WorldWideScience

Sample records for tritium laboratory karlsruhe

  1. Analytic of tritium-containing gaseous species at the Tritium Laboratory Karlsruhe

    International Nuclear Information System (INIS)

    Laesser, R.; Caldwell-Nichols, C.; Doerr, L.; Glugla, M.; Gruenhagen, S.; Guenther, K.; Penzhorn, R.-D.

    2001-01-01

    At the Tritium Laboratory Karlsruhe (TLK) laser Raman spectroscopy, gas chromatography, mass spectroscopy, calorimetry and ionisation chambers are used to determine the composition of tritium gas mixtures. For the first time a laser Raman experiment was assembled with an actively controlled resonator which yields a 50 times higher Raman signal and with all components (laser, optics, Raman cell and spectrometer) installed inside a glove box. Three gas chromatographs, each with up to six detectors, can determine the gases and their tritiated fractions expected in fusion devices down to the sub-ppm range. Tritium in solids, liquids and gases is determined by means of three calorimeters with a dynamic ranges of up to five orders of magnitude and a lower detection limit of 1 GBq. Since any of these techniques has its shortcomings the best analytical approach is to analyse a sample by more than one method

  2. Treatment of tritiated exhaust gases at the Tritium Laboratory Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Hutter, E.; Besserer, U. [Kernforschungszentrum Karlsruhe GmbH (Germany); Jacqmin, G. [NUKEM GmbH, Industreistr, Alzenau (Germany)

    1995-02-01

    The Tritium Laboratory Karlsruhe (TLK) accomplished commissioning; tritium involving activities will start this year. The laboratory is destined mainly to investigating processing of fusion reactor fuel and to developing analytic devices for determination of tritium and tritiated species in view of control and accountancy requirements. The area for experimental work in the laboratory is about 800 m{sup 2}. The tritium infrastructure including systems for tritium storage, transfer within the laboratory and processing by cleanup and isotope separation methods has been installed on an additional 400 m{sup 2} area. All tritium processing systems (=primary systems), either of the tritium infrastructure or of the experiments, are enclosed in secondary containments which consist of gloveboxes, each of them connected to the central depressurization system, a part integrated in the central detritiation system. The atmosphere of each glovebox is cleaned in a closed cycle by local detritiation units controlled by two tritium monitors. Additionally, the TLK is equipped with a central detritiation system in which all gases discharged from the primary systems and the secondary systems are processed. All detritiation units consist of a catalyst for oxidizing gaseous tritium or tritiated hydrocarbons to water, a heat exchanger for cooling the catalyst reactor exhaust gas to room temperature, and a molecular sieve bed for adsorbing the water. Experiments with tracer amounts of tritium have shown that decontamination factors >3000 can be achieved with the TLK detritiation units. The central detritiation system was carefully tested and adjusted under normal and abnormal operation conditions. Test results and the behavior of the tritium barrier preventing tritiated exhaust gases from escaping into the atmosphere will be reported.

  3. Gas chromatography at the Tritium Laboratory Karlsruhe

    International Nuclear Information System (INIS)

    Laesser, R.; Gruenhagen, S.

    2003-08-01

    Among the analytical techniques (mass spectrometry, laser Raman spectroscopy, gas chromatography, use of ionisation chambers) employed at the Tritium Laboratory Karlsruhe (TLK), gas chromatography plays a prominent role. The main reasons for that are the simplicity of the gas chromatographic separation process, the small space required for the equipment, the low investment costs in comparison to other methods, the robustness of the equipment, the simple and straightforward analysis and the fact that all gas species of interest (with the exception of water) can easily be detected by gas chromatographic means. The conventional gas chromatographs GC1 and GC2 used in the Tritium Measurement Techniques (TMT) System of the TLK and the gas chromatograph GC3 of the experiment CAPER are presented in detail, by discussing their flow diagrams, their major components, the chromatograms measured by means of various detectors, shortcomings and possible improvements. One of the main disadvantages of the conventional gas chromatography is the long retention times required for the analysis of hydrogen gas mixtures. To overcome this disadvantage, micro gas chromatography for hydrogen analysis was developed. Reduction of the retention times by one order of magnitude was achieved. (orig.)

  4. Analysis of simulated data for the KArlsruhe TRItium Neutrino experiment using Bayesian inference

    DEFF Research Database (Denmark)

    Riis, Anna Sejersen; Hannestad, Steen; Weinheimer, C.

    2011-01-01

    The KATRIN (Karlsruhe Tritium Neutrino) experiment will analyze the tritium β spectrum to determine the mass of the neutrino with a sensitivity of 0.2 eV (90% C.L.). This approach to a measurement of the absolute value of the neutrino mass relies only on the principle of energy conservation and can...

  5. Water detritiation processing of JET purified waste water using the TRENTA facility at Tritium Laboratory Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Michling, R., E-mail: robert.michling@kit.edu; Bekris, N.; Cristescu, I.; Lohr, N.; Plusczyk, C.; Welte, S.; Wendel, J.

    2013-10-15

    Highlights: • Operation of a water detritiation facility under optimized conditions for high detritiation performances. • Improvement of operational procedures to process tritiated waste water. • Handling and reduction of tritiated waste water to achieve enriched low volume tritiated water for sufficient storage. • Demonstration of the efficient availability of the TRENTA WDS facility for technical scale operation. -- Abstract: A Water Detritiation System (WDS) is required for any Fusion machine in order to process tritiated waste water, which is accumulated in various subsystems during operation and maintenance. Regarding the European procurement packages for the ITER tritium fuel cycle, the WDS test facility TRENTA applying the Combined Electrolysis Catalytic Exchange (CECE) process was developed, installed and is currently in operation at the Tritium Laboratory Karlsruhe (TLK). Besides the on-going R and D work for the design of ITER WDS, the current status of the TRENTA facility provides the option to utilize the WDS for processing tritiated water. Therefore, in the framework of the EFDA JET Fusion Technology Work Programme 2011, the TLK was able to offer the capability on a representative scale to process tritiated water, which was produced during normal operation at JET. The task should demonstrate the availability of the CECE process to handle and detritiate the water in terms of tritium enrichment and volume reduction. The operational program comprised the processing of purified tritiated water from JET, with a total volume of 180 l and an activity of 74 GBq. The paper will give an introduction to the TRENTA WDS facility and an overview of the operational procedure regarding tritiated water reduction. Data concerning required operation time, decontamination and enrichment performances and different operating procedures will be presented as well. Finally, a preliminary study on a technical implementation of processing the entire stock of JET

  6. Water detritiation processing of JET purified waste water using the TRENTA facility at Tritium Laboratory Karlsruhe

    International Nuclear Information System (INIS)

    Michling, R.; Bekris, N.; Cristescu, I.; Lohr, N.; Plusczyk, C.; Welte, S.; Wendel, J.

    2013-01-01

    Highlights: • Operation of a water detritiation facility under optimized conditions for high detritiation performances. • Improvement of operational procedures to process tritiated waste water. • Handling and reduction of tritiated waste water to achieve enriched low volume tritiated water for sufficient storage. • Demonstration of the efficient availability of the TRENTA WDS facility for technical scale operation. -- Abstract: A Water Detritiation System (WDS) is required for any Fusion machine in order to process tritiated waste water, which is accumulated in various subsystems during operation and maintenance. Regarding the European procurement packages for the ITER tritium fuel cycle, the WDS test facility TRENTA applying the Combined Electrolysis Catalytic Exchange (CECE) process was developed, installed and is currently in operation at the Tritium Laboratory Karlsruhe (TLK). Besides the on-going R and D work for the design of ITER WDS, the current status of the TRENTA facility provides the option to utilize the WDS for processing tritiated water. Therefore, in the framework of the EFDA JET Fusion Technology Work Programme 2011, the TLK was able to offer the capability on a representative scale to process tritiated water, which was produced during normal operation at JET. The task should demonstrate the availability of the CECE process to handle and detritiate the water in terms of tritium enrichment and volume reduction. The operational program comprised the processing of purified tritiated water from JET, with a total volume of 180 l and an activity of 74 GBq. The paper will give an introduction to the TRENTA WDS facility and an overview of the operational procedure regarding tritiated water reduction. Data concerning required operation time, decontamination and enrichment performances and different operating procedures will be presented as well. Finally, a preliminary study on a technical implementation of processing the entire stock of JET

  7. Investigation of the tritium level in the environment of the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Koenig, L.A.; Winter, M.; Schueler, H.; Tachlinski, W.

    1976-06-01

    Under an IAEA sponsored measurement program the tritium level is investigated in the immediate and more distant environment of the Karlsruhe Nuclear Research Center. The tritium concentration in precipitations, surface, ground and drinking water is measured within a long-term program. In addition, relationships existing between the tritium concentration of plants and the concentrations of ground water, precipitation, soil and air humidities are investigated at three points in special series of measurement. A summary report is presented on recent measured results. According to these results, the annual mean values for precipitations and surface water tend to rise. In 1975 the annual mean values amounted to 0.89 nCi/l of tritium concentration in precipitations in the more distant environment of the Nuclear Research Center and to 0.68 nCi/l in the Rhine river. In plants tritium concentrations were observed which correspond to that measured in the humidity of the air. The radiation exposure of people living in large towns is calculated to be about 50 μrem/a in the region monitored, due to the presence of tritium in the drinking water. A little group of the population takes up as much as 110 μrem/a. (orig.) [de

  8. Investigations of the applicability of a new accountancy tool in a closed tritium loop

    Energy Technology Data Exchange (ETDEWEB)

    Ebenhöch, S., E-mail: sylvia.ebenhoech@kit.edu; Niemes, S.; Priester, F.; Röllig, M.

    2016-11-01

    Highlights: • We have set up a new test device for measuring of tritiated gas samples. • The device is very compact and easy and reliable in operation. • Easy integration in flow-through systems. • The device has been operated at Tritium Laboratory Karlsruhe for several months. • The lower detection limit has been improved with regard to predecessors experiments. - Abstract: A commonly used activity monitoring method for tritium accountancy and process monitoring in tritium technology is ionization counting. Despite the wide use of ionization chambers (IC), they have several drawbacks like a strong gas species and pressure dependency. Furthermore, if compact systems are needed, there is also the necessity for process gas pressures >10 kPa. To encounter these drawbacks, the TRitium Activity Chamber Experiment (TRACE) has been developed at the Tritium Laboratory Karlsruhe (TLK) as a compact tritium monitor based on the beta induced X-ray spectrometry (BIXS) principle. TRACE can be used as an accountancy tool in tritium-processing facilities like the KArlsruhe TRItium Neutrino (KATRIN) experiment. In contrast to ICs TRACE shows a linear response to pressure changes up to approx. 1 kPa. The results of performed flow-through measurements confirm that TRACE is a complement for ICs in the low-pressure regime. Furthermore the gas species dependency of TRACE is investigated both with tritium measurements and with Monte Carlo simulations.

  9. Comparison of Tritium Component Failure Rate Data

    International Nuclear Information System (INIS)

    Lee C. Cadwallader

    2004-01-01

    Published failure rate values from the US Tritium Systems Test Assembly, the Japanese Tritium Process Laboratory, the German Tritium Laboratory Karlsruhe, and the Joint European Torus Active Gas Handling System have been compared. This comparison is on a limited set of components, but there is a good variety of data sets in the comparison. The data compared reasonably well. The most reasonable failure rate values are recommended for use on next generation tritium handling system components, such as those in the tritium plant systems for the International Thermonuclear Experimental Reactor and the tritium fuel systems of inertial fusion facilities, such as the US National Ignition Facility. These data and the comparison results are also shared with the International Energy Agency cooperative task on fusion component failure rate data

  10. Development of a compact tritium activity monitor and first tritium measurements

    Energy Technology Data Exchange (ETDEWEB)

    Röllig, M., E-mail: marco.roellig@kit.edu; Ebenhöch, S.; Niemes, S.; Priester, F.; Sturm, M.

    2015-11-15

    Highlights: • We report about experimental results of a new tritium activity monitoring system using the BIXS method. • The system is compact and easy to implement. It has a small dead volume of about 28 cm{sup 3} and can be used in a flow-through mode. • Gold coated surfaces are used to improve significantly count rate stability of the system and to reduce stored inventory. - Abstract: To develop a convenient tool for in-line tritium gas monitoring, the TRitium Activity Chamber Experiment (TRACE) was built and commissioned at the Tritium Laboratory Karlsruhe (TLK). The detection system is based on beta-induced X-ray spectrometry (BIXS), which observes the bremsstrahlung X-rays generated by tritium decay electrons in a gold layer. The setup features a measuring chamber with a gold-coated beryllium window and a silicon drift detector. Such a detection system can be used for accountancy and process control in tritium processing facilities like the Karlsruhe Tritium Neutrino Experiment (KATRIN). First characterization measurements with tritium were performed. The system demonstrates a linear response between tritium partial pressure and the integral count rate in a pressure range of 1 Pa up to 60 Pa. Within 100 s measurement time the lower detection limit for tritium is (143.63 ± 5.06) · 10{sup 4} Bq. The system stability of TRACE is limited by a linear decrease of integral count rate of 0.041 %/h. This decrease is most probably due to exchange interactions between tritium and the stainless steel walls. By reducing the interaction surface with stainless steel, the decrease of the integral count rate was reduced to 0.008 %/h. Based on the first results shown in this paper it can be concluded that TRACE is a promising complement to existing tritium monitoring tools.

  11. Tritium monitoring at the Sandia Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Devlin, T.K.

    1978-10-01

    Sandia Laboratories at Livermore, California, is presently beginning operation of a Tritium Research Laboratory (TRL). The laboratory incorporates containment and cleanup facilities such that any unscheduled tritium release is captured rather than vented to the atmosphere. A sophisticated tritium monitoring system is in use at the TRL to protect operating personnel and the environment, as well as ensure the safe and effective operation of the TRL decontamination systems. Each monitoring system has, in addition to a local display, a display in a centralized control room which, when coupled room which, when coupled with the TRL control computer, automatically provides an immediate assessment of the status of the entire facility. The computer controls a complex alarm array status of the entire facility. The computer controls a complex alarm array and integrates and records all operational and unscheduled tritium releases

  12. Decommissioning of a tritium-contaminated laboratory

    International Nuclear Information System (INIS)

    Harper, J.R.; Garde, R.

    1982-01-01

    A tritium laboratory facility at the Los Alamos National Laboratory, Los Alamos, New Mexico, was decommissioned in 1979. The project involved dismantling the laboratory equipment and disposing of the equipment and debris at an on-site waste disposal/storage area. The laboratory, constructed in 1953, was in service for tritium research and fabrication of lithium tritide components until 1974. The major features of the laboratory included 25 meters of gloveboxes and hoods, associated vacuum lines, utility lines, exhaust ducts, electrodryers, blowers, and laboratory benches. This report presents details on the decommissioning, health physics, waste management, environmental surveillance, and costs for the operation

  13. TASKA - Tandem Spiegelmaschine Karlsruhe. Vol. 1

    International Nuclear Information System (INIS)

    1982-06-01

    TASKA (Tandem Spiegelmaschine Karlsruhe) is a near term engineering test facility based on a tandem mirror concept with thermal barriers. The main objectives of this study were to develop a preconceptual design of a facility that could provide engineering design information for a Demonstration Fusion Power Reactor. Thus TASKA has to serve as testbed for technologies of plasma engineering, superconducting magnets, materials, plasma heating, breeding and test blankets, tritium technology, and remote handling. (orig.) [de

  14. TASKA - Tandem Spiegelmaschine Karlsruhe. Vol. 2

    International Nuclear Information System (INIS)

    1982-06-01

    TASKA (Tandem Spiegelmaschine Karlsruhe) is a near term engineering test facility based on a tandem mirror concept with thermal barriers. The main objectives of this study were to develop a preconceptual design of a facility that could provide engineering design information for a Demonstration Fusion Power Reactor. Thus TASKA has to serve as testbed for technologies of plasma engineering, superconducting magnets, materials, plasma heating, breeding and test blankets, tritium technology, and remote handling. (orig.) [de

  15. DECOMMISSIONING THE HIGH PRESSURE TRITIUM LABORATORY AT LOS ALAMOS NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    Peifer, M.J.; Rendell, K.; Hearnsberger, D.W.

    2003-01-01

    In May 0f 2000, the Cerro Grande wild land fire burned approximately 48,000 acres in and around Los Alamos. In addition to the many buildings that were destroyed in the town site, many structures were also damaged and destroyed within the 43 square miles that comprise the Los Alamos National Laboratory (LANL). A special Act of Congress provided funding to remove Laboratory structures that were damaged by the fire, or that could be threatened by subsequent catastrophic wild land fires. The High Pressure Tritium Laboratory (HPTL) is located at Technical Area (TA) 33, building 86 in the far southeast corner of the Laboratory property. It is immediately adjacent to Bandelier National Park. Because it was threatened by both the Cerro Grande fire in 2000, and the 16,000- acre Dome fire in 1996, the former tritium processing facility was placed on the list of facilities scheduled for Decontamination and Decommissioning under the Cerro Grande Rehabilitation Project. The work was performed through the Facilities and Waste Operations (FWO) Division and is integrated with other Laboratory D and D efforts. The primary demolition contractor was Clauss Construction of San Diego, California. Earth Tech Global Environmental Services of San Antonio, Texas was sub-contracted to Clauss Construction, and provided radiological decontamination support to the project. Although the forty-seven year old facility had been in a state of safe-shutdown since operations ceased in 1990, a significant amount of tritium remained in the rooms where process systems were located. Tritium was the only radiological contaminant associated with this facility. Since no specific regulatory standards have been set for the release of volumetrically contaminated materials, concentration guidelines were derived in order to meet other established regulatory criteria. A tritium removal system was developed for this project with the goal of reducing the volume of tritium concentrated in the concrete of the

  16. Current Sandia programs and laboratory facilities for tritium research

    International Nuclear Information System (INIS)

    Swansiger, W.A.; West, L.A.

    1975-01-01

    Currently envisioned fusion reactor systems will contain substantial quantities of tritium. Strict control of the overall tritium inventory and environmental safety considerations require an accurate knowledge of the behavior of this isotope in the presence of Controlled Thermonuclear Reactor (CTR) materials. A 14,000 ft 2 laboratory for tritium research is currently under construction at Sandia Laboratories in Livermore. Details about the laboratory in general are provided. Results from studies of hydrogen isotope diffusion in surface-characterized metals will be presented. Details of two permeation systems (one for hydrogen and deuterium, the other for tritium) will be discussed. Data will also be presented concerning the gettering of hydrogen isotopes and application to CTR collector designs. (auth)

  17. Tritium accountancy and unmeasurable inventories in fusion reactors

    International Nuclear Information System (INIS)

    Avenhaus, R.; Spannagel, G.

    1997-12-01

    For the time being fusion technology development involves relatively small quantities of tritium. Consequently, it is sufficient to apply so-called ''conventional'' accountancy tools. However, it is foreseeable that tritium operations - and thus the amount of tritium - will increase substantially. An advanced accountancy methodology will satisfy the resulting new requirements. In this study such an advanced accountancy methodolody is developed and applied to the situation envisaged with idealized experiments of the Karlsruhe Tritium Laboratory (TLK) as well as an idealized ITER-type fuel cycle. Firstly, this task comprises modeling of fuel cycle operations, providing the ''true'' data of the in-process inventories. As both the fuel cycle subsystems and networking themselves are susceptible to changes, a measurement model takes care of the true data, handles data reduction, and applies mathematical methods to confirm the final inventories on a statistical basis. Then, in a third step, the test statistics might verify whether or not a tritium anomaly, e.g. a tritium loss has occurred. Since the statistical analysis generates problems the solutions of which are not part of the standard statistical literature in the Annex the results of the related original work is presented in mathematical-abstract form. (orig.)

  18. Setup and commissioning of a combined water detritiation and isotope separation experiment at the Tritium Laboratory Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Welte, S., E-mail: stefan.welte@kit.edu; Cristescu, I.; Dittrich, H.; Lohr, N.; Melzer, C.; Michling, R.; Plusczyk, C.; Schaefer, P.

    2013-10-15

    Highlights: • Technical scale, tritium compatible liquid phase catalytic exchange (LPCE). • Technical scale, tritium compatible cryogenic distillation. • Combines processing option for tritiated water and isotope separation. -- Abstract: The European union in kind supply for the ITER fuel cycle development consists, among others, of the water detritiation system (WDS) and the isotope separation system (ISS). In order to mitigate the release of tritium to the environment, these systems are combined by feeding hydrogen exhaust from the ISS into the WDS for final processing. Therefore, the WDS is the final tritium barrier before releasing hydrogen (H{sub 2}) exhaust to the environment. The TRENTA 4 scaled prototype facility at TLK is based on combination of the combined electrolysis and catalytic exchange (CECE) process and a cryogenic distillation (CD) process. All components are fully tritium compatible and controlled using a state of the art control system for process automation, backed up by an additional dedicated safety system. The paper will give a detailed overview of the current experimental facility including all process components. Furthermore the paper will present the results of the functional test of the WDS/ISS combination using protium and deuterium, as well the results of the first commissioning runs using HTO of approximately 5 × 10{sup 9} Bq kg{sup −1} activity concentration.

  19. Monitoring system of the Tritium Research Laboratory, Sandia Laboratories, Livermore, CA

    International Nuclear Information System (INIS)

    Wall, W.R.; Hafner, R.S.; Westfall, D.L.; Ristau, R.D.

    1978-11-01

    Automated tritium monitoring is now in use at the Tritium Research Laboratory (TRL). Betatec 100 tritium monitors, along with several Sandia-designed accessories, have been combined with a PDP 11/40 computer to automatically read and record tritium concentrations of room air, containment, and cleanup systems. Each individual monitoring system, in addition to a local display in the area of interest, has a visible/audible display in the control room. Each system is then channeled into the PDP 11/40 computer, providing immediate assessment of the status of the entire laboratory from a central location. Measurement capability ranges from μCi/m 3 levels for room air monitoring to kCi/m 3 levels for glove box and cleanup systems monitoring. In this report the overall monitoring system and its capabilities are discussed, with detailed descriptions given of monitors and their components

  20. Annual report 1995 of the Central Safety Department, Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Koelzer, W.

    1996-04-01

    The Central Safety Department is responsible for supervising, monitoring and, to some extent, also executing measures of radiation protection, industrial health and safety as well as physical protection and security at and for the institutes and departments of the Karlsruhe Research Center (Forschungszentrum Karlsruhe GmbH), and for monitoring liquid effluents and the environment of all facilities and nuclear installations on the premises of the Research Center. In addition, research and development work is carried out in the fields of behavior of tritium in the air/soil/plant system, tritium balances for nuclear fusion fuel cycles, and assessments of mining and ore dressing spoils. This report gives details of the different duties and reports the results of 1995 routine tasks, investigations and developments of the working groups of the Department. The reader is referred to the English translation of Chapter 1 describing the duties and organization of the Central Safety Department. (orig.) [de

  1. Results of observations of the tritium concentration in water fractions in the disposition regions of tritium laboratories

    International Nuclear Information System (INIS)

    Koval, G.N.; Kuzmina, A.I.; Kolomiets, N.F.; Svarichevskaya, E.V.; Rogosin, V.N.; Svyatun, O.V.

    1995-01-01

    In this paper results of the long term of control of tritium concentration in the water fractions in the region close to the tritium laboratories of INR NAS of Ukraine are presented. The regular observations for the tritium concentration in the water fractions (thawed water of the snow cover, birch juice and sewer water) in the influence region of tritium laboratories shows small amount of tritium concentration in all kinds of investigated water fractions in comparison with the tritium concentration in the reper points. The proper connection of the levels of tritium concentration of the water samples with the quantity of the technology production is observed. In common, the tritium pollution on the territory of INR shows the tendency for a considerable decrease of the environmental pollution levels from year to year. It can be explained by the perfection of the production technology of tritium structures and targets as well as the rising of the qualification of the personnel. 3 refs., 4 figs

  2. Tritium contamination of concrete walls and floors in tritium-handling laboratory

    International Nuclear Information System (INIS)

    Kawano, T.; Kuroyanagi, M.; Tabei, T.

    2006-01-01

    A tritium handling laboratory was constructed at the National Institute for Fusion Science about twenty years ago and it was recently closed down. We completed the necessary work that is legally required in Japan at the laboratory, when the use of radioisotopes is discontinued, involving measurements of radioactive contamination. We mainly used smear and direct-immersion methods for the measurements. In applying the smear method, we used a piece of filter paper to wipe up the tritium staining the surfaces. The filter paper containing the tritium was placed directly into a dedicated vial, a scintillation cocktail was then poured over it, and the tritium was measured with a liquid scintillation counter. With the direct-immersion method, a piece of concrete was placed directly into a vial containing a scintillation cocktail, and the tritium in the concrete was measured with a liquid scintillation counter. As well as these measurements, we investigated water-extraction and heating-cooling methods for measuring tritium contamination in concrete. With the former, a piece of concrete was placed into water in a tube to extract the tritium, the water containing the extracted tritium was then poured into a dedicated vial containing a scintillation cocktail, and the tritium contamination was measured. With the latter, a piece of concrete was placed into a furnace and heated to 800 degrees centigrade to vaporize the tritiated water into flowing dry air. The flowing air was then cooled to collect the vaporized tritiated water in a tube. The collected water was placed in a vial for scintillation counting. To evaluate the direct-immersion method, ratios were determined by dividing the contamination measured with the heating-cooling method by that measured with the direct-immersion method. The average ratio was about 2.5, meaning a conversion factor from contamination obtained with the direct-immersion method to that with the heating-cooling method. We also investigated the

  3. Tritium Research Laboratory safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Wright, D.A.

    1979-03-01

    Design and operational philosophy has been evolved to keep radiation exposures to personnel and radiation releases to the environment as low as reasonably achievable. Each experiment will be doubly contained in a glove box and will be limited to 10 grams of tritium gas. Specially designed solid-hydride storage beds may be used to store temporarily up to 25 grams of tritium in the form of tritides. To evaluate possible risks to the public or the environment, a review of the Sandia Laboratories Livermore (SLL) site was carried out. Considered were location, population, land use, meteorology, hydrology, geology, and seismology. The risks and the extent of damage to the TRL and vital systems were evaluated for flooding, lightning, severe winds, earthquakes, explosions, and fires. All of the natural phenomena and human error accidents were considered credible, although the extent of potential damage varied. However, rather than address the myriad of specific individual consequences of each accident scenario, a worst-case tritium release caused indirectly by an unspecified natural phenomenon or human error was evaluated. The maximum credible radiological accident is postulated to result from the release of the maximum quantity of gas from one experiment. Thus 10 grams of tritium gas was used in the analysis to conservatively estimate the maximum whole-body dose of 1 rem at the site boundary and a maximum population dose of 600 man-rem. Accidental release of this amount of tritium implies simultaneous failure of two doubly contained systems, an occurrence considered not credible. Nuclear criticality is impossible in this facility. Based upon the analyses performed for this report, we conclude that the Tritium Research Laboratory can be operated without undue risk to employees, the general public, or the environment. (ERB)

  4. Tritium Research Laboratory safety analysis report

    International Nuclear Information System (INIS)

    Wright, D.A.

    1979-03-01

    Design and operational philosophy has been evolved to keep radiation exposures to personnel and radiation releases to the environment as low as reasonably achievable. Each experiment will be doubly contained in a glove box and will be limited to 10 grams of tritium gas. Specially designed solid-hydride storage beds may be used to store temporarily up to 25 grams of tritium in the form of tritides. To evaluate possible risks to the public or the environment, a review of the Sandia Laboratories Livermore (SLL) site was carried out. Considered were location, population, land use, meteorology, hydrology, geology, and seismology. The risks and the extent of damage to the TRL and vital systems were evaluated for flooding, lightning, severe winds, earthquakes, explosions, and fires. All of the natural phenomena and human error accidents were considered credible, although the extent of potential damage varied. However, rather than address the myriad of specific individual consequences of each accident scenario, a worst-case tritium release caused indirectly by an unspecified natural phenomenon or human error was evaluated. The maximum credible radiological accident is postulated to result from the release of the maximum quantity of gas from one experiment. Thus 10 grams of tritium gas was used in the analysis to conservatively estimate the maximum whole-body dose of 1 rem at the site boundary and a maximum population dose of 600 man-rem. Accidental release of this amount of tritium implies simultaneous failure of two doubly contained systems, an occurrence considered not credible. Nuclear criticality is impossible in this facility. Based upon the analyses performed for this report, we conclude that the Tritium Research Laboratory can be operated without undue risk to employees, the general public, or the environment

  5. Welded rupture disc assemblies for use in Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Faltings, R.E.

    1976-01-01

    Welded rupture disc assemblies were investigated and developed in various ranges for probable use by experimenters in their activities in the Tritium Research Laboratory at Sandia Laboratories, Livermore. This study indicates that currently welded rupture disc assemblies with appropriate testing and installation by certified pressure installers may be used in pressure systems in the Tritium Research Laboratory and other areas at SLL

  6. The monitoring system of the Tritium Research Laboratory, Sandia Laboratories, Livermore, California

    International Nuclear Information System (INIS)

    Hafner, R.S.; Westfall, D.L.; Ristau, R.D.

    1978-01-01

    Computerized tritium monitoring is now in use at the Tritium Research Laboratory (TRL). Betatec 100 tritium monitors, along with several Sandia designed accessories, have been combined with a PDP 11/40 computer to provide maximum personnel and environmental protection. Each individual monitoring system, in addition to a local display in the area of interest, has a visual/audible display in the control room. Each system is then channeled into the PDP 11/40 computer, providing immediate assessment of the status of the entire laboratory from a central location. Measurement capability ranges from uCi/m 3 levels for room air monitoring to KCi/m 3 levels for glove box and process system monitoring. The overall monitoring system and its capabilities will be presented

  7. Final characterization report for the 104-B-1 Tritium Vault and 104-B-2 Tritium Laboratory

    International Nuclear Information System (INIS)

    Encke, D.B.; Harris, R.A.

    1996-11-01

    This report is a compilation of the characterization data collected from the 104-B-1 Tritium Vault and the 104-B-2 Trillium Laboratory. The characterization activities were organized and implemented to evaluate the radiological status and identify any hazardous materials. The data contained in this report reflects the current conditions and status of the 104-B-1 Tritium Vault and 104-B-2 Tritium Laboratory. This information is intended to be utilized in support of future building decontamination and demolition, to allow for proper disposal of the demolition debris as required by the Washington Administrative Code, WAC 173-303, the Hanford Site Solid Waste Acceptance Criteria, WHC-EP-0063, and the Environmental Restoration Disposal Facility Waste Acceptance Criteria, BHI-00139. Based on the historical information and facility inspections, the only hazardous materials sampling and analysis activities necessary were to identify lead paint and asbestos containing materials (ACM) in the 104-B-1 Tritium Vault and the 104-B-2 Tritium Laboratory. Asbestos samples were obtained from the outer boundary of the roof areas to confirm the presence and type of asbestos containing fibers. Lead paint samples were obtained to confirm the presence and quantity of lead paint on the roof trim, doors and vents

  8. Tritium handling facilities at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Anderson, J.L.; Damiano, F.A.; Nasise, J.E.

    1975-01-01

    A new tritium facility, recently activated at the Los Alamos Scientific Laboratory, is described. The facility contains a large drybox, associated gas processing system, a facility for handling tritium gas at pressures to approximately 100 MPa, and an effluent treatment system which removes tritium from all effluents prior to their release to the atmosphere. The system and its various components are discussed in detail with special emphasis given to those aspects which significantly reduce personnel exposures and atmospheric releases. (auth)

  9. Modification of a solid polymer electrolyte (SPE) electrolyser to ensure tritium compatibility

    International Nuclear Information System (INIS)

    Eichelhardt, F.; Cristescu, I.; Michling, R.; Welte, S.

    2010-01-01

    A Water Detritiation System (WDS) is required for the ITER Tritium Plant in order to process tritiated water which is accumulated in various subsystems (e.g. the hall ventilation systems). For the ITER-WDS, the Combined Electrolysis Catalytic Exchange (CECE) process with an electrolyser unit as one of the major components is envisaged. An experimental WDS was built and commissioned at the Tritium Laboratory Karlsruhe (TLK) for the investigation of various subsystems of the CECE process in tritium environment. The TLK-WDS consists of an 8 m Liquid Phase Catalytic Exchange column and two Solid Polymer Electrolyte electrolysers, each with a maximum hydrogen output of 1 m 3 /h. The commercially available Hogen40 electrolyser units from Proton Energy Systems are not tritium compatible concerning materials, joints and quality documentation (e.g. necessary certificates). In order to process tritiated water with tritium concentrations up to 370 GBq/kg, tritium compatibility had to be ensured by appropriate modifications. Up to now, the modified system has been operated with tritiated water for 3500 h, the maximum tritium concentration in the electrolysers being 190 GBq/kg. This contribution reports on the necessary modifications of the electrolyser units and the experiences gained thereby. The results are equally important for the ITER-WDS, where the maximum tritium concentration in the feed water of the electrolyser units will be even higher with 11 TBq/kg.

  10. Results of tritium tests performed on Sandia Laboratories decontamination system

    International Nuclear Information System (INIS)

    Gildea, P.D.; Wall, W.R.; Gede, V.P.

    1978-05-01

    The Tritium Research Laboratory (TRL), a facility for performing experiments using gram amounts of tritium, became operational on October 1, 1977. As secondary containment, the TRL employs sealed glove boxes connected on demand to two central decontamination systems, the Gas Purification System and the Vacuum Effluent Recovery System. Performance tests on these systems show the tritium removal systems can achieve concentration reduction factors (ratio of inlet to exhaust concentrations) much in excess of 1000 per pass at inlet concentrations of 1 part per million or less for both tritium and tritiated methane

  11. Tritium in the food chain

    International Nuclear Information System (INIS)

    Koenig, L.A.

    1988-01-01

    Tritium is a hydrogen isotope taking part in the global hydrogen cycle as well as in all metabolic processes. The resultant problems with respect to the food chain are summarized briefly with emphasis on 'organically bound tritium'. However, only a small number of the numerous publications on this topic can be taken into consideration. Publications describing experiments under defined conditions are reported, thus allowing a semiempirical interpretation to be made. Tritium activity measurements of food grown in the vicinity of the Karlsruhe Nuclear Research Center have been carried out. A list of the results is given. A dose assessment is performed under simplifying assumptions. Even when the organically bound tritium is taken into account, a radiation exposure of less than 1% of that of K-40 is obtained under these conditions. To avoid misinterpretation, the specific activity (Bq H-3/g H) of water-bound and organically bound tritium has to be considered separately. (orig.) [de

  12. Dynamic tritium inventory of a NET/ITER fuel cycle with lithium salt solution blanket

    International Nuclear Information System (INIS)

    Spannagel, G.; Gierszewski, P.

    1991-01-01

    At the Karlsruhe Nuclear Research Center (KfK) a flexible tool is being developed to simulate the dynamics of tritium inventories. This tool can be applied to any tritium handling system, especially to the fuel cycle components of future nuclear fusion devices. This instrument of simulation will be validated in equipment to be operated at the Karlsruhe Tritium Laboratory. In this study tritium inventories in a NET/ITER type fuel cycle involving a lithium salt solution blanket are investigated. The salt solution blanket serves as an example because it offers technological properties which are attractive in modeling the process; the example does not impair the general validity of the tool. Usually, the operation strategy of complex structures will deteriorate due to failures of the subsystems involved. These failures together with the reduced availability ensuing from them will be simulated. The example of this study is restricted to reduced availabilities of two subsystems, namely the reactor and the tritium recovery system. For these subsystems the influence of statistically varying intervals of operation is considered. Strategies we selected which are representative of expected modes of operation. In the design of a fuel cycle, care will be taken that prescribed availabilities of the subsystems can be achieved; however, the description of reactor operation is a complex task since operation breaks down into several campaigns for which rules have been specified which enable determination of whether a campaign has been successful and can be stopped. Thus, it is difficult to predict the overall behavior prior to a simulation which includes stochastic elements. Using the example mentioned above the capabilities of the tool will be illustrated; besides the presentation of results of inventory simulation, the applicability of these data will be discussed. (orig.)

  13. Monsanto Mound Laboratory tritium waste control technology development program

    International Nuclear Information System (INIS)

    Bixel, J.C.; Kershner, C.J.; Rhinehammer, T.B.

    1975-01-01

    Over the past four years, implementation of tritium waste control programs has resulted in a 30-fold reduction in the gaseous tritium effluents from Mound Laboratory. However, to reduce tritium waste levels to the ''as low as practicable'' guideline poses problems that are beyond ready solution with state-of-the-art tritium control technology. To meet this advanced technology need, a tritium waste control technology program was initiated. Although the initial thrust of the work under this program was oriented toward development of gaseous effluent treatment systems, its natural evolution has been toward the liquid waste problem. It is thought that, of all the possible approaches to disposal of tritiated liquid wastes, recovery offers the greatest advantages. End products of the recovery processes would be water detritiated to a level below the Radioactivity Concentration Guide (RCG) or detritiated to a level that would permit safe recycle in a closed loop operation and enriched tritium. The detritiated water effluent could be either recycled in a closed loop operation such as in a fuel reprocessing plant or safely released to the biosphere, and the recovered tritium could be recycled for use in fusion reactor studies or other applications

  14. Current status of tritium calorimetry at TLK

    Energy Technology Data Exchange (ETDEWEB)

    Buekki-Deme, A.; Alecu, C.G.; Kloppe, B.; Bornschein, B. [Institute of Technical Physics, Tritium Laboratory Karsruhe - TLK, Karlsruhe Institute of Technology - KIT, Karlsruhe (Germany)

    2015-03-15

    Inside a tritium facility, calorimetry is an important analytical method as it is the only reference method for accountancy (it is based on the measurement of the heat generated by the radioactive decay). Presently, at Tritium Laboratory Karlsruhe (TLK), 4 calorimeters are in operation, one of isothermal type and three of inertial guidance control type (IGC). The volume of the calorimeters varies between 0.5 and 20.6 liters. About two years ago we started an extensive work to improve our calorimeters with regard to reliability and precision. We were forced to upgrade 3 of our 4 calorimeters due to the outdated interfaces and software. This work involved creating new LabView programs driving the devices, re-tuning control loops and replacing obsolete hardware components. In this paper we give a review on the current performance of our calorimeters, comparing it to recently available devices from the market and in the literature. We also show some ideas for a next generation calorimeter based on experiences with our IGC calorimeters and other devices reported in the literature. (authors)

  15. Current status of tritium calorimetry at TLK

    International Nuclear Information System (INIS)

    Buekki-Deme, A.; Alecu, C.G.; Kloppe, B.; Bornschein, B.

    2015-01-01

    Inside a tritium facility, calorimetry is an important analytical method as it is the only reference method for accountancy (it is based on the measurement of the heat generated by the radioactive decay). Presently, at Tritium Laboratory Karlsruhe (TLK), 4 calorimeters are in operation, one of isothermal type and three of inertial guidance control type (IGC). The volume of the calorimeters varies between 0.5 and 20.6 liters. About two years ago we started an extensive work to improve our calorimeters with regard to reliability and precision. We were forced to upgrade 3 of our 4 calorimeters due to the outdated interfaces and software. This work involved creating new LabView programs driving the devices, re-tuning control loops and replacing obsolete hardware components. In this paper we give a review on the current performance of our calorimeters, comparing it to recently available devices from the market and in the literature. We also show some ideas for a next generation calorimeter based on experiences with our IGC calorimeters and other devices reported in the literature. (authors)

  16. Tritium monitor calibration at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Bjork, C.J.; Aikin, D.J.; Houlton, T.W.

    1997-08-01

    Tritium in air is monitored at Los Alamos National Laboratory (LANL) with air breathing instruments based on ionization chambers. Stack emissions are continuously monitored from sample tubes which each connect to a Tritium bubble which differentially collects HTO and HT. A set of glass vials of glycol capture the HTO. The HT is oxidized with a palladium catalyst and the resultant HTO is captured in a second set of vials of glycol. The glycol is counted with a liquid scintillation counter. All calibrations are performed with tritium containing gas. The Radiation Instrumentation and Calibration (RIC) Team has constructed and maintains two closed loop gas handling systems based on femto TECH model U24 tritium ion chamber monitors: a fixed system housed in a fume hood and a portable system mounted on two two wheeled hand trucks. The U24 monitors are calibrated against tritium in nitrogen gas standards. They are used as standard transfer instruments to calibrate other ion chamber monitors with tritium in nitrogen, diluted with air. The gas handling systems include a circulation pump which permits a closed circulation loop to be established among the U24 monitor and typically two to four other monitors of a given model during calibration. Fixed and portable monitors can be calibrated. The stack bubblers are calibrated in the field by: blending a known concentration of tritium in air within the known volume of the two portable carts, coupled into a common loop; releasing that gas mixture into a ventilation intake to the stack; collecting oxidized tritium in the bubbler; counting the glycol; and using the stack and bubbler flow rates, computing the bubbler's efficiency. Gas calibration has become a convenient and quality tool in maintaining the tritium monitors at LANL

  17. Modification and testing of the Sandia Laboratories Livermore tritium decontamination systems

    International Nuclear Information System (INIS)

    Gildea, P.D.; Birnbaum, H.G.; Wall, W.R.

    1978-08-01

    Sandia Laboratories, Livermore, has put into operation a new facility, the Tritium Research Laboratory. The laboratory incorporates containment and cleanup facilities such that any tritium accidentally released is captured rather than vented to the atmosphere. This containment is achieved with hermetically sealed glove boxes that are connected on demand by manifolds to two central decontamination systems called the Gas Purification System (GPS) and the Vacuum Effluent Recovery System (VERS). The primary function of the GPS is to remove tritium and tritiated water vapor from the glove box atmosphere. The primary function of the VERS is to decontaminate the gas exhausted from the glove box pressure control systems and vacuum pumps in the building before venting the gas to the stack. Both of these systems are designed to remove tritium to the few parts per billion range. Acceptance tests at the manufacturer's plant and preoperational testing at Livermore demonstrated that the systems met their design specifications. After preoperational testing the Gas Purification System was modified to enhance the safety of maintanance operations. Both the Gas Purification System and the Vacuum Effluent Recovery System were performance tested with tritium. Results show that concentraion reduction factors (ratio of inlet to exhaust concentrations) much in excess of 1000 per pass have been achieved for both systems at inlet concentrations of 1 ppM or less

  18. Modification and testing of the Sandia Laboratories Livermore tritium decontamination systems

    International Nuclear Information System (INIS)

    Gildea, P.D.; Birnbaum, H.G.; Wall, W.R.

    1979-01-01

    Sandia Laboratories, Livermore, has put into operation a new facility, the Tritium Research Laboratory. The laboratory incorporates containment and cleanup facilities such that any tritium accidentally released is captured rather than vented to the atmosphere. This containment is achieved with hermetically sealed glove boxes that are connected on demand by manifolds to two central decontamination systems called the Gas Purification System (GPS) and the Vacuum Effluent Recovery System (VERS). The primary function of the GPS is to remove tritium and tritiated water vapor from the glove box atmosphere. The primary function of the VERS is to decontaminate the gas exhausted from the glove box pressure control systems and vacuum pumps in the building before venting the gas to the stack. Both of these systems are designed to remove tritium to the few parts per billion range. Acceptance tests at the manufacturer's plant and preoperational testing at Livermore demonstrated that the systems met their design specifications. After preoperational testing the Gas Purification System was modified to enhance the safety of maintanance operations. Both the Gas Purification System and the Vacuum Effluent Recovery System were performance tested with tritium. Results show that concentration reduction factors (ratio of inlet to exhaust concentrations) much in excess of 1000 per pass have been achieved for both systems at inlet concentrations of 1 ppM or less

  19. Environmental health-risk assessment for tritium releases from the National Tritium Labeling Facility (NTLF) at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.; Brand, K.P.

    1994-12-01

    This report is a health risk assessment that addresses continuous releases of tritium to the environment from the National Tritium Labeling Facility (NTLF) at the Lawrence Berkeley Laboratory (LBL). The NTLF contributes approximately 95% of all tritium releases from LBL. Transport and transformation models were used to determine the movement of tritium releases from the NRLF to the air, surface water, soils, and plants and to determine the subsequent doses to humans. These models were calibrated against environmental measurements of tritium levels in the vicinity of the NTLF and in the surrounding community. Risk levels were determined for human populations in each of these zones. Risk levels to both individuals and populations were calculated. In this report population risks and individual risks were calculated for three types of diseases--cancer, heritable genetic effects, and developmental and reproductive effects.

  20. Environmental health-risk assessment for tritium releases from the National Tritium Labeling Facility (NTLF) at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    McKone, T.E.; Brand, K.P.

    1994-12-01

    This report is a health risk assessment that addresses continuous releases of tritium to the environment from the National Tritium Labeling Facility (NTLF) at the Lawrence Berkeley Laboratory (LBL). The NTLF contributes approximately 95% of all tritium releases from LBL. Transport and transformation models were used to determine the movement of tritium releases from the NRLF to the air, surface water, soils, and plants and to determine the subsequent doses to humans. These models were calibrated against environmental measurements of tritium levels in the vicinity of the NTLF and in the surrounding community. Risk levels were determined for human populations in each of these zones. Risk levels to both individuals and populations were calculated. In this report population risks and individual risks were calculated for three types of diseases--cancer, heritable genetic effects, and developmental and reproductive effects

  1. Canadian inter-laboratory organically bound tritium (OBT) analysis exercise.

    Science.gov (United States)

    Kim, S B; Olfert, J; Baglan, N; St-Amant, N; Carter, B; Clark, I; Bucur, C

    2015-12-01

    Tritium emissions are one of the main concerns with regard to CANDU reactors and Canadian nuclear facilities. After the Fukushima accident, the Canadian Nuclear Regulatory Commission suggested that models used in risk assessment of Canadian nuclear facilities be firmly based on measured data. Procedures for measurement of tritium as HTO (tritiated water) are well established, but there are no standard methods and certified reference materials for measurement of organically bound tritium (OBT) in environmental samples. This paper describes and discusses an inter-laboratory comparison study in which OBT in three different dried environmental samples (fish, Swiss chard and potato) was measured to evaluate OBT analysis methods currently used by CANDU Owners Group (COG) members. The variations in the measured OBT activity concentrations between all laboratories were less than approximately 20%, with a total uncertainty between 11 and 17%. Based on the results using the dried samples, the current OBT analysis methods for combustion, distillation and counting are generally acceptable. However, a complete consensus OBT analysis methodology with respect to freeze-drying, rinsing, combustion, distillation and counting is required. Also, an exercise using low-level tritium samples (less than 100 Bq/L or 20 Bq/kg-fresh) would be useful in the near future to more fully evaluate the current OBT analysis methods. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  2. Cleanup of a Department of Energy Nonreactor Nuclear Facility: Experience at the Los Alamos National Laboratory High Pressure Tritium Laboratory

    International Nuclear Information System (INIS)

    Horak, H.L.

    1995-01-01

    On October 25, 1990, Los Alamos National Laboratory (LANL) ceased programmatic operations at the High Pressure Tritium Laboratory (HPTL). Since that time, LANL has been preparing the facility for transfer into the Department of Energy's (DOE's) Decontamination and Decommissioning Program. LANL staff now has considerable operational experience with the cleanup of a 40-year-old facility used exclusively to conduct experiments in the use of tritium, the radioactive isotope of hydrogen. Tritium and its compounds have permeated the HPTL structure and equipment, have affected operations and procedures, and now dominate efforts at cleanup and disposal. At the time of shutdown, the HPTL still had a tritium inventory of over 100 grams in a variety of forms and containers

  3. Sandia, California Tritium Research Laboratory transition and reutilization project

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T.B. [Sandia National Lab., Albuquerque, NM (United States)

    1997-02-01

    This paper describes a project within Sandia National Laboratory to convert the shut down Tritium Research Laboratory into a facility which could be reused within the laboratory complex. In the process of decommissioning and decontaminating the facility, the laboratory was able to save substantial financial resources by transferring much existing equipment to other DOE facilities, and then expeditiously implementing a decontamination program which has resulted in the building being converted into laboratory space for new lab programs. This project of facility reuse has been a significant financial benefit to the laboratory.

  4. Experimental study of permeation and selectivity of zeolite membranes for tritium processes

    Energy Technology Data Exchange (ETDEWEB)

    Borisevich, Olga; Antunes, Rodrigo; Demange, David, E-mail: david.demange@kit.edu

    2015-10-15

    Highlights: • We report about new experimental results on advanced membranes for tritium processing especially for the DEMO breeding blanket. • High permeances are measured on different zeolite MFI membranes made by film deposition or pore plugging. • Selectivity for H{sub 2}/He is limited requiring a multi-stage membrane process. • Selectivity of H{sub 2}O/He seems high enough to operate one single module. - Abstract: Zeolites are known as tritium compatible inorganic materials widely used in packed beds as driers in detritiation systems and are also suggested for tritium removal from helium at cryogenic temperature. The Tritium Laboratory Karlsruhe (TLK) proposed a new fully continuous approach for tritium extraction from the solid breeding blanket of fusion machines that improves the overall tritium management and minimizes both the tritium inventory and processing time. It is based on membrane permeation as a pre-concentration stage upstream of a final tritium recovery stage using a catalytic Pd-based membrane reactor. Zeolite membranes were identified as the most promising candidates for the pre-concentration stage. In the present work the tubular zeolite MFI membrane provided by the Institute for Ceramic Technologies and Systems (IKTS, Hermsdorf, Germany) is studied to consolidate the proposed approach. The permeation measurements for single gases hydrogen (replacing radioactive tritium) and helium, for binary mixtures H{sub 2}/He and H{sub 2}O/He at different concentrations and temperatures are presented. The tested membrane demonstrates a high performance, almost independent from the inlet composition in the case of a gaseous mixture, while the transport in the presence of water vapour is strongly related to the temperature of the mixture and component concentrations.

  5. Accounting control of tritium at the tritium process laboratory (TPL) of JAERI. Results of 15-year operation and research activity

    International Nuclear Information System (INIS)

    Nishi, Masataka; Yamanishi, Toshihiko; Hayashi, Takumi; Yamada, Masayuki; Suzuki, Takumi

    2003-01-01

    Research and development work of fuel processing technology and tritium safe-handling technology necessary for fusion reactors has been performed at the Tritium Process Laboratory (TPL) of JAERI. TPL is the first facility in Japan permitted to handle tritium of more than 1g (about 0.36PBq), and its operation itself is also important for the development of fusion reactor facility in the viewpoint of tritium control. Various experiments have been carried out at TPL safely since 1988 controlling 22PBq of tritium as the maximum observing regulations. In addition to the regulatory accounting and control, detailed independent control in TPL was planned and was established through its 15-year safe-operation. For future fusion fuel facility where kilo-grams of tritium will be handled, method of tritium accounting has been researched and some new technologies have been developed at TPL. Results of TPL operation and of the research activity in it contributed the completion of the engineering design of ITER. Further research activity on tritium accounting and control is in progress in TPL for the future fusion reactors. (author)

  6. Preparation of a tritium Q-value measurement in a double penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Christoph; Orth, Christoph; Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Physikalisches Institut, Ruprecht-Karls-Universitaet, Heidelberg (Germany); Pinegar, David [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Van Dyck, Robert Jr. [Department of Physics, University of Washington, Seattle (United States)

    2009-07-01

    A precise determination of the Q-value of tritium ({sup 3}H) is of relevance for the determination of the electron anti-neutrino mass as aspired by the Karlsruhe Tritium Neutrino Experiment (KATRIN). In our double Penning trap mass spectrometer we aim to measure the mass ratio of {sup 3}H and its {beta}-decay product {sup 3}He to an accuracy of 10{sup -11}, which would determine the Q-value to an accuracy of 30 meV. The spectrometer we utilize is an enhanced version of the University of Washington Penning trap mass spectrometer (UW-PTMS) and was recently transfered from Seattle to Heidelberg, where it is set up at the moment as the MPIK/UW-PTMS. We present the necessary preparation work at the Max-Planck-Institut fuer Kernphysik. This includes major reconstructions of the building as well as studies and control of environmental parameters in the laboratory, like temperature and magnetic field.

  7. Atmospheric tritium 1968-1984. Tritium Laboratory data report No. 14

    International Nuclear Information System (INIS)

    Oestlund, H.G.; Mason, A.S.

    1985-04-01

    Tritium in the form of water, HTO, from the atmospheric testing of nuclear devices in the 60s has now mainly disappeared from the atmosphere and entered the ocean. The additions of such tritium from Chinese and French tests in the 70s were observed but did not make a big impression on the diminishing inventory of atmospheric HTO. Tritium in elemental form, HT, went through a maximum in the mid 70s, apparently primarily as a results of some underground testing of large nuclear devices and releases from civilian and military nuclear industry. The mid 70s maximum was 1.3 kg of tritium in this form, and in 1984 0.5 kg remain. The disappearance is slower than the decay rate of tritium, so sources must still have been present during this time. The global distribution shows, not unexpectedly, smaller inventory in the Southern Hemisphere across the equator and thus southward transport of HT. The chemical lifetime of hydrogen gas in the atmosphere, assuming the elemental tritium being in the form of HT, not T 2 , has been estimated between 6 and 10 years. It is to be expected that increasing activity of nuclear fuel reprocessing would in the near future again increase the global tritium gas inventory. Tritium in the form of light hydrocarbons, primarily methane, has also been measured, and in this form a quantity of 200 g of tritium resided in the global atmosphere 1956 to 1976. By 1982 it had decreased to 50 g. 25 refs., 5 figs., 11 tabs

  8. Accounting and Control of Tritium at the Tritium Process Laboratory (TPL) of JAERI - Results of 15-year Operation and Research Activity -

    Science.gov (United States)

    Nishi, Masataka; Yamanishi, Toshihiko; Hayashi, Takumi; Yamada, Masayuki; Suzuki, Takumi

    Research and development work of fuel processing technology and tritium safe-handling technology necessary for fusion reactors has been performed at the Tritium Process Laboratory (TPL) of JAERI. TPL is the first facility in Japan permitted to handle tritium of more than 1g (about 0.36PBq), and its operation itself is also important for the development of fusion reactor facility in the viewpoint of tritium control. Various experiments have been carried out at TPL safely since 1988 controlling 22PBq of tritium as the maximum observing regulations. In addition to the regulatory accounting and control, detailed independent control in TPL was planned and was established throughits15-yearsafe-operation. For future fusion fuel facility where kilograms of tritium will be handled, method of tritium accounting has been researched and some new technologies have been developed at TPL. Results of TPL operation and of the research activity in it contributed the completion of the engineering design of ITER. Further research activity on tritium accounting and control is in progress in TPL for the future fusion reactors.

  9. Some recent changes in tritium handling and control at Mound Laboratory

    International Nuclear Information System (INIS)

    Rhinehammer, T.B.

    1976-01-01

    Significant reductions in tritium effluents and personnel exposures at Mound Laboratory have been made during the past 5 yr. Yearly effluents are less than 3 percent of former levels and personnel exposures have been reduced by a factor of 300. Several recent changes which have contributed to these reductions include lowered tritium levels in gloveboxes, and the efficiency and capacity of Mound's new effluent removal system. Personnel exposures have been reduced dramatically by changing to precious metal catalytic converters or oxidizers for use with the glovebox gas purification system. Unlike some former systems using hot copper or proprietary reactants for oxygen removal, a catalyst provides very effective removal of both oxygen and tritium. Both oxygen and tritium can be monitored and, if necessary, increments of hydrogen in argon can be added until the oxygen level is brought down to the desired value

  10. Proceedings of the third specialists' workshop on modeling tritium behaviour in ceramic fusion blankets

    International Nuclear Information System (INIS)

    Werle, H.

    1991-08-01

    The third specialists' workshop on modeling tritium behaviour in ceramic fusion blankets, hosted by Kernforschungszentrum Karlsruhe, was held June 10-11, 1991. The workshop was coordinated through the IEA Annex II implementing agreement on 'Radiation damage in fusion materials'. (orig./WL)

  11. Weapons Engineering Tritium Facility, Building 205, Technical Area 16: Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    1991-04-01

    The Weapons Engineering Tritium Facility (WETF) was planned by the US Department of Energy (DOE) to retain at Los Alamos National Laboratory the capability of repackaging small quantities of tritium to exacting specifications. Small quantities of tritium are required for energy research and development activities and for research on nuclear weapons test devices carried out as part of the laboratory mission. The WETF is an improved design proposed to replace an aging Los Alamos facility where tritium has been repackaged for many years. This Environmental Assessment evaluates the environmental consequences to be expected from operating the new facility, for which construction was completed in 1984, compared with those from continuing to operate the old facility. The document was prepared for compliance with NEPA. In operation, the WETF will incorporate state-of-the-art systems for containing tritium in glove boxes and capturing any tritium released into the glove box exhaust system and the laboratory atmosphere. Liquid discharges from the WETF would contain less than 1% of the tritium found in effluents from the present facility. Effluent streams would be surface discharges and would not enter the aquifer from which municipal water supplies are drawn. The quantity of solid radioactive waste generated at the WETF would be approximately the same as that generated at the present facility. The risk to the public from normal tritium-packaging operations would be significantly less from the WETF than from the present facility. The proposed action will reduce the adverse environmental impacts caused by tritium repackaging by substantially reducing the amount of tritium that escapes to the environment. 35 refs., 3 figs., 21 tabs

  12. Overview of R and D at TLK for process and analytical issues on tritium management in breeder blankets of ITER and DEMO

    International Nuclear Information System (INIS)

    Demange, D.; Alecu, C.G.; Bekris, N.; Borisevich, O.; Bornschein, B.; Fischer, S.; Gramlich, N.; Köllö, Z.; Le, T.L.; Michling, R.; Priester, F.; Röllig, M.; Schlösser, M.; Stämmler, S.; Sturm, M.; Wagner, R.; Welte, S.

    2012-01-01

    Highlights: ► We present advanced processes and analytics to improve tritium management. ► Membranes and membrane reactors can minimise tritium residence time and inventory. ► Spectroscopic methods can ensure on-line and near to real time tritium measurement. - Abstract: Safe, reliable, and efficient tritium management in the breeder blanket will have to face unprecedented technological challenges. Beside the efficiency for tritium recovery from the breeder blanket (Tritium Extraction (TES) and Coolant Purification Systems (CPS)), the accuracy for tritium tracking between the inner and the outer fuel cycle must also be demonstrated. This paper focuses on the recent R and D carried out at the Tritium Laboratory Karlsruhe to tackle these issues. For ITER, the recently consolidated TES and CPS designs comprise adsorption columns and getter beds operated in semi-continuous mode. Different approaches for the tritium accountancy stage (TAS) have been evaluated. Balancing static (batch-wise gas collection at the TBM outlets and the tritium plant) or dynamic (in/on-line) approaches with respect to the expected analytical performances and integration issues, the first conceptual design of the TAS for EU TBMs is presented. For DEMO, the overall strategy for tritium recovery and tracking has been revisited. The necessity for on-line real-time tritium accountancy and improved process efficiency suggest the use of continuous processes such as permeator and catalytic membrane reactor. The main benefits combining the PERMCAT process with advanced membranes is discussed with respect to process improvements and facilitated accountancy using spectroscopic methods.

  13. Tritium release from neutron irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik

    1998-01-01

    One of the most important open issues related to beryllium for fusion applications refers to the kinetics of the tritium release as a function of neutron fluence and temperature. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating the beryllium response under neutron irradiation. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from the above mentioned irradiation experiments, trying to elucidate the tritium release controlling processes. In agreement with previous studies it has been found that release starts at about 500-550degC and achieves a maximum at about 700-750degC. The observed release at about 500-550degC is probably due to tritium escaping from chemical traps, while the maximum release at about 700-750degC is due to tritium escaping from physical traps. The consequences of a direct contact between beryllium and ceramics during irradiation, causing tritium implanting in a surface layer of beryllium up to a depth of about 40 mm and leading to an additional inventory which is usually several times larger than the neutron-produced one, are also presented and the effects on the tritium release are discussed. (author)

  14. Mound Laboratory tritium environmental study: 1976--1977

    International Nuclear Information System (INIS)

    Kershner, C.J.; Rhinehammer, T.B.

    1978-01-01

    In the course of an extensive investigation of tritium in the aquifer underlying the Mound Facility site, an unusual behavior was noted for a beta-emitting radionuclide contaminant present in the environs of the abandoned Miami-Erie Canal adjacent to the laboratory site. The soil contaminant was determined to be tritium, of which 90% was in the form of a relatively stable or bound species that was not readily exchangeable with the free water in the soil. (Bound-to-exchangeable transfer half-time was found to be approximately 3 yr.) The contamination was found to be concentrated within two feet of the surface in the center of the canal channel and near the Facility site drainage ditch and canal confluence. In order to characterize the contaminant and to assess its potential for reaching the aquifer, an analysis program and study were initiated in September 1976. The results and findings from the first phase of this work which was completed in February 1977 are the subject of this report

  15. Developement of technologies for nuclear fusion at the Karlsruhe Research Center. Pt. 1

    International Nuclear Information System (INIS)

    Bahm, W.; Dammertz, G.; Glugla, M.; Janeschitz, G.; Komarek, P.; Mack, A.

    2002-01-01

    The planned ITER plant needs plasma heating powers of approx. 70-150 MW. Work performed at the Karlsruhe Research Center under this heading mainly comprises the development of microwave oscillators (gyrotrons) and their use for an electron cyclotron resonance heating system and for non-inductive plasma current operation. The plasma, which is approx. 100 million C hot, is confined in a 'magnetic cage' so as to avoid any contact with the wall structures of the vacuum vessel. Building up a magnetic field of this magnitude requires field strengths of at least 2-5 tesla in the plasma; field strengths of 11-13 tesla at the magnet coils are required for future fusion plants, such as ITER. Consequently, the development of the required future superconducting magnet coils enjoys high priority. The blanket, i.e. the enclosure around the combustion chamber of a fusion reactor, plays a major role in the design of a future fusion power plant. Blanket concepts meeting technical requirements are being developed and studied. A blanket must meet three requirements: It must convert the neutron energy into heat, breed the tritium fuel by nuclear reactions, and shield the magnets from neutron and gamma radiations. The fuel cycle of fusion reactors is determined by the gaseous phase of the two hydrogen isotopes, deuterium and tritium. In general, hydrogen handling technologies have been developed to a high level, but can be transferred to the handling of deuterium and radioactive tritium only to a very limited extent. Consequently, the necessary development work is carried out. The state of the plasma, also with respect to its purity, is a factor of special importance, as impurities will cause the plasma to dissolve and thus the fusion reaction to break down. Primary vacuum pumps, another area of activity of the Karlsruhe Research Center, first must evacuate the reactor vessel and then, during operation, maintain the necessary atmosphere. (orig.) [de

  16. Summary of the Mol electrolysis cell test program in the CRL tritium laboratory

    International Nuclear Information System (INIS)

    Miller, J.M.; Keyes, R.J.

    1996-01-01

    The development of electrolysis technology for highly tritiated water at the Studiecentrum voor Kernenergie/Centre d'Etude de l'Energie Nucleaire (SCK/CEN), Mol, Belgium, focused on A Low Inventory Capillary Electrolyser (ALICE). The key characteristic of ALICE is its low liquid inventory, a key feature for the radio-toxicity of tritiated water. A program to test this electrolytic cell design with highly tritiated water in the Chalk River Tritium Laboratory was initiated in 1988 and extended through to early 1995. The activities conducted at CRL and associated with the experimental program-design, installation, licensing and commissioning activities- are described in this report along with the results of the test program conducted on the experimental system with non-tritiated heavy water. The installation in the CRL Tritium Laboratory consisted of three main sections: the electrolysis section, the tritium storage and supply section, and the recombination section. 16 figs., 2 tabs., 10 refs

  17. Karlsruhe Nuclear Research Center, Central Safety Department. Annual report 1993

    International Nuclear Information System (INIS)

    Koelzer, W.

    1994-04-01

    The Central Safety Department is responsible for handling all tasks of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The research and development work concentrates on the following aspects: behavior of trace elements in the environment and decontamination of soil, behavior of tritium in the air/soil-plant system, improvement in radiation protection measurements and personnel dosimetry. This report gives details of the different duties, indicates the results of 1993 routine tasks and reports about results of investigations and developments of the working groups of the Department. (orig.) [de

  18. Tritium Assay and Dispensing of KEPRI Tritium Lab

    International Nuclear Information System (INIS)

    Sohn, S. H.; Song, K. M.; Lee, S. K.; Lee, K.W.; Ko, B. W.

    2009-01-01

    The Wolsong Tritium Removal Facility(WTRF) has been constructed to reduce tritium levels in the heavy water systems and environmental emissions at the site. The WTRF was designed to process 100 kg/h of heavy water with the overall tritium extraction efficiency of 97% per single pass and to produce ∼700 g of tritium as T2 per year at the feed concentration of 0.37 TBq/kg. The high purity tritium greater than 99% is immobilized as a metal hydride to secure its long term storage. The recovered tritium will be made available for industrial uses and some research applications in the future. Then KEPRI is constructing the tritium lab. to build-up infrastructure to support tritium research activities and to support tritium control and accountability systems for tritium export. This paper describes the initial phases of the tritium application program including the laboratory infrastructure to support the tritium related R and D activities and the tritium controls in Korea

  19. Experience in handling concentrated tritium

    International Nuclear Information System (INIS)

    Holtslander, W.J.

    1985-12-01

    The notes describe the experience in handling concentrated tritium in the hydrogen form accumulated in the Chalk River Nuclear Laboratories Tritium Laboratory. The techniques of box operation, pumping systems, hydriding and dehydriding operations, and analysis of tritium are discussed. Information on the Chalk River Tritium Extraction Plant is included as a collection of reprints of papers presented at the Dayton Meeting on Tritium Technology, 1985 April 30 - May 2

  20. Tritium ions in the Source and Transport Section (STS) of KATRIN

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Manuel [Karlsruhe Institute of Technology (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    The KArlsruhe TRItium Neutrino (KATRIN) experiment aims at the model independent measurement of the electron neutrino mass. It is designed for a neutrino mass sensitivity of 0.2 eV (90% CL) after three years of measurement time. KATRIN measures the end point of the tritium beta decay spectrum using a MAC-E filter and a Windowless Gaseous Tritium Source (WGTS). While neutral tritium gas molecules are pumped through the WGTS, the decay electrons are guided to the detector with a magnetic field. Tritium ions, however, also leave the WGTS following the magnetic field lines. For KATRIN measurements it is imperative to prevent tritium ions from reaching the detector or the spectrometers, where they could decay and cause an indistinguishable background. Ion blocking measures are implemented by electric blocking potentials and electric dipoles to drift out trapped ions. Their effective operation will be tested during KATRIN commissioning measurements: The ion flux between STS and spectrometers can be measured with the Forward Beam Monitor (FBM). It offers a manipulator arm to introduce a detector into the flux tube. For ion detection, a Faraday Cup for the FBM is being designed and constructed.

  1. Radiological Characterization and Final Facility Status Report Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Garcia, T.B.; Gorman, T.P.

    1996-08-01

    This document contains the specific radiological characterization information on Building 968, the Tritium Research Laboratory (TRL) Complex and Facility. We performed the characterization as outlined in its Radiological Characterization Plan. The Radiological Characterization and Final Facility Status Report (RC ampersand FFSR) provides historic background information on each laboratory within the TRL complex as related to its original and present radiological condition. Along with the work outlined in the Radiological Characterization Plan (RCP), we performed a Radiological Soils Characterization, Radiological and Chemical Characterization of the Waste Water Hold-up System including all drains, and a Radiological Characterization of the Building 968 roof ventilation system. These characterizations will provide the basis for the Sandia National Laboratory, California (SNL/CA) Site Termination Survey .Plan, when appropriate

  2. List of publications of the Karlsruhe University and the Karlsruhe Nuclear Research Centre

    International Nuclear Information System (INIS)

    1987-01-01

    This 19th annual bibliography of publications from the Karlsruhe University, the Karlsruhe Nuclear Research Centre, and some closely cooperating institutions covers all publications prepared in the year 1986, and a few supplementary data on 1985 publications. The bibliography refers to books and journals, contributions to journals or serial publications, research reports, doctoral theses and theses qualifying for lecturing at a university, and to patents. Diploma theses, contributions to newspapers, book reviews, internal reports or communications generally do not form part of the bibliography. (orig./GG) [de

  3. A laboratory information management system for the analysis of tritium (3H) in environmental waters.

    Science.gov (United States)

    Belachew, Dagnachew Legesse; Terzer-Wassmuth, Stefan; Wassenaar, Leonard I; Klaus, Philipp M; Copia, Lorenzo; Araguás, Luis J Araguás; Aggarwal, Pradeep

    2018-07-01

    Accurate and precise measurements of low levels of tritium ( 3 H) in environmental waters are difficult to attain due to complex steps of sample preparation, electrolytic enrichment, liquid scintillation decay counting, and extensive data processing. We present a Microsoft Access™ relational database application, TRIMS (Tritium Information Management System) to assist with sample and data processing of tritium analysis by managing the processes from sample registration and analysis to reporting and archiving. A complete uncertainty propagation algorithm ensures tritium results are reported with robust uncertainty metrics. TRIMS will help to increase laboratory productivity and improve the accuracy and precision of 3 H assays. The software supports several enrichment protocols and LSC counter types. TRIMS is available for download at no cost from the IAEA at www.iaea.org/water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Development of a rear wall for the KATRIN rear section and investigation of tritium compatibility of rear section components

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Kerstin

    2016-01-15

    The aim of the KArlsruhe TRItium Neutrino experiment is to improve the current neutrino mass sensitivity limit to 0.2 eV/c{sup 2} (90%C.L.). For that, the required proof of suitability of several components for a low pressure tritium atmosphere is furnished. In addition, an optical design for an e-gun is developed and the resulting electron rate is calculated. Also, a final Rear Wall with temporally stable and homogeneous work function is developed and characterized within the scope of this thesis.

  5. Development of a Rear Wall for the KATRIN Rear Section and investigation of tritium compatibility of Rear Section components

    OpenAIRE

    Schönung, Kerstin

    2016-01-01

    The aim of the KArlsruhe TRItium Neutrino experiment is to improve the current neutrino mass sensitivity limit to 0.2 eV/c2 (90%C.L.). For that, the required proof of suitability of several components for a low pressure tritium atmosphere is furnished. In addition, an optical design for an e-gun is developed and the resulting electron rate is calculated. Also, a final Rear Wall with temporally stable and homogeneous work function is developed and characterized within the scope of this thesis.

  6. Tritium research laboratory cleanup and transition project final report

    International Nuclear Information System (INIS)

    Johnson, A.J.

    1997-02-01

    This Tritium Research Laboratory Cleanup and Transition Project Final Report provides a high-level summary of this project's multidimensional accomplishments. Throughout this report references are provided for in-depth information concerning the various topical areas. Project related records also offer solutions to many of the technical and or administrative challenges that such a cleanup effort requires. These documents and the experience obtained during this effort are valuable resources to the DOE, which has more than 1200 other process contaminated facilities awaiting cleanup and reapplication or demolition

  7. Development of tritium technology at the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Anderson, J.L.; Bartlit, J.R.

    1982-01-01

    The Tritium Systems Test Assembly (TSTA) at the Los Alamos National Laboratory is dedicated to the development, demonstration, and interfacing of technologies related to the deuterium-tritium fuel cycle for large scale fusion reactor systems starting with the Fusion Engineering Device (FED) or the International Tokamak Reactor (INTOR). This paper briefly describes the fuel cycle and safety systems at TSTA including the Vacuum Facility, Fuel Cleanup, Isotope Separation, Transfer Pumping, Emergency Tritium Cleanup, Tritium Waste Treatment, Tritium Monitoring, Data Acquisition and Control, Emergency Power and Gas Analysis systems. Discussed in further detail is the experimental program proposed for the startup and testing of these systems

  8. Mechanical design and first experimental results of an upgraded technical PERMCAT reactor for tritium recovery in the fuel cycle of a fusion machine

    Energy Technology Data Exchange (ETDEWEB)

    Welte, S., E-mail: stefan.welte@kit.edu [Karlsruhe Institute of Technology (KIT), Forschungszentrum Karlsruhe, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Hermann v. Helmholtz Platz 1, 76344 Eggenstein Leopoldshafen (Germany); Demange, D.; Wagner, R. [Karlsruhe Institute of Technology (KIT), Forschungszentrum Karlsruhe, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Hermann v. Helmholtz Platz 1, 76344 Eggenstein Leopoldshafen (Germany)

    2010-12-15

    The PERMCAT process developed for the final clean-up stage of the Tokamak Exhaust Processing systems of the ITER tritium plant combines a catalytic reactor and a Pd/Ag permeator in a single component. A first generation technical PERMCAT has been successfully operated as part of the CAPER experiment at the Tritium Laboratory Karlsruhe for several years. Various alternative PERMCAT mechanical designs were proposed and studied on small-scale prototypes. An upgraded technical PERMCAT reactor was designed, manufactured and commissioned with deuterium. A parallel arrangement of finger-type membranes inserted in a single catalyst bed design was chosen to simplify the geometry and the manufacturing while improving the robustness of the reactor. The component has been designed and manufactured to be fully tritium compatible and also fully compatible with both process and electrical connections of the previous PERMCAT to be replaced. The new PERMCAT mechanical design is more compact and easy to manufacture. This PERMCAT reactor was submitted to functional tests and experiments based on isotopic exchanges between H{sub 2}O and D{sub 2} to measure the processing performances. The first experimental results show decontamination factors versus flow rates better than all previously measured.

  9. Mechanical design and first experimental results of an upgraded technical PERMCAT reactor for tritium recovery in the fuel cycle of a fusion machine

    International Nuclear Information System (INIS)

    Welte, S.; Demange, D.; Wagner, R.

    2010-01-01

    The PERMCAT process developed for the final clean-up stage of the Tokamak Exhaust Processing systems of the ITER tritium plant combines a catalytic reactor and a Pd/Ag permeator in a single component. A first generation technical PERMCAT has been successfully operated as part of the CAPER experiment at the Tritium Laboratory Karlsruhe for several years. Various alternative PERMCAT mechanical designs were proposed and studied on small-scale prototypes. An upgraded technical PERMCAT reactor was designed, manufactured and commissioned with deuterium. A parallel arrangement of finger-type membranes inserted in a single catalyst bed design was chosen to simplify the geometry and the manufacturing while improving the robustness of the reactor. The component has been designed and manufactured to be fully tritium compatible and also fully compatible with both process and electrical connections of the previous PERMCAT to be replaced. The new PERMCAT mechanical design is more compact and easy to manufacture. This PERMCAT reactor was submitted to functional tests and experiments based on isotopic exchanges between H 2 O and D 2 to measure the processing performances. The first experimental results show decontamination factors versus flow rates better than all previously measured.

  10. Nuclear Research Center Karlsruhe, Central Safety Department. Annual report 1992

    International Nuclear Information System (INIS)

    Koelzer, W.

    1993-05-01

    The Central Safety Department is responsible for handling all problems of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The research and development work concentrates on the following aspects: Physical and chemical behavior of trace elements in the environment, biophysics of multicellular systems, behavior of tritium in the air/soil-plant system, improvement in radiation protection measurement and personnel dosimetry. This report gives details of the different duties, indicates the results of 1992 routine tasks and reports about results of investigations and developments of the working groups of the Department. The reader is referred to the English translation of Chapter 1 describing the duties and organization of the Central Safety Department. (orig.) [de

  11. Tritium control and accountability instructions

    International Nuclear Information System (INIS)

    Wall, W.R.; Cruz, S.L.

    1985-08-01

    This instruction describes the tritium accountability procedures practiced by the Tritium Research Laboratory, at Sandia National Laboratories, Livermore. The accountability procedures are based upon the Sandia National Laboratories, Livermore, Nuclear Materials Operations Manual, SAND83-8036. The Nuclear Materials Operations Manual describes accountability techniques which are in compliance with the Department of Energy 5630 series Orders, Code of Federal Regulations, and Sandia National Laboratories Instructions

  12. Tritium control and accountability instructions

    International Nuclear Information System (INIS)

    Wall, W.R.

    1981-03-01

    This instruction describes the tritium accountability procedures practiced by the Tritium Research Laboratory, Building 968 at Sandia National Laboratories, Livermore. The accountability procedures are based upon the Sandia National Laboratories, Livermore, Nuclear Materials Operations Manual, SAND78-8018. The Nuclear Materials Operations Manual describes accountability techniques which are in compliance with the Department of Energy Manual, Code of Federal Regulations, and Sandia National Laboratories Instructions

  13. Tritium Systems Test Facility. Volume I

    International Nuclear Information System (INIS)

    Anderson, G.W.; Battleson, K.W.; Bauer, W.

    1976-10-01

    Sandia Laboratories proposes to build and operate a Tritium Systems Test Facility (TSTF) in its newly completed Tritium Research Laboratory at Livermore, California (see frontispiece). The facility will demonstrate at a scale factor of 1:200 the tritium fuel cycle systems for an Experimental Power Reactor (EPR). This scale for each of the TSTF subsystems--torus, pumping system, fuel purifier, isotope separator, and tritium store--will allow confident extrapolation to EPR dimensions. Coolant loop and reactor hall cleanup facilities are also reproduced, but to different scales. It is believed that all critical details of an EPR tritium system will be simulated correctly in the facility. Tritium systems necessary for interim devices such as the Ignition Test Reactor (ITR) or The Next Step (TNS) can also be simulated in TSTF at other scale values. The active tritium system will be completely enclosed in an inert atmosphere glove box which will be connected to the existing Gas Purification System (GPS) of the Tritium Research Laboratory. In effect, the GPS will become the scaled environmental control system which otherwise would have to be built especially for the TSTF

  14. Tritium practices past and present

    International Nuclear Information System (INIS)

    Gede, V.P.; Gildea, P.D.

    1980-01-01

    History of the production and use of tritium, as well as handling techniques, are reviewed. Handling techniques first used at Lawrence Livermore National Laboratory made use of glass vacuum systems and relatively crude ion chambers for monitoring airborne activity. The first use of inert atmosphere glove boxes demonstrated that uptake through the skin could be a serious personnel exposure problem. Growing environmental concerns in the early 1970's resulted in the implementation by the Atomic Energy Commission of a new criteria to limit atmospheric tritium releases to levels as low as practicable. An important result of the new criteria was the development of containment and recovery systems to capture tritium rather than vent it to the atmosphere. The Sandia National Laboratories, Livermore, Tritium Research Laboratory containment and decontamination systems are presented as a typical example of this technology. The application of computers to control systems is expected to provide the greatest potential for change in future tritium handling practices

  15. The LLNL portable tritium processing system

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The end of the Cold War significantly reduced the need for facilities to handle radioactive materials for the US nuclear weapons program. The LLNL Tritium Facility was among those slated for decommissioning. The plans for the facility have since been reversed, and it remains open. Nevertheless, in the early 1990s, the cleanup (the Tritium Inventory Removal Project) was undertaken. However, removing the inventory of tritium within the facility and cleaning up any pockets of high-level residual contamination required that we design a system adequate to the task and meeting today's stringent standards of worker and environmental protection. In collaboration with Sandia National Laboratory and EG ampersand G Mound Applied Technologies, we fabricated a three-module Portable Tritium Processing System (PTPS) that meets current glovebox standards, is operated from a portable console, and is movable from laboratory to laboratory for performing the basic tritium processing operations: pumping and gas transfer, gas analysis, and gas-phase tritium scrubbing. The Tritium Inventory Removal Project is now in its final year, and the portable system continues to be the workhorse. To meet a strong demand for tritium services, the LLNL Tritium Facility will be reconfigured to provide state-of-the-art tritium and radioactive decontamination research and development. The PTPS will play a key role in this new facility

  16. List of publications of Karlsruhe University (T.H.) and Karlsruhe Nuclear Research Centre

    International Nuclear Information System (INIS)

    1977-01-01

    This 19th volume of the list of publications compiled by Karlsruhe University (T.H.) in cooperation with Karlsruhe Nuclear Research Centre and some other institutions closely connected with the university gives the publications of the year 1976 as well as some supplements from 1975. The publications listed are books and journals, articles from journals and symposia, research reports, dissertations and theses for habilitation published by these institutions, their organs and institutes, their staff and scientific personnel, as well as patents. As a rule, theses for diplomas, newspaper articles, book reviews, internal reports and information have been left out. (orig.) [de

  17. Tritium release from lithium titanate, a low-activation tritium breeding material

    International Nuclear Information System (INIS)

    Kopasz, J.P.; Miller, J.M.; Johnson, C.E.

    1994-01-01

    The goals for fusion power are to produce energy in as safe, economical, and environmentally benign a manner as possible. To ensure environmentally sound operation low-activation materials should be used where feasible. The ARIES Tokamak Reactor Study has based reactor designs on the concept of using low-activation materials throughout the fusion reactor. For the tritium breeding blanket, the choices for low activation tritium breeding materials are limited. Lithium titanate is an alternative low-activation ceramic material for use in the tritium breeding blanket. To date, very little work has been done on characterizing the tritium release for lithium titanate. We have thus performed laboratory studies of tritium release from irradiated lithium titanate. The results indicate that tritium is easily removed from lithium titanate at temperatures as low as 600 K. The method of titanate preparation was found to affect the tritium release, and the addition of 0.1% H 2 to the helium purge gas did not improve tritium recovery. ((orig.))

  18. Oxidative Tritium Decontamination System

    International Nuclear Information System (INIS)

    Gentile, Charles A.; Parker, John J.; Guttadora, Gregory L.; Ciebiera, Lloyd P.

    2002-01-01

    The Princeton Plasma Physics Laboratory, Tritium Systems Group has developed and fabricated an Oxidative Tritium Decontamination System (OTDS), which is designed to reduce tritium surface contamination on various components and items. The system is configured to introduce gaseous ozone into a reaction chamber containing tritiated items that require a reduction in tritium surface contamination. Tritium surface contamination (on components and items in the reaction chamber) is removed by chemically reacting elemental tritium to tritium oxide via oxidation, while purging the reaction chamber effluent to a gas holding tank or negative pressure HVAC system. Implementing specific concentrations of ozone along with catalytic parameters, the system is able to significantly reduce surface tritium contamination on an assortment of expendable and non-expendable items. This paper will present the results of various experimentation involving employment of this system

  19. Simulation of tritium behavior after intended tritium release in ventilated room

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Hayashi, Takumi; Yamanishi, Toshihiko; Kobayashi, Kazuhiro; Nishi, Masataka

    2001-01-01

    At the Tritium Process Laboratory (TPL) at the Japan Atomic Energy Research Institute (JAERI), Caisson Assembly for Tritium Safety study (CATS) with 12 m 3 of large airtight vessel (Caisson) was fabricated for confirmation and enhancement of fusion reactor safety to estimate tritium behavior in the case where a tritium leak event should happen. One of the principal objectives of the present studies is the establishment of simulation method to predict the tritium behavior after the tritium leak event should happen in a ventilated room. The RNG model was found to be valid for eddy flow calculation in the 50 m 3 /h ventilated Caisson with acceptable engineering precision. The calculated initial and removal tritium concentration histories after intended tritium release were consistent with the experimental observations in the 50 m 3 /h ventilated Caisson. It is found that the flow near a wall plays an important role for the tritium transport in the ventilated room. On the other hand, tritium behavior intentionally released in the 3,000 m 3 of tritium handling room was investigated experimentally under a US-Japan collaboration. The tritium concentration history calculated with the same method was consistent with the experimental observations, which proves that the present developed method can be applied to the actual scale of tritium handling room. (author)

  20. STAR facility tritium accountancy

    International Nuclear Information System (INIS)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-01-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  1. Tritium proof-of-principle pellet injector

    International Nuclear Information System (INIS)

    Fisher, P.W.

    1991-07-01

    The tritium proof-of-principle (TPOP) experiment was designed and built by Oak Ridge National Laboratory (ORNL) to demonstrate the formation and acceleration of the world's first tritium pellets for fueling of future fusion reactors. The experiment was first used to produce hydrogen and deuterium pellets at ORNL. It was then moved to the Tritium Systems Test Assembly at Los Alamos National Laboratory for the production of tritium pellets. The injector used in situ condensation to produce cylindrical pellets in a 1-m-long, 4-mm-ID barrel. A cryogenic 3 He separator, which was an integral part of the gun assembly, was capable of lowering 3 He levels in the feed gas to <0.005%. The experiment was housed to a glovebox for tritium containment. Nearly 1500 pellets were produced during the course of the experiment, and about a third of these were pure tritium or mixtures of deuterium and tritium. Over 100 kCi of tritium was processed through the experiment without incident. Tritium pellet velocities of 1400 m/s were achieved with high-pressure hydrogen propellant. The design, operation, and results of this experiment are summarized. 34 refs., 44 figs., 3 tabs

  2. Health Physics aspects of the use of tritium

    International Nuclear Information System (INIS)

    Martin, E.B.M.

    1982-01-01

    The health physics aspects of the use of tritium in university laboratories and similar establishments are considered. These aspects include discussion on the behaviour and hazards of tritium in the body, derived limits for contamination, monitoring methods, designation of workers, medical and dosimetric supervision, classification of laboratories, safety precautions, accidents and decontamination, and waste disposal. The radiation hazards from some special uses of tritium, e.g. tritium foil sources, luminous devices, gaseous light sources, are also considered. It was concluded that little harm is likely to come from careful handling of tritium labelled compounds at the millicurie level in a research laboratory. It would, however, be most unwise to be complacent about the use of tritium at the curie level, particularly when high specific activities, organic compounds and chronic exposure over long periods are involved. (U.K.)

  3. Seismic engineering for an expanded tritium facility at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Volkman, D.E.; Olive, W.B.; Endebrocid, E.E.; Khan, P.K.; Rebillet, W.R.

    1997-10-01

    An existing complex of three single story concrete and masonry shear wall buildings will be integrated into an expanded tritium facility for neutron tube target loading. Known as the NTTL Project, the expanded plant is a major element of the Department of Energy's tritium program at the Los Alamos National Laboratory. This paper describes seismic evaluation and upgrade modifications for the 1950's concrete shear wall building; drift analyses of two 1980's CMU [concrete masonry unit] shear wall buildings; design of a new CMU shear wall building linking existing structures and providing personnel change room services; and design of a new steel frame building housing HVAC and electrical power and communication equipment for the complex. All buildings are closely adjacent and drift analysis to establish separation to prevent pounding is a major seismic engineering concern for the project

  4. Field and Laboratory Tests of Chromium-51-EDTA and Tritium Water as a Double Tracer for Groundwater Flow

    International Nuclear Information System (INIS)

    Knutsson, G.; Uunggren, K.; Forsberg, H. G.

    1963-01-01

    Since 1958 field experiments and laboratory tests have been made in a study of groundwater flow in different geological and mineralogical environments by the use of gamma-emitting tracers ana tritium water. The velocity of groundwater flow in soil is rather low, and tracers with medium or long half-life must be chosen to trace the movement. A stable EDTA-complex of Cr 51 (half-life 28 d) was developed for this purpose and used together with tritium water. With this double tracer it was possible to follow the groundwater flow by measurement of the gamma radiation from Cr 51 directly in the field and thereby to reduce the number of water samples for precise laboratory assessment. By comparison of the measured activities of Cr 51 and tritium it was possible to determine whether there was any retardation or loss of the chromium complex as a result of adsorption. Six field investigations, each of about two months' duration, have been made in glacifluvial sand and gravel. The results from these show that the chromium complex is transported as rapidly as the tritium water is, even at low concentrations (0. 01 ppm) of the complex. 17 field investigations of one to three months' duration with this double tracer have been carried out in various till (moraine) soils for a study of certain hydrological problems. Laboratory tests with soil and water from the various areas of field investigations have shown that the chromium complex does not hydrolyse at concentrations above 0.01 ppm. Further laboratory tests of the reliability of the chromium complex in different mineralogical environments are in progress. A number of investigations of groundwater flow through fissures and channels have abo been made. When the velocity of flow was assumed to be very high, Br 82 as bromide ion or Rhodamine-B, a fluorescent organic dye, were used. EDTA-Cr 51 and tritium water were, however, used when the velocity was considered low or when, as in karst, a great number of channels or large

  5. Safe handling of tritium

    International Nuclear Information System (INIS)

    1991-01-01

    The main objective of this publication is to provide practical guidance and recommendations on operational radiation protection aspects related to the safe handling of tritium in laboratories, industrial-scale nuclear facilities such as heavy-water reactors, tritium removal plants and fission fuel reprocessing plants, and facilities for manufacturing commercial tritium-containing devices and radiochemicals. The requirements of nuclear fusion reactors are not addressed specifically, since there is as yet no tritium handling experience with them. However, much of the material covered is expected to be relevant to them as well. Annex III briefly addresses problems in the comparatively small-scale use of tritium at universities, medical research centres and similar establishments. However, the main subject of this publication is the handling of larger quantities of tritium. Operational aspects include designing for tritium safety, safe handling practice, the selection of tritium-compatible materials and equipment, exposure assessment, monitoring, contamination control and the design and use of personal protective equipment. This publication does not address the technologies involved in tritium control and cleanup of effluents, tritium removal, or immobilization and disposal of tritium wastes, nor does it address the environmental behaviour of tritium. Refs, figs and tabs

  6. Tritium proof-of-principle pellet injector results

    International Nuclear Information System (INIS)

    Fisher, P.W.; Fehling, D.T.; Gouge, M.J.; Milora, S.L.

    1989-01-01

    The tritium proof-of-principle (TPOP) experiment was built by Oak Ridge National Laboratory (ORNL) to demonstrate the feasibility of forming solid tritium pellets and accelerating them to high velocities for fueling future fusion reactors. TPOP used a pneumatic pipe-gun with a 4-mm-i.d. by 1-m-long barrel. Nearly 1500 pellets were fired by the gun during the course of the experiment; about a third of these were tritium or mixtures of deuterium and tritium. The system also contained a cryogenic 3 He separator that reduced the 3 He level to <0.005%. Pure tritium pellets were accelerated to 1400 m/s. Experiments evaluated the effect of cryostat temperature and fill pressure on pellet size, the production of pellets from mixtures of tritium and deuterium, and the effect of aging on pellet integrity. The tritium phase of these experiments was performed at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. About 100 kCi of tritium was processed through the apparatus without incident. 8 refs., 7 figs

  7. Exploration for tritium-free water

    International Nuclear Information System (INIS)

    Hussain, S.D.

    1982-10-01

    Tritium-free water is generally required in large quantities for the preparation of laboratory tritium standards as well as blanks which are used to determine background count rate in the measurement of low level tritium concentrations in water samples by liquid scintillation counting method. In order to meet the requirements of tritium-free water and save the recurring expenditure on its import from abroad, exploration for locating its source in the country was undertaken. Water samples collected from a few possible sources were analysed precisely for their tritium content at the International Atomic Energy Agency, Vienna, Austria and a source of tritium-free water was determined. (authors)

  8. Comparison of different strategies for decommissioning a tritium laboratory

    International Nuclear Information System (INIS)

    Kris Dylst

    2009-01-01

    Full text: Between 2003 and 2009 two rooms that served as tritium laboratory at SCK-CEN and its ventilation system were decommissioned. Initially, the decommissioning strategy was to free release as much materials as possible. The low free release limit imposed by the Belgian authorities made decommissioning of the first laboratory room very labor intensive. Timing restrictions forced us to use a different strategy for the ventilation system. Steel that could not be easily decontaminated was disposed to a nuclear melting facility. Compared to similar work done on steel in the lab, the new strategy took less than 80% of the man hours in only 40% of the calendar days. For the second laboratory a similar strategy was used: contaminated steel was disposed to a nuclear melting facility, other materials that could not be easily decontaminated were disposed as nuclear waste. Compared to the first laboratory the decommissioning was done in less than 40% of the time using merely one third of the man hours, although at the expense of extra waste generation. Economically, as far as not easily decontaminated materials are concerned, steel is best disposed to a nuclear melting and it is worth to invest in the decontamination of other materials. (author)

  9. Overview of tritium systems for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Bartlit, J.R.; Gruetzmacher, K.M.; Fleming, R.B.

    1987-01-01

    The Compact Ignition Tokamak (CIT) is being designed at several laboratories to produce and study fully ignited plasma discharges. The tritium systems which will be needed for CIT include fueling systems and radiation monitoring and safety systems. Design of the tritium systems is the responsibility of the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. Major new tritium systems for CIT include a pellet injector, an air detritiation system and a glovebox atmosphere detritiation system. The pellet injector is being developed at Oak Ridge National Laboratory. 7 refs., 2 figs

  10. Tritium technology development in EEC laboratories contributions to design goals for NET

    International Nuclear Information System (INIS)

    Dinner, P.; Chazalon, M.; Leger, D.; Rohrig, H.D.; Penzhorn, R.D.

    1988-01-01

    An overview is given of the tritium technology activities carried out in the European national laboratories associated with the European Fusion Programme and in the European Joint Research Center. The relationship of these activities to the Next European Torus (NET) design priorities is discussed, and the current status of the research is summarised. Future developments, required for NET, which will be addressed in the definition of the next 5-year programme are also presented

  11. Using the Tritium Plasma Experiment to evaluate ITER PFC safety

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Bartlit, J.R.; Causey, R.A.; Haines, J.R.

    1993-01-01

    The Tritium Plasma Experiment was assembled at Sandia National Laboratories, Livermore to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capability of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 x 10 19 ions/cm 2 · s and a plasma temperature of about 15 eV using a plasma that includes tritium. With the closure of the Tritium Research Laboratory at Livermore, the experiment was moved to the Tritium Systems Test Assembly facility at Los Alamos National Laboratory. An experimental program has been initiated there using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. A considerable lack of data exists in these areas for many of the materials, especially beryllium, being considered for use in ITER. Not only will basic material behavior with respect to safety issues in the divertor environment be examined, but innovative techniques for optimizing performance with respect to tritium safety by material modification and process control will be investigated. Supplementary experiments will be carried out at the Idaho National Engineering Laboratory and Sandia National Laboratory to expand and clarify results obtained on the Tritium Plasma Experiment

  12. Low-level tritium research facility for the University of Toronto Institute for Aerospace Studies

    International Nuclear Information System (INIS)

    Kherani, N.P.; Shmayda, W.T.

    1984-06-01

    The objective of the Low-level Tritium Research Facility for the University of Toronto Institute for Aerospace Studies (UTIAS) is to investigate tritium-material interactions and how they differ with respect to protium and deuterium. The tritium laboratory will also be employed to study tritium retention, tritium imaging, and the effect of tritium on diagnostic devices. This report is a preliminary design document of the UTIAS Low-Level Tritium Research Facility including the fundamentals of tritium, a description of the facility, tritium laboratory requirements and the safety analysis of the laboratory. The facility is designed to handle a total elemental tritium inventory of 10 Ci, though it will initially commence operation with 1 Ci and later increased to the maximum value. In the event of an instantaneous emission of the total tritium inventory within the laboratory, the working personnel would be exposed to an airborne tritium concentration less than the maximum permissible. Moreover, with all the safety features included in this design the likelihood of such an accident is very remote. Thus, the tritium laboratory design is intrinsically safe

  13. Tritium forms discrimination in ryegrass under constant tritium exposure: From seed germination to seedling autotrophy.

    Science.gov (United States)

    Renard, H; Maro, D; Le Dizès, S; Escobar-Gutiérrez, A; Voiseux, C; Solier, L; Hébert, D; Rozet, M; Cossonnet, C; Barillot, R

    2017-10-01

    Uncertainties remain regarding the fate of atmospheric tritium after it has been assimilated in grasslands (ryegrass) in the form of TFWT (Tissue Free Water Tritium) or OBT (Organically Bound Tritium). One such uncertainty relates to the tritium forms discrimination during transfer from TFWT to OBT resulting from photosynthesis (OBT photo ), corresponding to the OBT photo /TFWT ratio. In this study, the OBT/TFWT ratio is determined by experiments in the laboratory using a ryegrass model and hydroponic cultures, with constant activity of tritium in the form of tritiated water (denoted as HTO) in the "water" compartment (liquid HTO) and "air" compartment (HTO vapour in the air). The OBT photo /TFWT ratio and the exchangeable OBT fraction are measured for three parts of the plant: the leaf, seed and root. Plant growth is modelled using dehydrated biomass measurements taken over time in the laboratory and integrating physiological functions of the plant during the first ten days after germination. The results suggest that there is no measurable discrimination of tritium in the plant organic matter produced by photosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Development of tritium technology for the United States magnetic fusion energy program

    International Nuclear Information System (INIS)

    Anderson, J.L.; Wilkes, W.R.

    1980-01-01

    Tritium technology development for the DOE fusion program is taking place principally at three laboratories, Mound Facility, Argonne National Laboratory and the Los Alamos Scientific Laboratory. This paper will review the major aspects of each of the three programs and look at aspects of the tritium technology being developed at other laboratories within the United States. Facilities and experiments to be discussed include the Tritium Effluent Control Laboratory and the Tritium Storage and Delivery System for the Tokamak Fusion Test Reactor at Mound Facility; the Lithium Processing Test Loop and the solid breeder blanket studies at Argonne; and the Tritium Systems Test Assembly at Los Alamos

  15. Tritium proof-of-principle injector experiment

    International Nuclear Information System (INIS)

    Fisher, P.W.; Milora, S.L.; Combs, S.K.; Carlson, R.V.; Coffin, D.O.

    1988-01-01

    The Tritium Proof-of-Principle (TPOP) pellet injector was designed and built by Oak Ridge National Laboratory (ORNL) to evaluate the production and acceleration of tritium pellets for fueling future fision reactors. The injector uses the pipe-gun concept to form pellets directly in a short liquid-helium-cooled section of the barrel. Pellets are accelerated by using high-pressure hydrogen supplied from a fast solenoid valve. A versatile, tritium-compatible gas-handling system provides all of the functions needed to operate the gun, including feed gas pressure control and flow control, plus helium separation and preparation of mixtures. These systems are contained in a glovebox for secondary containment of tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory (LANL). 18 refs., 3 figs

  16. Environmental tritium in trees

    International Nuclear Information System (INIS)

    Brown, R.M.

    1979-01-01

    The distribution of environmental tritium in the free water and organically bound hydrogen of trees growing in the vicinity of the Chalk River Nuclear Laboratories (CRNL) has been studied. The regional dispersal of HTO in the atmosphere has been observed by surveying the tritium content of leaf moisture. Measurement of the distribution of organically bound tritium in the wood of tree ring sequences has given information on past concentrations of HTO taken up by trees growing in the CRNL Liquid Waste Disposal Area. For samples at background environmental levels, cellulose separation and analysis was done. The pattern of bomb tritium in precipitation of 1955-68 was observed to be preserved in the organically bound tritium of a tree ring sequence. Reactor tritium was discernible in a tree growing at a distance of 10 km from CRNL. These techniques provide convenient means of monitoring dispersal of HTO from nuclear facilities. (author)

  17. Tritium experiments on components for fusion fuel processing at the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Konishi, S.; Yoshida, H.; Naruse, Y.; Carlson, R.V.; Binning, K.E.; Bartlit, J.R.; Anderson, J.L.

    1990-01-01

    Under a collaborative agreement between US and Japan, two tritium processing components, a palladium diffuser and a ceramic electrolysis cell have been tested with tritium for application to a Fuel Cleanup System (FCU) for plasma exhaust processing at the Los Alamos National Laboratory. The fundamental characteristics, compatibility with tritium, impurities effects with tritium, and long-term behavior of the components, were studied over a three year period. Based on these studies, an integrated process loop, ''JAERI Fuel Cleanup System'' equipped with above components was installed at the TSTA for full scale demonstration of the plasma exhaust reprocessing

  18. Analysis of in-pile tritium release experiments

    International Nuclear Information System (INIS)

    Kopasz, J.P.; Tam, S.W.; Johnson, C.E.

    1992-01-01

    The objective of this work is to characterize tritium release behavior from lithium ceramics and develop insight into the underlying tritium release mechanisms. Analysis of tritium release data from recent laboratory experiments with lithium aluminate has identified physical processes which were previously unaccounted for in tritium release models. A new model that incorporates the recent data and provides for release from multiple sites rather than only one site was developed. Calculations of tritium release using this model are in excellent agreement with the tritium release behavior reported for the MOZART experiment

  19. Overview of tritium processing development at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1986-01-01

    The Tritium Systems Test Assembly (TSTA) at the Los Alamos National Laboratory has been operating with tritium since June 1984. Presently there are some 50 g of tritium in the main processing loop. This 50 g has been sufficient to do a number of experiments involving the cryogenic distillation isotope separation system and to integrate the fuel cleanup system into the main fuel processing loop. In January 1986 two major experiments were conducted. During these experiments the fuel cleanup system was integrated, through the transfer pumping system, with the isotope separation system, thus permitting testing on the integrated fuel processing loop. This integration of these systems leaves only the main vacuum system to be integrated into the TSTA fuel processing loop. In September 1986 another major tritium experiment was performed in which the integrated loop was operated, the tritium inventory increased to 50 g and additional measurements on the performance of the distillation system were taken. In the period June 1984 through September 1986 the TSTA system has processed well over 10 8 Ci of tritium. Total tritium emissions to the environment over this period have been less than 15 Ci. Personnel exposures during this period have totaled less than 100 person-mRem. To date, the development of tritium technology at TSTA has proceeded in progressive and orderly steps. In two years of operation with tritium, no major design flows have been uncovered

  20. Operation of the tokamak fusion test reactor tritium systems during initial tritium experiments

    International Nuclear Information System (INIS)

    Anderson, J.L.; Gentile, C.; Kalish, M.; Kamperschroer, J.; Kozub, T.; LaMarche, P.; Murray, H.; Nagy, A.; Raftopoulos, S.; Rossmassler, R.; Sissingh, R.; Swanson, J.; Tulipano, F.; Viola, M.; Voorhees, D.; Walters, R.T.

    1995-01-01

    The high power D-T experiments on the tokamak fusion test reactor (TFTR) at the Princeton Plasma Physics Laboratory commenced in November 1993. During initial operation of the tritium systems a number of start-up problems surfaced and had to be corrected. These were corrected through a series of system modifications and upgrades and by repair of failed or inadequate components. Even as these operational concerns were being addressed, the tritium systems continued to support D-T operations on the tokamak. During the first six months of D-T operations more than 107kCi of tritium were processed successfully by the tritium systems. D-T experiments conducted at TFTR during this period provided significant new data. Fusion power in excess of 9MW was achieved in May 1994. This paper describes some of the early start-up issues, and reports on the operation of the tritium system and the tritium tracking and accounting system during the early phase of TFTR D-T experiments. (orig.)

  1. Experiences in the management of plutonium-containing solid-wastes at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Baehr, W.; Hild, W.; Scheffler, K.

    1974-10-01

    Solid-plutonium-containing wastes from a fuel production plant, a reprocessing plant and several research laboratories are treated at the decontamination department of the Karlsruhe Nuclear Research Center for disposal in the Asse salt mine. Conditioning as well as future aspects in α-waste management are the subject of this Paper. (orig.) [de

  2. Analysis of tritium production in the vicinity of Linac and LEB tunnels at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Nabelssi, B.K.

    1994-01-01

    Monte Carlo calculations were performed to estimate the tritium production in groundwater around the Linear Accelerator (Linac) and the Low Energy Booster (LEB) tunnels at the Superconducting Super Collider Laboratory (SSCL). The calculations were performed using the new version of the Los Alamos High Energy Transport (LAHET) code system (SUPERHET). Most of the tritium activity was found to occur in a zone extending 2 m from the tunnel wall. The calculated tritium production rate was used to derive the. maximum allowable beam losses that would result in an average groundwater concentration in the activation zone of 20 pCi/cm 3 , the federal maximum contaminant level (MCL) for tritium in drinking water. The maximum allowable beam losses were found to be about 4% and 2% of the maximum operating be.-un for the Linac at 1 GeV and the LEB at 11 GeV, resnectively. These percentages are well in excess of typical operational losses at existing highenergy accelerators. The results are in good agreement with previously reported calculations. Tritium saturation activity in water pipes resultina, from the derived maximum allowable beam loss was found to be 355 pCi/cm 3 in the Linac operating at 600 MeV and 363 pCi/cm 3 in the LEB operating at 11 GeV. Accidental tritium releases from water pipes were found to cause an inhalation dose rate of less than 0.013 (Linac at 600 MeV) and 0.009 mrem/hr (LEB at 11 Gev) in the tunnels. These dose rates are well within the laboratory's design limit of 0.1 mrem/hr for controlled areas. Accidental beam losses were found to cause activation in excess of the MCL only after an irradiation time of more than 557 hours in the Linac at 600 MeV and 69 hours in the LEB at 11 GeV. A full-beam accident lasting more than one hour is considered unlikely

  3. Tritium transport and control in the FED

    International Nuclear Information System (INIS)

    Rogers, M.L.

    1981-01-01

    The tritium systems for the FED have three primary purposes. The first is to provide tritium and deuterium fuel for the reactor. This fuel can be new tritium or deuterium delivered to the plant site, or recycled DT from the reactor that must be processed before it can be recycled. The second purpose of the FED tritium systems is to provide state-of-the-art tritium handling to limit worker radiation exposure and to minimize tritium losses to the environment. The final major objective of the FED tritium systems is to provide an integrated system test of the tritium handling technology necessary to support the fusion reactor program. Every effort is being made to incorporate available information from the Tritium System Test Assembly (TSTA) at Los Alamos National Laboratory, the Tokamak Fusion Test Reactor (TFTR) tritium systems, and the tritium handling information generated within DOE for the past 20 years

  4. Current tritium chemical studies at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Smith, F.J.; Redman, J.D.; Strehlow, R.A.; Bell, J.T.

    1975-01-01

    The equilibrium pressures of hydrogen isotopes in the Li-LiH-H 2 , Li-LiD-D 2 and Li-LiT-T 2 systems are being measured. The solubility of hydrogen in lithium was studied and the data are in reasonable agreement with the literature values. The Li-LiD-D 2 system is now being studied. The first experimental measurements of the equilibrium pressures of tritium between 700 and 1000 0 C as a function of the LiT concentration in the Li-LiT-T 2 system have also been completed. The permeation of tritium through clean metals and through metals under simulated steam generator conditions is being investigated. Measurements of tritium permeation through clean nickel at temperatures between 636 and 910 0 K were made using a mixed isotope technique. The tritium permeability, DK/sub s/', as a function of temperature was determined to be ln DK/sub s/' [cc(NTP).mm.min -1 .torr/sup -1/2/.cm -2 ] = -0.906 - 6360/T( 0 K). The measured permeation activation energy was 12.6 +- 0.4 kcal/mole. (MOW)

  5. Effect of Tritium on Cracking Threshold in 7075 Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Morgan, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-02-28

    The effect of long-term exposure to tritium gas on the cracking threshold (KTH) of 7075 Aluminum Alloy was investigated. The alloy is the material of construction for a cell used to contain tritium in an accelerator at Jefferson Laboratory designed for inelastic scattering experiments on nucleons. The primary safety concerns for the Jefferson Laboratory tritium cell is a tritium leak due to mechanical failure of windows from hydrogen isotope embrittlement, radiation damage, or loss of target integrity from accidental excessive beam heating due to failure of the raster or grossly mis-steered beam. Experiments were conducted to investigate the potential for embrittlement of the 7075 Aluminum alloy from tritium gas.

  6. FDNH - the tritium module in RODOS

    International Nuclear Information System (INIS)

    Galeriu, D.; Melintescu, A.; Turcanu, C. O.; Raskob, W.

    2001-01-01

    Under the auspices of its RTD (Research and Technological Development) Framework Programmes, the European Commission has supported the development of the RODOS (Real-time On-line Decision Support) system for off-site emergency management. The project started in 1989 focusing on PWR/LWR type accidents and using experience from the Chernobyl accident. In 1997 it was realised that tritium should be included in the list of radionuclides, as large tritium sources exists in Europe and to allow a potential expansion of the RODOS system for application on future fusion reactor accidents. The National Institute for Physics and Nuclear Engineering (IFIN-HH) in Romania - in close co-operation with the Research Centre Karlsruhe (FZK) - was charged to develop the tritium module, based on previous experience in environmental tritium modelling and the operation of CANDU reactors in Romania (with potential tritium accidents). At present, the Food and Dose Module Hydrogen -(FDMH) - for tritium applications - is integrated and documented in the RODOS system. It calculates the time dependent tritium concentration (as tritiated water or organically bound tritium) in crops (as much as 22 different species) and up to 12 animal products, inhalation doses and ingestion dose from up to 34 diet items for various groups of the population and for up to 2520 locations around the source, following an accidental emission of tritiated water. FDMH incorporates many improved techniques in radiological assessment and makes intensively use of interdisciplinary research. It is developed in a modular structure with a variable time grid according to the physical processes. Differing from other models, using generic transfer parameters or parameters fitted on individual experiments, FDMH derives tritium transfer rates based on physical and physiological process analysis, using scientifically accepted results from interdisciplinary research on, among others, land-atmosphere interaction, water cycle in the

  7. Transfer and incorporation of tritium in mammals

    International Nuclear Information System (INIS)

    Hoek, J. van den; Juan, N.B.

    1979-01-01

    The metabolism of tritium in mammals has been studied in a number of laboratories which have participated in the IAEA Co-ordinated Research Programme on the Behaviour of Tritium in the Environment. The results of these studies are discussed and related to data obtained elsewhere. The animals studied are small laboratory and domestic animals. Tritium has been administered as THO, both in single and long-term dosing experiments, and also as organically bound tritium. The biological half-life of tritium in the body water pool has been determined in different species. The following values have been found: 1.1 days in mice; 13.2 days in kangaroo rats; 3.8 days in pigs; 4.1 days in lactating versus 8.3 in non-lactating goats and 3.1-4.0 days in lactating cows and steers. Much attention has been paid to the incorporation of tritium into organic constituents, both in the animal organism (organs, tissues) and in the secretions of the animal after continuous administration of tritium, mostly as THO. When compared with tritium levels in body water, and expressed as the ratio of specific activities, values of 0.25 and 0.40 have been found in mice liver and testis respectively. In cow's milk, these ratios vary from 0.30 for casein to 0.60 for lactose. The transfer of tritium into milk after continuous ingestion of THO by a lactating cow is about 1.50% of the daily ingested tritium per litre of milk. Some results of experiments, utilizing organically bound tritium, are also presented. (author)

  8. Cost accounting at the Kernforschungszentrum Karlsruhe GmbH

    International Nuclear Information System (INIS)

    Neck, E.

    1979-01-01

    A presentation of the Nuclear Research Center Karlsruhe and its main research activities is given. Company structure, planning and control system in the R and D field are explained. The cost accounting system of the Nuclear Research Center Karlsruhe is discussed in detail, a survey of cost accounting as practiced by other German research establishments and comments on cost accounting as a tool of performance gauging are given. (A.N.)

  9. Publications of the University of Karlsruhe (T.H.) and the Nuclear Research Center Karlsruhe 1981

    International Nuclear Information System (INIS)

    1982-01-01

    This is the 14th volume of the joint list of publications of the University of Karlsruhe (T.H.), the Nuclear Research Center Karlsruhe and some institutions which are closely linked to the University. It contains the publications of the year 1981 as well as some addenda from 1980. Included were books and journals, journal articles and contributions from compilations, research reports, dissertations and habilitation theses which were written or published by these institutions, their bodies and institutes as well as their teachers and scientific staff, and also patents. Not included were, as a rule, diploma theses, newspaper articles, reviews, internal reports and bulletins. The list of publications from University is mainly based on entries made by the institutes and chairs; its completeness can not be granted here. (orig./RW) [de

  10. TFTR tritium operations lessons learned

    International Nuclear Information System (INIS)

    Gentile, C.A.; Raftopoulos, S.; LaMarche, P.

    1996-01-01

    The Tokamak Fusion Test Reactor which is the progenitor for full D-T operating tokamaks has successfully processed > 81 grams of tritium in a safe and efficient fashion. Many of the fundamental operational techniques associated with the safe movement of tritium through the TFTR facility were developed over the course of many years of DOE tritium facilities (LANL, LLNL, SRS, Mound). In the mid 1980's The Tritium Systems Test Assembly (TSTA) at LANL began reporting operational techniques for the safe handling of tritium, and became a major conduit for the transfer of safe tritium handling technology from DOE weapons laboratories to non-weapon facilities. TFTR has built on many of the TSTA operational techniques and has had the opportunity of performing and enhancing these techniques at America's first operational D-T fusion reactor. This paper will discuss negative pressure employing 'elephant trunks' in the control and mitigation of tritium contamination at the TFTR facility, and the interaction between contaminated line operations and Δ pressure control. In addition the strategy employed in managing the movement of tritium through TFTR while maintaining an active tritium inventory of < 50,000 Ci will be discussed. 5 refs

  11. Design of a tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    Milora, S.L.; Gouge, M.J.; Fisher, P.W.; Combs, S.K.; Cole, M.J.; Wysor, R.B.; Fehling, D.T.; Foust, C.R.; Baylor, L.R.; Schmidt, G.L.; Barnes, G.W.; Persing, R.G.

    1991-01-01

    The TFTR tritium pellet injector (TPI) is designed to provide a tritium pellet fueling capability with pellet speeds in the 1- to 3 km/s-range for the TFTR D-T phase. The existing TFTR deuterium pellet injector is being modified at Oak Ridge National Laboratory to provide a fourshot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns a two -stage light gas gun driver. The pipe gun concept has been qualified for tritium operation by the tritium proof-of-principle injector experiments conducted on the Tritium Systems Test Assembly at Los Alamos National Laboratory. In these experiments, tritium and D-T pellets were accelerated to speeds near 1.5 km/s. The TPI is being designed for pellet sizes in the range from 3.43 to 4.0 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation will be controlled by a programmable logic controller. 7 refs., 4 figs

  12. Validation test for CAP88 predictions of tritium dispersion at Los Alamos National Laboratory.

    Science.gov (United States)

    Michelotti, Erika; Green, Andrew; Whicker, Jeffrey; Eisele, William; Fuehne, David; McNaughton, Michael

    2013-08-01

    Gaussian plume models, such as CAP88, are used regularly for estimating downwind concentrations from stack emissions. At many facilities, the U.S. Environmental Protection Agency (U.S. EPA) requires that CAP88 be used to demonstrate compliance with air quality regulations for public protection from emissions of radionuclides. Gaussian plume models have the advantage of being relatively simple and their use pragmatic; however, these models are based on simplifying assumptions and generally they are not capable of incorporating dynamic meteorological conditions or complex topography. These limitations encourage validation tests to understand the capabilities and limitations of the model for the specific application. Los Alamos National Laboratory (LANL) has complex topography but is required to use CAP88 for compliance with the Clean Air Act Subpart H. The purpose of this study was to test the accuracy of the CAP88 predictions against ambient air measurements using released tritium as a tracer. Stack emissions of tritium from two LANL stacks were measured and the dispersion modeled with CAP88 using local meteorology. Ambient air measurements of tritium were made at various distances and directions from the stacks. Model predictions and ambient air measurements were compared over the course of a full year's data. Comparative results were consistent with other studies and showed the CAP88 predictions of downwind tritium concentrations were on average about three times higher than those measured, and the accuracy of the model predictions were generally more consistent for annual averages than for bi-weekly data.

  13. Tritium inventory measurements using calorimetry

    International Nuclear Information System (INIS)

    Kapulla, H.; Kraemer, R.; Heine, R.

    1992-01-01

    In the past calorimetry has been developed as a powerful tool in radiometrology. Calorimetric methods have been applied for the determination of activities, half lives and mean energies released during the disintegration of radioactive isotopes. The fundamental factors and relations which determine the power output of radioactive samples are presented and some basic calorimeter principles are discussed in this paper. At the Kernforschungszentrum Karlsruhe (KfK) a family of 3 calorimeters has been developed to measure the energy release from radiative waste products arising from reprocessing operations. With these calorimeters, radiative samples with sizes from a few cm 3 to 2 ·10 5 cm 3 and heat ratings ranging from a few nW to kW can be measured. After modifications of tits inner part the most sensitive calorimeter among the three calorimeters mentioned above would be best suited for measuring the tritium inventory in T-getters of the Amersham-type

  14. Tritium safety study using Caisson Assembly (CATS) at TPL/JAEA

    International Nuclear Information System (INIS)

    Hayashi, T.; Kobayashi, K.; Iwai, Y.; Isobe, K.; Nakamura, H.; Kawamura, Y.; Shu, W.; Suzuki, T.; Yamada, M.; Yamanishi, T.

    2008-01-01

    Tritium confinement is required as the most important safety Junction for a fusion reactor. In order to demonstrate the confinement performance experimentally, an unique equipment, called CATS: Caisson Assembly for Tritium Safety study, was installed in Tritium Process Laboratory of Japan Atomic Energy Agency and operated for about 10 years. Tritium confinement and migration data in CATS have been accumulated and dynamic simulation code was accumulated using these data. Contamination and decontamination behavior on various materials and new safety equipment functions have been investigated under collaborations with a lot of laboratories and universities. (authors)

  15. Fusion Technologies: 2nd Karlsruhe International Summer School

    International Nuclear Information System (INIS)

    Bahm, W.

    2008-01-01

    Nuclear fusion promises to deliver a future non-polluting energy supply with nearly unlimited fuel reserves. To win young scientists and engineers for nuclear fusion, the Karlsruhe Research Center, together with other partners in the European Fusion Education Network being established by the European Commission, organizes the 2nd Karlsruhe International Summer School on Fusion Technologies on September 1-12, 2008. The program covers all key technologies necessary for construction and operation of a fusion reactor. (orig.)

  16. Pre-operational HTO/HT surveys in the vicinity of the Chalk River Laboratories tritium extraction plant

    International Nuclear Information System (INIS)

    Workman, W.J.G.; Brown, R.M.

    1993-08-01

    Surveys of the concentrations of HT and HTO in the atmosphere downwind of the Chalk River Laboratories reactor facilities were carried out in 1986 November, and in 1989 March, April and September under different conditions of air temperature, wind direction, and snow or vegetative cover. HT usually amounted to 1-5% of total tritium, but values up to 20% were observed, probably resulting from preferential removal of HTO. In all of the surveys, the greater persistence in the atmosphere of HT than of HTO was evident. The existing levels of HT are such that they will not be augmented significantly by chronic releases from the Tritium Extraction Plant (TEP) when it comes into operation. Hence, operation of the TEP will not facilitate studies of the environmental behaviour of chronically released HT. However, longer term studies of the distribution of HT from the existing facilities would be worthwhile. Soil and vegetation HTO levels in the study area are reported. Further studies of the distribution of tritium between the air, soil and vegetation in areas subjected to chronic exposure would be valuable

  17. Unclassified information on tritium extraction and purification technology: attachment 1

    International Nuclear Information System (INIS)

    McNorrill, P.L.

    1976-01-01

    Several tritium recovery and purification techniques developed at non-production sites are described in the unclassified and declassified literature. Heating of irradiated Li-Al alloy under vacuum to release tritium is described in declassified reports of Argonne National Laboratory. Use of palladium membranes to separate hydrogen isotopes from other gases is described by Argonne, KAPL, and others. Declassified KAPL reports describe tritium sorption on palladium beds and suggest fractional absorption as a means of isotope separation. A thermal diffusion column for tritium enrichment is described in a Canadian report. Mound Laboratory reports describe theoretical and experimental studies of thermal diffusion columns. Oak Ridge reports tabulate ''shape factors'' for thermal diffusion columns. Unclassified journals contain many articles on thermal diffusion theory, experiments, and separation of gas mixtures by thermal diffusion columns; much of these data can be readily extended to the separation of hydrogen-tritium mixtures. Cryogenic distillation for tritium recovery is described in the Mound Laboratory reports. Process equipment such as pumps, valves, Hopcalite beds, and uranium beds are described in reports by ANL, KAPL, and MLM, and in WASH-1269, Tritium Control Technology

  18. FDMH - The tritium model in RODOS

    International Nuclear Information System (INIS)

    Galeriu, D.; Mateescu, G.; Melintescu, A.; Turcanu, C.; Raskob, W.

    2000-01-01

    Under the auspices of its RTD (Research and Technological Development) Framework Programmes, the European Commission has supported the development of the RODOS (Real-time On-line DecisiOn Support) system for off-site emergency management. The project started in 1989 focusing on PWR/LWR type accidents and using experience from the Chernobyl accident. In 1996 it was realised that tritium should be included in the list of radionuclides, as large tritium sources exist in Europe and to allow a potential expansion of the RODOS system for application on future fusion reactor accidents. The National Institute for Physics and Nuclear Engineering (IFIN-HH) in Romania - in close co-operation with the Research Centre Karlsruhe (FZK) - was charged to develop the tritium module, based on previous experience in environmental tritium modelling and the operation of CANDU reactor-based NPP in Romania (with potential tritium accidents). Tritium, being an isotope of hydrogen, is incorporated immediately in the life cycle and its transport into the biosphere differs considerably from other radionuclides treated by the RODOS system. Concentrations in the individual compartments may change very rapidly (hours) under varying environmental conditions and conversion to organic forms by biochemical and metabolic processes takes place in plants and animals. Consequently, the tritium code in RODOS was developed as a separate module and harmonisation in data sets and interfaces with other food chain modules integrated in RODOS was ensured. Presently, the tritium module - FDMH- is integrated and documented in the RODOS system, delivering time dependent tritium concentration (as tritiated water or organically bound tritium) in plant and animal products, inhalation dose and ingestion dose for various groups of population, after an accident emitting tritiated water and for up to 2520 locations around the source. FDMH incorporates many improved techniques in radiological assessment and makes

  19. Modeling of tritium behavior in Li2O

    International Nuclear Information System (INIS)

    Billone, M.C.; Attaya, H.; Kopasz, J.P.

    1992-08-01

    The TIARA and DISPL2 codes are being developed at Argonne National Laboratory to predict tritium retention and release from lithium ceramics under steady-state and transient conditions, respectively. Tritium retention and release are important design and safety issues for tritium-breeding blankets of fusion reactors. Emphasis has been placed on tritium behavior in Li 2 O because of the selection of this ceramic as a first option for the ITER driver blanket and because of the relatively good material properties data base for Li 2 O. Models and correlations for diffusion, surface desorption/adsorption, and solubility/precipitation of tritium in Li 2 0 have been developed based on well-controlled laboratory data from as-fabricated and irradiated samples. With the models and correlations, the codes are validated to the results of in-reactor purge flow tests. The results of validation of TIARA to tritium retention data from VOM-15H, EXOTIC-2, and CRITIC-1 are presented, along with predictions of tritium retention in BEATRIX-II. For DISPL2, results are presented for tritium release predictions vs. data for MOZART, CRITIC-1, and BEATRIX-II. Recommendations are made for improving both the data base and the modeling to allow extrapolation with reasonable uncertainty levels to fusion reactor design conditions

  20. Procedure and technique critique for tritium enrichment by electrolysis at the IAEA Laboratory (effective November 1976)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-11-05

    This publication gives a detailed description of the experimental and calculation procedures for tritium enrichment. Most descriptive sections are divided into 2 parts: Section A describes the procedure in the IAEA laboratory; section B discusses the reasons behind the various procedures, and may indicate alternative acceptable, or in some cases even better, procedures. The description of the equipment focuses on electrolysis cells, cooling system and power supply. Routine procedures are discussed including handling and checking of samples after receipt, 'spike' and blank water, initial sample distillation, preparation of cells and samples for electrolysis, electrolysis and completion of electrolysis (weighing of cells, neutralisation and distillation) and precautions against contaminations (prevention, detection and cure). A list of equipment required for electrolytic enrichment of tritium is provided.

  1. Procedure and technique critique for tritium enrichment by electrolysis at the IAEA Laboratory (effective November 1976)

    International Nuclear Information System (INIS)

    1976-01-01

    This publication gives a detailed description of the experimental and calculation procedures for tritium enrichment. Most descriptive sections are divided into 2 parts: Section A describes the procedure in the IAEA laboratory; section B discusses the reasons behind the various procedures, and may indicate alternative acceptable, or in some cases even better, procedures. The description of the equipment focuses on electrolysis cells, cooling system and power supply. Routine procedures are discussed including handling and checking of samples after receipt, 'spike' and blank water, initial sample distillation, preparation of cells and samples for electrolysis, electrolysis and completion of electrolysis (weighing of cells, neutralisation and distillation) and precautions against contaminations (prevention, detection and cure). A list of equipment required for electrolytic enrichment of tritium is provided

  2. Studies on tritium incorporation into wheat plants after short-term exposure to atmospheric tritium

    International Nuclear Information System (INIS)

    Diabate, S.; Strack, S.; Raskob, W.

    1996-01-01

    The paper summarizes the results of a series of laboratory experiments to study the uptake, loss, conversion and translocation of tritium in wheat plants following a short-term exposure to atmospheric tritiated water vapour (HTO) under laboratory conditions. The experiments were accompanied by the development of a Plant-OBT-Model to calculate the tritium behaviour in wheat. Exposures of potted plants were carried out between anthesis and maturity, under day conditions at two different light intensities (900 μmol m -2 s -1 and 120 μmol m -2 s -1 photosynthetic active radiation) and under night conditions. In leaves, the tritium uptake into tissue water tritium (TWT) was about four times lower under night conditions than day conditions. Organically bound tritium (OBT) was generated in leaves, stems and ears under day as well as under night conditions. The initial relative OBT concentrations in leaves observed under night conditions were about 50% of those under day conditions. OBT was translocated into the grain in dependence on the growth rate of the grain. Due to incorporation of new organic matter with lower OBT concentration into the grain, the specific OBT concentrations decreased slightly until harvest but the total OBT was rather constant. Once translocation to grain has taken place, OBT is lost only slowly. The growth of the plants has been calibrated with the measured growth data of winter wheat and spring wheat. Subsequently, the tritium incorporation was calibrated using the results of the exposure experiments in the same year. The final OBT concentration in the grain can be predicted with sufficient precision. However, the modelling of the OBT formation and turnover processes right after exposure to tritium needs improvement. A comprehensive validation of the model with independent data sets is still necessary. (J.P.N.)

  3. Tritium transport and release from lithium ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.; Kopasz, J.P.; Tam, S.W.

    1994-01-01

    In an operating fusion reactor,, the tritium breeding blanket will reach a condition in which the tritium release rate equals the production rate. The tritium release rate must be fast enough that the tritium inventory in the blanket does not become excessive. Slow tritium release will result in a large tritium inventory, which is unacceptable from both economic and safety viewpoints As a consequence, considerable effort has been devoted to understanding the tritium release mechanism from ceramic breeders and beryllium neutron multipliers through theoretical, laboratory, and in-reactor studies. This information is being applied to the development of models for predicting tritium release for various blanket operating conditions

  4. Tritium transfer process using the CRNL wetproof catalyst

    International Nuclear Information System (INIS)

    Chuang, K.T.; Holtslander, W.J.

    1980-01-01

    The recovery of tritium from heavy water in CANDU reactor systems requires the transfer of the tritium atoms from water to hydrogen molecules prior to tritium concentration by cryogenic distillation. Isotopic exchange between liquid water and hydrogen using the CRNL-developed wetproof catalyst provides an effective method for the tritium transfer process. The development of this process has required the translation of the technology from a laboratory demonstration of catalyst activity for the exchange reaction to proving and demonstration that the process will meet the practical restraints in a full-scale tritium recovery plant. This has led to a program to demonstrate acceptable performance of the catalyst at operating conditions that will provide data for design of large plants. Laboratory and pilot plant work has shown adequate catalyst lifetimes, demonstrated catalyst regeneration techniques and defined and required feedwater purification systems to ensure optimum catalyst performance. The ability of the catalyst to promote the exchange of hydrogen isotopes between water and hydrogen has been shown to be technically feasible for the tritium transfer process

  5. Tritium behavior in ITER beryllium

    International Nuclear Information System (INIS)

    Longhurst, G.R.

    1990-10-01

    The beryllium neutron multiplier in the ITER breeding blanket will generate tritium through transmutations. That tritium constitutes a safety hazard. Experiments evaluating tritium storage and release mechanisms have shown that most of the tritium comes out in a burst during thermal ramping. A small fraction of retained tritium is released by thermally activated processes. Analysis of recent experimental data shows that most of the tritium resides in helium bubbles. That tritium is released when the bubbles undergo swelling sufficient to develop porosity that connects with the surface. That appears to occur when swelling reaches about 10--15%. Other tritium appears to be stored chemically at oxide inclusions, probably as Be(OT) 2 . That component is released by thermal activation. There is considerable variation in published values for tritium diffusion through the beryllium and solubility in it. Data from experiments using highly irradiated beryllium from the Idaho National Engineering Laboratory showed diffusivity generally in line with the most commonly accepted values for fully dense material. Lower density material, planned for use in the ITER blanket may have very short diffusion times because of the open structure. The beryllium multiplier of the ITER breeding blanket was analyzed for tritium release characteristics using temperature and helium production figures at the midplane generated in support of the ITER Summer Workshop, 1990 in Garching. Ordinary operation, either in Physics or Technology phases, should not result in the release of tritium trapped in the helium bubbles. Temperature excursions above 600 degree C result in large-scale release of that tritium. 29 refs., 10 figs., 3 tabs

  6. Conceptual design of tritium treatment facility

    International Nuclear Information System (INIS)

    Tachikawa, Katsuhiro

    1982-01-01

    In connection with the development of fusion reactors, the development of techniques concerning tritium fuel cycle, such as the refining and circulation of fuel, the recovery of tritium from blanket, waste treatment and safe handling, is necessary. In Japan Atomic Energy Research Institute, the design of the tritium process research laboratory has been performed since fiscal 1977, in which the following research is carried out: 1) development of hydrogen isotope separation techniques by deep cooling distillation method and thermal diffusion method, 2) development of the refining, collection and storage techniques for tritium using metallic getters and palladium-silver alloy films, and 3) development of the safe handling techniques for tritium. The design features of this facility are explained, and the design standard for radiation protection is shown. At present, in the detailed design stage, the containment of tritium and safety analysis are studied. The building is of reinforced concrete, and the size is 48 m x 26 m. Glove boxes and various tritium-removing facilities are installed in two operation rooms. Multiple wall containment system and tritium-removing facilities are explained. (Kako, I.)

  7. The tritium monitoring requirements of fusion and the status of research

    International Nuclear Information System (INIS)

    Nickerson, S.B.; Gerdingh, R.F.; Penfold, K.

    1982-10-01

    This report is a summary of an investigation into the tritium monitoring requirements of tritium laboratories, D-T burning ignition experiments, and fusion reactors. There is also a summary of the status of research into tritium monitoring and a survey of commercially available tritium monitors

  8. TFTR tritium inventory accountability system

    International Nuclear Information System (INIS)

    Saville, C.; Ascione, G.; Elwood, S.; Nagy, A.; Raftopoulos, S.; Rossmassler, R.; Stencel, J.; Voorhees, D.; Tilson, C.

    1995-01-01

    This paper discusses the program, PPPL (Princeton Plasma Physics Laboratory) Material Control and Accountability Plan, that has been implemented to track US Department of Energy's tritium and all other accountable source material. Specifically, this paper details the methods used to measure tritium in various systems at the Tokamak Fusion Test Reactor; resolve inventory differences; perform inventory by difference inside the Tokamak; process and measure plasma exhaust and other effluent gas streams; process, measure and ship scrap or waste tritium on molecular sieve beds; and detail organizational structure of the Material Control and Accountability group. In addition, this paper describes a Unix-based computerized software system developed at PPPL to account for all tritium movements throughout the facility. 5 refs., 2 figs

  9. Design and operations at the National Tritium Labelling Facility

    International Nuclear Information System (INIS)

    Morimoto, H.; Williams, P.G.

    1991-09-01

    The National Tritium Labelling Facility (NTLF) is a multipurpose facility engaged in tritium labeling research. It offers to the biomedical research community a fully equipped laboratory for the synthesis and analysis of tritium labeled compounds. The design of the tritiation system, its operations and some labeling techniques are presented

  10. Measurement of environmental tritium for isotope hydrology studies

    International Nuclear Information System (INIS)

    1973-01-01

    The Section of Isotope Hydrology of the IAEA Division of Research and Laboratories gains valuable hydrological information from studies of the concentration of environmental tritium in precipitation, surface and groundwater samples from various sites around the world. This photo story shows the steps in the measurement of these very low levels of tritium in water as performed in the Isotope Hydrology Laboratory of the Agency. (author)

  11. Tritium experience in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Skinner, C.H.; Blanchard, W.; Hosea, J.; Mueller, D.; Nagy, A.; Hogan, J.

    1998-01-01

    Tritium management is a key enabling element in fusion technology. Tritium fuel was used in 3.5 years of successful deuterium-tritium (D-T) operations in the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. The D-T campaign enabled TFTR to explore the transport, alpha physics, and MHD stability of a reactor core. It also provided experience with tritium retention and removal that highlighted the importance of these issues in future D-T machines. In this paper, the authors summarize the tritium retention and removal experience in TFTR and its implications for future reactors

  12. Tritium Systems Test Facility. Volume II. Appendixes

    International Nuclear Information System (INIS)

    Anderson, G.W.; Battleson, K.W.; Bauer, W.

    1976-10-01

    This document includes the following appendices: (1) vacuum pumping, (2) tritium migration into the power cycle, (3) separation of hydrogen isotopes, (4) tritium research laboratory, (5) TSTF containment and cleanup, (6) instrumentation and control, (7) gas heating in torus, and (8) TSTF fuel loop operating procedures

  13. Storage and Assay of Tritium in STAR

    International Nuclear Information System (INIS)

    Longhurst, Glen R.; Anderl, Robert A.; Pawelko, Robert J.; Stoots, Carl J.

    2005-01-01

    The Safety and Tritium Applied Research (STAR) facility at the Idaho National Engineering and Environmental Laboratory (INEEL) is currently being commissioned to investigate tritium-related safety questions for fusion and other technologies. The tritium inventory for the STAR facility will be maintained below 1.5 g to avoid the need for STAR to be classified as a Category 3 nuclear facility. A key capability in successful operation of the STAR facility is the ability to receive, inventory, and dispense tritium to the various experiments underway there. The system central to that function is the Tritium Storage and Assay System (SAS).The SAS has four major functions: (1) receiving and holding tritium, (2) assaying, (3) dispensing, and (4) purifying hydrogen isotopes from non-hydrogen species.This paper describes the design and operation of the STAR SAS and the procedures used for tritium accountancy in the STAR facility

  14. Helium effects on tritium storage materials

    International Nuclear Information System (INIS)

    Moysan, I.; Contreras, S.; Demoment, J.

    2008-01-01

    For ten years French Tritium laboratories have been using metal hydride storage beds with LaNi 4 Mn for process gas (HDT mixture) absorption, desorption and for both short and long term storage. This material has been chosen because of its low equilibrium pressure and of its ability to retain decay helium 3 in its lattice. Aging effects on the thermodynamic behavior of LaNi 4 Mn have been investigated. Aging, due to formation of helium 3 in the lattice, decreases the desorption isotherm plateau pressure and shifts the α phase to the higher stoichiometries. Life time of the two kinds of tritium (and isotopes) storage vessels managed in the laboratory depends on these aging changes. The Tritium Long Term Storage (namely STLT) and the hydride storage vessel (namely FSH 400) are based on LaNi 4 Mn even though they are not used for the same applications. STLT contains LaNi 4 Mn in an aluminum vessel and is designed for long term pure tritium storage. The FSH 400 is composed of LaNi 4 Mn included within a stainless steel container. This design is aimed at storing low tritium content mixtures (less than 3% of tritium) and for supplying processes with HDT gas. Life time of the STLT can reach 12 years. Life time of the FSH 400 varies from 1.2 years to more than 25 years depending on the application. (authors)

  15. Helium effects on tritium storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Moysan, I.; Contreras, S.; Demoment, J. [CEA Valduc, Service HDT, 21 - Is-sur-Tille (France)

    2008-07-15

    For ten years French Tritium laboratories have been using metal hydride storage beds with LaNi{sub 4}Mn for process gas (HDT mixture) absorption, desorption and for both short and long term storage. This material has been chosen because of its low equilibrium pressure and of its ability to retain decay helium 3 in its lattice. Aging effects on the thermodynamic behavior of LaNi{sub 4}Mn have been investigated. Aging, due to formation of helium 3 in the lattice, decreases the desorption isotherm plateau pressure and shifts the {alpha} phase to the higher stoichiometries. Life time of the two kinds of tritium (and isotopes) storage vessels managed in the laboratory depends on these aging changes. The Tritium Long Term Storage (namely STLT) and the hydride storage vessel (namely FSH 400) are based on LaNi{sub 4}Mn even though they are not used for the same applications. STLT contains LaNi{sub 4}Mn in an aluminum vessel and is designed for long term pure tritium storage. The FSH 400 is composed of LaNi{sub 4}Mn included within a stainless steel container. This design is aimed at storing low tritium content mixtures (less than 3% of tritium) and for supplying processes with HDT gas. Life time of the STLT can reach 12 years. Life time of the FSH 400 varies from 1.2 years to more than 25 years depending on the application. (authors)

  16. Survey of pumps for tritium gas

    International Nuclear Information System (INIS)

    Dowell, T.M.

    1983-05-01

    This report considers many different types of pumps for their possible use in pumping tritium gas in the low, intermediate and high vacuum ranges. No one type of pump is suitable for use over the wide range of pumping pressure required in a typical pumping system. The favoured components for such a system are: bellows pump (low vacuum); orbiting scroll pump (intermediate vacuum); magnetically suspended turbomolecular pump (high vacuum); cryopump (high vacuum). Other pumps which should be considered for possible future development are: mound modified vane pump; SRTI wobble pump; roots pump with canned motor. It is proposed that a study be made of a future tritium pumping system in a Canadian tritium facility, e.g. a tritium laboratory

  17. Removal efficiency of silver impregnated filter materials and performance of iodie filters in the off-gas of the Karlsruhe reprocessing plant WAK

    International Nuclear Information System (INIS)

    Herrmann, F.J.; Herrmann, B.; Hoeflich, V.

    1997-01-01

    An almost quantitative retention of iodine is required in reprocessing plants. For the iodine removal in the off-gas streams of a reprocessing plant various sorption materials had been tested under realistic conditions in the Karlsruhe reprocessing plant WAK in cooperation with the Karlsruhe research center FZK. The laboratory results achieved with different iodine sorption materials justified long time performance tests in the WAK Plant. Technical iodine filters and sorption materials for measurements of iodine had been tested from 1972 through 1992. This paper gives an overview over the most important results, Extended laboratory, pilot plant, hot cell and plant experiences have been performed concerning the behavior and the distribution of iodine-129 in chemical processing plants. In a conventional reprocessing plant for power reactor fuel, the bulk of iodine-129 and iodine-127 is evolved into the dissolver off-gas. The remainder is dispersed over many aqueous, organic and gaseous process and waste streams of the plant. Iodine filters with silver nitrate impregnated silica were installed in the dissolver off-gas of the Karlsruhe reprocessing plant WAK in 1975 and in two vessel vent systems in 1988. The aim of the Karlsruhe iodine research program was an almost quantitative evolution of the iodine during the dissolution process to remove as much iodine with the solid bed filters as possible. After shut down of the WAK plant in December 1990 the removal efficiency of the iodine filters at low iodine concentrations had been investigated during the following years. 12 refs., 2 figs., 2 tabs

  18. Removal efficiency of silver impregnated filter materials and performance of iodie filters in the off-gas of the Karlsruhe reprocessing plant WAK

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, F.J.; Herrmann, B.; Hoeflich, V. [Wiederaufarbeitungsanlage Karlsruhe (Germany)] [and others

    1997-08-01

    An almost quantitative retention of iodine is required in reprocessing plants. For the iodine removal in the off-gas streams of a reprocessing plant various sorption materials had been tested under realistic conditions in the Karlsruhe reprocessing plant WAK in cooperation with the Karlsruhe research center FZK. The laboratory results achieved with different iodine sorption materials justified long time performance tests in the WAK Plant. Technical iodine filters and sorption materials for measurements of iodine had been tested from 1972 through 1992. This paper gives an overview over the most important results, Extended laboratory, pilot plant, hot cell and plant experiences have been performed concerning the behavior and the distribution of iodine-129 in chemical processing plants. In a conventional reprocessing plant for power reactor fuel, the bulk of iodine-129 and iodine-127 is evolved into the dissolver off-gas. The remainder is dispersed over many aqueous, organic and gaseous process and waste streams of the plant. Iodine filters with silver nitrate impregnated silica were installed in the dissolver off-gas of the Karlsruhe reprocessing plant WAK in 1975 and in two vessel vent systems in 1988. The aim of the Karlsruhe iodine research program was an almost quantitative evolution of the iodine during the dissolution process to remove as much iodine with the solid bed filters as possible. After shut down of the WAK plant in December 1990 the removal efficiency of the iodine filters at low iodine concentrations had been investigated during the following years. 12 refs., 2 figs., 2 tabs.

  19. Bioaccumulation factor of tritium in oyster and tilapia

    International Nuclear Information System (INIS)

    Garcia, T.Y.; Juan, N.B.

    1984-01-01

    This paper reports on the bioaccumulation factor as well as the residence time of tritium in marine organisms such as tilapia fish (Tilapia mossambica) and oyster (Crassostrea iredalei) reared under laboratory conditions. The organisms were submerged in aquarium water containing tritium with specific activity of 1.0 nCi/ml. The samples were analyzed for tissue-free water tritium (TFWT) by freeze drying and for tissue-bound tritium (TBT) by combustion methods. Tritiated water collected was assayed using the liquid scintillation counting technique. (author)

  20. Tritium conference days; Journees tritium

    Energy Technology Data Exchange (ETDEWEB)

    Garnier-Laplace, J.; Lebaron-Jacobs, L.; Sene, M.; Devin, P.; Chretien, V.; Le Guen, B.; Guetat, Ph.; Baglan, N.; Ansoborlo, E.; Boyer, C.; Masson, M.; Bailly-Du-Bois, P.; Jenkinson, St.; Wakeford, R.; Saintigny, Y.; Romeo, P.H.; Thompson, P.; Leterq, D.; Chastagner, F.; Cortes, P.; Philippe, M.; Paquet, F.; Fournier, M.

    2009-07-01

    This document gathers the slides of the available presentations given during this conference day. Twenty presentations out of 21 are assembled in the document and deal with: 1 - tritium in the environment (J. Garnier-Laplace); 2 - status of knowledge about tritium impact on health (L. Lebaron-Jacobs); 3 - tritium, discrete but present everywhere (M. Sene); 4 - management of tritium effluents from Areva NC La Hague site - related impact and monitoring (P. Devin); 5 - tritium effluents and impact in the vicinity of EDF's power plants (V. Chretien and B. Le Guen); 6 - contribution of CEA-Valduc centre monitoring to the knowledge of atmospheric tritiated water transfers to the different compartments of the environment (P. Guetat); 7 - tritium analysis in environment samples: constraints and means (N. Baglan); 8 - organically-linked tritium: the analyst view (E. Ansoborlo); 9 - study of tritium transfers to plants via OBT/HTO{sub air} and OBT/HTO{sub free} (C. Boyer); 10 - tritium in the British Channel (M. Masson and P. Bailly-Du-Bois); 11 - tritium in British coastal waters (S. Jenkinson); 12 - recent results from epidemiology (R. Wakeford); 13 - effects of tritiated thymidine on hematopoietic stem cells (P.H. Romeo); 14 - tritium management issue in Canada: the point of view from authorities (P. Thompson); 15 - experience feedback of the detritiation process of Valduc centre (D. Leterq); 16 - difficulties linked with tritiated wastes confinement (F. Chastagner); 17 - optimisation of tritium management in the ITER project (P. Cortes); 18 - elements of thought about the management of tritium generated by nuclear facilities (M. Philippe); 19 - CIPR's position about the calculation of doses and risks linked with tritium exposure (F. Paquet); 20 - tritium think tanks (M. Fournier). (J.S.)

  1. Dispersion factors - tables and diagrams for the Karlsruhe site

    International Nuclear Information System (INIS)

    Papadopoulos, D.; Baer, M.; Honcu, S.

    1984-02-01

    Dispersion experiments were performed at the Nuclear Research Center for the Karlsruhe site. The evaluation of these experiments allowed to determine the parameters of lateral or vertical atmospheric dispersions. This report is a compilation of tables and diagrams showing the dispersion factors calculated with the help of the dispersion parameters. These dispersion factors are valid for the Karlsruhe site. They have been normalized to 1 m/s wind speed and to 1 g/s (or 1 Bq/s) source strength. (orig.) [de

  2. Simulation study of intentional tritium release experiments in the caisson assembly for tritium safety at the TPL/JAERI

    International Nuclear Information System (INIS)

    Iwai, Y.; Hayashi, T.; Kobayashi, K.; Nishi, M.

    2001-01-01

    At the Tritium Process Laboratory (TPL) in Japan Atomic Energy Research Institute (JAERI), Caisson assembly for tritium safety study (CATS) with 12 m 3 of large airtight vessel (Caisson) was fabricated for confirmation and enhancement of fusion reactor safety to estimate the tritium behavior in the case, where the tritium leak accident should happen. One of the principal objectives of the present studies is the establishment of simulation method to predict the tritium behavior after the tritium leak accident should happen in a ventilated room. As for the understanding of initial tritium behavior until the tritium concentration become steady, the precise estimation of local flow rate in a room and time-dependent release behavior from the leak point are essential to predict the tritium behavior by simulation code. The three-dimensional eddy flow model considering, tritium-related phenomena was adopted to estimate the local flow rate in the 50 m 3 /h ventilated Caisson. The time-dependent tritium release behavior from the sample container was calculated by residence time distribution function. The calculated tritium concentrations were in good agreement with the experimental observations. The primary removal tritium behavior was also investigated by another code. Tritium gas concentrations decreased logarithmically to the time by ventilation. These observations were understandable by the reason that the flow in the ventilated Caisson was regarded as the perfectly mixing flow. The concentrations of tritiated water measured, and indications of tritium concentration by tritium monitors became gradually flat. This phenomena called 'tritium soaking effect' was found to be reasonably explained by considering the contribution of the exhaustion velocity by ventilation system, and the adsorption and desorption reaction rate of tritiated water on the wall material which is SUS 304. The calculated tritium concentrations were in good agreement with the experimental observations

  3. Simplified Estimation of Tritium Inventory in Stainless Steel

    International Nuclear Information System (INIS)

    Willms, R. Scott

    2005-01-01

    An important part of tritium facility waste management is estimating the residual tritium inventory in stainless steel. This was needed as part of the decontamination and decommissioning associated with the Tritium Systems Test Assembly at Los Alamos National Laboratory. In particular, the disposal path for three, large tanks would vary substantially depending on the tritium inventory in the stainless steel walls. For this purpose the time-dependant diffusion equation was solved using previously measured parameters. These results were compared to previous work that measured the tritium inventory in the stainless steel wall of a 50-L tritium container. Good agreement was observed. These results are reduced to a simple algebraic equation that can readily be used to estimate tritium inventories in room temperature stainless steel based on tritium partial pressure and exposure time. Results are available for both constant partial pressure exposures and for varying partial pressures. Movies of the time dependant results were prepared which are particularly helpful for interpreting results and drawing conclusions

  4. Tritium uptake in cultivated plants after short-term exposure to atmospheric tritium

    International Nuclear Information System (INIS)

    Diabate, S.; Strack, S.; Paunescu, N.

    1998-01-01

    The tritium behavior in crop plants is of particular interest for the prediction of doses to humans due to ingestion. Tritium is present in plants in two forms: tritium free water tissue (TWT) and organically bound tritium (OBT). The both forms are to be considered in models calculating the ingestion dose. Potato plants belong to the major food crops in many countries and were chosen as representatives of crops whose edible parts grow under ground. Green bean were chosen as representatives of vegetables relevant in human diet. This vegetable may be consumed as green pod and it may be conserved over a long period of time. Green bean and potato plants were exposed to tritiated water vapor in the atmosphere during their generative phase of development. The uptake of tritium and the conversion into organic matter was studied under laboratory conditions at two different light intensities. The tritium concentrations in plants were followed until harvest. In leaves, the tritium uptake into tissue water under night conditions was 5-6 times lower than under day-time conditions. The initial incorporation into organic matter under night conditions was 0.7% of the tissue water concentration in leaves of both plant species. However, under light irradiation, this value increased to only 1.8% in bean leaves and 0.9% in potato leaves, which indicates a participation of processes other than photosynthesis in tritium incorporation into organic material. Organically bound tritium (OBT) was translocated into pods and tubers which represented a high percentage of the total organically bound tritium at harvest. The behavior of total OBT in all plants under study showed that OBT, once generated, is lost very slowly until harvest, in particular when storage organs of plants were in their phase of development at the time of exposure. OBT is translocated into the storage organs which may be used in the human diet and thus may contribute to the ingestion dose for a long time after the

  5. TRitium Activity Measurements with a PhotomultipliEr in Liquids–The TRAMPEL experiment

    International Nuclear Information System (INIS)

    Priester, Florian; Klein, Manuel

    2016-01-01

    Highlights: • We have set up a new test device for measuring of tritiated water samples. • The device is very compact and easy and reliable in operation. • Easy integration in flow-through systems is possible. • The device has been operated at Tritium Laboratory Karlsruhe for several months. • The lower detection limit has been improved with regard to predecessors experiments. - Abstract: A common technique for the determination of the activity of tritiated water (HTO) is liquid scintillation counting (LSC). This implies sample taking, sample preparation and radioactive waste processing afterwards. When handling highly tritiated water special care has to be taken because of possible harmfulness of the sample. Furthermore, LSC devices are mostly large, heavy and expensive. The TRAMPEL experiment aims at measuring the activity of tritiated water in-line without sample taking. The device is intended to be easy to use and operate, quite inexpensive and compact. The measurement principle is based on electrons from β-decay which induce light in commercially available scintillation fibres. The light is detected by a small photomultiplier tube (PMT). A proof-of-principle was set up for static measurements using standard stainless steel parts. The complete device has a volume of less than 0.5 l.

  6. TRitium Activity Measurements with a PhotomultipliEr in Liquids–The TRAMPEL experiment

    Energy Technology Data Exchange (ETDEWEB)

    Priester, Florian, E-mail: florian.priester@kit.edu; Klein, Manuel

    2016-11-01

    Highlights: • We have set up a new test device for measuring of tritiated water samples. • The device is very compact and easy and reliable in operation. • Easy integration in flow-through systems is possible. • The device has been operated at Tritium Laboratory Karlsruhe for several months. • The lower detection limit has been improved with regard to predecessors experiments. - Abstract: A common technique for the determination of the activity of tritiated water (HTO) is liquid scintillation counting (LSC). This implies sample taking, sample preparation and radioactive waste processing afterwards. When handling highly tritiated water special care has to be taken because of possible harmfulness of the sample. Furthermore, LSC devices are mostly large, heavy and expensive. The TRAMPEL experiment aims at measuring the activity of tritiated water in-line without sample taking. The device is intended to be easy to use and operate, quite inexpensive and compact. The measurement principle is based on electrons from β-decay which induce light in commercially available scintillation fibres. The light is detected by a small photomultiplier tube (PMT). A proof-of-principle was set up for static measurements using standard stainless steel parts. The complete device has a volume of less than 0.5 l.

  7. Tritium behavior in the Caisson, a simulated fusion reactor room

    International Nuclear Information System (INIS)

    Hayashi, Takumi; Kobayashi, Kazuhiro; Iwai, Yasunori; Yamada, Masayuki; Suzuki, Takumi; O'hira, Shigeru; Nakamura, Hirofumi; Shu, Weimin; Yamanishi, Toshihiko; Kawamura, Yoshinori; Isobe, Kanetsugu; Konishi, Satoshi; Nishi, Masataka

    2000-01-01

    In order to confirm tritium confinement ability in the deuterium-tritium (DT) fusion reactor, intentional tritium release experiments have been started in a specially fabricated test stand called 'Caisson', at Tritium Process Laboratory in Japan Atomic Energy Research Institute. The Caisson is a stainless steel leak-tight vessel of 12 m 3 , simulating a reactor room or a tritium handling room. In the first stage experiments, about 260 MBq of pure tritium was put into the Caisson under simulated constant ventilation of four times air exchanges per h. The tritium mixing and migration in the Caisson was investigated with tritium contamination measurement and detritiation behavior measurement. The experimental tritium migration and removal behavior was almost perfectly reproduced and could almost be simulated by a three-dimensional flow analysis code

  8. Tritium behavior intentionally released in the room

    International Nuclear Information System (INIS)

    Kobayashi, K.; Hayashi, T.; Iwai, Y.; Yamanishi, T.; Willms, R. S.; Carlson, R. V.

    2008-01-01

    To construct a fusion reactor with high safety and acceptability, it is necessary to establish and to ensure tritium safe handling technology. Tritium should be well-controlled not to be released to the environment excessively and to prevent workers from excess exposure. It is especially important to grasp tritium behavior in the final confinement area, such as the room and/or building. In order to obtain data for actual tritium behavior in a room and/or building, a series of intentional Tritium Release Experiments (TREs) were planned and carried out within a radiologically controlled area (main cell) at Tritium System Test Assembly (TSTA) in Los Alamos National Laboratory (LANL) under US-JAPAN collaboration program. These experiments were carried out three times. In these experiments, influence of a difference in the tritium release point and the amount of hydrogen isotope for the initial tritium behavior in the room were suggested. Tritium was released into the main cell at TSTA/LANL. The released tritium reached a uniform concentration about 30 - 40 minutes in all the experiments. The influence of the release point and the amount of hydrogen isotope were not found to be important in these experiments. The experimental results for the initial tritium behavior in the room were also simulated well by the modified three-dimensional eddy flow analysis code FLOW-3D. (authors)

  9. Tritium means of detection and of protection; Le tritium moyens de detection et de protection

    Energy Technology Data Exchange (ETDEWEB)

    Sutra-Fourcade, Y [Commissariat a l' Energie Atomique, Marcoule (France). Centre d' Etudes Nucleaires

    1967-07-01

    The report is an attempt to correlate present data concerning tritium, especially from the health physics points of view. The various detection and measurement methods are reviewed in turn: measurement of tritium in the atmosphere, in liquids and on surfaces. The operation of various types of apparatus is analyzed and the sensitivity limits deduced from laboratory tests are given. Otter sections are devoted to the means of protection which can be used against inhalation of tritium (ventilation, protective clothing) and to calculations of the changes in atmospheric pollution in a given place and of the time spent in a contaminated zone. The last part deals with the decontamination of equipment contaminated with tritium. (author) [French] Le rapport represente un essai de synthese des connaissances actuelles sur le tritium, essentiellement du point de vue de la radioprotection. Les differents moyens de detection et de mesure sont successivement passes en revue: mesure du tritium dans l'atmosphere, dans les liquides, sur les surfaces. Le fonctionnement de differents types d'appareils est analyse et les limites de sensibilite sont donnees d'apres les essais effectues en laboratoire. D'autres paragraphes sont consacres aux moyens de protection contre l'inhalation du tritium (ventilation, vetements de protection), a des calculs d'evolution de pollution atmospherique dans les locaux et de temps de presence en atmosphere contaminee. La derniere partie se rapporte a la de contamination de materiel contamine par du tritium. (auteur)

  10. Study and application of hydrophobic catalyst in treating tritium waste

    International Nuclear Information System (INIS)

    Dan, Gui-ping; Zhang, Dong; Qiu, Yong-mei; Yuan, Guo-Qi

    2008-01-01

    Tritium decontamination from tritium waste is important for the management of tritium waste. Tritium removal from waste tritium oxide can not only get tritium, but also reduce the amount of waste tritium. At the meantime, by cleaning the tritium pollution gas can also reduce the tritium exhausting from tritium facility. At present, the process of hydrogen isotopic exchange in tritium removal from waste tritium oxide and coordination oxidisation-adsorption in tritium cleaning from waste tritium gas are the mainly methods. In these methods, hydrophobic catalysts which can be used in these process are the key technology. There are many references about their preparing and applying, but few on the estimation about their performance changing during their applying. However, their performance stability on isotopic catalytic exchange and catalytic oxidisation will affect their using in reaction. Hydrophobic catalyst Pt-SDB which can be used in tritium isotopic exchange between tritium oxide and hydrogen and the cleaning of tritium pollution gas have been prepared in our laboratory in early days. In order to estimating their performance stability during their using, this work will investigate their stability on their catalytic activity and their radiation-resistance tritium. (author)

  11. Review of tritium behavior in HTGR systems

    International Nuclear Information System (INIS)

    Gainey, B.W.

    1976-01-01

    The available experimental evidence from laboratory and reactor studies pertaining to tritium production, capture, release, and transport within an HTGR leading to release to the environment is reviewed. Possible mechanisms for release, capture, and transport are considered and a simple model was used to calculate the expected tritium release from HTGRs. Comparison with Federal regulations governing tritium release confirm that expected HTGR releases will be well within the allowable release limits. Releases from HTGRs are expected to be somewhat less than from LWRs based on the published LWR operating data. Areas of research deserving further study are defined but it is concluded that a tritium surveillance at Fort St. Vrain is the most immediate need

  12. Tritium means of detection and of protection

    International Nuclear Information System (INIS)

    Sutra-Fourcade, Y.

    1967-01-01

    The report is an attempt to correlate present data concerning tritium, especially from the health physics points of view. The various detection and measurement methods are reviewed in turn: measurement of tritium in the atmosphere, in liquids and on surfaces. The operation of various types of apparatus is analyzed and the sensitivity limits deduced from laboratory tests are given. Otter sections are devoted to the means of protection which can be used against inhalation of tritium (ventilation, protective clothing) and to calculations of the changes in atmospheric pollution in a given place and of the time spent in a contaminated zone. The last part deals with the decontamination of equipment contaminated with tritium. (author) [fr

  13. Low-level waste drum staging building at Weapons Engineering Tritium Facility, TA-16, Los Alamos National Laboratory, Los Alamos, New Mexico. Environmental Assessment

    International Nuclear Information System (INIS)

    1994-08-01

    The proposed action is to place a 3 meter (m) by 4.5 m (10 ft x 15 ft) prefabricated storage building (transportainer) adjacent to the existing Weapons Engineering Tritium Facility (WETF) at Technical Area (TA-) 16, Los Alamos National Laboratory (LANL), and to use the building as a staging site for sealed 55 galllon drums of noncompactible waste contaminated with low levels of tritium (LLW). Up to eight drums of waste would be accumulated before the waste is moved by LANL Waste Management personnel to the existing on-site LLW disposal area at TA-54. The drum staging building would be placed on a bermed asphalt pad, near other existing accumulation structures for office trash and compactible LLW. The no-action alternative is to continue storing drums of LLW in the WETF laboratories where they occupy valuable work space, hamper movement of personnel and equipment, and require waste management personnel to enter those laboratories in order to remove filled drums. No new waste would be generated by implementing the proposed action; no changes or increases in WETF operations or waste production rate are anticipated as a result of staging drums of LLW outside the main laboratory building. The site for the LLW drum staging building would not impact any sensitive areas. Tritium emissions from the drums of LLW were included within the source term for normal operations at the WETF; the cumulative impacts would not be increased

  14. Tritium analysis at TFTR

    International Nuclear Information System (INIS)

    Voorhees, D.R.; Rossmassler, R.L.; Zimmer, G.

    1995-01-01

    The tritium analytical system at TFRR is used to determine the purity of tritium bearing gas streams in order to provide inventory and accountability measurements. The system includes a quadrupole mass spectrometer and beta scintillator originally configured at Monsanto Mound Research Laboratory in the late 1970's and early 1980's. The system was commissioned and tested between 1991 and 1992 and is used daily for analysis of calibration standards, incoming tritium shipments, gases evolved from uranium storage beds and measurement of gases returned to gas holding tanks. The low resolution mass spectrometer is enhanced by the use of a metal getter pump to aid in resolving the mass 3 and 4 species. The beta scintillator complements the analysis as it detects tritium bearing species that often are not easily detected by mass spectrometry such as condensable species or hydrocarbons containing tritium. The instruments are controlled by a personal computer with customized software written with a graphical programming system designed for data acquisition and control. A discussion of the instrumentation, control systems, system parameters, procedural methods, algorithms, and operational issues will be presented. Measurements of gas holding tanks and tritiated water waste streams using ion chamber instrumentation are discussed elsewhere

  15. List of scientific publications of Nuclear Research Center Karlsruhe 1983

    International Nuclear Information System (INIS)

    1984-04-01

    This report contains the titles of the publications edited in the year 1983. The scientific and technical-scientific publications of the Nuclear Research Center Karlsruhe are printed as books, as original contributions in scientific or technical specialists' journals, as scripts for habilitation, thesis, scripts for diploma, as patents, as KfK-Reports (KfK=Kernforschungszentrum Karlsruhe) and are being presented as lectures on scientific meetings. No further separate abstracts of this list of publications were prepared. (orig./HBR) [de

  16. Tritium - is it underestimated

    International Nuclear Information System (INIS)

    Whitlock, G.D.

    1980-01-01

    Practical experience in the use of the Whitlock Tritium Meter in various laboratories and industrial establishments throughout the world has shown that:-a) Measurements by smear/wipe tests can often be in error by three orders of magnitude or more; b) Sub-visual surface scratches (8μ deep) are radiologically important; c) Volatile forms of tritium exist in 20% to 30% of establishments visited. It is concluded that a) the widespread use of smear/wipe techniques for the assessment of 3 H surface contamination based on the assumption that 10% of removable activity is collected by the smear/wipe should be re-examined and b) tritium surface contamination assessed as 'fixed' can contain volatile fractions with a hazard potential which may be considerably greater than the hazard from removable activity at present covered by maximum permissible level recommendations. (H.K.)

  17. Tritium Mitigation/Control for Advanced Reactor System

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaodong; Christensen, Richard; Saving, John P

    2018-03-31

    were designed and laboratory-scale experiments were proposed for the validation of the proposed tritium removal facilities.

  18. Investigation of tritium in groundwater at Site 300

    International Nuclear Information System (INIS)

    Buddemeier, R.W.

    1985-01-01

    In 1984, landfill monitoring wells at Site 300, a Lawrence Livermore National Laboratory (LLNL) explosive test site, revealed the presence of groundwater contaminated with tritium. These tritium levels were in excess of the State of California drinking water standard. A major investigation was initiated that included a search of records concerning tritium use, disposal, and previous analyses, and a survey of tritium levels in soil, vegetation, and water in contaminated and potentially contaminated areas. Over 50 boreholes were drilled for this investigation to characterize the local hydrogeology and tritium distributions, and a network of soil moisture and groundwater monitoring points was installed. This report presents the work completed through the end of September 1985: the records search; records for drilling completed as part of this study; characterization of the geology, hydrology, and tritium distributions in the contaminated area; and an initial assessment of the probable tritium sources, pathways, and migration rates. 19 refs

  19. Investigation of tritium in groundwater at Site 300

    Energy Technology Data Exchange (ETDEWEB)

    Buddemeier, R.W.

    1985-12-30

    In 1984, landfill monitoring wells at Site 300, a Lawrence Livermore National Laboratory (LLNL) explosive test site, revealed the presence of groundwater contaminated with tritium. These tritium levels were in excess of the State of California drinking water standard. A major investigation was initiated that included a search of records concerning tritium use, disposal, and previous analyses, and a survey of tritium levels in soil, vegetation, and water in contaminated and potentially contaminated areas. Over 50 boreholes were drilled for this investigation to characterize the local hydrogeology and tritium distributions, and a network of soil moisture and groundwater monitoring points was installed. This report presents the work completed through the end of September 1985: the records search; records for drilling completed as part of this study; characterization of the geology, hydrology, and tritium distributions in the contaminated area; and an initial assessment of the probable tritium sources, pathways, and migration rates. 19 refs.

  20. Tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Cole, M.J.; Combs, S.K.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foust, C.R.; Langley, R.A.; Milora, S.L.; Qualls, A.L.; Wilgen, J.B.; Schmidt, G.L.; Barnes, G.W.; Persing, R.G.

    1992-01-01

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) phase. The existing TFTR deuterium pellet injector (DPI) has been modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed to provide pellets ranging from 3.3 to 4.5 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller. The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed, and the TPI was tested at ORNL with deuterium pellet. Results of the limited testing program at ORNL are described. The TPI is being installed on TFTR to support the D-D run period in 1992. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and secondary tritium containment systems and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  1. Tritium transport around nuclear facilities

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Sweet, C.W.

    1981-01-01

    The transport and cycling of tritium around nuclear facilities is reviewed with special emphasis on studies at the Savannah River Laboratory, Aiken, South Carolina. These studies have shown that the rate of deposition from the atmosphere, the site of deposition, and the subsequent cycling are strongly influenced by the compound with which the tritium is associated. Tritiated hydrogen is largely deposited in the soil, while tritiated water is deposited in the greatest quantity in the vegetation. Tritiated hydrogen is converted in the soil to tritiated water that leaves the soil slowly, through drainage and transpiration. Tritiated water deposited directly to the vegetation leaves the vegetation more rapidly after exposure. Only a small part of the tritium entering the vegetation becomes bound in organic molecules. However, it appears tht the existence of soil organic compounds with tritium concentrations greater than the equilibrium concentration in the associated water can be explained by direct metabolism of tritiated hydrogen in vegetation

  2. Tritium transport around nuclear faciliteis

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Sweet, C.W.

    1982-01-01

    The transport and cycling of tritium around nuclear facilities is reviewed with special emphasis on studies at the Savannah River Laboratory, Aiken, South Carolina. These studies have shown that the rate of deposition from the atmosphere, the site of deposition, and the subsequent cycling are strongly influenced by the compound with which the tritium is associated. Tritiated hydrogen is largely deposited in the soil, while tritiated water is deposited in the greatest quantity in the vegetation. Tritiated hydrogen is converted in the soil to tritiated water that leaves the soil slowly, through drainage and transpiration. Tritiated water deposited directly to the vegetation leaves the vegetation more rapidly after exposure. Only a small part of the tritium entering the vegetation becomes bound in organic molecules. However, it appears that the existence of soil organic compounds with tritium concentrations greater than the equilibrium concentration in the associated water can be explained by direct metabolism of tritiated hydrogen in vegetation. (J.P.N.)

  3. Conceptual design of an emergency tritium clean-up system

    International Nuclear Information System (INIS)

    Muller, M.E.

    1978-01-01

    The Los Alamos Scientific Laboratory (LASL) has been selected by the Department of Energy (DOE) to design, build, and operate a facility to demonstrate the operability of the tritium-related subsystems that would be required to successfully develop fusion reactor systems. An emergency tritium clean-up subsystem (ETC) for this facility will be designed to remove tritium from the cell atmosphere if an accident causes the primary and secondary tritium containment to be breached. Conceptually, the ETC will process cell air at the rate of 0.65 actual m 3 /s and will achieve an overall decontamination factor of 10 6 per tritium oxide (T 2 O). Following the maximum credible release of 100 g of tritium, the ETC will restore the cell to opertional status within 24 h without a significant release of tritium to the environment

  4. Distribution of tritium in a chronically contaminated lake

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Frank, M.L.

    1978-01-01

    White Oak Lake located on the U.S. Department of Energy's Oak Ridge Reservation receives a continuous input of tritium from operating facilities and waste disposal operations at the Oak Ridge National Laboratory. The purpose of this paper was (1) to determine the distribution and concentration of tritium in an aquatic environment which has received releases of tritium significantly greater than expected releases from nuclear power plants, and (2) to determine the effect of fluctuating tritium concentrations in ambient water on the concentration of tritium in fish. Aquatic biota from White Oak Lake were analyzed for tissue water tritium and tissue bound tritium. Except for one plant species, the ratio of tissue water tritium to lake water tritium ranged from 0.80 to 1.02. The tissue water tritium in Gambusia affinis, the mosquito fish, followed closely the significant changes in tritium concentration in lake water. The turnover of tissue water tritium was very rapid; Gambusia from White Oak Lake eliminated 50% of their tissue water tritium in 14 min. The ratio of the specific activity of the tissue bound tritium to the specific activity of the lake water was greatest for the larger species of fish but never exceeded unity. The radiation dose to man from tritium which could be acquired through the aquatic food chain was relatively small when compared to other pathways. The whole body dose to a hypothetical individual taking in concentrations of tritium measured in White Oak Lake was 1.8 mrem/yr from eating fish and 10.0 mrem/yr from drinking water

  5. Five years of tritium handling experience at the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Carlson, R.V.

    1989-01-01

    The Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory is a facility designed to develop and demonstrate, in full scale, technologies necessary for safe and efficient operation of tritium systems required for tokamak fusion reactors. TSTA currently consists of systems for evacuating reactor exhaust gas with compound cryopumps; for removing impurities from plasma exhaust gas and recovering the chemically-combined tritium; for separating the isotopes of hydrogen; for transfer pumping; or storage of hydrogen isotopes; for gas analysis; and for assuring safety by the necessary control, monitoring, and tritium removal from effluent streams. TSTA also has several small scale experiments to develop and test new equipment and processes necessary for fusion reactors. In this paper, data on component reliability, failure types and rates, and waste quantities are presented. TSTA has developed a Quality Assurance program for preparing and controlling the documentation of the procedures required for the design, purchase, and operation of the tritium systems. Operational experience under normal, abnormal, and emergency conditions is presented. One unique aspect of operations at TSTA is that the design personnel for the TSTA systems are also part of the operating personnel. This has allowed for the relatively smooth transition from design to operations. TSTA has been operated initially as a research facility. As the system is better defined, operations are proceeding toward production modes. The DOE requirements for the operation of a tritium facility like TSTA include personnel training, emergency preparedness, radiation protection, safety analysis, and preoperational appraisals. The integration of these requirements into TSTA operations is discussed. 4 refs., 3 figs., 3 tabs

  6. The Safety and Tritium Applied Research (STAR) Facility: Status-2004

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Pawelko, R.J.; Sharpe, J.P.; Schuetz, S.T.; Petti, D.A.

    2005-01-01

    The Safety and Tritium Applied Research (STAR) Facility, a US DOE National User Facility at the Idaho National Engineering and Environmental Laboratory (INEEL), comprises capabilities and infrastructure to support both tritium and non-tritium research activities important to the development of safe and environmentally friendly fusion energy. Research thrusts include (1) interactions of tritium and deuterium with plasma-facing-component (PFC) materials, (2) fusion safety issues [PFC material chemical reactivity and dust/debris generation, activation product mobilization, tritium behavior in fusion systems], and (3) molten salts and fusion liquids for tritium breeder and coolant applications. This paper updates the status of STAR and the capabilities for ongoing research activities, with an emphasis on the development, testing and integration of the infrastructure to support tritium research activities. Key elements of this infrastructure include a tritium storage and assay system, a tritium cleanup system to process glovebox and experiment tritiated effluent gases, and facility tritium monitoring systems

  7. Karlsruhe nuclear research center. Main activities

    International Nuclear Information System (INIS)

    The article reports on problems of securing the fuel supply for nuclear power generation, on reprocessing and ultimate storage of radioactive material, on the safety of nuclear facilities, on new technologies and basic research, and on the infrastructure of the Karlsruhe nuclear research center, as well as finance and administration. (HK) [de

  8. Status of nuclear data activities at Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan)

    1997-03-01

    This is a brief introduction to nuclear data activity at Karlsruhe Research Center. Some URLs concerned are given. Topics mentioned here are, the FENDL and JEF/EFF project at INR, and measurements of neutron capture cross sections at IK III. (author)

  9. Tritium extraction technologies and DEMO requirements

    Energy Technology Data Exchange (ETDEWEB)

    Demange, D., E-mail: david.demange@kit.edu [Karlsruhe Institute of Technology, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Antunes, R.; Borisevich, O.; Frances, L. [Karlsruhe Institute of Technology, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rapisarda, D. [Laboratorio Nacional de Fusión, EURATOM-CIEMAT, 28040 Madrid (Spain); Santucci, A. [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Utili, M. [ENEA CR Brasimone, 40032 Camugnano, BO (Italy)

    2016-11-01

    Highlights: • We detail the R&D plan for tritium technology of the European DEMO breeding blanket. • We study advanced and efficient extraction techniques to improve tritium management. • We consider inorganic membranes and catalytic membrane reactor for solid blankets. • We consider permeator against vacuum and vacuum sieve tray for liquid blankets. - Abstract: The conceptual design of the tritium extraction system (TES) for the European DEMO reactor is worked out in parallel for four different breeding blankets (BB) retained by EUROfusion. The TES design has to be tackled in an integrated manner optimizing the synergy with the directly interfacing inner fuel cycle, while minimizing the tritium permeation into the coolant. Considering DEMO requirements, it is most likely that only advanced technologies will be suitable for the tritium extraction systems of the BB. This paper overviews the European work programme for R&D on tritium technology for the DEMO BB, summaries the general first outcomes, and details the specific and comprehensive R&D program to study experimentally immature but promising technologies such as vacuum sieve tray or permeator against vacuum for tritium extraction from PbLi, and advanced inorganic membranes and catalytic membrane reactor for tritium extraction from He. These techniques are simple, fully continuous, likely compact with contained energy consumption. Several European Laboratories are joining their efforts to deploy several new experimental setups to accommodate the tests campaigns that will cover small scale experiments with tritium and inactive medium scale tests so as to improve the technology readiness level of these advanced processes.

  10. Tritium systems test assembly stabilization

    International Nuclear Information System (INIS)

    Jasen, William G.; Michelotti, Roy A.; Anast, Kurt R.; Tesch, Charles

    2004-01-01

    The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium technology Research and Development (R and D) primarily for future fusion power reactors. The facility was conceived in mid 1970's, operations commenced in early 1980's, stabilization and deactivation began in 2000 and were completed in 2003. The facility will remain in a Surveillance and Maintenance (S and M) mode until the Department of Energy (DOE) funds demolition of the facility, tentatively in 2009. A safe and stable end state was achieved by the TSTA Facility Stabilization Project (TFSP) in anticipation of long term S and M. At the start of the stabilization project, with an inventory of approximately 140 grams of tritium, the facility was designated a Hazard Category (HC) 2 Non-Reactor Nuclear facility as defined by US Department of Energy standard DOE-STD-1027-92 (1997). The TSTA facility comprises a laboratory area, supporting rooms, offices and associated laboratory space that included more than 20 major tritium handling systems. The project's focus was to reduce the tritium inventory by removing bulk tritium, tritiated water wastes, and tritium-contaminated high-inventory components. Any equipment that remained in the facility was stabilized in place. All of the gloveboxes and piping were rendered inoperative and vented to atmosphere. All equipment, and inventoried tritium contamination, remaining in the facility was left in a safe-and-stable state. The project used the End Points process as defined by the DOE Office of Environmental Management (web page http://www.em.doe.- gov/deact/epman.htmtlo) document and define the end state required for the stabilization of TSTA Facility. The End Points process added structure that was beneficial through virtually all phases of the project. At completion of the facility stabilization project the residual tritium inventory was approximately 3,000 curies, considerably less than the 1.6-gram threshold for a HC 3 facility. TSTA is now

  11. Tritium

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The role played the large amount supply of tritium and its effects are broadly reviewed. This report is divided into four parts. The introductory part includes the history of tritium research. The second part deals with the physicochemical properties of tritium and the compounds containing tritium such as tritium water and labeled compounds, and with the isotope effects and self radiation effects of tritium. The third part deals with the tritium production by artificial reaction. Attention is directed to the future productivity of tritium from B, Be, N, C, O, etc. by using the beams of high energy protons or neutrons. The problems of the accepting market and the accuracy of estimating manufacturing cost are discussed. The expansion of production may bring upon the reduction of cost but also a large possibility of social impact. The irradiation problem and handling problem in view of environmental preservation are discussed. The fourth part deals with the use of tritium as a target, as a source of radiation or light, and its utilization for geochemistry. The future development of the solid tritium target capable of elongating the life of neutron sources is expected. The rust thickness of the surface of iron can be measured with the X-ray of Ti-T or Zr-T. The tritium can substitute self-light emission paint or lamp. The tritium is suitable for tracing the movement of sea water and land surface water because of its long half life. (Iwakiri, K.)

  12. The ''Nuclear-Karlsruhe'' air-filter system

    International Nuclear Information System (INIS)

    Berliner, P.; Ohlmeyer, M.; Stotz, W.

    1976-01-01

    Increasing requirements for exhaust-air filter systems used in nuclear facilities induced the Gesellschaft fuer Kernforschung to develop the ''Nuclear-Karlsruhe'' HEPA filter system. This novel development has profited by experience gained in previous incidents as well as by maitenance and decontamination work performed with different HEPA filter systems. The proved ''Nuclear-Karlsruhe'' system takes equally into account the demands for optimum safety, maximum efficiency and economy, and is distinguished by the following features: (1) The air current is defected by 180 0 in the casing. Deflection causes quite a number of improvements, results in substantial reduction of space requirements, and avoids the dispersion of pollutants to the clean-air side. Besides, the HEPA filter is protected from damage by condensed particles or foreign materials entrained; (2) The ''Nuclear-Karlsruhe'' system allows gas-tight filter replacement. Special replacement collars have been provided at the casing, which allow the tight fastening of replacement bags which are self-locking. (3) In-place testing in the operating condition can be carried out very conveniently because the air is deflected. Minimum leaks in the filter medium or in the filter gasket can be detected by the high-sensitivity visual oil-thread test, which makes leaks distinctly visible as oil mist threads through a transparent front window provided on the clean-air side. The test takes only some minutes and its sensitivity is hardly matched by any other technique. (4) The clamping mechanism is installed outside the casing, i.e. outside the polluted or aggressive media. The contact force is spring-loaded absolutely uniformly to the circular filter gasket. (5) For practical and econmic reasons the filter casings can be locked individually so as to be gas-tight. (6) The entire system is made of stainless or coated steel and metal parts which are corrosion and fire-resistant. (author)

  13. Tritium processing using metal hydrides

    International Nuclear Information System (INIS)

    Mallett, M.W.

    1986-01-01

    E.I. duPont de Nemours and Company is commissioned by the US Department of Energy to operate the Savannah River Plant and Laboratory. The primary purpose of the plant is to produce radioactive materials for national defense. In keeping with current technology, new processes for the production of tritium are being developed. Three main objectives of this new technology are to ease the processing of, ease the storage of, and to reduce the operating costs of the tritium production facility. Research has indicated that the use of metal hydrides offers a viable solution towards satisfying these objectives. The Hydrogen and Fuels Technology Division has the responsibility to conduct research in support of the tritium production process. Metal hydride technology and its use in the storage and transportation of hydrogen will be reviewed

  14. Tritium Measurements in Slovenia - Chronology Till 2004

    International Nuclear Information System (INIS)

    Logar, Jasmina Kozar; Vaupotic, Janja; Kobal, Ivan

    2005-01-01

    Almost all the analyses of tritium in Slovenia have been performed by the tritium laboratory at the Jozef Stefan Institute. Nearly 90 % of its measurements have been covered by two national programs, both approved by the Slovenian Nuclear Safety Administration: the radioactive monitoring program in the environs of Krsko Nuclear Power Plant (KNPP) and the program of global radioactive contamination monitoring in the environment. These programs include samples of groundwaters, surface waters, precipitation and drinking waters, as well as liquid and gaseous effluents from KNPP. Tritium was determined in some research projects and in hydrological studies of thermal waters, groundwater and coalmine waters. Tritium in the Karst region was mapped as well as the springs of entire territory of Slovenia. Around 5500 samples have been analyzed up to 2004

  15. Electrolyser for CECE process

    International Nuclear Information System (INIS)

    Lee, Min Soo; Chung, Hong Suk; Paek, Seung Woo; Kim, Kwang Rag; Yim, Sung Paal; Ahn, Do Hee

    2005-01-01

    A combined electrolysis catalytic exchange (CECE) facility employing a liquid phase catalytic exchange (LPCE) column for water detritiation is currently being studied at the tritium treatment laboratory in KAERI, which is also adopted for water detritiation in JET, ITER, and TLK (tritium laboratory Karlsruhe). The CECE facility is needed for process performance studies, to support the design of the Water Detritiation System for the nuclear industry, such as nuclear reactor operations and a radioisotope production, and medical research. The design and commissioning of this demonstration scale facility to investigate the achievable tritium decontamination factor are ongoing. A simple schematic of the CECE process is shown in Figure 1. The key elements of the facility are an electrolyser for conversion of tritiated water to gaseous hydrogen, and a LPCE column where this hydrogen is detritiated via isotopic exchange with liquid water

  16. Elemental tritium deposition and conversion in the terrestrial environment

    International Nuclear Information System (INIS)

    Dunstall, T.G.; Ogram, G.L.; Spencer, F.S.

    1985-01-01

    Studies were undertaken to determine the deposition and conversion of atmospheric elemental tritium in soils and vegetation. In the field tritium deposition velocities ranged between 0.007 and 0.07 cm s -1 during the summer and autumn and were less than 0.0005 cm s -1 during the winter. Deposition velocity was found to depend significantly on soil water content, total pore space and organic content in controlled laboratory experiments. In contrast to soils, exposure of vegetation to atmospheric elemental tritium resulted in negligible uptake and conversion in foliage. These studies are of significance to the assessment of behaviour and impact of elemental tritium releases

  17. Measurement of tritium in the Sava and Danube Rivers.

    Science.gov (United States)

    Grahek, Željko; Breznik, Borut; Stojković, Ivana; Coha, Ivana; Nikolov, Jovana; Todorović, Nataša

    2016-10-01

    Two nuclear power plants (NPP), the KrškoNPP (Slovenia) on the Sava River and the Paks NPP (Hungary) on the Danube River, are located in the immediate vicinity of Croatia and Serbia. Some of the radioactivity monitoring around the NPPs involves measuring tritium activity in the waters of rivers and wells. The authors present the tritium measurement results taken over several years from the Sava and Danube Rivers, and groundwater. The measurements were carried out in two laboratories including an impact assessment of the tritium released into the rivers and groundwater. The routine methods for determining tritium (with/without electrolytic enrichment) were tested in two laboratories using two different instruments, a Tri-Carb 3180 and Quantulus 1220. Detection limits for routine measurements were calculated in compliance with ISO 11929 and Currie relations, and subsequently the results were compared with those determined experimentally. This has shown that tritium can be reliably determined within a reasonable period of time when its activity is close to the calculated detection limit. The Krško NPP discharged 62 TBq of tritium into the River Sava over a period of 6 years (23% of permitted activity, 45 TBq per year). The natural level of tritium in the Sava River and groundwater is 0.3-1 Bq/l and increases when discharges exceed 1 TBq per month. Usually, the average monthly activity in the Sava River and groundwater is maintained at a natural level. The maximum measured activity was 16 Bq/l in the Sava River and 9.5 Bq/l in groundwater directly linked to the river. In the majority of water samples from the Danube River, measured tritium activity ranged between 1 and 2 Bq/l. The increased tritium levels in the Danube River are more evident than in the Sava River because tritium activity above 1.5 Bq/l appears more frequently on the Danube River. All measured values were far below the allowed tritium limit in drinking water. Dose assessment has shown that

  18. Magmatic tritium

    International Nuclear Information System (INIS)

    Goff, F.; Aams, A.I.; McMurtry, G.M.; Shevenell, L.; Pettit, D.R.; Stimac, J.A.; Werner, C.

    1997-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Detailed geochemical sampling of high-temperature fumaroles, background water, and fresh magmatic products from 14 active volcanoes reveal that they do not produce measurable amounts of tritium ( 3 H) of deep origin ( 2 O). On the other hand, all volcanoes produce mixtures of meteoric and magmatic fluids that contain measurable 3 H from the meteoric end-member. The results show that cold fusion is probably not a significant deep earth process but the samples and data have wide application to a host of other volcanological topics

  19. The tritium systems test assembly: Overview and recent results

    International Nuclear Information System (INIS)

    Bartlit, J.R.; Anderson, J.L.

    1988-01-01

    The fusion technology development program for tritium in the US is centered around the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The TSTA is a full-scale system of reactor exhaust gas reprocessing for an ITER-sized machine. That is, TSTA has the capacity to process tritium in a closed loop mode at the rate of 1 kg per day, requiring a tritium inventory of about 100 g. The TSTA program also interacts with all other tritium-related fusion technology programs in the US and all major programs abroad. This report summarizes the current status, results and interactions of the TSTA. Special emphasis is given to operations in May/June using large compound cryopumps that completed the fuel loop integration of all TSTA subsystems for the first time. 6 refs., 2 figs

  20. The INEL Tritium Research Facility

    International Nuclear Information System (INIS)

    Longhurst, G.R.

    1990-01-01

    The Tritium Research Facility (TRF) at the Idaho National Engineering Laboratory (INEL) is a small, multi-user facility dedicated to research into processes and phenomena associated with interaction of hydrogen isotopes with other materials. Focusing on bench-scale experiments, the main objectives include resolution of issues related to tritium safety in fusion reactors and the science and technology pertinent to some of those issues. In this report the TRF and many of its capabilities will be described. Work presently or recently underway there will be discussed, and the implications of that work to the development of fusion energy systems will be considered. (orig.)

  1. The INEL Tritium Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R. (Idaho National Engineering Lab., Idaho Falls (USA))

    1990-06-01

    The Tritium Research Facility (TRF) at the Idaho National Engineering Laboratory (INEL) is a small, multi-user facility dedicated to research into processes and phenomena associated with interaction of hydrogen isotopes with other materials. Focusing on bench-scale experiments, the main objectives include resolution of issues related to tritium safety in fusion reactors and the science and technology pertinent to some of those issues. In this report the TRF and many of its capabilities will be described. Work presently or recently underway there will be discussed, and the implications of that work to the development of fusion energy systems will be considered. (orig.).

  2. Japanese university program on tritium radiobiology and environmental tritium

    International Nuclear Information System (INIS)

    Okada, Shigefumi

    1989-01-01

    The university program of the tritium study in the Special Research Project of Nuclear Fusion (1980-1989) is now on its 9th year. The study's aim is to assess tritium risk on man and environment for development of Japanese Nuclear Fusion Program. The tritium study begun by establishing various tritium safe-handling devices and methods to protect scientists from tritium contamination. Then, the tritium studies were initiated in three areas: The first was the studies on biological effects of tritiated water, where their RBE values, their modifying factors and mechanisms were investigated. Also, several human monitoring systems for detection of tritium-induced damage were developed. The second was the metabolic studies of tritium, including a daily tritium monitoring system, methods to enhance excretion of tritiated water from body and means to prevent oxidation of tritium gas in the body. The third was the study of environmental tritium. Tritium levels in environmental waters of various types were estimated all-over in Japan and their seasonal or regional variation were analyzed. Last two years, the studies were extended to estimate tritium activities of plants, foods and man in Japan. (author)

  3. Behaviour of tritium in the environment

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: There is considerable interest in the behaviour of radionuclides of global character that may be released to the environment through the development of nuclear power. Tritium is of particular interest due to its direct incorporation into water and organic tissue. Although there has been a large decrease (more than ten times) in tritium concentration since the stopping of nuclear weapons tests in the atmosphere, the construction in the near future of many water reactors and in the far future of fusion reactors could increase the present levels. Progress has been made during recent years in the assessment of tritium distribution, in detection methods and in biological studies While several meetings have given scientists an opportunity to present papers on tritium, no specific symposium on this topic has been organized by the IAEA since 1961. Thus the purpose of the meeting was to review recent advances and to report on the practical aspects of tritium utilization and monitoring. The symposium was jointly organized with OECD/NEA, in co-operation with the US Department of Energy and the Lawrence Livermore Laboratory. Papers were presented on distribution of tritium, evaluation of future discharges, measurement of tritium, tritium in the aquatic environment, tritium in the terrestrial environment, tritium in man and monitoring of tritium Very interesting papers were given on distribution of tritium and participants got a good idea of the circulation of this radionuclide Some new data were provided on tritium pollution from luminous compounds and we learnt that the tritium release of the Swiss luminous compounds industry is of the same order of magnitude as the tritium release of Windscale. Projections indicate that, in the USA, the total quantity of tritium contained in discarded digital watches will be equal, approximately ten years in the future, to the release of nuclear power reactors Whereas nuclear reactor discharges are controlled there is no control

  4. Tritium research and technology facilities at the JRC-Ispra

    International Nuclear Information System (INIS)

    Dworschak, H.; Mannone, F.; Perujo, A.; Pierini, G.; Reiter, F.; Vassallo, G.; Viola, A.; Camposilvan, J.; Douglas, K.; Grassi, G.; Lolli Ceroni, P.; Simonetta, A.; Spelta, B.

    1990-01-01

    A set of experiments which are of prominent interest for the development of nuclear fusion technology in Europe are planned by the JRC-Ispra for the near future, in the frame of experimental activities to be performed in ETHEL, the European Tritium Handling Experimental Laboratory under construction at the Ispra site. These experiments already included for the most part as JRC-Task Action Sheets in the 1989-1991 European Technology Programme Actions will initiate in ETHEL on a fully active laboratory scale starting mid-1991. They will concern the following research areas: Recycling of tritium from first wall materials; Tritium recovery from water cooled Pb-17Li blankets; Detritiation of ventilation atmospheres; Plasma exhaust processing; Tritiazed waste management. In view of fully active tritium experiments in ETHEL and to obtain information of the basic processes involved, since 1985 preparatory experimental studies are being performed at the JRC-Ispra laboratories using hydrogen and deuterium. Furthermore, always with regard to ETHEL experiments, particular attention is given to possible technical and managerial problems which potentially may arise in this context. To identify at an early stage such problems a questionnaire has been developed and distributed to researchers in conjunction with an ETHEL information packet. The questionnaire demands information regarding the scope, design and operation of the intended experiment as well as planning and required support to be supplied by ETHEL. A brief description of experimental preparatory studies and future tritium handling experiments in ETHEL as well of the ETHEL facility is here presented. (orig.)

  5. On the conversion of tritium units to mass fractions for hydrologic applications.

    Science.gov (United States)

    Stonestrom, David A; Andraski, Brian J; Cooper, Clay A; Mayers, C Justin; Michel, Robert L

    2013-06-01

    We develop a general equation for converting laboratory-reported tritium levels, expressed either as concentrations (tritium isotope number fractions) or mass-based specific activities, to mass fractions in aqueous systems. Assuming that all tritium is in the form of monotritiated water simplifies the derivation and is shown to be reasonable for most environmental settings encountered in practice. The general equation is nonlinear. For tritium concentrations c less than 4.5 × 10(12) tritium units (TU) - i.e. specific tritium activitiesconversion is linear for all practical purposes. Terrestrial abundances serve as a proxy for non-tritium isotopes in the absence of sample-specific data. Variation in the relative abundances of non-tritium isotopes in the terrestrial hydrosphere produces a minimum range for the mantissa of the conversion factor of [2.22287; 2.22300].

  6. Management of tritium-contaminated wastes a survey of alternative options

    International Nuclear Information System (INIS)

    Mannone, F.

    1990-01-01

    The European Tritium Handling Experimental Laboratory (ETHEL) under construction on the site of Ispra Joint Research Centre of the Commission of European Communities has been commissioned to experimentally develop operational and environmental safety aspects related to the tritium technology in fusion, i.e. dealing with the behaviour and reliability of materials, equipment and containment systems under tritium impact. For this reason a part of the experimental activities to be performed in ETHEL will be devoted to laboratory research on tritiated waste management. However, since all experimental activities planned for the execution in ETHEL will by itselves generate tritiated wastes, current strategies and practices to be applied for the routine management of these wastes need also to be defined. To attain this target an adequate background information must be provided, which is the intent of this report. Through an exhaustive literature survey tritiated waste management options till now investigated or currently applied in several countries have been assessed. A particular importance has been attached to the tritium leach test programmes, whose results enable to assess the tritium retention efficiency of the various waste immobilization options. The conclusions resulting from the overall assessment are presented

  7. The cryogenic pumping section of KATRIN and the test experiment TRAP

    CERN Document Server

    Eichelhardt, F

    2011-01-01

    The Karlsruhe Tritium Neutrino experiment (KATRIN) employs a Cryogenic Pumping Section (CPS) at ~ 4.5 K to suppress the tritium penetration into the spectrometers. A test experiment (TRAP - Tritium Argon frost Pump) has been set up to investigate the tritium pumping performance of the CPS.

  8. Status of tritium technology development for magnetic-fusion energy

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1983-01-01

    The development of tritium technology for the magnetic fusion energy program has progressed at a rapid rate over the past two years. The focal points for this development in the United States have been the Tritium Systems Test Assembly at Los Alamos and the FED/INTOR studies supported by the Fusion Engineering Design Center at Oak Ridge. In Canada the Canadian Fusion Fuel Technology Project has been initiated and promises to make significant contributions to the tritium technology program in the next few years. The Japanese government has now approved funding for the Tritium Processing Laboratory at the Japan Atomic Energy Research Institute's Tokai Research Establishment. Construction on this new facility is scheduled to begin in April 1983. This facility will be the center for fusion tritium technology development in Japan. The European Community is currently working on the design of the tritium facility for the Joint European Torus. There is considerable interaction between all of these programs, thus accelerating the overall development of this crucial technology

  9. TSTA loop operation with 100 grams-level of tritium

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Hirata, Shingo; Naito, Taisei

    1988-10-01

    The first loop operation tests of Tritium Systems Test Assembly (TSTA) with 100 grams-level of tritium were carried out at Los Alamos National Laboratory(LANL) on June and July, 1987. The tests were one of the milestones for TSTA goal scheduled in June, 1987 through June, 1988. The objectives were (i) to operate TSTA process loop composed of tritium supply system, fuel gas purification system, hydrogen isotope separation system, etc, (ii) to demonstrate TSTA safety subsystems such as secondary containment system, tritium waste treatment system and tritium monitoring system, and (iii) to accumulate handling experience of a large amount of tritium. This report describes the plan and procedures of the milestone run done in June and the summary results especially on the safety aspects. Analysis of the emergency shutdown of the process loop, which happened in the June run, is also reported. A brief description of the process and safety subsystems as well as the summary of the TSTA safety analysis report is included. (author)

  10. Tritium fuel cycle modeling and tritium breeding analysis for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli; Pan, Lei; Lv, Zhongliang; Li, Wei; Zeng, Qin, E-mail: zengqin@ustc.edu.cn

    2016-05-15

    Highlights: • A modified tritium fuel cycle model with more detailed subsystems was developed. • The mean residence time method applied to tritium fuel cycle calculation was updated. • Tritium fuel cycle analysis for CFETR was carried out. - Abstract: Attaining tritium self-sufficiency is a critical goal for fusion reactor operated on the D–T fuel cycle. The tritium fuel cycle models were developed to describe the characteristic parameters of the various elements of the tritium cycle as a tool for evaluating the tritium breeding requirements. In this paper, a modified tritium fuel cycle model with more detailed subsystems and an updated mean residence time calculation method was developed based on ITER tritium model. The tritium inventory in fueling system and in plasma, supposed to be important for part of the initial startup tritium inventory, was considered in the updated mean residence time method. Based on the model, the tritium fuel cycle analysis of CFETR (Chinese Fusion Engineering Testing Reactor) was carried out. The most important two parameters, the minimum initial startup tritium inventory (I{sub m}) and the minimum tritium breeding ratio (TBR{sub req}) were calculated. The tritium inventories in steady state and tritium release of subsystems were obtained.

  11. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues; Das TApIR Experiment IR-Absorptionsspektren fluessiger Wasserstoffisotopologe

    Energy Technology Data Exchange (ETDEWEB)

    Groessle, Robin

    2015-11-27

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  12. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues

    International Nuclear Information System (INIS)

    Groessle, Robin

    2015-01-01

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  13. Investigation of tritium in the aquatic environment

    International Nuclear Information System (INIS)

    Cohen, L.K.

    1977-01-01

    The behavior, cycling and distribution of tritium in an aquatic ecosystem was studied in the field and in the laboratory from 1969 through 1971. Field studies were conducted in the Hudson River Estuary, encompassing a 30 mile region centered about the Indian Point Nuclear Plant. Samples of water, bottom sediment, rooted emergent aquatic plants, fish, and precipitation were collected over a year and a half period from more than 15 locations. Specialized equipment and systems were built to combust and freeze-dry aquatic media to remove and recover the loose water and convert the bound tritium into an aqueous form. An electrolysis system was set up to enrich the tritium concentrations in the aqueous samples to improve the analytical sensitivity. Liquid scintillation techniques were refined to measure the tritium activity in the samples. Over 300 samples were analyzed during the course of the study

  14. Overview of R and D activities on tritium processing and handling technology in JAEA

    Energy Technology Data Exchange (ETDEWEB)

    Yamanishi, Toshihiko, E-mail: yamanishi.toshihiko@jaea.go.jp [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Nakamura, Hirofumi; Kawamura, Yoshinori; Iwai, Yasunori; Isobe, Kanetsugu; Oyaidsu, Makoto; Yamada, Masayuki; Suzuki, Takumi; Hayashi, Takumi [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The tritium technologies have been studied at Tritium Process Laboratory of JAEA. Black-Right-Pointing-Pointer A monitoring method for the blanket system of a fusion reactor have been studied. Black-Right-Pointing-Pointer Basic studies on the tritium behavior in confinement system have been carried out. Black-Right-Pointing-Pointer Studies on the detritiation have been carried out as another significant activity. - Abstract: In JAEA, the tritium processing and handling technologies have been studied at TPL (Tritium Process Laboratory). The main R and D activities are: the tritium processing technology for the blanket recovery systems; the basic tritium behavior in confinement materials; and detritiation and decontamination. The R and D activities on tritium processing and handling technologies for a demonstration reactor (DEMO) are also planned to be carried out in the broader approach (BA) program by JAEA with Japanese universities. The ceramic proton conductor has been studied as a possible tritium processing method for the blanket system. The BIXS method has also been studied as a monitoring of tritium in the blanket system. The hydrogen transfer behavior from water to metal has been studied as a function of temperature. As for the behavior of high concentration tritium water, it was observed that the formation of the oxidized layer was prevented by the presence of tritium in water (0.23 GBq/cc). A new hydrophobic catalyst has been developed for the conversion of tritium to water. The catalyst could convert tritium to water at room temperature. A new Nafion membrane has also been developed by gamma ray irradiation to get the strong durability for tritium.

  15. TSTA loop operation with 100 grams-level of tritium

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Fukui, Hiroshi; Hirata, Shingo

    1988-12-01

    A fully integrated loop operation test of Tritium systems Test Assembly (TSTA) with 107 grams of tritium was completed at Los Alamos National Laboratory (LANL) in June, 1988. In this test, a compound cryopump with a charcoal panel was incorporated into the main process loop for the first time. The objectives were (i) to demonstrate the compound cryopump system with different flow rates and impurities, (ii) to demonstrate the regeneration of the compound cryopump system, (iii) to accumulate operating experience with other process systems such as the fuel cleanup system, the isotope separation system, the tritium supply and recovery system, etc. and (iv) to improve the data-base on TSTA safety systems such as the secondary containment system, tritium waste treatment system and tritium monitoring system. This report briefly describes characteristics of the main subsystems observed during the milestone run. (author)

  16. Processing and monitoring liquid, radioactive effluents from the Wiederaufarbeitungsanlage Karlsruhe

    International Nuclear Information System (INIS)

    Hoehlein, G.; Huppert, K.L.; Winter, M.

    1977-01-01

    The Wiederaufarbeitungsanlage Karlsruhe (WAK) serves as a demonstration plant for the processing of highly-irradiated uranous oxide. The high active waste concentrates find interim storage at the WAK until they are solidified at a later stage. In contrast to this, the slightly- and the medium-active liquid wastes are transported to the decontamination facility of the Nuclear Research Centre Karlsruhe, where they are immediately processed. These liquid wastes contain about 1 per thousand of the activity inventary of the fuel elements processed. Monitoring of the radioactive waste water of the WAK is carried out by the Nuclear Research Centre's department radiation protection and safety. (orig.) [de

  17. The Tritium Systems Test Assembly applicability to ITER

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1988-01-01

    The Tritium Systems Test Assembly (TSTA), is operated by the Los Alamos National Laboratory (LANL) under the sponsorship of the US Department of Energy (DOE) and the Japan Atomic Energy Research Institute (JAERI). The objectives of the TSTA project are to develop, demonstrate, and evaluate the exhaust gas processing and tritium related safety systems for the magnetic fusion energy program. The applicability of these processes for the ITER Tokamak is discussed

  18. Tritium determination in water

    International Nuclear Information System (INIS)

    Gavini, Ricardo M.

    2008-01-01

    An analytical procedure for the determination of tritium in water is described in this paper. The determination is carried out in presence of other radionuclides, such as Fe-55, Ni-63, Mn-54, Zn-65, Co-60, Cd-109, Sr-90, Cs-134 and Cs-137. The method consists in a simple distillation stage prior to measurement by liquid scintillation counting. The samples containing beta and gamma emitters are conditioned with a (NO 3 ) 2 Pb solution and Na(OH) up to pH = 7 - 8. This produces lead hydroxide precipitation that allows fixing volatile elements, which could be transported together with tritium, and may increase the extinction degree of the sample or interfere with the counting process. Special attention must be paid if presence of Fe-55 (E max ∼ 5.95 keV) is suspected as it might not be distinguished from tritium (E max ∼ 18 keV), leading to an overestimation of tritium activity. Different tests were carried to obtain the optimum method conditions, to achieve the purification of the tritium and a pH near to 7 in the distilled. The detection limit (2σ) was 8.0 Bq/l and the distillation performance was 98.3 %. This technique was applied to water samples containing Fe-55 and other gamma radionuclides in 1M hydrochloric acid media in successive Environmental Measurements Laboratory (EML), U.S. Department of Energy (DOE) intercomparison programs. The results obtained were very satisfactory and are presented in this paper. (author)

  19. Confinement and Tritium Stripping Systems for APT Tritium Processing

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Heung, L.K.

    1997-10-20

    This report identifies functions and requirements for the tritium process confinement and clean-up system (PCCS) and provides supporting technical information for the selection and design of tritium confinement, clean-up (stripping) and recovery technologies for new tritium processing facilities in the Accelerator for the Production of Tritium (APT). The results of a survey of tritium confinement and clean-up systems for large-scale tritium handling facilities and recommendations for the APT are also presented.

  20. Confinement and Tritium Stripping Systems for APT Tritium Processing

    International Nuclear Information System (INIS)

    Hsu, R.H.; Heung, L.K.

    1997-01-01

    This report identifies functions and requirements for the tritium process confinement and clean-up system (PCCS) and provides supporting technical information for the selection and design of tritium confinement, clean-up (stripping) and recovery technologies for new tritium processing facilities in the Accelerator for the Production of Tritium (APT). The results of a survey of tritium confinement and clean-up systems for large-scale tritium handling facilities and recommendations for the APT are also presented

  1. A Survey of Tritium in Irish Seawater

    International Nuclear Information System (INIS)

    Currivan, L.; Kelleher, K.; McGinnity, P.; Wong, J.; McMahon, C.

    2013-07-01

    This report provides a comprehensive record of the study and measurements of tritium in Irish seawater undertaken by the Radiological Protection Institute of Ireland RPII. The majority of the samples analysed were found to have tritium concentrations below the limit of detection and a conservative assessment of radiation dose arising showed a negligible impact to the public. Tritium is discharged in large quantities from various nuclear facilities, and mostly in liquid form. For this reason it is included in the list of radioactive substances of interest to the OSPAR (Oslo-Paris) Convention to protect the marine environment of the North-East Atlantic. To fulfil its role within OSPAR, to provide technical support to the Irish Government, RPII carried out a project to determine the levels of tritium in seawater from around the Irish coast to supplement its routine marine monitoring programme. A total of 85 seawater samples were collected over a three year period and analysed at the RPII's laboratory. Given that the operational discharges for tritium from the nuclear fuel reprocessing plant at Sellafield, UK, are expected to increase due to current and planned decommissioning activities RPII will continue to monitor tritium levels in seawater around the Irish coast, including the Irish Sea, as part of its routine marine monitoring programme

  2. Tritium-gas/water-vapor monitor. Tests and evaluation

    International Nuclear Information System (INIS)

    Jalbert, R.A.

    1982-07-01

    A tritium gas/water-vapor monitor was designed and built by the Health Physics Group at the Los Alamos National Laboratory. In its prototype configuration, the monitor took the shape of two separate instruments: a (total) tritium monitor and a water-vapor monitor. Both instruments were tested and evaluated. The tests of the (total) tritium monitor, basically an improved version of the standard flow-through ion-chamber instrument, are briefly reported here and more completely elsewhere. The tests of the water-vapor monitor indicated that the novel approach used to condense water vapor for scintillation counting has a number of serious drawbacks and that further development of the instrument is unwarranted

  3. Current CTR-related tritium handling studies at ORNL

    International Nuclear Information System (INIS)

    Watson, J.S.; Bell, J.T.; Clinton, S.D.; Fisher, P.W.; Redman, J.D.; Smith, F.J.; Talbot, J.B.; Tung, C.P.

    1976-01-01

    The Oak Ridge National Laboratory has a comprehensive program concerned with plasma fuel recycle, tritium recovery from blankets, and tritium containment in fusion reactors. Two studies of most current interest are investigations of cryosorption pumping of hydrogen isotopes and measurements of tritium permeation rates through steam generator materials. Cryosorption pumping speeds have been measured for hydrogen, deuterium, and helium at pressures from 10 -8 torr to 3 x 10 -3 torr. Permeation rates through Incoloy 800 have been shown to be drastically reduced when the low pressure side of permeation tubes are exposed to steam. These results will be important considerations in the design of fusion reactor steam generators

  4. Linear accelerator for production of tritium: Physics design challenges

    Energy Technology Data Exchange (ETDEWEB)

    Wangler, T.P.; Lawrence, G.P.; Bhatia, T.S.; Billen, J.H.; Chan, K.C.D.; Garnett, R.W.; Guy, F.W.; Liska, D.; Nath, S.; Neuschaefer, G.; Shubaly, M.

    1990-01-01

    In the summer of 1989, a collaboration between Los Alamos National Laboratory and Brookhaven National Laboratory conducted a study to establish a reference design of a facility for accelerator production of tritium (APT). The APT concept is that of a neutron-spallation source, which is based on the use of high-energy protons to bombard lead nuclei, resulting in the production of large quantities of neutrons. Neutrons from the lead are captured by lithium to produce tritium. This paper describes the design of a 1.6-GeV, 250-mA proton cw linear accelerator for APT.

  5. Evaluation of Unfixed Tritium Surface Contamination

    International Nuclear Information System (INIS)

    Postolache, C.; Matei, Lidia

    2005-01-01

    Surface unfixed radioactive contamination represents the amount of surface total radioactive contamination which can be eliminated by pure mechanical processes. This unfixed contamination represents the main risk factor for contamination of the personnel which operates in tritium laboratories. Unfixed contamination was determined using sampling smears type FPCSN-PSE-AA. Those FPCSN-PSE-AA smears are disks of expanded polystyrene which contain acrylic acid fragments superficially grafted. Sampling factor was determinated by contaminated surface wiping with moisten smears in 50 μL butylic alcohol and activity measuring at liquid scintillation measuring device. Sampling factor was determined by the ratio between measured activity and initially real conventional activity. The sampling factor was determined for Tritium Laboratory existent surfaces: stainless steel, aluminum, glass, ceramics, linoleum, washable coats, epoxy resins type ALOREX LP-52.The sampling factors and the reproducibility were determined in function of surface nature

  6. EXOTIC: Development of ceramic tritium breeding materials

    International Nuclear Information System (INIS)

    Kwast, H.; Conrad, R.

    1989-09-01

    In this fifth EXOTIC annual progress report the work carried out in 1988 is reported. For EXOTIC-1, -2 and -3 the post-irradiation examinations have been continued with tritium retention measurements, annealng experiments, determination of physical and mechanical properties and X-ray diffraction analysis. Irradiation of EXOTIC-4 has been performde and the post-irradiation examination has started. Transient tritium release curves are given and analysed. The resulting tritium residence times show that for the Li-zirconates a residence time of less than one day can be achieved in the temperature region of 350-600 C. The loading scheme, the objectives and some fabrication data of EXOTIC-5 are give. Moreover, the fabrication of laboratory scale batches has started to investigate the effect of microstructural parameters on tritium release. Finally, an investigation was started on the system Li 2 O-ZrO 2 , with emphasis on the lithia-rich compositions. 40 figs., 9 refs., 10 tabs

  7. Tritium transport calculations for the IFMIF Tritium Release Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Jana, E-mail: jana.freund@kit.edu; Arbeiter, Frederik; Abou-Sena, Ali; Franza, Fabrizio; Kondo, Keitaro

    2014-10-15

    Highlights: • Delivery of material data for the tritium balance in the IFMIF Tritium Release Test Module. • Description of the topological models in TMAP and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). • Computation of release of tritium from the breeder solid material into the purge gas. • Computation of the loss of tritium over the capsule wall, rig hull, container wall and purge gas return line. - Abstract: The IFMIF Tritium Release Test Module (TRTM) is projected to measure online the tritium release from breeder ceramics and beryllium pebble beds under high energy neutron irradiation. Tritium produced in the pebble bed of TRTM is swept out continuously by a purge gas flow, but can also permeate into the module's metal structures, and can be lost by permeation to the environment. According analyses on the tritium inventory are performed to support IFMIF plant safety studies, and to support the experiment planning. This paper describes the necessary elements for calculation of the tritium transport in the Tritium Release Test Module as follows: (i) applied equations for the tritium balance, (ii) material data from literature and (iii) the topological models and the computation of the five different cases; namely release of tritium from the breeder solid material into the purge gas, loss of tritium over the capsule wall, rig hull, container wall and purge gas return line in detail. The problem of tritium transport in the TRTM has been studied and analyzed by the Tritium Migration Analysis Program (TMAP) and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). TMAP has been developed at INEEL and now exists in Version 7. FUS-TPC Code was written in MATLAB with the original purpose to study the tritium transport in Helium Cooled Lead Lithium (HCLL) blanket and in a later version the Helium Cooled Pebble Bed (HCPB) blanket by [6] (Franza, 2012). This code has been further modified to be applicable to the TRTM. Results from the

  8. Tritium transport calculations for the IFMIF Tritium Release Test Module

    International Nuclear Information System (INIS)

    Freund, Jana; Arbeiter, Frederik; Abou-Sena, Ali; Franza, Fabrizio; Kondo, Keitaro

    2014-01-01

    Highlights: • Delivery of material data for the tritium balance in the IFMIF Tritium Release Test Module. • Description of the topological models in TMAP and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). • Computation of release of tritium from the breeder solid material into the purge gas. • Computation of the loss of tritium over the capsule wall, rig hull, container wall and purge gas return line. - Abstract: The IFMIF Tritium Release Test Module (TRTM) is projected to measure online the tritium release from breeder ceramics and beryllium pebble beds under high energy neutron irradiation. Tritium produced in the pebble bed of TRTM is swept out continuously by a purge gas flow, but can also permeate into the module's metal structures, and can be lost by permeation to the environment. According analyses on the tritium inventory are performed to support IFMIF plant safety studies, and to support the experiment planning. This paper describes the necessary elements for calculation of the tritium transport in the Tritium Release Test Module as follows: (i) applied equations for the tritium balance, (ii) material data from literature and (iii) the topological models and the computation of the five different cases; namely release of tritium from the breeder solid material into the purge gas, loss of tritium over the capsule wall, rig hull, container wall and purge gas return line in detail. The problem of tritium transport in the TRTM has been studied and analyzed by the Tritium Migration Analysis Program (TMAP) and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). TMAP has been developed at INEEL and now exists in Version 7. FUS-TPC Code was written in MATLAB with the original purpose to study the tritium transport in Helium Cooled Lead Lithium (HCLL) blanket and in a later version the Helium Cooled Pebble Bed (HCPB) blanket by [6] (Franza, 2012). This code has been further modified to be applicable to the TRTM. Results from the

  9. Draft programmatic environmental impact statement for tritium supply and recycling

    International Nuclear Information System (INIS)

    1995-02-01

    Tritium, a radioactive gas used in all of the Nation's nuclear weapons, has a short half-life and must be replaced periodically in order for the weapon to operate as designed. Currently, the Nation has no tritium production capability. The Tritium Supply and Recycling PEIS evaluates the alternatives for the siting, construction, and operation of tritium supply and recycling facilities at each of five candidate sites: the Idaho Engineering Laboratory, the Nevada Test Site, the Oak Ridge Reservation, the Pantex Plant, and the Savannah River Site. Alternatives for new tritium supply and recycling facilities consist of four different tritium supply technologies; Heavy Water Reactor, Modular High Temperature Gas-cooled Reactor, Advanced Light Water Reactor, and Accelerator Production of Tritium. The PEIS also evaluates the impacts of using a commercial light water reactor, either as a contingency in the event of a national emergency or if purchased by the DOE and converted to defense purposes. Additionally, the PEIS includes an analysis of multi-purpose reactors which would produce tritium, dispose of plutonium and produce electricity. Volume I contains the findings of these analyses, Volume II contains the Appendices and supporting data

  10. Reconstructing Tritium Exposure Using Tree Rings at Lawrence Berkeley National Laboratory, California

    Science.gov (United States)

    LOVE, ADAM H.; HUNT, JAMES R.; KNEZOVICH, JOHN P.

    2010-01-01

    Annual tritium exposures were reconstructed using tree cores from Pinus jeffreyi and Eucalyptus globulus near a tritiated water vapor release stack. Both tritium (3H) and carbon-14 (14C) from the wood were measured from milligram samples using accelerator mass spectrometry. Because the annual nature of the eucalyptus tree rings was in doubt, 14C measurements provided growth rates used to estimate the age for 3H determinations. A 30-yr comparison of organically bound tritium (OBT) levels to reported 3H release data is achieved using OBT measurements from three trees near the stack. The annual average 3H, determined from atmospheric water vapor monitoring stations, is comparable to the OBT in proximal trees. For situations without adequate historical monitoring data, this measurement-based historical assessment provides the only independent means of assessing exposure as compared to fate and transport models that require prior knowledge of environmental conditions and 3H discharge patterns. PMID:14572081

  11. Environmental contamination due to release of a large amount of tritium

    International Nuclear Information System (INIS)

    Kawai, Hiroshi

    1988-01-01

    Tritium release incidents have occurred many times in the Savannah Rever Plant in the U.S. A tritium release incident also took place in the Lawrence Livermore Laboratory. The present article outlines the reports by the plant and laboratory on these incidents and makes some comments on environmental contamination that may results from release of a large amount of tritium from nuclear fusion facilities. Tritium is normally released in the form of a combination of chemical compounds such as HT, DT and T 2 and oxides such as HTO, DTO and T 2 O. The percentage of the oxides is given in the reports by the plant. Oxides, which can be absorbed through the skin, are considered to be nearly a thousand times more toxic than the other type of tritium compounds. The HT type compounds (HT, DT and T 2 ) can be oxidized by microorganisms in soil into oxides (HTO, DTO and T 2 O) and therefore, great care should also given to this type of compounds. After each accidental tritium release, the health physics group of the plant collected various environmental samples, including ground surface water, milk, leaves of plants, soil and human urine, in leeward areas. Results on the contamination of surface water, fish and underground water are outlined and discussed. (Nogami, K.)

  12. Solid electron sources for the energy scale monitoring in the KATRIN experiment

    CERN Document Server

    Zbořil, Miroslav; Vénos, D

    The KArlsruhe TRItium Neutrino (KATRIN) experiment represents a next-generation tritium $\\beta$-decay experiment designed to perform a high precision direct measurement of the electron anti-neutrino mass m($\

  13. Filbe molten salt research for tritium breeder applications

    International Nuclear Information System (INIS)

    Anderl, R.A.; Petti, D.A.; Smolik, G.R.

    2004-01-01

    This paper presents an overview of Flibe (2Lif·BeF 2 ) molten salt research activities conducted at the INEEL as part of the Japan-US JUPITER-II joint research program. The research focuses on tritium/chemistry issues for self-cooled Flibe tritium breeder applications and includes the following activities: (1) Flibe preparation, purification, characterization and handling, (2) development and testing of REDOX strategies for containment material corrosion control, (3) tritium behavior and management in Flibe breeder systems, and (4) safety testing (e.g., mobilization of Flibe during accident scenarios). This paper describes the laboratory systems developed to support these research activities and summarizes key results of this work to date. (author)

  14. Improvement of tritium accountancy technology for the ITER fuel cycle safety enhancement

    International Nuclear Information System (INIS)

    O'hira, Shigeru; Hayashi, T.; Nakamura, H.

    1999-01-01

    In order to improve the safe handling and control of tritium for ITER fuel cycle, effective 'in-situ' tritium accounting methods have been developed at Tritium Process Laboratory in Japan Atomic Energy Research Institute under one of the ITER-EDA R and D Tasks. A remote and multi-location analysis of process gases by an application of laser Raman spectroscopy developed and tested could provide a measurement of hydrogen isotope gases with a detection limit of 0.3 kPa for 120 seconds analytical periods. An 'in-situ' tritium inventory measurement by application of a 'self assaying' storage bed with 25 g tritium capacity could provide a measurement with a required detection limit less than 1% and a design proof of a bed with 100 g tritium capacity. (author)

  15. Improvement of tritium accountancy technology for the ITER fuel cycle safety enhancement

    International Nuclear Information System (INIS)

    O'Hira, S.; Hayashi, T.; Nakamura, H.

    2001-01-01

    In order to improve the safe handling and control of tritium for ITER fuel cycle, effective ''in-situ'' tritium accounting methods have been developed at Tritium Process Laboratory in Japan Atomic Energy Research Institute under one of the ITER-EDA R and D Tasks. A remote and multi-location analysis of process gases by an application of laser Raman spectroscopy developed and tested could provide a measurement of hydrogen isotope gases with a detection limit of 0.3 kPa for 120 seconds analytical periods. An ''in-situ'' tritium inventory measurement by application of a ''self assaying'' storage bed with 25 g tritium capacity could provide a measurement with a required detection limit less than 1 % and a design proof of a bed with 100 g tritium capacity. (author)

  16. Casa Wächter Karlsruhe Alemania Federal

    Directory of Open Access Journals (Sweden)

    Lehmann, Friedrich

    1979-06-01

    Full Text Available Wächter Residence, Karlsruhe - West Germany The design of this home in Karlsruhe v/as presided over by two basic criteria: function and human scale, carried up to their ultimate consequences. The first criteria had a decisive influence on the roof arrangement, as an extension of the neighboring buildings, and on the selection of construction materials to match the suburban environment where the site is located, not to forget the shaping of Windows and skylights, reflecting the internal functions and providing lighting while protecting the privacy of the interior from the exterior lines of view. The second criteria affects aspects so different from one another as the unexpected but valid room arrangement following a spiral path leading from the entrance to the master bedroom at the other end with the remaining rooms at intermediate levels affording the required degree of privacy; or the arrangement of the mechanical installations, resembling the human backbone; or, finally, the paint finish chosen, pleasing man's taste for ornamentality.

    La realización de esta vivienda, en Karlsruhe, estuvo marcada por dos criterios fundamentales: la funcionalidad y la escala humana, llevadas ambas hasta sus últimas consecuencias. La primera influyó desde la disposición de las cubiertas, como prolongación de las construcciones vecinas, hasta la elección de los materiales constructivos, acordes con el entorno suburbano de la parcela, sin olvidar la configuración de las ventanas y lucernarios que, con sus diferentes formatos, indican el uso del interior, al tiempo que posibilitan la iluminación, protegiendo de las vistas exteriores. La segunda característica afecta a aspectos tan dispares como la original, pero válida, secuencia de habitaciones —según una espiral que, desde la entrada, conduce, en el extremo opuesto, al dormitorio de los padres, quedando las restantes dependencias situadas en los niveles intermedios según su exigencia

  17. Tritium storage

    International Nuclear Information System (INIS)

    Hircq, B.

    1990-01-01

    This document represents a synthesis relative to tritium storage. After indicating the main storage particularities as regards tritium, storages under gaseous and solid form are after examined before establishing choices as a function of the main criteria. Finally, tritium storage is discussed regarding tritium devices associated to Fusion Reactors and regarding smaller devices [fr

  18. Tritium waste control: April--September 1977

    International Nuclear Information System (INIS)

    1978-01-01

    A pilot scale system was used in an initial experiment to investigate the combined-electrolysis-catalytic-exchange process (CECE) for the detritiation of water. Data taken during the experiment indicate the process does indeed strip tritium from gaseous hydrogen at the top and concentrate it in water at the bottom of the catalyst-filled column. A high activity tritiated water electrolysis system was designed and built using a solid polymer electrolyte (SPE) cell. The system was successfully operated at currents up to 50 A using deionized tap water. Triplicate samples of cement, cement-plaster (1:1 ratio by weight), and cement-plaster (1:1 ratio by volume) were injected with 386 Ci of tritium. Preliminary results indicate Type III Portland cement retains the tritium slightly better than the cement-plaster mixtures. The tritium release study of actual waste burial packages is continuing. The fractional release is 1 x 10 -5 on a 4-y old package, only 4 x 10 -7 on 3-y old packages, and 1 x 10 -9 on a 1-y old package. Pressure increase and gas composition determinations were repeated for octane (activity = 1000 Ci/liter) with and without tritium fixation using argon as the initial overgas. Pressure buildup measurements for octane without fixation were repeated a third time using hydrogen gas. The rate of pressure increase did not change significantly from previously determined values. Four elemental tritium samples were released into a laboratory to determine the efficiency of the Emergency Containment System. The ventilation system was modified during the fourth experiment to minimize leakage

  19. Karlsruhe: En route to a superconducting r.f. separator

    CERN Multimedia

    1973-01-01

    A superconducting r.f. separator is under construction at Karlsruhe for use at the SPS in the beam-line to the Omega spectrometer. Tests on a section of the first 3 m deflector have given results close to the desired parameters.

  20. Drawing the nuclear landscape: 50 years of the Karlsruhe Nuklidkarte; Trazando el paisaje nuclear 50 anos de historia de la Karlsruher Nuklidkarte

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Borge, M. J.; Normand, C.

    2010-07-01

    The map has been Nuklidkarte Karlsruhe nuclei since 1958 the work of thousands of physicists and hundreds of thousands experimental results produced in institutes research worldwide. With excellence as rule, has become over the years a reference the field of nuclear information. (Author) 19 refs.

  1. In situ measurement of tritium permeation through stainless steel

    Science.gov (United States)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2013-06-01

    The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292 °C and 330 °C. In situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330 °C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.

  2. Tritium conference days

    International Nuclear Information System (INIS)

    Garnier-Laplace, J.; Lebaron-Jacobs, L.; Sene, M.; Devin, P.; Chretien, V.; Le Guen, B.; Guetat, Ph.; Baglan, N.; Ansoborlo, E.; Boyer, C.; Masson, M.; Bailly-Du-Bois, P.; Jenkinson, St.; Wakeford, R.; Saintigny, Y.; Romeo, P.H.; Thompson, P.; Leterq, D.; Chastagner, F.; Cortes, P.; Philippe, M.; Paquet, F.; Fournier, M.

    2009-01-01

    This document gathers the slides of the available presentations given during this conference day. Twenty presentations out of 21 are assembled in the document and deal with: 1 - tritium in the environment (J. Garnier-Laplace); 2 - status of knowledge about tritium impact on health (L. Lebaron-Jacobs); 3 - tritium, discrete but present everywhere (M. Sene); 4 - management of tritium effluents from Areva NC La Hague site - related impact and monitoring (P. Devin); 5 - tritium effluents and impact in the vicinity of EDF's power plants (V. Chretien and B. Le Guen); 6 - contribution of CEA-Valduc centre monitoring to the knowledge of atmospheric tritiated water transfers to the different compartments of the environment (P. Guetat); 7 - tritium analysis in environment samples: constraints and means (N. Baglan); 8 - organically-linked tritium: the analyst view (E. Ansoborlo); 9 - study of tritium transfers to plants via OBT/HTO air and OBT/HTO free (C. Boyer); 10 - tritium in the British Channel (M. Masson and P. Bailly-Du-Bois); 11 - tritium in British coastal waters (S. Jenkinson); 12 - recent results from epidemiology (R. Wakeford); 13 - effects of tritiated thymidine on hematopoietic stem cells (P.H. Romeo); 14 - tritium management issue in Canada: the point of view from authorities (P. Thompson); 15 - experience feedback of the detritiation process of Valduc centre (D. Leterq); 16 - difficulties linked with tritiated wastes confinement (F. Chastagner); 17 - optimisation of tritium management in the ITER project (P. Cortes); 18 - elements of thought about the management of tritium generated by nuclear facilities (M. Philippe); 19 - CIPR's position about the calculation of doses and risks linked with tritium exposure (F. Paquet); 20 - tritium think tanks (M. Fournier). (J.S.)

  3. Baseline radionuclide concentrations in soils and vegetation around the proposed Weapons Engineering Tritium Facility and the Weapons Subsystems Laboratory at TA-16

    International Nuclear Information System (INIS)

    Fresquez, P.R.; Ennis, M.

    1995-09-01

    A preoperational environmental survey is required by the Department of Energy (DOE) for all federally funded research facilities that have the potential to cause adverse impacts on the environment. Therefore, in accordance with DOE Order 5400.1, an environmental survey was conducted over the proposed sites of the Weapons Engineering Tritium Facility (WETF) and the Weapons Subsystems Laboratory (WSL) at Los Alamos National Laboratory (LANL) at TA-16. Baseline concentrations of tritium ( 3 H), plutonium ( 238 Pu and 239 Pu) and total uranium were measured in soils, vegetation (pine needles and oak leaves) and ground litter. Tritium was also measured from air samples, while cesium ( 137 Cs) was measured in soils. The mean concentration of airborne tritiated water during 1987 was 3.9 pCi/m 3 . Although the mean annual concentration of 3 H in soil moisture at the 0--5 cm (2 in) soil depth was measured at 0.6 pCi/mL, a better background level, based on long-term regional data, was considered to be 2.6 pCi/mL. Mean values for 137 Cs, 218 Pu, 239 Pu, and total uranium in soils collected from the 0--5 cm depth were 1.08 pCi/g, 0.0014 pCi/g, 0.0325 pCi/g, and 4.01 microg/g, respectively. Ponderosa pine (Pinus ponderosa) needles contained higher values of 238 Pu, 239 Pu, and total uranium than did leaves collected from gambel's oak (Quercus gambelii). In contrast, leaves collected from gambel's oak contained higher levels of 137 Cs than what pine needles did

  4. Environmental monitoring for tritium in tritium separation facility

    International Nuclear Information System (INIS)

    Varlam, Carmen; Stefanescu, Ioan; Steflea, Dumitru; Lazar, Roxana Elena

    2001-01-01

    The Cryogenic Pilot is an experimental project in the nuclear energy national research program, which has the aim of developing technologies for tritium and deuterium separation by cryogenic distillation. The experimental installation is located 15 km near the highest city of the area and 1 km near Olt River. An important chemical activity is developed in the area and chemical plants make up almost entire neighborhood of the Experimental Cryogenic Pilot. It is necessary to emphasize this aspect because the hall sewage system of the pilot is connected with the one of other three chemical plants from vicinity. This is the reason why we progressively established elements of an environmental monitoring program well in advance of tritium operation in order to determine baseline levels. The first step was the tritium level monitoring in environmental water and sewage from neighboring industrial activity. In this work, a low background liquid scintillation was used to determine tritium activity concentration according to ISO 9698/1998 standard. We measured drinking water, precipitation, river water, underground water and wastewater. The tritium level was between 10 TU and 27 TU what indicates that there is no source of tritium contamination in the neighborhood of Cryogenic Pilot. In order to determine baseline levels we decided to monitor monthly each location. In this paper it is presented a standard method used for tritium determination in water samples, the precautions needed to achieve reliable results and the evolution of tritium level in different location near the Experimental Pilot for Tritium and Deuterium Cryogenic Separation. (authors)

  5. Environmental monitoring for tritium at tritium separation facility

    International Nuclear Information System (INIS)

    Varlam, C.; Stefanescu, I.; Steflea, D.; Lazar, R.E.

    2001-01-01

    The Cryogenic Pilot is an experimental project in the nuclear energy national research program, which has the aim of developing technologies for tritium and deuterium separation by cryogenic distillation. The experimental installation is located 15 km near the highest city of the area and 1 km near Olt River. An important chemical activity is developed in the area and the Experimental Cryogenic Pilot's, almost the entire neighborhood are chemical plants. It is necessary to emphasize this aspect because the sewerage system is connected with the other three chemical plants from the neighborhood. This is the reason that we progressively established elements of an environmental monitoring program well in advance of tritium operation in order to determine baseline levels. The first step was the tritium level monitoring in environmental water and waste water of industrial activity from neighborhood. In this work, a low background liquid scintillation is used to determine tritium activity concentration according to ISO 9698/1998. We measured drinking water, precipitation, river water, underground water and waste water. The tritium level was between 10 TU and 27 TU that indicates there is no source of tritium contamination in the neighborhood of Cryogenic Pilot. In order to determine baseline levels we decide to monitories monthly each location. In this paper a standard method is presented which it is used for tritium determination in water sample, the precautions needed in order to achieve reliable results, and the evolution of tritium level in different location near the Experimental Pilot Tritium and Deuterium Cryogenic Separation.(author)

  6. Inventory of tritium concentration of waters in the Manche department; Inventaire des concentrations en tritium des eaux du Departement de La Manche

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    For the inventory of water tritium concentration in the Manche department, it is the complementarity that animated the work opened during year 2001. To answer to a commune sensitivity such water quality, particularly drinking water at tap, the A.C.R.O. laboratory brought its know how to make and its technical means in the area of tritium analysis and the general council brought its know how to make and its logistics means in matter of sanitary control. This collaboration has allowed to supply an indication on the tritium content of the distribution waters of thirty of the most important cities of the department. Then, it allowed to inform on the radiological situation (in relation with the tritium presence) of coast waters and principal rivers waters. More than 160 controls have been realised between the months of march 2001 and february 2002. Only the tritium under the shape of tritiated water has been measured. The measures have been made by liquid scintillation according to the regulatory agreement. (N.C.)

  7. Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Oji, L.N.

    1997-11-14

    Under the Tritium Facility Modernization {ampersand} Consolidation (TFM{ampersand}C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM{ampersand}C Project also provides for a new replacement R&D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H.

  8. Study on the tritium behaviors in the VHTR system. Part 2: Analyses on the tritium behaviors in the VHTR/HTSE system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eung S. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3885 (United States); Oh, Chang H., E-mail: Chang.Oh@inl.go [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3885 (United States); Patterson, Mike [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3885 (United States)

    2010-07-15

    Tritium behaviors in the very high temperature gas reactor (VHTR)/high temperature steam electrolysis (HTSE) system have been analyzed by the TPAC developed by Idaho National Laboratory (INL). The reference system design and conditions were based on the indirect parallel configuration between a VHTR and a HTSE. The analyses were based on the SOBOL method, a modern uncertainty and sensitivity analyses method using variance decomposition and Monte Carlo method. A total of 14 parameters have been taken into account associated with tritium sources, heat exchangers, purification systems, and temperatures. Two sensitivity indices (first order index and total index) were considered, and 15,360 samples were totally used for solution convergence. As a result, important parameters that affect tritium concentration in the hydrogen product have been identified and quantified with the rankings. Several guidelines and recommendations for reducing modeling uncertainties have been also provided throughout the discussions along with some useful ideas for mitigating tritium contaminations in the hydrogen product.

  9. Tritium labeling for bio-med research

    International Nuclear Information System (INIS)

    Lemmon, R.M.

    1980-01-01

    A very large fraction of what we know about biochemical pathways in the living cell has resulted from the use of radioactively-labeled tracer compounds; the use of tritium-labeled compounds has been particularly important. As research in biochemistry and biology has progressed the need has arisen to label compounds of higher specific activity and of increasing molecular complexity - for example, oligo-nucleotides, polypeptides, hormones, enzymes. Our laboratory has gradually developed special facilities for handling tritium at the kilocurie level. These facilities have already proven extremely valuable in producing labeled compounds that are not available from commercial sources. The principal ways employed for compound labeling are: (1) microwave discharge labeling, (2) catalytic tritio-hydrogenation, (3) catalytic exchange with T 2 O, and (4) replacement of halogen atoms by T. Studies have also been carried out on tritiation by the replacement of halogen atoms with T atoms. These results indicate that carrier-free tritium-labeled products, including biomacromolecules, can be produced in this way

  10. Tritium Decay Helium-3 Effects in Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Merrill, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructural evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible tritium

  11. Generation of gaseous tritium standards

    International Nuclear Information System (INIS)

    Hohorst, F.A.

    1994-09-01

    The determination of aqueous and non-aqueous tritium in gaseous samples is one type of determination often requested of radioanalytical laboratories. This determination can be made by introducing the sample as a gas into a sampling train containing two silica gel beds separated by.a catalytic oxidizer bed. The first bed traps tritiated water. The sample then passes into and through the oxidizer bed where non-aqueous tritium containing species are oxidized to water and other products of combustion. The second silica gel bed then traps the newly formed tritiated water. Subsequently, silica gel is removed to plastic bottles, deionized water is added, and the mixture is permitted to equilibrate. The tritium content of the equilibrium mixture is then determined by conventional liquid scintillation counting (LSC). For many years, the moisture content of inert, gaseous samples has been determined using monitors which quantitatively electrolyze the moisture present after that moisture has been absorbed by phosphorous pentoxide or other absorbents. The electrochemical reaction is quantitative and definitive, and the energy consumed during electrolysis forms the basis of the continuous display of the moisture present. This report discusses the experimental evaluation of such a monitor as the basis for a technique for conversion of small quantities of SRMs of tritiated water ( 3 HOH) into gaseous tritium standards ( 3 HH)

  12. Vacuum pumping of tritium in fusion power reactors

    International Nuclear Information System (INIS)

    Coffin, D.O.; Walthers, C.R.

    1979-01-01

    Compound cryopumps of three different designs will be tested with deuterium-tritium (DT) mixtures under simulated fusion reactor conditions at the Tritium Systems Test Assembly (TSTA) now being constructed at the Los Alamos Scientific Laboratory (LASL). The first of these pumps is already in operation, and its preliminary performance is presented. The supporting vacuum facility necessary to regenerate these fusion facility cryopumps is also described. The next generation of fusion system vacuum pumps may include non-cryogenic or conventional-cryogenic hybrid systems, several of which are discussed

  13. Tritium pellet injector for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foust, C.R.; Milora, S.L.

    1992-01-01

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) plasma phase. An existing deuterium pellet injector (DPI) was modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed for frozen pellets ranging in size from 3 to 4 mm in diameter in arbitrarily programmable firing sequences at tritium pellet speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller (PLC). The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were also made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed and the TPI was tested at ORNL with deuterium pellets. Results of the testing program at ORNL are described. The TPI has been installed and operated on TFTR in support of the CY-92 deuterium plasma run period. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and tritium gloveboxes and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  14. Mapping the nuclear landscape. 50 years of the Karlsruher Nuklidkarte

    International Nuclear Information System (INIS)

    Normand, C.; Pfennig, G.; Magill, J.; Dreher, R.

    2009-01-01

    Radioactivity has been known for more than a hundred years. Nuclear data compilations through nuclide charts began in the 1920s with the work of Soddy, and were later rationalized in the Karlsruher Nuklidkarte. For 50 years, it has depicted the status of our nuclear knowledge in an easy reading form. It was born as an educational and scientific tool that gives access to the basic bricks that the nuclear Physics community needs to build the physics knowledge at the femtometer (10 -15 m) level. Nuclide data is a bridge between research and development. On the one hand, the nucleus can be regarded as a vast laboratory with, the possibility to test from fundamental concepts of the Standard Model to the genesis of the elements in the Universe. On the other hand, this data is also leading to applications in many areas of everyday life such as health care or environmental monitoring. (author)

  15. The design of an automated electrolytic enrichment apparatus for tritium

    Energy Technology Data Exchange (ETDEWEB)

    Myers, J.L.

    1994-12-01

    The Radiation Analytical Sciences Section at Laboratory at Lawrence Livermore National Laboratory performs analysis of low-level tritium concentrations in various natural water samples from the Tri-Valley Area, DOE Nevada Test Site, Site 300 in Tracy, CA, and other various places around the world. Low levels of tritium, a radioactive isotope of hydrogen, which is pre-concentrated in the RAS laboratory using an electrolytic enrichment apparatus. Later these enriched waters are analyzed by liquid scintillation counting to determine the activity of tritium. The enrichment procedure and the subsequent purification process by vacuum distillation are currently undertaken manually, hence being highly labor-intensive. The whole process typically takes about 2 to 3 weeks to complete a batch of 30 samples, with a dedicated personnel operating the process. The goal is to automate the entire process, specifically having the operation PC-LabVIEW{trademark} controlled with real-time monitoring capability. My involvement was in the design and fabrication of a prototypical automated electrolytic enrichment cell. Work will be done on optimizing the electrolytic process by assessing the different parameters of the enrichment procedure. Hardware and software development have also been an integral component of this project.

  16. Design and test about de tritium system to filling tritium glove box

    International Nuclear Information System (INIS)

    Lei, Jiarong; Du, Yang; Yang, Yong

    2008-01-01

    In order to deal tritium permeated from inflating tritium system at the scene of inflating tritium, dealing waste tritium gas system was designed according to demand and action of dealing waste tritium gas from inflating tritium, and the data of character and volume about appliance of catalyst reaction and drying agent was calculated. Through the test at the scene of inflating tritium, it is result that dealing waste tritium gas system's efficiency reaches above 85% average in circulatory system, so that it can be used in practice extensively. (author)

  17. Predicting tritium movement and inventory in fusion reactor subsystems using the TMAP code

    International Nuclear Information System (INIS)

    Jones, J.L.; Merrill, B.J.; Holland, D.F.

    1986-01-01

    The Fusion Safety Program of EGandG idaho, Inc. at the Idaho National Engineering Laboratory (INEL) is developing a safety analysis code called TMAP (Tritium Migration Analysis Program) to analyze tritium loss from fusion systems during normal and off-normal conditions. TMAP is a one-dimensional code that calculates tritium movement and inventories in a system of interconnected enclosures and wall structures. These wall structures can include composite materials with bulk trapping of the permeating tritium on impurities or radiation induced dislocations within the material. The thermal response of a structure can be modeled to provide temperature information required for tritium movement calculations. Chemical reactions and hydrogen isotope movement can also be included in the calculations. TMAP was used to analyze the movement of tritium implanted into a proposed limiter/first wall structure design

  18. TMAP/Mod 1: Tritium Migration Analysis Program code description and user's manual

    International Nuclear Information System (INIS)

    Merrill, B.J.; Jones, J.L.; Holland, D.F.

    1986-01-01

    The Tritium Migration Analysis Program (TMAP) has been developed by the Fusion Safety Program of EG and G Idaho, Inc., at the Idaho National Engineering Laboratory (INEL) as a safety analysis code to analyze tritium loss from fusion systems during normal operation and under accident conditions. TMAP is a one-dimensional code that determines tritium movement and inventories in a system of interconnected enclosures and wall structures. In addition, the thermal response of structures is modeled to provide temperature information required for calculations of tritium movement. The program is written in FORTRAN 4 and has been implemented on the National Magnetic Fusion Energy Computing Center (NMFECC)

  19. Development of compact tritium confinement system using gas separation membrane

    International Nuclear Information System (INIS)

    Hayashi, Takumi; Okuno, Kenji

    1994-01-01

    In order to develop more compact and cost-effective tritium confinement system for fusion reactor, a new system using gas separation membranes has been studied at the Tritium Process Laboratory in the Japan Atomic Energy Research Institute. The preliminary result showed that the gas separation membrane system could reduce processing volume of tritium contaminated gas to more than one order of magnitude compared with the conventional system, and that most of tritiated water vapor (humidity) could be directly recovered by water condenser before passing through dryer such as molecular sieves. More detail investigations of gas separation characteristics of membrane were started to design ITER Atmospheric Detritiation System (ADS). Furthermore, a scaled polyimide membrane module (hollow-filament type) loop was just installed to investigate the actual tritium confinement performance under various ITER-ADS conditions. (author)

  20. Export Control Requirements for Tritium Processing Design and R&D

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, William Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maynard, Sarah-Jane Wadsworth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-05

    This document will address requirements of export control associated with tritium plant design and processes. Los Alamos National Laboratory has been working in the area of tritium plant system design and research and development (R&D) since the early 1970’s at the Tritium Systems Test Assembly (TSTA). This work has continued to the current date with projects associated with the ITER project and other Office of Science Fusion Energy Science (OS-FES) funded programs. ITER is currently the highest funding area for the DOE OS-FES. Although export control issues have been integrated into these projects in the past a general guidance document has not been available for reference in this area. To address concerns with currently funded tritium plant programs and assist future projects for FES, this document will identify the key reference documents and specific sections within related to tritium research. Guidance as to the application of these sections will be discussed with specific detail to publications and work with foreign nationals.

  1. Export Control Requirements for Tritium Processing Design and R&D

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, William Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maynard, Sarah-Jane Wadsworth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-30

    This document will address requirements of export control associated with tritium plant design and processes. Los Alamos National Laboratory has been working in the area of tritium plant system design and research and development (R&D) since the early 1970’s at the Tritium Systems Test Assembly (TSTA). This work has continued to the current date with projects associated with the ITER project and other Office of Science Fusion Energy Science (OS-FES) funded programs. ITER is currently the highest funding area for the DOE OS-FES. Although export control issues have been integrated into these projects in the past a general guidance document has not been available for reference in this area. To address concerns with currently funded tritium plant programs and assist future projects for FES, this document will identify the key reference documents and specific sections within related to tritium research. Guidance as to the application of these sections will be discussed with specific detail to publications and work with foreign nationals.

  2. Universal tritium transmitter

    International Nuclear Information System (INIS)

    Cordaro, J. V.; Wood, M.

    2008-01-01

    sufficient time to thermally equilibrate. Amplifiers, transistors, resistors all need time to stabilize before the electrometer circuit will measure accurately in the 10 -15 and 10 -14 ampere range. Existing electrometers give the user no indication when the unit has stabilized and is acceptable for low level measurements. Savannah River National Laboratory (SRNL) funded through the NNSA Plant Directed Research and Development (PDRD) program, has developed a truly Universal Tritium Transmitter (UTT) capable of solving many known problems with existing commercial electrometers. This UTT pushes the state-of-the-art in electrometer design and incorporates solutions to deficiencies found in commercial electrometers. (authors)

  3. ZEPHYR tritium system

    International Nuclear Information System (INIS)

    Swansiger, W.; Andelfinger, C.; Buchelt, E.; Fink, J.; Sandmann, W.; Stimmelmayr, A.; Wegmann, H.G.; Weichselgartner, H.

    1982-04-01

    The ignition experiment ZEPHYR will need tritium as an essential component of the fuel. The ZEPHYR Tritium Systems are designed as to recycle the fuel directly at the experiment. An amount of tritium, which is significantly below the total throughput, for example 10 5 Ci will be stored in uranium getters and introduced into the torus by a specially designed injection system. The torus vacuum system operates with tritium-tight turbomolecular pumps and multi-stage roots pumps in order to extract and store the spent fuel in intermediate storage tanks at atmospheric pressure. A second high vacuum system, similar in design, serves as to evacuate the huge containments of the neutral injection system. The spent fuel will be purified and subsequently processed by an isotope separation system in which the species D 2 , DT and T 2 will be recovered for further use. This isotope separation will be achieved by a preparative gaschromatographic process. All components of the tritium systems will be installed within gloveboxes which are located in a special tritium handling room. The atmospheres of the gloveboxes and of the tritium rooms are controlled by a tritium monitor system. In the case of a tritium release - during normal operation as well as during an accident - these atmospheres become processed by efficient tritium absorption systems. All ZEPHYR tritium handling systems are designed as to minimize the quantity of tritium released to the environment, so that the stringent German laws on radiological protection are satisfied. (orig.)

  4. Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)

    International Nuclear Information System (INIS)

    Hsu, R.H.; Oji, L.N.

    1997-01-01

    Under the Tritium Facility Modernization ampersand Consolidation (TFM ampersand C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM ampersand C Project also provides for a new replacement R ampersand D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H

  5. Tritium operating safety seminar, Los Alamos, New Mexico, July 30, 1975

    International Nuclear Information System (INIS)

    1976-03-01

    A seminar for the exchange of information on tritium operating and safety problems was held at the Los Alamos Scientific Laboratory. The topics discussed are: (1) material use (tubing, lubricants, valves, seals, etc.); (2) hardware selection (valves, fittings, pumps, etc.); (3) biological effects; (4) high pressure; (5) operating procedures (high pressure tritium experiment at LLL); (6) incidents; and (7) emergency planning

  6. Synthesis of tritium-labeled vitamin A and its analogs

    International Nuclear Information System (INIS)

    Rhee, S.W.; Bubb, J.E.

    1985-01-01

    Metabolic and pharmacologic studies of Vitamin A and its analogs related to the prevention of lung cancer and other epithelial cancers required tritium-labeled Vitamin A analogs and β-carotene at high specific activity. Syntheses of some of the isomers were therefore developed in the laboratory, as described in the paper. The advantages of the scheme shown are that : 1. Tritiums are introduced into the molecule by catalytic hydrogenation, thus affording high specific activity. 2. It uses an allylic rearrangement of tritiated vinyl-β-ionol to C 15 -phosphonium salt, which is condensed with C 5 -nitrile to give C 20 -skeleton of retinonitrile. 3. It permits the development of milder methods to convert tritium-labeled retinaldehyde, as a common intermediate, to the other retinoids (i.e., retinoic acid, retinol, and retinyl acetate). Furthermore, tritium-labeled all-trans-β-carotene, an important carotenoid, has been obtained from the retinaldehyde

  7. Development of a tritium recovery system from CANDU tritium removal facility

    International Nuclear Information System (INIS)

    Draghia, M.; Pasca, G.; Porcariu, F.

    2015-01-01

    The main purpose of the Tritium Recovery System (TRS) is to reduce to a maximum possible extent the release of tritium from the facility following a tritium release in confinement boundaries and also to have provisions to recover both elemental and vapors tritium from the purging gases during maintenance and components replacement from various systems processing tritium. This work/paper proposes a configuration of Tritium Recovery System wherein elemental tritium and water vapors are recovered in a separated, parallel manner. The proposed TRS configuration is a combination of permeators, a platinum microreactor (MR) and a trickle bed reactor (TBR) and consists of two branches: one branch for elemental tritium recovery from tritiated deuterium gas and the second one for tritium recovery from streams containing a significant amount of water vapours but a low amount, below 5%, of tritiated gas. The two branches shall work in a complementary manner in such a way that the bleed stream from the permeators shall be further processed in the MR and TBR in view of achieving the required decontamination level. A preliminary evaluation of the proposed TRS in comparison with state of the art tritium recovery system from tritium processing facilities is also discussed. (authors)

  8. Development of a tritium recovery system from CANDU tritium removal facility

    Energy Technology Data Exchange (ETDEWEB)

    Draghia, M.; Pasca, G.; Porcariu, F. [SC.IS.TECH SRL, Timisoara (Romania)

    2015-03-15

    The main purpose of the Tritium Recovery System (TRS) is to reduce to a maximum possible extent the release of tritium from the facility following a tritium release in confinement boundaries and also to have provisions to recover both elemental and vapors tritium from the purging gases during maintenance and components replacement from various systems processing tritium. This work/paper proposes a configuration of Tritium Recovery System wherein elemental tritium and water vapors are recovered in a separated, parallel manner. The proposed TRS configuration is a combination of permeators, a platinum microreactor (MR) and a trickle bed reactor (TBR) and consists of two branches: one branch for elemental tritium recovery from tritiated deuterium gas and the second one for tritium recovery from streams containing a significant amount of water vapours but a low amount, below 5%, of tritiated gas. The two branches shall work in a complementary manner in such a way that the bleed stream from the permeators shall be further processed in the MR and TBR in view of achieving the required decontamination level. A preliminary evaluation of the proposed TRS in comparison with state of the art tritium recovery system from tritium processing facilities is also discussed. (authors)

  9. Development of tritium plant system for fusion reactors. Achievements in the 14-year US-Japan collaboration

    International Nuclear Information System (INIS)

    Nishi, Masataka; Yamanishi, Toshihiko; Shu, Wataru

    2003-01-01

    Fuel processing technology and tritium safe-handling technology have been developed through US/DOE-JAERI collaboration from 1987 till 2001, and the technologies to construct the tritium plant system of ITER have been made currently available. This paper overviews the major achievements of this collaborative researches over fourteen years, which were performed mainly at the Tritium Systems Test Assembly (TSTA) of the Los Alamos National Laboratory (LANL). The tritium plant system consists mainly of a fuel processing system, which includes a fuel cycle system and a blanket tritium recovery system, and a tritium confinement/removal system. The fuel cycle system recovers fuel from plasma exhaust gas and recycles it. In the collaboration, major key components and subsystems were developed, and the performance of the integrated system was successfully demonstrated over its one-month operation in which plasma exhaust model gas was processed at a processing rate of up to 1/6 level of the ITER. The technological basis of the fuel cycle system was thus established. Blanket tritium recovery technology was also successfully demonstrated using the TSTA system. Through the successful safe-operation of the TSTA, reliability of tritium confinement/removal system was verified basically. In addition, much data to confirm or enhance safety were accumulated by experiments such as intentional tritium release in a large room. Furthermore, distribution of tritium contamination in the vacuum vessel of the TFTR, a large tokamak of the Princeton Plasma Physics Laboratory (PPPL), was investigated in this work. (author)

  10. Development of Tritium Plant System for Fusion Reactors - Achievements in the 14-year US-Japan Collaboration -

    Science.gov (United States)

    Nishi, Masataka; Yamanishi, Toshihiko; Shu, Wataru

    Fuel processing technology and tritium safe-handling technology have been developed through US/DOE-JAERI collaboration from 1987 till 2001, and the technologies to construct the tritium plant system of ITER have been made currently available. This paper overviews the major achievements of this collaborative researches over fourteen years, which were performed mainly at the Tritium Systems Test Assembly (TSTA) of the Los Alamos National Laboratory (LANL). The tritium plant system consists mainly of a fuel processing system, which includes a fuel cycle system and a blanket tritium recovery system, and a tritium confinement/removal system. The fuel cycle system recovers fuel from plasma exhaust gas and recycles it. In the collaboration, major key components and subsystems were developed, and the performance of the integrated system was successfully demonstrated over its one-month operation in which plasma exhaust model gas was processed at a processing rate of up to 1/6 level of the ITER. The technological basis of the fuel cycle system was thus established. Blanket tritium recovery technology was also successfully demonstrated using the TSTA system. Through the successful safeoperation of the TSTA, reliability of tritium confinement/removal system was verified basically. In addition, much data to confirm or enhance safety were accumulated by experiments such as intentional tritium release in a large room. Furthermore,distribution of tritium contamination in the vacuum vessel of the TFTR, a large tokamak of the Princeton Plasma Physics Laboratory (PPPL), was investigated in this work.

  11. List of scientific publications, Nuclear Research Center Karlsruhe 1984

    International Nuclear Information System (INIS)

    1985-04-01

    The report abstracted contains a list of works published in 1984. Papers not in print yet are listed separately. Patent entries take account of all patent rights granted or published in 1984, i.e. patents or patent specifications. The list of publications is classified by institutes. The project category lists but the respective reports and studies carried out and published by members of the project staff concerned. Also listed are publications related to research and development projects of the 'product engineering project' (PFT/Projekt 'Fertigungstechnik'). With different companies and institutes cooperating, PFT is sponsored by Nuclear Research Center Karlsruhe GmbH. The latter is also responsible for printing above publications. Moreover the list contains the publications of a branch of the Bundesforschungsanstalt fuer Ernaehrung which is located on the KfK-premises. The final chapter of the list summarizes publications dealing with guest-experiments and research at Nuclear Research Center Karlsruhe. (orig./PW) [de

  12. Final programmatic environmental impact statement for tritium supply and recycling

    International Nuclear Information System (INIS)

    1995-10-01

    Tritium, a radioactive gas used in all of the Nation's nuclear weapons, has a short half-life and must be replaced periodically in order for the weapon to operate as designed. Currently, there is no capability to produce the required amounts of tritium within the Nuclear Weapons Complex. The PEIS for Tritium Supply and Recycling evaluates the alternatives for the siting, construction, and operation of tritium supply and recycling facilities at each of five candidate sites: the Idaho National Engineering Laboratory, the Nevada Test Site, the Oak Ridge Reservation, the Pantex Plant, and the Savannah River Site. Alternatives for new tritium supply and recycling facilities consist of four different tritium supply technologies: Heavy Water Reactor, Modular High Temperature Gas-Cooled Reactor, Advanced Light Water Reactor, and Accelerator Production of Tritium. The PEIS also evaluates the impacts of the DOE purchase of an existing operating or partially completed commercial light water reactor or the DOE purchase of irradiation services contracted from commercial power reactors. Additionally, the PEIS includes an analysis of multipurpose reactors that would produce tritium, dispose of plutonium, and produce electricity. Evaluation of impacts on land resources, site infrastructure, air quality and acoustics, water resources, geology and soils, biotic resources, cultural and paleontological resources, socioeconomics, radiological and hazardous chemical impacts during normal operation and accidents to workers and the public, waste management, and intersite transport are included in the assessment

  13. Hot Laboratories and Remote Handling

    International Nuclear Information System (INIS)

    Bart, G.; Blanc, J.Y.; Duwe, R.

    2003-01-01

    divided in two parts: - First, a mutual share of real examples about the 'life' in hot laboratories: waste management, decommissioning and release, safety; - Second, a presentation of tools or facilities dealing with PIE or defueling. Special radwaste management was presented by: - ISPRA, for heavy water; - IFE Kjeller, for old stored steel waste; - FZ Juelich presented an example of decommissioning and re-opening of hot laboratories; - IFE Kjeller presented a synthesis of two questionnaires sent to European Hot Laboratories on 'the fire preparedness measures in buildings with hot laboratories'; - The creep test device settled in K6 LECI Hot Cells in CEA at the Saclay site was also described; - ITU Karlsruhe/FZ Juelich presented experimental details and results from a study on a Vicker hardness test; - CEA/Valrho presented the two newest facilities of Atalante; Session 3 - Prospective Research on Materials for Future Applications comprised four presentations concerning the development of future gas cooled reactors and the materials research for nuclear fusion plants, namely: - E.H. Toscano (European Commission, ITU-Karlsruhe,Germany) who described a new facility to measure the fission product inventory; - V. Basini (CEA Cadarache, France) who presented results of HTR fuel development and innovative elaboration processes of fuel particles; - M. Roedig (FZJ, Juelich, Germany) reported on post irradiation experiments on plasma facing materials and miniaturized components for the next step fusion device ITER; - J. P. Coad (EFDA-JET, Abingdon, U.K.) who gave an overview on the tritium related technology programs at JET

  14. PDRD (SR13046) TRITIUM PRODUCTION FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.; Sheetz, S.

    2013-09-30

    Technical Advisory Committee (TAC) ran a Monte Carlo N-Particle (MCNP) model of a basic SFR for comparison. A 600MWth core surrounded by a lithium blanket produced approximately 1,000 grams of tritium annually with a 13% enriched, 6 year core. This is similar results to a mid-1990’s study where the Fast Flux Test Facility (FFTF), a 400 MWth reactor at the Idaho National Laboratory (INL), could produce about 1,000 grams with an external lithium target. Normalized to the LWRs values, comparative tritium production for an SFR could be approximately 0.31 g-T/kg LEU.

  15. Spatial distribution of tritium in the Rawatbhata Rajasthan site environment

    International Nuclear Information System (INIS)

    GilI, Rajpal; Tiwari, S.N.; Gocher, A.K.; Ravi, P.M.; Tripathi, R.M.

    2014-01-01

    Tritium is one of the most environmentally mobile radionuclides and hence has high potential for migration into the different compartments of environment. Tritium from nuclear facilities at RAPS site is released into the environment through 93 m and 100 m high stack mainly as tritiated water (HTO). The released tritium undergoes dilution and dispersion and then follows the ecological pathway of water molecule. Environmental Survey Laboratory of Health Physics Division, Bhabha Atomic Research Centre (BARC), located at Rajasthan Atomic Power Station (RAPS) site is continuously monitoring the concentration of tritium in the environment to ensure the public safety. Atmospheric tritium activity during the period (2009-2013) was measured regularly around Rajasthan Atomic Power Station (RAPS). Data collected showed a large variation of H-3 concentration in air fluctuating in the range of 0.43 - 5.80 Bq.m -3 at site boundary of 1.6 km. This paper presents the result of analyses of tritium in atmospheric environment covering an area up to 20 km radius around RAPS site. Large number of air moisture samples were collected around the RAPS site, for estimating tritium in atmospheric environment to ascertain the atmospheric dispersion and computation of radiation dose to the public

  16. PREFACE: Selected invited contributions from the International Conference on Magnetism (Karlsruhe, Germany, 26-31 July 2009) Selected invited contributions from the International Conference on Magnetism (Karlsruhe, Germany, 26-31 July 2009)

    Science.gov (United States)

    Goll, Gernot; Löhneysen, Hilbert v.; Loidl, Alois; Pruschke, Thomas; Richter, Manuel; Schultz, Ludwig; Sürgers, Christoph; Wosnitza, Jochen

    2010-04-01

    The International Conference on Magnetism 2009 (ICM 2009) was held in Karlsruhe, Germany, from 26 to 31 July 2009. Previous conferences in this series were organized in Edinburgh, UK (1991), Warsaw, Poland (1994), Cairns, Australia (1997), Recife, Brazil (2000), Rome, Italy (2003), and Kyoto, Japan (2006). As with previous ICM conferences, the annual Conference on Strongly Correlated Electron Systems (SCES) was integrated into ICM 2009. The topics presented at ICM 2009 were strongly correlated electron systems, quantum and classical spin systems, magnetic structures and interactions, magnetization dynamics and micromagnetics, spin-dependent transport, spin electronics, magnetic thin films, particles and nanostructures, soft and hard magnetic materials and their applications, novel materials and device applications, magnetic recording and memories, measuring techniques and instrumentation, as well as interdisciplinary topics. We are grateful to the International Advisory Committee for their help in coordinating an attractive program encompassing practically all aspects of magnetism, both experimentally and theoretically. The Program Committee comprised A Loidl, Germany (Chair), M A Continentino, Brazil, D E Dahlberg, USA, D Givord, France, G Güntherodt, Germany, H Mikeska, Germany, D Kaczorowski, Poland, Ching-Ray Chang, South Korea, I Mertig, Germany, D Vollhardt, Germany, and E F Wassermann, Germany. E F Wassermann was also head of the National Organizing Committee. His help is gratefully acknowledged. The scientific program started on Monday 27 July 2009 with opening addresses by the Conference Chairman, the Deputy Mayor of Karlsruhe, Ms M Mergen and the Chairman of the Executive Board of Forschungszentrum Karlsruhe, E Umbach. ICM 2009 was attended by the Nobel Laureates P W Anderson, A Fert and P Grünberg who gave plenary talks. A special highlight was the presentation of the Magnetism Award and Néel Medal to S S P Parkin who also presented his newest results

  17. Safe handling and monitoring of tritium in research on nuclear fusion

    International Nuclear Information System (INIS)

    Yoshida, Yoshikazu; Naruse, Yuji

    1978-01-01

    An actual condition of technique of safety handling and monitoring of tritium in the laboratory which treated a great quantity of tritium in relation to nuclear fusion, was described. With respect to the technique of safety handling of tritium, an actual condition of the technique in the U.S.A. which had wide experience in treating a great quantity of 3 H was mainly introduced, and it was helpful to a safety measure and a reduction of tritium effluence. Glovebox, hood, and other component machinery and tools for treating 3 H were also introduced briefly. As a monitoring technique, monitoring of indoor air and air exhaust by ionization chamber-type monitor for continuous monitoring of a great quantity of gaseous tritium was mentioned. Next, monitoring of a room, the surfaces of equipments, and draining, internal exposure of the individual, and monitoring of the environment were introduced. (Kanao, N.)

  18. Demonstration tests of tritium removal device under the conditions of nuclear fusion reactor. Cooperation test between Japan and USA

    International Nuclear Information System (INIS)

    Hayashi, Takumi; Kobayashi, Kazuhiro; Nishi, Masataka

    2001-01-01

    Performance of oxidation catalysis in emergency tritium removal device was tested in Los Alamos National Laboratory by cooperation between Japan and USA on November 8, 2000. To reduce the effects of tritium on the environment, a plan of the closed space for trapping tritium was made. A tritium removal device using oxidation catalysis and water vapor adsorption removes the tritium in the closed space. The treatment flow rate of the device is about 2,500 m 3 /h, the same as ITER(3,000 to 4,500 m 3 /h). Catalysis is Pt/ alumina. The closed space is 3,000m 2 . The initial concentration of tritium was about 7 Bq/cm 2 , ten times as large as the concentration limit in atmosphere. The concentration of tritium in the test laboratory decreased linearly with time and attained to the limit value after about 200 min. Residue of tritium on the wall had been removed and the significant quantity was not detected after three days. The results proved to satisfy safety of ITER. (S.Y.)

  19. In situ measurement of tritium permeation through stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Walter G., E-mail: walter.luscher@pnnl.gov [Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (United States); Senor, David J., E-mail: david.senor@pnnl.gov [Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (United States); Clayton, Kevin K., E-mail: kevin.clayton@inl.gov [Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States); Longhurst, Glen R., E-mail: glenlonghurst@suu.edu [Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States)

    2013-06-15

    Highlights: ► In situ tritium permeation measurements collected over broad pressure range. ► Test conditions relevant to 316 SS in commercial light water reactors. ► Comparisons between in- and ex-reactor measurements provided. ► Correlation between tritium permeation, temperature, and pressure developed. -- Abstract: The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a {sup 4}He carrier gas mixed with a specified quantity of tritium (T{sub 2}) to yield partial pressures of 0.1, 5, and 50 Pa at 292 °C and 330 °C. In situ tritium permeation measurements were made by passing a He–Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of {sup 3}He to T, was also evaluated by introducing a {sup 4}He carrier gas mixed with {sup 3}He at a partial pressure of 1013 Pa at 330 °C. Less than 3% of the tritium resulting from {sup 3}He transmutation contributed to tritium permeation.

  20. Karlsruhe Research Center, Nuclear Safety Research Project (PSF). Annual report 1994; Forschungszentrum Karlsruhe, Projekt Nukleare Sicherheitsforschung. Jahrsbericht 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hueper, R. [ed.

    1995-08-01

    The reactor safety R and D work of the Karlsruhe Research Centre (FZKA) has been part of the Nuclear Safety Research Projet (PSF) since 1990. The present annual report 1994 summarizes the R and D results. The research tasks are coordinated in agreement with internal and external working groups. The contributions to this report correspond to the status of early 1995. An abstract in English precedes each of them, whenever the respective article is written in German. (orig.) [Deutsch] Seit Beginn 1990 sind die F+E-Arbeiten des Forschungszentrum Karlsruhe (FZKA) zur Reaktorsicherheit im Projekt Nukleare Sicherheitsforschung (PSF) zusammengefasst. Der vorliegende Jahresbericht 1994 enthaelt Beitraege zu aktuellen Fragen der Sicherheit von Leichtwasserreaktoren und innovativen Systemen sowie der Umwandlung von minoren Aktiniden. Die konkreten Forschungsthemen und -vorhaben werden mit internen und externen Fachgremien laufend abgestimmt. An den beschriebenen Arbeiten sind die folgenden Institute und Abteilungen des FZKA beteiligt: Institut fuer Materialforschung IMF I, II, III; Institut fuer Neutronenphysik und Reaktortechnik INR; Institut fuer Angewandte Thermo- und Fluiddynamik IATF; Institut fuer Reaktorsicherheit IRS; Hauptabteilung Ingenieurtechnik HIT; Hauptabteilung Versuchstechnik HVT sowie vom KfK beauftragte externe Institutionen. Die einzelnen Beitraege stellen den Stand der Arbeiten zum Fruehjahr 1995 dar und sind entsprechend dem F+E-Programm 1994 numeriert. Den in deutscher Sprache verfassten Beitraege sind Kurzfassungen in englischer Sprache vorangestellt. (orig.)

  1. Organically bound tritium

    International Nuclear Information System (INIS)

    Diabate, S.; Strack, S.

    1993-01-01

    Tritium released into the environment may be incorporated into organic matter. Organically bound tritium in that case will show retention times in organisms that are considerably longer than those of tritiated water which has significant consequences on dose estimates. This article reviews the most important processes of organically bound tritium production and transport through food networks. Metabolic reactions in plant and animal organisms with tritiated water as a reaction partner are of great importance in this respect. The most important production process, in quantitative terms, is photosynthesis in green plants. The translocation of organically bound tritium from the leaves to edible parts of crop plants should be considered in models of organically bound tritium behavior. Organically bound tritium enters the human body on several pathways, either from the primary producers (vegetable food) or at a higher tropic level (animal food). Animal experiments have shown that the dose due to ingestion of organically bound tritium can be up to twice as high as a comparable intake of tritiated water in gaseous or liquid form. In the environment, organically bound tritium in plants and animals is often found to have higher specific tritium concentrations than tissue water. This is not due to some tritium enrichment effects but to the fact that no equilibrium conditions are reached under natural conditions. 66 refs

  2. Development of a new monitor for tritium in air model TAM-II

    International Nuclear Information System (INIS)

    Wu Bin; Yang Hailan; Wen Xuelian; Zhao Yi; Yang Huaiyuan

    2001-01-01

    The author introduces development of a real-time continuous tritium monitor model TAM-II. The detector of the instrument is comprised of four geometric-symmetry open wall ionization chamber with the effective volume of 2 L, which enables to minimize the remember effect of the ionization chamber due to contamination by the monitored tritium. It is γ background compensation rate is better than 97% in almost all direction. The detector is equipped with a FET static electrometer working in micro-current integration mode. The measurement process of the tritium monitor can be controlled automatically by a micro-processor sheet, such as automatic range changing, data displaying and storing, and data processing. The measuring range is 6 - 10 6 Bq/L. It is especially application for monitoring tritium in off-gas effluence from glove-box or stack of tritium facility and laboratory

  3. Some new techniques in tritium gas handling as applied to metal hydride synthesis

    International Nuclear Information System (INIS)

    Nasise, J.E.

    1988-01-01

    A state-of-the-art tritium Hydriding Synthesis System (HSS) was designed and built to replace the existing system within the Tritium Salt Facility (TSF) at the Los Alamos National Laboratory. This new hydriding system utilizes unique fast-cycling 7.9 mole uranium beds (47.5g of T at 100% loading) and novel gas circulating hydriding furnaces. Tritium system components discussed include fast-cycling uranium beds, circulating gas hydriding furnaces, valves, storage volumes, manifolds, gas transfer pumps, and graphic display and control consoles. Many of the tritium handling and processing techniques incorporated into this system are directly applicable to today's fusion fuel loops. 12 refs., 7 figs

  4. Tritium breeders and tritium permeation barrier coatings for fusion reactor

    International Nuclear Information System (INIS)

    Yamawaki, Michio; Kawamura, Hiroshi; Tsuchiya, Kunihiko

    2004-01-01

    A state of R and D of tritium breeders and tritium permeation barrier coatings for fusion reactor is explained. A list of candidate for tritium breeders consists of ceramics containing lithium, for examples, Li 2 O, Li 2 TiO 3 , Li 2 ZrO 3 , Li 4 SiO 4 and LiAlO 2 . The characteristics and form are described. The optimum particle size is from 1 to 10 μm. The production technologies of tritium breeders in the world are stated. Characteristics of ceramics with lithium as tritium breeders are compared. TiC, TiN/TiC, Al 2 O 3 and Cr 2 O 3 -SiO 2 -P 2 O 5 are tritium permeation barrier coating materials. These production methods and evaluation of characteristics are explained. (S.Y.)

  5. News from the Library: The 8th edition Karlsruhe nuclide chart has been released

    CERN Multimedia

    CERN Library

    2012-01-01

    The 8th edition of the Karlsruhe Nuclide Chart contains new data not found in the 7th edition.   Since 1958, the well-known Karlsruhe Nuclide Chart has provided scientists with structured, valuable information on the half-lives, decay modes and energies of radioactive nuclides. The chart is used in many disciplines in physics (health physics, radiation protection, nuclear and radiochemistry, astrophysics, etc.) but also in the life and earth sciences (biology, medicine, agriculture, geology, etc.). The 8th edition of the Karlsruhe Nuclide Chart contains new data on 737 nuclides not found in the 7th edition. In total, nuclear data on 3847 experimentally observed ground states and isomers are presented. A new web-based version of this chart is in the final stages of development for use within the Nucleonica Nuclear Science Portal - a portal for which CERN has an institutional license. The chart is also available in paper format.   If you want to buy a paper version of the chart, ple...

  6. A tritium target system for μCF

    International Nuclear Information System (INIS)

    Zmeskal, J.; Ackerbauer, P.; Durham, W.B.; Heard, H.C.; Neumann, W.; Bossy, H.

    1990-12-01

    An apparatus has been constructed for the safe handling of tritium as part of a series of muon-catalyzed fusion experiments. The equipment was designed to handle 100 kCi of tritium. The main parts of this system are the oil-free high vacuum and transfer system, and the quadrupole mass analyzer for a direct determination of the target content. The system was used successfully for five continuous periods of operation of over one month each. A new target system was constructed at Lawrence Livermore National Laboratory (LLNL) for ultimate use at Paul Scherrer Institute (PSI) to investigate the high temperature and high pressure region. 9 refs., 4 figs

  7. Normalized Tritium Quantification Approach (NoTQA) a Method for Quantifying Tritium Contaminated Trash and Debris at LLNL

    International Nuclear Information System (INIS)

    Dominick, J.L.; Rasmussen, C.L.

    2008-01-01

    Several facilities and many projects at LLNL work exclusively with tritium. These operations have the potential to generate large quantities of Low-Level Radioactive Waste (LLW) with the same or similar radiological characteristics. A standardized documented approach to characterizing these waste materials for disposal as radioactive waste will enhance the ability of the Laboratory to manage them in an efficient and timely manner while ensuring compliance with all applicable regulatory requirements. This standardized characterization approach couples documented process knowledge with analytical verification and is very conservative, overestimating the radioactivity concentration of the waste. The characterization approach documented here is the Normalized Tritium Quantification Approach (NoTQA). This document will serve as a Technical Basis Document which can be referenced in radioactive waste characterization documentation packages such as the Information Gathering Document. In general, radiological characterization of waste consists of both developing an isotopic breakdown (distribution) of radionuclides contaminating the waste and using an appropriate method to quantify the radionuclides in the waste. Characterization approaches require varying degrees of rigor depending upon the radionuclides contaminating the waste and the concentration of the radionuclide contaminants as related to regulatory thresholds. Generally, as activity levels in the waste approach a regulatory or disposal facility threshold the degree of required precision and accuracy, and therefore the level of rigor, increases. In the case of tritium, thresholds of concern for control, contamination, transportation, and waste acceptance are relatively high. Due to the benign nature of tritium and the resulting higher regulatory thresholds, this less rigorous yet conservative characterization approach is appropriate. The scope of this document is to define an appropriate and acceptable

  8. Characterization, minimization and disposal of radioactive, hazardous, and mixed wastes during cleanup and rransition of the Tritium Research Laboratory (TRL) at Sandia National Laboratories/California (SNL/CA)

    International Nuclear Information System (INIS)

    Garcia, T.B.; Gorman, T.P.

    1996-12-01

    This document provides an outline of waste handling practices used during the Sandia National Laboratory/California (SNL/CA), Tritium Research Laboratory (TRL) Cleanup and Transition project. Here we provide background information concerning the history of the TRL and the types of operations that generated the waste. Listed are applicable SNL/CA site-wide and TRL local waste handling related procedures. We describe personnel training practices and outline methods of handling and disposal of compactible and non-compactible low level waste, solidified waste water, hazardous wastes and mixed wastes. Waste minimization, reapplication and recycling practices are discussed. Finally, we provide a description of the process followed to remove the highly contaminated decontamination systems. This document is intended as both a historical record and as a reference to other facilities who may be involved in similar work

  9. Tritium-surface interactions

    International Nuclear Information System (INIS)

    Kirkaldy, J.S.

    1983-06-01

    The report deals broadly with tritium-surface interactions as they relate to a fusion power reactor enterprise, viz., the vacuum chamber, first wall, peripherals, pumping, fuel recycling, isotope separation, repair and maintenance, decontamination and safety. The main emphasis is on plasma-surface interactions and the selection of materials for fusion chamber duty. A comprehensive review of the international (particularly U.S.) research and development is presented based upon a literature review (about 1 000 reports and papers) and upon visits to key laboratories, Sandia, Albuquerque, Sandia, Livermore and EGβG Idaho. An inventory of Canadian expertise and facilities for RβD on tritium-surface interactions is also presented. A number of proposals are made for the direction of an optimal Canadian RβD program, emphasizing the importance of building on strength in both the technological and fundamental areas. A compendium of specific projects and project areas is presented dealing primarily with plasma-wall interactions and permeation, anti-permeation materials and surfaces and health, safety and environmental considerations. Potential areas of industrial spinoff are identified

  10. Studies on chemical phenomena of high concentration tritium water and organic compounds of tritium from viewpoint of the tritium confinement

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Hayashi, Takumi; Iwai, Yasunori; Isobe, Kanetsugu; Hara, Masanori; Sugiyama, Takahiko; Okuno, Kenji

    2009-01-01

    As a part of the grant-in-aid for scientific research on priority areas entitled 'frontiers of tritium researches toward fusion reactors', coordinated two research programs on chemical phenomena of high concentration tritium water and organic compounds of tritium from view point of the tritium confinement have been conducted by the C01 team. The results are summarized as follows: (1) Chemical effects of the high concentration tritium water on stainless steels as structural materials of fusion reactors were investigated. Basic data on tritium behaviors at the metal-water interface and corrosion of metal in tritium water were obtained. (2) Development of the tritium confinement and extraction system for the circulating cooling water in the fusion reactor was studied. Improvement was obtained in the performance of a chemical exchange column and catalysts as major components of the water processing system. (J.P.N.)

  11. Establishment of tritium dating facility for hydrological studies in PNRI

    International Nuclear Information System (INIS)

    Mendoza, Norman; Sucgang, Raymond; Castaneda, Soledad

    2009-01-01

    The release of excess tritium ( 3 H) into the atmosphere from nuclear weapons tests conducted between 1952 and 1963 'tagged' rain water, and thereby all surface waters with 3 HHO. Measurement of 3 H concentrations in rain, surface water and groundwater is useful index of vulnerability and sustainability of the aquifer to pollution and human exploitation. These determinations are currently being used in the characterization of different environments and in pollution studies, in the framework of research projects, international collaborations and services. Liquid scintillation counting (LSC) was the method of choice for the evaluation of the tritium concentrations in precipitation, groundwater and surface water samples. Prior to counting process, the samples are enriched in tritium by an electrolysis procedure to improve the overall detection limit. Low-level hydrological water samples go through an electrolytic enrichment step, in which tritium concentrations are increased to about seventy-fold through volume reduction. The amount of tritium in water is expressed in tritium units (TU). Water samples taken from selected areas of Bulacan province within the period of 2007 and 2008 were analyzed as part of the current hydrological studies being done by our group in PNRI. The typical tritium values for the rain water, surface water, and groundwater were found to be 1.20±0.11 TU, 1.12±0.11 TU, and 0.40±0.07, respectively. Procedures are now available in our laboratory for measurement of tritium in water samples of different water types. (author)

  12. Tritium inventories and tritium safety design principles for the fuel cycle of ITER

    International Nuclear Information System (INIS)

    Cristescu, I.R.; Cristescu, I.; Doerr, L.; Glugla, M.; Murdoch, D.

    2007-01-01

    Within the tritium plant of ITER a total inventory of about 2-3 kg will be necessary to operate the machine in the DT phase. During plasma operation, tritium will be distributed in the different sub-systems of the fuel cycle. A tool for tritium inventory evaluation within each sub-system of the fuel cycle is important with respect to both the process of licensing ITER and also for operation. It is very likely that measurements of total tritium inventories may not be possible for all sub-systems; however, tritium accounting may be achieved by modelling its hold-up within each sub-system and by validating these models in real-time against the monitored flows and tritium streams between the sub-systems. To get reliable results, an accurate dynamic modelling of the tritium content in each sub-system is necessary. A dynamic model (TRIMO) for tritium inventory calculation reflecting the design of each fuel cycle sub-systems was developed. The amount of tritium needed for ITER operation has a direct impact on the tritium inventories within the fuel cycle sub-systems. As ITER will function in pulses, the main characteristics that influence the rapid tritium recovery from the fuel cycle as necessary for refuelling are discussed. The confinement of tritium within the respective sub-systems of the fuel cycle is one of the most important safety objectives. The design of the deuterium/tritium fuel cycle of ITER includes a multiple barrier concept for the confinement of tritium. The buildings are equipped with a vent detritiation system and re-circulation type room atmosphere detritiation systems, required for tritium confinement barrier during possible tritium spillage events. Complementarily to the atmosphere detritiation systems, in ITER a water detritiation system for tritium recovery from various sources will also be operated

  13. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  14. Description of tritium release from lithium titanate at constant temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pena, L; Lagos, S; Jimenez, J; Saravia, E [Comision Chilena de Energia Nuclear, Santiago (Chile)

    1998-03-01

    Lithium Titanate Ceramics have been prepared by the solid-state route, pebbles and pellets were fabricated by extrusion and their microstructure was characterized in our laboratories. The ceramic material was irradiated in the La Reina Reactor, RECH-1. A study of post-irradiation annealing test, was performed measuring Tritium release from the Lithium Titanate at constant temperature. The Bertone`s method modified by R. Verrall is used to determine the parameters of Tritium release from Lithium Titanate. (author)

  15. Conceptual design of an emergency tritium clean-up system

    International Nuclear Information System (INIS)

    Muller, M.E.

    1978-01-01

    The Los Alamos Scientific Laboratory (LASL) has been selected to design, build, and operate a facility to demonstrate the operability of the tritium-related subsystems that would be required to successfully develop fusion reactor systems. Basically, these subsystems would consist of the deuterium-tritium fuel cycle and associated environmental control systems. An emergency tritium clean-up subsystem (ETC) for this facility will be designed to remove tritium from the cell atmosphere if an accident causes the primary and secondary tritium containment to be breached. Conceptually, the ETC will process cell air at the rate of 0.65 actual m 3 /s (1385 ACFM) and will achieve an overall decontamination factor of 10 6 for tritium oxide (T 2 O). Following the maximum credible release of 100 g of tritium, the ETC will restore the cell to operational status within 24 h without a significant release of tritium to the environment. The basic process will include compression of the air to 0.35 MPa (3.5 atm) in a reciprocating compressor followed by oxidation of the tritium to T 2 O in a catalytic reactor. The air will be cooled to 275 K (350 0 F) to remove most of the moisture, including T 2 O, as a condensate. The remaining moisture will be removed by molecular sieve dryer beds that incorporate a water-swamping step between beds, allowing greater T 2 O removal. A portion of the detritiated air will be recirculated to the cell; the remainder will be exhausted to the building ventilation stack to maintain a slight negative pressure in the cell. The ETC will be designed for maximum flexibility so that studies can be performed that involve various aspects of room air detritiation

  16. Tritium recovery and separation from CTR plasma exhausts and secondary containment atmospheres

    International Nuclear Information System (INIS)

    Forrester, R.C. III; Watson, J.S.

    1975-01-01

    Recent experimental successes have generated increased interest in the development of thermonuclear reactors as power sources for the future. This paper examines tritium containment problems posed by an operating CTR and sets forth some processing schemes currently being evaluated at the Oak Ridge National Laboratory. An appreciation of the CTR tritium management problem can best be realized by recalling that tritium production rates for various fission reactors range from 2 x 10 4 to 9 x 10 5 Ci/yr per 1000 MW(e). Present estimates of tritium production in a CTR blanket exceed 10 9 Ci/yr for the same level of power generation, and tritium process systems may handle 10 to 20 times that amount. Tritium's high permeability through most materials of construction at high temperatures makes secondary containment mandatory for most piping. Processing of these containment atmospheres will probably involve conversion of the tritium to a nonpermeating form (T 2 O) followed by trapping on conventional beds of desiccant material. In a similar fashion, all purge streams and process fluid vent gases will be subjected to tritium recovery prior to atmospheric release. Two tritium process systems will be required, one to recover tritium produced by breeding in the blanket and another to recover unburned tritium in the plasma exhaust. Plasma exhaust processing will be unconventional since the exhaust gas pressure will lie between 10 -3 and 10 -6 torr. Treatment of this gas stream will entail the removal of small quantities of protium and helium from a much larger deuterium-tritium mixture which will be recycled. (U.S.)

  17. Tritium monitoring techniques

    International Nuclear Information System (INIS)

    DeVore, J.R.; Buckner, M.A.

    1996-05-01

    As part of their operations, the U.S. Navy is required to store or maintain operational nuclear weapons on ships and at shore facilities. Since these weapons contain tritium, there are safety implications relevant to the exposure of personnel to tritium. This is particularly important for shipboard operations since these types of environments can make low-level tritium detection difficult. Some of these ships have closed systems, which can result in exposure to tritium at levels that are below normally acceptable levels but could still cause radiation doses that are higher than necessary or could hamper ship operations. This report describes the state of the art in commercial tritium detection and monitoring and recommends approaches for low-level tritium monitoring in these environments

  18. Partitioning of minor actinides: research at Juelich and Karlsruhe Research Centres

    International Nuclear Information System (INIS)

    Geist, A.; Weigl, M.; Gompper, K.; Modolo, G.

    2007-01-01

    Full text of publication follows. The work on minor actinide (MA) partitioning carried out at Karlsruhe and Juelich is integrated in the EC FP6 programme, EUROPART. Studies include the DIAMEX process (co-extraction of MA and lanthanides from PUREX raffinate) and the SANEX process (separation of MA from lanthanides). Aspects ranging from developing and improving highly selective and efficient extraction reagents, to fundamental structural studies, to process development and testing are covered. SANEX is a challenge in separation chemistry because of the chemical similarity of trivalent actinides and lanthanides. The extracting agents 2,6-di(5,6-di-propyl-1,2,4-triazine-3-yl)pyridine (n-Pr-BTP), developed at Karlsruhe, and the synergetic mixture of di(chloro-phenyl)di-thio-phosphinic acid (R2PSSH) with tri-n-octyl-phosphine oxide (TOPO), developed at Juelich, are considered a breakthrough because of their high separation efficiency in acidic systems. Separation factors for americium over lanthanides of more than 30 (R2PSSH+TOPO) and 130 (n-Pr-BTP) are achieved. To gain understanding of these selectivities, comparative investigations on the structures of curium and europium complexed with these SANEX ligands were performed at Karlsruhe. Extended X-ray absorption fine structure (EXAFS) analysis revealed distinct structural differences between curium and europium complexed with R2PSSH + TOPO, though no such differences were found for n-Pr-BTP. These investigations were therefore complemented by time-resolved laser fluorescence spectroscopic investigations (TRLFS), showing complex stabilities and speciation to differ between n-Pr-BTP complexes of curium and europium. Kinetics of mass transfer was studied for both R2PSSH+TOPO and n-Pr-BTP systems. For the R2PSSH + TOPO system, diffusion was identified to control extraction rates. For the n-Pr-BTP system, a slow chemical reaction was identified as the rate-controlling process. These results were implemented into computer

  19. Tritium dosimetry and standardization

    International Nuclear Information System (INIS)

    Balonov, M.I.

    1983-01-01

    Actual problem of radiation hygiene such as an evaluation of human irradiation hazard due to a contact with tritium compounds both in industrial and public spheres is under discussion. Sources of tritium release to environment are characterized. Methods of tritium radiation monitoring are discussed. Methods of dosimetry of internal human exposure resulted from tritium compounds are developed on the base of modern representations on metbolism and tritium radiobiological effect. A system of standardization of permissible intake of tritium compounds for personnel and persons of population is grounded. Some protection measures are proposed as applied to tritium overdosage

  20. Tritium production distribution in the accelerator production of tritium device

    International Nuclear Information System (INIS)

    Kidman, R.B.

    1997-11-01

    Helium-3 ( 3 He) gas is circulated throughout the accelerator production of tritium target/blanket (T/B) assembly to capture neutrons and convert 3 He to tritium. Because 3 He is very expensive, it is important to know the tritium producing effectiveness of 3 He at all points throughout the T/B. The purpose of this paper is to present estimates of the spatial distributions of tritium production, 3 He inventory, and the 3 He FOM

  1. Analysis on tritium permeation in tritium storage bed with gas flowing calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hirofumi; Hayashi, Takumi; Suzuki, Takumi; Nishi, Masataka [Japan Atomic Energy Research Inst., Naka Fusion Research Establishment, Department of Fusion Engineering Research, Naka, Ibaraki (Japan); Yoshida, Hiroshi [Japan Atomic Energy Research Inst., Naka Fusion Research Establishment, ITER-Joint Centeral Team, Naka, Ibaraki (Japan)

    2000-10-01

    Tritium permeation amount in a tritium storage bed with gas flowing calorimetric was evaluated under a condition of new operation mode for International Thermonuclear Experimental Reactor (ITER). As a result, tritium permeation under the new operation mode was estimated to be about twice of that under the practical operation mode. This result show that it would be regardless in a view point of material control of tritium, however, it was suggested to be required additional tritium removal or evacuate system in a view points of safety control or performance of accountability or thermal insulating of the tritium storage bed. (author)

  2. In-Situ Imaging and Quantification of Tritium Surface Contamination via Coherent Fiber Bundle

    International Nuclear Information System (INIS)

    Gentile, Charles A.; Parker, John J.; Zweben, Stewart J.

    2001-01-01

    Princeton Plasma Physics Laboratory (PPPL) has developed a method of imaging tritium on in-situ surfaces for the purpose of real-time data collection. This method expands upon a previous tritium imaging concept, also developed at PPPL. Enhancements include an objective lens coupled to the entry aperture of a coherent fiber optic (CFO) bundle, and a relay lens connecting the exit aperture of the fiber bundle to an intensifier tube and a charge-coupled device (CCD) camera. The system has been specifically fabricated for use in determining tritium concentrations on first wall materials. One potential complication associated with the development of D-T [deuterium-tritium] fueled fusion reactors is the deposition of tritium (i.e., co-deposited layer) on the surface of the primary wall of the vacuum vessel. It would be advantageous to implement a process to accurately determine tritium distribution on these inner surfaces. This fiber optic imaging device provides a highly practical method for determining the location, concentration, and activity of surface tritium deposition. In addition, it can be employed for detection of tritium ''hot-spots'' and ''hide-out'' regions present on the surfaces being imaged

  3. Tritium storage

    International Nuclear Information System (INIS)

    Hircq, B.

    1989-01-01

    A general synthesis about tritium storage is achieved in this paper and a particular attention is given to practical application in the Fusion Technology Program. Tritium, storage under gaseous form and solid form are discussed (characteristics, advantages, disadvantages and equipments). The way of tritium storage is then discussed and a choice established as a function of a logic which takes into account the main working parameters

  4. Tritium emissions reduction facility (TERF)

    International Nuclear Information System (INIS)

    Lamberger, P.H.; Hedley, W.H.

    1993-01-01

    Tritium handling operations at Mound include production of tritium-containing devices, evaluation of the stability of tritium devices, tritium recovery and enrichment, tritium process development, and research. In doing this work, gaseous process effluents containing 400,000 to 1,000,000 curies per year of tritium are generated. These gases must be decontaminated before they can be discharged to the atmosphere. They contain tritium as elemental hydrogen, as tritium oxide, and as tritium-containing organic compounds at low concentrations (typically near one ppm). The rate at which these gases is generated is highly variable. Some tritium-containing gas is generated at all times. The systems used at Mound for capturing tritium from process effluents have always been based on the open-quotes oxidize and dryclose quotes concept. They have had the ability to remove tritium, regardless of the form it was in. The current system, with a capacity of 1.0 cubic meter of gas per minute, can effectively remove tritium down to part-per-billion levels

  5. Radiation protection data sheets for the use of Tritium in unsealed sources

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This radiation protection data sheet is intended for supervisors and staff in the different medical, hospital, pharmaceutical, university and industrial laboratories and departments where Tritium is handled, and also for all those involved in risk prevention in this field. It provides essential data on radiation protection measures during the use of Tritium in unsealed sources: physical characteristics, risk assessment, administrative procedures, recommendations, regulations and bibliography

  6. Correlation of rates of tritium migration through porous concrete

    Energy Technology Data Exchange (ETDEWEB)

    Fukada, S.; Katayama, K.; Takeishi, T. [Kyushu University, Fukuoka (Japan); Edao, Y.; Kawamura, Y.; Hayashi, T.; Yamanishi, T. [JAEA-TPL, Muramatsu, Tokai-mura (Japan)

    2015-03-15

    In a nuclear facility when tritium leaks from a glovebox to room accidentally, an atmosphere detritiation system (ADS) starts operating, and HTO released is recovered by ADS. ADS starts when tritium activity in air becomes higher than its controlled level. Before ADS operates, the laboratory walls are the final enclosure facing tritium and are usually made of porous concrete coated with a hydrophobic paint. In the present study, previous data on the diffusivity and adsorption coefficient of concrete and paints are reviewed. Tritium penetrates and migrates into concrete by following 3 ways. First, gaseous HT or T{sub 2} easily penetrates into porous concrete. Its diffusivity is almost equal to that of H{sub 2}. When a gaseous molecule diffuses through pores with a smaller diameter than a mean free path, its migration rate is described by the Knudsen diffusion formula. The second mechanism is H{sub 2}O vapor diffusion in pores. Concrete holds a lot of structural water. Therefore, H{sub 2}O or HTO vapor can diffuse inside concrete pores along with adsorption-desorption and isotopic exchange with structural water, which is the third mechanism. Literature shows that the diffusivity of HTO through the epoxy-resin paint is determined as D(HTO)=1.0*10{sup -16} m{sup 2}/s. We have used this data to set a model and we have applied it to estimate residual tritium in laboratory walls. We have considered 2 accidental cases and a normal case: first, ADS starts operating 1 hour after 100 Ci HTO is released in the room, secondly, ADS starts 24 hours after 100 Ci HTO release and thirdly, when the walls are exposed to HTO for 10 years of normal operation. It appears that the immediate start up of ADS is indispensable for safety.

  7. Predicting tritium movement and inventory in fusion reactor subsystems using the TMAP code

    International Nuclear Information System (INIS)

    Jones, J.L.; Merrill, B.J.; Holland, D.F.

    1985-01-01

    The Fusion Safety Program of EG and G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL) is developing a safety analysis code called TMAP (Tritium Migration Analysis Program) to analyze tritium loss from fusion systems during normal and off-normal conditions. TMAP is a one-dimensional code that calculated tritium movement and inventories in a system of interconnected enclosures and wall structures. These wall structures can include composite materials with bulk trapping of the permeating tritium on impurities or radiation induced dislocations within the material. The thermal response of a structure can be modeled to provide temperature information required for tritium movement calculations. Chemical reactions and hydrogen isotope movement can also be included in the calculations. TWAP was used to analyze the movement of tritium implanted into a proposed limiter/first wall structure design. This structure was composed of composite layers of vanadium and stainless steel. Included in these calculations was the effect of contrasting material tritium solubility at the composite interface. In addition, TMAP was used to investigate the rate of tritium cleanup after an accidental release into the atmosphere of a reactor building. Tritium retention and release from surfaces and conversion to the oxide form was predicted

  8. Safety analysis report for packaging: the ORNL DOT specification 6M - tritium trap package

    International Nuclear Information System (INIS)

    DeVore, J.R.

    1984-04-01

    The ORNL DOT Specification 6M--Tritium Trap Package was fabricated at the Oak Ridge National Laboratory (ORNL) for the transport of Type B quantities of tritium as solid uranium tritide. The package was evaluated on the basis of tests performed by the Dow Chemical Company, Rocky Flats Division, on the DOT-6M container, a drop test performed by the ORNL Operations Division, and International Atomic Energy Agency (IAEA) approvals on a similar tritium transport container. The results of these evaluations demonstrate that the package is in compliance with the applicable regulations for the transport of Type B quantities of tritium. 4 references, 8 figures

  9. Tritium levels in milk in the vicinity of chronic tritium releases

    International Nuclear Information System (INIS)

    Le Goff, P.; Guétat, Ph.; Vichot, L.; Leconte, N.; Badot, P.M.; Gaucheron, F.; Fromm, M.

    2016-01-01

    Tritium is the radioactive isotope of hydrogen. It can be integrated into most biological molecules. Even though its radiotoxicity is weak, the effects of tritium can be increased following concentration in critical compartments of living organisms. For a better understanding of tritium circulation in the environment and to highlight transfer constants between compartments, we studied the tritiation of different agricultural matrices chronically exposed to tritium. Milk is one of the most frequently monitored foodstuffs in the vicinity of points known for chronic release of radionuclides firstly because dairy products find their way into most homes but also because it integrates deposition over large areas at a local scale. It is a food which contains all the main nutrients, especially proteins, carbohydrates and lipids. We thus studied the tritium levels of milk in chronic exposure conditions by comparing the tritiation of the main hydrogenated components of milk, first, component by component, then, sample by sample. Significant correlations were found between the specific activities of drinking water and free water of milk as well as between the tritium levels of cattle feed dry matter and of the main organic components of milk. Our findings stress the importance of the metabolism on the distribution of tritium in the different compartments. Overall, dilution of hydrogen in the environmental compartments was found to play an important role dimming possible isotopic effects even in a food chain chronically exposed to tritium. - Highlights: • Tritium can be incorporated in all the hydrogenated components of milk. • Components' isotopic ratios T/H of chronically exposed milk remain in the same range. • In environmental conditions, distribution of tritium in milk components varies. • Metabolism plays a role in the distribution of tritium in the components of milk. • In environmental conditions, dilution of hydrogen dims possible isotopic effects.

  10. Tritium loading in ITER plasma-facing surfaces and its release under accident conditions

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Pawelko, R.J.

    1996-01-01

    Plasma-facing surfaces of the International Thermonuclear Experimental Reactor (ITER) will take up tritium from the plasma. These surfaces will probably consist of matures of Be, C, and possibly W together with other impurities. Recent experimental results have suggested mechanisms, not previously considered in analyses, by which tritium and other hydrogen isotopes are retained in Be. This warrants revised modeling and estimation of the amount of tritium that will be deposited in ITER beryllium plasma-facing surfaces and the rates at which it can be released under postulated accident scenarios. In this paper we describe improvements in modeling and experiments planned at the Idaho National Engineering Laboratory (INEL) to investigate the tritium uptake and thermal release behavior for mixed plasma- facing materials. TMAP4 calculations were made using recent data to estimate first-wall tritium inventories in ITER. 16 refs., 1 fig

  11. Catalytic oxidation efficiencies for tritium and tritiated methane in a mature, industrial-scale decontamination system

    International Nuclear Information System (INIS)

    Mintz, J.M.; Gildea, P.D.

    1981-01-01

    Almost all tritium decontamination systems proposed for fusion facilities employ catalytic oxidation to water, followed by drying, to remove tritium and tritiated hydrocarbons from gas streams. One such large-scale system, the gas purification system (GPS), has been operating in the Tritium Research Laboratory (TRL) at Sandia National Laboratories, Livermore, CA, since October 1977. A series of experiments have recently been conducted there to assesss the current operating characteristics of the GPS catalyst. The experiments used tritium and tritiated methane and covered a range of temperatures, flow rates, and concentration levels. When contrasted with 1977 data, the results indicate that no measurable degradation of catalyst function had occurred. However, some reduction in active metal surface area, as indicated by B.E.T. surface area measurements (approx. 100 → 90m 2 /g) and AES scans (approx. 1.4 → 0.9 at. % Pt), had occurred. Kinetic rate coefficients were also derived and a rough temperature dependence obtained

  12. Catalytic oxidation efficiencies for tritium and tritiated methane in a mature, industrial-scale decontamination system

    International Nuclear Information System (INIS)

    Mintz, J.M.; Gildea, P.D.

    1980-10-01

    Almost all tritium decontamination systems proposed for fusion facilities employ catalytic oxidation to water, followed by drying, to remove tritium and tritiated hydrocarbons from gas streams. One such large-scale system, the gas purification system (GPS), has been operating in the Tritium Research Laboratory (TRL) at Sandia National Laboratories, Livermore, CA, since October 1977. A series of experiments have recently been conducted there to assess the current operating characteristics of the GPS catalyst. The experiments used tritium and tritiated methane and covered a range of temperatures, flow rates, and concentration levels. When contrasted with 1977 data, the results indicate that no measurable degradation of catalyst function had occurred. However, some reduction in active metal surface area, as indicated by B.E.T. surface area measurements (approx. 100 → 90 m 2 /g) and AES scans (approx. 1.4 → 0.9 at% Pt), had occurred. Kinetic rate coefficients were also derived and a rough temperature dependence obtained

  13. Tritium uptake kinetics in crayfish (Orconectes immunis)

    International Nuclear Information System (INIS)

    Patrick, P.H.

    1985-06-01

    Uptake of tritiated water (HTO) by Orconectes immunis was investigated under laboratory conditions. Tritium uptake in the tissue-free water fraction (TFWT) was described using an exponential model. When steady-state was reached, the ratio of TFWT to HTO was approximately 0.9. Uptake of tritium in the organically-bound fraction (OBT) proceeded slowly, and had not reached steady-state after 117 days of culture. Although steady-state was never reached, the maximum observed ration of OBT to TFWT in whole animals was approximately 0.6. However, this ratio exceeded unity in the exoskeleton. Specific activity ratios of OBT between crayfish and lettuce (food source) were less than or at unity for various test conditions

  14. Metabolism and dosimetry of tritium

    International Nuclear Information System (INIS)

    Hill, R.L.; Johnson, J.R.

    1993-01-01

    This document was prepared as a review of the current knowledge of tritium metabolism and dosimetry. The physical, chemical, and metabolic characteristics of various forms of tritium are presented as they pertain to performing dose assessments for occupational workers and for the general public. For occupational workers, the forms of tritium discussed include tritiated water, elemental tritium gas, skin absorption from elemental tritium gas-contaminated surfaces, organically bound tritium in pump oils, solvents and other organic compounds, metal tritides, and radioluminous paints. For the general public, age-dependent tritium metabolism is reviewed, as well as tritiated water, elemental tritium gas, organically bound tritium, organically bound tritium in food-stuffs, and tritiated methane. 106 refs

  15. TFTR tritium handling concepts

    International Nuclear Information System (INIS)

    Garber, H.J.

    1976-01-01

    The Tokamak Fusion Test Reactor, to be located on the Princeton Forrestal Campus, is expected to operate with 1 to 2.5 MA tritium--deuterium plasmas, with the pulses involving injection of 50 to 150 Ci (5 to 16 mg) of tritium. Attainment of fusion conditions is based on generation of an approximately 1 keV tritium plasma by ohmic heating and conversion to a moderately hot tritium--deuterium ion plasma by injection of a ''preheating'' deuterium neutral beam (40 to 80 keV), followed by injection of a ''reacting'' beam of high energy neutral deuterium (120 to 150 keV). Additionally, compressions accompany the beam injections. Environmental, safety and cost considerations led to the decision to limit the amount of tritium gas on-site to that required for an experiment, maintaining all other tritium in ''solidified'' form. The form of the tritium supply is as uranium tritide, while the spent tritium and other hydrogen isotopes are getter-trapped by zirconium--aluminum alloy. The issues treated include: (1) design concepts for the tritium generator and its purification, dispensing, replenishment, containment, and containment--cleanup systems; (2) features of the spent plasma trapping system, particularly the regenerable absorption cartridges, their integration into the vacuum system, and the handling of non-getterables; (3) tritium permeation through the equipment and the anticipated releases to the environment; (4) overview of the tritium related ventilation systems; and (5) design bases for the facility's tritium clean-up systems

  16. The economic and structural effects of the Nuclear Research Centre in Karlsruhe on its area

    International Nuclear Information System (INIS)

    Tebbert, H.; Sperling, P.

    The great building activity on the site of the Nuclear Research Centre in Karlsruhe, the setting up and maintenance of technical installations from an experimental setup on a laborytory scale to a prototype nuclear-powered system are of considerable, economic importance for numerous firms in the near and broader vicinity. In 1979, for example orders worth DM 100 million were placed with 850 firms in the town and the rural district of Karlsruhe by the Nuclear Research Centre. (orig.) [de

  17. JET experiments with tritium and deuterium–tritium mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Lorne, E-mail: Lorne.Horton@jet.uk [JET Exploitation Unit, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); European Commission, B-1049 Brussels (Belgium); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Batistoni, P. [Unità Tecnica Fusione - ENEA C. R. Frascati - via E. Fermi 45, Frascati (Roma), 00044, Frascati (Italy); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Boyer, H.; Challis, C.; Ćirić, D. [CCFE, Culham Science Centre, Abingdon OX14 3DB, Oxon (United Kingdom); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Donné, A.J.H. [EUROfusion Programme Management Unit, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); FOM Institute DIFFER, PO Box 1207, NL-3430 BE Nieuwegein (Netherlands); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Eriksson, L.-G. [European Commission, B-1049 Brussels (Belgium); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Garcia, J. [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Garzotti, L.; Gee, S. [CCFE, Culham Science Centre, Abingdon OX14 3DB, Oxon (United Kingdom); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Hobirk, J. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Joffrin, E. [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); and others

    2016-11-01

    Highlights: • JET is preparing for a series of experiments with tritium and deuterium–tritium mixtures. • Physics objectives include integrated demonstration of ITER operating scenarios, isotope and alpha physics. • Technology objectives include neutronics code validation, material studies and safety investigations. • Strong emphasis on gaining experience in operation of a nuclear tokamak and training scientists and engineers for ITER. - Abstract: Extensive preparations are now underway for an experiment in the Joint European Torus (JET) using tritium and deuterium–tritium mixtures. The goals of this experiment are described as well as the progress that has been made in developing plasma operational scenarios and physics reference pulses for use in deuterium–tritium and full tritium plasmas. At present, the high performance plasmas to be tested with tritium are based on either a conventional ELMy H-mode at high plasma current and magnetic field (operation at up to 4 MA and 4 T is being prepared) or the so-called improved H-mode or hybrid regime of operation in which high normalised plasma pressure at somewhat reduced plasma current results in enhanced energy confinement. Both of these regimes are being re-developed in conjunction with JET's ITER-like Wall (ILW) of beryllium and tungsten. The influence of the ILW on plasma operation and performance has been substantial. Considerable progress has been made on optimising performance with the all-metal wall. Indeed, operation at the (normalised) ITER reference confinement and pressure has been re-established in JET albeit not yet at high current. In parallel with the physics development, extensive technical preparations are being made to operate JET with tritium. The state and scope of these preparations is reviewed, including the work being done on the safety case for DT operation and on upgrading machine infrastructure and diagnostics. A specific example of the latter is the planned calibration at

  18. Sources of tritium

    International Nuclear Information System (INIS)

    Phillips, J.E.; Easterly, C.E.

    1980-12-01

    A review of tritium sources is presented. The tritium production and release rates are discussed for light water reactors (LWRs), heavy water reactors (HWRs), high temperature gas cooled reactors (HTGRs), liquid metal fast breeder reactors (LMFBRs), and molten salt breeder reactors (MSBRs). In addition, release rates are discussed for tritium production facilities, fuel reprocessing plants, weapons detonations, and fusion reactors. A discussion of the chemical form of the release is included. The energy producing facilities are ranked in order of increasing tritium production and release. The ranking is: HTGRs, LWRs, LMFBRs, MSBRs, and HWRs. The majority of tritium has been released in the form of tritiated water

  19. Quantification of exchangeable and non-exchangeable organically bound tritium (OBT) in vegetation.

    Science.gov (United States)

    Kim, S B; Korolevych, V

    2013-04-01

    The objective of this study is to quantify the relative amounts of exchangeable organically bound tritium (OBT) and non-exchangeable OBT in various vegetables. A garden plot at Perch Lake, where tritium levels are slightly elevated due to releases of tritium from a nearby nuclear waste management area and Chalk River Laboratories (CRL) operations, was used to cultivate a variety of vegetables. Five different kinds of vegetables (lettuce, cabbage, tomato, radish and beet) were studied. Exchangeable OBT behaves like tritium in tissue free water in living organisms and, based on past measurements, accounts for about 20% of the total tritium in dehydrated organic materials. In this study, the percentage of the exchangeable OBT was determined to range from 20% to 57% and was found to depend on the type of vegetables as well as the sequence of the plants exposure to HTO. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  20. The performance assessment and the design of an intermediate level tritium disposal vault

    International Nuclear Information System (INIS)

    Yu, A.D.

    1991-01-01

    The topic of this report is the assessment of the performance and design of the tritium disposal vault for the Westinghouse River Company at the Savannah River Laboratory. This paper describes how the groundwater modeling has affected the design of a tritium disposal vault at the Savannah River Site and this new vault will meet the regulatory performance requirements. (MB)

  1. Tritium confinement in a new tritium processing facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Heung, L.K.; Owen, J.H.; Hsu, R.H.; Hashinger, R.F.; Ward, D.E.; Bandola, P.E.

    1991-01-01

    A new tritium processing facility, named the Replacement Tritium Facility (RTF), has been completed and is being prepared for startup at the Savannah River Site (SRS). The RTF has the capability to recover, purify and separate hydrogen isotopes from recycled gas containers. A multilayered confinement system is designed to reduce tritium losses to the environment. This confinement system is expected to confine and recover any tritium that might escape the process equipment, and to maintain the tritium concentration in the nitrogen glovebox atmosphere to less than 10 -2 μCi/cc tritium

  2. Tritium labeling of amino acids and peptides with liquid and solid tritium

    International Nuclear Information System (INIS)

    Peng, C.T.; Hua, R.L.; Souers, P.C.; Coronado, P.R.

    1988-01-01

    Amino acids and peptides were labeled with liquid and solid tritium at 21 K and 9 K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenyl-alanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritium are potentially useful agents for labeling peptides and proteins. 11 refs., 1 fig., 3 tabs

  3. Tritium labeling of amino acids and peptides with liquid and solid tritium

    International Nuclear Information System (INIS)

    Souers, P.C.; Coronado, P.R.; Peng, C.T.; Hua, R.L.

    1988-01-01

    Amino acids and peptides were labeled with liquid and solid tritium at 21/degree/K and 9/degree/K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenylalanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritiums are potentially useful agents for labeling peptides and proteins

  4. Tritium contaminated waste management at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Jalbert, R.A.; Carlson, R.V.

    1987-01-01

    The Tritium Systems Test Assembly (TSTA) at Los Alamos continues to move toward full operation of an integrated, full-sized, computer-controlled fusion fuel processing loop. Concurrent nonloop experiments further the development of advanced tritium technologies and handling methods. Since tritium operations began in June 1984, tritium contaminated wastes have been produced at TSTA that are roughly typical in kind and amount of those to be produced by tritium fueling operations at fusion reactors. Methods of managing these wastes are described, including information on some methods of decontamination so that equipment can be reused. Data are given on the kinds and amounts of wastes and the general level of contamination. Also included are data on environmental emissions and doses to personnel that have resulted from TSTA operations. Particular problems in waste managements are discussed

  5. EXOTIC: Development of ceramic tritium breeding materials

    International Nuclear Information System (INIS)

    Flipot, A.J.; Kennedy, P.; Conrad, R.

    1989-03-01

    As part of the joint European Programme on fusion blanket technology three laboratories, Northern Research Laboratories (NRL), Springfields in the UK, SCK/CEN-Mol in Belgium and ECN-Petten in conjunction with JRC-Petten in the Netherlands have worked closely together since 1983 on the development of ceramic breeder materials, the programme being codenamed EXOTIC. Lithium oxides, aluminates, silicates and zirconates have been produced, characterised and irradiated in the HFR-Petten in experiments EXOTIC-1, -2 and -3. EXOTIC-4 is in preparation. In this fourth annual progress report the work achieved in 1987 is reported. For EXOTIC-1 to -3 mainly post irradiation examinations have been carried out like: visual inspection, puncturing of closed capsules, tritium retention measurements and material characterisation. Moreover, tritium release experiments on small specimens have started. SCK/CEN performed a general study on lithium silicates, in particular on the thermal stability. Finally, the fabrication and the characterisation of the materials to be irradiated in experiment EXOTIC-4 are presented. The eight capsules of EXOTIC-4 will be loaed with samples of Li 2 SiO 3 , Li 2 O, Li 2 ZrO 3 , Li 6 Zr 2 O 7 and Li 8 ZrO 6 . The irradiation will last 4 reactor cycles or about 100, Full Power Day, FPD. The main objective is to determine the tritium residence time of the various lithium zirconates. 18 figs., 8 refs., 15 tabs

  6. In-vessel tritium

    International Nuclear Information System (INIS)

    Ueda, Yoshio; Ohya, Kaoru; Ashikawa, Naoko; Ito, Atsushi M.; Kato, Daiji; Kawamura, Gakushi; Takayama, Arimichi; Tomita, Yukihiro; Nakamura, Hiroaki; Ono, Tadayoshi; Kawashima, Hisato; Shimizu, Katsuhiro; Takizuka, Tomonori; Nakano, Tomohide; Nakamura, Makoto; Hoshino, Kazuo; Kenmotsu, Takahiro; Wada, Motoi; Saito, Seiki; Takagi, Ikuji; Tanaka, Yasunori; Tanabe, Tetsuo; Yoshida, Masafumi; Toma, Mitsunori; Hatayama, Akiyoshi; Homma, Yuki; Tolstikhina, Inga Yu.

    2012-01-01

    The in-vessel tritium research is closely related to the plasma-materials interaction. It deals with the edge-plasma-wall interaction, the wall erosion, transport and re-deposition of neutral particles and the effect of neutral particles on the fuel recycling. Since the in-vessel tritium shows a complex nonlinear behavior, there remain many unsolved problems. So far, behaviors of in-vessel tritium have been investigated by two groups A01 and A02. The A01 group performed experiments on accumulation and recovery of tritium in thermonuclear fusion reactors and the A02 group studied theory and simulation on the in-vessel tritium behavior. In the present article, outcomes of the research are reviewed. (author)

  7. Tritium sampling and measurement

    International Nuclear Information System (INIS)

    Wood, M.J.; McElroy, R.G.; Surette, R.A.; Brown, R.M.

    1993-01-01

    Current methods for sampling and measuring tritium are described. Although the basic techniques have not changed significantly over the last 10 y, there have been several notable improvements in tritium measurement instrumentation. The design and quality of commercial ion-chamber-based and gas-flow-proportional-counter-based tritium monitors for tritium-in-air have improved, an indirect result of fusion-related research in the 1980s. For tritium-in-water analysis, commercial low-level liquid scintillation spectrometers capable of detecting tritium-in-water concentrations as low as 0.65 Bq L-1 for counting times of 500 min are available. The most sensitive method for tritium-in-water analysis is still 3He mass spectrometry. Concentrations as low as 0.35 mBq L-1 can be detected with current equipment. Passive tritium-oxide-in-air samplers are now being used for workplace monitoring and even in some environmental sampling applications. The reliability, convenience, and low cost of passive tritium-oxide-in-air samplers make them attractive options for many monitoring applications. Airflow proportional counters currently under development look promising for measuring tritium-in-air in the presence of high gamma and/or noble gas backgrounds. However, these detectors are currently limited by their poor performance in humidities over 30%. 133 refs

  8. Scientists from all over the world attend the Frederic Joliot/Otto Hahn summer school at the Karlsruhe Research Center; Wissenschaftler aus aller Welt bei der Frederic Joliot/Otto Hahn Summer School im Forschungszentrum Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Heinzel, V.

    2003-11-01

    The Frederic Joliot/Otto Hahn Summer School organized jointly by the Karlsruhe Research Center and the Commissariat a l'Energie Atomique was held in Karlsruhe in 2003 for the third time. The main topics this year focused on recent developments and findings in the fields of fuels and materials for reactors. Applications of nuclear technology beyond the confines of electricity generation were covered in discussions shout methods of hydrogen production. Specialized seminars dealt with current aspects of fusion research and the activities of the Institute for Transuranium Elements (ITU). (orig.)

  9. Development of a low tritium partial pressure permeation system for mass transport measurement in lead lithium eutectic

    International Nuclear Information System (INIS)

    Pawelko, R.; Shimada, M.; Katayama, K.; Fukada, S.; Terai, T.

    2014-01-01

    A new experimental system designed to investigate tritium mass transfer properties in materials important to fusion technology is operational at the Safety and Tritium Applied Research (STAR) facility located at the Idaho National Laboratory (INL). The tritium permeation measurement system was developed as part of the Japan/US TITAN collaboration to investigate tritium mass transfer properties in liquid lead lithium eutectic (LLE) alloy. The system is similar to a hydrogen/deuterium permeation measurement system developed at Kyushu University and also incorporates lessons learned from previous tritium permeation experiments conducted at the STAR facility. This paper describes the experimental system that is configured specifically to measure tritium mass transfer properties at low tritium partial pressures. We present preliminary tritium permeation results for α-Fe and α-Fe/LLE samples at 600degC and at tritium partial pressures between 1.0E-3 and 2.4 Pain helium. The preliminary results are compared with literature data. (author)

  10. Tritium activities in Canada

    International Nuclear Information System (INIS)

    Gierszewski, P.

    1995-01-01

    Canadian tritium activites comprise three major interests: utilites, light manufacturers, and fusion. There are 21 operating CANDU reactors in Canada; 19 with Ontario Hydro and one each with Hydro Quebec and New Brunswick Power. There are two light manufacturers, two primary tritium research facilities (at AECL Chalk River and Ontario Hydro Technologies), and a number of industry and universities involved in design, construction, and general support of the other tritium activities. The largest tritum program is in support of the CANDU reactors, which generate tritium in the heavy water as a by-product of normal operation. Currently, there are about 12 kg of tritium locked up in the heavy water coolant and moderator of these reactors. The fusion work is complementary to the light manufacturing, and is concerned with tritium handling for the ITER program. This included design, development and application of technologies related to Isotope Separation, tritium handling, (tritiated) gas separation, tritium-materials interaction, and plasma fueling

  11. Tritium autoradiography

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1981-01-01

    Hydrogen distribution and diffusion within many materials may be investigated by autoradiography if the radioactive isotope tritium is used in the study. Tritium is unstable and decays to helium-3 by emission of a low energy (18 keV) beta particle which may be detected photographically. The basic principles of tritium autoradiography will be discussed. Limitations are imposed on the technique by: (1) the low energy of the beta particles; (2) the solubility and diffusivity of hydrogen in materials; and (3) the response of the photographic emulsion to beta particles. These factors control the possible range of application of tritium autoradiography. The technique has been applied successfully to studies of hydrogen solubility and distribution in materials and to studies of hydrogen damage

  12. Final programmatic environmental impact statement for tritium supply and recycling. Volume III

    International Nuclear Information System (INIS)

    1995-10-01

    Tritium, a radioactive gas used in all of the Nation's nuclear weapons, has a short half-life and must be replaced periodically in order for the weapon to operate as designed. Currently, there is no capability to produce the required amounts of tritium within the Nuclear Weapons Complex. The PEIS for Tritium Supply and Recycling evaluates the alternatives for the siting, construction, and operation of tritium supply and recycling facilities at each of five candidate sites: the Idaho National Engineering Laboratory, the Nevada Test Site, the Oak Ridge Reservation, the Pantex Plant, and the Savannah River Site. Alternatives for new tritium supply and recycling facilities consist of four different tritium supply technologies: Heavy Water Reactor, Modular High Temperature Gas-Cooled Reactor, Advanced Light Water Reactor, and Accelerator Production of Tritium. The PEIS also evaluates the impacts of the DOE purchase of an existing operating or partially completed commercial light water reactor or the DOE purchase of irradiation services contracted from commercial power reactors. Additionally, the PEIS includes an analysis of multipurpose reactors that would produce tritium, dispose of plutonium, and produce electricity. Evaluation of impacts on land resources, site infrastructure, air quality and acoustics, water resources, geology and soils, biotic resources, cultural and paleontological resources, socioeconomics, radiological and hazardous chemical impacts during normal operation and accidents to workers and the public, waste management, and intersite transport are included in the assessment

  13. Simulating tritium retention in tungsten with a multiple trap model in the TMAP code

    International Nuclear Information System (INIS)

    Merrill, Brad J.; Shimada, Masashi; Humrickhouse, Paul W.

    2013-01-01

    Accurately predicting the quantity of tritium retained in plasma facing components is a key safety issue for licensing future fusion power reactors. Retention of tritium in the lattice damage caused when high energy neutrons collide with atoms in the structural material of the reactor's plasma facing components (PFCs) is an area of ongoing experimental research at the Idaho National Laboratory (INL) under the US/Japan TITAN collaboration. Recent experiments with the Tritium Plasma Experiment (TPE), located in the INL's Safety and Tritium Applied Research (STAR) facility, demonstrate that this damage can only be simulated by computer codes like the Tritium Migration Analysis Program (TMAP) if one assumes that the lattice damage produced by these neutrons results in multiple types of hydrogen traps (energy wells) within the material, each possessing a different trap energy and density. Previous attempts to simulate the quantity of deuterium released from neutron irradiated TPE tungsten targets indicated that at least six different traps are required by TMAP to model this release. In this paper we describe a recent extension of the TMAP trap site model to include as many traps as required by the user to simulate retention of tritium in neutron damaged tungsten. This model has been applied to data obtained for tungsten irradiated to a damage level of 0.025 dpa in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) after exposure to a plasma in TPE. (author)

  14. Environmental health-risk assessment for tritium releases at the National Tritium Labeling Facility at Lawrence Berkeley National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.; Brand, K.P. [Lawrence Livermore National Lab., CA (United States). Health and Ecological Assessment Div.; Shan, C. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

    1997-04-01

    This risk assessment calculates the probability of experiencing health effects, including cancer incidence due to tritium exposure for three groups of people: (1) LBNL workers near the LBNL facility--Building 75--that uses tritium; (2) other workers at LBNL and nearby neighbors; and (3) people who use the UC Berkeley campus area, and some Berkeley residents. All of these groups share the same probability of health effects from the background radiation from natural sources in the Berkeley area environment, including an increased risk of developing a cancer of 11,000 chances per million. In calculating risk the authors assumed continuous operation in Building 75 for at least a human lifetime. Under this assumption, LBNL workers located near Building 75 have an additional risk of 60 chances out of one million to suffer a cancer; other workers at LBNL and people who live near LBNL have an additional risk of six chances out of one million over a lifetime of exposure; and users of the UC Berkeley campus area and other residents of Berkeley have an additional risk of less than once chance out of one million over a lifetime.

  15. Environmental health-risk assessment for tritium releases at the National Tritium Labeling Facility at Lawrence Berkeley National Laboratory

    International Nuclear Information System (INIS)

    McKone, T.E.; Brand, K.P.; Shan, C.

    1997-04-01

    This risk assessment calculates the probability of experiencing health effects, including cancer incidence due to tritium exposure for three groups of people: (1) LBNL workers near the LBNL facility--Building 75--that uses tritium; (2) other workers at LBNL and nearby neighbors; and (3) people who use the UC Berkeley campus area, and some Berkeley residents. All of these groups share the same probability of health effects from the background radiation from natural sources in the Berkeley area environment, including an increased risk of developing a cancer of 11,000 chances per million. In calculating risk the authors assumed continuous operation in Building 75 for at least a human lifetime. Under this assumption, LBNL workers located near Building 75 have an additional risk of 60 chances out of one million to suffer a cancer; other workers at LBNL and people who live near LBNL have an additional risk of six chances out of one million over a lifetime of exposure; and users of the UC Berkeley campus area and other residents of Berkeley have an additional risk of less than once chance out of one million over a lifetime

  16. Simultaneous measurement of tritium and radiocarbon by ultra-low-background proportional counting

    Energy Technology Data Exchange (ETDEWEB)

    Mace, Emily; Aalseth, Craig; Alexander, Tom; Back, Henning; Day, Anthony; Hoppe, Eric; Keillor, Martin; Moran, Jim; Overman, Cory; Panisko, Mark; Seifert, Allen

    2017-08-01

    Use of ultra-low-background capabilities at Pacific Northwest National Laboratory provide enhanced sensitivity for measurement of low-activity sources of tritium and radiocarbon using proportional counters. Tritium levels are nearly back to pre-nuclear test backgrounds (~2-8 TU in rainwater), which can complicate their dual measurement with radiocarbon due to overlap in the isotope’s respective energy spectra. This activity makes direct dual-isotope measurements challenging without additional chemistry to concentrate the tritium in a sample. We present results of single-isotope proportional counter measurements used to analyze a dual-isotope methane sample synthesized from ~120 mg of H2O and present sensitivity results.

  17. Tritium sources

    International Nuclear Information System (INIS)

    Glodic, S.; Boreli, F.

    1993-01-01

    Tritium is the only radioactive isotope of hydrogen. It directly follows the metabolism of water and it can be bound into genetic material, so it is very important to control levels of contamination. In order to define the state of contamination it is necessary to establish 'zero level', i.e. actual global inventory. The importance of tritium contamination monitoring increases with the development of fusion power installations. Different sources of tritium are analyzed and summarized in this paper. (author)

  18. InfiniBand-Experiences at the Forschungszentrum Karlsruhe

    International Nuclear Information System (INIS)

    Schwickerath, Ulrich; Heiss, Andreas

    2006-01-01

    The Institute for Scientific Computing (IWR) at the Forschungszentrum Karlsruhe has been evaluating the InfiniBand [InfiniBand Trade Association, InfiniBand Architecture Specification, Release 1.0, October 24, 2000] technology since end of the year 2002. The performance of the interconnect has been tested on different platforms and architectures using MPI. Sequential file transfer performance was measured with the RFIO protocol running on native InfiniBand [Ulrich Schwickerath, Andreas Heiss, Nucl. Instr. and Meth. A 534 (2004) 130, http://www.fzk.de/infiniband], and a newly developed InfiniBand-enabled version of the XROOTD

  19. The Karlsruhe program system KAPROS. Pt. 2

    International Nuclear Information System (INIS)

    Bachmann, H.; Kleinheins, S.

    1976-07-01

    The system nucleus of the Karlsruhe modular program system KAPROS is described from the point of view of the system programmer. In short reviews it is explained, how the module management, the data management, the buffer management, the error handling and the statistics work. The tables, the datasets, the routines and the commons of the system nucleus as well as some utility programs for the handling of system datasets are explained in full detail. The program listening of the system nucleus belongs to this documentation as a separate appendix. (orig.) [de

  20. Tritium technology. A Canadian overview

    Energy Technology Data Exchange (ETDEWEB)

    Hemmings, R.L. [Canatom NPM (Canada)

    2002-10-01

    An overview of the various tritium research and operational activities in Canada is presented. These activities encompass tritium processing and recovery, tritium interactions with materials, and tritium health and safety. Many of these on-going activities form a sound basis for the tritium use and handling aspects of the ITER project. Tritium management within the CANDU heavy water reactor, associated detritiation facilities, research and development facilities, and commercial industry and improving the understanding of tritium behaviour in humans and the environment remain the focus of a long-standing Canadian interest in tritium. While there have been changes in the application of this knowledge and experience over time, the operating experience and the supporting research and development continue to provide for improved plant and facility operations, an improved understanding of tritium safety issues, and improved products and tools that facilitate tritium management. (author)

  1. Tritium technology. A Canadian overview

    International Nuclear Information System (INIS)

    Hemmings, R.L.

    2002-01-01

    An overview of the various tritium research and operational activities in Canada is presented. These activities encompass tritium processing and recovery, tritium interactions with materials, and tritium health and safety. Many of these on-going activities form a sound basis for the tritium use and handling aspects of the ITER project. Tritium management within the CANDU heavy water reactor, associated detritiation facilities, research and development facilities, and commercial industry and improving the understanding of tritium behaviour in humans and the environment remain the focus of a long-standing Canadian interest in tritium. While there have been changes in the application of this knowledge and experience over time, the operating experience and the supporting research and development continue to provide for improved plant and facility operations, an improved understanding of tritium safety issues, and improved products and tools that facilitate tritium management. (author)

  2. Tritium evacuataion performance of a large oil-free reciprocating pump

    International Nuclear Information System (INIS)

    Hayashi, T.; Yamada, M.; Konishi, S.

    1994-01-01

    In fusion reactors large dry vacuum and transfer pumps are needed for various applications such as backing and roughing for torus evacuation, gas transfer and processing in the fuel cycle, and facility vacuum for safety systems. There are some commercial use oil-free pumps, however, most of all these pumps have low pumping function for hydrogen gases and also at high discharge pressure. A large oil-free reciprocating pump has been developed for high tritium services at the Tritium Process Laboratory (TPL) in the Japan Atomic Energy Research Institute (JAERI). This pump is mainly composed four-stage compression vertical cylinders, a single acting piston with piston rings made by carbon polyimide composite and two buffer tanks. Each stage in the cylinder has 16 special check valves. The process line is isolated completely to crank-case oil by dynamic metal bellows. Design pumping speed is 54 m 3 /hr for hydrogen gas at 5 Torr of discharge pressures. After cold testing in TPL, this pump was shipped and installed in the Tritium Systems Test Assembly (TSTA) loop of the Los Alamos National Laboratory under the US-Japan Collaboration program on fusion technology

  3. Tritium

    International Nuclear Information System (INIS)

    Fiege, A.

    1992-07-01

    This report contains information on chemical and physical properties, occurence, production, use, technology, release, radioecology, radiobiology, dose estimates, radioprotection and legal aspects of tritium. The objective of this report is to provide a reliable data base for the public discussion on tritium, especially with regard to its use in future nuclear fusion plants and its radiological assessment. (orig.) [de

  4. Computer aided operation of the Karlsruhe isochronous cyclotron using CAMAC

    International Nuclear Information System (INIS)

    Kappel, W.; Karbstein, W.; Kneis, W.; Moellenbeck, J.; Schweickert, H.; Volk, B.

    1976-01-01

    An extensive branch system is used with a NOVA 2/10 computer as an aid to the operation of the Karlsruhe Isochronous Cyclotron. The accelerator operator calls the different tasks by an interactive program system ''CICERO'' under BASIC. CAMAC operations are called by means of the ordinary BASIC Call mechanism through assembler routines

  5. Tritium concentrations in bees and honey at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Fresquez, P.R.; Armstrong, D.R.; Salazar, J.G.

    1994-12-01

    Los Alamos National Laboratory (LANL) has maintained a network of honey bee colonies at LANL, perimeter (Los Alamos townsite and White Rock/Pajarito Acres) and regional (background) areas for over 15 years; the main objective of this honey bee network was to help determine the bioavailability of certain radionuclides in the environment. Of all the radionuclides studied ( 3 H, 57 Co, 7 Be, 22 Na, 54 Mn, 83 Rb, 137 Cs, 238 Pu, 239 Pu, 90 Sr and total U), tritium was consistently detected in bees and was most readily transferred to the honey. In fact, honey collected from hives located at TA-21, TA-33, TA-50, TA-53, and TA-54 and from White Rock/Pajarito Acres contained significantly higher concentrations of 3 H than regional background hives. Based on the average concentration of all radionuclides measured over the years, the effective dose equivalent (EDE) from consuming 5 kg (11 lb) of honey collected from Los Alamos (townsite) and White Rock/Pajarito Acres, after regional background has been subtracted, was 0.0186 (±0.0507) and 0.0016 (±0.0010) mrem/yr, respectively. The highest EDE, based on the mean + 2SD (95% confidence level), was 0.1200 mrem/y; this was <0.2% of the International Commission on Radiological Protection permissible dose limit of 100 mrem/yr from all pathways

  6. Tritium levels in milk in the vicinity of chronic tritium releases.

    Science.gov (United States)

    Le Goff, P; Guétat, Ph; Vichot, L; Leconte, N; Badot, P M; Gaucheron, F; Fromm, M

    2016-01-01

    Tritium is the radioactive isotope of hydrogen. It can be integrated into most biological molecules. Even though its radiotoxicity is weak, the effects of tritium can be increased following concentration in critical compartments of living organisms. For a better understanding of tritium circulation in the environment and to highlight transfer constants between compartments, we studied the tritiation of different agricultural matrices chronically exposed to tritium. Milk is one of the most frequently monitored foodstuffs in the vicinity of points known for chronic release of radionuclides firstly because dairy products find their way into most homes but also because it integrates deposition over large areas at a local scale. It is a food which contains all the main nutrients, especially proteins, carbohydrates and lipids. We thus studied the tritium levels of milk in chronic exposure conditions by comparing the tritiation of the main hydrogenated components of milk, first, component by component, then, sample by sample. Significant correlations were found between the specific activities of drinking water and free water of milk as well as between the tritium levels of cattle feed dry matter and of the main organic components of milk. Our findings stress the importance of the metabolism on the distribution of tritium in the different compartments. Overall, dilution of hydrogen in the environmental compartments was found to play an important role dimming possible isotopic effects even in a food chain chronically exposed to tritium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A critical analysis of the impact assessment of environmental tritium

    International Nuclear Information System (INIS)

    Jain, Narendra; Bhatia, Arvind

    2013-01-01

    Tritium, a radionuclide of hydrogen has longer life and gets more rapidly dispersed, but before becoming globally distributed, it represents a significant radiobiological risk to the local population exposed. It is produced naturally in the upper atmosphere by the interaction of cosmic rays with nitrogen and hydrogen. The tritons in the upper atmosphere are oxidized to tritiated water (HTO) and mix with the hydrosphere generally through the movement of air masses and precipitation. Terrestrially, tritium may be formed by the action of lithium on neutrons. There is apprehension that the recent controversy concerning the health and environmental impact of tritium may end up as worldwide contaminants in the final analysis. From many varied reports from different laboratories, it appears that projected levels for fusion reactors may also produce deleterious and detectable effects. The degree of concern over tritium problem is evidenced by a rapid increase in publications on the health implications of environmental tritium. The present issues of controversy will be intensified as the fusion reactor technology approaches the door step of public and the possible health detriment from its radioactive emissions arouse concern. The current project has been planned keeping some such points in view. It reviews the work on the behavior of tritium in its various forms in the environment with an emphasis on the release from various sources, its world inventories at present level sand its transfer into the various compartments of ecosystems. Besides this, its metabolism in biosystem and the possible implications of low doses of tritium in present and future generations have also been discussed. (author)

  8. Tritium pellet injector results

    International Nuclear Information System (INIS)

    Fisher, P.W.; Bauer, M.L.; Baylor, L.R.; Deleanu, L.E.; Fehling, D.T.; Milora, S.L.; Whitson, J.C.

    1988-01-01

    Injection of solid tritium pellets is considered to be the most promising way of fueling fusion reactors. The Tritium Proof-of- Principle (TPOP) experiment has demonstrated the feasibility of forming and accelerating tritium pellets. This injector is based on the pneumatic pipe-gun concept, in which pellets are formed in situ in the barrel and accelerated with high-pressure gas. This injector is ideal for tritium service because there are no moving parts inside the gun and because no excess tritium is required in the pellet production process. Removal of 3 He from tritium to prevent blocking of the cryopumping action by the noncondensible gas has been demonstrated with a cryogenic separator. Pellet velocities of 1280 m/s have been achieved for 4-mm-diam by 4-mm-long cylindrical tritium pellets with hydrogen propellant at 6.96 MPa (1000 psi). 10 refs., 10 figs

  9. Tritium isotope separation from light and heavy water by bipolar electrolysis

    International Nuclear Information System (INIS)

    Petek, M.; Ramey, D.W.; Taylor, R.D.; Kobisk, E.H.

    1980-01-01

    A process for separating tritium from light and heavy water is described. Hydrogen is transferred at and through bipolar electrodes at rates H > D > T. In a cell containing several bipolar electrodes placed in series between two terminal electrodes, a flow of hydrogen is established from the terminal anode compartment toward the terminal cathode. An electrolyte feed containing tritium is continuously added to the system and is subsequently transported countercurrent to the hydrogen mass transfer. A cascaded system is established, in which effluent streams enriched and depleted in tritium can be withdrawn. The voltage drop is smaller at any bipolar electrode as compared to the voltage for normal electrolysis. Cell design is compact because isotope separation occurs at bipolar electrodes without evolution of gas. Isotope separation was demonstrated in laboratory cells where a steady-state tritium concentration gradient was attained. This gradient was in agreement with concentrations calculated from a derived mathematical model

  10. A Visual Detection System for Determining Tritium Surface Deposition Employing Phosphor Coated Materials

    International Nuclear Information System (INIS)

    Gentile, C.A.; Skinner, C.H.; Young, K.M.; Zweben, S.J.

    1999-01-01

    A method for visually observing tritium deposition on the surface of the Tokamak Fusion Test Reactor (TFTR) deuterium-tritium (D-T) tiles is being investigated at the Princeton Plasma Physics Laboratory. A green phosphor (P31, zinc sulfide: copper) similar to that used in oscilloscope screens with a wavelength peak of 530 nm was positioned on the surface of a TFTR D-T tile. The approximately 600 gram tile, which contains approximately 1.5 Ci of tritium located on the top approximately 1-50 microns of the surface, was placed in a two liter lexan chamber at Standard Temperature and Pressure (STP). The phosphor plates and phosphor powder were placed on the surface of the tile which resulted in visible light being observed, the consequence of tritium betas interacting with the phosphor. This technique provides a method of visually observing varying concentrations of tritium on the surface of D-T carbon tiles, and may be employed (in a calibrated system) to obtain quantitative data

  11. JET experiments with tritium and deuterium–tritium mixtures

    NARCIS (Netherlands)

    Horton, L.; Batistoni, P.; Boyer, H.; Challis, C.; Ciric, D.; Donne, A. J. H.; Eriksson, L. G.; Garcia, J.; Garzotti, L.; Gee, S.; Hobirk, J.; Joffrin, E.; Jones, T.; King, D. B.; Knipe, S.; Litaudon, X.; Matthews, G. F.; Monakhov, I.; Murari, A.; Nunes, I.; Riccardo, V.; Sips, A. C. C.; Warren, R.; Weisen, H.; Zastrow, K. D.

    2016-01-01

    Extensive preparations are now underway for an experiment in the Joint European Torus (JET) using tritium and deuterium–tritium mixtures. The goals of this experiment are described as well as the progress that has been made in developing plasma operational scenarios and physics reference pulses for

  12. Role of soil-to-leaf tritium transfer in controlling leaf tritium dynamics: Comparison of experimental garden and tritium-transfer model results.

    Science.gov (United States)

    Ota, Masakazu; Kwamena, Nana-Owusua A; Mihok, Steve; Korolevych, Volodymyr

    2017-11-01

    Environmental transfer models assume that organically-bound tritium (OBT) is formed directly from tissue-free water tritium (TFWT) in environmental compartments. Nevertheless, studies in the literature have shown that measured OBT/HTO ratios in environmental samples are variable and generally higher than expected. The importance of soil-to-leaf HTO transfer pathway in controlling the leaf tritium dynamics is not well understood. A model inter-comparison of two tritium transfer models (CTEM-CLASS-TT and SOLVEG-II) was carried out with measured environmental samples from an experimental garden plot set up next to a tritium-processing facility. The garden plot received one of three different irrigation treatments - no external irrigation, irrigation with low tritium water and irrigation with high tritium water. The contrast between the results obtained with the different irrigation treatments provided insights into the impact of soil-to-leaf HTO transfer on the leaf tritium dynamics. Concentrations of TFWT and OBT in the garden plots that were not irrigated or irrigated with low tritium water were variable, responding to the arrival of the HTO-plume from the tritium-processing facility. In contrast, for the plants irrigated with high tritium water, the TFWT concentration remained elevated during the entire experimental period due to a continuous source of high HTO in the soil. Calculated concentrations of OBT in the leaves showed an initial increase followed by quasi-equilibration with the TFWT concentration. In this quasi-equilibrium state, concentrations of OBT remained elevated and unchanged despite the arrivals of the plume. These results from the model inter-comparison demonstrate that soil-to-leaf HTO transfer significantly affects tritium dynamics in leaves and thereby OBT/HTO ratio in the leaf regardless of the atmospheric HTO concentration, only if there is elevated HTO concentrations in the soil. The results of this work indicate that assessment models

  13. Production of highly tritiated water for tritium exposure studies

    International Nuclear Information System (INIS)

    Muirhead, C.; Pilatzke, K.; Tripple, A.; Philippi, N.; McCrimmon, K.; Castillo, I.; Boniface, H.; Suppiah, S.

    2015-01-01

    Tritium Facility staff at Chalk River Laboratories (CRL) have successfully prepared highly tritiated water for use in radiation resistance of PEM (Proton Exchange Membrane-based)electrolyser membrane. The goal of System A was to convert a known amount of elemental tritium (HT) into tritiated water vapour using a copper(II) oxide bed, and to condense the tritiated water vapour into a known amount of chilled heavy water (D 2 O). The conversion and capture of tritium using this system is close to 100%. The goal of System B was to transfer tritiated water from the containment vessel to an exposure vessel (experiment) in a controlled and safe manner. System B is based on the pushing of D 2 0 with low-pressure argon carrier gas to a calibrated volume and then to the exposure vessel. A method for delivering a known and controlled amount of tritiated water has been successfully demonstrated at CRL. Using both systems Tritium Facility staff have made and distributed highly tritiated water in a safe and controlled manner. This paper focuses on how the tritiated water was produced and dispensed to the experiment

  14. Tritium in nuclear power plants

    International Nuclear Information System (INIS)

    Badyaev, V.V.; Egorov, Yu.A.; Sklyarov, V.P.; Stegachev, G.V.

    1981-01-01

    The problem of tritium formation during NPP operation is considered on the basis of available published data. Tritium characteristics are given, sources of the origin of natural and artificial tritium are described. NPP contribution to the total tritium amount in the environment is determined, as well as contribution of each process in the reactor to the quantity of tritium, produced at the NPP. Thermal- and fast-neutron reactions with tritium production are shown, their contribution to the total amount of tritium in a coolant is estimated, taking into account the type of reactor. Data on tritium content in NPP wastes and in the air of working premises are presented. Methods for sampling and sample preparation to measurements as well as the appropriate equipment are considered. Design of the gas-discharge counter of internal filling, used for measuring tritium activity in samples is described [ru

  15. Final programmatic environmental impact statement for tritium supply and recycling. Volume 1

    International Nuclear Information System (INIS)

    1995-10-01

    Tritium, a radioactive gas used in all of the Nation's nuclear weapons, has a short half-life and must be replaced periodically in order for the weapon to operate as designed. Currently, there is no capability to produce the required amounts of tritium within the Nuclear Weapons Complex. The PEIS for Tritium Supply and Recycling evaluates the alternatives for the siting, construction, and operation of tritium supply and recycling facilities at each of five candidate sites: the Idaho National Engineering Laboratory, the Nevada Test Site, the Oak Ridge Reservation, the Pantex Plant, and the Savannah River Site. Alternatives for new tritium supply and recycling facilities consist of four different tritium supply technologies: Heavy Water Reactor, Modular High Temperature Gas-Cooled Reactor, Advanced Light Water Reactor, and Accelerator Production of Tritium. The PEIS also evaluates the impacts of the DOE purchase of an existing operating or partially completed commercial light water reactor or the DOE purchase of irradiation services contracted from commercial power reactors. Additionally, the PEIS includes an analysis of multipurpose reactors that would produce tritium, dispose of plutonium, and produce electricity. Evaluation of impacts on land resources, site infrastructure, air quality and acoustics, water resources, geology and soils, biotic resources, cultural and paleontological resources, socioeconomics, radiological and hazardous chemical impacts during normal operation and accidents to workers and the public, waste management, and intersite transport are included in the assessment. 550 refs

  16. Environmental aspects of tritium

    International Nuclear Information System (INIS)

    Quisenberry, D.R.

    1979-01-01

    The potential radiological implications of environmental tritium releases must be determined in order to develop a programme for dealing with the tritium inventory predicted for the nuclear power industry which, though still in its infancy, produces tritium in megacurie quantities annually. Should the development of fusion power generation become a reality, it will create a potential source for large releases of tritium, much of it in the gaseous state. At present about 90% of the tritium produced enters the environment through gaseous and liquid effluents and is deposited in the hydrosphere as tritiated water. Tritium can be assimilated by plants and animals and organically bound, regardless of the exposure pathway. However, there appears to be no concentration factor relative to hydrogen at any level of food chains analysed to date. The body burden, for man, is dependent on the exposure pathway and tissue-bound fractions are primarily the result of organically bound tritium in food. (author)

  17. Bituminization of radioactive wastes at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Hild, W.; Kluger, W.; Krause, H.

    1976-05-01

    A summary is given of the main operational experience gained at the Nuclear Research Center Karlsruhe in 4 years operation of the bituminization plant for evaporator concentrates from low- and medium level wastes. At the same time some of the essential results are compiled that have been obtained in the R + D activities on bituminization. (orig.) [de

  18. Fluorine 18 in tritium generator ceramic materials

    International Nuclear Information System (INIS)

    Jimenez-Becerril, J.; Bosch, P.; Bulbulian, S.

    1992-01-01

    At present time, the ceramic materials generators of tritium are very interesting mainly by the necessity of to found an adequate product for its application as fusion reactor shielding. The important element that must contain the ceramic material is the lithium and especially the isotope with mass=6. The tritium in these materials is generated by neutron irradiation, however, when the ceramic material contains oxygen, then is generated too fluorine 18 by the action of energetic atoms of tritium in recoil on the 16 O, as it is showed in the next reactions: 1) 6 Li (n, α) 3 H ; 2) 16 O( 3 H, n) 18 F . In the present work was studied the LiAlO 2 and the Li 2 O. The first was prepared in the laboratory and the second was used such as it is commercially expended. In particular the interest of this work is to study the chemical behavior of fluorine-18, since if it would be mixed with tritium it could be contaminate the fusion reactor fuel. The ceramic materials were irradiated with neutrons and also the chemical form of fluorine-18 produced was studied. It was determined the amount of fluorine-18 liberated by the irradiated materials when they were submitted to extraction with helium currents and argon-hydrogen mixtures and also it was investigated the possibility about the fluorine-18 was volatilized then it was mixed so with the tritium. Finally it was founded that the liberated amount of fluorine-18 depends widely of the experimental conditions, such as the temperature and the hydrogen amount in the mixture of dragging gas. (Author)

  19. Tritium-assisted fusion breeders

    International Nuclear Information System (INIS)

    Greenspan, E.; Miley, G.H.

    1983-08-01

    This report undertakes a preliminary assessment of the prospects of tritium-assisted D-D fuel cycle fusion breeders. Two well documented fusion power reactor designs - the STARFIRE (D-T fuel cycle) and the WILDCAT (Cat-D fuel cycle) tokamaks - are converted into fusion breeders by replacing the fusion electric blankets with 233 U producing fission suppressed blankets; changing the Cat-D fuel cycle mode of operation by one of the several tritium-assisted D-D-based modes of operation considered; adjusting the reactor power level; and modifying the resulting plant cost to account for the design changes. Three sources of tritium are considered for assisting the D-D fuel cycle: tritium produced in the blankets from lithium or from 3 He and tritium produced in the client fission reactors. The D-D-based fusion breeders using tritium assistance are found to be the most promising economically, especially the Tritium Catalyzed Deuterium mode of operation in which the 3 He exhausted from the plasma is converted, by neutron capture in the blanket, into tritium which is in turn fed back to the plasma. The number of fission reactors of equal thermal power supported by Tritium Catalyzed Deuterium fusion breeders is about 50% higher than that of D-T fusion breeders, and the profitability is found to be slightly lower than that of the D-T fusion breeders

  20. Design and construction of thermal desorption measurement system for tritium contained materials

    International Nuclear Information System (INIS)

    Hara, M.; Hatano, Y.; Calderoni, P.; Shimada, M.

    2014-01-01

    The dual-mode thermal desorption analysis system was designed and built in Idaho National Laboratory (INL) to examine the evolution of the hydrogen isotope gas from materials. The system is equipped with a mass spectrometer for stable hydrogen isotopes and an ionization chamber for tritium components. The performance of the system built was tested with using tritium contained materials. The evolution of tritiated gas species from contaminated materials was measured successfully by using the system. (author)

  1. Commercial Light Water Reactor -Tritium Extraction Facility Process Waste Assessment (Project S-6091)

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, R.H.; Delley, A.O.; Alexander, G.J.; Clark, E.A.; Holder, J.S.; Lutz, R.N.; Malstrom, R.A.; Nobles, B.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Carson, S.D. [Sandia National Laboratories, New Mexico, NM (United States); Peterson, P.K. [Sandia National Laboratories, New Mexico, NM (United States)

    1997-11-30

    The Savannah River Site (SRS) has been tasked by the Department of Energy (DOE) to design and construct a Tritium Extraction Facility (TEF) to process irradiated tritium producing burnable absorber rods (TPBARs) from a Commercial Light Water Reactor (CLWR). The plan is for the CLWR-TEF to provide tritium to the SRS Replacement Tritium Facility (RTF) in Building 233-H in support of DOE requirements. The CLWR-TEF is being designed to provide 3 kg of new tritium per year, from TPBARS and other sources of tritium (Ref. 1-4).The CLWR TPBAR concept is being developed by Pacific Northwest National Laboratory (PNNL). The TPBAR assemblies will be irradiated in a Commercial Utility light water nuclear reactor and transported to the SRS for tritium extraction and processing at the CLWR-TEF. A Conceptual Design Report for the CLWR-TEF Project was issued in July 1997 (Ref. 4).The scope of this Process Waste Assessment (PWA) will be limited to CLWR-TEF processing of CLWR irradiated TPBARs. Although the CLWR- TEF will also be designed to extract APT tritium-containing materials, they will be excluded at this time to facilitate timely development of this PWA. As with any process, CLWR-TEF waste stream characteristics will depend on process feedstock and contaminant sources. If irradiated APT tritium-containing materials are to be processed in the CLWR-TEF, this PWA should be revised to reflect the introduction of this contaminant source term.

  2. Commercial Light Water Reactor -Tritium Extraction Facility Process Waste Assessment (Project S-6091)

    International Nuclear Information System (INIS)

    Hsu, R.H.; Delley, A.O.; Alexander, G.J.; Clark, E.A.; Holder, J.S.; Lutz, R.N.; Malstrom, R.A.; Nobles, B.R.; Carson, S.D.; Peterson, P.K.

    1997-01-01

    The Savannah River Site (SRS) has been tasked by the Department of Energy (DOE) to design and construct a Tritium Extraction Facility (TEF) to process irradiated tritium producing burnable absorber rods (TPBARs) from a Commercial Light Water Reactor (CLWR). The plan is for the CLWR-TEF to provide tritium to the SRS Replacement Tritium Facility (RTF) in Building 233-H in support of DOE requirements. The CLWR-TEF is being designed to provide 3 kg of new tritium per year, from TPBARS and other sources of tritium (Ref. 1-4).The CLWR TPBAR concept is being developed by Pacific Northwest National Laboratory (PNNL). The TPBAR assemblies will be irradiated in a Commercial Utility light water nuclear reactor and transported to the SRS for tritium extraction and processing at the CLWR-TEF. A Conceptual Design Report for the CLWR-TEF Project was issued in July 1997 (Ref. 4).The scope of this Process Waste Assessment (PWA) will be limited to CLWR-TEF processing of CLWR irradiated TPBARs. Although the CLWR- TEF will also be designed to extract APT tritium-containing materials, they will be excluded at this time to facilitate timely development of this PWA. As with any process, CLWR-TEF waste stream characteristics will depend on process feedstock and contaminant sources. If irradiated APT tritium-containing materials are to be processed in the CLWR-TEF, this PWA should be revised to reflect the introduction of this contaminant source term

  3. Dosimetry of skin-contact exposure to tritium gas contaminated surfaces

    International Nuclear Information System (INIS)

    Legare, M.

    1990-12-01

    The radiological hazards from tritium are usually associated with exposure to tritium oxide either by inhalation, ingestion or permeation through skin. However, exposure from skin contact with tritium gas contaminated surfaces represents a different radiological hazard in tritium removal facilities and future fusion power plants. Previous experiments on humans and more recent experiments on hairless rats at Chalk River Laboratories have shown that when a tritium gas-contaminated surface is brought into contact with intact skin, high concentrations of organically-bound tritium in urine and skin are observed which were not seen from single tritiated water (liquid or vapour form) contamination. The results of the rat experiments, which involved measurements of tritium activity in urine and skin, after contact with contaminated stainless steel, are described. These results are also compared to previous data from human experiments. The effect of various exposure conditions and different contaminated surfaces such as brass, aluminum and glass are analysed and related to the results from contaminated stainless steel exposure. Dosimetric models are being developed in order to improve the basis for dose assessment for this mode of tritium uptake. The presently studied model is explained along with the assumptions and methods involved in its derivation. The features of 'STELLA', the software program used to implement the model, are discussed. The methods used to estimate skin and whole body dose from a model are demonstrated. Finally, some experiments for improving the accuracy of the model are proposed. Briefly, this study compares the results from animal and human experiments as well as different exposure conditions, and determines the range of whole body and skin dose that may be involved from skin-contact intake. This information is essential for regulatory purposes particularly in the derivation of doses for skin-contact contamination. (15 figs., 7 tabs., 29 refs.)

  4. The tritium operations experience on TFTR

    International Nuclear Information System (INIS)

    Halle, A. von; Anderson, J.L.; Gentile, C.; Grisham, L.; Hosea, J.; Kamperschroer, J.; LaMarche, P.; Oldaker, M.; Nagy, A.; Raftopoulos, S.; Stevenson, T.

    1995-01-01

    The Tokamak Fusion Test Reactor (TFTR) tritium gas system is administratively limited to 5 grams of tritium and provides the feedstock gas for the neutral beam and torus injection systems. Tritium operations on TFTR began with leak checking of gas handling systems, qualification of the gas injection systems, and high power plasma operations using trace amounts of tritium in deuterium feedstock gas. Full tritium operation commenced with four highly diagnosed neutral beam pulses into a beamline calorimeter to verify planned tritium beam operating routines and to demonstrate the deuterium to tritium beam isotope exchange. Since that time, TFTR has successfully operated each of the twelve neutral beam ion sources in tritium during hundreds of tritium beam pulses and torus gas injections. This paper describes the TFTR tritium gas handling systems and TFTR tritium operations of the gas injection systems and the neutral beam ion sources. Tritium accounting and accountability is discussed, including tritium retention issues of the torus limiters and beam impinged surfaces of the beamline components. Also included is tritium beam velocity analysis that compares the neutral beam extracted ion species composition for deuterium and tritium and that determines the extent of beam isotope exchange on subsequent deuterium and tritium beam pulses. The required modifications to TFTR operating routines to meet the U.S. Department of Energy regulations for a low hazard nuclear facility and the problems encountered during initial tritium operations are described. (orig.)

  5. The tritium operations experience on TFTR

    International Nuclear Information System (INIS)

    von Halle, A.; Gentile, C.

    1994-01-01

    The Tokamak Fusion Test Reactor (TFTR) tritium gas system is administratively limited to 5 grains of tritium and provides the feedstock gas for the neutral beam and torus injection systems. Tritium operations on TFTR began with leak checking of gas handling systems, qualification of the gas injection systems, and high power plasma operations using using trace amounts of tritium in deuterium feedstock gas. Full tritium operation commenced with four highly diagnosed neutral beam pulses into a beamline calorimeter to verify planned tritium beam operating routines and to demonstrate the deuterium to tritium beam isotope exchange. Since that time, TFTR has successfully operated each of the twelve neutral beam ion sources in tritium during hundreds of tritium beam pulses and torus gas injections. This paper describes- the TFTR tritium gas handling systems and TFTR tritium operations of the gas injection systems and the neutral beam ion sources. Tritium accounting and accountability is discussed, including tritium retention issues of the torus limiters and beam impinged surfaces of the beamline components. Also included is tritium beam velocity analysis that compares the neutral beam extracted ion species composition for deuterium and tritium and that determines the extent of beam isotope exchange on subsequent deuterium and tritium beam pulses. The required modifications to TFTR operating routines to meet the US Department of Energy regulations for a low hazard nuclear facility and the problems encountered during initial tritium operations are described

  6. In-pile test of tritium release from tritium breeding materials (VOM-21H experiment)

    International Nuclear Information System (INIS)

    Kurasawa, Toshimasa; Takeshita, Hidefumi; Watanabe, Hitoshi; Yoshida, Hiroshi.

    1986-10-01

    Material development and blanket design of lithium-based ceramics such as lithium oxide, lithium aluminate, lithium silicate and lithium zirconate have been performed in Japan, United State of America and Europian Communities. Lithium oxide is a most attractive candidate for tritium breeding materials because of its high lithium density, high thermal conductivity and good tritium release performance. This work has been done to clarify the characteristics of tritium release and recovery from Li 2 O by means of in-situ tritium release measurement. The effects of temperature and sweep gas composition on the tritium release were investigated in this VOM-21H Experiment. Good measurement of tritium release was achieved but there were uncertainties in reproduciblity of data. The experimental results show that the role of surface adsorption/desorption makes a significant contribution to the tritium release and tritium inventory. Also, it is necessary to define the rate limiting process either diffusion or surface adsorption/desorption. (author)

  7. In-vessel tritium retention and removal in ITER

    International Nuclear Information System (INIS)

    Federici, G.; Anderl, R.A.

    1998-01-01

    The International Thermonuclear Experimental Reactor (ITER) is envisioned to be the next major step in the world's fusion program from the present generation of tokamaks and is designed to study fusion plasmas with a reactor relevant range of plasma parameters. During normal operation, it is expected that a fraction of the unburned tritium, that is used to routinely fuel the discharge, will be retained together with deuterium on the surfaces and in the bulk of the plasma facing materials (PFMs) surrounding the core and divertor plasma. The understanding of he basic retention mechanisms (physical and chemical) involved and their dependence upon plasma parameters and other relevant operation conditions is necessary for the accurate prediction of the amount of tritium retained at any given time in the ITER torus. Accurate estimates are essential to assess the radiological hazards associated with routine operation and with potential accident scenarios which may lead to mobilization of tritium that is not tenaciously held. Estimates are needed to establish the detritiation requirements for coolant water, to determine the plasma fueling and tritium supply requirements, and to establish the needed frequency and the procedures for tritium recovery and clean-up. The organization of this paper is as follows. Section 2 provides an overview of the design and operating conditions of the main components which define the plasma boundary of ITER. Section 3 reviews the erosion database and the results of recent relevant experiments conducted both in laboratory facilities and in tokamaks. These data provide the experimental basis and serve as an important benchmark for both model development (discussed in Section 4) and calculations (discussed in Section 5) that are required to predict tritium inventory build-up in ITER. Section 6 emphasizes the need to develop and test methods to remove the tritium from the codeposited C-based films and reviews the status and the prospects of the

  8. In-vessel tritium retention and removal in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Federici, G. [ITER JWS Garching Co-Center (Germany); Anderl, R.A. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Andrew, P. [JET Joint Undertaking, Abingdon (United Kingdom)] [and others

    1998-06-01

    The International Thermonuclear Experimental Reactor (ITER) is envisioned to be the next major step in the world`s fusion program from the present generation of tokamaks and is designed to study fusion plasmas with a reactor relevant range of plasma parameters. During normal operation, it is expected that a fraction of the unburned tritium, that is used to routinely fuel the discharge, will be retained together with deuterium on the surfaces and in the bulk of the plasma facing materials (PFMs) surrounding the core and divertor plasma. The understanding of he basic retention mechanisms (physical and chemical) involved and their dependence upon plasma parameters and other relevant operation conditions is necessary for the accurate prediction of the amount of tritium retained at any given time in the ITER torus. Accurate estimates are essential to assess the radiological hazards associated with routine operation and with potential accident scenarios which may lead to mobilization of tritium that is not tenaciously held. Estimates are needed to establish the detritiation requirements for coolant water, to determine the plasma fueling and tritium supply requirements, and to establish the needed frequency and the procedures for tritium recovery and clean-up. The organization of this paper is as follows. Section 2 provides an overview of the design and operating conditions of the main components which define the plasma boundary of ITER. Section 3 reviews the erosion database and the results of recent relevant experiments conducted both in laboratory facilities and in tokamaks. These data provide the experimental basis and serve as an important benchmark for both model development (discussed in Section 4) and calculations (discussed in Section 5) that are required to predict tritium inventory build-up in ITER. Section 6 emphasizes the need to develop and test methods to remove the tritium from the codeposited C-based films and reviews the status and the prospects of the

  9. Properties of tritium and its compounds

    International Nuclear Information System (INIS)

    Belovodskij, L.F.; Gaevoj, V.K.; Grishmanovskij, V.I.

    1985-01-01

    Ways of tritium preparation and different aspects of its application are considered. Physicochemical properties of this isotope and some compounds of it - tritium oxides, lithium, titanium, zirconium, uranium tritides, tritium organic compounds - are discussed. In particular, diffusion of tritium and its oxide through different materials, tritium oxidation processes, decomposition of tritium-containing compounds under the action of self-radiation are considered. Main radiobiological tritium properties are described

  10. Tritium labelling of two new analgesic drugs

    International Nuclear Information System (INIS)

    Santamaria, J.; Rebollo, D.V.; Rivera, P.; Esteban, M.

    1986-01-01

    The labelling with tritium of two arylpropionic esters was studied. The synthesis between 3 H-Ibuprofen and the two unlabelled alcoholic moieties (Cl-Alkanol and CF 3 -Alkanol) was performed. Assuming that we got ready the acidic moiety, 3 H-Ibuprofen, in our Laboratory, we attempted to label with tritium the alcoholic moiety and then go on to its esterification. Prior to labelling, thermic stability of 2-(4-(3-chlorophenyl)-1-piperazinyl) ethanol (Cl-Alkanol) was studied. As result of this study we had to change the labelling method, so that the Cl-Alkanol was unstable at 70 0 C. Purification was accomplished through thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Concentration, purity and specific activities of the two labelled compounds were determined by ultraviolet, HPLC and liquid scintillation techniques. (author)

  11. Intercomparison test for the determination of low-level tritium activities in natural waters for age dating purposes

    International Nuclear Information System (INIS)

    Mohokar, Hemant; Diksha; Sinha, U.K.; Joseph, T.B.

    2015-01-01

    A world-wide inter-comparison was undertaken to assess the quality of 3 H data produced by laboratories worldwide, primarily aimed at those conducting groundwater age dating applications in hydrogeology. These low-level tritium test samples encompass 3 H concentrations currently observed in modern precipitation, surface and ground waters, whereupon each participating laboratory employed routine pre-treatment or electrolytic enrichment procedures and 3 H counting methods. The test water samples were comprised of one tritium-free water and seven water samples. Fifty-eight laboratories reported test data to the IAEA for all, or a sub-set, of the eight test samples. The method applied by our laboratory was electrolytic enrichment followed by counting in liquid scintillation counter

  12. Comparison of tritium production facilities

    International Nuclear Information System (INIS)

    He Kaihui; Huang Jinhua

    2002-01-01

    Detailed investigation and research on the source of tritium, tritium production facilities and their comparison are presented based on the basic information about tritium. The characteristics of three types of proposed tritium production facilities, i.e., fissile type, accelerator production tritium (APT) and fusion type, are presented. APT shows many advantages except its rather high cost; fusion reactors appear to offer improved safety and environmental impacts, in particular, tritium production based on the fusion-based neutron source costs much lower and directly helps the development of fusion energy source

  13. Protection against tritium radiations

    International Nuclear Information System (INIS)

    Bal, Georges

    1964-05-01

    This report presents the main characteristics of tritium, describes how it is produced as a natural or as an artificial radio-element. It outlines the hazards related to this material, presents how materials and tools are contaminated and decontaminated. It addresses the issue of permissible maximum limits: factors of assessment of the risk induced by tritium, maximum permissible activity in body water, maximum permissible concentrations in the atmosphere. It describes the measurement of tritium activity: generalities, measurement of gas activity and of tritiated water steam, tritium-induced ionisation in an ionisation chamber, measurement systems using ionisation chambers, discontinuous detection of tritium-containing water in the air, detection of surface contamination [fr

  14. ARIES-I tritium system

    International Nuclear Information System (INIS)

    Sze, D.K.; Tam, S.W.; Billone, M.C.; Hassanein, A.M.; Martin, R.

    1990-09-01

    A key safety concern in a D-T fusion reactor is the tritium inventory. There are three components in a fusion reactor with potentially large inventories, i.e., the blanket, the fuel processing system and the plasma facing components. The ARIES team selected the material combinations, decided the operating conditions and refined the processing systems, with the aiming of minimizing the tritium inventories and leakage. The total tritium inventory for the ARIES-I reactor is only 700 g. This paper discussed the calculations and assumptions we made for the low tritium inventory. We also addressed the uncertainties about the tritium inventory. 13 refs., 2 figs., 3 tabs

  15. Tritium control in fusion reactor materials: A model for Tritium Extracting System

    International Nuclear Information System (INIS)

    Zucchetti, Massimo; Utili, Marco; Nicolotti, Iuri; Ying, Alice; Franza, Fabrizio; Abdou, Mohamed

    2015-01-01

    Highlights: • A modeling work has been performed to address these issues in view of its utilization for the TES (Tritium Extraction System), in the case of the HCPB TBM and for a Molecular sieve as adsorbent material. • A computational model has been setup and tested in this paper. • The results of experimental measurement of fundamental parameters such as mass transfer coefficients have been implemented in the model. • It turns out the capability to model the extraction process of gaseous tritium compounds and to estimate the breakthrough curves of the two main tritium gaseous species (H2 and HT). - Abstract: In fusion reactors, tritium is bred by lithium isotopes inside the blanket and then extracted. However, tritium can contaminate the reactor structures, and can be eventually released into the environment. Tritium in reactor components should therefore be kept under close control throughout the fusion reactor lifetime, bearing in mind the risk of accidents, the need for maintenance and the detritiation of dismantled reactor components before their re-use or disposal. A modeling work has been performed to address these issues in view of its utilization for the TES (Tritium Extraction System), in the case of the HCPB TBM and for a molecular sieve as adsorbent material. A computational model has been setup and tested. The results of experimental measurement of fundamental parameters such as mass transfer coefficients have been implemented in the model. It turns out the capability of the model to describe the extraction process of gaseous tritium compounds and to estimate the breakthrough curves of the two main tritium gaseous species (H2 and HT).

  16. Tritium control in fusion reactor materials: A model for Tritium Extracting System

    Energy Technology Data Exchange (ETDEWEB)

    Zucchetti, Massimo [DENERG, Politecnico di Torino (Italy); Utili, Marco, E-mail: marco.utili@enea.it [ENEA UTIS – C.R. Brasimone, Bacino del Brasimone, Camugnano, BO (Italy); Nicolotti, Iuri [DENERG, Politecnico di Torino (Italy); Ying, Alice [University of California Los Angeles (UCLA), Los Angeles, CA (United States); Franza, Fabrizio [Karlsruhe Institute of Technology, Karlsruhe (Germany); Abdou, Mohamed [University of California Los Angeles (UCLA), Los Angeles, CA (United States)

    2015-10-15

    Highlights: • A modeling work has been performed to address these issues in view of its utilization for the TES (Tritium Extraction System), in the case of the HCPB TBM and for a Molecular sieve as adsorbent material. • A computational model has been setup and tested in this paper. • The results of experimental measurement of fundamental parameters such as mass transfer coefficients have been implemented in the model. • It turns out the capability to model the extraction process of gaseous tritium compounds and to estimate the breakthrough curves of the two main tritium gaseous species (H2 and HT). - Abstract: In fusion reactors, tritium is bred by lithium isotopes inside the blanket and then extracted. However, tritium can contaminate the reactor structures, and can be eventually released into the environment. Tritium in reactor components should therefore be kept under close control throughout the fusion reactor lifetime, bearing in mind the risk of accidents, the need for maintenance and the detritiation of dismantled reactor components before their re-use or disposal. A modeling work has been performed to address these issues in view of its utilization for the TES (Tritium Extraction System), in the case of the HCPB TBM and for a molecular sieve as adsorbent material. A computational model has been setup and tested. The results of experimental measurement of fundamental parameters such as mass transfer coefficients have been implemented in the model. It turns out the capability of the model to describe the extraction process of gaseous tritium compounds and to estimate the breakthrough curves of the two main tritium gaseous species (H2 and HT).

  17. The Tritium White Paper

    International Nuclear Information System (INIS)

    2009-01-01

    This publication proposes a synthesis of the activities of two work-groups between May 2008 and April 2010. It reports the ASN's (the French Agency for Nuclear Safety) point of view, describes its activities and actions, and gives some recommendations. It gives a large and detailed overview of the knowledge status on tritium: tritium source inventory, tritium origin, management processes, capture techniques, reduction, tritium metrology, impact on the environment, impacts on human beings

  18. Tritium in precipitation of Vostok (Antarctica): conclusions on the tritium latitude effect.

    Science.gov (United States)

    Hebert, Detlef

    2011-09-01

    During the Antarctic summer of 1985 near the Soviet Antarctic station Vostok, firn samples for tritium measurements were obtained down to a depth of 2.40 m. The results of the tritium measurements are presented and discussed. Based on this and other data, conclusions regarding the tritium latitude effect are derived.

  19. Tritium inventory tracking and management

    International Nuclear Information System (INIS)

    Eichenberg, T.W.; Klein, A.C.

    1990-01-01

    This investigation has identified a number of useful applications of the analysis of the tracking and management of the tritium inventory in the various subsystems and components in a DT fusion reactor system. Due to the large amounts of tritium that will need to be circulated within such a plant, and the hazards of dealing with the tritium an electricity generating utility may not wish to also be in the tritium production and supply business on a full time basis. Possible scenarios for system operation have been presented, including options with zero net increase in tritium inventory, annual maintenance and blanket replacement, rapid increases in tritium creation for the production of additional tritium supplies for new plant startup, and failures in certain system components. It has been found that the value of the tritium breeding ratio required to stabilize the storage inventory depends strongly on the value and nature of other system characteristics. The real operation of a DT fusion reactor power plant will include maintenance and blanket replacement shutdowns which will affect the operation of the tritium handling system. It was also found that only modest increases in the tritium breeding ratio are needed in order to produce sufficient extra tritium for the startup of new reactors in less than two years. Thus, the continuous operation of a reactor system with a high tritium breeding ratio in order to have sufficient supplies for other plants is not necessary. Lastly, the overall operation and reliability of the power plant is greatly affected by failures in the fuel cleanup and plasma exhaust systems

  20. Vom auf der Planeten im Spiegel des Chorgesangs. Knabenchor Tallinn und Orchester aus Estland geben ein Konzert in der Karlsruher Stephanskirche / Bernd Willimek

    Index Scriptorium Estoniae

    Willimek, Bernd

    1992-01-01

    Planeetide liikumise peegeldus koorilaulus. Tallinna poistekoor ja orkester Eestist andsid kontserdi Karlsruhe Stephanskirhes. Eesti kultuuripäevadest Karlsruhes. Eesti muusikast esitati Urmas Sisaski, Mihkel Lüdigi, Veljo Tormise ja Rudolf Tobiase loomingut

  1. High-pressure tritium

    International Nuclear Information System (INIS)

    Coffin, D.O.

    1976-01-01

    Some solutions to problems of compressing and containing tritium gas to 200 MPa at 700 0 K are discussed. The principal emphasis is on commercial compressors and high-pressure equipment that can be easily modified by the researcher for safe use with tritium. Experience with metal bellows and diaphragm compressors has been favorable. Selection of materials, fittings, and gauges for high-pressure tritium work is also reviewed briefly

  2. List of scientific publications from the Karlsruhe Nuclear Research Centre of the year 1977

    International Nuclear Information System (INIS)

    1978-03-01

    The scientific and technical-scientific publications from the Karlsruhe Nuclear Research Centre comprise books, original papers in scientific or technical journals, diploma, doctoral and habilitation theses, as well as papers held at scientific conferences, patents, KfK reports, and external reports (KfK = Kernforschungszentrum Karlsruhe). The present report, KfK 2625, contains the titles of the 1977 publications, scientific papers being listed only after the manusscript has been filed in the Central Library of the research centre. As for patents, the titles given refer to either first issues of a patent, or to patents laid open for inspection. Progress reports are listed according to subjects involved. The whole list of publications is ordered according to the names of institutes and of projects, the latter group covering the titles of published project reports and of publications written by individual cooperators of a given project, as well as publications printed by the Karlsruhe Nuclear Research Centre, written by cooperators of the following projects: 'Process control with data processing plants', (PDV), and 'Computer-assisted development' (CAD). These projects are carried out together with other firms and instutes. Yet another group of publications covered are those of the Federal Institute for Food Research, and of guest scientists working in the Centre. (orig./HK) [de

  3. Procedures for the retention of gaseous tritium released from a tritium enrichment plant

    International Nuclear Information System (INIS)

    Gutowski, H.; Bracha, M.

    1987-01-01

    General aim of the study is the comparison of two alternative processes for the retention of gaseous tritium which is released during normal operation and emergency operation in a tritium-enrichment-plant. Two processes for the retention of tritium were compared: 1. Oxidation-process. The hydrogen-gas containing HT will be burnt on an oxidation catalyst to H 2 O and HTO. In a subsequent step the water will be removed from the process by condensation, freezing and adsorption. 2. TROC-process (Tritium Removal by Organic Compounds). The tritium is added to an organic compound (acid) via catalyst. This reaction is irreversible and leads to solid products. (orig./RB) [de

  4. Tritium metrology within different media: focus on organically bound tritium (OBT); Metrologie du tritium dans differentes matrices: cas du tritium organiquement lie (TOL)

    Energy Technology Data Exchange (ETDEWEB)

    Baglan, N. [CEA Bruyeres-le-Chatel, DIF, 91 (France); Ansoborlo, E. [CEA Marcoule, DEN/DRCP/CETAMA, 30 (France); Cossonnet, C. [IRSN, DEI/STEME/LMRE, 91 - Orsay (France); Fouhal, L. [CEA Cadarache, DEN/D2S/LANSE, 13 - Saint-Paul-lez-Durance (France); Deniau, I.; Mokili, M. [SUBATECH/IN2P3/CNRS, 44 - Nantes (France); Henry, A. [AREVA-NC/DQSSE/PR - La Hague, 50 - Beaumont-Hague, (France); Fourre, E. [CEA Saclay, DSM/DRECAM/LSCE, 91 - Gif-sur-Yvette (France); Olivier, A. [GEA-Marine nationale, 50 - Cherbourg (France)

    2010-07-15

    The measurement of tritium in its various forms (mainly gas (HT), water (HTO) or solid (hydrides)), is an important key step for evaluating health and environmental risks and finally, dosimetry assessment. In vegetable or animal samples, tritium is often associated with the free water fraction, but may be included in the organic form as organically bound tritium (OBT). In this case, 2 forms exist: (i) a fraction called exchangeable or labile (E-OBT), bound to oxygen and nitrogen atoms, and (ii) a so-called non-exchangeable fraction (NE-OBT) bound to carbon atoms. The main technique for tritium analysis is liquid scintillation, which enables one to measure concentrations in the range of several Bq.L{sup -1}. The standards (AFNOR, ISO) published to date relate only to tritium analysis in water. Only one CETAMA method addresses OBT analysis in biological environments. This method has been tested since 2001 through intercomparison circuits on grass samples collected from the environment. Regarding tritium analysis in water, the strengths are reliability of this analysis at low concentrations (order of Bq.L{sup -1}), robustness and simplicity, and weaknesses are linked to problems of background, conservation and contamination of samples. Concerning OBT analysis, the analysis is reliable for values around 50 Bq.kg{sup -1} of fresh sample. The weaknesses are problems of contamination, reproducibility, analysis time (2 to 6 days) and lack of reference materials. The difficulty to date is the separation between E-OBT and NE-OBT, that will need experimental validation. (authors)

  5. Tritium in plants

    International Nuclear Information System (INIS)

    Vichot, L.; Losset, Y.

    2009-01-01

    The presence of tritium in the environment stems from its natural production by cosmic rays, from the fallout of the nuclear weapon tests between 1953 and 1964, and locally from nuclear industry activities. A part of the tritiated water contained in the foliage of plants is turned into organically bound tritium (OBT) by photosynthesis. The tritium of OBT, that is not exchangeable and then piles up in the plant, can be used as a marker of the past. It has been shown that the quantity of OBT contained in the age-rings of an oak that grew near the CEA center of Valduc was directly correlated with the tritium releases of the center. (A.C.)

  6. Tritium Permeability of Incoloy 800H and Inconel 617

    Energy Technology Data Exchange (ETDEWEB)

    Philip Winston; Pattrick Calderoni; Paul Humrickhouse

    2012-07-01

    Design of the Next Generation Nuclear Plant (NGNP) reactor and its high-temperature components requires information regarding the permeation of fission generated tritium and hydrogen product through candidate heat exchanger alloys. Release of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system represent safety basis and product contamination issues. Of the three potential candidates for high-temperature components of the NGNP reactor design, only permeability for Incoloy 800H has been well documented. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. To support engineering design of the NGNP reactor components, the tritium permeability of Inconel 617 and Incoloy 800H was determined using a measurement system designed and fabricated at Idaho National Laboratory. The tritium permeability of Incoloy 800H and Inconel 617, was measured in the temperature range 650 to 950°C and at primary concentrations of 1.5 to 6 parts per million volume tritium in helium. (partial pressures of 10-6 atm)—three orders of magnitude lower partial pressures than used in the hydrogen permeation testing. The measured tritium permeability of Incoloy 800H and Inconel 617 deviated substantially from the values measured for hydrogen. This may be due to instrument offset, system absorption, presence of competing quantities of hydrogen, surface oxides, or other phenomena. Due to the challenge of determining the chemical composition of a mixture with such a low hydrogen isotope concentration, no categorical explanation of this offset has been developed.

  7. Tritium Permeability of Incoloy 800H and Inconel 617

    Energy Technology Data Exchange (ETDEWEB)

    Philip Winston; Pattrick Calderoni; Paul Humrickhouse

    2011-09-01

    Design of the Next Generation Nuclear Plant (NGNP) reactor and its high-temperature components requires information regarding the permeation of fission generated tritium and hydrogen product through candidate heat exchanger alloys. Release of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system represent safety basis and product contamination issues. Of the three potential candidates for high-temperature components of the NGNP reactor design, only permeability for Incoloy 800H has been well documented. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. To support engineering design of the NGNP reactor components, the tritium permeability of Inconel 617 and Incoloy 800H was determined using a measurement system designed and fabricated at Idaho National Laboratory. The tritium permeability of Incoloy 800H and Inconel 617, was measured in the temperature range 650 to 950 C and at primary concentrations of 1.5 to 6 parts per million volume tritium in helium. (partial pressures of 10-6 atm) - three orders of magnitude lower partial pressures than used in the hydrogen permeation testing. The measured tritium permeability of Incoloy 800H and Inconel 617 deviated substantially from the values measured for hydrogen. This may be due to instrument offset, system absorption, presence of competing quantities of hydrogen, surface oxides, or other phenomena. Due to the challenge of determining the chemical composition of a mixture with such a low hydrogen isotope concentration, no categorical explanation of this offset has been developed.

  8. Tritium concentrations in tree ring cellulose

    International Nuclear Information System (INIS)

    Kaji, Toshio; Momoshima, Noriyuki; Takashima, Yoshimasa.

    1989-01-01

    Measurements of tritium (tissue bound tritium; TBT) concentration in tree rings are presented and discussed. Such measurement is expected to provide a useful means of estimating the tritium level in the environment in the past. The concentration of tritium bound in the tissue (TBT) in a tree ring considered to reflect the environmental tritium level in the area at the time of the formation of the ring, while the concentration of tritium in the free water in the tissue represents the current environmental tritium level. First, tritium concentration in tree ring cellulose sampled from a cedar tree grown in a typical environment in Fukuoka Prefecture is compared with the tritium concentration in precipitation in Tokyo. Results show that the year-to-year variations in the tritium concentration in the tree rings agree well with those in precipitation. The maximum concentration, which occurred in 1963, is attibuted to atmospheric nuclear testing which was performed frequently during the 1961 - 1963 period. Measurement is also made of the tritium concentration in tree ring cellulose sampled from a pine tree grown near the Isotope Center of Kyushu University (Fukuoka). Results indicate that the background level is higher probably due to the release of tritium from the facilities around the pine tree. Thus, measurement of tritium in tree ring cellulose clearly shows the year-to-year variation in the tritium concentration in the atmosphere. (N.K.)

  9. Tritium Waste Treatment System component failure data analysis from June 18, 1984--December 31, 1989

    International Nuclear Information System (INIS)

    Cadwallader, L.C.; Stolpe Gavett, M.A.

    1990-09-01

    This document gives the failure rates for the major tritium-bearing components in the Tritium Waste Treatment System at the Tritium Systems Test Assembly, which is a fusion research and technology facility at the Los Alamos National Laboratory. The failure reports, component populations, and operating demands/hours are given in this report, and sample calculations for binomial demand failure rates and poisson hourly failure rates are given in the appendices. The failure rates for tritium-bearing components were on the order of the screening failure rate values suggested for fusion reliability and risk analyses. More effort should be directed toward collecting and analyzing fusion component failure data, since accurate failure rates are necessary to refine reliability and risk analyses. 15 refs., 4 figs., 4 tabs

  10. HYLIFE-II tritium management system

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Dolan, T.J.

    1993-06-01

    The tritium management system performs seven functions: (1) tritium gas removal from the blast chamber, (2) tritium removal from the Flibe, (3) tritium removal from helium sweep gas, (4) tritium removal from room air, (5) hydrogen isotope separation, (6) release of non-hazardous gases through the stack, (7) fixation and disposal of hazardous effluents. About 2 TBq/s (5 MCi/day) of tritium is bred in the Flibe (Li 2 BeF 4 ) molten salt coolant by neutron absorption. Tritium removal is accomplished by a two-stage vacuum disengager in each of three steam generator loops. Each stage consists of a spray of 0.4 mm diameter, hot Flibe droplets into a vacuum chamber 4 m in diameter and 7 m tall. As droplets fall downward into the vacuum, most of the tritium diffuses out and is pumped away. A fraction Φ∼10 -5 of the tritium remains in the Flibe as it leaves the second stage of the vacuum disengager, and about 24% of the remaining tritium penetrates through the steam generator tubes, per pass, so the net leakage into the steam system is about 4.7 MBq/s (11 Ci/day). The required Flibe pumping power for the vacuum disengager system is 6.6 MW. With Flibe primary coolant and a vacuum disengager, an intermediate coolant loop is not needed to prevent tritium from leaking into the steam system. An experiment is needed to demonstrate vacuum disengager operation with Flibe. A secondary containment shell with helium sweep gas captures the tritium permeating out of the Flibe ducts, limiting leaks there to about 1 Ci/day. The tritium inventory in the reactor is about 190 g, residing mostly in the large Flibe recirculation duct walls. The total cost of the tritium management system is 92 M$, of which the vacuum disengagers cost = 56%, the blast chamber vacuum system = 15%, the cryogenic plant = 9%, the emergency air cleanup and waste treatment systems each = 6%, the protium removal system = 3%, and the fuel storage system and inert gas system each = 2%

  11. Tritium release of titan-tritium layers in air, aqueous solutions and living organisms of animals

    International Nuclear Information System (INIS)

    Biro, J.; Feher, I.; Mate, L.; Varga, L.

    1978-01-01

    Samples containing 400-1100 MBq (10-30 mCi) tritium were prepared and the effect of storage time on tritium release was followed. In 250 days one thousandth of the tritium was released in aqueous solution; in air the ratio of release per hour fell in the range of 10 -6 -10 -7 . Ti-T plates with different storage times were surgically placed in the abdomen of rats. Their tritium release dropped with time and the activity appearing in the circulation was lower than that of plates with 5-6 orders of magnitude. Checking the tritium incorporation of neutron generator operators it must be held in mind that only a minor part of tritium can be detected by the measurement of the tritium content of urine. (author)

  12. Development of a tritium monitor combined with an electrochemical tritium pump using a proton conducting oxide

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M. [National Institute for Fusion Science, Toki, Gifu (Japan); Sugiyama, T. [Nagoya University, Fro-cho, Chikusa-ku, Nagoya (Japan)

    2015-03-15

    The detection of low level tritium is one of the key issues for tritium management in tritium handling facilities. Such a detection can be performed by tritium monitors based on proton conducting oxide technique. We tested a tritium monitoring system composed of a commercial proportional counter combined with an electrochemical hydrogen pump equipped with CaZr{sub 0.9}In{sub 0.1}O{sub 3-α} as proton conducting oxide. The hydrogen pump operated at 973 K under electrolysis conditions using tritiated water vapor (HTO). The proton conducting oxide extracts tritium molecules (HT) from HTO and tritium concentration is measured by the proportional counter. The advantage of the proposed tritium monitoring system is that it is able to convert HTO into molecular hydrogen.

  13. Development and Verification of Tritium Analyses Code for a Very High Temperature Reactor

    International Nuclear Information System (INIS)

    Oh, Chang H.; Kim, Eung S.

    2009-01-01

    A tritium permeation analyses code (TPAC) has been developed by Idaho National Laboratory for the purpose of analyzing tritium distributions in the VHTR systems including integrated hydrogen production systems. A MATLAB SIMULINK software package was used for development of the code. The TPAC is based on the mass balance equations of tritium-containing species and a various form of hydrogen (i.e., HT, H2, HTO, HTSO4, and TI) coupled with a variety of tritium source, sink, and permeation models. In the TPAC, ternary fission and neutron reactions with 6Li, 7Li 10B, 3He were taken into considerations as tritium sources. Purification and leakage models were implemented as main tritium sinks. Permeation of HT and H2 through pipes, vessels, and heat exchangers were importantly considered as main tritium transport paths. In addition, electrolyzer and isotope exchange models were developed for analyzing hydrogen production systems including both high-temperature electrolysis and sulfur-iodine process. The TPAC has unlimited flexibility for the system configurations, and provides easy drag-and-drops for making models by adopting a graphical user interface. Verification of the code has been performed by comparisons with the analytical solutions and the experimental data based on the Peach Bottom reactor design. The preliminary results calculated with a former tritium analyses code, THYTAN which was developed in Japan and adopted by Japan Atomic Energy Agency were also compared with the TPAC solutions. This report contains descriptions of the basic tritium pathways, theory, simple user guide, verifications, sensitivity studies, sample cases, and code tutorials. Tritium behaviors in a very high temperature reactor/high temperature steam electrolysis system have been analyzed by the TPAC based on the reference indirect parallel configuration proposed by Oh et al. (2007). This analysis showed that only 0.4% of tritium released from the core is transferred to the product hydrogen

  14. Tritium accounting for PHWR plants

    International Nuclear Information System (INIS)

    Nair, P.S.; Duraisamy, S.

    2012-01-01

    Tritium, the radioactive isotope of hydrogen, is produced as a byproduct of the nuclear reactions in the nuclear power plants. In a Pressurized Heavy Water Reactor (PHWR) tritium activity is produced in the Heat Transport and Moderator systems due to neutron activation of deuterium in heavy water used in these systems. Tritium activity build up occurs in some of the water systems in the PHWR plants through pick up from the plant atmosphere, inadvertent D 2 O ingress from other systems or transfer during processes. The tritium, produced by the neutron induced reactions in different systems in the reactor undergoes multiple processes such as escape through leaks, storage, transfer to external locations, decay, evaporation and diffusion and discharge though waste streams. Change of location of tritium inventory takes place during intentional transfer of heavy water, both reactor grade and downgraded, from one system to another. Tritium accounting is the application of accounting techniques to maintain knowledge of the tritium inventory present in different systems of a facility and to construct activity balances to detect any discrepancy in the physical inventories. It involves identification of all the tritium hold ups, transfers and storages as well as measurement of tritium inventories in various compartments, decay corrections, environmental release estimations and evaluation of activity generation during the accounting period. This paper describes a methodology for creating tritium inventory balance based on periodic physical inventory taking, tritium build up, decay and release estimations. Tritium accounting in the PHWR plants can prove to be an effective regulatory tool to monitor its loss as well as unaccounted release to the environment. (author)

  15. Tritium permeation through iron

    International Nuclear Information System (INIS)

    Hagi, Hideki; Hayashi, Yasunori

    1989-01-01

    An experimental method for measuring diffusion coefficients and permeation rates of tritium in metals around room temperature has been established, and their values in iron have been obtained by using the method. Permeation rates of tritium and hydrogen through iron were measured by the electrochemical method in which a tritiated aqueous solution was used as a cathodic electrolyte. Tritium and hydrogen were introduced from one side of a membrane specimen by cathodic polarization, while at the other side of the specimen the permeating tritium and hydrogen were extracted by potentiostatical ionization. The amount of permeated hydrogen was obtained by integrating the anodic current, and that of tritium was determined by measuring the radioactivity of the electrolyte sampled from the extraction side. Diffusion coefficients of tritium (D T ) and hydrogen (D H ) were determined from the time lag of tritium and hydrogen permeation. D T =9x10 -10 m 2 /s and D H =4x10 -9 m 2 /s at 286 K for annealed iron specimens. These values of D T and D H were compared with the previous data of the diffusion coefficients of hydrogen and deuterium, and the isotope effect in diffusion was discussed. (orig.)

  16. Tritium oxidation and exchange: preliminary studies

    International Nuclear Information System (INIS)

    Phillips, J.E.; Easterly, C.E.

    1978-05-01

    The radiological hazard resulting from an exposure to either tritium oxide or tritium gas is discussed and the factors contributing to the hazard are presented. From the discussion it appears that an exposure to tritium oxide vapor is 10 4 to 10 5 times more hazardous than exposure to tritium gas. Present and future sources of tritium are briefly considered and indicate that most of the tritium has been and is being released as tritium oxide. The likelihood of gaseous releases, however, is expected to increase in the future, calling to task the present general release assumption that 100% of all tritium released is as oxide. Accurate evaluation of the hazards from a gaseous release will require a knowledge of the conversion rate of tritium gas to tritium oxide. An experiment for determining the conversion rate of tritium gas to tritium oxide is presented along with some preliminary data. The conversion rates obtained for low initial concentrations (10 -4 to 10 -1 mCi/ml) indicate the conversion may proceed more rapidly than would be expected from an extrapolation of previous data taken at higher concentrations

  17. Problems of anthropogenic tritium limitation

    Directory of Open Access Journals (Sweden)

    Kochetkov О.A.

    2013-12-01

    Full Text Available This article contains the current situation in respect to the environmental concentrations of anthropogenic and natural tritium. There are presented and analyzed domestic standards for НТО of all Radiation Safety Standards (NRB, as well as the regulations analyzed for tritium in drinking water taken in other countries today. This article deals with the experience of limitation of tritium and focuses on the main problem of rationing of tritium — rationing of organically bound tritium.

  18. The data collection system for failure/maintenance at the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Casey, M.A.; Gruetzmacher, K.M.; Bartlit, J.R.; Cadwallader, L.C.

    1988-01-01

    A data collection system for obtaining information which can be used to help determine the reliability and vailability of future fusion power plants has been installed at the Los Alamos National Laboratory's Tritium Systems Test Assembly (TSTA). Failure and maintenance data on components of TSTA's tritium systems have been collected since 1984. The focus of the data collection has been TSTA's Tritium Waste Tratment System (TWT), which has maintained high availability since it became operation in 1982. Data collection is still in progress and a total of 291 failure reports are in the data collection system at this time, 47 of which are from the TWT. 6 refs., 2 figs., 2 tabs

  19. Tritium in plants; Le tritium dans la matiere organique des vegetaux

    Energy Technology Data Exchange (ETDEWEB)

    Vichot, L.; Losset, Y. [CEA Valduc, 21 - Is-sur-Tille (France)

    2009-07-01

    The presence of tritium in the environment stems from its natural production by cosmic rays, from the fallout of the nuclear weapon tests between 1953 and 1964, and locally from nuclear industry activities. A part of the tritiated water contained in the foliage of plants is turned into organically bound tritium (OBT) by photosynthesis. The tritium of OBT, that is not exchangeable and then piles up in the plant, can be used as a marker of the past. It has been shown that the quantity of OBT contained in the age-rings of an oak that grew near the CEA center of Valduc was directly correlated with the tritium releases of the center. (A.C.)

  20. Materials research in the Nuclear Research Centre Karlsruhe

    International Nuclear Information System (INIS)

    Kleykamp, H.

    1990-03-01

    This report gives a survey of the research work done at the Institute for Material and Solids Research at Karlsruhe. The following subjects are dealt with: Instrumental analysis; producing thin films; corrosion; failure mechanism and damage analysis; fuel elements, ceramic nuclear fuels and can and structure materials for fast breeder reactors; material problems and ceramic breeding materials for nuclear fusion plants; glass materials for the treatment of radioactive waste; super-conducting materials; amorphous metals, new high alloyed steels; ceramic high performance materials; hard materials; compound materials and polymers. (MM) [de

  1. Waste management at the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Hoehlein, G.; Lins, W.

    1982-01-01

    In the Karlsruhe Nuclear Research Center the responsibility for waste management is concentrated in the Decontamination Department which serves to collect and transport all liquid waste and solid material from central areas in the center for further waste treatment, clean radioactive equipment for repair and re-use or for recycling of material, remove from the liquid effluents any radioactive and chemical pollutants as specified in legislation on the protection of waters, convert radioactive wastes into mechanically and chemically stable forms allowing them to be transported into a repository. (orig./RW)

  2. Information on the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Reuter, H.H.

    1980-01-01

    A short overview is given about the origins of Karlsruhe Nuclear Research Center. The historical development of the different companies operating the Center is shown. Because the original task assigned to the Center was the construction and testing of the first German reactor exclusively built by German companies, a detailed description of this reactor and the changes made afterwards is presented. Next, today's organizational structure of the Center is outlined and the development of the Center's financing since its foundation is shown. A short overview about the structure of employees from the Center's beginning up to now is also included as well as a short description of today's main activities. (orig.)

  3. Tritium in the aquatic environment

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Hoffman, F.O.; Frank, M.L.

    1986-02-01

    Tritium is of environmental importance because it is released from nuclear facilities in relatively large quantities and because it has a half life of 12.26 y. Most of the tritium released into the atmosphere eventually reaches the aqueous environment, where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered studies of algae, aquatic macrophytes, invertebrates, fish, and the food chain, were that aquatic organisms incorporate tritium into their tissue-free water very rapidly and reach concentrations near those of the external medium. The rate at which tritium from tritiated water is incorporated into the organic matter of cells is slower than the rate of its incorporation into the tissue-free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster, and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water alone. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the ''carrier'' molecule. No evidence was found that biomagnification of tritium occurs at higher trophic levels. Radiation doses from tritium releases to large populations of humans will most likely come from the consumption of contaminated water rather than contaminated aquatic food products

  4. Quantification of exchangeable and non-exchangeable organically bound tritium (OBT) in vegetation

    International Nuclear Information System (INIS)

    Kim, S.B.; Korolevych, V.

    2013-01-01

    The objective of this study is to quantify the relative amounts of exchangeable organically bound tritium (OBT) and non-exchangeable OBT in various vegetables. A garden plot at Perch Lake, where tritium levels are slightly elevated due to releases of tritium from a nearby nuclear waste management area and Chalk River Laboratories (CRL) operations, was used to cultivate a variety of vegetables. Five different kinds of vegetables (lettuce, cabbage, tomato, radish and beet) were studied. Exchangeable OBT behaves like tritium in tissue free water in living organisms and, based on past measurements, accounts for about 20% of the total tritium in dehydrated organic materials. In this study, the percentage of the exchangeable OBT was determined to range from 20% to 57% and was found to depend on the type of vegetables as well as the sequence of the plants exposure to HTO. -- Highlights: ► This study was to quantify the amount of exchangeable OBT compared to non-exchangeable OBT in vegetables. ► The percentage of exchangeable OBT varied between vegetable types and HTO exposure conditions. ► Exchangeable OBT varied from 20 to 36% in un-treated vegetables and from 30 to 57% in treated vegetables

  5. Medical Isotope Production With The Accelerator Production of Tritium (APT) Facility

    International Nuclear Information System (INIS)

    Buckner, M.; Cappiello, M.; Pitcher, E.; O'Brien, H.

    1998-01-01

    In order to meet US tritium needs to maintain the nuclear weapons deterrent, the Department of Energy (DOE) is pursuing a dual track program to provide a new tritium source. A record of decision is planned for late in 1998 to select either the Accelerator Production of Tritium (APT) or the Commercial Light Water Reactor (CLWR) as the technology for new tritium production in the next century. To support this decision, an APT Project was undertaken to develop an accelerator design capable of producing 3 kg of tritium per year by 2007 (START I requirements). The Los Alamos National Laboratory (LANL) was selected to lead this effort with Burns and Roe Enterprises, Inc. (BREI) / General Atomics (GA) as the prime contractor for design, construction, and commissioning of the facility. If chosen in the downselect, the facility will be built at the Savannah River Site (SRS) and operated by the SRS Maintenance and Operations (M ampersand O) contractor, the Westinghouse Savannah River Company (WSRC), with long-term technology support from LANL. These three organizations (LANL, BREI/GA, and WSRC) are working together under the direction of the APT National Project Office which reports directly to the DOE Office of Accelerator Production which has program authority and responsibility for the APT Project

  6. Remediation of ground water containing volatile organic compounds and tritium

    International Nuclear Information System (INIS)

    Shukla, S.N.; Folsom, E.N.

    1994-03-01

    The Trailer 5475 (T-5475) East Taxi Strip Area at Lawrence Livermore National Laboratory (LLNL), Livermore, California was used as a taxi strip by the US Navy to taxi airplanes to the runway from 1942 to 1947. Solvents were used in some unpaved areas adjacent to the East Taxi Strip for cleaning airplanes. From 1953 through 1976, the area was used to store and treat liquid waste. From 1962 to 1976 ponds were constructed and used for evaporation of liquid waste. As a result, the ground water in this area contains volatile organic compounds (VOCs) and tritium. The ground water in this area is also known to contain hexavalent chromium that is probably naturally occurring. Therefore, LLNL has proposed ''pump-and-treat'' technology above grade in a completely closed loop system. The facility will be designed to remove the VOCs and hexavalent chromium, if any, from the ground water, and the treated ground water containing tritium will be reinjected where it will decay naturally in the subsurface. Ground water containing tritium will be reinjected into areas with equal or higher tritium concentrations to comply with California regulations

  7. Tritium protective clothing

    International Nuclear Information System (INIS)

    Fuller, T.P.; Easterly, C.E.

    1979-06-01

    Occupational exposures to radiation from tritium received at present nuclear facilities and potential exposures at future fusion reactor facilities demonstrate the need for improved protective clothing. Important areas relating to increased protection factors of tritium protective ventilation suits are discussed. These areas include permeation processes of tritium through materials, various tests of film permeability, selection and availability of suit materials, suit designs, and administrative procedures. The phenomenological nature of film permeability calls for more standardized and universal test methods, which would increase the amount of directly useful information on impermeable materials. Improvements in suit designs could be expedited and better communicated to the health physics community by centralizing devlopmental equipment, manpower, and expertise in the field of tritium protection to one or two authoritative institutions

  8. Tritium protective clothing

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, T. P.; Easterly, C. E.

    1979-06-01

    Occupational exposures to radiation from tritium received at present nuclear facilities and potential exposures at future fusion reactor facilities demonstrate the need for improved protective clothing. Important areas relating to increased protection factors of tritium protective ventilation suits are discussed. These areas include permeation processes of tritium through materials, various tests of film permeability, selection and availability of suit materials, suit designs, and administrative procedures. The phenomenological nature of film permeability calls for more standardized and universal test methods, which would increase the amount of directly useful information on impermeable materials. Improvements in suit designs could be expedited and better communicated to the health physics community by centralizing devlopmental equipment, manpower, and expertise in the field of tritium protection to one or two authoritative institutions.

  9. Technology developments for improved tritium management

    International Nuclear Information System (INIS)

    Miller, J.M.; Spagnolo, D.A.

    1994-06-01

    Tritium technology developments have been an integral part of the advancement of CANDU reactor technology. An understanding of tritium behaviour within the heavy-water systems has led to improvements in tritium recovery processes, tritium measurement techniques and overall tritium control. Detritiation technology has been put in place as part of heavy water and tritium management practices. The advances made in these technologies are summarized. (author). 20 refs., 5 figs

  10. Tritium monitor and collection system

    Science.gov (United States)

    Bourne, G.L.; Meikrantz, D.H.; Ely, W.E.; Tuggle, D.G.; Grafwallner, E.G.; Wickham, K.L.; Maltrud, H.R.; Baker, J.D.

    1992-01-14

    This system measures tritium on-line and collects tritium from a flowing inert gas stream. It separates the tritium from other non-hydrogen isotope contaminating gases, whether radioactive or not. The collecting portion of the system is constructed of various zirconium alloys called getters. These alloys adsorb tritium in any of its forms at one temperature and at a higher temperature release it as a gas. The system consists of four on-line getters and heaters, two ion chamber detectors, two collection getters, and two guard getters. When the incoming gas stream is valved through the on-line getters, 99.9% of it is adsorbed and the remainder continues to the guard getter where traces of tritium not collected earlier are adsorbed. The inert gas stream then exits the system to the decay chamber. Once the on-line getter has collected tritium for a predetermined time, it is valved off and the next on-line getter is valved on. Simultaneously, the first getter is heated and a pure helium purge is employed to carry the tritium from the getter. The tritium loaded gas stream is then routed through an ion chamber which measures the tritium activity. The ion chamber effluent passes through a collection getter that readsorbs the tritium and is removable from the system once it is loaded and is then replaced with a clean getter. Prior to removal of the collection getter, the system switches to a parallel collection getter. The effluent from the collection getter passes through a guard getter to remove traces of tritium prior to exiting the system. The tritium loaded collection getter, once removed, is analyzed by liquid scintillation techniques. The entire sequence is under computer control except for the removal and analysis of the collection getter. 7 figs.

  11. List of the scientific publications of the Kernforschungszentrum Karlsruhe published in the year 1973

    International Nuclear Information System (INIS)

    1974-05-01

    The scientific and technical/scientific publications of the Gesellschaft fuer Kernforschung m.b.H. Karlsruhe are published as books, as primary publications in scientific or technical journals, as habilitations, theses, papers submitted for diplomas, as papers presented at scientific conferences, as patents, KFK (= Kernforschungszentrum Karlsruhe)-reports or as external reports. Report KFK 2025 contains all titles of the publications published in 1973. The list is arranged according to institutes. Under the heading 'Projekt' are only those reports which deal with projects and the publications of members of the project staff. Supplementary to the publications of the Gesellschaft fuer Kernforschung are those of the Institut fuer Strahlentechnologie der Bundesforschungsanstalt fuer Lebensmittelfrischhaltung, as this institute is situated on the premises of the nuclear research centre. (orig./LN) [de

  12. Tritium emissions from a detritiation facility

    International Nuclear Information System (INIS)

    Rodrigo, L.; El-Behairy, O.; Boniface, H.; Hotrum, C.; McCrimmon, K.

    2010-01-01

    Tritium is produced in heavy-water reactors through neutron capture by the deuterium atom. Annual production of tritium in a CANDU reactor is typically 52-74 TBq/MW(e). Some CANDU reactor operators have implemented detritiation technology to reduce both tritium emissions and dose to workers and the public from reactor operations. However, tritium removal facilities also have the potential to emit both elemental tritium and tritiated water vapor during operation. Authorized releases to the environment, in Canada, are governed by Derived Release Limits (DRLs). DRLs represent an estimate of a release that could result in a dose of 1 mSv to an exposed member of the public. For the Darlington Nuclear Generating Station, the DRLs for airborne elemental tritium and tritiated water emissions are ~15.6 PBq/week and ~825 TBq/week respectively. The actual tritium emissions from Darlington Tritium Removal Facility (DTRF) are below 0.1% of the DRL for elemental tritium and below 0.2% of the DRL for tritiated water vapor. As part of an ongoing effort to further reduce tritium emissions from the DTRF, we have undertaken a review and assessment of the systems design, operating performance, and tritium control methods in effect at the DTRF on tritium emissions. This paper discusses the results of this study. (author)

  13. Analysis of KATRIN data using Bayesian inference

    DEFF Research Database (Denmark)

    Riis, Anna Sejersen; Hannestad, Steen; Weinheimer, Christian

    2011-01-01

    The KATRIN (KArlsruhe TRItium Neutrino) experiment will be analyzing the tritium beta-spectrum to determine the mass of the neutrino with a sensitivity of 0.2 eV (90% C.L.). This approach to a measurement of the absolute value of the neutrino mass relies only on the principle of energy conservation...

  14. The ITER tritium systems

    International Nuclear Information System (INIS)

    Glugla, M.; Antipenkov, A.; Beloglazov, S.; Caldwell-Nichols, C.; Cristescu, I.R.; Cristescu, I.; Day, C.; Doerr, L.; Girard, J.-P.; Tada, E.

    2007-01-01

    ITER is the first fusion machine fully designed for operation with equimolar deuterium-tritium mixtures. The tokamak vessel will be fuelled through gas puffing and pellet injection, and the Neutral Beam heating system will introduce deuterium into the machine. Employing deuterium and tritium as fusion fuel will cause alpha heating of the plasma and will eventually provide energy. Due to the small burn-up fraction in the vacuum vessel a closed deuterium-tritium loop is required, along with all the auxiliary systems necessary for the safe handling of tritium. The ITER inner fuel cycle systems are designed to process considerable and unprecedented deuterium-tritium flow rates with high flexibility and reliability. High decontamination factors for effluent and release streams and low tritium inventories in all systems are needed to minimize chronic and accidental emissions. A multiple barrier concept assures the confinement of tritium within its respective processing components; atmosphere and vent detritiation systems are essential elements in this concept. Not only the interfaces between the primary fuel cycle systems - being procured through different Participant Teams - but also those to confinement systems such as Atmosphere Detritiation or those to fuelling and pumping - again procured through different Participant Teams - and interfaces to buildings are calling for definition and for detailed analysis to assure proper design integration. Considering the complexity of the ITER Tritium Plant configuration management and interface control will be a challenging task

  15. Purification of tritium-free water

    International Nuclear Information System (INIS)

    Hussain, S.D.

    1982-10-01

    Ground water which has been out of contact with the atmosphere for a long time as compared to the half life of tritium (12.43 years) does not contain any measureable amount of tritium. Such water is called tritium-free water. It may contain dissolved and suspended impurities and has to be purified before it can be used for the preparation of blanks and standards required in the routine measurement of low level tritium in water samples. The purification of tritium-free water by distillation in a closed system has been described. The quality of processed tritium-free water was precisely checked at International Atomic Energy Agency (IAEA) Vienna and found satisfactory. (authors)

  16. Tritium trick

    Science.gov (United States)

    Green, W. V.; Zukas, E. G.; Eash, D. T.

    1971-01-01

    Large controlled amounts of helium in uniform concentration in thick samples can be obtained through the radioactive decay of dissolved tritium gas to He3. The term, tritium trick, applies to the case when helium, added by this method, is used to simulate (n,alpha) production of helium in simulated hard flux radiation damage studies.

  17. Tritium breeding in fusion reactors

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1982-10-01

    Key technological problems that influence tritium breeding in fusion blankets are reviewed. The breeding potential of candidate materials is evaluated and compared to the tritium breeding requirements. The sensitivity of tritium breeding to design and nuclear data parameters is reviewed. A framework for an integrated approach to improve tritium breeding prediction is discussed with emphasis on nuclear data requirements

  18. Pebble fabrication and tritium release properties of an advanced tritium breeder

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Tsuyoshi, E-mail: hoshino.tsuyoshi@jaea.go.jp [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Edao, Yuki [Tritium Technology Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-4 Shirakata, Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kawamura, Yoshinori [Blanket Technology Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Ochiai, Kentaro [BA Project Coordination Group, Department of Fusion Power Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • Li{sub 2}TiO{sub 3} with excess Li (Li{sub 2+x}TiO{sub 3+y}) pebble as an advanced tritium breeders was fabricated using emulsion method. • Grain size of Li{sub 2+x}TiO{sub 3+y} pebbles was controlled to be less than 5 μm. • Li{sub 2+x}TiO{sub 3+y} pebbles exhibited good tritium release properties similar to that of Li{sub 2}TiO{sub 3} pebbles. - Abstract: Li{sub 2}TiO{sub 3} with excess Li (Li{sub 2+x}TiO{sub 3+y}) has been developed as an advanced tritium breeder. With respect to the tritium release characteristics of the blanket, the optimum grain size after sintering was less than 5 μm. Therefore, an emulsion method was developed to fabricate pebbles with this target grain size. The predominant factor affecting grain growth was assumed to be the presence of binder in the gel particles; this remaining binder was hypothesized to react with the excess Li, thereby generating Li{sub 2}CO{sub 3}, which promotes grain growth. To inhibit the generation of Li{sub 2}CO{sub 3}, calcined Li{sub 2+x}TiO{sub 3+y} pebbles were sintered under vacuum and subsequently under a 1% H{sub 2}–He atmosphere. The average grain size of the sintered Li{sub 2+x}TiO{sub 3+y} pebbles was less than 5 μm. Furthermore, the tritium release properties of Li{sub 2+x}TiO{sub 3+y} pebbles were evaluated, and deuterium–tritium (DT) neutron irradiation experiments were performed at the Fusion Neutronics Source facility in the Japan Atomic Energy Agency. To remove the tritium produced by neutron irradiation, 1% H{sub 2}–He purge gas was passed through the Li{sub 2+x}TiO{sub 3+y} pebbles. The Li{sub 2+x}TiO{sub 3+y} pebbles exhibited good tritium release properties, similar to those of Li{sub 2}TiO{sub 3} pebbles. In particular, the released amount of tritiated hydrogen gas for easier tritium handling was greater than the released amount of tritiated water.

  19. Tritium. Today's and tomorrow's developments

    International Nuclear Information System (INIS)

    Gazal, S.; Amiard, J.C.; Caussade, Bernard; Chenal, Christian; Hubert, Francoise; Sene, Monique

    2010-01-01

    Radioactive hydrogen isotope, tritium is one of the radionuclides which is the most released in the environment during the normal operation of nuclear facilities. The increase of nuclear activities and the development of future generations of reactors, like the EPR and ITER, would lead to a significant increase of tritium effluents in the atmosphere and in the natural waters, thus raising many worries and questions. Aware about the importance of this question, the national association of local information commissions (ANCLI) wished to make a status of the existing knowledge concerning tritium and organized in 2008 a colloquium at Orsay (France) with an inquiring approach. The scientific committee of the ANCLI, renowned for its expertise skills, mobilized several nuclear specialists to carry out this thought. This book represents a comprehensive synthesis of today's knowledge about tritium, about its management and about its impact on the environment and on human health. Based on recent scientific data and on precise examples, it treats of the overall questions raised by this radionuclide: 1 - tritium properties and different sources (natural and anthropic), 2 - the problem of tritiated wastes management; 3 - the bio-availability and bio-kinetics of the different tritium species; 4 - the tritium labelling of environments; 5 - tritium measurement and modeling of its environmental circulation; 6 - tritium radio-toxicity and its biological and health impacts; 7 - the different French and/or international regulations concerning tritium. (J.S.)

  20. Tritium containing polymers having a polymer backbone substantially void of tritium

    Science.gov (United States)

    Jensen, G.A.; Nelson, D.A.; Molton, P.M.

    1992-03-31

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium. 2 figs.

  1. Development of tritium permeation barriers on Al base in Europe

    Science.gov (United States)

    Benamati, G.; Chabrol, C.; Perujo, A.; Rigal, E.; Glasbrenner, H.

    The development of the water cooled lithium lead (WCLL) DEMO fusion reactor requires the production of a material capable of acting as a tritium permeation barrier (TPB). In the DEMO blanket reactor permeation barriers on the structural material are required to reduce the tritium permeation from the Pb-17Li or the plasma into the cooling water to acceptable levels (HIP) technology and spray (this one developed also for repair) deposition techniques. The final goal is to select a reference technique to be used in the blanket of the DEMO reactor and in the ITER test module fabrication. The activities performed in four European laboratories are summarised here.

  2. Tritium in metals

    International Nuclear Information System (INIS)

    Schober, T.

    1990-01-01

    In this Chapter a review is given of some of the important features of metal tritides as opposed to hydrides and deuterides. After an introduction to the topics of tritium and tritium in metals information will be presented on a variety of metal-tritium systems. Of main interest here are the differences from the classic hydrogen behavior; the so called isotope effect. A second important topic is that of aging effects produced by the accumulation of 3 He in the samples. (orig.)

  3. Overview of tritium fast-fission yields

    International Nuclear Information System (INIS)

    Tanner, J.E.

    1981-03-01

    Tritium production rates are very important to the development of fast reactors because tritium may be produced at a greater rate in fast reactors than in light water reactors. This report focuses on tritium production and does not evaluate the transport and eventual release of the tritium in a fast reactor system. However, if an order-of-magnitude increase in fast fission yields for tritium is confirmed, fission will become the dominant production source of tritium in fast reactors

  4. Tritium in rad waste management

    International Nuclear Information System (INIS)

    Gandhi, P.M.; Ali, S.S.; Mathur, R.K.; Rastogi, R.C.

    1990-01-01

    Radioactive waste arising from PHWR's are invariably contaminated with tritium activity. Their disposal is crucial as it governs the manner and extent of radioactive contamination of human environment. The technique of tritium measurement and its application plays an important role in assessing the safety of the disposal system. Thus, typical applications involving tritium measurements include the evaluation of a site for solid waste burial facility and evaluation of a water body for liquid waste dispersal. Tritium measurement is also required in assessing safe air route dispersal of tritium. (author)

  5. Twenty-fifth anniversary of the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Harde, R.

    1981-01-01

    The Karlsruhe Nuclear Research Center was founded on July 19, 1956. The initial company, in which the Federal Republic of Germany held a 30% interest, the State of Baden-Wuerttemberg 20%, and German industry 50%, was founded mainly for the purposes of building and operating a German-designed research reactor. In 1959, the Gesellschaft fuer Kernforschung mbH was founded for execution of the research and development activities, in which the Federal Republic of Germany held 75%, the State of Baden-Wuerttemberg 25% of the shares. The two companies were merged in 1963, after industry had donated its holdings in the initial company to the new company. In 1972, the financial holdings of the Federal Government were raised to 90%. On January 1, 1978, the company was named Kernforschungszentrum Karlsruhe GmbH (KfK). Over the past 25 years, KfK has received approx. DM 7 billion out of public funds. Important milestones in the development of nuclear technology in the Federal Republic contributed by KfK include the development of the fast breeder line and responsibility for construction of the first German fast breeder reactor, KNK; development of reprocessing technologies and responsibility for construction of the first German reprocessing plant, WAK; development of a uranium enrichment technique (separation nozzle method); important contributions to reactor safety, fusion research, and training in nuclear technology. (orig.) [de

  6. Tritium processing in JT-60U

    International Nuclear Information System (INIS)

    Miya, Naoyuki; Masaki, Kei

    1997-01-01

    Tritium retention analysis and tritium concentration measurement have been made during the large Tokamak JT-60U deuterium operations. This work has been carried out to evaluate the tritium retention for graphite tiles inside the vacuum vessel and tritium release characteristics in the tritium cleanup operations. JT-60U has carried out D-D experiments since July 1991. In the deuterium operations during the first two years, about 1.7 x 10 19 D-D fusion neutrons were produced by D (d, p) T reactions in plasma, which are expected to produce ∼31 GBq of tritium. The tritium produced is evacuated by a pumping system. A part of tritium is, however, trapped in the graphite tiles. Several sample tiles were removed from the vessel and the retained tritium Distribution in the tiles was measured using a liquid scintillator. The results of poloidal distribution showed that the tritium concentration in the divertor tiles was higher than that in the first wall tiles and it peaked in the tiles between two strike points of divertor magnetic lines. Tritium concentration in the exhaust gas from the vessel have also been measured with an ion chamber during the tritium cleanup operations with hydrogen divertor discharges and He-GDC. Total of recovered tritium during the cleanup operations was ∼ 7% of that generated. The results of these measurements showed that the tritium of 16-23 GBq still remained in the graphite tiles, which corresponded to about 50-70% of the tritium generated in plasma. The vessel is ventilated during the in-vessel maintenance works, then the atmosphere is always kept lower than the legal concentration guide level of 0.7 Bq/cm 3 for radiation work permit requirements. (author)

  7. Tritium waste package

    Science.gov (United States)

    Rossmassler, Rich; Ciebiera, Lloyd; Tulipano, Francis J.; Vinson, Sylvester; Walters, R. Thomas

    1995-01-01

    A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

  8. The Chalk River Tritium Extraction Plant

    International Nuclear Information System (INIS)

    Holtslander, W.J.; Harrison, T.E.; Spagnolo, D.A.

    1990-01-01

    The Chalk River Tritium Extraction Plant for removal of tritium from heavy water is described. Tritium is present in the heavy water from research reactors in the form of DTO at a concentration in the range of 1-35 Ci/kg. It is removed by a combination of catalytic exchange to transfer the tritium from DTO to DT, followed by cryogenic distillation to separate and concentrate the tritium to T 2 . The tritium product is reacted with titanium and packaged for transportation and storage as titanium tritide. The plant processes heavy water at a rate of 25 kg/h and removes 80% of the tritium and 90% of the protium per pass. Catalytic exchange is carried out in the liquid phase using a proprietary wetproofed catalyst. The plant serves two roles in the Canadian fusion program: it produces pure tritium for use in fusion research and development, and it demonstrates on an industrial scale many of the tritium technologies that are common to the tritium systems in fusion reactors (author)

  9. The Chalk River Tritium Extraction Plant

    Energy Technology Data Exchange (ETDEWEB)

    Holtslander, W J; Harrison, T E; Spagnolo, D A

    1990-07-01

    The Chalk River Tritium Extraction Plant for removal of tritium from heavy water is described. Tritium is present in the heavy water from research reactors in the form of DTO at a concentration in the range of 1-35 Ci/kg. It is removed by a combination of catalytic exchange to transfer the tritium from DTO to DT, followed by cryogenic distillation to separate and concentrate the tritium to T{sub 2}. The tritium product is reacted with titanium and packaged for transportation and storage as titanium tritide. The plant processes heavy water at a rate of 25 kg/h and removes 80% of the tritium and 90% of the protium per pass. Catalytic exchange is carried out in the liquid phase using a proprietary wetproofed catalyst. The plant serves two roles in the Canadian fusion program: it produces pure tritium for use in fusion research and development, and it demonstrates on an industrial scale many of the tritium technologies that are common to the tritium systems in fusion reactors (author)

  10. Tritium metabolism in cow's milk after administration of tritiated water and of organically bound tritium

    International Nuclear Information System (INIS)

    Hoek, J. van den

    1982-01-01

    Tritium was administered as THO and as organically bound tritium (OBT) to lactating cows. Urine and milk samples were collected and analyzed for tritium content. Plateau levels in milk water and in milk fat, lactose and casein were reached in about 20 days after feeding either THO or OBT. Comparison of the specific activity (pCi 3 H/g H) of the various milk constituents with the specific activity of the body water showed that, after administration of THO, the highest tritium incorporation occurred in lactose (0.58), followed by milk fat (0.36) and casein (0.27). Tritium incorporation in milk dry matter (0.45) is considerably higher than in most tissue components of several mammalian species after continuous ingestion of THO as reported in the literature. After feeding OBT, the highest tritium incorporation occurred in milk fat and to a lesser extent in casein. Tritium levels in lactose were surprisingly low and the reason for this is not clear. They were similar to those in milk water. Tritium levels in milk and urine water showed systematic differences during administration of OBT and after this was stopped. There was more tritium in milk water until the last day of OBT feeding and this situation was reversed after this. (author)

  11. Tritium metabolism in cow's milk after administration of tritiated water and of organically bound tritium

    Energy Technology Data Exchange (ETDEWEB)

    van den Hoek, J [Landbouwhogeschool Wageningen (Netherlands). Lab. voor Fysiologie der Dieren; Gerber, G; Kirchmann, R [Centre d' Etude de l' Energie Nucleaire, Mol (Belgium)

    1982-01-01

    Tritium was administered as THO and as organically bound tritium (OBT) to lactating cows. Urine and milk samples were collected and analyzed for tritium content. Plateau levels in milk water and in milk fat, lactose and casein were reached in about 20 days after feeding either THO or OBT. Comparison of the specific activity (pCi/sup 3/H/g H) of the various milk constituents with the specific activity of the body water showed that, after administration of THO, the highest tritium incorporation occurred in lactose (0.58), followed by milk fat (0.36) and casein (0.27). Tritium incorporation in milk dry matter (0.45) is considerably higher than in most tissue components of several mammalian species after continuous ingestion of THO as reported in the literature. After feeding OBT, the highest tritium incorporation occurred in milk fat and to a lesser extent in casein. Tritium levels in lactose were surprisingly low and the reason for this is not clear. They were similar to those in milk water. Tritium levels in milk and urine water showed systematic differences during administration of OBT and after this was stopped. There was more tritium in milk water until the last day of OBT feeding and this situation was reversed after this.

  12. Tritium handling and processing experience at TSTA

    International Nuclear Information System (INIS)

    Anderson, J.L.; Okuno, K.

    1994-01-01

    In 1987, the Japan Atomic Energy Research Institute (JAERI) and the US Department of Energy (DOE) signed a collaborative agreement (Annex IV) for the joint funding and operation of the Tritium Systems Test Assembly (TSTA) at the Los Alamos National Laboratory (LANL) for a five year period ending June, 1992. After this initial five year collaboration, the Annex IV agreement was extended for another two year period ending June, 1994. During the first five years, a number of the integrated process loop tests of TSTA were conducted, as well as off-line testing of TSTA subsystems. During integrated loop testing the vacuum system, fuel cleanup systems, isotope separation system, transfer pumping system and gas analysis system, are interconnected and tested using 100 g-inventories of tritium to demonstrate steady-state operation of a tritium fuel processing cycle for a fusion reactor. These tests have resulted in a number of significant accomplishments and an experience data base on research, development and operation of the fuel processing system. One of the most significant accomplishments during the initial five year period was the continuous operation of the fuel processing loop for 25 days. During this 25-day extended operation, both the JAERI fuel cleanup system (J-FCU) and the original TSTA fuel cleanup system (FCU) were operated under similar conditions of flow, pressure, and impurity content of the DT gas. Both fuel cleanup systems were demonstrated to provide adequate impurity removal for plasma exhaust gas processing. The isotope separation system was operated continuously, producing pure tritium while rejecting protium as an impurity

  13. Simultaneous measurement of tritium and radiocarbon by ultra-low-background proportional counting.

    Science.gov (United States)

    Mace, Emily; Aalseth, Craig; Alexander, Tom; Back, Henning; Day, Anthony; Hoppe, Eric; Keillor, Martin; Moran, Jim; Overman, Cory; Panisko, Mark; Seifert, Allen

    2017-08-01

    Use of ultra-low-background capabilities at Pacific Northwest National Laboratory provide enhanced sensitivity for measurement of low-activity sources of tritium and radiocarbon using proportional counters. Tritium levels are nearly back to pre-nuclear test backgrounds (~2-8 TU in rainwater), which can complicate their dual measurement with radiocarbon due to overlap in the beta decay spectra. We present results of single-isotope proportional counter measurements used to analyze a dual-isotope methane sample synthesized from ~120mg of H 2 O and present sensitivity results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Tritium loss in molten flibe systems

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Anderl, R.A. [Idaho National Eng. and Environ. Lab., Idaho Falls, ID (United States); Scott Willms, R. [Los Alamos National Lab., NM (United States)

    2000-04-01

    An emerging issue relative to beryllium technology in fusion involves tritium interactions with molten beryllium-bearing salts. Innovative designs for fusion reactors, both magnetic and inertially confined, feature the molten salt mixture 2LiF.BeF{sub 2}, commonly called Flibe, as a tritium breeder and coolant. Tritium is bred in the Flibe as neutrons from the plasma are absorbed by Li atoms, which then transmute to tritium and helium. Transmutation of tritium from Be also occurs. Among the issues to be resolved for such coolant systems is the potential loss of tritium from the Flibe coolant to the walls of the system, particularly through heat exchanger tubes, and from there into secondary coolants or working fluids and the environment. Effectively removing tritium from Flibe in clean-up units is also important. In quiescent or low Reynolds number flow, tritium movement through Flibe is governed by diffusion. For Flibe in turbulent flow, as in heat exchanger tubes, transport is by turbulent mixing, and the same flow conditions and structural design features that maximize heat transfer to the heat exchanger walls will enhance the transport of tritium to those same surfaces. Analyses have been performed to estimate the fractional loss of tritium through heat exchanger tubes and release rates from Flibe droplets in vacuum disengagers in molten Flibe systems. The calculations suggest unacceptably large losses of tritium through heat exchanger tubes. The gravity of the implications of these estimates calls for experimental verification to determine if tritium losses through molten Flibe heat exchangers or other Flibe systems can really be so high and whether vacuum disengagers will really work. There is also a need for better information on evolution of tritium from Flibe droplets in a vacuum. Several experiments are presently being planned to address these issues and are discussed. These include experiments to induce tritium in Flibe using spontaneous fission neutrons

  15. Tritium resources available for fusion reactors

    Science.gov (United States)

    Kovari, M.; Coleman, M.; Cristescu, I.; Smith, R.

    2018-02-01

    The tritium required for ITER will be supplied from the CANDU production in Ontario, but while Ontario may be able to supply 8 kg for a DEMO fusion reactor in the mid-2050s, it will not be able to provide 10 kg at any realistic starting time. The tritium required to start DEMO will depend on advances in plasma fuelling efficiency, burnup fraction, and tritium processing technology. It is in theory possible to start up a fusion reactor with little or no tritium, but at an estimated cost of 2 billion per kilogram of tritium saved, it is not economically sensible. Some heavy water reactor tritium production scenarios with varying degrees of optimism are presented, with the assumption that only Canada, the Republic of Korea, and Romania make tritium available to the fusion community. Results for the tritium available for DEMO in 2055 range from zero to 30 kg. CANDU and similar heavy water reactors could in theory generate additional tritium in a number of ways: (a) adjuster rods containing lithium could be used, giving 0.13 kg per year per reactor; (b) a fuel bundle with a burnable absorber has been designed for CANDU reactors, which might be adapted for tritium production; (c) tritium production could be increased by 0.05 kg per year per reactor by doping the moderator with lithium-6. If a fusion reactor is started up around 2055, governments in Canada, Argentina, China, India, South Korea and Romania will have the opportunity in the years leading up to that to take appropriate steps: (a) build, refurbish or upgrade tritium extraction facilities; (b) extend the lives of heavy water reactors, or build new ones; (c) reduce tritium sales; (d) boost tritium production in the remaining heavy water reactors. All of the alternative production methods considered have serious economic and regulatory drawbacks, and the risk of diversion of tritium or lithium-6 would also be a major concern. There are likely to be serious problems with supplying tritium for future

  16. Tritium loss in molten flibe systems

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Scott Willms, R.

    2000-01-01

    An emerging issue relative to beryllium technology in fusion involves tritium interactions with molten beryllium-bearing salts. Innovative designs for fusion reactors, both magnetic and inertially confined, feature the molten salt mixture 2LiF.BeF 2 , commonly called Flibe, as a tritium breeder and coolant. Tritium is bred in the Flibe as neutrons from the plasma are absorbed by Li atoms, which then transmute to tritium and helium. Transmutation of tritium from Be also occurs. Among the issues to be resolved for such coolant systems is the potential loss of tritium from the Flibe coolant to the walls of the system, particularly through heat exchanger tubes, and from there into secondary coolants or working fluids and the environment. Effectively removing tritium from Flibe in clean-up units is also important. In quiescent or low Reynolds number flow, tritium movement through Flibe is governed by diffusion. For Flibe in turbulent flow, as in heat exchanger tubes, transport is by turbulent mixing, and the same flow conditions and structural design features that maximize heat transfer to the heat exchanger walls will enhance the transport of tritium to those same surfaces. Analyses have been performed to estimate the fractional loss of tritium through heat exchanger tubes and release rates from Flibe droplets in vacuum disengagers in molten Flibe systems. The calculations suggest unacceptably large losses of tritium through heat exchanger tubes. The gravity of the implications of these estimates calls for experimental verification to determine if tritium losses through molten Flibe heat exchangers or other Flibe systems can really be so high and whether vacuum disengagers will really work. There is also a need for better information on evolution of tritium from Flibe droplets in a vacuum. Several experiments are presently being planned to address these issues and are discussed. These include experiments to induce tritium in Flibe using spontaneous fission neutrons

  17. Use of tritium and sources

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi

    1997-01-01

    There are many kinds of tritium, sources in the environment. The maximum inventory of them is the nuclear tests, although the atmospheric nuclear test has not been carried out since 1981. So that the inventory originated from them will decrease. By the latest data in 1989, the total amount of released tritium was about 24 PBq/yr by the use of atomic energy in the world. The maximum source was the heavy water moderated reactors, for example, CANDU reactor. In the future, large amount of tritium inventory may be the fusion reactor. The test of JET (Joint European Torus) released about 600 GBq of tritium until March in 1992. 80-90% of them were tritium water (HTO). The amount of tritium released from industries and medicine are limited. Although ITER has a large amount of tritium inventory, the amount of release is seemed not to be larger than other nuclear power facility. (S.Y.)

  18. Experiments on a ceramic electrolysis cell and a palladium diffuser at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Yoshida, Hiroshi; Ohno, Hideo; Naruse, Yuji; Coffin, D.O.; Walthers, C.R.; Binning, K.E.

    1985-01-01

    A ceramic electrolysis cell and a palladium diffuser are developed in Japan and is tested with tritium in Tritium Systems Test Assembly (TSTA) of the Los Alamos National Laboratory, in order to confirm the feasibility as possible upgrades for the fuel cleanup system (PCU). The ceramic electrolysis cell made of stabilized zirconia was operated at 630 0 C for an extended period with a mixture of 3% T 2 O in He carrier gas in the circulation system with oxidizing catalyst bed. The palladium diffuser was tested with circulated pure tritium gas at 280 0 C to verify the compatibility of the alloy with tritium, since the 3 He produced in the metal could cause a degradation. The isotopic effects were also measured for both devices

  19. Tritium dynamics in soils and plants at a tritium processing facility in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Mihok, S.; St-Amanat, N.; Kwamena, N.O. [Canadian Nuclear Safety Commission (Canada); Clark, I.; Wilk, M.; Lapp, A. [University of Ottawa (Canada)

    2014-07-01

    The dynamics of tritium released as tritiated water (HTO) have been studied extensively with results incorporated into environmental models such as CSA N288.1 used for regulatory purposes in Canada. The dispersion of tritiated gas (HT) and rates of oxidation to HTO have been studied under controlled conditions, but there are few studies under natural conditions. HT is a major component of the tritium released from a gaseous tritium light manufacturing facility in Canada (CNSC INFO-0798). To support the improvement of models, a garden was set up in one summer near this facility in a spot with tritium in air averaging ∼ 5 Bq/m{sup 3} HTO (passive diffusion monitors). Atmospheric stack releases (575 GBq/week) were recorded weekly. HT releases occur mainly during working hours with an HT:HTO ratio of 2.6 as measured at the stack. Soils and plants (leaves/stems and roots/tubers) were sampled for HTO and organically-bound tritium (OBT) weekly. Active day-night monitoring of air was conducted to interpret tritium dynamics relative to weather and solar radiation. The experimental design included a plot of natural grass/soil, contrasted with grass (sod) and Swiss chard, pole beans and potatoes grown in barrels under different irrigation regimes (in local topsoil at 29 Bq/L HTO, 105 Bq/L OBT). All treatments were exposed to rain (80 Bq/L) and atmospheric releases of tritium (weekdays), and reflux of tritium from soils (initial conditions of 284 Bq/L HTO, 3,644 Bq/L OBT) from 20 years of operations. Three irrigation regimes were used for barrel plants to mimic home garden management: rain only, low tritium tap water (5 Bq/L), and high tritium well water (mean 10,013 Bq/L). This design provided a range of plants and starting conditions with contrasts in initial HTO/OBT activity in soils, and major tritium inputs from air versus water. Controls were two home gardens far from any tritium sources. Active air monitoring indicated that the plume was only occasionally present for

  20. Tritium transport studies with use of the ISEP NPA during tritium trace experimental campaign on JET

    International Nuclear Information System (INIS)

    Mironov, M I; Afanasyev, V I; Murari, A; Santala, M; Beaumont, P

    2010-01-01

    The neutral particle analyzer (NPA) known as ISEP (Ion SEParator) was applied to measure the tritium neutral flux during the tritium trace experiment (TTE) on JET. The energy dependence (in the 5-28 keV energy range) of the tritium neutral flux rise time after a short ∼100 ms tritium gas puff into deuterium plasmas has been observed for the first time. The dependence has been interpreted as being due to the penetration of the tritium ions from the plasma boundary into the core and has been used for the calculation of the tritium diffusion coefficient and convective velocity values.

  1. The Karlsruhe Nuclear Research Centre is being re-equipped

    International Nuclear Information System (INIS)

    Boehm, H.; Koerting, K.; Huncke, W.; Knapp, W.

    1986-01-01

    The Nuclear Research Centre in Karlsruhe was established over 25 years ago for the express purpose of studying nuclear engineering and its peaceful use. This goal has been achieved - what now. For some time a change has been taking place at the Research Centre: in the direction of man and environmental engineering. 'Bild der Wwissenschaft' has talked to Professor Horst Boehm, the chairman of the Nuclear Centre, about this change and the new areas of research to be concentrated on. (orig.) [de

  2. New tritium monitor for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Jalbert, R.A.

    1985-01-01

    At DT-fueled fusion reactors, there will be a need for tritium monitors that can simultaneously measure in real time the concentrations of HTO, HT and the activated air produced by fusion neutrons. Such a monitor has been developed, tested and delivered to the Princeton Plasma Physics Laboratory for use at the Tokamak Fusion Test Reactor (TFTR). It uses semipermeable membranes to achieve the removal of HTO from the sampled air for monitoring and a catalyst to convert the HT to HTO, also for removal and monitoring. The remaining air, devoid of tritium, is routed to a third detector for monitoring the activated air. The sensitivities are those that would be expected from tritium instruments employing conventional flow-through ionization chambers: 1 to 3 μCi/m 3 . Its discriminating ability is approximately 10 -3 for any of the three components (HTO, HT and activated air) in any of the other two channels. For instance, the concentration of HT in the HTO channel is 10 -3 times its original concentration in the sampled air. This will meet the needs of TFTR

  3. Overview of the tritium system of Ignitor

    International Nuclear Information System (INIS)

    Rizzello, C.; Tosti, S.

    2008-01-01

    Among the recent design activities of the Ignitor program, the analysis of the tritium system has been carried out with the aim to describe the main equipments and the operations needed for supplying the deuterium-tritium mixtures and recovering the plasma exhaust. In fact, the tritium system of Ignitor provides for injecting deuterium-tritium mixtures into the vacuum chamber in order to sustain the fusion reaction: furthermore, it generally manages and controls the tritium and the tritiated materials of the machine fuel cycle. Main functions consist of tritium storage and delivery, tritium injection, tritium recovery from plasma exhaust, treatment of the tritiated wastes, detritiation of the contaminated atmospheres, tritium analysis and accountability. In this work an analysis of the designed tritium system of Ignitor is summarized

  4. Tritium Activity Measurement of Water Samples Using Liquid Scintillation Counter and Electrolytical Enrichment

    International Nuclear Information System (INIS)

    Baresic, J.; Krajcar Bronic, I.; Horvatincic, N.; Obelic, B.; Sironic, A.; Kozar-Logar J.

    2011-01-01

    Tritium (3H) activity of natural waters (precipitation, groundwater, surface waters) has recently become too low to be directly measured by low-level liquid scintillation (LSC) techniques. It is therefore necessary to perform electrolytical enrichment of tritium in such waters prior to LSC measurements. Electrolytical enrichment procedure has been implemented at the Rudjer Boskovic Institute (RBI) Tritium Laboratory in 2008, and since then 19 electrolyses have been completed. The mean enrichment factor E (a ratio between the final and initial 3H activities) after stabilisation of the system is E R BI = 22.5 @ 0.5, and the mean enrichment parameter (which describes the process of water mass reduction during electrolysis) is P R BI 0.949 @ 0.003. These values are comparable with those obtained at the Jo@ef Stefan Institute (JSI) Laboratory for liquid scintillation counting, at the electrolysis equipment of the same producer (AGH University of Science and Technology, Krakow, Poland) after 66 electrolyses carried out under identical conditions since 2007: E J SI = 18.9 @ 1.5, and P J SI = 0.896 @ 0.021. Both RBI and JSI laboratories have Ultra-low-level LSC Quantulus 1220 (Wallac, PerkinElmer) for measurement of 3H activity. A set of water samples having 3H activities in the range from 0 TU (''dead-water'' samples) to 18 000 TU (1 TU 0.118 Bq/L) were measured at both laboratories. Samples having 3H activity <200 TU were electrolytically enriched, while the others were measured directly in LSC. A very good agreement was obtained (correlation coefficient 0.991). Both laboratories participated in the IAEA TRIC2008 international intercomparison exercise. The analyses of reported 3H activity results in terms of z and u parameters showed that all results in both laboratories were acceptable. (author)

  5. Tritium breeding blanket

    International Nuclear Information System (INIS)

    Smith, D.; Billone, M.; Gohar, Y.; Baker, C.; Mori, S.; Kuroda, T.; Maki, K.; Takatsu, H.; Yoshida, H.; Raffray, A.; Sviatoslavsky, I.; Simbolotti, G.; Shatalov, G.

    1991-01-01

    The terms of reference for ITER provide for incorporation of a tritium breeding blanket with a breeding ratio as close to unity as practical. A breeding blanket is required to assure an adequate supply of tritium to meet the program objectives. Based on specified design criteria, a ceramic breeder concept with water coolant and an austenitic steel structure has been selected as the first option and lithium-lead blanket concept has been chosen as an alternate option. The first wall, blanket, and shield are integrated into a single unit with separate cooling systems. The design makes extensive use of beryllium to enhance the tritium breeding ratio. The design goals with a tritium breeding ratio of 0.8--0.9 have been achieved and the R ampersand D requirements to qualify the design have been identified. 4 refs., 8 figs., 2 tabs

  6. Detection of tritium in the air surrounding the heavy water reactors; Elementi detekcije tricijuma u vazduhu kod teskovodnih nuklearnih reaktora

    Energy Technology Data Exchange (ETDEWEB)

    Ninkovic, M; Matic-Vukmirovic, Z; Hadzisehovic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1967-03-15

    This paper contains the study of the literature concerned with physical properties of the tritium, problems of detection control of the tritium level in the atmosphere in the vicinity of heavy water reactors. It is stated that a complete and efficient control of tritium activity, from radiation protection point of view can be achieved only by simultaneous triple measurements: direct measurement of tritium in the air by stationary or movable instruments; air sampling and measurement of activity by laboratory instrumentation; and measurement of tritium in the bio-material of the personnel who have inhaled air contaminated with tritium. Laboratory equipment was adapted for tritium detection in air samples. A method for measuring the specific tritium activity was developed and implemented. The tritium level and distribution in the air were measured during exchange of the fuel channel in the RA reactor. The obtained results indicate that tritium could be dangerous for the staff involved. Proucena je literatura u kojoj se tretiraju osnovne fizicke karakteristike tricijuma, kao i problemi detekcije i kontrole u vazduhu kod teskovodnih nuklearnih reaktora. Utvrdjeno je da kompletna i efikasna kontrola aktivnosti tricijuma, sa aspekta zastite od zracenja, moze biti ostvarena samo ako se vrse istovremeno trostruka merenja: merenje aktivnosti tricijuma u vazduhu direktno, prenosnim ili stacioniranim instrumentima; uzimanje uzoraka vazduha i merenje aktivnosti na laboratorijskoj aparaturi; i merenje aktivnosti tricijuma u biomaterijalu osoblja koje je udisalo vazduh kontaminiran tricijumom. Izvrsena je adaptacija laboratorijske aparature za potrebe detekcije tricijuma u uzorcima vazduha. Razradjen je i uhodan postupak merenja koncentracije aktivnosti tricijuma u uzorcima vazduha. Izvrsena su merenja i dobijeni su rezultati o nivou i raspodeli tricijuma u vazduhu pri operaciji zamene kanala sa gorivom na reaktoru RA u Vinci. Dobijeni rezultati ukazuju na opasnost koju po radno

  7. Tritium in the environment. Knowledge synthesis

    International Nuclear Information System (INIS)

    2009-01-01

    This report first presents the nuclear and physical-chemical properties of tritium and addresses the notions of bioaccumulation, bio-magnification and remanence. It describes and comments the natural and anthropic origins of tritium (natural production, quantities released in the environment in France by nuclear tests, nuclear plants, nuclear fuel processing plants, research centres). It describes how tritium is measured as a free element (sampling, liquid scintillation, proportional counting, enrichment method) or linked to organic matter (combustion, oxidation, helium-3-based measurement). It discusses tritium concentrations noticed in different parts of the environment (soils, continental waters, sea). It describes how tritium is transferred to ecosystems (transfer of atmospheric tritium to ground ecosystems, and to soft water ecosystems). It discusses existing models which describe the behaviour of tritium in ecosystems. It finally describes and comments toxic effects of tritium on living ground and aquatic organisms

  8. Imaging of tritium implanted into graphite

    International Nuclear Information System (INIS)

    Malinowski, M.E.; Causey, R.A.

    1988-01-01

    The extensive use of graphite in plasma-facing surfaces of tokamaks such as the Tokamak Fusion Test Reactor, which has planned tritium discharges, makes two-dimensional tritium detection techniques important in helping to determine torus tritium inventories. We have performed experiments in which highly oriented pyrolytic graphite (HOPG) samples were first tritium implanted with fluences of ∼10 16 T/cm 2 at energies approx. 0 C resulted in no discernible motion of tritium along the basal plane, but did show that significant desorption of the implanted tritium occurred. The current results indicate that tritium in quantities of 10 12 T/cm 2 in tritiated components could be readily detected by imaging at lower magnifications

  9. Tritium containment of controlled thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Tanaka, Yoshihisa; Tsukumo, Kiyohiko; Suzuki, Tatsushi

    1979-01-01

    It is well known that tritium is used as the fuel for nuclear fusion reactors. The neutrons produced by the nuclear fusion reaction of deuterium and tritium react with lithium in blankets, and tritium is produced. The blankets reproduce the tritium consumed in the D-T reaction. Tritium circulates through the main cooling system and the fuel supply and evacuation system, and is accumulated. Tritium is a radioactive substance emitting β-ray with 12.6 year half-life, and harmful to human bodies. It is an isotope of hydrogen, and apt to diffuse and leak. Especially at high temperature, it permeates through materials, therefore it is important to evaluate the release of tritium into environment, to treat leaked tritium to reduce its release, and to select the method of containing tritium. The permeability of tritium and its solubility in structural materials are discussed. The typical blanket-cooling systems of nuclear fusion reactors are shown, and the tungsten coating of steam generator tubes and tritium recovery system are adopted for reducing tritium leak. In case of the Tokamak type reactor of JAERI, the tritium recovery system is installed, in which the tritium gas produced in blankets is converted to tritium steam with a Pd-Pt catalytic oxidation tower, and it is dehydrated and eliminated with a molecular sieve tower, then purified and recovered. (Kako, I.)

  10. Tritium problems in fusion reactor systems

    International Nuclear Information System (INIS)

    Hickman, R.G.

    1975-01-01

    A brief introduction is given to the role tritium will play in the development of fusion power. The biological and worldwide environmental behavior of tritium is reviewed. The tritium problems expected in fusion power reactors are outlined. A few thoughts on tritium permeation and recent results for tritium cleanup and CT 4 accumulation are presented. Problems involving the recovery of tritium from the breeding blanket in fusion power reactors are also considered, including the possible effect of impurities in lithium blankets and the use of lithium as a regenerable getter pump. (auth)

  11. Upgrade to the Tritium Remote Control and Monitoring System for TFTR D and D

    International Nuclear Information System (INIS)

    Sichta, P.; Oliaro, G.; Sengupta, S.

    2002-01-01

    Since 1988, the Tritium Remote Control and Monitoring System (TRECAMS) has performed crucial functions in support of D-T [deuterium-tritium] operations of the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory (PPPL). Although plasma operations on TFTR were completed in 1997, the need for TRECAMS continued. During this period TRECAMS supported the TFTR tritium systems, the TFTR's Shutdown and Safing phase, and the TFTR Decontamination and Decommissioning (D and D) project. The most critical function of the TRECAMS in the post-TFTR era has been to provide a real-time indication of the airborne tritium levels in the tritium areas and the (HVAC) stacks. TRECAMS is a critical tool in conducting safe TFTR D and D tritium-line breaks and other tritium-related work activities. Beginning in 1998, the failure rate of the system's hardware sharply increased. Furthermore, the specialized knowledge required to maintain the original software and hardware was diminishing. It soon became apparent that a failure of the TRECAMS could significantly impact the TFTR D and D project's cost and schedule. To preclude this, the TRECAMS hardware and software was upgraded in the year 2000 to use modern components. This paper will describe that successful upgrade, including a review of the engineering processes and our operating experiences with the upgraded system

  12. The effective cost of tritium for tokamak fusion power reactors with reduced tritium production systems

    International Nuclear Information System (INIS)

    Gilligan, J.G.; Evans, K.

    1983-01-01

    If sufficient tritium cannot be produced and processed in tokamak blankets then at least two alternatives are possible. Tritium can be purchased; or reactors with reduced tritium (RT) content in the plasma can be designed. The latter choice may require development of magnet technology etc., but the authors show that the impact on the cost-of-electricity may be mild. Cost tradeoffs are compared to the market value of tritium. Adequate tritium production in fusion blankets is preferred, but the authors show there is some flexibility in the deployment of fusion if this is not possible

  13. The introduction of tritium in lactose and saccharose by isotope exchange with gaseous tritium

    International Nuclear Information System (INIS)

    Akulov, G.P.; Snetkova, E.V.; Kaminskij, Yu.L.; Kudelin, B.K.; Efimova, V.L.

    1991-01-01

    Methods for conducting reactions of catalytic protium-tritium isotopic exchange with gaseous tritium were developed in order to synthesize tritium labelled lactose and saccharose. These methods enabled to prepare these labelled disaccharides with high molar activity. The yield was equal to 50-60%, radiochemical purity ∼ 95%

  14. Transfer of tritium released by nuclear facilities to the food supply

    International Nuclear Information System (INIS)

    Bovard, P.; Delmas, J.; Belot, Y.; Camus, H.; Grauby, A.; Hoek, J. van den

    1979-01-01

    The use for agricultural purposes of river waters receiving releases or discharges of tritium results in contamination of irrigated crops and of animals given such water to drink or consuming the contaminated crops. It therefore seemed of importance to assess the part played by tritium in the contamination of the food chain, together with its possible effects on organisms. With this in mind, French, Belgian and Netherlands laboratories have joined forces to study, more especially, the relationship between environmental contamination rates and those of produce harvested in the Mediterranean region and in a humid temperate climate, the transfer process in the chain: water - fodder - bovines - dairy produce, and the role of technology in the contamination of the food chain. The present status of research undertaken jointly by organizations in the three countries is reviewed. In the Atlantic environment the experiments involved four annual crops consumed on a large scale: potatoes, sugar beet, carrots and peas, and in the Mediterranean environment several perennial species such as vine, olive, orange and apple were studied. The results obtained relate to the residence time for tritium in the various organs of each species, the part played by evapotranspiration and the physiological functions of the different parts of the plants, the uptake of tritium by tissue water and organic matter, and the distribution of tritium in the soil profile. (author)

  15. Tritium accountancy in fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E.; Clark, E.A.; Harvel, C.D.; Farmer, D.A.; Tovo, L.L.; Poore, A.S. [Savannah River National Laboratory, Aiken, SC (United States); Moore, M.L. [Savannah River Nuclear Solutions, Aiken, SC (United States)

    2015-03-15

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MCA) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MCA requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBA) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSA) are established along with key measurement points (KMP) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSA. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breeding, burn-up, and retention of tritium in the fusion device. The concept of 'net' tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. (authors)

  16. Doses due to tritium releases by NET - data base and relevant parameters on biological tritium behaviour

    International Nuclear Information System (INIS)

    Diabate, S.; Strack, S.

    1990-12-01

    This study gives an overview on the current knowledge about the behaviour of tritium in plants and in food chains in order to evaluate the ingestion pathway modelling of existing computer codes for dose estimations. The tritium uptake and retention by plants standing at the beginning of the food chains is described. The different chemical forms of tritium, which may be released into the atmosphere (HT, HTO and tritiated organics), and incorporation of tritium into organic material of plants are considered. Uptake and metabolism of tritiated compounds in animals and man are reviewed with particular respect to organically bound tritium and its significance for dose estimations. Some basic remarks on tritium toxicity are also included. Furthermore, a choice of computer codes for dose estimations due to chronic or accidental tritium releases has been compared with respect to the ingestion pathway. (orig.) [de

  17. A prototype wearable tritium monitor

    International Nuclear Information System (INIS)

    Surette, R. A.; Dubeau, J.

    2008-01-01

    Sudden unexpected changes in tritium-in-air concentrations in workplace air can result in significant unplanned exposures. Although fixed area monitors are used to monitor areas where there is a potential for elevated tritium in air concentrations, they do not monitor personnel air space and may require some time for acute tritium releases to be detected. There is a need for a small instrument that will quickly alert staff of changing tritium hazards. A moderately sensitive tritium instrument that workers could wear would bring attention to any rise in tritium levels that were above predetermined limits and help in assessing the potential hazard therefore minimizing absorbed dose. Hand-held instruments currently available can be used but require the assistance of a fellow worker or restrict the user to using only one hand to perform some duties. (authors)

  18. Tritium pellet injection sequences for TFTR

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Milora, S.L.; Attenberger, S.E.; Singer, C.E.; Schmidt, G.L.

    1983-01-01

    Tritium pellet injection into neutral deuterium, beam heated deuterium plasmas in the Tokamak Fusion Test Reactor (TFTR) is shown to be an attractive means of (1) minimizing tritium use per tritium discharge and over a sequence of tritium discharges; (2) greatly reducing the tritium load in the walls, limiters, getters, and cryopanels; (3) maintaining or improving instantaneous neutron production (Q); (4) reducing or eliminating deuterium-tritium (D-T) neutron production in non-optimized discharges; and (5) generally adding flexibility to the experimental sequences leading to optimal Q operation. Transport analyses of both compression and full-bore TFTR plasmas are used to support the above observations and to provide the basis for a proposed eight-pellet gas gun injector for the 1986 tritium experiments

  19. 2nd Karlsruhe International Summer School on Fusion Technologies

    International Nuclear Information System (INIS)

    Bahm, W.; Stycz, K.

    2008-01-01

    For the second time, the Karlsruhe Research enter together with European research institutions and industries invited young scientists and engineers to its ''International Summer School on Fusion Technologies.'' Fifty participants from all over Europe attended the lectures by 35 experts preesenting contributions from their areas of competence. Ten young scientists from India and another 10 from China were connected to the events by video link. Physics student Kornelia Stycz describes her impressions as a participant in the ''2 nd International Summer School on Fusion Technologies.'' (orig.)

  20. Collection of $^{83}$Rb at low implantation energy for KATRIN

    CERN Multimedia

    Zboril, M

    KATRIN, the KArlsruhe TRItium Neutrino experiment aims to measure the neutrino mass by spectroscopy of the tritium $\\beta$-decay at the endpoint by means of Magnetic Adiabatic Collimation combined with an Electrostatic filter (MAC-E filter). To monitor the HV-system of the KATRIN-setup, we would need one or two $^{83}$Rb sources roughly every half a year.

  1. Radionuclide Basics: Tritium

    Science.gov (United States)

    Tritium is a hydrogen atom that has two neutrons in the nucleus and one proton. It is radioactive and behaves like other forms of hydrogen in the environment. Tritium is produced naturally in the upper atmosphere and as a byproduct of nuclear fission.

  2. Tritium release from advanced beryllium materials after loading by tritium/hydrogen gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, Vladimir, E-mail: vladimir.chakin@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, Rolf; Moeslang, Anton; Kurinskiy, Petr; Vladimirov, Pavel [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Dorn, Christopher [Materion Beryllium & Composites, 6070 Parkland Boulevard, Mayfield Heights, OH 44124-4191 (United States); Kupriyanov, Igor [Bochvar Russian Scientific Research Institute of Inorganic Materials, Rogova str., 5, 123098 Moscow (Russian Federation)

    2016-06-15

    Highlights: • A major tritium release peak for beryllium samples occurs at temperatures higher than 1250 K. • A beryllium grade with comparatively smaller grain size has a comparatively higher tritium release compared to the grade with larger grain size. • The pebbles of irregular shape with the grain size of 10–30 μm produced by the crushing method demonstrate the highest tritium release rate. - Abstract: Comparison of different beryllium samples on tritium release and retention properties after high-temperature loading by tritium/hydrogen gas mixture and following temperature-programmed desorption (TPD) tests has been performed. The I-220-H grade produced by hot isostatic pressing (HIP) having the smallest grain size, the pebbles of irregular shape with the smallest grain size (10–30 μm) produced by the crushing method (CM), and the pebbles with 1 mm diameter produced by the fluoride reduction method (FRM) having a highly developed inherent porosity show the highest release rate. Grain size and porosity are considered as key structural parameters for comparison and ranking of different beryllium materials on tritium release and retention properties.

  3. An assembly of tritium production experiment

    International Nuclear Information System (INIS)

    Abe, Toshihiko

    1981-01-01

    An assembly for tritium production experiment, i.e. Tritium Extraction System (TREX) constructed as a small scale test facility for tritium production, and Tritium Removal System (TRS) attached to TREX, and the preliminary results of the experiments with them are described. The radiological safety of the process and operation is also an important consideration. Lithium-aluminum alloy was selected as the most promising target material. The following matters are involved in the scope of production technology: the selection of a target material and target preparation, reactor irradiation, the construction of a facility for the extraction of tritium from the irradiated target, the establishment of the optimum conditions of extraction, the purification, collection and storage of tritium, and the inspection of the product. The tritium production experiment at JAERI is yet on the initial stage; the development is to be continued with the stepwise increase of the scale of tritium production. (J.P.N.)

  4. Tritium retention in candidate next-step protection materials: engineering key issues and research requirements

    International Nuclear Information System (INIS)

    Federici, G.; Andrew, P.L.; Wu, C.H.

    1995-01-01

    Although a considerable volume of valuable data on the behaviour of tritium in beryllium and carbon-based armours exposed to hydrogenic fusion plasmas has been compiled over the past years both from operation of present-day tokamaks and from laboratory simulations, knowledge is far from complete and tritium inventory predictions for these materials remain highly uncertain. In this paper we elucidate the main mechanisms responsible for tritium trapping and release in next-step D-T tokamaks, as well as the applicability of some of the presently known data bases for design purposes. Owing to their strong anticipated implications on tritium uptake and release, attention is focused mainly on the interaction of tritium with neutron damage induced defects, on tritium codeposition with eroded carbon and on the effects of oxide and surface contaminants. Some preliminary quantitative estimates are presented based on most recent experimental findings and latest modelling developments as well. The influence of important working conditions such as target temperature, loading particle fluxes, erosion and redeposition rates, as well as material characteristics such as the type of morphology of the protection material (i.e. amorphous plasma-sprayed beryllium vs. solid forms), and design dependent parameters are discussed in this paper. Remaining issues which require additional effort are identified. (orig.)

  5. Tritium migration in nuclear desalination plants

    International Nuclear Information System (INIS)

    Muralev, E.D.

    2003-01-01

    Tritium transport, as one of important items of radiation safety assessment, should be taken into consideration before construction of a Nuclear Desalination Plant (NDP). The influence of tritium internal exposition to the human body is very dangerous because of 3 H associations with water molecules. The problem of tritium in nuclear engineering is connected to its high penetration ability (through fuel element cans and other construction materials of a reactor), with the difficulty of extracting tritium from process liquids and gases. Sources of tritium generation in NDP are: nuclear fuel, boron in control rods, and deuterium in heat carrier. Tritium passes easily through the walls of a reactor vessel, intermediate heat exchangers, steam generators and other technological equipment, through the walls of heat carrier pipelines. The release of tritium and its transport could be assessed, using mathematical models, based on the assumption that steady state equilibrium has been attained between the sources of tritium, produced water and release to the environment. Analysis of the model shows the tritium concentration dependence in potable water on design features of NDP. The calculations obtained and analysis results for NDP with BN-350 reactor give good convergence. According to the available data, tritium concentration in potable water is less than the statutory maximum concentration limit. The design of a NDP requires elaboration of technical solutions, capable of minimising the release of tritium to potable water produced. (author)

  6. Tritium issues in plasma wall interactions

    International Nuclear Information System (INIS)

    Tanabe, T.

    2009-01-01

    In order to establish a D-T fusion reactor as an energy source, it is not enough to have a DT burning plasma, and economical conversion of fusion energy to electricity and/or heat, a large enough margin of tritium breeding and tritium safety must be simultaneously achieved. In particular, handling of huge amount of tritium needs a significant effort to ensure that the radiation dose of radiological workers and of the public is below the limits specified by the International Commission on Radiological Protection. For the safety reasons, tritium in a reactor will be limited to only a few kg orders in weight, with radioactivity up to 10 17 Bq. Since public exposure to tritium is regulated at a level as tiny as a few Bq/cm 2 , tritium must be strictly confined in a reactor system with accountancy of an order of pg (pico-gram). Generally qualitative analysis with the accuracy of more than 3 orders of magnitude is hardly possible. We are facing to lots of safety concerns in the handling of huge amounts of radioactive tritium as a fuel and to be bred in a blanket. In addition, tritium resources are very limited. Not only for the safety reason but also for the saving of tritium resources, tritium retention in a reactor must be kept as small as possible. In the present tokamaks, however, hydrogen retention is significantly large, i.e. more than 20% of fueled hydrogen is continuously piled up in the vacuum vessel, which must not be allowed in a reactor. After the introduction of tritium as a hydrogen radioisotope, this lecture will present tritium issues in plasma wall interactions, in particular, fueling, retention and recovering, considering the handling of large amounts of tritium, i.e. confinement, leakage, contamination, permeation, regulations and tritium accountancy. Progress in overcoming such problems will be also presented. This document is made of the slides of the presentation. (author)

  7. Tritium sorption by cement and subsequent release

    International Nuclear Information System (INIS)

    Ono, F.; Tanaka, S.; Yamawaki, M.

    1994-01-01

    In a fusion reactor or tritium handling facilities, contamination of concrete by tritium and subsequent release from it to the reactor or experimental rooms is a matter of problem for safety control of tritium and management of operational environment. In order to evaluate these tritium behavior, interaction of tritiated water with concrete or cement should be clarified. In the present study, HTO sorption and subsequent release from cement were studied by combining various experimental methods. From the basic studies on tritium-cement interactions, it has become possible to evaluate tritium uptake by cement or concrete and subsequent tritium release behavior as well as tritium removing methods from them

  8. Metabolism of organically bound tritium

    International Nuclear Information System (INIS)

    Travis, C.C.

    1984-01-01

    The classic methodology for estimating dose to man from environmental tritium ignores the fact that organically bound tritium in foodstuffs may be directly assimilated in the bound compartment of tissues without previous oxidation. We propose a four-compartment model consisting of a free body water compartment, two organic compartments, and a small, rapidly metabolizing compartment. The utility of this model lies in the ability to input organically bound tritium in foodstuffs directly into the organic compartments of the model. We found that organically bound tritium in foodstuffs can increase cumulative total body dose by a factor of 1.7 to 4.5 times the free body water dose alone, depending on the bound-to-loose ratio of tritium in the diet. Model predictions are compared with empirical measurements of tritium in human urine and tissue samples, and appear to be in close agreement. 10 references, 4 figures, 3 tables

  9. Effects of tritium in elastomers

    International Nuclear Information System (INIS)

    Zapp, P.E.

    1982-01-01

    Elastomers are used as flange gaskets in the piping system of the Savannah River Plant tritium facilities. A number of elastomers is being examined to identify those compounds more radiation-resistant than the currently specified Buna-N rubber and to study the mechanism of tritium radiation damage. Radiation resistance is evaluated by compression set tests on specimens exposed to about 1 atm tritium for several months. Initial results show that ethylene-propylene rubber and three fluoroelastomers are superior to Buna-N. Off-gassing measurements and autoradiography show that retained surface absorption of tritium varies by more than an order of magnitude among the different elastomer compounds. Therefore, tritium solubility and/or exchange may have a role in addition to that of chemical structure in the damage process. Ongoing studies of the mechanism of radiation damage include: (1) tritium absorption kinetics, (2) mass spectroscopy of radiolytic products, and (3) infrared spectroscopy

  10. A proposed model for the transfer of environmental tritium to man and tritium metabolism in model animals

    International Nuclear Information System (INIS)

    Saito, Masahiro; Ishida, M.R.

    1987-01-01

    To evaluate the accumulated dose in human bodies due to the environmental tritium, it is of required to establish an adequate model for the tritium transfer from the environment to man and to obtain enough information on the metabolic behaviour of tritium in animal bodies using model animal system. In this report, first we describe about a proposed model for the transfer of environmental tritium to man and secondly mention briefly about the recent works on the tritium metabolism in newborn animals which have been treated as a model system of tritium intake through food chain. (author)

  11. Contribution to the tritium continental effect

    International Nuclear Information System (INIS)

    Lewis, R.R.; Froehlich, K.; Hebert, D.

    1987-01-01

    The results of tritium measurements of atmospheric water vapour and precipitation samples for 1982 and 1983 are presented. The data were used to establish a simple model describing the tritium continental effect taking into account re-evaporation of tritium from the continental land surfaces and man-made tritium. (author)

  12. Tritium transport analysis for CFETR WCSB blanket

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pinghui, E-mail: phzhao@mail.ustc.edu.cn; Yang, Wanli; Li, Yuanjie; Ge, Zhihao; Nie, Xingchen; Gao, Zhongping

    2017-01-15

    Highlights: • A simplified tritium transport model for CFETR WCSB blanket was developed. • Tritium transport process in CFETR WCSB blanket was analyzed. • Sensitivity analyses of tritium transport parameters were carried out. - Abstract: Water Cooled Solid Breeder (WCSB) blanket was put forward as one of the breeding blanket candidate schemes for Chinese Fusion Engineering Test Reactor (CFETR). In this study, a simplified tritium transport model was developed. Based on the conceptual engineering design, neutronics and thermal-hydraulic analyses of CFETR WCSB blanket, tritium transport process was analyzed. The results show that high tritium concentration and inventory exist in primary water loop and total tritium losses exceed CFETR limits under current conditions. Conducted were sensitivity analyses of influential parameters, including tritium source, temperature, flow-rate capacity and surface condition. Tritium performance of WCSB blanket can be significantly improved under a smaller tritium impinging rate, a larger flow-rate capacity or a better surface condition. This work provides valuable reference for the enhancement of tritium transport behavior in CFETR WCSB blanket.

  13. Tritium permeation and recovery

    International Nuclear Information System (INIS)

    Bond, R.A.; Hamilton, A.M.

    1987-01-01

    The paper is an appendix to a study of the reactor relevance of the NET design concept. The latter study examines whether the technologies and design principles proposed for NET can be directly extrapolated to a demonstration (DEMO) reactor. In this appendix, tritium transport in the DEMO breeding blanket is considered with emphasis on the permeation rate from the lithium-lead breeder into the coolant. A computational model used to calculate the tritium transport in the breeder blanket is described. Results are reported for the tritium transport in the NET/INTOR type blanket as well as the DEMO blanket in order to provide a comparison. In addition, results are presented for the helium coolant tritium extraction analysis. (U.K.)

  14. Management of tritium contaminated wastes national strategies and practices at some European countries, USA and Canada

    International Nuclear Information System (INIS)

    Mannone, F.

    1992-01-01

    The European Tritium Handling Experiment Laboratory (ETHEL) is the Commission of European Communities facility designed for handling multigram quantities of tritium for safety inherent R and D purposes. Tritium contamined wastes in gaseous, liquid and solid forms will be generated in ETHEL during the experiments as well as during the maintenance operations. All such wastes must be adequately managed under the safest operating conditions to minimize the releases of tritium to the environment and the consequent radiological risks to workers and general population. This safety requirement can be met by carefully defining strategies and practices to be applied for the safe management of these wastes. To this end an adequate background information must be collected which is the intent of this report. Through an exhaustive literature survey current strategies and practices applied in Europe, USA and Canada for managing tritiated wastes from specific tritium handling laboratories and plant have been assessed. For some countries, where only tritium bearing wastes simultaneously contaminated with nuclear fission products are generated, the attention has been focused on the strategies and practices currently applied for managing fission wastes. Operational criteria for waste collection, sorting, classification, conditioning and packaging as well as acceptance criteria for their storage or disposal have been identified. Waste storage or disposal options already applied in various countries or still being investigated in terms of safety have also been considered. Even if the radwaste management strategy is submitted to a nearly continuing process of review, some general comments resulting from the assessment of the present waste management scenario are presented. 60 refs., 16 figs., 13 tabs

  15. Design of a Tritium-in-air-monitor using field programmable gate arrays

    International Nuclear Information System (INIS)

    McNelles, Phillip; Lu, Lixuan

    2015-01-01

    Field Programmable Gate Arrays (FPGAs) have recently garnered significant interest for certain applications within the nuclear field. Some applications of these devices include Instrumentation and Control (I and C) systems, pulse measurement systems, particle detectors and health physics purposes. In CANada Deuterium Uranium (CANDU) nuclear power plants, the use of heavy water (D2O) as the moderator leads to the increased production of Tritium, which poses a health risk and must be monitored by Tritium-In-Air Monitors (TAMs). Traditional TAMs are mostly designed using microprocessors. More recent studies show that FPGAs could be a potential alternative to implement the electronic logic used in radiation detectors, such as the TAM, more effectively. In this paper, an FPGA-based TAM is designed and constructed in a laboratory setting using an FPGA-based cRIO system. New functionalities, such as the detection of Carbon-14 and the addition of noble gas compensation are incorporated into a new FPGA-based TAM. Additionally, all of the standard functions included in the original microprocessor-based TAM, such as tritium detection, gamma compensation, pump and air flow control, and background and thermal drift corrections were also implemented. The effectiveness of the new design is demonstrated through simulations as well as laboratory testing on the prototype system. (author)

  16. Estimation of Biological Effects of Tritium.

    Science.gov (United States)

    Umata, Toshiyuki

    2017-01-01

    Nuclear fusion technology is expected to create new energy in the future. However, nuclear fusion requires a large amount of tritium as a fuel, leading to concern about the exposure of radiation workers to tritium beta radiation. Furthermore, countermeasures for tritium-polluted water produced in decommissioning of the reactor at Fukushima Daiichi Nuclear Power Station may potentially cause health problems in radiation workers. Although, internal exposure to tritium at a low dose/low dose rate can be assumed, biological effect of tritium exposure is not negligible, because tritiated water (HTO) intake to the body via the mouth/inhalation/skin would lead to homogeneous distribution throughout the whole body. Furthermore, organically-bound tritium (OBT) stays in the body as parts of the molecules that comprise living organisms resulting in long-term exposure, and the chemical form of tritium should be considered. To evaluate the biological effect of tritium, the effect should be compared with that of other radiation types. Many studies have examined the relative biological effectiveness (RBE) of tritium. Hence, we report the RBE, which was obtained with radiation carcinogenesis classified as a stochastic effect, and serves as a reference for cancer risk. We also introduce the outline of the tritium experiment and the principle of a recently developed animal experimental system using transgenic mouse to detect the biological influence of radiation exposure at a low dose/low dose rate.

  17. Management of tritium exposures for professionally exposed workers at Cernavoda 1 NPP

    Energy Technology Data Exchange (ETDEWEB)

    Chitu, Catalina; Simionov, Vasile [CNE-PROD Cernavoda NPP, No. 1, Medgidiei Str. Cernavoda 905200 (Romania)

    2004-07-01

    Operating experience to date of CANDU reactors has indicated that the major contributor to the internal dose of professionally exposed workers is the tritiated heavy water (DTO). CANDU reactors are both moderated and cooled by heavy water (D{sub 2}O). Tritium is produced in CANDU reactors by neutron reactions with deuterium, boron, and lithium and by ternary fission. Even small leaks from these systems can produce important contaminations with tritiated water vapours of the air in the reactor building and thus increased individual and collective internal doses. Professionally exposed workers are subject to a combination of acute and chronic tritium exposure and HTO dosimetry program at Cernavoda NPP is based on multiple sample results. The routine urine bioassay program performs the monitoring and dosimetry functions for DTO. A specialized laboratory using Liquid Scintillation Spectrometry methods currently determines tritium activities in urine samples. The frequency of biological samples submission depends on the tritium concentration in the last sample. Dose assignments resulting from routinely measured weekly and monthly urinary levels of tritium oxide are based on the method of linear interpolation unless it is known that there has been no exposure between samples (vacation). All information about these doses is stored into a dedicated electronic database and used to make periodical reports and to ensure that the legal and administrative individual and annual limits are not exceeded. A chronic unprotected exposure to small tritium dose rate (< 50{mu}Sv/h) may lead to internal doses that exceed the intervention level. In case of acute exposure an increased daily water intake combined with a proper medical intervention could reduce the effective half time of tritium 2-3 times. (authors)

  18. Cooperation between NIEP and Karlsruhe University in crust and upper mantle studies of the Vrancea area

    International Nuclear Information System (INIS)

    Prodehl, Claus

    2002-01-01

    Active cooperation between seismologists at Bucharest and Karlsruhe started in 1974 with the installation of seismic stations at Romanian dam sites. These stations also recorded the destructive earthquake of 1977 and formed the nucleus for a broader cooperation between seismologists at Bucharest and Karlsruhe and was followed by a continuing exchange of knowledge by vice versa research visits. The cooperation was finally intensively increased by the installation of a major priority research program on earthquake risk problems of Karlsruhe University with Romanian research institutions in 1996, when Romanian and German scientists from various fields (geology, seismology, civil engineering, operation research) organized themselves in the Collaborative Research Center 461 (CRC 461) 'Strong earthquakes: a challenge for geosciences and civil engineering' (Germany) and the Romanian Group for Strong Vrancea Earthquakes (RGVE) in a multidisciplinary attempt towards earthquake mitigation. The cooperation between the Geophysical and Geological Institutes of Karlsruhe University with both NIEP and the Faculty of Geology of Bucharest University focussed in particular on the deep geology of the Vrancea area and surrounding provinces with emphasis on seismicity studies and crust and upper-mantle investigations. Two long-range seismic wide-angle profiles from Bacau to the Danube south of Bucharest recorded in 1999 and from Transylvania to the Dobrogea recorded in 2001, both crossing each other in the Vrancea area, will provide a detailed 3-dimensional crustal structure image of Vrancea and adjacent Carpathians and their surrounding basins, while a temporary array of 120 mobile stations distributed throughout southeastern Romania recorded local and far-distant earthquakes for about 6 months in 1999 which will allow to derive a 3-dimensional tomographic image of the underlying uppermost mantle to depths of about 300 km. (author)

  19. Mobility of Tritium in Engineered and Earth Materials at the NuMI Facility, Fermilab: Progress report for work performed between June 13 and September 30, 2006

    International Nuclear Information System (INIS)

    Pruess, Karsten; Conrad, Mark; Finsterle, Stefan; Kennedy, Mack; Kneafsey, Timothy; Salve, Rohit; Su, Grace; Zhou, Quanlin

    2006-01-01

    This report details the work done between June 13 and September 30, 2006 by Lawrence Berkeley National Laboratory (LBNL) scientists to assist Fermi National Accelerator Laboratory (Fermilab) staff in understanding tritium transport at the Neutrino at the Main Injector (NuMI) facility. As a byproduct of beamline operation, the facility produces (among other components) tritium in engineered materials and the surrounding rock formation. Once the tritium is generated, it may be contained at the source location, migrate to other regions within the facility, or be released to the environment

  20. Preparation and application of tea to a tritium performance testing programme

    International Nuclear Information System (INIS)

    Daka, J. N.; Moodie, G.; Dinardo, A.; Kramer, G. H.

    2012-01-01

    A simple, but novel technique, for adjusting steeps of black tea to produce fluids, which are visually and spectroscopically similar to urine, has been developed at the National Calibration Reference Centre for Bioassay and In Vivo Monitoring in Canada. The method uses scans of absorbance versus wavelength, in the UV-VIS range (200-800 nm) to select diluted tea steeps that simulate urine. Tea solutions (1 and 10 %) were spiked with tritium and distributed to laboratories for performance testing (PT). The PT exercise was done as in a regular bioassay programme. The results showed that all samples satisfied the pass/fail conditions of the S-106 standard of the Canadian Nuclear Safety Commission, suggesting that adjusted tea successfully simulated urine for the tritium PT programmes. Also, since unlike urine whose use may increase the probability of contaminating and transmitting diseases (e.g. hepatitis C), tea is a safer alternative. When needed, it can readily be prepared for the laboratories. (authors)

  1. Contribution to the tritium continental effect

    International Nuclear Information System (INIS)

    Lewis, R.R.; Froehlich, K.; Hebert, D.

    1987-01-01

    The results of tritium measurements of atmospheric water vapour and precipitation samples for 1982 and 1983 are presented. The data were used to establish a simple model describing the tritium continental effect taking into account re-evaporation of tritium from the continental land surfaces. Some comments on man made tritium are given. (author)

  2. Removal of contaminating tritium and tritium pressure measurement by a secondary electron multiplier

    International Nuclear Information System (INIS)

    Ichimura, K.; Watanabe, K.; Nishizawa, K.; Fujita, J.

    1984-01-01

    A ceramic secondary electron multiplier (SEM), Ceratron, was used to study impairment of the SEM performance due to adsorbed tritium, its decontamination, and the applicability of the SEM to measure tritium pressure. The background level of the SEM increased significantly, up to its counting limit, due to tritium adsorption. Heating it to 300 0 C in vacuo and/or in the presence of reactive gases such as D 2 and CO at 1 x 10 -4 Pa was not effective to decontaminate the SEM, whereas photon irradiation was extremely powerful for the decontamination. The tritium (HT) pressure in a range of 1 x 10 -6 - 1 x 10 -3 Pa could be measured with no significant impairment of the SEM performance with the aid of photon irradiation. It is revealed that a particle flux as low as 1 particle/s will be able to measure in the presence of tritium if suitable photon sources are installed in the systems. (orig.)

  3. Investigating Unsaturated Zone Travel Times with Tritium and Stable Isotopes

    Science.gov (United States)

    Visser, A.; Thaw, M.; Van der Velde, Y.

    2017-12-01

    Travel times in the unsaturated zone are notoriously difficult to assess. Travel time tracers relying on the conservative transport of dissolved (noble) gases (tritium-helium, CFCs or SF6) are not applicable. Large water volume requirements of other cosmogenic radioactive isotopes (sulfur-35, sodium-22) preclude application in the unsaturated zone. Prior investigations have relied on models, introduced tracers, profiles of stable isotopes or tritium, or a combination of these techniques. Significant unsaturated zone travel times (UZTT) complicate the interpretation of stream water travel time tracers by ranked StorAge Selection (rSAS) functions. Close examination of rSAS functions in a sloping soil lysimeter[1] show the effect of the UZTT on the shape of the rSAS cumulative distribution function. We studied the UZTT at the Southern Sierra Critical Zone Observatory (SS-CZO) using profiles of tritium and stable isotopes (18O and 2H) in the unsaturated zone, supported by soil water content data. Tritium analyses require 100-500 mL of soil water and therefore large soil samples (1-5L), and elaborate laboratory procedures (oven drying, degassing and noble gas mass spectrometry). The high seasonal and interannual variability in precipitation of the Mediterranean climate, variable snow pack and high annual ET/P ratios lead to a dynamic hydrology in the deep unsaturated soils and regolith and highly variable travel time distributions. Variability of the tritium concentration in precipitation further complicates direct age estimates. Observed tritium profiles (>3 m deep) are interpreted in terms of advective and dispersive vertical transport of the input variability and radioactive decay of tritium. Significant unsaturated zone travel times corroborate previously observed low activities of short-lived cosmogenic radioactive nuclides in stream water. Under these conditions, incorporating the UZTT is critical to adequately reconstruct stream water travel time distributions. 1

  4. Metabolism distribution and transfer of tritium in pregnant mice after exposure to tritium water

    International Nuclear Information System (INIS)

    Lu Huimin; Zhou Xiangyan; Li Li; Zhang Zhixing

    1993-01-01

    Tritium water with three kind of different dose was singly injected intraperitoneally to pregnant mice in various time. The tritium concentration in the tissues from mother mice were measured on the 3.5 days after mother mice parturition. Dose rates in baby mice were estimated, as well as the transfer coefficient of tritium from mother mice to baby mice was calculated based on the tritium concentrations. The results of the experiment showed that tritium was almost uniformly distributed among the tissues after exposure to tritiated water at three experimental groups. However, it was found that relative concentrations of tritium in the baby mice tissues were consistently higher than that in mother mice tissues for three experimental groups. The relative concentration of tritium in the tissues was not affected by the different dose but developing on the exposure time. The results of radiation dose rates from baby mice estimation at the end of exposure showed that the higher radiation dose rates was found in the mice exposed to tritiated water during 7.5 days. The transfer coefficient of tritium from mother mice into baby mice was almost no different among the three radiation dose groups. The highest transfer coefficient was observed in mother mice exposed to tritiated baby mice was almost no different among the three radiation dose groups. The highest coefficient was observed in mother mice exposed to tritiated water during 16.5 days, however it was not found that transfer coefficient were higher in the mother mice exposed to tritiated water during 11.5 days than that of 7.5 days

  5. A recommended program of tritium monitoring research and development

    International Nuclear Information System (INIS)

    Nickerson, S.B.; Gerdingh, R.F.; Penfold, K.

    1982-10-01

    This report presents recommendations for programs of research and development in tritium monitoring instrumentation. These recommendations, if implemented, will offer Canadian industry the opportunity to develop marketable instruments. The major recommendations are to assist in the development and promotion of two Chalk River Nuclear Laboratories' monitors and an Ontario Hydro monitor, and to support research and development of a surface monitor

  6. Subsystem cost data for the tritium systems test assembly

    International Nuclear Information System (INIS)

    Bartlit, J.R.; Anderson, J.L.; Rexroth, V.G.

    1983-01-01

    Details of subsystem costs are among the questions most frequently asked about the $14.4 million Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. This paper presents a breakdown of cost components for each of the 20 major subsystems of TSTA. Also included are details to aid in adjusting the costs to other years, contracting conditions, or system sizes

  7. Radiation-induced tritium labelling and product analysis

    Energy Technology Data Exchange (ETDEWEB)

    Peng, C.T. (California Univ., San Francisco, CA (United States). Dept. of Pharmaceutical Chemistry)

    1993-05-01

    By-products formed in radiation-induced tritium labelling are identified by co-chromatography with authentic samples or by structure prediction using a quantitative structure-retention index relationship. The by-products, formed from labelling of steroids, polynuclear aromatic hydrocarbons, 7-membered heterocyclic ring structures, 1,4-benzodiazepines, 1-haloalkanes, etc. with activated tritium and adsorbed tritium, are shown to be specifically labelled and anticipated products from known chemical reactions. From analyses of the by-products, one can conclude that the hydrogen abstraction by tritium atoms and the substitution by tritium ions are the mechanisms of labelling. Classification of the tritium labelling methods, on the basis of the type of tritium reagent, clearly shows the active role played by tritium atoms and ions in radiation-induced methods. (author).

  8. Tritium activity balance in hairless rats following skin-contact exposure to tritium-gas-contaminated stainless-steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, A

    1994-06-01

    Studies using animals and human volunteers have demonstrated that the dosimetry for skin-contact exposure to contaminated metal surfaces differs from that for the intake of tritiated water or tritium gas. However, despite the availability of some information on the dosimetry for skin-contact with tritium-gas-contaminated metal surfaces, uncertainties in estimating skin doses remain, because of poor accounting for the applied tritium activity in the body (Eakins et al., 1975; Trivedi, 1993). Experiments on hairless rats were performed to account for the tritium activity applied onto the skin. Hairless rats were contaminated through skin-contact exposure to tritium-gas-contaminated stainless-steel planchets. The activity in the first smear was about 35% of the total removable activity (measured by summing ten consecutive swipes). The amount of tritium applied onto the skin can be approximated by estimating the tritium activity in the first smear removed form the contaminated surfaces. 87 {+-} 9% of the transferred tritium was retained in the exposed skin 30 min post-exposure. 30 min post exposure, the unexposed skin and the carcass retained 8 {+-} 6% and 3 {+-} 2% of the total applied tritium activity, respectively. The percentage of tritium evolved from the body or breathed out was estimated to be 2 {+-} 1% of the total applied activity 30 min post-exposure. It is recommended that to evaluate accurately the amount of tritium transferred to the skin, alternative measurement approaches are required that can directly account for the transferred activity onto the skin. 15 refs., 13 tabs., 7 figs.

  9. Tritium concentrations in bees and honey at Los Alamos National Laboratory: 1979-1996

    Energy Technology Data Exchange (ETDEWEB)

    Fresquez, P.R.; Armstrong, D.R.; Pratt, L.H.

    1997-01-01

    Honeybees are effective monitors of environmental pollution. The objective of this study was to summarize tritium ({sup 3}H) concentrations in bees and honey collected from within and around Los Alamos National Laboratory (LANL) over an 18-year period. Based on the long-term average, bees from nine out of eleven hives and honey from six out of eleven hives on LANL lands contained {sup 3}H that was significantly higher (p <0.05) than background. The highest average concentration of {sup 3}H in bees (435 pCi mL{sup -1}) collected over the years was from LANL`s Technical Area (TA) 54-a low-level radioactive waste disposal site (Area G). Similarly, the highest average concentration of {sup 3}H in honey (709 pCi mL{sup - 1}) was collected from a hive located near three {sup 3}H storage ponds at LANL TA-53. The average concentrations of {sup 3}H in bees and honey from background hives was 1.0 pCi mL{sup -1} and 1.5 pCi ML{sup -1}, respectively. Although the concentrations of 3H in bees and honey from most LANL and perimeter (White Rock/Pajarito Acres) areas were significantly higher than background, most areas, with the exception of TA-53 and TA-54, generally exhibited decreasing 3H concentrations over time.

  10. Tritium monitoring in environment at ICIT Tritium Separation Facility

    International Nuclear Information System (INIS)

    Varlam, Carmen; Stefanescu, I.; Vagner, Irina; Faurescu, I.; Toma, A.; Dulama, C.; Dobrin, R.

    2008-01-01

    Full text: The Cryogenic Pilot is an experimental project developed within the national nuclear energy research program, which is designed to develop the required technologies for tritium and deuterium separation by cryogenic distillation of heavy water. The process used in this installation is based on a combination between liquid-phase catalytic exchange (LPCE) and cryogenic distillation. Basically, there are two ways that the Cryogenic Pilot could interact with the environment: by direct atmospheric release and through the sewage system. This experimental installation is located 15 km near the region biggest city and in the vicinity - about 1 km, of Olt River. It must be specified that in the investigated area there is an increased chemical activity; almost the entire Experimental Cryogenic Pilot's neighborhood is full of active chemical installations. This aspect is really essential for our study because the sewerage system is connected with the other three chemical plants from the neighborhood. For that reason we progressively established elements of an environmental monitoring program well in advance of tritium operation in order to determine baseline levels. The first step was the tritium level monitoring in environmental water and wastewater of industrial activity from neighborhood. In order to establish the base level of tritium concentration in the environment around the nuclear facilities, we investigated the sample preparation treatment for different types of samples: onion, green beams, grass, apple, garden lettuce, tomato, cabbage, strawberry and grapes. We used azeotropic distillation of all types of samples, the carrier solvent being toluene from different Romanian providers. All measurements for the determination of environmental tritium concentration were performed using liquid scintillation counting (LSC), with the Quantulus 1220 spectrometer. (authors)

  11. Tritium sources; Izvori tricijuma

    Energy Technology Data Exchange (ETDEWEB)

    Glodic, S [Institute of Nuclear Sciences VINCA, Belgrade (Yugoslavia); Boreli, F [Elektrotehnicki fakultet, Belgrade (Yugoslavia)

    1993-07-01

    Tritium is the only radioactive isotope of hydrogen. It directly follows the metabolism of water and it can be bound into genetic material, so it is very important to control levels of contamination. In order to define the state of contamination it is necessary to establish 'zero level', i.e. actual global inventory. The importance of tritium contamination monitoring increases with the development of fusion power installations. Different sources of tritium are analyzed and summarized in this paper. (author)

  12. Tritium inventory prediction in a CANDU plant

    International Nuclear Information System (INIS)

    Song, M.J.; Son, S.H.; Jang, C.H.

    1995-01-01

    The flow of tritium in a CANDU nuclear power plant was modeled to predict tritium activity build-up. Predictions were generally in good agreement with field measurements for the period 1983--1994. Fractional contributions of coolant and moderator systems to the environmental tritium release were calculated by least square analysis using field data from the Wolsong plant. From the analysis, it was found that: (1) about 94% of tritiated heavy water loss came from the coolant system; (2) however, about 64% of environmental tritium release came from the moderator system. Predictions of environmental tritium release were also in good agreement with field data from a few other CANDU plants. The model was used to calculate future tritium build-up and environmental tritium release at Wolsong site, Korea, where one unit is operating and three more units are under construction. The model predicts the tritium inventory at Wolsong site to increase steadily until it reaches the maximum of 66.3 MCi in the year 2026. The model also predicts the tritium release rate to reach a maximum of 79 KCi/yr in the year 2012. To reduce the tritium inventory at Wolsong site, construction of a tritium removal facility (TRF) is under consideration. The maximum needed TRF capacity of 8.7 MCi/yr was calculated to maintain tritium concentration effectively in CANDU reactors

  13. Management of tritium at nuclear facilities

    International Nuclear Information System (INIS)

    1984-01-01

    This report presents extending summaries of the works of the participants to an IAEA co-ordinated research programme, ''Handling Tritium - bearing effluents and wastes''. The subjects covered include production of tritium in nuclear power plants (mainly heavy water and light water reactors), as well as at reprocessing plants; removal and enrichment of tritium at nuclear facilities; conditioning methods and characteristics of immobilized tritium of low and high concentration; some potential methods of storage and disposal of tritium. In addition to the conclusions of this three-years work, possible activities in the field are recommended

  14. The development of a versatile field program for measuring tritium in real-time

    International Nuclear Information System (INIS)

    Rego, J.H.; Smith, D.K.

    1994-04-01

    Robust sample handling and liquid scintillation counting procedures have been developed to routinely monitor tritium in the field relative to the 20,000 pCi/L drinking water standard. This procedure allows tritium to be monitored hourly during 24 hour drilling operations at depths in the saturated zone potentially contaminated by sub-surface nuclear weapons testing at the Nevada Test Site. Using retrofitted shock hardened and vibration damped counters and strict analytical protocols, tritium may be measured rapidly in the field under hostile conditions. Concentration standards and ''dead'' tritium backgrounds are prepared weekly in a central laboratory and delivered to remote monitoring locations where they are recounted daily as a check on counter efficiency and calibration. Portable counters are located in trailers and powered off a battery pack and line filter fed by mobile generator. Samples are typically ground-waters mixed with drilling fluids returned after circulation through a drill string. Fluids are aerated and ''de-foamed,'' filtered, mixed with scintillation cocktail and subsequently dark-adapted before counting. Besides meeting regulatory requirements, ''real-time'' monitoring affords drilling and field personnel maximum protection against potential exposure to radionuclides; for routine operations, tritium activities may not exceed a 10,000 pCi/L threshold

  15. Scientists from all over the world attend the 2005 Frederic Joliot/Otto Hahn summer school at Karlsruhe; Wissenschaftler aus aller Welt bei der ''Frederic Joliot/Otto Hahn Summer School 2005'' in Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, V.H.; Fischer, U. [Forschungszentrum Karlsruhe, Inst. fuer Reaktorsicherheit, Eggenstein-Leopoldshafen (Germany)

    2005-10-01

    The Frederic Joliot/Otto Hahn Summer School annually organized alternately by the Karlsruhe Research Center and the Commissariat a l'Energie Atomique (CEA), Cadarche, France, this year was held at the Karlsruhe Congress Center. In line with the mission of the School to disseminate nuclear competence an a broad basis among young scientists from all over the world, lectures covered reactor physics, nuclear fuels, and nuclear systems. Speakers from leading international research institutions presented introductions to their respective fields, outlined the current state of the art, and also highlighted areas in need of further development and, thus, likely to offer challenges to young scientists. Next year's Frederic Joliot/Otto Hahn Summer School will be organized by CEA and held at Cadarache, France. (orig.)

  16. Handling of tritium at TFTR

    International Nuclear Information System (INIS)

    Pierce, C.W.; Howe, H.J.; Yemin, L.; Lind, K.

    1977-01-01

    Some of the engineering approaches taken at TFTR for the tritium control systems are discussed as the requirements being placed on the tritium systems by the operating scenarios of the Tokamak. The tritium control systems presently being designed for TFTR will limit the annual release to the environment to less than 100 curies

  17. Tritium monitor with improved gamma-ray discrimination

    Science.gov (United States)

    Cox, Samson A.; Bennett, Edgar F.; Yule, Thomas J.

    1985-01-01

    Apparatus and method for selective measurement of tritium oxide in an environment which may include other radioactive components and gamma radiation, the measurement including the selective separation of tritium oxide from a sample gas through a membrane into a counting gas, the generation of electrical pulses individually representative by rise times of tritium oxide and other radioactivity in the counting gas, separation of the pulses by rise times, and counting of those pulses representative of tritium oxide. The invention further includes the separate measurement of any tritium in the sample gas by oxidizing the tritium to tritium oxide and carrying out a second separation and analysis procedure as described above.

  18. Two investigations concerning the release of tritium. I. Tritium leakage from 3H(Sc) EC-detectors

    International Nuclear Information System (INIS)

    Bergman, C.; Wesslen, E.

    1977-01-01

    Recently the manufacturers of EC-detectors for gas chromatographs introduced a new type of 3 H EC-detector where the tritium is bound to scandium instead of to titanium and has an activity up to 1 Ci. It is expected that the scandium-based detector will take a great part of the Swedish EC-detector market. The Swedish National Institute of Radiation Protection is anxious to make sure that the introduction of the new detector, which will be used at higher temperature, will not give rise to any increased risk of tritium intake to the personnel handling the chromatographs. The leakage of tritium from commercially available 3 H(Sc) EC-detectors containing 1 Ci of tritium was measured as a function of the detector temperature. Tritium appears both in the form of tritium gas dissolved in the scandium and in the form of tritide. The gas evaporates rather easily with increasing temperature while the dissociation of the tritide is a slower process. The evaporation of tritium due to the dissociation of the tritide was found to be negligible, less than 0.2 μCi/h at temperatures less than 100 0 C, but rises rapidly with temperature. The study also showed that even when the detector is stored at room temperature, a re-distribution of the tritium occures, from the tritide to the dissolved tritium gas, which then easily evaporates even at moderately elevated temperatures

  19. Analysis of the organically bound tritium

    International Nuclear Information System (INIS)

    Baglan, N.; Alanic, G.

    2011-01-01

    In environmental samples, tritium is very often combined with the fraction of bulk water accumulated in the sample but also in the form of organically bound tritium. When the tritium is organically bound, 2 forms can coexist: the exchangeable fraction and the non-exchangeable fraction. The analysis of the different forms of tritium present in the sample is necessary to assess the sanitary hazards due to tritium. The total tritium is obtained from the analysis of the water released when the fresh sample is burnt while the organically bound tritium is obtained from the analysis of the water released when the dry extract of the sample is burnt. The measurement of the exchangeable fraction and the non-exchangeable fraction requires an additional stage of labile exchange. The exchangeable fraction is determined from the analysis of the water released during the labile exchange and the non-exchangeable fraction is determined from the water released during the combustion of the dry extract of the labile exchange

  20. Data base for failure/maintenance at the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Gruetzmacher, K.M.; Wilhelm, R.C.

    1986-01-01

    A data collection system for obtaining availability/reliability data on fusion technology has been installed at the Tritium Systems Test Assembly (TSTA) of Los Alamos National Laboratory. The system is fashioned after the Centralized Reliability Data Organization developed at Oak Ridge National Laboratory. The data collection system is currently being used at TSTA and is working well. The amount of data that has been collected at TSTA to date is not sufficient to indicate meaningful trends in availability analysis

  1. A review of tritium licensing requirements

    International Nuclear Information System (INIS)

    Meikle, A.B.

    1982-12-01

    Present Canadian regulations and anticipated changes to these regulations relevant to the utilization of tritium in fusion facilities and in commercial applications have been reviewed. It is concluded that there are no serious licensing obstacles, but there are a number of requirements which must be met. A license will be required from Atomic Energy Control Board if Ontario Hydro tritium is to be applied by other users. A license is required from the Federal Government to export or import tritium. A licensed container will be required for the storage and shipping of tritium. The containers being designed by AECL and Ontario Hydro and which are currently being tested will adequately store and ship all of the Ontario Hydro tritium but are unnecessarily large for the small quantities required by the commercial tritium users. Also, some users may prefer to receive tritium in gaseous form. An additional, smaller container should be considered. The licensing of overseas fusion facilities for the use of tritium is seen as a major undertaking offering opportunities to Canadian Fusion Fuels Technology Project to undertake health, safety and environmental analysis on behalf of these facilities

  2. Status report on the Karlsruhe prototype superconducting proton linerar accelerator

    International Nuclear Information System (INIS)

    Citron, A.

    1974-01-01

    A short intoduction about linear accelerators in general and the advantage of using superconducting resonators is given. Subsequently some basic efforts on r.f. superconductivity are recalled and the status of technology of surface preparations is reported. The status of the Karlsruhe accelerator is given. In the low energy region some difficulties caused by mechanical instabilities had to be overcome. Protons have been accelerated in this part. Model studies for the subsequent sections of the accelerator have been started and look promising. (author)

  3. Management of Tritium in ITER Waste

    International Nuclear Information System (INIS)

    Rosanvallon, S.; Benchikhoune, M.; Ciattaglia, S.; Uzan, J. Elbez; Na, B. C.; Taylor, N.; Gastaldi, O.

    2011-01-01

    ITER will use tritium as fuel. Procedures and processes are thus put in place in order to recover the tritium that is not used in the fusion reaction, including from waste and effluents. The tritium thus recovered can be re-injected into the fuel cycle. Moreover, tritium content and thus outgassing may be a safety concern, because of the potential for releases to the environment, both from the facility and from the final disposal (subjected to stringent acceptance criteria in the current waste final disposal). The aim of this paper is to present the measures considered to deal with the specific case of tritium in the liquid and solid waste that will arise from ITER operation and decommissioning. It concerns the processes that are considered from the waste production to its final disposal and in particular: the tritium removal stages (in-situ divertor baking at 350 C and tritium removal from solid waste and liquid and gaseous effluents), the removal of dust contamination (dust containing tritium produced by plasma-wall interaction and by the maintenance/ refurbishment processes) and the measures to enable safe processing and storage of the waste (wall-liner in the hot cell facility to limit concrete contamination and interim storage enabling tritium decay for waste that could not be directly accepted in the host-country final disposal facilities). (authors)

  4. Tritium separation from light and heavy water by bipolar electrolysis

    International Nuclear Information System (INIS)

    Ramey, D.W.; Petek, M.; Taylor, R.D.; Kobisk, E.H.; Ramey, J.; Sampson, C.A.

    1979-10-01

    Use of bipolar electrolysis with countercurrent electrolyte flow to separate hydrogen isotopes was investigated for the removal of tritium from light water effluents or from heavy water moderator. Deuterium-tritium and protium-tritium separation factors occurring on a Pd-25% Ag bipolar electrode were measured to be 2.05 to 2.16 and 11.6 to 12.4 respectively, at current densities between 0.21 and 0.50 A cm -2 , and at 35 to 90 0 C. Current densities up to 0.3 A cm -2 have been achieved in continuous operation, at 80 to 90 0 C, without significant gas formation on the bipolar electrodes. From the measured overvoltage at the bipolar electrodes and the electrolyte conductivity the power consumption per stage was calculated to be 3.0 kwh/kg H 2 O at 0.2 A cm -2 and 5.0 kwh/kg H 2 O at 0.5 A cm -2 current density, compared to 6.4 and 8.0 kwh/kg H 2 O for normal electrolysis. A mathematical model derived for hydrogen isotope separation by bipolar electrolysis, i.e., for a square cascade, accurately describes the results for protium-tritium separation in two laboratory scale, multistage experiments with countercurrent electrolyte flow; the measured tiritum concentration gradient through the cascade agreed with the calculated values

  5. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Barry B [ORNL; Bruffey, Stephanie H [ORNL; DelCul, Guillermo Daniel [ORNL; Walker, Trenton Baird [ORNL

    2016-08-31

    Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using nonradioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.

  6. Development of a wetproofed catalyst recombiner for removal of airborne tritium

    International Nuclear Information System (INIS)

    Chuang, K.T.; Quaiattini, R.J.; Thatcher, D.R.P.; Puissant, L.J.

    1985-01-01

    For cleanup of airborne tritium at tritium handling facilities, it is generally agreed that the most reliable method is to convert the tritium in a recombiner into water vapor followed by adsorption of the vapor in a molecular sieve drier. Decontamination factors of 10 3 to 10 6 have been reported. Wetproofed catalysts developed at Chalk River Nuclear Laboratories have been shown to maintain their activities when exposed to liquid water or air at 100% relative humidity. When a wetproofed catalyst recombiner is used, operation can be carried out at room temperatures thus greatly simplifying the system. Two catalysts, Pt/carbon and Pt/silica, were prepared for this study. The activity of Pt/carbon was measured with hydrogen and found to be comparable to the published results for conventional Pt/alumina catalysts at similar conditions. Experiments were carried out for the following range of operating conditions: flows from 0.3 to 3.0 m/s, pressure from 100 to 500 kPa. Tritium was added to the air stream at 1-5 MBq.m -3 (30-140 μCi.m -3 ). No significant isotope and/or pressure effects were observed. To date lifetime data of greater than four months have been obtained

  7. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    Energy Technology Data Exchange (ETDEWEB)

    Bruffey, Stephanie H [ORNL; Spencer, Barry B [ORNL; DelCul, Guillermo Daniel [ORNL

    2016-08-31

    This report is issued as the first revision to FCRD-MRWFD-2016-000297. Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using non-radioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.

  8. Tritium concentrations in natural waters in Japan before use of a large quantity of tritium on its fusion program

    International Nuclear Information System (INIS)

    Kaji, Toshio; Momoshima, Noriyuki; Takashima, Yoshimasa.

    1989-01-01

    To clarify environmental tritium levels in Japan before use of a large quantity of tritium on its fusion program, the authors analyzed the tritium concentrations in various water samples, such as rain, river, lake, coastal sea and deep sea waters in Japan. The tritium concentrations in rain water were high at higher latitude. The definite differences of the tritium concentrations due to the weather conditions or seasons were not observed. The average tritium concentration in river water was 51.5 pCi/l in 1982 and that in lake water was 63.5 pCi/l in 1983. The vertical profiles of the tritium concentrations in the representative lakes were almost homogeneous except surface water. The average tritium concentrations in coastal seawater were about 20 pCi/l in both 1982 and 1983. The tendency of the increased tritium level with latitude as reported in literature was not observed by these experiments. Tritium levels in natural water in small isolated islands were lower than those at other places. In the Japan Sea, it was recognized that tritium was distributed down to around 2000 m in depth. This means that the more active vertical mixing of water masses than that in the Pacific Ocean is taking place. (author)

  9. Issues Associated with Tritium Legacy Materials

    International Nuclear Information System (INIS)

    Mills, Michael

    2008-01-01

    This paper highlights some of the issues associated with the treatment of legacy materials linked to research into tritium over many years and also of materials used to contain or store tritium. The aim of the work is to recover tritium where practicable, and to leave the residual materials passively safe, either for disposal or for continued storage. A number of materials are currently stored at AWE which either contain tritium or have been used in tritium processing. It is essential that these materials are characterised such that a strategy may be developed for their safe stewardship, and ultimately for their treatment and disposal. Treatment processes for such materials are determined by the application of best practicable means (BPM) studies in accordance with the requirements of the Environment Agency of England and Wales. Clearly, it is necessary to understand the objectives of legacy material treatment / processing and the technical options available before a definitive BPM study is implemented. The majority of tritium legacy materials with which we are concerned originate from the decommissioning of a facility that was operational from the late 1950's through to the late 1990's when, on post-operative clear-out (POCO), the entire removable and transportable tritium inventory was moved to new, purpose built facilities. One of the principle tasks to be undertaken in the new facilities is the treatment of the legacy materials to recover tritium wherever practicable, and render the residual materials passively safe for disposal or continued storage. Where tritium recovery was not reasonably or technically feasible, then a means to assure continued safe storage was to be devised and implemented. The legacy materials are in the following forms: - Uranium beds which may or may not contain adsorbed tritium gas; - Tritium gas stored in containers; - Tritide targets for neutron generation; - Tritides of a broad spectrum of metals manufactured for research / long

  10. Laboratories in search of a job

    International Nuclear Information System (INIS)

    MacKenzie, Debora

    1988-01-01

    The paper concerns the European Community's Joint Research Centre (JRC), which has four laboratory complexes at Ispra, Geel, Petten and Karlsruhe. Research Ministers, the Brussels bureaucrats and the scientists themselves agree that a decision must be made soon about the role of these laboratories. Critics allege that the JRC is hopelessly bureaucratic, lacks scientific direction and duplicates work done in National Laboratories. In 1987 the European Commission recommended that the JRC should spend 15 per cent of its time on work for contract customers, but scientists at the JRC are doubtful that National Governments will provide funding for research at the Laboratories. Problems at JRC are discussed including: diversifying into new areas of research, management problems and aging staff. A brief description is given of the research work carried out at each of the four laboratories. (U.K.)

  11. 19 February 2015 - Professor Holger Hanselka President Karlsruhe Institute of Technology Federal Republic of Germany

    CERN Multimedia

    Gadmer, Jean-Claude

    2015-01-01

    visiting the CMS cavern with CMS Collaboration Deputy Spokesperson K. Borras and CMS Collaboration, Team Leader, Karlsruhe Institut fur Technologie T. Muller and signing the Guest book with CERN Director-General R. Heuer. C. Schaefer present throughout.

  12. Use of passive sampling for atmospheric tritium monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira Ideias, P.; Pierrard, O.; Tournieux, D. [Institut de Radioprotection et de Surete Nucleaire - IRSN (France); Tenailleau, L. [Marine nationale (France)

    2014-07-01

    conducted both in laboratory and in real environmental conditions with different tritium levels. For important tritium activities 10-25 kBq.L{sup -1} the passive devices were tested in an accidentally contaminated site in France and for low activities 1-3 Bq.L{sup -1} in the surroundings of a nuclear installation. In both cases the tritium passive samplers performances were compared with an active method (condenser). The result indicates that the measured activity from the passive technique and the active one showed a very good agreement. The monitoring results with passive sampling showed that this technology can be used both for environmental monitoring programmes (sampling frequency: weekly to monthly) and radiological emergency situations (sampling time reduced to 24 H). This system can also be very useful for radiological mapping. These results are encouraging for future studies aiming to develop the {sup 14}C and HT passive samplers, since these devices offer a unique complement to other sample/measurement techniques and will most likely be more commonly used. Document available in abstract form only. (authors)

  13. In-situ Tritium Measurements of the Tokamak Fusion Test Reactor Bumper Limiter Tiles Post D-T Operations

    International Nuclear Information System (INIS)

    C.A. Gentile; C.H. Skinner; K.M. Young; M. Nishi; S. Langish; et al

    1999-01-01

    The Princeton Plasma Physics Laboratory (PPPL) Engineering and Research Staff in collaboration with members of the Japan Atomic Energy Research Institute (JAERI), Tritium Engineering Laboratory have commenced in-situ tritium measurements of the TFTR bumper limiter. The Tokamak Fusion Test Reactor (TFTR) operated with tritium from 1993 to 1997. During this time ∼ 53,000 Ci of tritium was injected into the TFTR vacuum vessel. After the cessation of TFTR plasma operations in April 1997 an aggressive tritium cleanup campaign lasting ∼ 3 months was initiated. The TFTR vacuum vessel was subjected to a regimen of glow discharge cleaning (GDC) and dry nitrogen and ''moist air'' purges. Currently ∼ 7,500 Ci of tritium remains in the vacuum vessel largely contained in the limiter tiles. The TFTR limiter is composed of 1,920 carbon tiles with an average weight of ∼ 600 grams each. The location and distribution of tritium on the TFTR carbon tiles are of considerable interest. Future magnetically confined fusion devices employing carbon as a limiter material may be considerably constrained due to potentially large tritium inventories being tenaciously held on the surface of the tiles. In-situ tritium measurements were conducted in TFTR bay L during August and November 1998. During the bay L measurement campaign open wall ion chambers and ultra thin thermoluminscent dosimeters (TLD) affixed to a boom and end effector were deployed into the vacuum vessel. The detectors were designed to make contact with the surface of the bumper limiter tile and to provide either real time (ion chamber) or passive (TLD) indication of the surface tritium concentration. The open wall ion chambers were positioned onto the surface of the tile in a manner which employed the surface of the tile as one of the walls of the chamber. The ion chambers, which are (electrically) gamma insensitive, were landed at four positions per tile. The geometry for landing the TLD's provided measurement at 24

  14. Overview of light sources powered by tritium

    International Nuclear Information System (INIS)

    Wu Jian; Lei Jiarong; Liu Wenke

    2012-01-01

    Due to their long lifespan and stable intensity, light sources initiated by tritium instead of electricity or batteries are suitable for low level lighting applications. Therefore, tritium-based radioluminescent (RL) light sources are widely used in both military and civil applications. However, traditional tritium lights with the gas tube structure have several shortcomings: (1) the phosphors are opaque; (2) the glass tube is fragile and easily broken; and (3) the beta kinetic energy is attenuated due to the sorption by the gas; etc. As a result, further application of the tritium lights is limited. In this paper, the lighting mechanism and radiation safety of tritium-based RL light sources are briefly reviewed. Besides, the history and prospects of the development of tritium-based RL light source are discussed. Due to their long lifespan and stable intensity, light sources initiated by tritium instead of electricity or batteries are suitable for low level lighting applications. Therefore, tritium- based radioluminescent (RL) light sources are widely used in both military and civil applications. However, traditional tritium lights with the gas tube structure have several short- comings: (1) the phosphors are opaque; (2) the glass tube is fragile and easily broken; and (3) the beta kinetic energy is attenuated due to the sorption by the gas; etc. As a result, further application of the tritium lights is limited. In this paper, the lighting mechanism and radiation safety of tritium-based RL, light sources are briefly reviewed. Besides, the history and prospects of the development of tritium-based RL light source are discussed. (authors)

  15. Atmospheric tritium. Measurement and application

    International Nuclear Information System (INIS)

    Frejaville, Gerard

    1967-02-01

    The possible origins of atmospheric tritium are reviewed and discussed. A description is given of enrichment (electrolysis and thermal diffusion) and counting (gas counters and liquid scintillation counters) processes which can be used for determining atmospheric tritium concentrations. A series of examples illustrates the use of atmospheric tritium for resolving a certain number of hydrological and glaciological problems. (author) [fr

  16. Measurement of tritium concentration in urine

    International Nuclear Information System (INIS)

    Sekiyama, Shigenobu; Deshimaru, Takehide

    1979-01-01

    Concerning the safety management of the advanced thermal reactor ''Fugen'', the internal exposure management for tritium is important, because heavy water is used as the moderator in the reactor, and tritium is produced in the heavy water. Tritium is the radioactive nuclide with the maximum β-ray energy of 18 keV, and the radiation exposure is limited to the internal exposure in human bodies, as tritium is taken in through the skin and by breathing. The tritium concentration in urine of the operators of the Fugen plant was measured. As for tritium measurement, the analysis of raw urine, the analysis after passing through mixed ion exchange resin and the analysis after distillation are applied. The scintillator, the liquid scintillation counter, the ion exchange resin and the distillator are introduced. The preliminary survey was conducted on the urine sample, the scintillator the calibration, etc. The measuring condition, the measurement of efficiency, and the limitation of detection with various background are explained, with the many experimental data and the calculating formula. Concerning the measured tritium concentration in urine, the tritium concentrations in distilled urine, raw urine and the urine refined with ion exchange resin were compared, and the correlation formulae are presented. The actual tritium concentration value in urine was less than 50 pci/ml. The measuring methods of raw urine and the urine refined with ion exchange resin are adequate as they are quick and accurate. (Nakai, Y.)

  17. Tritium-related materials problems in fusion reactors

    International Nuclear Information System (INIS)

    Hickman, R.G.

    1976-01-01

    Pressing materials problems that must be solved before tritium can be used to produce energy economically in fusion reactors are discussed. The following topics are discussed: (1) breeding tritium, (2) recovering bred tritium, (3) containing tritium, (4) fuel recycling, and (5) laser-fusion fueling

  18. Tritium sorption by cement and subsequent release

    International Nuclear Information System (INIS)

    Ono, F.; Yamawaki, M.

    1995-01-01

    In a fusion reactor or tritium-handling facilities, contamination of concrete by tritium and subsequent release from it to the reator or experimental room is a matter of problem for safe control of tritium and management of operational environment. In order to evaluate this tritium behavior, interaction of tritiated water with concrete or cement should be clarified. In the present study, HTO sorption and subsequent release from cement were experimentally studied.(1)Sorption experiments were conducted using columns packed with cement particles of different sizes. From the analysis of the breakthrough curve, tritium diffusivity in macropores and microparticles were evaluated.(2)From the short-term tritium release experiments, effective desorption rate constants were evaluated and the effects of temperature and moisture were studied.(3)In the long-term tritium release experiments to 6000h, the tritium release mechanism was found to be composed of three kinds of water: initially from capillary water, and in the second stage from gel water and from the water in the cement crystal.(4)Tritium release behavior by heat treatment to 800 C was studied. A high temperature above 600 C was required for the tritium trapped in the crystal water to be released. (orig.)

  19. Tritium environmental transport studies at TFTR

    International Nuclear Information System (INIS)

    Ritter, P.D.; Dolan, T.J.; Longhurst, G.R.

    1993-01-01

    Environmental tritium concentrations will be measured near the Tokamak Fusion Test Reactor (TFTR) to help validate dynamic models of tritium transport in the environment. For model validation the database must contain sequential measurements of tritium concentrations in key environmental compartments. Since complete containment of tritium is an operational goal, the supplementary monitoring program should be able to glean useful data from an unscheduled acute release. Portable air samplers will be used to take samples automatically every 4 hours for a weak after an acute release, thus obtaining the time resolution needed for code validation. Samples of soil, vegetation, and foodstuffs will be gathered daily at the same locations as the active air monitors. The database may help validate the plant/soil/air part of tritium transport models and enhance environmental tritium transport understanding for the International Thermonuclear Experimental Reactor (ITER)

  20. Tritium environmental transport studies at TFTR

    Science.gov (United States)

    Ritter, P. D.; Dolan, T. J.; Longhurst, G. R.

    1993-06-01

    Environmental tritium concentrations will be measured near the Tokamak Fusion Test Reactor (TFTR) to help validate dynamic models of tritium transport in the environment. For model validation the database must contain sequential measurements of tritium concentrations in key environmental compartments. Since complete containment of tritium is an operational goal, the supplementary monitoring program should be able to glean useful data from an unscheduled acute release. Portable air samplers will be used to take samples automatically every 4 hours for a week after an acute release, thus obtaining the time resolution needed for code validation. Samples of soil, vegetation, and foodstuffs will be gathered daily at the same locations as the active air monitors. The database may help validate the plant/soil/air part of tritium transport models and enhance environmental tritium transport understanding for the International Thermonuclear Experimental Reactor (ITER).