As a consequence, we prove that all ground-state deformations are either periodic in one direction, as in the case of ripples, or rolled up, as in the case of nanotubes.

  12. EOS Terra Validation Program

    Science.gov (United States)

    Starr, David

    2000-01-01

    The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multi-Angle Imaging Spectroradiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS) and Measurements of Pollution in the Troposphere (MOPITT). In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS) AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2 though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra

  13. Nuclear ground state

    International Nuclear Information System (INIS)

    Negele, J.W.

    1975-01-01

    The nuclear ground state is surveyed theoretically, and specific suggestions are given on how to critically test the theory experimentally. Detailed results on 208 Pb are discussed, isolating several features of the charge density distributions. Analyses of 208 Pb electron scattering and muonic data are also considered. 14 figures

  14. Informed Grounded Theory

    Science.gov (United States)

    Thornberg, Robert

    2012-01-01

    There is a widespread idea that in grounded theory (GT) research, the researcher has to delay the literature review until the end of the analysis to avoid contamination--a dictum that might turn educational researchers away from GT. Nevertheless, in this article the author (a) problematizes the dictum of delaying a literature review in classic…

  15. Mechanics of Ship Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    1996-01-01

    In these notes first a simplified mathematical model is presented for analysis of ship hull loading due to grounding on relatively hard and plane sand, clay or rock sea bottoms. In a second section a more rational calculation model is described for the sea bed soil reaction forces on the sea bott...

  16. Singlet Ground State Magnetism:

    DEFF Research Database (Denmark)

    Loidl, A.; Knorr, K.; Kjems, Jørgen

    1979-01-01

    The magneticGamma 1 –Gamma 4 exciton of the singlet ground state system TbP has been studied by inelastic neutron scattering above the antiferromagnetic ordering temperature. Considerable dispersion and a pronounced splitting was found in the [100] and [110] directions. Both the band width...

  17. Grounding Anger Management

    Directory of Open Access Journals (Sweden)

    Odis E. Simmons, PhD

    2017-06-01

    Full Text Available One of the things that drew me to grounded theory from the beginning was Glaser and Strauss’ assertion in The Discovery of Grounded Theory that it was useful as a “theoretical foothold” for practical applications (p. 268. From this, when I was a Ph.D student studying under Glaser and Strauss in the early 1970s, I devised a GT based approach to action I later came to call “grounded action.” In this short paper I’ll present a very brief sketch of an anger management program I developed in 1992, using grounded action. I began my research by attending a two-day anger management training workshop designed for training professionals in the most commonly used anger management model. Like other intervention programs I had seen, this model took a psychologizing and pathologizing approach to the issue. Following this, I sat through the full course of an anger management program that used this model, observing the reactions of the participants and the approach of the facilitator. Following each session I conducted open-ended interviews with most of the participants, either individually or in groups of two or three. I had also done previous research in counseling and social work contexts that turned out to be very relevant to an anger management program design.

  18. Grounding in Instant Messaging

    Science.gov (United States)

    Fox Tree, Jean E.; Mayer, Sarah A.; Betts, Teresa E.

    2011-01-01

    In two experiments, we investigated predictions of the "collaborative theory of language use" (Clark, 1996) as applied to instant messaging (IM). This theory describes how the presence and absence of different grounding constraints causes people to interact differently across different communicative media (Clark & Brennan, 1991). In Study 1, we…

  19. Collison and Grounding

    DEFF Research Database (Denmark)

    Wang, G.; Ji, C.; Kuhala, P.

    2006-01-01

    COMMITTEE MANDATE Concern for structural arrangements on ships and floating structures with regard to their integrity and adequacy in the events of collision and grounding, with the view towards risk assessment and management. Consideration shall be given to the frequency of occurrence...

  20. Comparison of Diurnal Characteristics of GPM-IMERG Precipitation Products with Hourly Rain Gauge Observations and TRMM-TMPA Products over Mainland China

    Science.gov (United States)

    Li, R.; Wang, K.; QI, D.

    2017-12-01

    The next generation global high resolutions precipitation products, the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) provide new insights into the global hydrometeorology studies. Although there are some previous works to evaluate it on daily scale or above, its performance on sub-daily scale is still limited. This study evaluates the diurnal characteristics of the half-hourly IMERG product with the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) data and the hourly rain gauge data from approximately 50000 automatic weather station (AWS) in China during 2014-2016. The results show that IMERG can roughly capture the diurnal cycle of precipitation amount with serial correlation for eight sub-regions ranging from 0.63 to 0.97, but less agreed in frequency (from 0.21 to 0.90) and intensity (from -0.22 to 0.83). IMERG can generally capture the nocturnal and early morning peak of amount, frequency and intensity, which it's a known issue unsolved by TMPA, partly due to the better detection of light rain in the morning. However as for the afternoon precipitation, overestimation of amount and frequency and underestimation of intensity still exist in IMERG product, which probably result from the overestimation of light and moderate rain. IMERG shows large bias in late morning (0900-1100 Beijing Time) and mid evening (2000-2200 Beijing Time). All these results highlight the cautions when using the IMERG sub-daily product and indicate the necessity of improved retrieval algorithm in the future.

  1. Assessment of Evolving TRMM-Based Real-Time Precipitation Estimation Methods and Their Impacts on Hydrologic Prediction in a High-Latitude Basin

    Science.gov (United States)

    Yong, Bin; Hong, Yang; Ren, Li-Liang; Gourley, Jonathan; Huffman, George J.; Chen, Xi; Wang, Wen; Khan, Sadiq I.

    2013-01-01

    The real-time availability of satellite-derived precipitation estimates provides hydrologists an opportunity to improve current hydrologic prediction capability for medium to large river basins. Due to the availability of new satellite data and upgrades to the precipitation algorithms, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis real-time estimates (TMPA-RT) have been undergoing several important revisions over the past ten years. In this study, the changes of the relative accuracy and hydrologic potential of TMPA-RT estimates over its three major evolving periods were evaluated and inter-compared at daily, monthly and seasonal scales in the high-latitude Laohahe basin in China. Assessment results show that the performance of TMPA-RT in terms of precipitation estimation and streamflow simulation was significantly improved after 3 February 2005. Overestimation during winter months was noteworthy and consistent, which is suggested to be a consequence from interference of snow cover to the passive microwave retrievals. Rainfall estimated by the new version 6 of TMPA-RT starting from 1 October 2008 to present has higher correlations with independent gauge observations and tends to perform better in detecting rain compared to the prior periods, although it suffers larger mean error and relative bias. After a simple bias correction, this latest dataset of TMPA-RT exhibited the best capability in capturing hydrologic response among the three tested periods. In summary, this study demonstrated that there is an increasing potential in the use of TMPA-RT in hydrologic streamflow simulations over its three algorithm upgrade periods, but still with significant challenges during the winter snowing events.

  2. Engineering uses of physics-based ground motion simulations

    Science.gov (United States)

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  3. Infrasonic induced ground motions

    Science.gov (United States)

    Lin, Ting-Li

    On January 28, 2004, the CERI seismic network recorded seismic signals generated by an unknown source. Our conclusion is that the acoustic waves were initiated by an explosive source near the ground surface. The meteorological temperature and effective sound speed profiles suggested existence of an efficient near-surface waveguide that allowed the acoustic disturbance to propagate to large distances. An explosion occurring in an area of forest and farms would have limited the number of eyewitnesses. Resolution of the source might be possible by experiment or by detailed analysis of the ground motion data. A seismo-acoustic array was built to investigate thunder-induced ground motions. Two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen to evaluate the credibility of using thunder as a seismic source. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters. Nineteen thunder events were chosen to further investigate the seismo-acoustic coupling. The consistent incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Acoustic and seismic signals were used to generate the time-domain transfer function through the deconvolution technique. Possible non-linear interaction for acoustic propagation into the soil at the surface was observed. The reverse radial initial motions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series of the Rayleigh wave type, which has a systematic dispersion relation to incident slownesses inferred from the seismic ground velocity. Air-coupled Rayleigh wave dispersion was used to quantitatively constrain the near-surface site structure with constraints afforded by near-surface body

  4. TOPEX ground data system

    Science.gov (United States)

    Rosell, S. N.; Yamarone, C. A., Jr.

    The TOPEX Project is a proposed oceanographic mission to measure the topography of the sea surface for a period of three years. This mission is sponsored by the National Aeronautics and Space Administration and managed by the Jet Propulsion Laboratory. Measurements of topography are used to study ocean currents, tides, bathymetry and the oceanic geoid. Several of the primary goals of this mission are to process and verify the altimetric data, and distribute them within days to the science investigators. This paper describes the TOPEX end-to-end ground data system. In addition to controlling the TOPEX satellite, the ground data system has been designed to minimize the time from data acquisition to science processing and data distribution. A centralized design supports the favorable response time of the system and also allows for operational efficiencies. Networking of real time and non-real time elements of the data system provides for more effective data processing.

  5. Ibis ground calibration

    International Nuclear Information System (INIS)

    Bird, A.J.; Barlow, E.J.; Tikkanen, T.; Bazzano, A.; Del Santo, M.; Ubertini, P.; Blondel, C.; Laurent, P.; Lebrun, F.; Di Cocco, G.; Malaguti, E.; Gabriele, M.; La Rosa, G.; Segreto, A.; Quadrini, E.; Volkmer, R.

    2003-01-01

    We present an overview of results obtained from IBIS ground calibrations. The spectral and spatial characteristics of the detector planes and surrounding passive materials have been determined through a series of calibration campaigns. Measurements of pixel gain, energy resolution, detection uniformity, efficiency and imaging capability are presented. The key results obtained from the ground calibration have been: - optimization of the instrument tunable parameters, - determination of energy linearity for all detection modes, - determination of energy resolution as a function of energy through the range 20 keV - 3 MeV, - demonstration of imaging capability in each mode, - measurement of intrinsic detector non-uniformity and understanding of the effects of passive materials surrounding the detector plane, and - discovery (and closure) of various leakage paths through the passive shielding system

  6. Ground motion effects

    Energy Technology Data Exchange (ETDEWEB)

    Blume, J A [John A. Blume and Associates, San Francisco, CA (United States)

    1969-07-01

    Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)

  7. The LOFT Ground Segment

    DEFF Research Database (Denmark)

    Bozzo, E.; Antonelli, A.; Argan, A.

    2014-01-01

    targets per orbit (~90 minutes), providing roughly ~80 GB of proprietary data per day (the proprietary period will be 12 months). The WFM continuously monitors about 1/3 of the sky at a time and provides data for about ~100 sources a day, resulting in a total of ~20 GB of additional telemetry. The LOFT...... Burst alert System additionally identifies on-board bright impulsive events (e.g., Gamma-ray Bursts, GRBs) and broadcasts the corresponding position and trigger time to the ground using a dedicated system of ~15 VHF receivers. All WFM data are planned to be made public immediately. In this contribution...... we summarize the planned organization of the LOFT ground segment (GS), as established in the mission Yellow Book 1 . We describe the expected GS contributions from ESA and the LOFT consortium. A review is provided of the planned LOFT data products and the details of the data flow, archiving...

  8. Ground motion effects

    International Nuclear Information System (INIS)

    Blume, J.A.

    1969-01-01

    Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)

  9. Unmanned Ground Systems Roadmap

    Science.gov (United States)

    2011-07-01

    quality metric tracking history . 1.4.3.4 Technical Management Division The mission of the RS JPO Technical Management (Tech Mgt) Division is to...missions dictate radio capabilities. IP version 4 ( IPv4 ) is the common IP standard used on IP addressable devices of UGVs, however, Unmanned Ground...Systems Roadmap UNCLASSIFIED 26 UNCLASSIFIED July 2011 IPv4 addresses are projected to run out and UGV systems will need to migrate to IP version 6

  10. Ground System Survivability Overview

    Science.gov (United States)

    2012-03-27

    Avoidance Blast Mitigation Optimization Customer ILIR RDT&E Funding 5.0 % 0.5% GSS has a proven, technically proficient workforce that meets...Evaluation of Defensive-Aid Suites (ARMED) Common Automatic Fire Extinguishing System ( CAFES ) Transparent Armor Development Ground Combat Vehicle...Survey TRADOC (WFO, CNA, etc) Voice of the Customer Sy st em s En gi ne er in g Publish overarching MIL-STD, design guidelines, technical

  11. Crystalline beam ground state

    International Nuclear Information System (INIS)

    Wei, Jie; Li, Xiao-Ping; Sessler, A.M.

    1993-01-01

    In order to employ Molecular Dynamics method, commonly used in condensed matter physics, we have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. We include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations has been performed to obtain the equilibrium structure. The effects of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time-dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Rahman and Schiffer, depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing

  12. Crystalline beam ground state

    International Nuclear Information System (INIS)

    Wei, Jie; Li, Xiao-Ping

    1993-01-01

    In order to employ molecular dynamics (MD) methods, commonly used in condensed matter physics, we have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. We include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations using MD methods has been performed to obtain the equilibrium crystalline beam structure. The effect of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Schiffer et al. depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing

  13. Crystalline beam ground state

    International Nuclear Information System (INIS)

    Wei, J.; Li, X.P.

    1993-01-01

    In order to employ the Molecular Dynamics method, commonly used in condensed matter physics, the authors have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. They include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations has been performed to obtain the equilibrium structure. The effects of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time-dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Rahman and Schiffer, depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing

  14. Ensemble of ground subsidence hazard maps using fuzzy logic

    Science.gov (United States)

    Park, Inhye; Lee, Jiyeong; Saro, Lee

    2014-06-01

    Hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok, Korea, were constructed using fuzzy ensemble techniques and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, groundwater, and ground subsidence maps. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 70/30 for training and validation of the models. The relationships between the detected ground-subsidence area and the factors were identified and quantified by frequency ratio (FR), logistic regression (LR) and artificial neural network (ANN) models. The relationships were used as factor ratings in the overlay analysis to create ground-subsidence hazard indexes and maps. The three GSH maps were then used as new input factors and integrated using fuzzy-ensemble methods to make better hazard maps. All of the hazard maps were validated by comparison with known subsidence areas that were not used directly in the analysis. As the result, the ensemble model was found to be more effective in terms of prediction accuracy than the individual model.

  15. Ground-water development and problems in Idaho

    Science.gov (United States)

    Crosthwaite, E.G.

    1954-01-01

    The development of groundwater for irrigation in Idaho, as most of you know, has proceeded at phenomenal rate since the Second World War. In the period 1907 to 1944 inclusive only about 328 valid permits and licenses to appropriate ground water were issued by the state. thereafter 28 permits became valid in 1945, 83 in 1946, and 121 in 1947. Sine 1947 permits and licenses have been issued at the rate of more than 400 a year.  

  16. Simulated earthquake ground motions

    International Nuclear Information System (INIS)

    Vanmarcke, E.H.; Gasparini, D.A.

    1977-01-01

    The paper reviews current methods for generating synthetic earthquake ground motions. Emphasis is on the special requirements demanded of procedures to generate motions for use in nuclear power plant seismic response analysis. Specifically, very close agreement is usually sought between the response spectra of the simulated motions and prescribed, smooth design response spectra. The features and capabilities of the computer program SIMQKE, which has been widely used in power plant seismic work are described. Problems and pitfalls associated with the use of synthetic ground motions in seismic safety assessment are also pointed out. The limitations and paucity of recorded accelerograms together with the widespread use of time-history dynamic analysis for obtaining structural and secondary systems' response have motivated the development of earthquake simulation capabilities. A common model for synthesizing earthquakes is that of superposing sinusoidal components with random phase angles. The input parameters for such a model are, then, the amplitudes and phase angles of the contributing sinusoids as well as the characteristics of the variation of motion intensity with time, especially the duration of the motion. The amplitudes are determined from estimates of the Fourier spectrum or the spectral density function of the ground motion. These amplitudes may be assumed to be varying in time or constant for the duration of the earthquake. In the nuclear industry, the common procedure is to specify a set of smooth response spectra for use in aseismic design. This development and the need for time histories have generated much practical interest in synthesizing earthquakes whose response spectra 'match', or are compatible with a set of specified smooth response spectra

  17. Ground System Extensibility Considerations

    Science.gov (United States)

    Miller, S. W.; Greene, E.

    2017-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners, such as NASA's Earth Observation System (EOS), NOAA's current POES, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), and DoD's Defense Meteorological Satellite Program (DMSP). The CGS provides a wide range of support to a number of national and international missions, including command and control, mission management, data acquisition and routing, and environmental data processing and distribution. The current suite of CGS-supported missions has demonstrated the value of interagency and international partnerships to address global observation needs. With its established infrastructure and existing suite of missions, the CGS is extensible to a wider array of potential new missions. This paper will describe how the inherent scalability and extensibility of the CGS enables the addition of these new missions, with an eye on global enterprise needs in the 2020's and beyond.

  18. The new Passive microwave Neural network Precipitation Retrieval (PNPR algorithm for the cross-track scanning ATMS radiometer: description and verification study over Europe and Africa using GPM and TRMM spaceborne radars

    Directory of Open Access Journals (Sweden)

    P. Sanò

    2016-11-01

    Full Text Available The objective of this paper is to describe the development and evaluate the performance of a completely new version of the Passive microwave Neural network Precipitation Retrieval (PNPR v2, an algorithm based on a neural network approach, designed to retrieve the instantaneous surface precipitation rate using the cross-track Advanced Technology Microwave Sounder (ATMS radiometer measurements. This algorithm, developed within the EUMETSAT H-SAF program, represents an evolution of the previous version (PNPR v1, developed for AMSU/MHS radiometers (and used and distributed operationally within H-SAF, with improvements aimed at exploiting the new precipitation-sensing capabilities of ATMS with respect to AMSU/MHS. In the design of the neural network the new ATMS channels compared to AMSU/MHS, and their combinations, including the brightness temperature differences in the water vapor absorption band, around 183 GHz, are considered. The algorithm is based on a single neural network, for all types of surface background, trained using a large database based on 94 cloud-resolving model simulations over the European and the African areas. The performance of PNPR v2 has been evaluated through an intercomparison of the instantaneous precipitation estimates with co-located estimates from the TRMM Precipitation Radar (TRMM-PR and from the GPM Core Observatory Ku-band Precipitation Radar (GPM-KuPR. In the comparison with TRMM-PR, over the African area the statistical analysis was carried out for a 2-year (2013–2014 dataset of coincident observations over a regular grid at 0.5°  ×  0.5° resolution. The results have shown a good agreement between PNPR v2 and TRMM-PR for the different surface types. The correlation coefficient (CC was equal to 0.69 over ocean and 0.71 over vegetated land (lower values were obtained over arid land and coast, and the root mean squared error (RMSE was equal to 1.30 mm h−1 over ocean and 1.11 mm h−1 over

  19. Ground penetrating radar

    CERN Document Server

    Daniels, David J

    2004-01-01

    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  20. Predicting Ground Illuminance

    Science.gov (United States)

    Lesniak, Michael V.; Tregoning, Brett D.; Hitchens, Alexandra E.

    2015-01-01

    Our Sun outputs 3.85 x 1026 W of radiation, of which roughly 37% is in the visible band. It is directly responsible for nearly all natural illuminance experienced on Earth's surface, either in the form of direct/refracted sunlight or in reflected light bouncing off the surfaces and/or atmospheres of our Moon and the visible planets. Ground illuminance, defined as the amount of visible light intercepting a unit area of surface (from all incident angles), varies over 7 orders of magnitude from day to night. It is highly dependent on well-modeled factors such as the relative positions of the Sun, Earth, and Moon. It is also dependent on less predictable factors such as local atmospheric conditions and weather.Several models have been proposed to predict ground illuminance, including Brown (1952) and Shapiro (1982, 1987). The Brown model is a set of empirical data collected from observation points around the world that has been reduced to a smooth fit of illuminance against a single variable, solar altitude. It provides limited applicability to the Moon and for cloudy conditions via multiplicative reduction factors. The Shapiro model is a theoretical model that treats the atmosphere as a three layer system of light reflectance and transmittance. It has different sets of reflectance and transmittance coefficients for various cloud types.In this paper we compare the models' predictions to ground illuminance data from an observing run at the White Sands missile range (data was obtained from the United Kingdom's Meteorology Office). Continuous illuminance readings were recorded under various cloud conditions, during both daytime and nighttime hours. We find that under clear skies, the Shapiro model tends to better fit the observations during daytime hours with typical discrepancies under 10%. Under cloudy skies, both models tend to poorly predict ground illuminance. However, the Shapiro model, with typical average daytime discrepancies of 25% or less in many cases

  1. TFTR grounding scheme and ground-monitor system

    International Nuclear Information System (INIS)

    Viola, M.

    1983-01-01

    The Tokamak Fusion Test Reactor (TFTR) grounding system utilizes a single-point ground. It is located directly under the machine, at the basement floor level, and is tied to the building perimeter ground. Wired to this single-point ground, via individual 500 MCM insulated cables, are: the vacuum vessel; four toroidal field coil cases/inner support structure quadrants; umbrella structure halves; the substructure ring girder; radial beams and columns; and the diagnostic systems. Prior to the first machine operation, a ground-loop removal program was initiated. It required insulation of all hangers and supports (within a 35-foot radius of the center of the machine) of the various piping, conduits, cable trays, and ventilation systems. A special ground-monitor system was designed and installed. It actively monitors each of the individual machine grounds to insure that there are no inadvertent ground loops within the machine structure or its ground and that the machine grounds are intact prior to each pulse. The TFTR grounding system has proven to be a very manageable system and one that is easy to maintain

  2. Absorbed Energy in Ship Collisions and Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    is that the absorbed energy does not depend on the arrangement of the structure, the material properties, and the damage mode.The purpose of the present paper is to establish a new simple relation between the absorbed energy and the destroyed material volume, which can be used as a design tool for analysis of ship...... collisions and grounding. The developed expressions reflect the structural arrangement, the material properties and different damage patterns.The present method is validated against a large number of existing experimental results and detailed numerical simulation results. Applications to full-sale ship...

  3. Estimating Hedonic Price Indices for Ground Vehicles

    Science.gov (United States)

    2015-06-01

    I N S T I T U T E F O R D E F E N S E A N A L Y S E S Estimating Hedonic Price Indices for Ground Vehicles (Presentation) David M. Tate Stanley...gathering and maintaining the data needed , and completing and reviewing the collection of information. Send comments regarding this burden estimate or any...currently valid OMB control number. 1. REPORT DATE JUN 2015 2. REPORT TYPE 3. DATES COVERED 4. TITLE AND SUBTITLE Estimating Hedonic Price

  4. A thermal ground cloak

    International Nuclear Information System (INIS)

    Yang, Tianzhi; Wu, Qinghe; Xu, Weikai; Liu, Di; Huang, Lujun; Chen, Fei

    2016-01-01

    The thermal cloak has been a long-standing scientific dream of researchers and engineers. Recently thermal metamaterials with man-made micro-structure have been presented based on the principle of transformation optics (TO). This new concept has received considerable attention, which is a powerful tool for manipulating heat flux in thermal imaging systems. However, the inherent material singularity has long been a captivation of experimental realization. As an alternative method, the scattering-cancellation-based cloak (or bi-layer thermal cloak) has been presented to remove the singularity for achieving the same cloaking performance. Nevertheless, such strategy needs prerequisite knowledge (geometry and conductivity) of the object to be cloaked. In this paper, a new thermal ground cloak is presented to overcome the limitations. The device is designed, fabricated and measured to verify the thermal cloaking performance. We experimentally show that the remarkably low complexity of the device can fully and effectively be manipulated using realizable transformation thermal devices. More importantly, this thermal ground cloak is designed to exclude heat flux without knowing the information of the cloaked object. - Highlights: • We present the first thermal carpet cloak. • The carpet can thermally cloak any shaped object without knowing the properties of the object to be cloaked. • Excellent agreements between simulation and experiment are observed.

  5. Grounding for safety

    Energy Technology Data Exchange (ETDEWEB)

    Prud' homme, P. [Hydro-Quebec, Montreal, PQ (Canada). TransEnergie Div.

    2006-07-01

    The importance of providing electrical grounds as a safety issue in the design of power transmission lines was discussed. Power transmission lines extend over several thousands of kilometers crossing various environments, including communities where electric utilities encourage the use of transmission rights-of-way passages for uses such as bicycle paths. In recent years, many new residential communities have been built at the border of power transmission rights-of-ways or substations. In view of this emerging trend, and the fact that internal statistics indicate that lightning strikes are responsible of about 50 to 60 per cent of transmission line faults, electric utilities are obligated to verify if their installations are safe. Hydro-Quebec TransEnergie's view on this subject was presented along with a review of international standards to determine if limits for touch voltage, step voltage and transferred potential close to transmission lines have been established by the international community. A variety of mitigation measures to control the increase in ground potential in the event of electrical faults were also proposed. tabs., figs.

  6. Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping

    Science.gov (United States)

    Park, Inhye; Choi, Jaewon; Jin Lee, Moung; Lee, Saro

    2012-11-01

    We constructed hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok City, Korea, using an adaptive neuro-fuzzy inference system (ANFIS) and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, and ground subsidence maps. An attribute database was also constructed from field investigations and reports on existing ground subsidence areas at the study site. Five major factors causing ground subsidence were extracted: (1) depth of drift; (2) distance from drift; (3) slope gradient; (4) geology; and (5) land use. The adaptive ANFIS model with different types of membership functions (MFs) was then applied for ground subsidence hazard mapping in the study area. Two ground subsidence hazard maps were prepared using the different MFs. Finally, the resulting ground subsidence hazard maps were validated using the ground subsidence test data which were not used for training the ANFIS. The validation results showed 95.12% accuracy using the generalized bell-shaped MF model and 94.94% accuracy using the Sigmoidal2 MF model. These accuracy results show that an ANFIS can be an effective tool in ground subsidence hazard mapping. Analysis of ground subsidence with the ANFIS model suggests that quantitative analysis of ground subsidence near AUCMs is possible.

  7. Ground Vehicle Convoying

    Science.gov (United States)

    Gage, Douglas W.; Pletta, J. Bryan

    1987-01-01

    Initial investigations into two different approaches for applying autonomous ground vehicle technology to the vehicle convoying application are described. A minimal capability system that would maintain desired speed and vehicle spacing while a human driver provided steering control could improve convoy performance and provide positive control at night and in inclement weather, but would not reduce driver manpower requirements. Such a system could be implemented in a modular and relatively low cost manner. A more capable system would eliminate the human driver in following vehicles and reduce manpower requirements for the transportation of supplies. This technology could also be used to aid in the deployment of teleoperated vehicles in a battlefield environment. The needs, requirements, and several proposed solutions for such an Attachable Robotic Convoy Capability (ARCC) system will be discussed. Included are discussions of sensors, communications, computers, control systems and safety issues. This advanced robotic convoy system will provide a much greater capability, but will be more difficult and expensive to implement.

  8. Common Ground and Delegation

    DEFF Research Database (Denmark)

    Dobrajska, Magdalena; Foss, Nicolai Juul; Lyngsie, Jacob

    preconditions of increasing delegation. We argue that key HR practices?namely, hiring, training and job-rotation?are associated with delegation of decision-making authority. These practices assist in the creation of shared knowledge conditions between managers and employees. In turn, such a ?common ground......? influences the confidence with which managers delegate decision authority to employees, as managers improve their knowledge of the educational background, firm-specific knowledge, and perhaps even the possible actions of those to whom they delegate such authority. To test these ideas, we match a large......-scale questionnaire survey with unique population-wide employer-employee data. We find evidence of a direct and positive influence of hiring decisions (proxied by common educational background), and the training and job rotation of employees on delegation. Moreover, we find a positive interaction between common...

  9. GROUNDED THEORY METHODOLOGY and GROUNDED THEORY RESEARCH in TURKEY

    OpenAIRE

    ARIK, Ferhat; ARIK, Işıl Avşar

    2016-01-01

    This research discusses the historical development of the Grounded Theory Methodology, which is one of the qualitative research method, its transformation over time and how it is used as a methodology in Turkey. The Grounded Theory which was founded by Strauss and Glaser, is a qualitative methodology based on inductive logic to discover theories in contrast with the deductive understanding which is based on testing an existing theory in sociology. It is possible to examine the Grounded Theory...

  10. TRMM-Based Lightning Climatology

    Science.gov (United States)

    Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.

    2011-01-01

    Gridded climatologies of total lightning flash rates seen by the spaceborne Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) have been updated. OTD collected data from May 1995 to March 2000. LIS data (equatorward of about 38 deg) has been added for 1998-2010. Flash counts from each instrument are scaled by the best available estimates of detection efficiency. The long LIS record makes the merged climatology most robust in the tropics and subtropics, while the high latitude data is entirely from OTD. The mean global flash rate from the merged climatology is 46 flashes per second. The peak annual flash rate at 0.5 deg scale is 160 fl/square km/yr in eastern Congo. The peak monthly average flash rate at 2.5 scale is 18 fl/square km/mo, from early April to early May in the Brahmaputra Valley of far eastern India. Lightning decreases in this region during the monsoon season, but increases further north and west. A monthly average peak from early August to early September in northern Pakistan also exceeds any monthly averages from Africa, despite central Africa having the greatest yearly average. Most continental regions away from the equator have an annual cycle with lightning flash rates peaking in late spring or summer. The main exceptions are India and southeast Asia, with springtime peaks in April and May. For landmasses near the equator, flash rates peak near the equinoxes. For many oceanic regions, the peak flash rates occur in autumn. This is particularly noticeable for the Mediterranean and North Atlantic. Landmasses have a strong diurnal cycle of lightning, with flash rates generally peaking between 3-5 pm local solar time. The central United States flash rates peak later, in late evening or early night. Flash rates peak after midnight in northern Argentina. These regions are known for large, intense, long-lived mesoscale convective systems.

  11. Description and Validation of a MATLAB

    DEFF Research Database (Denmark)

    Johra, Hicham; Heiselberg, Per

    This report aims to present the details and the validation tests of a single family house building energy model. The building model includes furniture / additional indoor content, phase change materials, ground source heat pump and water-based under floor heating system....

  12. 2012 Ground Testing Highlights

    Science.gov (United States)

    Buchholz, Steven J.

    2012-01-01

    As part of the Fundamental Aeronautics Program and a collaborative effort with Boeing, and Lockheed Martin this past year a series of sonic boom test were completed in the NASA Ames Unitary Plan Wind Tunnel (UPWT). One of the goals was to develop new test techniques and hardware for measuring sonic boom signatures in the transonic and supersonic regimes. Data for various model designs and configurations were collected and will be used to validate CFD predictions of sonic boom signatures. Reactivation of the NASA Ames Mitsubishi compressor system was completed this past year. The compressor is intended to replace and augment the existing UPWT Clark Compressor as the primary Make Up Air (MUA) source. The MUA system provides air and vacuum pumping capability to the Ames UPWT. It will improve productivity and reliability of the UPWT as a vital testing and research facility for the U.S. aerospace industry and NASA. Funding for this task was provided from the American Recovery Investment Act (ARRA). Installation and validation of a Noncontact Stress Monitoring System (NSMS) for the 3-stage compressor was completed at the 11-foot Transonic Wind Tunnel. The system, originally developed at AEDC, consists of 36 pairs of LED light sources with optic beam send and receive probes along a 1-per rev signal. The new system allows for continuous monitoring and recording of compressor blade bending and torsion stress during normal test operations. A very unusual test was completed in the 11 FT TWT to acquire aerodynamic and flow field data for the Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS) to validate CFD methods and tools. Surface pressure distribution measurements and velocity measurements in the wake of the command module back to the drogues parachute location were acquired. Testing methods included Particle Image Velocimetry (PIV), Pressure Sensitive Paint (PSP), Schlieren Infrared Imaging (IR) and boundary layer survey and skin friction.

  13. Suomi NPP Ground System Performance

    Science.gov (United States)

    Grant, K. D.; Bergeron, C.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The first satellite in the JPSS constellation, known as the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite, was launched on 28 October 2011, and is currently undergoing product calibration and validation activities. As products reach a beta level of maturity, they are made available to the community through NOAA's Comprehensive Large Array-data Stewardship System (CLASS). CGS's data processing capability processes the satellite data from the Joint Polar Satellite System satellites to provide environmental data products (including Sensor Data Records (SDRs) and Environmental Data Records (EDRs)) to NOAA and Department of Defense (DoD) processing centers operated by the United States government. CGS is currently processing and delivering SDRs and EDRs for Suomi NPP and will continue through the lifetime of the Joint Polar Satellite System programs. Following the launch and sensor activation phase of the Suomi NPP mission, full volume data traffic is now flowing from the satellite through CGS's C3, data processing, and data delivery systems. Ground system performance is critical for this operational system. As part of early system checkout, Raytheon measured all aspects of data acquisition, routing, processing, and delivery to ensure operational performance requirements are met, and will continue to be met throughout the mission. Raytheon developed a tool to measure, categorize, and

  14. Ground test for vibration control demonstrator

    Science.gov (United States)

    Meyer, C.; Prodigue, J.; Broux, G.; Cantinaud, O.; Poussot-Vassal, C.

    2016-09-01

    In the objective of maximizing comfort in Falcon jets, Dassault Aviation is developing an innovative vibration control technology. Vibrations of the structure are measured at several locations and sent to a dedicated high performance vibration control computer. Control laws are implemented in this computer to analyse the vibrations in real time, and then elaborate orders sent to the existing control surfaces to counteract vibrations. After detailing the technology principles, this paper focuses on the vibration control ground demonstration that was performed by Dassault Aviation in May 2015 on Falcon 7X business jet. The goal of this test was to attenuate vibrations resulting from fixed forced excitation delivered by shakers. The ground test demonstrated the capability to implement an efficient closed-loop vibration control with a significant vibration level reduction and validated the vibration control law design methodology. This successful ground test was a prerequisite before the flight test demonstration that is now being prepared. This study has been partly supported by the JTI CleanSky SFWA-ITD.

  15. Using Simulated Ground Motions to Constrain Near-Source Ground Motion Prediction Equations in Areas Experiencing Induced Seismicity

    Science.gov (United States)

    Bydlon, S. A.; Dunham, E. M.

    2016-12-01

    Recent increases in seismic activity in historically quiescent areas such as Oklahoma, Texas, and Arkansas, including large, potentially induced events such as the 2011 Mw 5.6 Prague, OK, earthquake, have spurred the need for investigation into expected ground motions associated with these seismic sources. The neoteric nature of this seismicity increase corresponds to a scarcity of ground motion recordings within 50 km of earthquakes Mw 3.0 and greater, with increasing scarcity at larger magnitudes. Gathering additional near-source ground motion data will help better constraints on regional ground motion prediction equations (GMPEs) and will happen over time, but this leaves open the possibility of damaging earthquakes occurring before potential ground shaking and seismic hazard in these areas are properly understood. To aid the effort of constraining near-source GMPEs associated with induced seismicity, we integrate synthetic ground motion data from simulated earthquakes into the process. Using the dynamic rupture and seismic wave propagation code waveqlab3d, we perform verification and validation exercises intended to establish confidence in simulated ground motions for use in constraining GMPEs. We verify the accuracy of our ground motion simulator by performing the PEER/SCEC layer-over-halfspace comparison problem LOH.1 Validation exercises to ensure that we are synthesizing realistic ground motion data include comparisons to recorded ground motions for specific earthquakes in target areas of Oklahoma between Mw 3.0 and 4.0. Using a 3D velocity structure that includes a 1D structure with additional small-scale heterogeneity, the properties of which are based on well-log data from Oklahoma, we perform ground motion simulations of small (Mw 3.0 - 4.0) earthquakes using point moment tensor sources. We use the resulting synthetic ground motion data to develop GMPEs for small earthquakes in Oklahoma. Preliminary results indicate that ground motions can be amplified

  16. Ground-water travel time

    International Nuclear Information System (INIS)

    Bentley, H.; Grisak, G.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Travel Time Subgroup are presented

  17. Regional ground-water system

    International Nuclear Information System (INIS)

    Long, J.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Regime Subgroup are presented

  18. Methane Emissions from Bangladesh: Bridging the Gap Between Ground-based and Space-borne Estimates

    Science.gov (United States)

    Peters, C.; Bennartz, R.; Hornberger, G. M.

    2015-12-01

    Gaining an understanding of methane (CH4) emission sources and atmospheric dispersion is an essential part of climate change research. Large-scale and global studies often rely on satellite observations of column CH4 mixing ratio whereas high-spatial resolution estimates rely on ground-based measurements. Extrapolation of ground-based measurements on, for example, rice paddies to broad region scales is highly uncertain because of spatio-temporal variability. We explore the use of ground-based river stage measurements and independent satellite observations of flooded area along with satellite measurements of CH4 mixing ratio to estimate the extent of methane emissions. Bangladesh, which comprises most of the Ganges Brahmaputra Meghna (GBM) delta, is a region of particular interest for studying spatio-temporal variation of methane emissions due to (1) broadscale rice cultivation and (2) seasonal flooding and atmospheric convection during the monsoon. Bangladesh and its deltaic landscape exhibit a broad range of environmental, economic, and social circumstances that are relevant to many nations in South and Southeast Asia. We explore the seasonal enhancement of CH4 in Bangladesh using passive remote sensing spectrometer CH4 products from the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) and the Atmospheric Infrared Sounder (AIRS). The seasonal variation of CH4 is compared to independent estimates of seasonal flooding from water gauge stations and space-based passive microwave water-to-land fractions from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM-TMI). Annual cycles in inundation (natural and anthropogenic) and atmospheric CH4 concentrations show highly correlated seasonal signals. NOAA's HYSPLIT model is used to determine atmospheric residence time of ground CH4 fluxes. Using the satellite observations, we can narrow the large uncertainty in extrapolation of ground-based CH4 emission estimates from rice paddies

  19. Closed-form critical earthquake response of elastic-plastic structures on compliant ground under near-fault ground motions

    Directory of Open Access Journals (Sweden)

    Kotaro eKojima

    2016-01-01

    Full Text Available The double impulse is introduced as a substitute of the fling-step near-fault ground motion. A closed-form solution of the elastic-plastic response of a structure on compliant (flexible ground by the ‘critical double impulse’ is derived for the first time based on the solution for the corresponding structure with fixed base. As in the case of fixed-base model, only the free-vibration appears under such double impulse and the energy approach plays an important role in the derivation of the closed-form solution of a complicated elastic-plastic response on compliant ground. It is remarkable that no iteration is needed in the derivation of the critical elastic-plastic response. It is shown via the closed-form expression that, in the case of a smaller input level of double impulse to the structural strength, as the ground stiffness becomes larger, the maximum plastic deformation becomes larger. On the other hand, in the case of a larger input level of double impulse to the structural strength, as the ground stiffness becomes smaller, the maximum plastic deformation becomes larger. The criticality and validity of the proposed theory are investigated through the comparison with the response analysis to the corresponding one-cycle sinusoidal input as a representative of the fling-step near-fault ground motion. The applicability of the proposed theory to actual recorded pulse-type ground motions is also discussed.

  20. Ground Attenuation of Railroad Noise

    DEFF Research Database (Denmark)

    Makarewicz, R.; Rasmussen, Karsten Bo; Kokowski, P.

    1996-01-01

    The influence of ground effect on railroad noise is described using the concept of the peak A-weighted sound exposure level, and A-weighted sound exposure level. The train is modelled by a continuous line of incoherent point sources that have a cosine directivity. The ground effect is included...

  1. Grounding Damage to Conventional Vessels

    DEFF Research Database (Denmark)

    Lützen, Marie; Simonsen, Bo Cerup

    2003-01-01

    The present paper is concerned with rational design of conventional vessels with regard to bottom damage generated in grounding accidents. The aim of the work described here is to improve the design basis, primarily through analysis of new statistical data for grounding damage. The current regula...

  2. Ground-based photo monitoring

    Science.gov (United States)

    Frederick C. Hall

    2000-01-01

    Ground-based photo monitoring is repeat photography using ground-based cameras to document change in vegetation or soil. Assume those installing the photo location will not be the ones re-photographing it. This requires a protocol that includes: (1) a map to locate the monitoring area, (2) another map diagramming the photographic layout, (3) type and make of film such...

  3. Electrochemical stabilization of clayey ground

    Science.gov (United States)

    Rzhanitzin, B.A.; Sokoloff, V.P.

    1947-01-01

    Recently developed new methods of stabilization of weak grounds (e.g. the silicate treatment) are based on injection of chemical solutions into the ground. Such methods are applicable accordingly only to the kinds of ground that have the coefficient of filtration higher than 2 meters per 24 hours and permit penetration of the chemical solutions under pressure. This limit, however, as it is shown by our experience in construction, excludes a numerous and an important class of grounds, stabilization of which is indispensable in many instances. For example, digging of trenches and pits in clayey, silty, or sandy ground shows that all these types act like typical "floaters" (sluds? -S) in the presence of the ground water pressure. There were several instances in the canalization of the city of Moskow where the laying of trenches below the ground water level has led to extreme difficulties with clayey and silty ground. Similar examples could be cited in mining, engineering hydrology, and railroad construction. For these reasons, the development of methods of stabilizing such difficult types of ground has become an urgent problem of our day. In 1936, the author began his investigations, at the ground Stabilization Laboratory of VODGEO Institute, with direct electrical current as the means of stabilization of grounds. Experiments had shown that a large number of clayey types, following passage of direct electrical current, undergoes a transformation of its physico-chemical properties. It was established that the (apparent -S) density of the ground is substantially increased in consequence of the application of direct electrical current. The ground loses also its capacity to swell and to soften in water. Later, after a more detailed study of the physico-chemical mechanism of the electrical stabilization, it became possible to develop the method so as to make it applicable to sandy and silty as well as to clayey ground. By this time (1941, S.), the method has already been

  4. On LHCb muon MWPC grounding

    CERN Document Server

    Kashchuk, A

    2006-01-01

    My goal is to study how a big MWPC system, in particular the LHCb muon system, can be protected against unstable operation and multiple spurious hits, produced by incorrect or imperfect grounding in the severe EM environment of the LHCb experiment. A mechanism of penetration of parasitic current from the ground loop to the input of the front-end amplifier is discussed. A new model of the detector cell as the electrical bridge is considered. As shown, unbalance of the bridge makes detector to be sensitive to the noise in ground loop. Resonances in ground loop are specified. Tests of multiple-point and single-point grounding conceptions made on mock-up are presented.

  5. On Grounding of Fast Ships

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Pedersen, Preben Terndrup

    1997-01-01

    The paper deals with analysis of grounding of high-speed crafts. It is the purpose to present a comprehensive mathematical model for calculation of the overall dynamic ship response during grounding. This procedure is applied to derive the motions, the time varying sectional forces and the local...... loads during grounding on plane, sloping, sandy bottoms for six different designs of fast monohull ships made from steel, aluminium or GRP sandwich materials. The results show that the effect of the hull flexibility is to reduce the overall dynamic sectional loads on the hull girder. The considered...... numerical examples also indicate that, even with impact speeds of 40 knots against a 1:10 sloping bottom, the global strength of the hull girder is not exceeded by the grounding induced loads.For the local deformation of high-speed ship hulls at the point of contact with the ground, the paper presents...

  6. Regional analysis of ground and above-ground climate

    Science.gov (United States)

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of Earth tempering as a practice and of specific Earth sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground are included. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 20 locations in the United States.

  7. Regional analysis of ground and above-ground climate

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  8. Construct Validity and Case Validity in Assessment

    Science.gov (United States)

    Teglasi, Hedwig; Nebbergall, Allison Joan; Newman, Daniel

    2012-01-01

    Clinical assessment relies on both "construct validity", which focuses on the accuracy of conclusions about a psychological phenomenon drawn from responses to a measure, and "case validity", which focuses on the synthesis of the full range of psychological phenomena pertaining to the concern or question at hand. Whereas construct validity is…

  9. Validation of Satellite Derived Cloud Properties Over the Southeastern Pacific

    Science.gov (United States)

    Ayers, J.; Minnis, P.; Zuidema, P.; Sun-Mack, S.; Palikonda, R.; Nguyen, L.; Fairall, C.

    2005-12-01

    Satellite measurements of cloud properties and the radiation budget are essential for understanding meso- and large-scale processes that determine the variability in climate over the southeastern Pacific. Of particular interest in this region is the prevalent stratocumulus cloud deck. The stratocumulus albedos are directly related to cloud microphysical properties that need to be accurately characterized in Global Climate Models (GCMs) to properly estimate the Earth's radiation budget. Meteorological observations in this region are sparse causing large uncertainties in initialized model fields. Remote sensing from satellites can provide a wealth of information about the clouds in this region, but it is vital to validate the remotely sensed parameters and to understand their relationship to other parameters that are not directly observed by the satellites. The variety of measurements from the R/V Roger Revelle during the 2003 STRATUS cruise and from the R/V Ron Brown during EPIC 2001 and the 2004 STRATUS cruises are suitable for validating and improving the interpretation of the satellite derived cloud properties. In this study, satellite-derived cloud properties including coverage, height, optical depth, and liquid water path are compared with in situ measurements taken during the EPIC and STRATUS cruises. The remotely sensed values are derived from Geostationary Operational Environmental Satellite (GOES) imager data, Moderate Resolution Imaging Spectroradiometer (MODIS) data from the Terra and Aqua satellites, and from the Visible and Infrared Scanner (VIRS) aboard the Tropical Rainfall Measuring Mission (TRMM) satellite. The products from this study will include regional monthly cloud climatologies derived from the GOES data for the 2003 and 2004 cruises as well as micro and macro physical cloud property retrievals centered over the ship tracks from MODIS and VIRS.

  10. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...... of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical example in which the scan plane is finite validates the expressions for the spectrum of the GPR antenna....

  11. Opportunities and challenges for evaluating precipitation estimates during GPM mission

    Energy Technology Data Exchange (ETDEWEB)

    Amitai, E. [George Mason Univ. and NASA Goddard Space Flight Center, Greenbelt, MD (United States); NASA Goddard Space Flight Center, Greenbelt, MD (United States); Llort, X.; Sempere-Torres, D. [GRAHI/Univ. Politecnica de Catalunya, Barcelona (Spain)

    2006-10-15

    Data assimilation in conjunction with numerical weather prediction and a variety of hydrologic applications now depend on satellite observations of precipitation. However, providing values of precipitation is not sufficient unless they are accompanied by the associated uncertainty estimates. The main approach of quantifying satellite precipitation uncertainties generally requires establishment of reliable uncertainty estimates for the ground validation rainfall products. This paper discusses several of the relevant validation concepts evolving from the tropical rainfall measuring mission (TRMM) era to the global precipitation measurement mission (GPM) era in the context of determining and reducing uncertainties of ground and space-based radar rainfall estimates. From comparisons of probability distribution functions of rain rates derived from TRMM precipitation radar and co-located ground based radar data - using the new NASA TRMM radar rainfall products (version 6) - this paper provides (1) a brief review of the importance of comparing pdfs of rain rate for statistical and physical verification of space-borne radar estimates of precipitation; (2) a brief review of how well the ground validation estimates compare to the TRMM radar retrieved estimates; and (3) discussion on opportunities and challenges to determine and reduce the uncertainties in space-based and ground-based radar estimates of rain rate distributions. (orig.)

  12. Ground Control System Description Document

    International Nuclear Information System (INIS)

    Eric Loros

    2001-01-01

    The Ground Control System contributes to the safe construction and operation of the subsurface facility, including accesses and waste emplacement drifts, by maintaining the configuration and stability of the openings during construction, development, emplacement, and caretaker modes for the duration of preclosure repository life. The Ground Control System consists of ground support structures installed within the subsurface excavated openings, any reinforcement made to the rock surrounding the opening, and inverts if designed as an integral part of the system. The Ground Control System maintains stability for the range of geologic conditions expected at the repository and for all expected loading conditions, including in situ rock, construction, operation, thermal, and seismic loads. The system maintains the size and geometry of operating envelopes for all openings, including alcoves, accesses, and emplacement drifts. The system provides for the installation and operation of sensors and equipment for any required inspection and monitoring. In addition, the Ground Control System provides protection against rockfall for all subsurface personnel, equipment, and the engineered barrier system, including the waste package during the preclosure period. The Ground Control System uses materials that are sufficiently maintainable and that retain the necessary engineering properties for the anticipated conditions of the preclosure service life. These materials are also compatible with postclosure waste isolation performance requirements of the repository. The Ground Control System interfaces with the Subsurface Facility System for operating envelopes, drift orientation, and excavated opening dimensions, Emplacement Drift System for material compatibility, Monitored Geologic Repository Operations Monitoring and Control System for ground control instrument readings, Waste Emplacement/Retrieval System to support waste emplacement operations, and the Subsurface Excavation System

  13. Alternatives for ground water cleanup

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Geosciences, Environment and Resources; Division on Earth and Life Studies; National Research Council; National Academy of Sciences

    .... Yet recent studies question whether existing technologies can restore contaminated ground water to drinking water standards, which is the goal for most sites and the result expected by the public...

  14. Integrated Ground Operations Demonstration Units

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of the AES Integrated Ground Operations Demonstration Units (IGODU) project is to demonstrate cost efficient cryogenic operations on a relevant...

  15. Imaging of Moving Ground Vehicles

    National Research Council Canada - National Science Library

    Rihaczek, A

    1996-01-01

    ... requires that use be made of the complex image. The yaw/pitch/roll/bounce/flex motion of a moving ground vehicle demands that different motion compensations be applied to different parts of the vehicle...

  16. Humic substances in ground waters

    International Nuclear Information System (INIS)

    Paxeus, N.; Allard, B.; Olofsson, U.; Bengtsson, M.

    1986-01-01

    The presence of naturally occurring complexing agents that may enhance the migration of disposed radionuclikes and thus facilitate their uptake by plantsis a problem associated with the underground disposal of radioactive wastes in bedrock. The main purpose of this work is to characterized humic substances from ground water and compare them with humic substances from surface water. The humic materials isolated from ground waters of a borehole in Fjaellveden (Sweden) were characterized by elemental and functional group analyses. Spectroscopic properties, molecular weight distributions as well as acid-base properties of the fulvic and humic fractions were also studied. The ground water humic substances were found to be quite similar in many respects (but not identical) to the Swedish surface water humics concentrated from the Goeta River but appeared to be quite different from the American ground water humics from Biscayne Florida Aquifer or Laramie Fox-Hills in Colorado. The physico-chemical properties of the isolated humic materials are discussed

  17. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; hide

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  18. Ground Beef and Food Safety

    Science.gov (United States)

    ... 4 days. If frozen, it should keep its quality for about 4 months. When reheating fully cooked patties or casseroles containing ground beef, be sure the internal temperature reaches 165 °F (73.9 °C). Why ...

  19. Evaluation of multimodal ground cues

    DEFF Research Database (Denmark)

    Nordahl, Rolf; Lecuyer, Anatole; Serafin, Stefania

    2012-01-01

    This chapter presents an array of results on the perception of ground surfaces via multiple sensory modalities,with special attention to non visual perceptual cues, notably those arising from audition and haptics, as well as interactions between them. It also reviews approaches to combining...... synthetic multimodal cues, from vision, haptics, and audition, in order to realize virtual experiences of walking on simulated ground surfaces or other features....

  20. Ground robotic measurement of aeolian processes

    Science.gov (United States)

    Qian, Feifei; Jerolmack, Douglas; Lancaster, Nicholas; Nikolich, George; Reverdy, Paul; Roberts, Sonia; Shipley, Thomas; Van Pelt, R. Scott; Zobeck, Ted M.; Koditschek, Daniel E.

    2017-08-01

    Models of aeolian processes rely on accurate measurements of the rates of sediment transport by wind, and careful evaluation of the environmental controls of these processes. Existing field approaches typically require intensive, event-based experiments involving dense arrays of instruments. These devices are often cumbersome and logistically difficult to set up and maintain, especially near steep or vegetated dune surfaces. Significant advances in instrumentation are needed to provide the datasets that are required to validate and improve mechanistic models of aeolian sediment transport. Recent advances in robotics show great promise for assisting and amplifying scientists' efforts to increase the spatial and temporal resolution of many environmental measurements governing sediment transport. The emergence of cheap, agile, human-scale robotic platforms endowed with increasingly sophisticated sensor and motor suites opens up the prospect of deploying programmable, reactive sensor payloads across complex terrain in the service of aeolian science. This paper surveys the need and assesses the opportunities and challenges for amassing novel, highly resolved spatiotemporal datasets for aeolian research using partially-automated ground mobility. We review the limitations of existing measurement approaches for aeolian processes, and discuss how they may be transformed by ground-based robotic platforms, using examples from our initial field experiments. We then review how the need to traverse challenging aeolian terrains and simultaneously make high-resolution measurements of critical variables requires enhanced robotic capability. Finally, we conclude with a look to the future, in which robotic platforms may operate with increasing autonomy in harsh conditions. Besides expanding the completeness of terrestrial datasets, bringing ground-based robots to the aeolian research community may lead to unexpected discoveries that generate new hypotheses to expand the science

  1. SEA ICE THICKNESS MEASUREMENT BY GROUND PENETRATING RADAR FOR GROUND TRUTH OF MICROWAVE REMOTE SENSING DATA

    Directory of Open Access Journals (Sweden)

    M. Matsumoto

    2018-04-01

    Full Text Available Observation of sea ice thickness is one of key issues to understand regional effect of global warming. One of approaches to monitor sea ice in large area is microwave remote sensing data analysis. However, ground truth must be necessary to discuss the effectivity of this kind of approach. The conventional method to acquire ground truth of ice thickness is drilling ice layer and directly measuring the thickness by a ruler. However, this method is destructive, time-consuming and limited spatial resolution. Although there are several methods to acquire ice thickness in non-destructive way, ground penetrating radar (GPR can be effective solution because it can discriminate snow-ice and ice-sea water interface. In this paper, we carried out GPR measurement in Lake Saroma for relatively large area (200 m by 300 m, approximately aiming to obtain grand truth for remote sensing data. GPR survey was conducted at 5 locations in the area. The direct measurement was also conducted simultaneously in order to calibrate GPR data for thickness estimation and to validate the result. Although GPR Bscan image obtained from 600MHz contains the reflection which may come from a structure under snow, the origin of the reflection is not obvious. Therefore, further analysis and interpretation of the GPR image, such as numerical simulation, additional signal processing and use of 200 MHz antenna, are required to move on thickness estimation.

  2. Sea Ice Thickness Measurement by Ground Penetrating Radar for Ground Truth of Microwave Remote Sensing Data

    Science.gov (United States)

    Matsumoto, M.; Yoshimura, M.; Naoki, K.; Cho, K.; Wakabayashi, H.

    2018-04-01

    Observation of sea ice thickness is one of key issues to understand regional effect of global warming. One of approaches to monitor sea ice in large area is microwave remote sensing data analysis. However, ground truth must be necessary to discuss the effectivity of this kind of approach. The conventional method to acquire ground truth of ice thickness is drilling ice layer and directly measuring the thickness by a ruler. However, this method is destructive, time-consuming and limited spatial resolution. Although there are several methods to acquire ice thickness in non-destructive way, ground penetrating radar (GPR) can be effective solution because it can discriminate snow-ice and ice-sea water interface. In this paper, we carried out GPR measurement in Lake Saroma for relatively large area (200 m by 300 m, approximately) aiming to obtain grand truth for remote sensing data. GPR survey was conducted at 5 locations in the area. The direct measurement was also conducted simultaneously in order to calibrate GPR data for thickness estimation and to validate the result. Although GPR Bscan image obtained from 600MHz contains the reflection which may come from a structure under snow, the origin of the reflection is not obvious. Therefore, further analysis and interpretation of the GPR image, such as numerical simulation, additional signal processing and use of 200 MHz antenna, are required to move on thickness estimation.

  3. The prediction of ground movements caused by mining

    International Nuclear Information System (INIS)

    Karmis, M.; Haycocks, C.; Holland, C.T.

    1992-01-01

    This paper reviews the fundamental concepts involved in the development, application and validation of ground movement prediction methods developed by Virginia Polytechnic Institute and State University (VPI and SU) over the past 12 years. Prediction techniques have included empirical or semi-empirical methods, such as the profile function, influence function and zone area methods, as well as numerical methods, based on a finite element formulation which utilizes field subsidence data. The former techniques have been integrated in the Surface Deformation Prediction System (SDPS) software package for personal computers, which allows for the calculation of any component of ground movement in any direction. Comparisons between measured and predicted subsidence and strain values are presented for a selection of case studies, which demonstrate the applicability, accuracy and regional validity of these methods for predicting surface deformations due to underground mining

  4. Purification of arsenic contaminated ground water using hydrated manganese dioxide

    International Nuclear Information System (INIS)

    Raje, N.; Swain, K.K.

    2002-01-01

    An analytical methodology has been developed for the separation of arsenic from ground water using inorganic material in neutral medium. The separation procedure involves the quantitative retention of arsenic on hydrated manganese dioxide, in neutral medium. The validity of the separation procedure has been checked by a standard addition method and radiotracer studies. Neutron activation analysis (NAA), a powerful measurement technique, has been used for the quantitative determination of arsenic. (author)

  5. A cognitively grounded measure of pronunciation distance.

    Directory of Open Access Journals (Sweden)

    Martijn Wieling

    Full Text Available In this study we develop pronunciation distances based on naive discriminative learning (NDL. Measures of pronunciation distance are used in several subfields of linguistics, including psycholinguistics, dialectology and typology. In contrast to the commonly used Levenshtein algorithm, NDL is grounded in cognitive theory of competitive reinforcement learning and is able to generate asymmetrical pronunciation distances. In a first study, we validated the NDL-based pronunciation distances by comparing them to a large set of native-likeness ratings given by native American English speakers when presented with accented English speech. In a second study, the NDL-based pronunciation distances were validated on the basis of perceptual dialect distances of Norwegian speakers. Results indicated that the NDL-based pronunciation distances matched perceptual distances reasonably well with correlations ranging between 0.7 and 0.8. While the correlations were comparable to those obtained using the Levenshtein distance, the NDL-based approach is more flexible as it is also able to incorporate acoustic information other than sound segments.

  6. Modeling of earthquake ground motion in the frequency domain

    Science.gov (United States)

    Thrainsson, Hjortur

    In recent years, the utilization of time histories of earthquake ground motion has grown considerably in the design and analysis of civil structures. It is very unlikely, however, that recordings of earthquake ground motion will be available for all sites and conditions of interest. Hence, there is a need for efficient methods for the simulation and spatial interpolation of earthquake ground motion. In addition to providing estimates of the ground motion at a site using data from adjacent recording stations, spatially interpolated ground motions can also be used in design and analysis of long-span structures, such as bridges and pipelines, where differential movement is important. The objective of this research is to develop a methodology for rapid generation of horizontal earthquake ground motion at any site for a given region, based on readily available source, path and site characteristics, or (sparse) recordings. The research includes two main topics: (i) the simulation of earthquake ground motion at a given site, and (ii) the spatial interpolation of earthquake ground motion. In topic (i), models are developed to simulate acceleration time histories using the inverse discrete Fourier transform. The Fourier phase differences, defined as the difference in phase angle between adjacent frequency components, are simulated conditional on the Fourier amplitude. Uniformly processed recordings from recent California earthquakes are used to validate the simulation models, as well as to develop prediction formulas for the model parameters. The models developed in this research provide rapid simulation of earthquake ground motion over a wide range of magnitudes and distances, but they are not intended to replace more robust geophysical models. In topic (ii), a model is developed in which Fourier amplitudes and Fourier phase angles are interpolated separately. A simple dispersion relationship is included in the phase angle interpolation. The accuracy of the interpolation

  7. Modeled ground water age distributions

    Science.gov (United States)

    Woolfenden, Linda R.; Ginn, Timothy R.

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  8. Modelling the Impact of Ground Planes on Antenna Radiation Using the Method of Auxiliary Sources

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2007-01-01

    The Method of Auxiliary Sources is employed to model the impact of finite ground planes on the radiation from antennas. In many cases the computational cost of available commercial tools restricts the simulations to include only a small ground plane or, by use of the image principle, the infinitely...... large ground plane. The method proposed here makes use of results from such simulations to model large and moderate-sized finite ground planes. The method is applied to 3 different antenna test cases and a total of 5 different ground planes. Firstly it is validated through comparison with reference...... and measured reference solutions and the method is thus found to be a useful tool in determining the impact of finite ground planes....

  9. Typhoon-Induced Ground Deformation

    Science.gov (United States)

    Mouyen, M.; Canitano, A.; Chao, B. F.; Hsu, Y.-J.; Steer, P.; Longuevergne, L.; Boy, J.-P.

    2017-11-01

    Geodetic instruments now offer compelling sensitivity, allowing to investigate how solid Earth and surface processes interact. By combining surface air pressure data, nontidal sea level variations model, and rainfall data, we systematically analyze the volumetric deformation of the shallow crust at seven borehole strainmeters in Taiwan induced by 31 tropical cyclones (typhoons) that made landfall to the island from 2004 to 2013. The typhoon's signature consists in a ground dilatation due to air pressure drop, generally followed by a larger ground compression. We show that this compression phase can be mostly explained by the mass loading of rainwater that falls on the ground and concentrates in the valleys towards the strainmeter sensitivity zone. Further, our analysis shows that borehole strainmeters can help quantifying the amount of rainwater accumulating and flowing over a watershed during heavy rainfalls, which is a useful constraint for building hydrological models.

  10. Free Swimming in Ground Effect

    Science.gov (United States)

    Cochran-Carney, Jackson; Wagenhoffer, Nathan; Zeyghami, Samane; Moored, Keith

    2017-11-01

    A free-swimming potential flow analysis of unsteady ground effect is conducted for two-dimensional airfoils via a method of images. The foils undergo a pure pitching motion about their leading edge, and the positions of the body in the streamwise and cross-stream directions are determined by the equations of motion of the body. It is shown that the unconstrained swimmer is attracted to a time-averaged position that is mediated by the flow interaction with the ground. The robustness of this fluid-mediated equilibrium position is probed by varying the non-dimensional mass, initial conditions and kinematic parameters of motion. Comparisons to the foil's fixed-motion counterpart are also made to pinpoint the effect that free swimming near the ground has on wake structures and the fluid-mediated forces over time. Optimal swimming regimes for near-boundary swimming are determined by examining asymmetric motions.

  11. Compensation for incoherent ground motion

    International Nuclear Information System (INIS)

    Shigeru, Takeda; Hiroshi, Matsumoto; Masakazu, Yoshioka; Yasunori, Takeuchi; Kikuo, Kudo; Tsuneya, Tsubokawa; Mitsuaki, Nozaki; Kiyotomo, Kawagoe

    1999-01-01

    The power spectrum density and coherence function for ground motions are studied for the construction of the next generation electron-positron linear collider. It should provide a center of mass energy between 500 GeV-1 TeV with luminosity as high as 10 33 to 10 34 cm -2 sec -1 . Since the linear collider has a relatively slow repetition rate, large number of particles and small sizes of the beam should be generated and preserved in the machine to obtain the required high luminosity. One of the most critical parameters is the extremely small vertical beam size at the interaction point, thus a proper alignment system for the focusing and accelerating elements of the machine is necessary to achieve the luminosity. We describe recent observed incoherent ground motions and an alignment system to compensate the distortion by the ground motions. (authors)

  12. The automated ground network system

    Science.gov (United States)

    Smith, Miles T.; Militch, Peter N.

    1993-01-01

    The primary goal of the Automated Ground Network System (AGNS) project is to reduce Ground Network (GN) station life-cycle costs. To accomplish this goal, the AGNS project will employ an object-oriented approach to develop a new infrastructure that will permit continuous application of new technologies and methodologies to the Ground Network's class of problems. The AGNS project is a Total Quality (TQ) project. Through use of an open collaborative development environment, developers and users will have equal input into the end-to-end design and development process. This will permit direct user input and feedback and will enable rapid prototyping for requirements clarification. This paper describes the AGNS objectives, operations concept, and proposed design.

  13. 46 CFR 183.376 - Grounded distribution systems (neutral grounded).

    Science.gov (United States)

    2010-10-01

    ....376 Section 183.376 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER... propulsion, power, lighting, or distribution system having a neutral bus or conductor must have the neutral... generator to ground before the generator is connected to the bus, except the neutral of an emergency power...

  14. 46 CFR 120.376 - Grounded distribution systems (Neutral grounded).

    Science.gov (United States)

    2010-10-01

    ....376 Section 120.376 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS... distribution system having a neutral bus or conductor must have the neutral grounded. (c) The neutral or each...

  15. Ground-truth measurement systems

    Science.gov (United States)

    Serafin, R.; Seliga, T. A.; Lhermitte, R. M.; Nystuen, J. A.; Cherry, S.; Bringi, V. N.; Blackmer, R.; Heymsfield, G. M.

    1981-01-01

    Ground-truth measurements of precipitation and related weather events are an essential component of any satellite system designed for monitoring rainfall from space. Such measurements are required for testing, evaluation, and operations; they provide detailed information on the actual weather events, which can then be compared with satellite observations intended to provide both quantitative and qualitative information about them. Also, very comprehensive ground-truth observations should lead to a better understanding of precipitation fields and their relationships to satellite data. This process serves two very important functions: (a) aiding in the development and interpretation of schemes of analyzing satellite data, and (b) providing a continuing method for verifying satellite measurements.

  16. The Mirror in the Ground

    DEFF Research Database (Denmark)

    Shepherd, Nick

    An important and original contribution to the study of the archive, The Mirror in the Ground approaches the discipline of archaeology in South Africa from the perspective of an interest in visualities. Author Nick Shepherd argues that it makes sense to talk about an archaeological aesthetics...... at the University of Cape Town, where he convenes a graduate programme on Public Culture and Heritage. The Mirror in the Ground is the first volume in the relaunched Series in Visual Histories, produced by the Centre for Curating the Archive (CCA) at the University of Cape Town....

  17. Cable SGEMP Code Validation Study

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, William Parker [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Center for CA Weapons Systems Engineering

    2013-05-01

    This report compared data taken on the Modular Bremsstrahlung Simulator using copper jacketed (cujac) cables with calculations using the RHSD-RA Cable SGEMP analysis tool. The tool relies on CEPXS/ONBFP to perform radiation transport in a series of 1D slices through the cable, and then uses a Green function technique to evaluate the expected current drive on the center conductor. The data were obtained in 2003 as part of a Cabana verification and validation experiment using 1-D geometries, but were not evaluated until now. The agreement between data and model is not adequate unless gaps between the dielectric and outer conductor (ground) are assumed, and these gaps are large compared with what is believed to be in the actual cable.

  18. Speciation and transport of radionuclides in ground water

    International Nuclear Information System (INIS)

    Robertson, D.E.; Toste, A.P.; Abel, K.H.; Cowan, C.E.; Jenne, E.A.; Thomas, C.W.

    1984-01-01

    Studies of the chemical speciation of a number of radionuclides migrating in a slightly contaminated ground water plume are identifying the most mobile species and providing an opportunity to test and/or validate geochemical models of radionuclide transport in ground waters. Results to date have shown that most of the migrating radionuclides are present in anionic or nonionic forms. These include anionic forms of 55 Fe, 60 Co, /sup 99m/Tc, 106 Ru, 131 I, and nonionic forms of 63 Ni and 125 Sb. Strontium-70 and a small fraction of the mobile 60 Co are the only cationic radionuclides which have been detected moving in the ground water plume beyond 30 meters from the source. A comparison of the observed chemical forms with the predicted species calculated from modeling thermodynamic data and ground water chemical parameters has indicated a good agreement for most of the radioelements in the system, including Tc, Np, Cs, Sr, Ce, Ru, Sb, Zn, and Mn. The discrepancies between observed and calculated solutions species were noted for Fe, Co, Ni and I. Traces of Fe, Co, and Ni were observed to migrate in anionic or nonionic forms which the calculations failed to predict. These anionic/nonionic species may be organic complexes having enhanced mobility in ground waters. The radioiodine, for example, was shown to behave totally as an anion but further investigation revealed that 49-57% of this anionic iodine was organically bound. The ground water and aqueous extracts of trench sediments contain a wide variety of organic compounds, some of which could serve as complexing agents for the radionuclides. These results indicate the need for further research at a variety of field sites in defining precisely the chemical forms of the mobile radionuclide species, and in better understanding the role of dissolved organic materials in ground water transport of radionuclides

  19. 14 CFR 417.109 - Ground safety.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Ground safety. 417.109 Section 417.109... TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.109 Ground safety. (a) Ground safety... 417.115(c), and subpart E of this part provide launch operator ground safety requirements. ...

  20. Lesson 6: Signature Validation

    Science.gov (United States)

    Checklist items 13 through 17 are grouped under the Signature Validation Process, and represent CROMERR requirements that the system must satisfy as part of ensuring that electronic signatures it receives are valid.

  1. Ship Collision and Grounding Analysis

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    2010-01-01

    It is the purpose of the paper to present a review of prediction and analysis tools for collision and grounding analyses and to outline a probabilistic procedure whereby these tools can be used by the maritime industry to develop performance based rules to reduce the risk associated with human, e...

  2. The Steksovo II burial ground

    Directory of Open Access Journals (Sweden)

    Martianov Vladimir N.

    2014-12-01

    Full Text Available The article is dedicated to the results of many-years’ (1990-2010 excavations on the ancient Mordovian Steksovo II burial ground site. The burial ground had functioned in the 3rd to 13th centuries AD. The investigations revealed hundreds of burials, which enabled the researchers to judge upon the wealth of material items found and the variety of burial rites of the population that had formed the burial ground. The 1st millennium AD is characterized by bi-ritualism, while inhumation is characteristic of the 11-13th-century period; horses’ burials were also discovered. The data of the burial ground make it possible to modify the concept of the stages in ancient Mordovians ethnogenesis. It is generally attributed to the Erzya Mordvins, but in early burials the combination of the Erzya and Moksha ancientries is traced. Complexes of the items of crucial importance for the chronology of the burial are discussed in the article with a representation of statistical data characterizing funeral rites and traditions.

  3. The ground stones from Sphinx

    Czech Academy of Sciences Publication Activity Database

    Řídký, Jaroslav

    2017-01-01

    Roč. 2017, č. 21 (2017), s. 39-42 ISSN 1369-5770 Grant - others:GA ČR(CZ) GA17-03207S Institutional support: RVO:67985912 Keywords : Sudan * Mesolithic * ground stones Subject RIV: AC - Archeology, Anthropology, Ethnology OBOR OECD: Archaeology

  4. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    OpenAIRE

    Li, Xian-Xiang; Koh, Tieh-Yong; Britter, Rex E; Norford, Leslie Keith; Entekhabi, Dara

    2010-01-01

    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street ca...

  5. Characterization of the effects of borehole configuration and interference with long term ground temperature modelling of ground source heat pumps

    International Nuclear Information System (INIS)

    Law, Ying Lam E.; Dworkin, Seth B.

    2016-01-01

    Highlights: • Long term ground temperature response is explored using finite element methods. • Simulation method is validated against experimental and analytical data. • Temperature changes at a fast rate in the first few years and slows down gradually. • ASHRAE recommended separation distances are not always sufficient. • Thermal accumulation occurs at the centre of borehole field. - Abstract: Ground source heat pumps (GSHPs) are an environmentally friendly alternative to conventional heating and cooling systems because of their high efficiency and low greenhouse gas emissions. The ground acts as a heat sink/source for the excess/required heat inside a building for cooling and heating modes, respectively. However, imbalance in heating and cooling needs can change ground temperature over the operating duration. This increase/decrease in ground temperature lowers system efficiency and causes the ground to foul—failing to accept or provide more heat. In order to ensure that GSHPs can operate to their designed conditions, thermal modelling is required to simulate the ground temperature during system operation. In addition, the borehole field layout can have a major impact on ground temperature. In this study, four buildings were studied—a hospital, fast-food restaurant, residence, and school, each with varying borehole configurations. Boreholes were modelled in a soil volume using finite-element methods and heating and cooling fluxes were applied to the borehole walls to simulate the GSHP operation. 20 years of operation were modelled for each building for 2 × 2, 4 × 4, and 2 × 8 borehole configurations. Results indicate that the borehole separation distance of 6 m, recommended by ASHRAE, is not always sufficient to prevent borehole thermal interactions. Benefits of using a 2 × 8 configuration as opposed to a 4 × 4 configuration, which can be observed because of the larger perimeter it provides for heat to dissipate to surrounding soil were

  6. High Throughput Determination of Plant Height, Ground Cover, and Above-Ground Biomass in Wheat with LiDAR.

    Science.gov (United States)

    Jimenez-Berni, Jose A; Deery, David M; Rozas-Larraondo, Pablo; Condon, Anthony Tony G; Rebetzke, Greg J; James, Richard A; Bovill, William D; Furbank, Robert T; Sirault, Xavier R R

    2018-01-01

    Crop improvement efforts are targeting increased above-ground biomass and radiation-use efficiency as drivers for greater yield. Early ground cover and canopy height contribute to biomass production, but manual measurements of these traits, and in particular above-ground biomass, are slow and labor-intensive, more so when made at multiple developmental stages. These constraints limit the ability to capture these data in a temporal fashion, hampering insights that could be gained from multi-dimensional data. Here we demonstrate the capacity of Light Detection and Ranging (LiDAR), mounted on a lightweight, mobile, ground-based platform, for rapid multi-temporal and non-destructive estimation of canopy height, ground cover and above-ground biomass. Field validation of LiDAR measurements is presented. For canopy height, strong relationships with LiDAR ( r 2 of 0.99 and root mean square error of 0.017 m) were obtained. Ground cover was estimated from LiDAR using two methodologies: red reflectance image and canopy height. In contrast to NDVI, LiDAR was not affected by saturation at high ground cover, and the comparison of both LiDAR methodologies showed strong association ( r 2 = 0.92 and slope = 1.02) at ground cover above 0.8. For above-ground biomass, a dedicated field experiment was performed with destructive biomass sampled eight times across different developmental stages. Two methodologies are presented for the estimation of biomass from LiDAR: 3D voxel index (3DVI) and 3D profile index (3DPI). The parameters involved in the calculation of 3DVI and 3DPI were optimized for each sample event from tillering to maturity, as well as generalized for any developmental stage. Individual sample point predictions were strong while predictions across all eight sample events, provided the strongest association with biomass ( r 2 = 0.93 and r 2 = 0.92) for 3DPI and 3DVI, respectively. Given these results, we believe that application of this system will provide new

  7. Principles of Proper Validation

    DEFF Research Database (Denmark)

    Esbensen, Kim; Geladi, Paul

    2010-01-01

    to suffer from the same deficiencies. The PPV are universal and can be applied to all situations in which the assessment of performance is desired: prediction-, classification-, time series forecasting-, modeling validation. The key element of PPV is the Theory of Sampling (TOS), which allow insight......) is critically necessary for the inclusion of the sampling errors incurred in all 'future' situations in which the validated model must perform. Logically, therefore, all one data set re-sampling approaches for validation, especially cross-validation and leverage-corrected validation, should be terminated...

  8. MODIS Hotspot Validation over Thailand

    Directory of Open Access Journals (Sweden)

    Veerachai Tanpipat

    2009-11-01

    Full Text Available To ensure remote sensing MODIS hotspot (also known as active fire products or hotspots quality and precision in forest fire control and management in Thailand, an increased level of confidence is needed. Accuracy assessment of MODIS hotspots utilizing field survey data validation is described. A quantitative evaluation of MODIS hotspot products has been carried out since the 2007 forest fire season. The carefully chosen hotspots were scattered throughout the country and within the protected areas of the National Parks and Wildlife Sanctuaries. Three areas were selected as test sites for validation guidelines. Both ground and aerial field surveys were also conducted in this study by the Forest Fire Control Division, National Park, Wildlife and Plant Conversation Department, Ministry of Natural Resources and Environment, Thailand. High accuracy of 91.84 %, 95.60% and 97.53% for the 2007, 2008 and 2009 fire seasons were observed, resulting in increased confidence in the use of MODIS hotspots for forest fire control and management in Thailand.

  9. Ground movement and deformation due to dewatering and open pit excavation

    International Nuclear Information System (INIS)

    Liu, B.; Yang, J.; Zhang, J.

    1996-01-01

    In the application of stochastic medium theory, it is assumed that ground movement process has the property of Markov Process. Based on superposition principle and rock consolidation principle, the ground movement and deformation due to dewatering and open pit excavation can be calculated. The comparison between the field measurements in Morwell Open Pit, Latrobe Valley (Victoria, Australia) and the calculated results shows the validity of the method in this paper. 5 refs

  10. Grounded theory in music therapy research.

    Science.gov (United States)

    O'Callaghan, Clare

    2012-01-01

    Grounded theory is one of the most common methodologies used in constructivist (qualitative) music therapy research. Researchers use the term "grounded theory" when denoting varying research designs and theoretical outcomes. This may be challenging for novice researchers when considering whether grounded theory is appropriate for their research phenomena. This paper examines grounded theory within music therapy research. Grounded theory is briefly described, including some of its "contested" ideas. A literature search was conducted using the descriptor "music therapy and grounded theory" in Pubmed, CINAHL PsychlNFO, SCOPUS, ERIC (CSA), Web of Science databases, and a music therapy monograph series. A descriptive analysis was performed on the uncovered studies to examine researched phenomena, grounded theory methods used, and how findings were presented, Thirty music therapy research projects were found in refereed journals and monographs from 1993 to "in press." The Strauss and Corbin approach to grounded theory dominates the field. Descriptors to signify grounded theory components in the studies greatly varied. Researchers have used partial or complete grounded theory methods to examine clients', family members', staff, music therapy "overhearers," music therapists', and students' experiences, as well as music therapy creative products and professional views, issues, and literature. Seven grounded theories were offered. It is suggested that grounded theory researchers clarify what and who inspired their design, why partial grounded theory methods were used (when relevant), and their ontology. By elucidating assumptions underpinning the data collection, analysis, and findings' contribution, researchers will continue to improve music therapy research using grounded theory methods.

  11. Adaptive ground implemented phase array

    Science.gov (United States)

    Spearing, R. E.

    1973-01-01

    The simulation of an adaptive ground implemented phased array of five antenna elements is reported for a very high frequency system design that is tolerant to the radio frequency interference environment encountered by a tracking data relay satellite. Signals originating from satellites are received by the VHF ring array and both horizontal and vertical polarizations from each of the five elements are multiplexed and transmitted down to ground station. A panel on the transmitting end of the simulation chamber contains up to 10 S-band RFI sources along with the desired signal to simulate the dynamic relationship between user and TDRS. The 10 input channels are summed, and desired and interference signals are separated and corrected until the resultant sum signal-to-interference ratio is maximized. Testing performed with this simulation equipment demonstrates good correlation between predicted and actual results.

  12. "Naturalist Inquiry" and Grounded Theory

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser

    2004-01-01

    Full Text Available The world of Qualitative Data Analysis (QDA methodology became quite taken with LINCOLN and GUBA's book "Naturalist Inquiry" (1985. I have no issue with it with respect to its application to QDA; it helped clarify and advance so many QDA issues. However, its application to Grounded Theory (GT has been a major block on GT, as originated, by its cooptation and corruption hence remodeling of GT by default. LINCOLN and GUBA have simply assumed GT is just another QDA method, which it is not. In "The Grounded Theory Perspective II" (GLASER 2002a, Chapter 9 on credibility, I have discussed "Naturalist In­quiry" (NI thought regarding how LINCOLN and GUBA's notion of "trustworthy" data (or worrisome data orientation and how their view of constant comparison can and has remodeled and eroded GT. In this paper I will consider other aspects of NI that remodel GT. URN: urn:nbn:de:0114-fqs040170

  13. Block ground interaction of rockfalls

    Science.gov (United States)

    Volkwein, Axel; Gerber, Werner; Kummer, Peter

    2016-04-01

    During a rockfall the interaction of the falling block with the ground is one of the most important factors that define the evolution of a rockfall trajectory. It steers the rebound, the rotational movement, possibly brake effects, friction losses and damping effects. Therefore, if most reliable rockfall /trajectory simulation software is sought a good understanding of the block ground interaction is necessary. Today's rockfall codes enable the simulation of a fully 3D modelled block within a full 3D surface . However, the details during the contact, i.e. the contact duration, the penetration depth or the dimension of the marks in the ground are usually not part of the simulation. Recent field tests with rocks between 20 and 80 kg have been conducted on a grassy slope in 2014 [1]. A special rockfall sensor [2] within the blocks measured the rotational velocity and the acting accelerations during the tests. External video records and a so-called LocalPositioningSystem deliver information on the travel velocity. With these data not only the flight phases of the trajectories but also the contacts with the ground can be analysed. During the single jumps of a block the flight time, jump length, the velocity, and the rotation are known. During the single impacts their duration and the acting accelerations are visible. Further, the changes of rotational and translational velocity influence the next jump of the block. The change of the rotational velocity over the whole trajectory nicely visualizes the different phases of a rockfall regarding general acceleration and deceleration in respect to the inclination and the topography of the field. References: [1] Volkwein A, Krummenacher B, Gerber W, Lardon J, Gees F, Brügger L, Ott T (2015) Repeated controlled rockfall trajectory testing. [Abstract] Geophys. Res. Abstr. 17: EGU2015-9779. [2] Volkwein A, Klette J (2014) Semi-Automatic Determination of Rockfall Trajectories. Sensors 14: 18187-18210.

  14. Ground Optical Lightning Detector (GOLD)

    Science.gov (United States)

    Jackson, John, Jr.; Simmons, David

    A photometer developed to characterize lightning from the ground is discussed. The detector and the electronic signal processing and data storage systems are presented along with field data measured by the system. The discussion will include improvements that will be incorporated to enhance the measurement of lightning and the data storage capability to record for many days without human involvement. Finally, the calibration of the GOLD system is presented.

  15. Radon determination in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Segovia A, N.; Bulbulian G, S

    1991-08-15

    Studies on natural radioactivity in ground water were started in Mexico in San Luis Potosi state followed by samplings from deep wells and springs in the states of Mexico and Michoacan. The samples were analyzed for solubilized and {sup 226} Ra- supported {sup 222} Rn. Some of them were also studied for {sup 234} U/ {sup 238} U activity ratio. In this paper we discuss the activities obtained and their relationship with the geologic characteristics of the studied zones. (Author)

  16. Radon determination in ground water

    International Nuclear Information System (INIS)

    Segovia A, N.; Bulbulian G, S.

    1991-08-01

    Studies on natural radioactivity in ground water were started in Mexico in San Luis Potosi state followed by samplings from deep wells and springs in the states of Mexico and Michoacan. The samples were analyzed for solubilized and 226 Ra- supported 222 Rn. Some of them were also studied for 234 U/ 238 U activity ratio. In this paper we discuss the activities obtained and their relationship with the geologic characteristics of the studied zones. (Author)

  17. AMS Ground Truth Measurements: Calibration and Test Lines

    International Nuclear Information System (INIS)

    Wasiolek, P.

    2013-01-01

    Airborne gamma spectrometry is one of the primary techniques used to define the extent of ground contamination after a radiological incident. Its usefulness was demonstrated extensively during the response to the Fukushima nuclear power plant (NPP) accident in March-May 2011. To map ground contamination a set of scintillation detectors is mounted on an airborne platform (airplane or helicopter) and flown over contaminated areas. The acquisition system collects spectral information together with the aircraft position and altitude every second. To provide useful information to decision makers, the count rate data expressed in counts per second (cps) needs to be converted to the terrestrial component of the exposure rate 1 m above ground, or surface activity of isotopes of concern. This is done using conversion coefficients derived from calibration flights. During a large scale radiological event, multiple flights may be necessary and may require use of assets from different agencies. However, as the production of a single, consistent map product depicting the ground contamination is the primary goal, it is critical to establish very early into the event a common calibration line. Such a line should be flown periodically in order to normalize data collected from different aerial acquisition systems and potentially flown at different flight altitudes and speeds. In order to verify and validate individual aerial systems, the calibration line needs to be characterized in terms of ground truth measurements. This is especially important if the contamination is due to short-lived radionuclides. The process of establishing such a line, as well as necessary ground truth measurements, is described in this document.

  18. AMS Ground Truth Measurements: Calibrations and Test Lines

    Energy Technology Data Exchange (ETDEWEB)

    Wasiolek, Piotr T. [National Security Technologies, LLC

    2015-12-01

    Airborne gamma spectrometry is one of the primary techniques used to define the extent of ground contamination after a radiological incident. Its usefulness was demonstrated extensively during the response to the Fukushima NPP accident in March-May 2011. To map ground contamination, a set of scintillation detectors is mounted on an airborne platform (airplane or helicopter) and flown over contaminated areas. The acquisition system collects spectral information together with the aircraft position and altitude every second. To provide useful information to decision makers, the count data, expressed in counts per second (cps), need to be converted to a terrestrial component of the exposure rate at 1 meter (m) above ground, or surface activity of the isotopes of concern. This is done using conversion coefficients derived from calibration flights. During a large-scale radiological event, multiple flights may be necessary and may require use of assets from different agencies. However, because production of a single, consistent map product depicting the ground contamination is the primary goal, it is critical to establish a common calibration line very early into the event. Such a line should be flown periodically in order to normalize data collected from different aerial acquisition systems and that are potentially flown at different flight altitudes and speeds. In order to verify and validate individual aerial systems, the calibration line needs to be characterized in terms of ground truth measurements This is especially important if the contamination is due to short-lived radionuclides. The process of establishing such a line, as well as necessary ground truth measurements, is described in this document.

  19. Electrical Ground System Design of PEFP

    International Nuclear Information System (INIS)

    Mun, Kyeong Jun; Jeon, Gye Po; Park, Sung Sik; Min, Yi Sub; Nam, Jung Min; Cho, Jang Hyung; Kim, Jun Yeon

    2010-01-01

    Since host site host site was selected Gyeong-ju city in January, 2006. we need design revision of Proton Accelerator research center to reflect on host site characteristics and several conditions. In this paper, electrical grounding and lightning protection design scheme is introduced. In electrical grounding system design of PEFP, we classified electrical facilities into 4 groups; equipment grounding (type A), instrument grounding (Type A), high frequency instrument grounding (Type C) and lightning arrestor grounding (Type D). Lightning protection system is designed in all buildings of proton accelerator research center of PEFP, including switchyard

  20. Electrical Ground System Design of PEFP

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Kyeong Jun; Jeon, Gye Po; Park, Sung Sik; Min, Yi Sub; Nam, Jung Min; Cho, Jang Hyung; Kim, Jun Yeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Since host site host site was selected Gyeong-ju city in January, 2006. we need design revision of Proton Accelerator research center to reflect on host site characteristics and several conditions. In this paper, electrical grounding and lightning protection design scheme is introduced. In electrical grounding system design of PEFP, we classified electrical facilities into 4 groups; equipment grounding (type A), instrument grounding (Type A), high frequency instrument grounding (Type C) and lightning arrestor grounding (Type D). Lightning protection system is designed in all buildings of proton accelerator research center of PEFP, including switchyard

  1. Onboard Autonomy and Ground Operations Automation for the Intelligent Payload Experiment (IPEX) CubeSat Mission

    Science.gov (United States)

    Chien, Steve; Doubleday, Joshua; Ortega, Kevin; Tran, Daniel; Bellardo, John; Williams, Austin; Piug-Suari, Jordi; Crum, Gary; Flatley, Thomas

    2012-01-01

    The Intelligent Payload Experiment (IPEX) is a cubesat manifested for launch in October 2013 that will flight validate autonomous operations for onboard instrument processing and product generation for the Intelligent Payload Module (IPM) of the Hyperspectral Infra-red Imager (HyspIRI) mission concept. We first describe the ground and flight operations concept for HyspIRI IPM operations. We then describe the ground and flight operations concept for the IPEX mission and how that will validate HyspIRI IPM operations. We then detail the current status of the mission and outline the schedule for future development.

  2. Back Radiation Suppression through a Semitransparent Ground Plane for a mm-Wave Patch Antenna

    KAUST Repository

    Klionovski, Kirill

    2017-06-21

    Omnidirectional radiation pattern with minimum backward radiation is highly desirable for base station antennas to minimize the multipath effects. Semitransparent ground planes have been used to reduce the backward radiation, but mostly with complicated non-uniform impedance distribution. In this work, we propose, for the first time, a round semitransparent ground plane of radius 0.8 λ with uniform impedance distribution that can improve the front-to-back ratio of a wideband patch antenna by 11.6 dB as compared to a similar sized metallic ground plane. The value of uniform impedance is obtained through analytical optimization by using asymptotic expressions in the Kirchhoff approximation of the radiation pattern of a toroidal wave scattered by a round semitransparent ground plane. The semitransparent ground plane has been realized using a low-cost carbon paste on a Kapton film. Experimental results match closely with those of simulations and validate the overall concept.

  3. Development and evaluation of an ultrasonic ground water seepage meter.

    Science.gov (United States)

    Paulsen, R J; Smith, C F; O'Rourke, D; Wong, T F

    2001-01-01

    Submarine ground water discharge can influence significantly the near-shore transport and flux of chemicals into the oceans. Quantification of the sources and rates of such discharge requires a ground water seepage meter that provides continuous measurements at high resolution over an extended period of time. An ultrasonic flowmeter has been adapted for such measurements in the submarine environment. Connected to a steel collection funnel, the meter houses two piezoelectric transducers mounted at opposite ends of a cylindrical flow tube. By monitoring the perturbations of fluid flow on the propagation of sound waves inside the flow tube, the ultrasonic meter can measure both forward and reverse fluid flows in real time. Laboratory and field calibrations show that the ultrasonic meter can resolve ground water discharges on the order of 0.1 microm/sec, and it is sufficiently robust for deployment in the field for several days. Data from West Neck Bay, Shelter Island, New York, elucidate the temporal and spatial heterogeneity of submarine ground water discharge and its interplay with tidal loading. A negative correlation between the discharge and tidal elevation was generally observed. A methodology was also developed whereby data for the sound velocity as a function of temperature can be used to infer the salinity and source of the submarine discharge. Independent measurements of electrical conductance were performed to validate this methodology.

  4. Surface Waves Propagating on Grounded Anisotropic Dielectric Slab

    Directory of Open Access Journals (Sweden)

    Zhuozhu Chen

    2018-01-01

    Full Text Available This paper investigates the characteristics of surface waves propagating on a grounded anisotropic dielectric slab. Distinct from the existing analyses that generally assume that the fields of surface wave uniformly distribute along the transverse direction of the infinitely large grounded slab, our method takes into account the field variations along the transverse direction of a finite-width slab. By solving Maxwell’s equations in closed-form, it is revealed that no pure transverse magnetic (TM or transverse electric (TE mode exists if the fields are non-uniformly distributed along the transverse direction of the grounded slab. Instead, two hybrid modes, namely quasi-TM and quasi-TE modes, are supported. In addition, the propagation characteristics of two hybrid modes supported by the grounded anisotropic slab are analyzed in terms of the slab thickness, slab width, as well as the relative permittivity tensor of the anisotropic slab. Furthermore, different methods are employed to compare the analyses, as well as to validate our derivations. The proposed method is very suitable for practical engineering applications.

  5. Validity in Qualitative Evaluation

    OpenAIRE

    Vasco Lub

    2015-01-01

    This article provides a discussion on the question of validity in qualitative evaluation. Although validity in qualitative inquiry has been widely reflected upon in the methodological literature (and is still often subject of debate), the link with evaluation research is underexplored. Elaborating on epistemological and theoretical conceptualizations by Guba and Lincoln and Creswell and Miller, the article explores aspects of validity of qualitative research with the explicit objective of con...

  6. Toward a Framework for Systematic Error Modeling of NASA Spaceborne Radar with NOAA/NSSL Ground Radar-Based National Mosaic QPE

    Science.gov (United States)

    Kirstettier, Pierre-Emmanual; Honh, Y.; Gourley, J. J.; Chen, S.; Flamig, Z.; Zhang, J.; Howard, K.; Schwaller, M.; Petersen, W.; Amitai, E.

    2011-01-01

    Characterization of the error associated to satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving space-born passive and active microwave measurement") for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. We focus here on the error structure of NASA's Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements using NOAA/NSSL ground radar-based National Mosaic and QPE system (NMQ/Q2). A preliminary investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) using a three-month data sample in the southern part of US. The primary contribution of this study is the presentation of the detailed steps required to derive trustworthy reference rainfall dataset from Q2 at the PR pixel resolution. It relics on a bias correction and a radar quality index, both of which provide a basis to filter out the less trustworthy Q2 values. Several aspects of PR errors arc revealed and quantified including sensitivity to the processing steps with the reference rainfall, comparisons of rainfall detectability and rainfall rate distributions, spatial representativeness of error, and separation of systematic biases and random errors. The methodology and framework developed herein applies more generally to rainfall rate estimates from other sensors onboard low-earth orbiting satellites such as microwave imagers and dual-wavelength radars such as with the Global Precipitation Measurement (GPM) mission.

  7. Validation of HEDR models

    International Nuclear Information System (INIS)

    Napier, B.A.; Simpson, J.C.; Eslinger, P.W.; Ramsdell, J.V. Jr.; Thiede, M.E.; Walters, W.H.

    1994-05-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project has developed a set of computer models for estimating the possible radiation doses that individuals may have received from past Hanford Site operations. This document describes the validation of these models. In the HEDR Project, the model validation exercise consisted of comparing computational model estimates with limited historical field measurements and experimental measurements that are independent of those used to develop the models. The results of any one test do not mean that a model is valid. Rather, the collection of tests together provide a level of confidence that the HEDR models are valid

  8. Soil moisture characterization of the Valencia anchor station. Ground, aircraft measurements and simulations

    DEFF Research Database (Denmark)

    Lopez-Baeza, E; Antolin, M C; Balling, Jan E.

    2009-01-01

    In the framework of ESA SMOS Mission, the Valencia Anchor Station (VAS) has been selected as a core validation site. Its reasonable homogeneous characteristics make it appropriate to undertake the validation of SMOS Level 2 land products before attempting other more complex areas. Close to SMOS...... launch (2nd Nov. 2009), ESA defined the SMOS Validation Rehearsal Campaign Plan with the aim of testing the readiness, ensemble coordination and speed of operations, to be able to avoid as far as possible any unexpected deficiencies of the plan and procedure during the real Commissioning Phase campaigns......). Together with the ground SM measurements, other ground and meteorological measurements from the VAS area, kindly provided by other institutions, are currently been used to simulate passive microwave brightness temperature to obtain satellite "match ups" for validation purposes and to test the retrieval...

  9. Marshall Space Flight Center Ground Systems Development and Integration

    Science.gov (United States)

    Wade, Gina

    2016-01-01

    Ground Systems Development and Integration performs a variety of tasks in support of the Mission Operations Laboratory (MOL) and other Center and Agency projects. These tasks include various systems engineering processes such as performing system requirements development, system architecture design, integration, verification and validation, software development, and sustaining engineering of mission operations systems that has evolved the Huntsville Operations Support Center (HOSC) into a leader in remote operations for current and future NASA space projects. The group is also responsible for developing and managing telemetry and command configuration and calibration databases. Personnel are responsible for maintaining and enhancing their disciplinary skills in the areas of project management, software engineering, software development, software process improvement, telecommunications, networking, and systems management. Domain expertise in the ground systems area is also maintained and includes detailed proficiency in the areas of real-time telemetry systems, command systems, voice, video, data networks, and mission planning systems.

  10. 33 CFR 183.415 - Grounding.

    Science.gov (United States)

    2010-07-01

    ... SAFETY BOATS AND ASSOCIATED EQUIPMENT Electrical Systems Manufacturer Requirements § 183.415 Grounding. If a boat has more than one gasoline engine, grounded cranking motor circuits must be connected to...

  11. Ground states of quantum spin systems

    International Nuclear Information System (INIS)

    Bratteli, Ola; Kishimoto, Akitaka; Robinson, D.W.

    1978-07-01

    The authors prove that ground states of quantum spin systems are characterized by a principle of minimum local energy and that translationally invariant ground states are characterized by the principle of minimum energy per unit volume

  12. Ground effect aerodynamics of racing cars

    OpenAIRE

    Zhang, Xin; Toet, Willem; Zerihan, Jonathan

    2006-01-01

    We review the progress made during the last thirty years on ground effect aerodynamics associated with race cars, in particular open wheel race cars. Ground effect aerodynamics of race cars is concerned with generating downforce, principally via low pressure on the surfaces nearest to the ground. The “ground effected” parts of an open wheeled car's aerodynamics are the most aerodynamically efficient and contribute less drag than that associated with, for example, an upper rear wing. Whilst dr...

  13. The Development of Constructivist Grounded Theory

    OpenAIRE

    Jane Mills; Ann Bonner; Karen Francis

    2006-01-01

    Constructivist grounded theory is a popular method for research studies primarily in the disciplines of psychology, education, and nursing. In this article, the authors aim to locate the roots of constructivist grounded theory and then trace its development. They examine key grounded theory texts to discern their ontological and epistemological orientation. They find Strauss and Corbin's texts on grounded theory to possess a discernable thread of constructivism in their approach to inquiry. T...

  14. Temporal validation for landsat-based volume estimation model

    Science.gov (United States)

    Renaldo J. Arroyo; Emily B. Schultz; Thomas G. Matney; David L. Evans; Zhaofei Fan

    2015-01-01

    Satellite imagery can potentially reduce the costs and time associated with ground-based forest inventories; however, for satellite imagery to provide reliable forest inventory data, it must produce consistent results from one time period to the next. The objective of this study was to temporally validate a Landsat-based volume estimation model in a four county study...

  15. Identification of resonant earthquake ground motion

    Indian Academy of Sciences (India)

    Resonant ground motion has been observed in earthquake records measured at several parts of the world. This class of ground motion is characterized by its energy being contained in a narrow frequency band. This paper develops measures to quantify the frequency content of the ground motion using the entropy ...

  16. 7 CFR 65.170 - Ground lamb.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Ground lamb. 65.170 Section 65.170 Agriculture... OF BEEF, PORK, LAMB, CHICKEN, GOAT MEAT, PERISHABLE AGRICULTURAL COMMODITIES, MACADAMIA NUTS, PECANS, PEANUTS, AND GINSENG General Provisions Definitions § 65.170 Ground lamb. Ground lamb means comminuted...

  17. 7 CFR 65.160 - Ground chicken.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Ground chicken. 65.160 Section 65.160 Agriculture... OF BEEF, PORK, LAMB, CHICKEN, GOAT MEAT, PERISHABLE AGRICULTURAL COMMODITIES, MACADAMIA NUTS, PECANS, PEANUTS, AND GINSENG General Provisions Definitions § 65.160 Ground chicken. Ground chicken means...

  18. Ground water pollution through air pollutants

    International Nuclear Information System (INIS)

    Cichorowski, G.; Michel, B.; Versteegen, D.; Wettmann, R.

    1989-01-01

    The aim of the investigation is to determine the significance of air pollutants for ground water quality and ground water use. The report summarizes present knowledge and assesses statements with a view to potential ground water pollution from the air. In this context pollution paths, the spreading behaviour of pollutants, and 'cross points' with burden potentials from other pollutant sources are presented. (orig.) [de

  19. 7 CFR 65.165 - Ground goat.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Ground goat. 65.165 Section 65.165 Agriculture... OF BEEF, PORK, LAMB, CHICKEN, GOAT MEAT, PERISHABLE AGRICULTURAL COMMODITIES, MACADAMIA NUTS, PECANS, PEANUTS, AND GINSENG General Provisions Definitions § 65.165 Ground goat. Ground goat means comminuted...

  20. 30 CFR 77.801 - Grounding resistors.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding resistors. 77.801 Section 77.801 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH...-Voltage Distribution § 77.801 Grounding resistors. The grounding resistor, where required, shall be of the...