WorldWideScience

Sample records for tritium breeding capability

  1. Analysis of Time-Dependent Tritium Breeding Capability of Water Cooled Ceramic Breeder Blanket for CFETR

    Science.gov (United States)

    Gao, Fangfang; Zhang, Xiaokang; Pu, Yong; Zhu, Qingjun; Liu, Songlin

    2016-08-01

    Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor (CFETR) operating on a Deuterium-Tritium (D-T) fuel cycle. It is necessary to study the tritium breeding ratio (TBR) and breeding tritium inventory variation with operation time so as to provide an accurate data for dynamic modeling and analysis of the tritium fuel cycle. A water cooled ceramic breeder (WCCB) blanket is one candidate of blanket concepts for the CFETR. Based on the detailed 3D neutronics model of CFETR with the WCCB blanket, the time-dependent TBR and tritium surplus were evaluated by a coupling calculation of the Monte Carlo N-Particle Transport Code (MCNP) and the fusion activation code FISPACT-2007. The results indicated that the TBR and tritium surplus of the WCCB blanket were a function of operation time and fusion power due to the Li consumption in breeder and material activation. In addition, by comparison with the results calculated by using the 3D neutronics model and employing the transfer factor constant from 1D to 3D, it is noted that 1D analysis leads to an over-estimation for the time-dependent tritium breeding capability when fusion power is larger than 1000 MW. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2015GB108002, and 2014GB119000), and by National Natural Science Foundation of China (No. 11175207)

  2. Tritium breeding in fusion reactors

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1982-10-01

    Key technological problems that influence tritium breeding in fusion blankets are reviewed. The breeding potential of candidate materials is evaluated and compared to the tritium breeding requirements. The sensitivity of tritium breeding to design and nuclear data parameters is reviewed. A framework for an integrated approach to improve tritium breeding prediction is discussed with emphasis on nuclear data requirements

  3. Tritium breeding blanket

    International Nuclear Information System (INIS)

    Smith, D.; Billone, M.; Gohar, Y.; Baker, C.; Mori, S.; Kuroda, T.; Maki, K.; Takatsu, H.; Yoshida, H.; Raffray, A.; Sviatoslavsky, I.; Simbolotti, G.; Shatalov, G.

    1991-01-01

    The terms of reference for ITER provide for incorporation of a tritium breeding blanket with a breeding ratio as close to unity as practical. A breeding blanket is required to assure an adequate supply of tritium to meet the program objectives. Based on specified design criteria, a ceramic breeder concept with water coolant and an austenitic steel structure has been selected as the first option and lithium-lead blanket concept has been chosen as an alternate option. The first wall, blanket, and shield are integrated into a single unit with separate cooling systems. The design makes extensive use of beryllium to enhance the tritium breeding ratio. The design goals with a tritium breeding ratio of 0.8--0.9 have been achieved and the R ampersand D requirements to qualify the design have been identified. 4 refs., 8 figs., 2 tabs

  4. Tritium breeding materials

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.

    1984-03-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved

  5. Tritium breeding materials

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.A.

    1984-01-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved

  6. Tritium fuel cycle modeling and tritium breeding analysis for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli; Pan, Lei; Lv, Zhongliang; Li, Wei; Zeng, Qin, E-mail: zengqin@ustc.edu.cn

    2016-05-15

    Highlights: • A modified tritium fuel cycle model with more detailed subsystems was developed. • The mean residence time method applied to tritium fuel cycle calculation was updated. • Tritium fuel cycle analysis for CFETR was carried out. - Abstract: Attaining tritium self-sufficiency is a critical goal for fusion reactor operated on the D–T fuel cycle. The tritium fuel cycle models were developed to describe the characteristic parameters of the various elements of the tritium cycle as a tool for evaluating the tritium breeding requirements. In this paper, a modified tritium fuel cycle model with more detailed subsystems and an updated mean residence time calculation method was developed based on ITER tritium model. The tritium inventory in fueling system and in plasma, supposed to be important for part of the initial startup tritium inventory, was considered in the updated mean residence time method. Based on the model, the tritium fuel cycle analysis of CFETR (Chinese Fusion Engineering Testing Reactor) was carried out. The most important two parameters, the minimum initial startup tritium inventory (I{sub m}) and the minimum tritium breeding ratio (TBR{sub req}) were calculated. The tritium inventories in steady state and tritium release of subsystems were obtained.

  7. Low technology high tritium breeding blanket concept

    International Nuclear Information System (INIS)

    Gohar, Y.; Baker, C.C.; Smith, D.L.

    1987-10-01

    The main function of this low technology blanket is to produce the necessary tritium for INTOR operation with minimum first wall coverage. The INTOR first wall, blanket, and shield are constrained by the dimensions of the reference design and the protection criteria required for different reactor components and dose equivalent after shutdown in the reactor hall. It is assumed that the blanket operation at commercial power reactor conditions and the proper temperature for power generation can be sacrificed to achieve the highest possible tritium breeding ratio with minimum additional research and developments and minimal impact on reactor design and operation. A set of blanket evaluation criteria has been used to compare possible blanket concepts. Six areas: performance, operating requirements, impact on reactor design and operation, safety and environmental impact, technology assessment, and cost have been defined for the evaluation process. A water-cooled blanket was developed to operate with a low temperature and pressure. The developed blanket contains a 24 cm of beryllium and 6 cm of solid breeder both with a 0.8 density factor. This blanket provides a local tritium breeding ratio of ∼2.0. The water coolant is isolated from the breeder material by several zones which eliminates the tritium buildup in the water by permeation and reduces the changes for water-breeder interaction. This improves the safety and environmental aspects of the blanket and eliminates the costly process of the tritium recovery from the water. 12 refs., 13 tabs

  8. Tritium breeding blanket device of D-T reactors

    International Nuclear Information System (INIS)

    Chevereau, G.

    1984-01-01

    This blanket device uses solid tritium breeding materials as those which include, in a known manner, near a neutron breeding plasma, a neutron multiplier medium and a tritium breeding medium, cooled by a cooling fluid circulation. This device is characterized by the fact that the association of the multiplier media and the tritium breeding media is realized by pellet alternated piling up of each of those both media, help in close contact on all their lateral surfaces [fr

  9. Breeding blanket development. Tritium release from breeder

    International Nuclear Information System (INIS)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi; Nagao, Yoshiharu

    2006-01-01

    Engineering data on neutron irradiation performance of tritium breeders are needed to design the breeding blanket of fusion reactor. In this study, tritium release experiments of the breeders were carried out to examine the effects of various parameters (such as sweep gas flow rate, hydrogen content in sweep gas, irradiation temperature and thermal neutron flux) on tritium generation and release behavior. Lithium titanate (Li 2 TiO 3 ) is considered as a candidate tritium breeder in the blanket design of International Thermonuclear Experimental Reactor (ITER). As for the shape of the breeder material, a small spherical form is preferred to reduce the thermal stress induced in the breeder. Li 2 TiO 3 pebbles of about 170g in total weight and with 0.3 and 2 mm in diameter were manufactured by a wet process, and an assembly packed with the binary Li 2 TiO 3 pebbles was irradiated in Japan Materials Testing Reactor (JMTR). The tritium was generated in the Li 2 TiO 3 pebble bed and released from the pebble bed, and was swept downstream using the sweep gas for on-line analysis of tritium content. Concentration of total tritium and gaseous tritium (HT or T 2 gas) released from the Li 2 TiO 3 pebble bed were measured by ionization chambers, and the ratio of (gaseous tritium)/(total tritium) was evaluated. The sweep gas flow rate was changed from 100 to 900cm 3 /min, and hydrogen content in the sweep gas was changed from 100 to 10000 ppm. Furthermore, thermal neutron flux was changed using a window made of hafnium (Hf) neutron absorber. The irradiation temperature at an outer region of the Li 2 TiO 3 pebble bed was held between 200 and 400degC. The main results of this experiment are summarized as follows. 1) When the temperature at the outside edge of the Li 2 TiO 3 pebble bed exceeded 100degC, the tritium release from the Li 2 TiO 3 pebble bed started. The ratio of the tritium release rate and the tritium generation rate (normalized tritium release rate: R/G) reached

  10. Tokamak fusion reactors with less than full tritium breeding

    International Nuclear Information System (INIS)

    Evans, K. Jr.; Gilligan, J.G.; Jung, J.

    1983-05-01

    A study of commercial, tokamak fusion reactors with tritium concentrations and tritium breeding ratios ranging from full deuterium-tritium operation to operation with no tritium breeding is presented. The design basis for these reactors is similar to those of STARFIRE and WILDCAT. Optimum operating temperatures, sizes, toroidal field strengths, and blanket/shield configurations are determined for a sequence of reactor designs spanning the range of tritium breeding, each having the same values of beta, thermal power, and first-wall heat load. Additional reactor parameters, tritium inventories and throughputs, and detailed costs are calculated for each reactor design. The disadvantages, advantages, implications, and ramifications of tritium-depleted operation are presented and discussed

  11. In-pile test of tritium release from tritium breeding materials (VOM-21H experiment)

    International Nuclear Information System (INIS)

    Kurasawa, Toshimasa; Takeshita, Hidefumi; Watanabe, Hitoshi; Yoshida, Hiroshi.

    1986-10-01

    Material development and blanket design of lithium-based ceramics such as lithium oxide, lithium aluminate, lithium silicate and lithium zirconate have been performed in Japan, United State of America and Europian Communities. Lithium oxide is a most attractive candidate for tritium breeding materials because of its high lithium density, high thermal conductivity and good tritium release performance. This work has been done to clarify the characteristics of tritium release and recovery from Li 2 O by means of in-situ tritium release measurement. The effects of temperature and sweep gas composition on the tritium release were investigated in this VOM-21H Experiment. Good measurement of tritium release was achieved but there were uncertainties in reproduciblity of data. The experimental results show that the role of surface adsorption/desorption makes a significant contribution to the tritium release and tritium inventory. Also, it is necessary to define the rate limiting process either diffusion or surface adsorption/desorption. (author)

  12. Assessment of tritium breeding requirements for fusion power reactors

    International Nuclear Information System (INIS)

    Jung, J.

    1983-12-01

    This report presents an assessment of tritium-breeding requirements for fusion power reactors. The analysis is based on an evaluation of time-dependent tritium inventories in the reactor system. The method presented can be applied to any fusion systems in operation on a steady-state mode as well as on a pulsed mode. As an example, the UWMAK-I design was analyzed and it has been found that the startup inventory requirement calculated by the present method significantly differs from those previously calculated. The effect of reactor-parameter changes on the required tritium breeding ratio is also analyzed for a variety of reactor operation scenarios

  13. Analysis of Tritium Breeding in the Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Hong, SeongHee; Park, YunSeo; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    In this paper, neutronic analyses are conducted on redesign of TMs which have high tritium breeding performance based on results of previous study. Calculation model is simplified, there is no effect to cover very complex geometry of fusion reactor for this study. As spent fuel disposal problem is issued in nuclear industry, FFHR is one of the most fascinating candidates for solving this problem through waste transmutation. Our research team also was designed a full core FFHR for waste transmutation. However, in this study, Test Module (TM) as test bed of FFHR for various purposes are analyzed. Analysis of tritium breeding on the TM was conducted as a first phase among TMs having various purposes. Because there are no fissionable materials in the TM for tritium breeding, geometry and neutronic reactions of its simpler compared to TM for waste transmutation and power production. Additionally, it is important database for tritium self-sufficiency as basic design condition of TM. In the previous study, neutronic analyses are conducted on these various TMs: Helium cooled solid breeder (HCSB), water cooled solid breeder (WCSB), Helium cooled dual breeder (HCDB) and molten-salt cooled liquid breeder (MSLB) in order to understand design characteristics. Neutronics calculations are performed with MCNPX 2.6.0 with ENDF/B-VII.0 neutron cross section library and activity and time-dependent tritium production calculations are performed with CINDER'90. In this paper, analysis of tritium breeding on WCHESL and WCHELL as TM is conducted. WCHESL is designed for effective tritium breeding performance and it satisfies design conditions. On the other hand WCHELL is designed for tritium breeding as much as possible and it also satisfies design conditions. However, neutron multiplication performance with these TM is not outstanding. WCHESL consist ceramic Li breeder, its period is 4.15E+08 sec.

  14. Tritium inventory and permeation in the ITER breeding blanket

    International Nuclear Information System (INIS)

    Violante, V.; Tosti, S.; Sibilia, C.; Felli, F.; Casadio, S.; Alvani, C.

    2000-01-01

    A model has allowed us to perform the analysis of the tritium inventory and permeation in the international thermonuclear experimental reactor (ITER) breeding blanket under the hypothesis of steady state conditions. Li 2 ZrO 3 (reference) and Li 2 TiO 3 (alternative) have been studied as breeding materials. The total breeder inventory assessed is 7.64 g for the Li 2 ZrO 3 at reference temperature. The model has also been used for a parametric analysis of the tritium permeation. At reference temperature and purge helium velocity of 0.01 m/s, the HT partial pressure is ranging from 10 to 30 Pa in the breeder and 1.5x10 -3 Pa in the beryllium. At 0.1 m/s of purge helium velocity, the HT partial pressure is reduced of one order by magnitude in the breeder and becomes 5x10 -5 Pa in the beryllium. The tritium permeation into the coolant for the whole blanket is ranging from 100 to 250 mCi per day for purge helium velocity of 0.01 m/s. The analysis of the tritium inventory and permeation for the alternative Li 2 TiO 3 breeding material has been carried out too. The tritium inventory in the breeder is in the range from 6 to 375 g larger than in Li 2 ZrO 3 by about a factor 5; the tritium permeation into coolant is comparable to the Li 2 ZrO 3 one. This analysis provides indications on the influence of the operating parameters on the tritium control in the ITER breeding blanket; particularly the control of the tritium inventory by the temperature and the tritium permeation by the purge gas velocity

  15. Tritium release from lithium titanate, a low-activation tritium breeding material

    International Nuclear Information System (INIS)

    Kopasz, J.P.; Miller, J.M.; Johnson, C.E.

    1994-01-01

    The goals for fusion power are to produce energy in as safe, economical, and environmentally benign a manner as possible. To ensure environmentally sound operation low-activation materials should be used where feasible. The ARIES Tokamak Reactor Study has based reactor designs on the concept of using low-activation materials throughout the fusion reactor. For the tritium breeding blanket, the choices for low activation tritium breeding materials are limited. Lithium titanate is an alternative low-activation ceramic material for use in the tritium breeding blanket. To date, very little work has been done on characterizing the tritium release for lithium titanate. We have thus performed laboratory studies of tritium release from irradiated lithium titanate. The results indicate that tritium is easily removed from lithium titanate at temperatures as low as 600 K. The method of titanate preparation was found to affect the tritium release, and the addition of 0.1% H 2 to the helium purge gas did not improve tritium recovery. ((orig.))

  16. Tritium handling, breeding, and containment in two conceptual fusion reactor designs: UWMAK-II and UWMAK-III

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Larsen, E.M.

    1976-01-01

    Tritium is an essential component of near-term controlled thermonuclear reactor systems. Since tritium is not likely to be available on a large scale at a modest cost, fusion reactor designs must incorporate blanket systems which will be capable of breeding tritium. Because of the radiological activity and capability of assimilation into living tissues, tritium release to the environment must be strictly controlled. The University of Wisconsin has completed three conceptual designs of fusion reactors, UWMAK-I, UWMAK-II, and UWMAK-III. This report discusses the tritium systems for UWMAK-II, a reactor design with a helium cooled solid breeder blanket, and UWMAK-III, a reactor design with a high-temperature liquid breeder blanket. Tritium systems for fueling and recycling, breeding and recovery, and plant containment and control are discussed. (Auth.)

  17. EXOTIC: Development of ceramic tritium breeding materials

    International Nuclear Information System (INIS)

    Kwast, H.; Conrad, R.

    1989-09-01

    In this fifth EXOTIC annual progress report the work carried out in 1988 is reported. For EXOTIC-1, -2 and -3 the post-irradiation examinations have been continued with tritium retention measurements, annealng experiments, determination of physical and mechanical properties and X-ray diffraction analysis. Irradiation of EXOTIC-4 has been performde and the post-irradiation examination has started. Transient tritium release curves are given and analysed. The resulting tritium residence times show that for the Li-zirconates a residence time of less than one day can be achieved in the temperature region of 350-600 C. The loading scheme, the objectives and some fabrication data of EXOTIC-5 are give. Moreover, the fabrication of laboratory scale batches has started to investigate the effect of microstructural parameters on tritium release. Finally, an investigation was started on the system Li 2 O-ZrO 2 , with emphasis on the lithia-rich compositions. 40 figs., 9 refs., 10 tabs

  18. EXOTIC: Development of ceramic tritium breeding materials

    International Nuclear Information System (INIS)

    Flipot, A.J.; Kennedy, P.; Conrad, R.

    1989-03-01

    As part of the joint European Programme on fusion blanket technology three laboratories, Northern Research Laboratories (NRL), Springfields in the UK, SCK/CEN-Mol in Belgium and ECN-Petten in conjunction with JRC-Petten in the Netherlands have worked closely together since 1983 on the development of ceramic breeder materials, the programme being codenamed EXOTIC. Lithium oxides, aluminates, silicates and zirconates have been produced, characterised and irradiated in the HFR-Petten in experiments EXOTIC-1, -2 and -3. EXOTIC-4 is in preparation. In this fourth annual progress report the work achieved in 1987 is reported. For EXOTIC-1 to -3 mainly post irradiation examinations have been carried out like: visual inspection, puncturing of closed capsules, tritium retention measurements and material characterisation. Moreover, tritium release experiments on small specimens have started. SCK/CEN performed a general study on lithium silicates, in particular on the thermal stability. Finally, the fabrication and the characterisation of the materials to be irradiated in experiment EXOTIC-4 are presented. The eight capsules of EXOTIC-4 will be loaed with samples of Li 2 SiO 3 , Li 2 O, Li 2 ZrO 3 , Li 6 Zr 2 O 7 and Li 8 ZrO 6 . The irradiation will last 4 reactor cycles or about 100, Full Power Day, FPD. The main objective is to determine the tritium residence time of the various lithium zirconates. 18 figs., 8 refs., 15 tabs

  19. Tritium breeding potential of the Princeton reference fusion power plant

    International Nuclear Information System (INIS)

    Greenspan, E.; Price, W.G. Jr.

    1974-04-01

    A variational method is used to investigate the tritium breeding potential of the blanket of a fusion reactor. Effectiveness functions indicating the changes in the breeding ratio (BR) due to material density perturbations are calculated with the code SWAN. Results are presented analyzing the sensitivity of the BR both to cross section variations and to material density perturbations. For example, SWAN indicates a 0.176 increase in BR for the replacement of 10% of the flibe by beryllium. Implications of the sensitivity figures for design modification and optimization are discussed. 15 refs., 7 figs

  20. Advancement in tritium transport simulations for solid breeding blanket system

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Alice, E-mail: ying@fusion.ucla.edu [Mechanical and Aerospace Engineering Department, UCLA, Los Angeles, CA 90095 (United States); Zhang, Hongjie [Mechanical and Aerospace Engineering Department, UCLA, Los Angeles, CA 90095 (United States); Merrill, Brad J. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Ahn, Mu-Young [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    In this paper, advancement on tritium transport simulations was demonstrated for a solid breeder blanket HCCR TBS, where multi-physics and detailed engineering descriptions are considered using a commercial simulation code. The physics involved includes compressible purge gas fluid flow, heat transfer, chemical reaction, isotope swamping effect, and tritium isotopes mass transport. The strategy adopted here is to develop numerical procedures and techniques that allow critical details of material, geometric and operational heterogeneity in a most complete engineering description of the TBS being incorporated into the simulation. Our application focuses on the transient assessment in view of ITER being pulsed operations. An immediate advantage is a more realistic predictive and design analysis tool accounting pulsed operations induced temperature variations which impact helium purge gas flow as well as Q{sub 2} composition concentration time and space evolutions in the breeding regions. This affords a more accurate prediction of tritium permeation into the He coolant by accounting correct temperature and partial pressure effects and realistic diffusion paths. The analysis also shows that by introducing by-pass line to accommodate ITER pulsed operations in the TES loop allows tritium extraction design being more cost effective.

  1. A neutron poison tritium breeding controller applied to a water cooled fusion reactor model

    International Nuclear Information System (INIS)

    Morgan, L.W.G.; Packer, L.W.

    2014-01-01

    Highlights: • The issue of a potentially producing a large tritium surplus inventory, within a solid breeder, is addressed. • A possible solution to this problem is presented in the form of a neutron poison based tritium production controller. • The tritium surplus inventory has been modelled by the FATI code for a simplified WCCB model and as a function of time. • It has been demonstrated that the tritium surplus inventory can be managed, which may impact on safety considerations. - Abstract: The generation of tritium in sufficient quantities is an absolute requirement for a next step fusion device such as DEMO due to the scarcity of tritium sources. Although the production of sufficient quantities of tritium will be one of the main challenges for DEMO, within an energy economy featuring several fusion power plants the active control of tritium production may be required in order to manage surplus tritium inventories at power plant sites. The primary reason for controlling the tritium inventory in such an economy would therefore be to minimise the risk and storage costs associated with large quantities of surplus tritium. In order to ensure that enough tritium will be produced in a reactor which contains a solid tritium breeder, over the reactor's lifetime, the tritium breeding rate at the beginning of its lifetime is relatively high and reduces over time. This causes a large surplus tritium inventory to build up until approximately halfway through the lifetime of the blanket, when the inventory begins to decrease. This surplus tritium inventory could exceed several tens of kilograms of tritium, impacting on possible safety and licensing conditions that may exist. This paper describes a possible solution to the surplus tritium inventory problem that involves neutron poison injection into the coolant, which is managed with a tritium breeding controller. A simple PID controller and is used to manage the injection of the neutron absorbing compounds into

  2. A neutron poison tritium breeding controller applied to a water cooled fusion reactor model

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, L.W.G., E-mail: Lee.Morgan@CCFE.ac.uk; Packer, L.W.

    2014-10-15

    Highlights: • The issue of a potentially producing a large tritium surplus inventory, within a solid breeder, is addressed. • A possible solution to this problem is presented in the form of a neutron poison based tritium production controller. • The tritium surplus inventory has been modelled by the FATI code for a simplified WCCB model and as a function of time. • It has been demonstrated that the tritium surplus inventory can be managed, which may impact on safety considerations. - Abstract: The generation of tritium in sufficient quantities is an absolute requirement for a next step fusion device such as DEMO due to the scarcity of tritium sources. Although the production of sufficient quantities of tritium will be one of the main challenges for DEMO, within an energy economy featuring several fusion power plants the active control of tritium production may be required in order to manage surplus tritium inventories at power plant sites. The primary reason for controlling the tritium inventory in such an economy would therefore be to minimise the risk and storage costs associated with large quantities of surplus tritium. In order to ensure that enough tritium will be produced in a reactor which contains a solid tritium breeder, over the reactor's lifetime, the tritium breeding rate at the beginning of its lifetime is relatively high and reduces over time. This causes a large surplus tritium inventory to build up until approximately halfway through the lifetime of the blanket, when the inventory begins to decrease. This surplus tritium inventory could exceed several tens of kilograms of tritium, impacting on possible safety and licensing conditions that may exist. This paper describes a possible solution to the surplus tritium inventory problem that involves neutron poison injection into the coolant, which is managed with a tritium breeding controller. A simple PID controller and is used to manage the injection of the neutron absorbing compounds into

  3. Tritium

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The role played the large amount supply of tritium and its effects are broadly reviewed. This report is divided into four parts. The introductory part includes the history of tritium research. The second part deals with the physicochemical properties of tritium and the compounds containing tritium such as tritium water and labeled compounds, and with the isotope effects and self radiation effects of tritium. The third part deals with the tritium production by artificial reaction. Attention is directed to the future productivity of tritium from B, Be, N, C, O, etc. by using the beams of high energy protons or neutrons. The problems of the accepting market and the accuracy of estimating manufacturing cost are discussed. The expansion of production may bring upon the reduction of cost but also a large possibility of social impact. The irradiation problem and handling problem in view of environmental preservation are discussed. The fourth part deals with the use of tritium as a target, as a source of radiation or light, and its utilization for geochemistry. The future development of the solid tritium target capable of elongating the life of neutron sources is expected. The rust thickness of the surface of iron can be measured with the X-ray of Ti-T or Zr-T. The tritium can substitute self-light emission paint or lamp. The tritium is suitable for tracing the movement of sea water and land surface water because of its long half life. (Iwakiri, K.)

  4. Influence of impurities in Beryllium on tritium breeding ratio

    International Nuclear Information System (INIS)

    Yamauchi, M.; Ochiai, K.; Verzilov, Y.; Ito, M.; Wada, M.; Nishitani, T.

    2004-01-01

    Several neutronics experiments simulating fusion blankets have been conducted with 14 MeV neutron source to assess the reliability of nuclear analysis codes. However, the analyses have not always presented good agreements so far between calculated and measured tritium production rates. One of the reasons was considered as impurities in beryllium which has negligibly small neutron absorption cross section in low energy range. Chemical compositions of beryllium were analyzed by Inductively Coupled Plasma (ICP) method, and a pulsed neutron decay experiment discovered that the macroscopic neutron absorption cross section for beryllium medium may be about 30% larger than the value calculated by the data specified by manufacturing company. The influence of the impurities on the calculations was studied on the basis of the fusion DEMO-reactor blanket design. As a result of the study, it was made clear that the impurities affect the local tritium production rates when the size of beryllium medium is more than 20-30 mean free paths (30-40 cm) in thickness. In case of some blanket designs that meet the above condition, the effect on tritium breeding ratio may become as large as about 4%. (author)

  5. Influence of impurities in Beryllium on tritium breeding ratio

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, M; Ochiai, K; Verzilov, Y; Ito, M; Wada, M; Nishitani, T [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2004-03-01

    Several neutronics experiments simulating fusion blankets have been conducted with 14 MeV neutron source to assess the reliability of nuclear analysis codes. However, the analyses have not always presented good agreements so far between calculated and measured tritium production rates. One of the reasons was considered as impurities in beryllium which has negligibly small neutron absorption cross section in low energy range. Chemical compositions of beryllium were analyzed by Inductively Coupled Plasma (ICP) method, and a pulsed neutron decay experiment discovered that the macroscopic neutron absorption cross section for beryllium medium may be about 30% larger than the value calculated by the data specified by manufacturing company. The influence of the impurities on the calculations was studied on the basis of the fusion DEMO-reactor blanket design. As a result of the study, it was made clear that the impurities affect the local tritium production rates when the size of beryllium medium is more than 20-30 mean free paths (30-40 cm) in thickness. In case of some blanket designs that meet the above condition, the effect on tritium breeding ratio may become as large as about 4%. (author)

  6. Tritium breeding and release-rate kinetics from neutron-irradiated lithium oxide

    International Nuclear Information System (INIS)

    Quanci, J.F.

    1989-01-01

    The research encompasses the measurement of the tritium breeding and release-rate kinetics from lithium oxide, a ceramic tritium-breeding material. A thermal extraction apparatus which allows the accurate measurement of the total tritium inventory and release rate from lithium oxide samples under different temperatures, pressures and carrier-gas compositions with an uncertainty not exceeding 3% was developed. The goal of the Lithium Blanket Module program was to determine if advanced computer codes could accurately predict the tritium production in the lithium oxide blanket of a fusion power plant. A fusion blanket module prototype was built and irradiated with a deuterium-tritium fusion-neutron source. The tritium production throughout the module was modeled with the MCNP three dimensional Monte Carlo code and was compared to the assay of the tritium bred in the module. The MCNP code accurately predicted tritium-breeding trends but underestimated the overall tritium breeding by 30%. The release rate of tritium from small grain polycrystalline sintered lithium oxides with a helium carrier gas from 300 to 450 C was found to be controlled by the first order surface desorption of monotritiated water. When small amounts of hydrogen were added to the helium carrier gas, the first order rate constant increased from the isotopic exchange of hydrogen for tritium at the lithium oxide surface occurring in parallel with the first order desorption process. The isotopic-exchange first order rate constant temperature dependence and hydrogen partial pressure dependence were evaluated

  7. Study on the temperature control mechanism of the tritium breeding blanket for CFETR

    Science.gov (United States)

    Liu, Changle; Qiu, Yang; Zhang, Jie; Zhang, Jianzhong; Li, Lei; Yao, Damao; Li, Guoqiang; Gao, Xiang; Wu, Songtao; Wan, Yuanxi

    2017-12-01

    The Chinese fusion engineering testing reactor (CFETR) will demonstrate tritium self- sufficiency using a tritium breeding blanket for the tritium fuel cycle. The temperature control mechanism (TCM) involves the tritium production of the breeding blanket and has an impact on tritium self-sufficiency. In this letter, the CFETR tritium target is addressed according to its missions. TCM research on the neutronics and thermal hydraulics issues for the CFETR blanket is presented. The key concerns regarding the blanket design for tritium production under temperature field control are depicted. A systematic theory on the TCM is established based on a multiplier blanket model. In particular, a closed-loop method is developed for the mechanism with universal function solutions, which is employed in the CFETR blanket design activity for tritium production. A tritium accumulation phenomenon is found close to the coolant in the blanket interior, which has a very important impact on current blanket concepts using water coolant inside the blanket. In addition, an optimal tritium breeding ratio (TBR) method based on the TCM is proposed, combined with thermal hydraulics and finite element technology. Meanwhile, the energy gain factor is adopted to estimate neutron heat deposition, which is a key parameter relating to the blanket TBR calculations, considering the structural factors. This work will benefit breeding blanket engineering for the CFETR reactor in the future.

  8. Tritium breeding experiments with lithium titanate in thermal-type mockups

    International Nuclear Information System (INIS)

    Klix, Axel; Takahashi, Akito; Ochiai, Kentaro; Nishitani, Takeo

    2004-01-01

    Lithium titanate, an advanced tritium breeding material, is currently investigated in integral mock-up experiments at FNS. A method was developed which allows to measure low tritium concentrations directly in this material. The local tritium production rate was obtained by small lithium titanate pellet detectors inserted into the breeding layers which are dissolved after irradiation of the assemblies, and the accumulated tritium was counted by liquid scintillation techniques. The measurement method was applied in mock0-up experiments with candidate materials for the future DEMO reactor breeding blanket. Experimental assemblies consisted of sheets of low activation ferritic steel F82H, lithium titanate, and berylium. Tritium production rate profiles were obtained and compared with results from calculations with the Monte Carlo neutron transport code MCNP-4C. In case of the mock-ups with 95% enriched lithium titanate, the C/E ratios were within the error estimate while larger discrepancies were observed in case of 40% enriched lithium titanate. (author)

  9. Tritium breeding and release-rate kinetics from neutron-irradiated lithium oxide

    International Nuclear Information System (INIS)

    Quanci, J.F.

    1989-01-01

    The research encompasses the measurement of the tritium breeding and release-rate kinetics from lithium oxide, a ceramic tritium-breeding material. A thermal extraction apparatus which allows the accurate measurement of the total tritium inventory and release rate from lithium oxide samples under different temperatures, pressures and carrier-gas compositions with an uncertainty not exceeding 3% was developed. The goal of the Lithium Blanket Module program was to determine if advanced computer codes could accurately predict the tritium production in the lithium oxide blanket of a fusion power plant. A fusion blanket module prototype, was built and irradiated with a deuterium-tritium fusion-neutron source. The tritium production throughout the module was modeled with the MCNP three dimensional Monte Carlo code and was compared to the assay of the tritium bred in the module. The MCNP code accurately predicted tritium-breeding trends but underestimated the overall tritium breeding by 30%. The release rate of tritium from small grain polycrystalline sintered lithium oxide with a helium carrier gas from 300 to 450 C was found to be controlled by the first order surface desorption of mono-tritiated water. When small amounts of hydrogen were added to the helium carrier gas, the first order rate constant increased from the isotopic exchange of hydrogen for tritium at the lithium oxide surface occurring in parallel with the first order desorption process. The isotopic-exchange first order rate constant temperature dependence and hydrogen partial pressure dependence were evaluated. Large single crystals of lithium oxide were fabricated by the vacuum fusion technique. The release rate of tritium from the large single crystals was found to be controlled by diffusion, and the mixed diffusion-desorption controlled release regime

  10. Li2O-pebble type tritium breeding blanket for fusion experimental reactor, 1

    International Nuclear Information System (INIS)

    Tone, Tatsuzo; Iida, Hiromasa; Tanaka, Yoshihisa

    1984-01-01

    The fusion experimental reactor is the next stage device in Japan, which is planned to be constructed following the critical plasma experimental device JT-60 being constructed at present. The breeding blanket installed in nuclear fusion reactors is one of most important structures, and it is required to satisfy the fundamental performance of producing and continuously recovering tritium as the nuclear fusion fuel, and other requirement in good coordination. The Li 2 O pebble type breeding blanket that Kawasaki Heavy Industries Ltd. has examined is the concept for resolving the problems of the mass transfer and thermal stress cracking of Li 2 O, which are important in blanket design. In this paper, the concept and characteristics of this breeding blanket are discussed from the viewpoint of the breeding and continuous recovery of tritium, the ease of manufacture and the maintenance of soundness. The breeding blanket is composed of breeding region, tritium purge region, cooling region, plasma stabilizing conductors and blanket container. Li 2 O is excellent in its tritium breeding performance and heat conductivity. The functions required for the breeding blanket, the fundamental structure, the examples of breeding blanket concept, the selection of breeding blanket concept, the characteristics of Li 2 O pebble type blanket and its future prospect are described. (Kako, I.)

  11. Sensitivity analysis of tritium breeding ratio and startup inventory for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Lei; Chen, Hongli; Zeng, Qin, E-mail: zengqin@ustc.edu.cn

    2016-11-15

    Highlights: • Through the calculation method of the model, it was found that the increase of the artificially determined startup inventory I0 causes significant increase of TBRreq and the increase of the achievable tritium breeding ratio TBRachiv leads to the decrease of the Im. • The increase of fueling efficiency and fractional burnup significantly contributes to the decrease of both Im and TBRreq, while the increase of the duty time and availability results in the decrease of TBRreq and the proportional increase of Im. • The outer tritium plant parameters of some subsystems that have relatively big tritium throughput have intense influence on either Im or TBRreq. - Abstract: In order to evaluate the tritium self-sufficiency of fusion plant, citing CFETR (Chinese Fusion Engineering Testing Reactor) as an example, a modified tritium fuel cycle model was developed. The calculation method of this model to obtain the minimum startup inventory I{sub m} and its corresponding required minimum tritium breeding ratio TBR{sub req} was first introduced. Then the model was utilized to analyze the influence on I{sub m} and TBR{sub req} by all tritium cycle parameters that were classified into two categories, namely, the tritium burning parameters and the outer tritium plant parameters. As for the tritium burning parameters, the increase of fueling efficiency and fractional burnup significantly contributes to the decrease of both I{sub m} and TBR{sub req}, while the increase of the duty time and availability results in the decrease of TBR{sub req} and the proportional increase of I{sub m}. As for the outer tritium plant parameters, it was found that the outer tritium plant parameters of some subsystems that have relatively big tritium throughput have intense influence on either I{sub m} or TBR{sub req}.

  12. Characteristics of microstructure and tritium release properties of different kinds of beryllium pebbles for application in tritium breeding modules

    Energy Technology Data Exchange (ETDEWEB)

    Kurinskiy, P., E-mail: petr.kurinskiy@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials – Applied Materials Physics (IAM-AWP), P.O. Box 3640, Karlsruhe 76021 (Germany); Vladimirov, P.; Moeslang, A. [Karlsruhe Institute of Technology, Institute for Applied Materials – Applied Materials Physics (IAM-AWP), P.O. Box 3640, Karlsruhe 76021 (Germany); Rolli, R. [Karlsruhe Institute of Technology, Institute for Applied Materials – Materials and Biomechanics (IAM-WBM), P.O. Box 3640, Karlsruhe 76021 (Germany); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, Barcelona 08019 (Spain)

    2014-10-15

    Highlights: • Tritium release properties and characteristics of microstructure of beryllium pebbles having different sizes of grains were studied. • Fine-grained beryllium pebbles showed the best ability to release tritium compared to pebbles from another charges. • Be pebbles with the grain sizes exceeding 100 μm contain a great number of small pores and inclusions presumably referring to the history of material fabrication. • The sizes of grains are one of a key characteristic of microstructure which influences the parameters of tritium release. - Abstract: Beryllium pebbles with diameters of 1 mm are considered to be perspective material for the use as neutron multiplier in tritium breeding modules of fusion reactors. Up to now, the design of helium-cooled breeding blanket in ITER project foresees the use of 1 mm beryllium pebbles fabricated by NGK Insulators Ltd., Japan. It is notable that beryllium pebbles from Russian Federation and USA are also available and the possibility of their large-scale fabrication is under study. Presented work is dedicated to a study of characteristics of microstructure and parameters of tritium release of beryllium pebbles produced by Bochvar Institute, Russian Federation, and Materion Corporation, USA.

  13. Nuclear, thermo-mechanical and tritium release analysis of ITER breeding blanket

    International Nuclear Information System (INIS)

    Kosaku, Yasuo; Kuroda, Toshimasa; Enoeda, Mikio; Hatano, Toshihisa; Sato, Satoshi; Miki, Nobuharu; Akiba, Masato

    2003-06-01

    The design of the breeding blanket in ITER applies pebble bed breeder in tube (BIT) surrounded by multiplier pebble bed. It is assumed to use the same module support mechanism and coolant manifolds and coolant system as the shielding blankets. This work focuses on the verification of the design of the breeding blanket, from the viewpoints which is especially unique to the pebble bed type breeding blanket, such as, tritium breeding performance, tritium inventory and release behavior and thermo-mechanical performance of the ITER breeding blanket. With respect to the neutronics analysis, the detailed analyses of the distribution of the nuclear heating rate and TBR have been performed in 2D model using MCNP to clarify the input data for the tritium inventory and release rate analyses and thermo-mechanical analyses. With respect to the tritium inventory and release behavior analysis, the parametric analyses for selection of purge gas flow rate were carried out from the view point of pressure drop and the tritium inventory/release performance for Li 2 TiO 3 breeder. The analysis result concluded that purge gas flow rate can be set to conventional flow rate setting (88 l/min per module) to 1/10 of that to save the purge gas flow and minimize the size of purge gas pipe. However, it is necessary to note that more tritium is transformed to HTO (chemical form of water) in case of Li 2 TiO 3 compared to other breeder materials. With respect to the thermo-mechanical analyses of the pebble bed blanket structure, the analyses have been performed by ABAQUS with 2D model derived from one of eight facets of a blanket module, based on the reference design. Analyses were performed to identify the temperature distribution incorporating the pebble bed mechanical simulation and influence of mechanical behavior to the thermal behavior. The result showed that the maximum temperature in the breeding material was 617degC in the first row of breeding rods and the minimum temperature was 328

  14. Heat deposition, damage, and tritium breeding characteristics in thick liquid wall blanket concepts

    International Nuclear Information System (INIS)

    Youssef, M.Z.; Abdou, M.A.

    2000-01-01

    The advanced power extraction (APEX) study aims at exploring new and innovative blanket concepts that can efficiently extract power from fusion devices with high neutron wall load. Among the concepts under investigation is the free liquid FW/liquid blanket concept in which a fast flowing liquid FW (∼2-3 cm) is followed by thick flowing blanket (B) of ∼40-50 cm thickness with minimal amount of structure. The liquid FW/B are contained inside the vacuum vessel (VV) with a shielding zone (S) located either behind the VV and outside the vacuum boundary (case A) or placed after the FW/B and inside the VV (case B). In this paper we investigate the nuclear characteristics of this concept in terms of: (1) attenuation capability of the liquid FW/B/S and protection of the VV and magnet against radiation damage; (2) profiles of tritium production rate and tritium breeding ratio (TBR) for several liquid candidates; and (3) profiles of heat deposition rate and power multiplication. The candidate liquid breeders considered are Li, Flibe, Li-Sn, and Li-Pb. Parameters varied are (1) FW/B thickness, L, (2) Li-6 enrichment and (3) thickness of the shield

  15. Tritium transport modeling at system level for the EUROfusion dual coolant lithium-lead breeding blanket

    Science.gov (United States)

    Urgorri, F. R.; Moreno, C.; Carella, E.; Rapisarda, D.; Fernández-Berceruelo, I.; Palermo, I.; Ibarra, A.

    2017-11-01

    The dual coolant lithium lead (DCLL) breeding blanket is one of the four breeder blanket concepts under consideration within the framework of EUROfusion consortium activities. The aim of this work is to develop a model that can dynamically track tritium concentrations and fluxes along each part of the DCLL blanket and the ancillary systems associated to it at any time. Because of tritium nature, the phenomena of diffusion, dissociation, recombination and solubilisation have been modeled in order to describe the interaction between the lead-lithium channels, the structural material, the flow channel inserts and the helium channels that are present in the breeding blanket. Results have been obtained for a pulsed generation scenario for DEMO. The tritium inventory in different parts of the blanket, the permeation rates from the breeder to the secondary coolant and the amount of tritium extracted from the lead-lithium loop have been computed. Results present an oscillating behavior around mean values. The obtained average permeation rate from the liquid metal to the helium is 1.66 mg h-1 while the mean tritium inventory in the whole system is 417 mg. Besides the reference case results, parametric studies of the lead-lithium mass flow rate, the tritium extraction efficiency and the tritium solubility in lead-lithium have been performed showing the reaction of the system to the variation of these parameters.

  16. Development of advanced tritium breeding material with added lithium for ITER-TBM

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Tsuyoshi, E-mail: hoshino.tsuyoshi@jaea.go.jp [Blanket Irradiation and Analysis Group, Fusion Research and Development Directorate, Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Higashi Ibaraki-gun, Ibaraki 311-1393 (Japan); Kato, Kenichi; Natori, Yuri; Oikawa, Fumiaki; Nakano, Natsuko; Nakamura, Mutsumi [Kaken, Co. Ltd., 1044, Hori, Mito-city, Ibaraki 310-0903 (Japan); Sasaki, Kazuya [Institute of Engineering Innovation and Department of Nuclear Engineering and Management School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Suzuki, Akihiro [Nuclear Professional School, School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Ibaraki 319-1188 (Japan); Terai, Takayuki [Institute of Engineering Innovation and Department of Nuclear Engineering and Management School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Tatenuma, Katsuyoshi [Kaken, Co. Ltd., 1044, Hori, Mito-city, Ibaraki 310-0903 (Japan)

    2011-10-01

    Lithium titanate (Li{sub 2}TiO{sub 3}) is one of the most promising candidates among tritium breeding materials because of its good tritium release characteristics. However, the mass of Li{sub 2}TiO{sub 3} decreased with time in a hydrogen atmosphere by the reduction of Ti and Li evaporation. In order to prevent the mass decrease at high temperatures, advanced tritium breeding material with added Li (Li{sub 2+x}TiO{sub 3+y}) should be developed. For this purpose, an advanced Li{sub 2}TiO{sub 3} with added Li was synthesized from proportionally mixed LiOH.H{sub 2}O and H{sub 2}TiO{sub 3} with a Li/Ti ratio of 2.2. The results of X-ray diffraction measurement showed that this advanced tritium breeding material existed as the non-stoichiometric compound Li{sub 2+x}TiO{sub 3+y}. The desired molar ratio of Li/Ti was achieved by appropriate mixing of LiOH.H{sub 2}O and H{sub 2}TiO{sub 3}. Therefore, synthesis by mixing LiOH.H{sub 2}O and H{sub 2}TiO{sub 3} is a promising mass production method for the advanced tritium breeding material with added Li for the test blanket module of ITER.

  17. Calculations of tritium breeding ratio and inventory distributions of FEB blanket

    International Nuclear Information System (INIS)

    Deng Baiquan

    2001-01-01

    Based on the design features of FEB reactor blanket, the tritium breeding ratio and tritium concentrations in liquid lithium of each breeding zone have been calculated after 10 days full power operation for outboard blanket and one day operation for inboard blanket. The comparisons with the results calculated by Monte-Carlo code MORSE-CGT are made. Meanwhile the inventory in beryllium multiplier after one-year full power operation has also been estimated. An important conclusion has been drew the thermal hydraulic design should be careful to guarantee the blanket temperature should not rise as high as 680 degree C

  18. The APT program plan: Providing an assured tritium production capability

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Anderson, J.L.; Bishop, W.P.; Boggs, B.; Hall, K.

    1996-01-01

    Tritium is a radioactive hydrogen isotope used in all U.S. nuclear weapons. Because the half-life of tritium is short, 12.3 yr, it must be periodically replenished. To provide a new source, the U.S. Department of Energy (DOE) is sponsoring conceptual design and engineering development and demonstration activities for a plant that will use a high-power proton linear accelerator to produce tritium and will go on-line no later than 2007. The APT project is in the process of completing the conceptual design for a tritium production plant. In addition, there are several important areas under engineering development and demonstration that will ensure an efficient, cost-effective plant design and provide an adequate margin of tritium production. Information provided from this work will be used by the DOE in its 1998 choice of production technology implementation

  19. Neutronic analyses of design issues affecting the tritium breeding performance in different DEMO blanket concepts

    Energy Technology Data Exchange (ETDEWEB)

    Pereslavtsev, Pavel, E-mail: pavel.pereslavtsev@kit.edu [Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, Christian [EUROfusion – Programme Management Unit, Boltzmannstrasse 2, 85748 Garching (Germany); Fischer, Ulrich [Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-11-01

    Highlights: • Realistic 3D MCNP model based on the CAD engineering model of DEMO. • Automated procedure for the generation and arrangement of the blanket modules for different DEMO concepts: HCPB, HCLL, WCLL, DCLL. • Several parameters affecting tritium breeding ratio (TBR) were investigated. • A set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts. - Abstract: Neutronic analyses were performed to assess systematically the tritium breeding ratio (TBR) variations in the DEMO for the different blanket concepts HCPB, HCLL, WCLL and DCLL DEMOs due to modifications of the blanket configurations. A dedicated automated procedure was developed to fill the breeding modules in the common generic model in correspondence to the different concepts. The TBR calculations were carried out using the MCNP5 Monte Carlo code. The following parameters affecting the global TBR were investigated: TBR poloidal distribution, radial breeder zone depth, {sup 6}Li enrichment, steel content in the breeder modules, poloidal segmentation of the breeder blanket volume, size of gaps between blankets, thickness of the first wall and of the tungsten armour. Based on the results a set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts with the goal to achieve the required tritium breeding performance in DEMO.

  20. Neutronic analyses of design issues affecting the tritium breeding performance in different DEMO blanket concepts

    International Nuclear Information System (INIS)

    Pereslavtsev, Pavel; Bachmann, Christian; Fischer, Ulrich

    2016-01-01

    Highlights: • Realistic 3D MCNP model based on the CAD engineering model of DEMO. • Automated procedure for the generation and arrangement of the blanket modules for different DEMO concepts: HCPB, HCLL, WCLL, DCLL. • Several parameters affecting tritium breeding ratio (TBR) were investigated. • A set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts. - Abstract: Neutronic analyses were performed to assess systematically the tritium breeding ratio (TBR) variations in the DEMO for the different blanket concepts HCPB, HCLL, WCLL and DCLL DEMOs due to modifications of the blanket configurations. A dedicated automated procedure was developed to fill the breeding modules in the common generic model in correspondence to the different concepts. The TBR calculations were carried out using the MCNP5 Monte Carlo code. The following parameters affecting the global TBR were investigated: TBR poloidal distribution, radial breeder zone depth, "6Li enrichment, steel content in the breeder modules, poloidal segmentation of the breeder blanket volume, size of gaps between blankets, thickness of the first wall and of the tungsten armour. Based on the results a set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts with the goal to achieve the required tritium breeding performance in DEMO.

  1. Conceptual design of an electricity generating tritium breeding blanket sector for INTOR/NET

    International Nuclear Information System (INIS)

    Bond, A.

    1984-01-01

    A study is made of a fusion reactor power blanket and its associated equipment with the objective of producing a conceptual design for a blanket sector of INTOR, or one of its national variants (e.g. NET), from which electricity could be generated simultaneously with the breeding of tritium. (author)

  2. Tritium breeding optimization of Li4SiO4/Be/He/SS blankets for the NET

    International Nuclear Information System (INIS)

    Greenspan, E.; Karni, Y.

    1986-01-01

    In previous tritium breeding optimization studies, we considered idealized, machine-independent blankets. The purpose of the present work is to investigate possibilities for maximizing tritium production in more realistic blankets. The Li 4 /SiO 4 /Be/He/SS blanket recently designed for the Next European Torus (NET) is used as the reference. The one-dimensional tritium breeding ratio calculated for this blanket is 1.38, promising tritium self-sufficiency even when the NET blanket is expected to have a coverage efficiency of 80%. A specific goal of the present study is to determine whether a NET-like device could be designed to be tritium self-sufficient when tritium production is limited to the outer blanket. If realizable, it might be possible to simplify the reactor design, significantly, make it more compact, and lower the cost

  3. Present status of irradiation tests on tritium breeding blanket for fusion reactor

    International Nuclear Information System (INIS)

    Futamura, Yoshiaki; Sagawa, Hisashi; Shimakawa, Satoshi; Tsuchiya, Kunihiko; Kuroda, Toshimasa; Kawamura, Hiroshi.

    1994-01-01

    To develop a tritium breeding blanket for a fusion reactor, irradiation tests in fission reactors are indispensable for obtaining data on irradiation effects on materials, and neutronics/thermal characteristics and tritium production/recovery performance of the blanket. Various irradiation tests have been conducted in the world, especially to investigate tritium release characteristics from tritium breeding and neutron multiplier materials, and materials integrity under irradiation. In Japan, VOM experiments at JRR-2 for ceramic breeders and experiments at JMTR for ceramic breeders and beryllium as a neutron multiplier have been performed. Several universities have also investigated ceramic breeders. In the EC, the EXOTIC experiments at HFR in the Netherlands and the SIBELIUS, the LILA, the LISA and the MOZART experiments for ceramic breeders have carried out. In Canada, NRU has been used for the CRITIC experiments. The TRIO experiments at ORR(ORNL), experiments at RTNS-II, FUBR and ATR have been conducted in the USA. The last two are experiments with high neutron fluence aiming at investigating materials integrity under irradiation. The BEATRIX-I and -II experiments have proceeded under international collaboration of Japan, Canada, the EC and the USA. This report shows the present status of these irradiation tests following a review of the blanket design in the ITER CDA(Conceptual Design Activity). (author)

  4. Structural design study of tritium breeding blanket with a lead layer as a neutron multiplier

    International Nuclear Information System (INIS)

    Iida, Hiromasa; Kitamura, Kazunori; Minato, Akio; Sakamoto, Hiroki; Yamamoto, Takashi

    1980-12-01

    Thermal and structural design study of a tritium breeding blanket with a lead layer for a International Tokamak Reactor (INTOR) is carried out. Tube in shell type blanket with a lead layer is found to be promising. The volume fraction of structural material in the lead layer can be small enough to keep the neutron multiplication effect of lead. Reasonable value of shell effect is attainable due to lead layer in the front part of the blanket. (author)

  5. Safety aspects of tritium in ICF reactors with internally-breeding targets

    International Nuclear Information System (INIS)

    Ragheb, M.; Miley, G.H.; University of Illinois, Urbana, IL)

    1985-01-01

    The LOTRIT inertial confinement reactor concept employs a deuterium burning target with a DT spark trigger core. This eliminates the need for tritium breeding in a blanket, and leads to a minimization of the tritium inventory and of the possibility of metal fire hazards if lead is used instead of lithium for first wall protection. The active fuel inventory in the fuel cycle and blanket per MJ of energy produced is only 5 percent of the DT case. The most significant reduction in the total tritium inventory is in the target manufacture and storage areas, and is about 1.8% of the DT case per unit of fusion energy produced. If the goal is to reduce the risk from tritium releases from fusion reactors to below that of fission reactors, it is estimated that the tritium releases must be maintained at 0.13-5.0 Ci/day. Attaining these values will be costly, technologically difficult and will constrain the design options in DTbased systems, but may be within the realm of systems using the LOTRIT concept

  6. Investigating the breeding capabilities of hybrid soliton reactors

    International Nuclear Information System (INIS)

    Catsaros, N.; Gaveau, B.; Jaekel, M.-T.; Jejcic, A.; Maillard, J.; Maurel, G.; Savva, P.; Silva, J.

    2013-01-01

    Highlights: • ANET code simulates innovative reactor designs including Accelerator Driven Systems. • Preliminary analysis of thermal hybrid soliton reactor examines breeding capabilities. • Subsequent studies will aim at optimizing parameters examined in this analysis. • Breeding capacity could be obtained while preserving efficiency and reactor stability. -- Abstract: Nuclear energy industry asks for an optimized exploitation of available natural resources and a safe operation of reactors. A closed fuel cycle requires the mass of fissile material depleted in a reactor to be equal to or less than the fissile mass produced in the same or in other reactors. In this work, a simple closed cycle scheme is investigated, grounded on the use of a conceptual thermal water-cooled and moderated subcritical hybrid soliton reactor (HSR). The concept is a specific Accelerator Driven System (ADS) operating at lower power than usual pressurized water reactors (PWRs). This type of reactor can be inherently safe, since shutdown is achieved by simply interrupting the accelerator's power supply. In this work a preliminary investigation is attempted concerning the existence of conditions under which the operation of a thermal HSR in breeding regime is possible. For this purpose, a conceptual encapsulated core has been defined by choosing the magnitude of a set of parameters which are important from the neutronic point of view, such as core geometry and fuel composition. Indications of breeding operation regime for thermal HSR systems are sought by performing preliminary simulations of this core. For this purpose, the Monte Carlo code ANET, which is being developed based on the high energy physics code GEANT is utilized, as being capable of simulating particles’ transport and interactions produced, including also simulation of low energy neutrons transport. A simple analytical model is also developed and presented in order to investigate the conditions under which breeding in

  7. Approximated neutronic calculation for the tritium breeding ratio in fusion reactor blankets

    International Nuclear Information System (INIS)

    Santos, Raul dos

    1983-01-01

    An approximated model for the calculation of the tritium breeding ratio in conceptual thermonuclear fusion reactor blankets is presented. This model makes use of the exponential absorption concept due to the Li 6 (n, He 4 )T and Li 7 (n, n'He 4 )T reactions. The results of this approximated method are compared with reference benchmarks which were generated by the nuclear codes ANISN (discrete ordinates) and MORSE (Monte Carlo method). The maximum deviation among the results have been around 10%. (Author) [pt

  8. Tritium

    International Nuclear Information System (INIS)

    Fiege, A.

    1992-07-01

    This report contains information on chemical and physical properties, occurence, production, use, technology, release, radioecology, radiobiology, dose estimates, radioprotection and legal aspects of tritium. The objective of this report is to provide a reliable data base for the public discussion on tritium, especially with regard to its use in future nuclear fusion plants and its radiological assessment. (orig.) [de

  9. EXOTIC: Development of ceramic tritium breeding materials for fusion reactor blankets. The behaviour of tritium in: lithium aluminate, lithium oxide, lithium silicates, lithium zirconates

    Energy Technology Data Exchange (ETDEWEB)

    Kwast, H [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Stijkel, H [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Muis, R [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Conrad, R [Commission of the European Communities, Petten (Netherlands). Joint Reseach Centre

    1995-12-01

    This report describes the results of six EXOTIC experiments comprising a total of 48 capsules. Samples of the candidate tritium breeding materials LiAlO{sub 2}, Li{sub 2}ZrO{sub 3}, Li{sub 4}SiO{sub 4}, Li{sub 6}Zr{sub 2}O{sub 7}, Li{sub 8}ZrO{sub 6}, Li{sub 2}O and Li{sub 2}SiO{sub 3} have been irradiated at different temperature levels and up to a maximum lithium burnup of about 3%. Tritium residence times of the various breeding materials have been determined from temperature transients performed during irradiation. After irradiation the tritium inventory has been determined from small samples of the various materials. From the out-of-pile tritium release experiments activation energies were determined. These activities have been performed at ECN within the framework of the European Fusion Technology Programme on Breeding Blankets. (orig.).

  10. Direct tritium measurement in lithium titanate for breeding blanket mock-up experiments with D-T neutrons

    International Nuclear Information System (INIS)

    Klix, A.; Ochiai, K.; Nishitani, T.; Takahashi, A.

    2004-01-01

    At Fusion Neutronics Source (FNS) of JAERI, tritium breeding experiments with blanket mock-ups consisting of advanced fusion reactor materials are in progress. The breeding zones are thin layers of lithium titanate which is one of the candidate tritium breeder materials for the DEMO fusion power reactor. It is anticipated that the application of small pellet-shaped lithium titanate detectors manufactured from the same material as the breeding layer will reduce experimental uncertainties arising from necessary corrections due to different isotopic lithium volume concentrations in breeding material and detector. Therefore, a method was developed to measure the local tritium production by means of lithium titanate pellet detectors and a liquid scintillation counting technique. The lithium titanate pellets were dissolved in concentrated hydrochloric acid solution and the resulting acidic solution was neutralized. Two ways of further processing were followed: direct incorporation into a liquid scintillation cocktail and distillation of the solution followed by mixing with liquid scintillator. Two types of lithium titanate pellets were investigated with different 6 Li enrichment and manufacturing procedure. It was found that lithium titanate is suitable for tritium production measurements. However some discrepancies in the measurement accuracy remained with one of the investigated pellet detectors when compared with a well-established lithium carbonate measurement technique and this issue needs further investigation

  11. Analysis of neutron spectrum effects on primary damage in tritium breeding blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Hee, E-mail: cyh871@snu.ac.kr [School of Energy Systems Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Joo, Han Gyu [School of Energy Systems Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2012-07-15

    The effect of neutron spectrum on primary damages in a structural material of a tritium breeding blanket is investigated with a newly established recoil spectrum estimation system. First, a recoil spectrum generation code is developed to obtain the energy spectrum of primary knock-on atoms (PKAs) for a given neutron spectrum utilizing the latest ENDF/B data. Secondly, a method for approximating the high energy tail of the recoil spectrum is introduced to avoid expensive molecular dynamics calculations for high energy PKAs using the concept of recoil energy of the secondary knock-on atoms originated by the INtegration of CAScades (INCAS) model. Thirdly, the modified spectrum is combined with a set of molecular dynamics calculation results to estimate the primary damage parameters such as the number of surviving point defects. Finally, the neutron spectrum is varied by changing the material of the spectral shifter and the result in primary damage parameters is examined.

  12. Analysis of neutron spectrum effects on primary damage in tritium breeding blankets

    Science.gov (United States)

    Choi, Yong Hee; Joo, Han Gyu

    2012-07-01

    The effect of neutron spectrum on primary damages in a structural material of a tritium breeding blanket is investigated with a newly established recoil spectrum estimation system. First, a recoil spectrum generation code is developed to obtain the energy spectrum of primary knock-on atoms (PKAs) for a given neutron spectrum utilizing the latest ENDF/B data. Secondly, a method for approximating the high energy tail of the recoil spectrum is introduced to avoid expensive molecular dynamics calculations for high energy PKAs using the concept of recoil energy of the secondary knock-on atoms originated by the INtegration of CAScades (INCAS) model. Thirdly, the modified spectrum is combined with a set of molecular dynamics calculation results to estimate the primary damage parameters such as the number of surviving point defects. Finally, the neutron spectrum is varied by changing the material of the spectral shifter and the result in primary damage parameters is examined.

  13. Sol-gel synthesis of lithium metatitanate as tritium breeding material under different sintering conditions

    Science.gov (United States)

    Lu, Wei; Wang, Jing; Pu, Wenjing; Li, Kaiping; Ma, Shubing; Wang, Weihua

    2018-04-01

    Lithium metatitanate (Li2TiO3) is a promising tritium breeding material candidate for solid blanket of D-T fusion reactors, due to its high mechanical strength, chemical stability, and tritium release rate. In this paper, Li2TiO3 powder with homogeneous crystal structure is synthesized by sol-gel method. The chemical reactions in gel thermal cracking and sintering process are studied by thermo gravimetric/differential scanning calorimetry (TG-DSC). The relationship between the sintering condition and the particle/grain size is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results show that below 673 K the gel precursor is completely decomposed and Li2TiO3 phase initially forms. The LiTiO2 by-product formed under the reductive atmosphere in muffle furnace, could be oxidized continually to Li2TiO3 at higher sintering temperature (≥1273 K) for longer sintering time (≥10 h). Both grain and particle sizes rely on a linear growth with the increase of sintering time at 1273 K. Over 1473 K, significant agglomerations exist among particles. The optimal sintering condition is selected as 1273 K for 10 h, for the purer Li2TiO3 phase (>99%), smaller grain and particle size.

  14. Investigation of tritium and 233U breeding in a fission-fusion hybrid reactor fuelling with ThO2

    International Nuclear Information System (INIS)

    Yildiz, K.; Sahin, S.; Sahin, H. M.; Acir, A.; Yalcin, S.; Altinok, T.; Bayrak, M.; Alkan, M.; Durukan, O.

    2007-01-01

    In the world, thorium reserves are three times more than natural Uranium reserves. It is planned in the near future that nuclear reactors will use thorium as a fuel. Thorium is not a fissile isotope because it doesn't make fission with thermal neutrons so it could be converted to 2 33U isotope which has very high quality fission cross-section with thermal neutrons. 2 33U isotope can be used in present LWRs as an enrichment fuel. In the fusion reactors, tritium is the most important fossil fuel. Because tritium is not natural isotope, it has to be produced in the reactor. The purpose of this work is to investigate the tritium and 2 33U breeding in a fission-fusion hybrid reactor fuelling with ThO 2 for Δt=10 days during a reactor operation period in five years. The neutronic analysis is performed on an experimental hybrid blanket geometry. In the center of the hybrid blanket, there is a line neutron source in a cylindrical cavity, which simulates the fusion plasma chamber where high energy neutrons (14.1 MeV) are produced. The conventional fusion reaction delivers the external neutron source for blankets following, 2 D + 3 T →? 4 He (3.5 MeV) + n (14.1 MeV). (1) The fuel zone made up of natural-ThO 2 fuel and it is cooled with different coolants. In this work, five different moderator materials, which are Li 2 BeF 4 , LiF-NaF-BeF 2 , Li 2 0Sn 8 0, natural Lithium and Li 1 7Pb 8 3, are used as coolants. The radial reflector, called tritium breeding zones, is made of different Lithium compounds and graphite in sandwich structure. In the work, eight different Lithium compounds were used as tritium breeders in the tritium breeding zones, which are Li 3 N, Li 2 O, Li 2 O 2 , Li 2 TiO 3 , Li 4 SiO 3 , Li 2 ZrO 3 , LiBr and LiH. Neutron transport calculations are conducted in spherical geometry with the help of SCALE4.4A SYSTEM by solving the Boltzmann transport equation with code CSAS and XSDRNPM, under consideration of unresolved and resolved resonances, in S 8 -P 3

  15. A pellet model of DT ignitor and DD fuel for an ICF reactor without tritium breeding blanket

    International Nuclear Information System (INIS)

    Ido, Shunji; Tazima, Teruhiko.

    1983-01-01

    A pellet concept of a DT ignitor and DD fuel for an ICF reactor without a tritium breeding blanket is analytically examined under the condition that T is bred through the DD reactions. There is the additional restriction that the tritium breeding ratio in a pellet is unity, including the in situ DT burn in the DD region. Model calculations show that sufficiently high pellet gain can be obtained in a DT-DD pellet, when fuel rhoR increases to --40 g/cm 2 and the fraction of energy released in the DD region becomes dominant. One-dimensional neutronics calculations carried out for a reference pellet model with rhoR --40 g/cm 2 show that the neutron heating in the compressed pellet model is evident and the total energy of the neutrons escaping from the pellet is reduced from --2000 MJ to 330 MJ for a microexplosion of --3000 MJ. (author)

  16. Effect on the Tritium Breeding Ratio due to a distributed ICRF antenna in a DEMO reactor

    International Nuclear Information System (INIS)

    Garcia, A.; Noterdaeme, J.-M.; Fischer, U.; Dies, J.

    2016-01-01

    This thesis reports results of MCNP-5 calculations, with the nuclear data library FENDL-2.1, to assess the effect on the Tritium Breeding Ratio (TBR) due to a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna integrated in the blanket of a DEMO fusion power reactor. A preliminary design of the antenna with a reference configuration of the DEMO reactor was used together with a parametric analysis for different parameters that strongly affect the TBR. These are the type of breeding blanket (Helium Cooled Pebble Bed, Helium Cooled Lithium Lead and Water Cooled Lithium Lead), the covering ratio of the straps of the antenna (the ratio between the surface of all the straps and the projected surface of the antenna slot: 0.49, 0.72 and 0.94), the antenna radial thickness (20 cm and 40 cm), the thickness of the straps (2 cm, 4 cm and a double layer of 0.2 cm plus 2.5 cm with the composition of the First Wall), and finally the poloidal position of the antenna (0°, which is the equatorial port, 40° and 90°, which is the upper port). For an antenna with a full toroidal circumference of 360°, located poloidaly at 40° with a poloidal extension of 1 m and a total First Wall surface of 67 m"2, the reduction of the TBR is −0.35% for a HCPB blanket concept, −0.53% for a HCLL blanket concept and −0.51% for a WCLL blanket concept. In all cases covered by the parametric analysis, the loss of TBR remains below 0.61%. Such a distributed ICRF antenna has thus only a marginal effect on the TBR for a DEMO reactor.

  17. Effect on the Tritium Breeding Ratio due to a distributed ICRF antenna in a DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A., E-mail: albert.garcia.hp@gmail.com [Max-Planck-Institut für Plasmaphysik (IPP), Garching (Germany); Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Polytechnic University of Catalonia (UPC), Barcelona (Spain); Department of Applied Physics, Ghent University, Ghent (Belgium); Noterdaeme, J.-M. [Max-Planck-Institut für Plasmaphysik (IPP), Garching (Germany); Department of Applied Physics, Ghent University, Ghent (Belgium); Fischer, U. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Dies, J. [Polytechnic University of Catalonia (UPC), Barcelona (Spain)

    2016-11-15

    This thesis reports results of MCNP-5 calculations, with the nuclear data library FENDL-2.1, to assess the effect on the Tritium Breeding Ratio (TBR) due to a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna integrated in the blanket of a DEMO fusion power reactor. A preliminary design of the antenna with a reference configuration of the DEMO reactor was used together with a parametric analysis for different parameters that strongly affect the TBR. These are the type of breeding blanket (Helium Cooled Pebble Bed, Helium Cooled Lithium Lead and Water Cooled Lithium Lead), the covering ratio of the straps of the antenna (the ratio between the surface of all the straps and the projected surface of the antenna slot: 0.49, 0.72 and 0.94), the antenna radial thickness (20 cm and 40 cm), the thickness of the straps (2 cm, 4 cm and a double layer of 0.2 cm plus 2.5 cm with the composition of the First Wall), and finally the poloidal position of the antenna (0°, which is the equatorial port, 40° and 90°, which is the upper port). For an antenna with a full toroidal circumference of 360°, located poloidaly at 40° with a poloidal extension of 1 m and a total First Wall surface of 67 m{sup 2}, the reduction of the TBR is −0.35% for a HCPB blanket concept, −0.53% for a HCLL blanket concept and −0.51% for a WCLL blanket concept. In all cases covered by the parametric analysis, the loss of TBR remains below 0.61%. Such a distributed ICRF antenna has thus only a marginal effect on the TBR for a DEMO reactor.

  18. Neutronic investigations on the application of lithium aluminates in the tritium breeding blanket of future fusion reactors

    International Nuclear Information System (INIS)

    Mohsin, A.

    1981-02-01

    A survey is given about the state of development work at the blanket. It shows that present designs aim at a fusion reactor with low tritium inventory. This aim can be achieved with a solid blanket. In this paper this concept is described and the selection of appropriate materials for the solid blanket is discussed. The lithium aluminates turned out to be the most suitable materials. Comparing the different lithium aluminates the compounds Li 5 AlO 4 and LiAlO 2 proved to be the most favourable. The improvement of the breeding ratio when using lead as neutron multiplier was investigated. Employing, for example, a lead zone of 15 cm thickness in front of a 60 cm thick breeding zone, the tritium breeding ratio is raised to 1.65 for Li 5 Al 4 and to 1.48 for LiAlO 2 - The originally higher breeding ratio of the Li 5 AlO 4 in contrary to the LiAlO 2 is compensated hereby. By this LiAlO 2 becomes a very interesting material for a solid blanket since it furthermore exhibits a higher melting point and higher phase transition temperature. For experimental check of the nuclear data of this material and the computational techniques used, a test model was designed and built. This blanket model was used for measuring the space-dependent tritium production rate, which could be compared to corresponding computations. The assembly was made of a lead zone as neutron multiplier, LiAlO 2 as breeding material, and polyethylene as neutron reflector. (orig.) [de

  19. Multiscale simulation of neutron induced damage in tritium breeding blankets with different spectral shifters

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Hee; Joo, Han Gyu, E-mail: joohan@snu.ac.kr

    2013-10-15

    Highlights: • A multiscale defect simulation system tailored for neutron damage estimation is introduced. • The new recoil spectrum code can use the most recent ENDF-B/VII nuclear data. • The high energy cascades are broken into subcascades using the INCAS model. • OKMC simulation provides data for shear stress estimation using dislocation dynamics formula. • Demonstration is made with a fusion blanket design having different spectral shifters. -- Abstract: A multiscale material defect simulation established to evaluate neutron induced damages on metals is applied to an estimation of material degradation in helium cooled molten lithium blankets in which four different spectral shifter materials are examined as a means of maximizing the tritium breeding ratio through proper shaping of the neutron spectrum. The multiscale system consists of a Monte Carlo neutron transport code, a recoil spectrum generation code, a molecular dynamics code, a high energy cascade breakup model, an object kinetic Monte Carlo code, and a simple formula as the shear stress estimator. The average recoil energy of the primary knock-on atoms, the total concentration of the defects, average defect sizes, and the increase in shear stress after a certain irradiation time are calculated for each spectral shifter. Among the four proposed materials of B4C, Be, Graphite and TiC, B4C reveals the best shielding performance in terms of neutron radiation hardening. The result for the increase in shear stress after 100 days of irradiation indicates that the increased shear stress is 1.5 GPa for B4C which is about 40% less than that of the worst one, the graphite spectral shifter. The other damage indicators show consistent trends.

  20. Tritium isolation from lithium inorganic compounds applicable to thermonuclear reactor breeding blanket

    International Nuclear Information System (INIS)

    Vasil'ev, V.G.; Ershova, Z.V.; Nikiforov, A.S.

    1982-01-01

    Tritium separation from inorganic lithium compounds: Li 2 O, LiAlO 2 , Li 2 SiO 3 , Li 4 SiO 4 , LiF, LiBeF 3 , Li 2 BeF 4 irradiated with a beam of a gamma facility and a nuclear reactor, has been studied. In the first case the gas phase is absent. In the latter one- the tritium amount in the gas does not exceed 1-2% of its total amount in the salt. Based on the EPR spectra of irradiated salts the concentrations of paramagnetic centres are calculated. It is shown that during thermal annealing the main portion of tritium in the gas phase is in the form of oxide (HTO, T 2 O). Tritium is separated from lithium fluoroberyllates in the form of hydrogen (HT, T 2 ). The kinetics of tritium oxide isolation from irradiated lithium oxide aluminate, metha- and orthosilicates, lithium sulphate has been studied. The activation energies of tritium oxide separation process are presented. A supposition is made that chemical reaction of the HTO (T 2 O) or HT(T 2 ) or HF(TF) formation is a limiting stage. Clarification of the process stage limiting the rate of tritium recovery will permit to evaluate conditions for the optimum work of lithium material in the blanket, lithium zone to select the lithium element structure and temperature regime of irradiation

  1. Radiation hazards due to activated corrosion and neutron sputtering products in fusion reactor coolant and tritium breeding fluids

    International Nuclear Information System (INIS)

    Klein, A.C.; Vogelsang, W.F.

    1985-01-01

    The accumulation of radioactive corrosion and neutron sputtering products on the surfaces of components in fusion reactor coolant and tritium breeding systems can cause significant personnel access problems. Remote maintenance techniques or special treatment may be required to limit the amount of radiation exposure to plant operational and maintenance personnel. A computer code, RAPTOR, has been developed to estimate the transport of this activated material throughout a fusion heat transfer and/or tritium breeding material loop. A method is devised which treats the components of the loop individually and determines the source rates, deposition and erosion rates, decay rates, and purification rates of these radioactive materials. RAPTOR has been applied to the MARS and Starfire conceptual reactor designs to determine the degree of the possible radiation hazard due to these products. Due to the very high corrosion release rate by HT-9 when exposed to LiPb in the MARS reactor design, the radiation fields surrounding the primary system will preclude direct contact maintenance even after shutdown. Even the removal of the radioactive LiPb from the system will not decrease the radiation fields to reasonable levels. The Starfire primary system will exhibit radiation fields similar to those found in present pressurized water reactors. (orig.)

  2. Tritium breeding experiments in a fusion blanket assembly using a low-intensity neutron generator

    International Nuclear Information System (INIS)

    Dalton, A.W.; Woodley, H.J.; McGregor, B.J.

    1987-01-01

    Experiments have been carried out to determine the accuracy with which tritium production rates (TPRs) can be measured in a fusion blanket assembly of non-spherical geometry by a non-central low intensity D-T neutron source (2x10 10 neutrons per second). The tritium production was determined for samples of lithium carbonate containing high enrichments of 6 Li(96%) and 7 Li(99.9%). The measured data were used to check the accuracy with which the TPRs could be numerically predicted using current nuclear data and calculational methods. The numerical predictions from tritium production from the 7 Li samples agreed within the experimental errors of the measurements, but 6 Li measurements which differ by more than 20 per cent from the predicted values were observed in the lower half of the assembly

  3. Sensisivity and Uncertainty analysis for the Tritium Breeding Ratio of a DEMO Fusion reactor with a Helium cooled pebble bed blanket

    OpenAIRE

    Nunnenmann, Elena; Fischer, Ulrich; Stieglitz, Robert

    2016-01-01

    An uncertainty analysis was performed for the tritium breeding ratio (TBR) of a fusion power plant of the European DEMO type using the MCSEN patch to the MCNP Monte Carlo code. The breeding blanket was of the type Helium Cooled Pebble Bed (HCPB), currently under development in the European Power Plant Physics and Technology (PPPT) programme for a fusion power demonstration reactor (DEMO). A suitable 3D model of the DEMO reactor with HCPB blanket modules, as routinely used for blanket design c...

  4. Tritium breeding measurements in a lithium blanket module with Pb/Be multipliers at the LOTUS facility

    International Nuclear Information System (INIS)

    Azam, S.; Kumar, A.

    1987-01-01

    The lithium blanket module (LBM) was lent for a fixed duration in 1985 to Ecole Polytechnique Federale de Lausanne under an agreement with the Electric Power Research Institute and Princeton Plasma Physics Laboratory. The first tritium breeding measurements in the central rod of the LBM and their analysis have been reported previously. Some time ago, we carried out additional experiments wherein the Li 2 O sample disk, each having a theoretical density of ∼85% and dimensions of 17.8-mm diam x 0.9-mm thickness, were placed in four removable rods. In addition to the central rod, the other rods were at ∼6-, 18-, and 39-cm radial distances from the axis of the central one. The sample disks wee kept at every 3 cm inside each of these rods up to a length of 30 cm in the Li 2 O part of the LBM. The choice of the off-axis rods resulted from our interest in investigating the effect of room return on tritium breeding in the LBM. We chose two of the leading neutron multipliers: (a) a 5-cm-thick (∼100- x 110-cm) lead slab and (b) a 6-cm-thick (∼66- x 66-cm) beryllium slab. The experimental assembly, consisting of the multiplier followed by the LBM, was kept at 10 cm from the generator. A packet of three foils, zirconium, indium, and aluminum, was placed at the center of the flat face of the generator to monitor the source intensity during the 10-h operation for the experiments with each multiplier. The source intensity is deduced to be ∼1.9 x 10 12 n/s for both the experiments. 5 refs., 3 figs

  5. Design and qualification of an on-line permeator for the recovery of tritium from lead-lithium eutectic breeding alloy

    International Nuclear Information System (INIS)

    Veredas, G.; Fradera, J.; Fernandez, I.; Batet, L.; Penalva, I.; Mesquida, L.; Abella, J.; Sempere, J.; Martinez, I.; Herrazti, B.; Sedano, L.

    2011-01-01

    The fast and efficient recovery of bred tritium represents a major milestone of tritium breeding technologies R and D and is key for the demonstration of fusion reactor fuel self-sufficiency. For lead-lithium eutectic, diverse technologies are currently being investigated and qualified. Permeator Against Vacuum (PAV) solution represents a firm candidate because: (i) runs as a single-step process for tritium on-line recovery, (ii) works passively allowing to be thermally governed, (iii) can be easily in-pipe integrated in Pb15.7Li loop systems and (iv) can be conceived with high compactness. An optimal design of a PAV requires a detailed hydraulic design optimization for established operational ranges. An optimal PAV design is proposed and qualified by numerical simulation.

  6. European TBM for ITER: Structural material assessment and breeding capability - Comparative analysis

    International Nuclear Information System (INIS)

    Herreras, Y.; Perlado, J.M.; Ibarra, A.

    2007-01-01

    Full text of publication follows: The ITER European Party is currently developing for DEMO reactor specifications two breeding blanket concepts: the Helium-Cooled Lithium-Lead blanket (HCLL), using a liquid breeder; and the Helium-Cooled Pebble-Bed blanket (HCPB), using a lithiated solid breeder. These two research lines are expected to be tested in ITER as Test Blanket Modules (TBM), in order to demonstrate their safety, economical and environmental suitability. In this sense, structural material activation and breeding blanket capability represent two major challenges. This paper presents new calculations regarding neutronic irradiation inside the ITER Vacuum Vessel. In particular, results are focused on the irradiation affecting the equatorial ports, where the TBM will be located for testing. The methodology employed mainly consists in calculating the neutronic irradiation levels at the required locations with the transport code MCNP, where the input geometry has been previously designed with the program CATIA V5. The main structural materials proposed for the European Test blanket Modules are selected in order to carry out a comparative analysis in safety terms: material activation and basic parameters for damage analysis are evaluated with the code ACAB, based on the neutronic irradiation results mentioned above. Finally, the breeding blanket capability is assessed for both breeding blanket concepts; the results are compared considering the choice of the structural material. (authors)

  7. Molten salt cooling/17Li-83Pb breeding blanket concept

    International Nuclear Information System (INIS)

    Sze, D.K.; Cheng, E.T.

    1985-02-01

    A description of a fusion breeding blanket concept using draw salt coolant and static 17 Li- 83 Pb is presented. 17 Li- 83 Pb has high breeding capability and low tritium solubility. Draw salt operates at low pressure and is inert to water. Corrosion, MHD, and tritium containment problems associated with the MARS design are alleviated because of the use of a static LiPb blanket. Blanket tritium recovery is by permeation toward the plasma. A direct contact steam generator is proposed to eliminate some generic problems associated with a tube shell steam generator

  8. Tritium management and anti-permeation strategies for three different breeding blanket options foreseen for the European Power Plant Physics and Technology Demonstration reactor study

    Energy Technology Data Exchange (ETDEWEB)

    Demange, D., E-mail: david.demange@kit.edu [Karlsruhe Institute of Technology, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Boccaccini, L.V.; Franza, F. [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Santucci, A.; Tosti, S. [Associazione ENEA-Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, 00044 Frascati (RM) (Italy); Wagner, R. [Karlsruhe Institute of Technology, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-15

    In DT fusion reactors like DEMO, the commonly accepted tritium (T) losses through the steam generator (SG) shall not exceed about 2 mg/d that are more than 5 orders of magnitude lower than the T production rate of about 360 g/d in the breeding blanket (BB). A very effective mitigation strategy is required balancing the size and efficiency of the processes in the breeding and cooling loops, and the availability and efficiency of anti-permeation barriers. A numerical study is presented using the T permeation code FUS-TPC that computes all T flows and inventories considering the design and operation of the BB, the SG, and the T systems. Many scenarios are numerically analyzed for three breeding blankets concepts – helium cooled pebbles bed (HCPB), helium cooled lithium lead (HCLL), and water cooled lithium lead (WCLL) – varying the T processes throughput and efficiency, and the permeation regimes through the BB and SG to be either surface-limited or diffusion-limited with possible permeation reduction factor. For each BB concept, we discuss workable operation scenarios and suggest specific anti-permeation strategies.

  9. Breeding capability and void reactivity analysis of heavy-water-cooled thorium reactor

    International Nuclear Information System (INIS)

    Permana, Sidik; Takaki, Naoyuki; Sekimoto, Hiroshi

    2008-01-01

    The fuel breeding and void reactivity coefficient of thorium reactors have been investigated using heavy water as coolant for several parametric surveys on moderator-to-fuel ratio (MFR) and burnup. The equilibrium fuel cycle burnup calculation has been performed, which is coupled with the cell calculation for this evaluation. The η of 233 U shows its superiority over other fissile nuclides in the surveyed MFR ranges and always stays higher than 2.1, which indicates that the reactor has a breeding condition for a wide range of MFR. A breeding condition with a burnup comparable to that of a standard PWR or higher can be achieved by adopting a larger pin gap (1-6 mm), and a pin gap of about 2 mm can be used to achieve a breeding ratio (BR) of 1.1. A feasible design region of the reactors, which fulfills the breeding condition and negative void reactivity coefficient, has been found. A heavy-water-cooled PWR-type Th- 233 U fuel reactor can be designed as a breeder reactor with negative void coefficient. (author)

  10. Sensitivity and uncertainty analysis for the tritium breeding ratio of a DEMO fusion reactor with a helium cooled pebble bed blanket

    Directory of Open Access Journals (Sweden)

    Nunnenmann Elena

    2017-01-01

    Full Text Available An uncertainty analysis was performed for the tritium breeding ratio (TBR of a fusion power plant of the European DEMO type using the MCSEN patch to the MCNP Monte Carlo code. The breeding blanket was of the type Helium Cooled Pebble Bed (HCPB, currently under development in the European Power Plant Physics and Technology (PPPT programme for a fusion power demonstration reactor (DEMO. A suitable 3D model of the DEMO reactor with HCPB blanket modules, as routinely used for blanket design calculations, was employed. The nuclear cross-section data were taken from the JEFF-3.2 data library. For the uncertainty analysis, the isotopes H-1, Li-6, Li-7, Be-9, O-16, Si-28, Si-29, Si-30, Cr-52, Fe-54, Fe-56, Ni-58, W-182, W-183, W-184 and W-186 were considered. The covariance data were taken from JEFF-3.2 where available. Otherwise a combination of FENDL-2.1 for Li-7, EFF-3 for Be-9 and JENDL-3.2 for O-16 were compared with data from TENDL-2014. Another comparison was performed with covariance data from JEFF-3.3T1. The analyses show an overall uncertainty of ± 3.2% for the TBR when using JEFF-3.2 covariance data with the mentioned additions. When using TENDL-2014 covariance data as replacement, the uncertainty increases to ± 8.6%. For JEFF-3.3T1 the uncertainty result is ± 5.6%. The uncertainty is dominated by O-16, Li-6 and Li-7 cross-sections.

  11. A promising tritium breeding material: Nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles

    Science.gov (United States)

    Dang, Chen; Yang, Mao; Gong, Yichao; Feng, Lan; Wang, Hailiang; Shi, Yanli; Shi, Qiwu; Qi, Jianqi; Lu, Tiecheng

    2018-03-01

    As an advanced tritium breeder material for the fusion reactor blanket of the International Thermonuclear Experimental Reactor (ITER), Li2TiO3-Li4SiO4 biphasic ceramic has attracted widely attention due to its merits. In this paper, the uniform precursor powders were prepared by hydrothermal method, and nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles were fabricated by an indirect wet method at the first time. In addition, the composition dependence (x/y) of their microstructure characteristics and mechanical properties were investigated. The results indicated that the crush load of biphasic ceramic pebbles was better than that of single phase ceramic pebbles under identical conditions. The 2Li2TiO3-Li4SiO4 ceramic pebbles have good morphology, small grain size (90 nm), satisfactory crush load (37.8 N) and relative density (81.8 %T.D.), which could be a promising breeding material in the future fusion reactor.

  12. Tritium inventory and recovery in next-step fusion devices

    International Nuclear Information System (INIS)

    Causey, R.A.; Brooks, J.N.; Federici, G.

    2002-01-01

    Future fusion devices will use tritium and deuterium fuel. Because tritium is both radioactive and expensive, it is absolutely necessary that there be an understanding of the tritium retention characteristics of the materials used in these devices as well as how to recover the tritium. There are three materials that are strong candidates for plasma-facing-material use in next-step fusion devices. These are beryllium, tungsten, and carbon. While beryllium has the disadvantage of high sputtering and low melting point (which limits its power handling capabilities in divertor areas), it has the advantages of being a low-Z material with a good thermal conductivity and the ability to get oxygen from the plasma. Due to beryllium's very low solubility for hydrogen, implantation of beryllium with deuterium and tritium results in a saturated layer in the very near-surface with limited inventory (J. Nucl. Mater. 273 (1999) 1). Unfortunately, there are nuclear reactions generated by neutrons that will breed tritium and helium in the material bulk (J. Nucl. Mater. 179 (1991) 329). This process will lead to a substantial tritium inventory in the bulk of the beryllium after long-term neutron exposure (i.e. well beyond the operation life time of a next-step reactor like ITER). Tungsten is a high-Z material that will be used in the divertor region of next-step devices (e.g. ITER) and possibly as a first wall material in later devices. The divertor is the preferred location for tungsten use because net erosion is very low there due to low sputtering and high redeposition. While experiments are still continuing on tritium retention in tungsten, present data suggest that relatively low tritium inventories will result with this material (J. Nucl. Mater. 290-293 (2001) 505). For tritium inventories, carbon is the problem material. Neutron damage to the graphite can result in substantial bulk tritium retention (J. Nucl. Mater. 191-194 (1992) 368), and codeposition of the sputtered carbon

  13. Tritium sampling and measurement

    International Nuclear Information System (INIS)

    Wood, M.J.; McElroy, R.G.; Surette, R.A.; Brown, R.M.

    1993-01-01

    Current methods for sampling and measuring tritium are described. Although the basic techniques have not changed significantly over the last 10 y, there have been several notable improvements in tritium measurement instrumentation. The design and quality of commercial ion-chamber-based and gas-flow-proportional-counter-based tritium monitors for tritium-in-air have improved, an indirect result of fusion-related research in the 1980s. For tritium-in-water analysis, commercial low-level liquid scintillation spectrometers capable of detecting tritium-in-water concentrations as low as 0.65 Bq L-1 for counting times of 500 min are available. The most sensitive method for tritium-in-water analysis is still 3He mass spectrometry. Concentrations as low as 0.35 mBq L-1 can be detected with current equipment. Passive tritium-oxide-in-air samplers are now being used for workplace monitoring and even in some environmental sampling applications. The reliability, convenience, and low cost of passive tritium-oxide-in-air samplers make them attractive options for many monitoring applications. Airflow proportional counters currently under development look promising for measuring tritium-in-air in the presence of high gamma and/or noble gas backgrounds. However, these detectors are currently limited by their poor performance in humidities over 30%. 133 refs

  14. Tritium inventory tracking and management

    International Nuclear Information System (INIS)

    Eichenberg, T.W.; Klein, A.C.

    1990-01-01

    This investigation has identified a number of useful applications of the analysis of the tracking and management of the tritium inventory in the various subsystems and components in a DT fusion reactor system. Due to the large amounts of tritium that will need to be circulated within such a plant, and the hazards of dealing with the tritium an electricity generating utility may not wish to also be in the tritium production and supply business on a full time basis. Possible scenarios for system operation have been presented, including options with zero net increase in tritium inventory, annual maintenance and blanket replacement, rapid increases in tritium creation for the production of additional tritium supplies for new plant startup, and failures in certain system components. It has been found that the value of the tritium breeding ratio required to stabilize the storage inventory depends strongly on the value and nature of other system characteristics. The real operation of a DT fusion reactor power plant will include maintenance and blanket replacement shutdowns which will affect the operation of the tritium handling system. It was also found that only modest increases in the tritium breeding ratio are needed in order to produce sufficient extra tritium for the startup of new reactors in less than two years. Thus, the continuous operation of a reactor system with a high tritium breeding ratio in order to have sufficient supplies for other plants is not necessary. Lastly, the overall operation and reliability of the power plant is greatly affected by failures in the fuel cleanup and plasma exhaust systems

  15. Tritium problems in fusion reactor systems

    International Nuclear Information System (INIS)

    Hickman, R.G.

    1975-01-01

    A brief introduction is given to the role tritium will play in the development of fusion power. The biological and worldwide environmental behavior of tritium is reviewed. The tritium problems expected in fusion power reactors are outlined. A few thoughts on tritium permeation and recent results for tritium cleanup and CT 4 accumulation are presented. Problems involving the recovery of tritium from the breeding blanket in fusion power reactors are also considered, including the possible effect of impurities in lithium blankets and the use of lithium as a regenerable getter pump. (auth)

  16. Tritium-related materials problems in fusion reactors

    International Nuclear Information System (INIS)

    Hickman, R.G.

    1976-01-01

    Pressing materials problems that must be solved before tritium can be used to produce energy economically in fusion reactors are discussed. The following topics are discussed: (1) breeding tritium, (2) recovering bred tritium, (3) containing tritium, (4) fuel recycling, and (5) laser-fusion fueling

  17. Tritium permeation and recovery

    International Nuclear Information System (INIS)

    Bond, R.A.; Hamilton, A.M.

    1987-01-01

    The paper is an appendix to a study of the reactor relevance of the NET design concept. The latter study examines whether the technologies and design principles proposed for NET can be directly extrapolated to a demonstration (DEMO) reactor. In this appendix, tritium transport in the DEMO breeding blanket is considered with emphasis on the permeation rate from the lithium-lead breeder into the coolant. A computational model used to calculate the tritium transport in the breeder blanket is described. Results are reported for the tritium transport in the NET/INTOR type blanket as well as the DEMO blanket in order to provide a comparison. In addition, results are presented for the helium coolant tritium extraction analysis. (U.K.)

  18. Tritium storage

    International Nuclear Information System (INIS)

    Hircq, B.

    1990-01-01

    This document represents a synthesis relative to tritium storage. After indicating the main storage particularities as regards tritium, storages under gaseous and solid form are after examined before establishing choices as a function of the main criteria. Finally, tritium storage is discussed regarding tritium devices associated to Fusion Reactors and regarding smaller devices [fr

  19. Tritium transport and release from lithium ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.; Kopasz, J.P.; Tam, S.W.

    1994-01-01

    In an operating fusion reactor,, the tritium breeding blanket will reach a condition in which the tritium release rate equals the production rate. The tritium release rate must be fast enough that the tritium inventory in the blanket does not become excessive. Slow tritium release will result in a large tritium inventory, which is unacceptable from both economic and safety viewpoints As a consequence, considerable effort has been devoted to understanding the tritium release mechanism from ceramic breeders and beryllium neutron multipliers through theoretical, laboratory, and in-reactor studies. This information is being applied to the development of models for predicting tritium release for various blanket operating conditions

  20. Tritium behavior in ITER beryllium

    International Nuclear Information System (INIS)

    Longhurst, G.R.

    1990-10-01

    The beryllium neutron multiplier in the ITER breeding blanket will generate tritium through transmutations. That tritium constitutes a safety hazard. Experiments evaluating tritium storage and release mechanisms have shown that most of the tritium comes out in a burst during thermal ramping. A small fraction of retained tritium is released by thermally activated processes. Analysis of recent experimental data shows that most of the tritium resides in helium bubbles. That tritium is released when the bubbles undergo swelling sufficient to develop porosity that connects with the surface. That appears to occur when swelling reaches about 10--15%. Other tritium appears to be stored chemically at oxide inclusions, probably as Be(OT) 2 . That component is released by thermal activation. There is considerable variation in published values for tritium diffusion through the beryllium and solubility in it. Data from experiments using highly irradiated beryllium from the Idaho National Engineering Laboratory showed diffusivity generally in line with the most commonly accepted values for fully dense material. Lower density material, planned for use in the ITER blanket may have very short diffusion times because of the open structure. The beryllium multiplier of the ITER breeding blanket was analyzed for tritium release characteristics using temperature and helium production figures at the midplane generated in support of the ITER Summer Workshop, 1990 in Garching. Ordinary operation, either in Physics or Technology phases, should not result in the release of tritium trapped in the helium bubbles. Temperature excursions above 600 degree C result in large-scale release of that tritium. 29 refs., 10 figs., 3 tabs

  1. MISTRAL: A comprehensive model for tritium transport in lithium-base ceramics. Pt. 2

    International Nuclear Information System (INIS)

    Federici, G.; Raffray, A.R.; Abdou, M.A.

    1990-01-01

    A new tritium transport model called MISTRAL (Model for Investigative Studies of Tritium Release in Lithium Ceramics) has been developed to describe and predict the kinetics of tritium release in lithium ceramic materials for tritium breeding applications in fusion blankets. The model has transient capabilities and has been developed to analyze the full range of transient conditions produced in in-pile tritium recovery experiments and expected in fusion blankets. Calibration of the model against experiments has been done in parallel with its development in order to assess its predictive capabilities and to identify the ranges of potential applicability. The comparisons of the results available for lithium metasilicate and aluminate samples irradiated respectively in the two in-pile tritium recovery experiments LISA1 and MOZART are presented and discussed in this paper. They have been selected for the calibration of the codes as being good examples of various features relevant for tritium release analysis in ceramic breeders under different transient conditions such as change in temperature, purge gas composition and reactor power. (orig.)

  2. Helium Bubbles Cavitation Phenomena in Pb-15.7Li and Potential Impact on Tritium Transport Behaviour in HCLL Breeding Channels

    International Nuclear Information System (INIS)

    Sedano, L. A.

    2007-01-01

    COMPU task is devoted to develop a Process Flow Diagram (PFD) modelling tool for DEMO tritium cycle for HCLL and HCPB blanket lines for DEMO. At the actual stage of definition of HCLL blanket design line this global objective requires to progress specifically on the physical reliability of tritium transport assessments at blanket design level. A rough reliability assessment with the identify cation of physical phenomena determining permeation rates into the coolant was tentatively advanced in COMPU Task Deliverable 1. In HCLL design, the tritium diffusion in the alloy under the flow conditions and radiation effects in Pb15.7Li can be theoretically justifies ed as the rate limiting processes for tritium transfer into the coolant. This Deliverable 2 focuses on the analysis of a specific radiation effect: the potential role of helium bubbles in Pb15.7Li, the discussion of its implications on tritium assessment for HCLL design and consequently the analysis of its quantitative impact (as cycle input) on HCLL PFD tritium cycle design. Thus, the contents of this report investigate: (1) the rationality of the consideration on HCLL design of helium bubble cavitation phenomena in irradiated Pb15.7Li channels on the base of fundamental analysis (He solution states in Pb15.7Li) from empirical clues provided by Pb15.7Li irradiation tests, (2) a preliminary rough He-bubble cavitation design assessment and bases for a more precise FEM calculation for helium bubble cavitation phenomena in HCLL blanket channels, (3) the analysis of direct experimental data and numerical developments needed for a precise cavitation assessment and (4) a proposal of the lay-out and general specifications of an integral proof-of-principle Cavitation Experiment (Cevitex) of Helium in Pb15.7Li. (Author) 40 refs

  3. Helium Bubbles Cavitation Phenomena in Pb-15.7Li and Potential Impact on Tritium Transport Behaviour in HCLL Breeding Channels

    Energy Technology Data Exchange (ETDEWEB)

    Sedano, L. A.

    2007-09-27

    COMPU task is devoted to develop a Process Flow Diagram (PFD) modelling tool for DEMO tritium cycle for HCLL and HCPB blanket lines for DEMO. At the actual stage of definition of HCLL blanket design line this global objective requires to progress specifically on the physical reliability of tritium transport assessments at blanket design level. A rough reliability assessment with the identify cation of physical phenomena determining permeation rates into the coolant was tentatively advanced in COMPU Task Deliverable 1. In HCLL design, the tritium diffusion in the alloy under the flow conditions and radiation effects in Pb15.7Li can be theoretically justifies ed as the rate limiting processes for tritium transfer into the coolant. This Deliverable 2 focuses on the analysis of a specific radiation effect: the potential role of helium bubbles in Pb15.7Li, the discussion of its implications on tritium assessment for HCLL design and consequently the analysis of its quantitative impact (as cycle input) on HCLL PFD tritium cycle design. Thus, the contents of this report investigate: (1) the rationality of the consideration on HCLL design of helium bubble cavitation phenomena in irradiated Pb15.7Li channels on the base of fundamental analysis (He solution states in Pb15.7Li) from empirical clues provided by Pb15.7Li irradiation tests, (2) a preliminary rough He-bubble cavitation design assessment and bases for a more precise FEM calculation for helium bubble cavitation phenomena in HCLL blanket channels, (3) the analysis of direct experimental data and numerical developments needed for a precise cavitation assessment and (4) a proposal of the lay-out and general specifications of an integral proof-of-principle Cavitation Experiment (Cevitex) of Helium in Pb15.7Li. (Author) 40 refs.

  4. Tritium conference days; Journees tritium

    Energy Technology Data Exchange (ETDEWEB)

    Garnier-Laplace, J.; Lebaron-Jacobs, L.; Sene, M.; Devin, P.; Chretien, V.; Le Guen, B.; Guetat, Ph.; Baglan, N.; Ansoborlo, E.; Boyer, C.; Masson, M.; Bailly-Du-Bois, P.; Jenkinson, St.; Wakeford, R.; Saintigny, Y.; Romeo, P.H.; Thompson, P.; Leterq, D.; Chastagner, F.; Cortes, P.; Philippe, M.; Paquet, F.; Fournier, M.

    2009-07-01

    This document gathers the slides of the available presentations given during this conference day. Twenty presentations out of 21 are assembled in the document and deal with: 1 - tritium in the environment (J. Garnier-Laplace); 2 - status of knowledge about tritium impact on health (L. Lebaron-Jacobs); 3 - tritium, discrete but present everywhere (M. Sene); 4 - management of tritium effluents from Areva NC La Hague site - related impact and monitoring (P. Devin); 5 - tritium effluents and impact in the vicinity of EDF's power plants (V. Chretien and B. Le Guen); 6 - contribution of CEA-Valduc centre monitoring to the knowledge of atmospheric tritiated water transfers to the different compartments of the environment (P. Guetat); 7 - tritium analysis in environment samples: constraints and means (N. Baglan); 8 - organically-linked tritium: the analyst view (E. Ansoborlo); 9 - study of tritium transfers to plants via OBT/HTO{sub air} and OBT/HTO{sub free} (C. Boyer); 10 - tritium in the British Channel (M. Masson and P. Bailly-Du-Bois); 11 - tritium in British coastal waters (S. Jenkinson); 12 - recent results from epidemiology (R. Wakeford); 13 - effects of tritiated thymidine on hematopoietic stem cells (P.H. Romeo); 14 - tritium management issue in Canada: the point of view from authorities (P. Thompson); 15 - experience feedback of the detritiation process of Valduc centre (D. Leterq); 16 - difficulties linked with tritiated wastes confinement (F. Chastagner); 17 - optimisation of tritium management in the ITER project (P. Cortes); 18 - elements of thought about the management of tritium generated by nuclear facilities (M. Philippe); 19 - CIPR's position about the calculation of doses and risks linked with tritium exposure (F. Paquet); 20 - tritium think tanks (M. Fournier). (J.S.)

  5. Tritium waste package

    Science.gov (United States)

    Rossmassler, Rich; Ciebiera, Lloyd; Tulipano, Francis J.; Vinson, Sylvester; Walters, R. Thomas

    1995-01-01

    A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

  6. Tritium monitoring equipments for animal experiment facilities

    International Nuclear Information System (INIS)

    Sato, Hiroo

    1980-01-01

    Animal experiment facilities using tritium are described with reference to laws and regulations concerning radiological safety. Usual breeding facilities and surrounding conditions at non-radioactive animal experiments are summarized on feasible and effective designs of tritium monitors. Characteristics and desirable arrangements of various kinds of tritium monitors such as ionization chambers, proportional counters and liquid scintillation detectors are discussed from the standpoint of monitoring for room, glove-box, stack, liquid waste and personnel. (J.P.N.)

  7. Tritium sources

    International Nuclear Information System (INIS)

    Glodic, S.; Boreli, F.

    1993-01-01

    Tritium is the only radioactive isotope of hydrogen. It directly follows the metabolism of water and it can be bound into genetic material, so it is very important to control levels of contamination. In order to define the state of contamination it is necessary to establish 'zero level', i.e. actual global inventory. The importance of tritium contamination monitoring increases with the development of fusion power installations. Different sources of tritium are analyzed and summarized in this paper. (author)

  8. Tritium storage

    International Nuclear Information System (INIS)

    Hircq, B.

    1989-01-01

    A general synthesis about tritium storage is achieved in this paper and a particular attention is given to practical application in the Fusion Technology Program. Tritium, storage under gaseous form and solid form are discussed (characteristics, advantages, disadvantages and equipments). The way of tritium storage is then discussed and a choice established as a function of a logic which takes into account the main working parameters

  9. Tritium accountancy in fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E.; Clark, E.A.; Harvel, C.D.; Farmer, D.A.; Tovo, L.L.; Poore, A.S. [Savannah River National Laboratory, Aiken, SC (United States); Moore, M.L. [Savannah River Nuclear Solutions, Aiken, SC (United States)

    2015-03-15

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MCA) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MCA requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBA) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSA) are established along with key measurement points (KMP) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSA. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breeding, burn-up, and retention of tritium in the fusion device. The concept of 'net' tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. (authors)

  10. Conceptual design of tritium accountancy system for LLCB TBM

    International Nuclear Information System (INIS)

    Patel, Rudreksh; Sircar, Amit

    2017-01-01

    Lead Lithium Ceramic Breeder (LLCB) Test Blanket Module (TBM) will be tested in ITER for performance evaluation of high grade of heat extraction and tritium breeding. The bred tritium in the breeder materials is extracted and recovered by Tritium Extraction System (TES), whereas tritium permeated from breeder materials to helium coolants, viz., primary coolant and secondary coolant, is recovered by Coolant Purification System (CPS). This recovered tritium has to be accounted before transferring it to tritium plant (i.e., ITER inner fuel). This tritium accountancy is performed by Tritium Accountancy System (TAS). In addition to tritium accountancy, TAS also provides necessary data for the validation of design and modelling tools.In this work, we have presented conceptual design of TAS. It also describes operational philosophy, process parameters, process flow diagram, and interface details with ITER tritium plant. (author)

  11. Tritium system design studies of fusion experimental breeder

    International Nuclear Information System (INIS)

    Deng Baiquan; Huang Jinhua

    2003-01-01

    A summary of the tritium system design studies for the engineering outline design of a fusion experimental breeder (FEB-E) is presented. This paper is divided into three sections. In first section, the geometry, loading features and tritium concentrations in liquid lithium of tritium breeding zones of blanket are described. The tritium flow chart corresponding to the tritium fuel cycle system has been constructed, and the inventories in ten subsystems are calculated using SWITRIM code in section 2. Results show that the necessary initial tritium storage to start up FEB-E with fusion power of 143 MW is about 319 g. In final section, the tritium leakage issues under different operation circumstances have been analyzed. It was found that the potential danger of tritium leakage could be resulted from the exhausted gas of the diverter system. It is important to elevate the tritium burnup fraction and reduce the tritium throughput. (authors)

  12. Tritium trick

    Science.gov (United States)

    Green, W. V.; Zukas, E. G.; Eash, D. T.

    1971-01-01

    Large controlled amounts of helium in uniform concentration in thick samples can be obtained through the radioactive decay of dissolved tritium gas to He3. The term, tritium trick, applies to the case when helium, added by this method, is used to simulate (n,alpha) production of helium in simulated hard flux radiation damage studies.

  13. Studies on steps affecting tritium residence time in solid blanket

    International Nuclear Information System (INIS)

    Tanaka, Satoru

    1987-01-01

    For the self sustaining of CTR fuel cycle, the effective tritium recovery from blankets is essential. This means that not only tritium breeding ratio must be larger than 1.0, but also high recovering speed is required for the short residence time of tritium in blankets. Short residence time means that the tritium inventory in blankets is small. In this paper, the tritium residence time and tritium inventory in a solid blanket are modeled by considering the steps constituting tritium release. Some of these tritium migration processes were experimentally evaluated. The tritium migration steps in a solid blanket using sintered breeding materials consist of diffusion in grains, desorption at grain edges, diffusion and permeation through grain boundaries, desorption at particle edges, diffusion and percolation through interconnected pores to purging stream, and convective mass transfer to stream. Corresponding to these steps, diffusive, soluble, adsorbed and trapped tritium inventories and the tritium in gas phase are conceivable. The code named TTT was made for calculating these tritium inventories and the residence time of tritium. An example of the results of calculation is shown. The blanket is REPUTER-1, which is the conceptual design of a commercial reversed field pinch fusion reactor studied at the University of Tokyo. The experimental studies on the migration steps of tritium are reported. (Kako, I.)

  14. Tritium confinement in a new tritium processing facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Heung, L.K.; Owen, J.H.; Hsu, R.H.; Hashinger, R.F.; Ward, D.E.; Bandola, P.E.

    1991-01-01

    A new tritium processing facility, named the Replacement Tritium Facility (RTF), has been completed and is being prepared for startup at the Savannah River Site (SRS). The RTF has the capability to recover, purify and separate hydrogen isotopes from recycled gas containers. A multilayered confinement system is designed to reduce tritium losses to the environment. This confinement system is expected to confine and recover any tritium that might escape the process equipment, and to maintain the tritium concentration in the nitrogen glovebox atmosphere to less than 10 -2 μCi/cc tritium

  15. Tritium transport analysis for CFETR WCSB blanket

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pinghui, E-mail: phzhao@mail.ustc.edu.cn; Yang, Wanli; Li, Yuanjie; Ge, Zhihao; Nie, Xingchen; Gao, Zhongping

    2017-01-15

    Highlights: • A simplified tritium transport model for CFETR WCSB blanket was developed. • Tritium transport process in CFETR WCSB blanket was analyzed. • Sensitivity analyses of tritium transport parameters were carried out. - Abstract: Water Cooled Solid Breeder (WCSB) blanket was put forward as one of the breeding blanket candidate schemes for Chinese Fusion Engineering Test Reactor (CFETR). In this study, a simplified tritium transport model was developed. Based on the conceptual engineering design, neutronics and thermal-hydraulic analyses of CFETR WCSB blanket, tritium transport process was analyzed. The results show that high tritium concentration and inventory exist in primary water loop and total tritium losses exceed CFETR limits under current conditions. Conducted were sensitivity analyses of influential parameters, including tritium source, temperature, flow-rate capacity and surface condition. Tritium performance of WCSB blanket can be significantly improved under a smaller tritium impinging rate, a larger flow-rate capacity or a better surface condition. This work provides valuable reference for the enhancement of tritium transport behavior in CFETR WCSB blanket.

  16. The Safety and Tritium Applied Research (STAR) Facility: Status-2004

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Pawelko, R.J.; Sharpe, J.P.; Schuetz, S.T.; Petti, D.A.

    2005-01-01

    The Safety and Tritium Applied Research (STAR) Facility, a US DOE National User Facility at the Idaho National Engineering and Environmental Laboratory (INEEL), comprises capabilities and infrastructure to support both tritium and non-tritium research activities important to the development of safe and environmentally friendly fusion energy. Research thrusts include (1) interactions of tritium and deuterium with plasma-facing-component (PFC) materials, (2) fusion safety issues [PFC material chemical reactivity and dust/debris generation, activation product mobilization, tritium behavior in fusion systems], and (3) molten salts and fusion liquids for tritium breeder and coolant applications. This paper updates the status of STAR and the capabilities for ongoing research activities, with an emphasis on the development, testing and integration of the infrastructure to support tritium research activities. Key elements of this infrastructure include a tritium storage and assay system, a tritium cleanup system to process glovebox and experiment tritiated effluent gases, and facility tritium monitoring systems

  17. Tritium Systems Test Facility

    International Nuclear Information System (INIS)

    Cafasso, F.A.; Maroni, V.A.; Smith, W.H.; Wilkes, W.R.; Wittenberg, L.J.

    1978-01-01

    This TSTF proposal has two principal objectives. The first objective is to provide by mid-FY 1981 a demonstration of the fuel cycle and tritium containment systems which could be used in a Tokamak Experimental Power Reactor for operation in the mid-1980's. The second objective is to provide a capability for further optimization of tritium fuel cycle and environmental control systems beyond that which is required for the EPR. The scale and flow rates in TSTF are close to those which have been projected for a prototype experimental power reactor (PEPR/ITR) and will permit reliable extrapolation to the conditions found in an EPR. The fuel concentrations will be the same as in an EPR. Demonstrations of individual components of the deuterium-tritium fuel cycle and of monitoring, accountability and containment systems and of a maintenance methodology will be achieved at various times in the FY 1979-80 time span. Subsequent to the individual component demonstrations--which will proceed from tests with hydrogen (and/or deuterium) through tracer levels of tritium to full operational concentrations--a complete test and demonstration of the integrated fuel processing and tritium containment facility will be performed. This will occur near the middle of FY 1981. Two options were considered for the TSTF: (1) The modification of an existing building and (2) the construction of a new facility

  18. Tritium autoradiography

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1981-01-01

    Hydrogen distribution and diffusion within many materials may be investigated by autoradiography if the radioactive isotope tritium is used in the study. Tritium is unstable and decays to helium-3 by emission of a low energy (18 keV) beta particle which may be detected photographically. The basic principles of tritium autoradiography will be discussed. Limitations are imposed on the technique by: (1) the low energy of the beta particles; (2) the solubility and diffusivity of hydrogen in materials; and (3) the response of the photographic emulsion to beta particles. These factors control the possible range of application of tritium autoradiography. The technique has been applied successfully to studies of hydrogen solubility and distribution in materials and to studies of hydrogen damage

  19. Sirius-T, a symmetrically illuminated ICF tritium production facility

    International Nuclear Information System (INIS)

    Sviatoslavsky, I.N.; Sawan, M.E.; Moses, G.A.; Kulcinski, G.L.; Engelstad, R.L.; Larsen, E.; Lovell, E.; MacFarlane, J.; Peterson, R.R.; Wittenberg, L.J.

    1989-01-01

    A scoping study of a symmetrically illuminated ICF tritium production facility utilizing a KrF laser is presented. A single shell ICF target is illuminated by 92 beams symmetrically distributed around a spherical cavity filled with xenon gas at 1.0 torr. The driver energy and target gain are taken to be 2 MJ and 50 for the optimistic case and 1 MJ and 100 for the conservative case. Based on a graphite dry wall evaporation rate of 0.1 cm/y for a 100 MJ yield, the authors estimate a cavity radius of 3.5 m for a rep-rate of 10 Hz and 3.0 m for 5 Hz. A spherical structural frame has been scoped out capable of supporting 92 blanket modules, each with a beam port in the center. They have selected liquid lithium in vanadium structure as the primary breeding concept utilizing beryllium as a neutron multiplier. A tritium breeding ratio of 1.83 can be achieved in the 3 m radius cavity which at 10 Hz and an availability of 75% provides an annual tritium surplus of 32.6 kg. Assuming 100% debt financing over a 30 year reactor lifetime, the production cost of T 2 for the 2 MJ driver case is $7,325/g for a 5% interest rate and $12,370/g for a 10% interest rate. 8 refs., 3 figs., 4 tabs

  20. Tritium issues in plasma wall interactions

    International Nuclear Information System (INIS)

    Tanabe, T.

    2009-01-01

    In order to establish a D-T fusion reactor as an energy source, it is not enough to have a DT burning plasma, and economical conversion of fusion energy to electricity and/or heat, a large enough margin of tritium breeding and tritium safety must be simultaneously achieved. In particular, handling of huge amount of tritium needs a significant effort to ensure that the radiation dose of radiological workers and of the public is below the limits specified by the International Commission on Radiological Protection. For the safety reasons, tritium in a reactor will be limited to only a few kg orders in weight, with radioactivity up to 10 17 Bq. Since public exposure to tritium is regulated at a level as tiny as a few Bq/cm 2 , tritium must be strictly confined in a reactor system with accountancy of an order of pg (pico-gram). Generally qualitative analysis with the accuracy of more than 3 orders of magnitude is hardly possible. We are facing to lots of safety concerns in the handling of huge amounts of radioactive tritium as a fuel and to be bred in a blanket. In addition, tritium resources are very limited. Not only for the safety reason but also for the saving of tritium resources, tritium retention in a reactor must be kept as small as possible. In the present tokamaks, however, hydrogen retention is significantly large, i.e. more than 20% of fueled hydrogen is continuously piled up in the vacuum vessel, which must not be allowed in a reactor. After the introduction of tritium as a hydrogen radioisotope, this lecture will present tritium issues in plasma wall interactions, in particular, fueling, retention and recovering, considering the handling of large amounts of tritium, i.e. confinement, leakage, contamination, permeation, regulations and tritium accountancy. Progress in overcoming such problems will be also presented. This document is made of the slides of the presentation. (author)

  1. Tritium effluent removal system

    International Nuclear Information System (INIS)

    Lamberger, P.H.; Gibbs, G.E.

    1978-01-01

    An air detritiation system has been developed and is in routine use for removing tritium and tritiated compounds from glovebox effluent streams before they are released to the atmosphere. The system is also used, in combination with temporary enclosures, to contain and decontaminate airborne releases resulting from the opening of tritium containment systems during maintenance and repair operations. This detritiation system, which services all the tritium handling areas at Mound Facility, has played an important role in reducing effluents and maintaining them at 2 percent of the level of 8 y ago. The system has a capacity of 1.7 m 3 /min and has operated around the clock for several years. A refrigerated in-line filtration system removes water, mercury, or pump oil and other organics from gaseous waste streams. The filtered waste stream is then heated and passed through two different types of oxidizing beds; the resulting tritiated water is collected on molecular sieve dryer beds. Liquids obtained from regenerating the dryers and from the refrigerated filtration system are collected and transferred to a waste solidification and packaging station. Component redundancy and by-pass capabilities ensure uninterrupted system operation during maintenance. When processing capacity is exceeded, an evacuated storage tank of 45 m 3 is automatically opened to the inlet side of the system. The gaseous effluent from the system is monitored for tritium content and recycled or released directly to the stack. The average release is less than 1 Ci/day. The tritium effluent can be reduced by isotopically swamping the tritium; this is accomplished by adding hydrogen prior to the oxidizer beds, or by adding water to the stream between the two final dryer beds

  2. Storage and Assay of Tritium in STAR

    International Nuclear Information System (INIS)

    Longhurst, Glen R.; Anderl, Robert A.; Pawelko, Robert J.; Stoots, Carl J.

    2005-01-01

    The Safety and Tritium Applied Research (STAR) facility at the Idaho National Engineering and Environmental Laboratory (INEEL) is currently being commissioned to investigate tritium-related safety questions for fusion and other technologies. The tritium inventory for the STAR facility will be maintained below 1.5 g to avoid the need for STAR to be classified as a Category 3 nuclear facility. A key capability in successful operation of the STAR facility is the ability to receive, inventory, and dispense tritium to the various experiments underway there. The system central to that function is the Tritium Storage and Assay System (SAS).The SAS has four major functions: (1) receiving and holding tritium, (2) assaying, (3) dispensing, and (4) purifying hydrogen isotopes from non-hydrogen species.This paper describes the design and operation of the STAR SAS and the procedures used for tritium accountancy in the STAR facility

  3. Neutronics experiments for uncertainty assessment of tritium breeding in HCPB and HCLL blanket mock-ups irradiated with 14 MeV neutrons

    International Nuclear Information System (INIS)

    Batistoni, P.; Angelone, M.; Pillon, M.; Villari, R.; Fischer, U.; Klix, A.; Leichtle, D.; Kodeli, I.; Pohorecki, W.

    2012-01-01

    Two neutronics experiments have been carried out at 14 MeV neutron sources on mock-ups of the helium cooled pebble bed (HCBP) and the helium cooled lithium lead (HCLL) variants of ITER test blanket modules (TBMs). These experiments have provided an experimental validation of the calculations of the tritium production rate (TPR) in the two blanket concepts and an assessment of the uncertainties due to the uncertainties on nuclear data. This paper provides a brief summary of the HCPB experiment and then focuses in particular on the final results of the HCLL experiment. The TPR has been measured in the HCLL mock-up irradiated for long times at the Frascati 14 MeV Neutron Generator (FNG). Redundant and well-assessed experimental techniques have been used to measure the TPR by different teams for inter-comparison. Measurements of the neutron and gamma-ray spectra have also been performed. The analysis of the experiment, carried out by the MCNP code with FENDL-2.1 and JEFF-3.1.1 nuclear data libraries, and also including sensitivity/uncertainty analysis, shows good agreement between measurements and calculations, within the total uncertainty of 5.9% at 1σ level. (paper)

  4. Tritium immobilisation

    International Nuclear Information System (INIS)

    Bridger, N.J.

    1982-01-01

    Tritium is immobilised for long term storage by absorption in a hydridable/tritidable material, such as zirconium. A gas permeable container is packed with the material in the form of sponge fragments, rods or tubes, and a gaseous mixture of hydrogen and tritium introduced into the container whilst the container is at a temperature of about 600 deg C or above. Thermal expansion of the material during reaction with the gaseous mixture compacts the material into a coherent body in the container relatively free from finely divided hydride/ tritide material. (author)

  5. Tritium migration in nuclear desalination plants

    International Nuclear Information System (INIS)

    Muralev, E.D.

    2003-01-01

    Tritium transport, as one of important items of radiation safety assessment, should be taken into consideration before construction of a Nuclear Desalination Plant (NDP). The influence of tritium internal exposition to the human body is very dangerous because of 3 H associations with water molecules. The problem of tritium in nuclear engineering is connected to its high penetration ability (through fuel element cans and other construction materials of a reactor), with the difficulty of extracting tritium from process liquids and gases. Sources of tritium generation in NDP are: nuclear fuel, boron in control rods, and deuterium in heat carrier. Tritium passes easily through the walls of a reactor vessel, intermediate heat exchangers, steam generators and other technological equipment, through the walls of heat carrier pipelines. The release of tritium and its transport could be assessed, using mathematical models, based on the assumption that steady state equilibrium has been attained between the sources of tritium, produced water and release to the environment. Analysis of the model shows the tritium concentration dependence in potable water on design features of NDP. The calculations obtained and analysis results for NDP with BN-350 reactor give good convergence. According to the available data, tritium concentration in potable water is less than the statutory maximum concentration limit. The design of a NDP requires elaboration of technical solutions, capable of minimising the release of tritium to potable water produced. (author)

  6. Irradiation behaviour of a tritium breeding material, γ-LiAlO 2- results of two in-pile experiments: ALICE I and ALICE II

    Science.gov (United States)

    Botter, F.; Rasneur, B.; Roth, E.

    1988-11-01

    γ-LiAlO 2 has been studied at CEA as potential breeder material for fusion reactors within the scope of the EEC fusion technology program. Radiation damage was investigated by irradiating unclad aluminate samples in the core of the OSIRIS reactor at Saclay. As part of the international breeder material comparison program named BEATRIX, US samples were irradiated along with those prepared in Saclay; samples of natural 6Li content and 96% enriched ones were irradiated. Shapes were chosen to enable postirradiation examinations (PIE), and microstructures were optimized for tritium release. The ALICE 1 experiment was carried out during 25.7 full power days (FPD), ALICE II lasted 36.3 FPD. Temperatures ranged from 400 to 600°C in the first, from 750 to 850°C in the second ALICE irradiation (sample core temperatures). In both cases the maximum flux on the samples was 2.1 × 10 18n m -2 s -1 fast, and 0.7 × 10 18n m -2 s -2 thermal Power dissipated was up to 100 W/cm 3, higher than the average in most reactor blanket designs by a factor 3 to 10, thus enabling the highest burn-ups to correspond to more than two years of possible operation in a full-scale reactor. In the lower temperature range of irradiation no significant damage was observed. In the higher one shrinkage due to sintering was induced. Whatever the microstructure, the flux and temperature, all samples (but one) not exceeding 5 mm diameter and length were mechanically intact. Above those dimensions cracking, which can be assigned to excessive thermal stress, could be observed. Given anticipated operating conditions of blankets being designed, the behaviour of γ-LiAlO 2 under irradiation is that of a very promising material.

  7. Radiotoxicity of tritium in mammals

    International Nuclear Information System (INIS)

    Silini, G.; Metalli, P.; Vulpis, G.

    1972-12-01

    Basic data relative to tritium, its physicochemical behaviour in environment, its major sources of contamination and its metabolism through the mammalian organisms are reviewed. After considering the radiotoxicity of tritium particularly at the cellular and whole-body level the conclusion is drawn that the major uncertainties regard the fraction of tritium incorporated into the nuclei of some tissues. This fraction is eliminated very slowly and is capable of modifying the genetic structures of the nucleus. A more refined analysis of radiobiological phenomena and a better knowledge of the dose effect relationship should permit the extrapolation of the data to the low doses of tritium contamination. This extrapolation is of great interest in the field of public health for the elaboration of the relevant radioprotection standards

  8. Tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Cole, M.J.; Combs, S.K.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foust, C.R.; Langley, R.A.; Milora, S.L.; Qualls, A.L.; Wilgen, J.B.; Schmidt, G.L.; Barnes, G.W.; Persing, R.G.

    1992-01-01

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) phase. The existing TFTR deuterium pellet injector (DPI) has been modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed to provide pellets ranging from 3.3 to 4.5 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller. The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed, and the TPI was tested at ORNL with deuterium pellet. Results of the limited testing program at ORNL are described. The TPI is being installed on TFTR to support the D-D run period in 1992. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and secondary tritium containment systems and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  9. Universal tritium transmitter

    International Nuclear Information System (INIS)

    Cordaro, J. V.; Wood, M.

    2008-01-01

    At the Savannah River Site and throughout the National Nuclear Security Agency (NNSA) tritium is measured using Ion or Kanne Chambers. Tritium flowing through an Ion Chamber emits beta particles generating current flow proportional to tritium radioactivity. Currents in the 1 x 10 -15 A to 1 x 10 -6 A are measured. The distance between the Ion Chamber and the electrometer in NNSA facilities can be over 100 feet. Currents greater than a few micro-amperes can be measured with a simple modification. Typical operating voltages of 500 to 1000 Volts and piping designs require that the Ion Chamber be connected to earth ground. This grounding combined with long cable lengths and low currents requires a very specialized preamplifier circuit. In addition, the electrometer must be able to supply 'fail safe' alarm signals which are used to alert personnel of a tritium leak, trigger divert systems preventing tritium releases to the environment and monitor stack emissions as required by the United States federal Government and state governments. Ideally the electrometer would be 'self monitoring'. Self monitoring would reduce the need for constant checks by maintenance personnel. For example at some DOE facilities monthly calibration and alarm checks must be performed to ensure operation. NNSA presently uses commercially available electrometers designed specifically for this critical application. The problems with these commercial units include: ground loops, high background currents, inflexibility and susceptibility to Electromagnetic Interference (EMI) which includes RF and Magnetic fields. Existing commercial electrometers lack the flexibility to accommodate different Ion Chamber designs required by the gas pressure, type of gas and range. Ideally the electrometer could be programmed for any expected gas, range and high voltage output. Commercially available units do not have 'fail safe' self monitoring capability. Electronics used to measure extremely low current must have

  10. Feasibility study of fusion breeding blanket concept employing graphite reflector

    International Nuclear Information System (INIS)

    Cho, Seungyon; Ahn, Mu-Young; Lee, Cheol Woo; Kim, Eung Seon; Park, Yi-Hyun; Lee, Youngmin; Lee, Dong Won

    2015-01-01

    Highlights: • A Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept adopts graphite as a reflector material by reducing the amount of beryllium multiplier. • Its feasibility was investigated in view point of the nuclear performance as well as material-related issues. • A nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket. • Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions. • In conclusion, the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition. - Abstract: To obtain high tritium breeding performance with limited blanket thickness, most of solid breeder blanket concepts employ a combination of lithium ceramic as a breeder and beryllium as a multiplier. In this case, considering that huge amount of beryllium are needed in fusion power plants, its handling difficulty and cost can be a major factor to be accounted for commercial use. Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. Its feasibility has been investigated in view point of the nuclear performance as well as material-related issues. In this paper, a nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket, considering tritium breeding capability and neutron shielding and activation aspects. Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions, resulting in that the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition.

  11. Feasibility study of fusion breeding blanket concept employing graphite reflector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seungyon, E-mail: sycho@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Cheol Woo; Kim, Eung Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi-Hyun; Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Highlights: • A Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept adopts graphite as a reflector material by reducing the amount of beryllium multiplier. • Its feasibility was investigated in view point of the nuclear performance as well as material-related issues. • A nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket. • Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions. • In conclusion, the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition. - Abstract: To obtain high tritium breeding performance with limited blanket thickness, most of solid breeder blanket concepts employ a combination of lithium ceramic as a breeder and beryllium as a multiplier. In this case, considering that huge amount of beryllium are needed in fusion power plants, its handling difficulty and cost can be a major factor to be accounted for commercial use. Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. Its feasibility has been investigated in view point of the nuclear performance as well as material-related issues. In this paper, a nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket, considering tritium breeding capability and neutron shielding and activation aspects. Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions, resulting in that the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition.

  12. Tritium extraction technologies and DEMO requirements

    Energy Technology Data Exchange (ETDEWEB)

    Demange, D., E-mail: david.demange@kit.edu [Karlsruhe Institute of Technology, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Antunes, R.; Borisevich, O.; Frances, L. [Karlsruhe Institute of Technology, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rapisarda, D. [Laboratorio Nacional de Fusión, EURATOM-CIEMAT, 28040 Madrid (Spain); Santucci, A. [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Utili, M. [ENEA CR Brasimone, 40032 Camugnano, BO (Italy)

    2016-11-01

    Highlights: • We detail the R&D plan for tritium technology of the European DEMO breeding blanket. • We study advanced and efficient extraction techniques to improve tritium management. • We consider inorganic membranes and catalytic membrane reactor for solid blankets. • We consider permeator against vacuum and vacuum sieve tray for liquid blankets. - Abstract: The conceptual design of the tritium extraction system (TES) for the European DEMO reactor is worked out in parallel for four different breeding blankets (BB) retained by EUROfusion. The TES design has to be tackled in an integrated manner optimizing the synergy with the directly interfacing inner fuel cycle, while minimizing the tritium permeation into the coolant. Considering DEMO requirements, it is most likely that only advanced technologies will be suitable for the tritium extraction systems of the BB. This paper overviews the European work programme for R&D on tritium technology for the DEMO BB, summaries the general first outcomes, and details the specific and comprehensive R&D program to study experimentally immature but promising technologies such as vacuum sieve tray or permeator against vacuum for tritium extraction from PbLi, and advanced inorganic membranes and catalytic membrane reactor for tritium extraction from He. These techniques are simple, fully continuous, likely compact with contained energy consumption. Several European Laboratories are joining their efforts to deploy several new experimental setups to accommodate the tests campaigns that will cover small scale experiments with tritium and inactive medium scale tests so as to improve the technology readiness level of these advanced processes.

  13. Tritium containing polymers having a polymer backbone substantially void of tritium

    Science.gov (United States)

    Jensen, G.A.; Nelson, D.A.; Molton, P.M.

    1992-03-31

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium. 2 figs.

  14. Experiments on tritium behavior in beryllium, (1)

    International Nuclear Information System (INIS)

    Kawamura, Hiroshi; Ishizuka, Etsuo; Matsumoto, Mikio; Inada, Seiji; Sezaki, Katsuji; Saito, Minoru; Kato, Mineo.

    1989-06-01

    In JMTR, it was observed that the tritium concentration of the primary coolant increases with the reactor operation at 50 MW. As one of the tritium generation sources, we paid attention to a neutron reflector made of beryllium because the tritium generation rate in the beryllium is bigger than other components in the reactor core. On the other hand, the irradiation test of blanket materials (i.e. tritium breeding materials and neutron multipling materials) are planned for development of the fusion reactor in JMTR and the beryllium will be also irradiated as a neutron multiplier with tritium breeding materials. Therefore, as the irradiated specimens, we used a hot-pressed beryllium disk fabricated by the same method as the neutron reflector or the neutron multiplier and conducted the irradiation tests in JMTR. The purpose of these tests are to clarify the tritium behavior in the hot-pressed beryllium. In this paper, from a viewpoint of the fabrication of capsules for neutron irradiation, the specifications of the irradiated specimens and capsules are summarized. Additionally, the results on the puncture test of the container of the irradiation specimens are described. (author)

  15. Magmatic tritium

    International Nuclear Information System (INIS)

    Goff, F.; Aams, A.I.; McMurtry, G.M.; Shevenell, L.; Pettit, D.R.; Stimac, J.A.; Werner, C.

    1997-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Detailed geochemical sampling of high-temperature fumaroles, background water, and fresh magmatic products from 14 active volcanoes reveal that they do not produce measurable amounts of tritium ( 3 H) of deep origin ( 2 O). On the other hand, all volcanoes produce mixtures of meteoric and magmatic fluids that contain measurable 3 H from the meteoric end-member. The results show that cold fusion is probably not a significant deep earth process but the samples and data have wide application to a host of other volcanological topics

  16. Weapons engineering tritium facility overview

    Energy Technology Data Exchange (ETDEWEB)

    Najera, Larry [Los Alamos National Laboratory

    2011-01-20

    Materials provide an overview of the Weapons Engineering Tritium Facility (WETF) as introductory material for January 2011 visit to SRS. Purpose of the visit is to discuss Safety Basis, Conduct of Engineering, and Conduct of Operations. WETF general description and general GTS program capabilities are presented in an unclassified format.

  17. Tritium proof-of-principle pellet injector

    International Nuclear Information System (INIS)

    Fisher, P.W.

    1991-07-01

    The tritium proof-of-principle (TPOP) experiment was designed and built by Oak Ridge National Laboratory (ORNL) to demonstrate the formation and acceleration of the world's first tritium pellets for fueling of future fusion reactors. The experiment was first used to produce hydrogen and deuterium pellets at ORNL. It was then moved to the Tritium Systems Test Assembly at Los Alamos National Laboratory for the production of tritium pellets. The injector used in situ condensation to produce cylindrical pellets in a 1-m-long, 4-mm-ID barrel. A cryogenic 3 He separator, which was an integral part of the gun assembly, was capable of lowering 3 He levels in the feed gas to <0.005%. The experiment was housed to a glovebox for tritium containment. Nearly 1500 pellets were produced during the course of the experiment, and about a third of these were pure tritium or mixtures of deuterium and tritium. Over 100 kCi of tritium was processed through the experiment without incident. Tritium pellet velocities of 1400 m/s were achieved with high-pressure hydrogen propellant. The design, operation, and results of this experiment are summarized. 34 refs., 44 figs., 3 tabs

  18. Tritium recovery from lithium oxide pellets

    International Nuclear Information System (INIS)

    Bertone, P.C.; Jassby, D.L.

    1984-01-01

    The TFTR Lithium Blanket Module is an assembly containing 650 kg of lithium oxide that will be used to test the ability of neutronics codes to model the tritium breeding characteristics of limited-coverage breeding zones in a tokamak. It is required that tritium concentrations as low as 0.1 nCi/g bred in both metallic lithium samples and lithium oxide pellets be measured with an uncertainty not exceeding +- 6%. A tritium assay technique for the metallic samples which meets this criterion has been developed. Two assay techniques for the lithium oxide pellets are being investigated. In one, the pellets are heated in a flowing stream of hydrogen, while in the other, the pellets are dissolved in 12 M hydrochloric acid

  19. The INEL Tritium Research Facility

    International Nuclear Information System (INIS)

    Longhurst, G.R.

    1990-01-01

    The Tritium Research Facility (TRF) at the Idaho National Engineering Laboratory (INEL) is a small, multi-user facility dedicated to research into processes and phenomena associated with interaction of hydrogen isotopes with other materials. Focusing on bench-scale experiments, the main objectives include resolution of issues related to tritium safety in fusion reactors and the science and technology pertinent to some of those issues. In this report the TRF and many of its capabilities will be described. Work presently or recently underway there will be discussed, and the implications of that work to the development of fusion energy systems will be considered. (orig.)

  20. The INEL Tritium Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R. (Idaho National Engineering Lab., Idaho Falls (USA))

    1990-06-01

    The Tritium Research Facility (TRF) at the Idaho National Engineering Laboratory (INEL) is a small, multi-user facility dedicated to research into processes and phenomena associated with interaction of hydrogen isotopes with other materials. Focusing on bench-scale experiments, the main objectives include resolution of issues related to tritium safety in fusion reactors and the science and technology pertinent to some of those issues. In this report the TRF and many of its capabilities will be described. Work presently or recently underway there will be discussed, and the implications of that work to the development of fusion energy systems will be considered. (orig.).

  1. Tritium dosimetry and standardization

    International Nuclear Information System (INIS)

    Balonov, M.I.

    1983-01-01

    Actual problem of radiation hygiene such as an evaluation of human irradiation hazard due to a contact with tritium compounds both in industrial and public spheres is under discussion. Sources of tritium release to environment are characterized. Methods of tritium radiation monitoring are discussed. Methods of dosimetry of internal human exposure resulted from tritium compounds are developed on the base of modern representations on metbolism and tritium radiobiological effect. A system of standardization of permissible intake of tritium compounds for personnel and persons of population is grounded. Some protection measures are proposed as applied to tritium overdosage

  2. Tritium calorimeter setup and operation

    CERN Document Server

    Rodgers, D E

    2002-01-01

    The LBNL tritium calorimeter is a stable instrument capable of measuring tritium with a sensitivity of 25 Ci. Measurement times range from 8-hr to 7-days depending on the thermal conductivity and mass of the material being measured. The instrument allows accurate tritium measurements without requiring that the sample be opened and subsampled, thus reducing personnel exposure and radioactive waste generation. The sensitivity limit is primarily due to response shifts caused by temperature fluctuation in the water bath. The fluctuations are most likely a combination of insufficient insulation from ambient air and precision limitations in the temperature controller. The sensitivity could probably be reduced to below 5 Ci if the following improvements were made: (1) Extend the external insulation to cover the entire bath and increase the top insulation. (2) Improve the seal between the air space above the bath and the outside air to reduce evaporation. This will limit the response drift as the water level drops. (...

  3. Tritium accountancy

    International Nuclear Information System (INIS)

    Avenhaus, R.; Spannagel, G.

    1995-01-01

    Conventional accountancy means that for a given material balance area and a given interval of time the tritium balance is established so that at the end of that interval of time the book inventory is compared with the measured inventory. In this way, an optimal effectiveness of accountancy is achieved. However, there are still further objectives of accountancy, namely the timely detection of anomalies as well as the localization of anomalies in a major system. It can be shown that each of these objectives can be optimized only at the expense of the others. Recently, Near-Real-Time Accountancy procedures have been studied; their methodological background as well as their merits will be discussed. (orig.)

  4. Turkey Point tritium. Progress report

    International Nuclear Information System (INIS)

    Ostlund, H.G.; Dorsey, H.G.

    1976-01-01

    In 1972-73 the Florida Power and Light Company (FPL) began operation of two nuclear reactors at Turkey Point on lower Biscayne Bay. One radioactive by-product resulting from the operation of the nuclear reactors, tritium, provides a unique opportunity to study transport and exchange processes on a local scale. Since the isotope in the form of water is not removed from the liquid effluent, it is discharged to the cooling canal system. By studying its residence time in the canal and the pathways by which it leaves the canals, knowledge of evaporative process, groundwater movement, and bay exchange with the ocean can be obtained. Preliminary results obtained from measurement of tritium levels, both in the canal system and in the surrounding environment are discussed. Waters in lower Biscayne Bay and Card and Barnes Sounds receive only a small portion of the total tritium produced by the nuclear plant. The dominating tritium loss most likely is through evaporation from the canals. The capability of measuring extremely low HTO levels allows the determination of the evaporation rate experimentally by measuring the tritium levels of air after having passed over the canals

  5. Tritium Management Loop Design Status

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Jordan D. [ORNL; Felde, David K. [ORNL; McFarlane, Joanna [ORNL; Greenwood, Michael Scott [ORNL; Qualls, A L. [ORNL; Calderoni, Pattrick [Idaho National Laboratory (INL)

    2017-12-01

    This report summarizes physical, chemical, and engineering analyses that have been done to support the development of a test loop to study tritium migration in 2LiF-BeF2 salts. The loop will operate under turbulent flow and a schematic of the apparatus has been used to develop a model in Mathcad to suggest flow parameters that should be targeted in loop operation. The introduction of tritium into the loop has been discussed as well as various means to capture or divert the tritium from egress through a test assembly. Permeation was calculated starting with a Modelica model for a transport through a nickel window into a vacuum, and modifying it for a FLiBe system with an argon sweep gas on the downstream side of the permeation interface. Results suggest that tritium removal with a simple tubular permeation device will occur readily. Although this system is idealized, it suggests that rapid measurement capability in the loop may be necessary to study and understand tritium removal from the system.

  6. Study on conceptual design system of tritium production fusion reactor

    International Nuclear Information System (INIS)

    He Kaihui

    2004-11-01

    Conceptual design of an advanced tritium production reactor based on spherical torus, which is intermediate application of fusion energy, was presented. Different from traditional tokamak tritium production reactor design, advanced plasma physics performance and compact structural characteristics of ST were used to minimize tritium leakage and to maximize tritium breeding ratio with arrangement of tritium production blankets as possible as it can within vacuum vessel in order to produce 1 kg excess tritium except self-sufficient plasma core, corresponding plant availability 40% or more. Based on 2D neutronics calculation, preliminary conceptual design of ST-TPR was presented. Besides systematical analyses; design risk, uncertainty and backup are introduced generally for the backgrounds of next detailed conceptual design. (author)

  7. Tritium in organic matter around Krsko Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kristof, Romana; Zorko, Benjamin; Kozar Logar, Jasmina; Kosenina, Suzana

    2017-01-01

    The aim of the research was to obtain first results of tritium in the organic matter of environmental samples in the vicinity of Krsko NPP. The emphasis was on the layout of suitable sampling network of crops and fruits in nearby agricultural area. Method for determination of tritium in organic matter in the form of Tissue Free Water Tritium (TFWT) and Organically Bound Tritium (OBT) has been implemented. Capabilities of the methods were tested on real environmental samples and its findings were compared to modeled activities of tritium from atmospheric releases and literature based results of TFWT and OBT. (author)

  8. Tritium handling experience at Atomic Energy of Canada Limited

    Energy Technology Data Exchange (ETDEWEB)

    Suppiah, S.; McCrimmon, K.; Lalonde, S.; Ryland, D.; Boniface, H.; Muirhead, C.; Castillo, I. [Atomic Energy of Canad Limited - AECL, Chalk River Laboratories, Chalk River, ON (Canada)

    2015-03-15

    Canada has been a leader in tritium handling technologies as a result of the successful CANDU reactor technology used for power production. Over the last 50 to 60 years, capabilities have been established in tritium handling and tritium management in CANDU stations, tritium removal processes for heavy and light water, tritium measurement and monitoring, and understanding the effects of tritium on the environment. This paper outlines details of tritium-related work currently being carried out at Atomic Energy of Canada Limited (AECL). It concerns the CECE (Combined Electrolysis and Catalytic Exchange) process for detritiation, tritium-compatible electrolysers, tritium permeation studies, and tritium powered batteries. It is worth noting that AECL offers a Tritium Safe-Handling Course to national and international participants, the course is a mixture of classroom sessions and hands-on practical exercises. The expertise and facilities available at AECL is ready to address technological needs of nuclear fusion and next-generation nuclear fission reactors related to tritium handling and related issues.

  9. STAR facility tritium accountancy

    International Nuclear Information System (INIS)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-01-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  10. Tritium and helium behavior in irradiated beryllium

    International Nuclear Information System (INIS)

    Billone, M.C.; Lin, C.C.; Baldwin, D.L.

    1990-11-01

    Large quantities of Be (> 100 metric tons) are planned for use in the ITER blanket design to enhance tritium breeding and to act as a thermal barrier between coolant and breeder. Tritium retention/release and He-induced swelling are important issues in blanket design. The data base on tritium and helium behavior in Be is reviewed. New data on tritium retention/release and He bubble growth are presented for Be irradiated to 5 x 10 22 n(E > 1 MeV)/cm 2 at ∼75 degree C and postirradiation-annealed for 700 hours at 500 degree C. A model (diffusion/desorption) is proposed and tested against the data base to determine tritium diffusivity and the desorption rate constant. Similarly a model for He-induced swelling is developed and tested against the data base. The dependence of tritium retention and release on He content and impurities (e.g. BeO) is also explored. 11 refs., 6 figs

  11. Using the Tritium Plasma Experiment to evaluate ITER PFC safety

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Bartlit, J.R.; Causey, R.A.; Haines, J.R.

    1993-01-01

    The Tritium Plasma Experiment was assembled at Sandia National Labs., Livermore and is being moved to the Tritium Systems Test Assembly facility at Los Alamos National Lab. to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capability of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 x 10 23 ions/m 2 .s and a plasma temperature of about 15 eV using a plasma that includes tritium. An experimental program has been initiated using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. An industrial consortium led by McDonnell Douglas will design and fabricate the test fixtures

  12. Oxidative Tritium Decontamination System

    International Nuclear Information System (INIS)

    Gentile, Charles A.; Parker, John J.; Guttadora, Gregory L.; Ciebiera, Lloyd P.

    2002-01-01

    The Princeton Plasma Physics Laboratory, Tritium Systems Group has developed and fabricated an Oxidative Tritium Decontamination System (OTDS), which is designed to reduce tritium surface contamination on various components and items. The system is configured to introduce gaseous ozone into a reaction chamber containing tritiated items that require a reduction in tritium surface contamination. Tritium surface contamination (on components and items in the reaction chamber) is removed by chemically reacting elemental tritium to tritium oxide via oxidation, while purging the reaction chamber effluent to a gas holding tank or negative pressure HVAC system. Implementing specific concentrations of ozone along with catalytic parameters, the system is able to significantly reduce surface tritium contamination on an assortment of expendable and non-expendable items. This paper will present the results of various experimentation involving employment of this system

  13. Tritium activities in Canada

    International Nuclear Information System (INIS)

    Gierszewski, P.

    1995-01-01

    Canadian tritium activites comprise three major interests: utilites, light manufacturers, and fusion. There are 21 operating CANDU reactors in Canada; 19 with Ontario Hydro and one each with Hydro Quebec and New Brunswick Power. There are two light manufacturers, two primary tritium research facilities (at AECL Chalk River and Ontario Hydro Technologies), and a number of industry and universities involved in design, construction, and general support of the other tritium activities. The largest tritum program is in support of the CANDU reactors, which generate tritium in the heavy water as a by-product of normal operation. Currently, there are about 12 kg of tritium locked up in the heavy water coolant and moderator of these reactors. The fusion work is complementary to the light manufacturing, and is concerned with tritium handling for the ITER program. This included design, development and application of technologies related to Isotope Separation, tritium handling, (tritiated) gas separation, tritium-materials interaction, and plasma fueling

  14. The Tritium White Paper

    International Nuclear Information System (INIS)

    2009-01-01

    This publication proposes a synthesis of the activities of two work-groups between May 2008 and April 2010. It reports the ASN's (the French Agency for Nuclear Safety) point of view, describes its activities and actions, and gives some recommendations. It gives a large and detailed overview of the knowledge status on tritium: tritium source inventory, tritium origin, management processes, capture techniques, reduction, tritium metrology, impact on the environment, impacts on human beings

  15. ZEPHYR tritium system

    International Nuclear Information System (INIS)

    Swansiger, W.; Andelfinger, C.; Buchelt, E.; Fink, J.; Sandmann, W.; Stimmelmayr, A.; Wegmann, H.G.; Weichselgartner, H.

    1982-04-01

    The ignition experiment ZEPHYR will need tritium as an essential component of the fuel. The ZEPHYR Tritium Systems are designed as to recycle the fuel directly at the experiment. An amount of tritium, which is significantly below the total throughput, for example 10 5 Ci will be stored in uranium getters and introduced into the torus by a specially designed injection system. The torus vacuum system operates with tritium-tight turbomolecular pumps and multi-stage roots pumps in order to extract and store the spent fuel in intermediate storage tanks at atmospheric pressure. A second high vacuum system, similar in design, serves as to evacuate the huge containments of the neutral injection system. The spent fuel will be purified and subsequently processed by an isotope separation system in which the species D 2 , DT and T 2 will be recovered for further use. This isotope separation will be achieved by a preparative gaschromatographic process. All components of the tritium systems will be installed within gloveboxes which are located in a special tritium handling room. The atmospheres of the gloveboxes and of the tritium rooms are controlled by a tritium monitor system. In the case of a tritium release - during normal operation as well as during an accident - these atmospheres become processed by efficient tritium absorption systems. All ZEPHYR tritium handling systems are designed as to minimize the quantity of tritium released to the environment, so that the stringent German laws on radiological protection are satisfied. (orig.)

  16. TFTR tritium handling concepts

    International Nuclear Information System (INIS)

    Garber, H.J.

    1976-01-01

    The Tokamak Fusion Test Reactor, to be located on the Princeton Forrestal Campus, is expected to operate with 1 to 2.5 MA tritium--deuterium plasmas, with the pulses involving injection of 50 to 150 Ci (5 to 16 mg) of tritium. Attainment of fusion conditions is based on generation of an approximately 1 keV tritium plasma by ohmic heating and conversion to a moderately hot tritium--deuterium ion plasma by injection of a ''preheating'' deuterium neutral beam (40 to 80 keV), followed by injection of a ''reacting'' beam of high energy neutral deuterium (120 to 150 keV). Additionally, compressions accompany the beam injections. Environmental, safety and cost considerations led to the decision to limit the amount of tritium gas on-site to that required for an experiment, maintaining all other tritium in ''solidified'' form. The form of the tritium supply is as uranium tritide, while the spent tritium and other hydrogen isotopes are getter-trapped by zirconium--aluminum alloy. The issues treated include: (1) design concepts for the tritium generator and its purification, dispensing, replenishment, containment, and containment--cleanup systems; (2) features of the spent plasma trapping system, particularly the regenerable absorption cartridges, their integration into the vacuum system, and the handling of non-getterables; (3) tritium permeation through the equipment and the anticipated releases to the environment; (4) overview of the tritium related ventilation systems; and (5) design bases for the facility's tritium clean-up systems

  17. Safe handling of tritium

    International Nuclear Information System (INIS)

    1991-01-01

    The main objective of this publication is to provide practical guidance and recommendations on operational radiation protection aspects related to the safe handling of tritium in laboratories, industrial-scale nuclear facilities such as heavy-water reactors, tritium removal plants and fission fuel reprocessing plants, and facilities for manufacturing commercial tritium-containing devices and radiochemicals. The requirements of nuclear fusion reactors are not addressed specifically, since there is as yet no tritium handling experience with them. However, much of the material covered is expected to be relevant to them as well. Annex III briefly addresses problems in the comparatively small-scale use of tritium at universities, medical research centres and similar establishments. However, the main subject of this publication is the handling of larger quantities of tritium. Operational aspects include designing for tritium safety, safe handling practice, the selection of tritium-compatible materials and equipment, exposure assessment, monitoring, contamination control and the design and use of personal protective equipment. This publication does not address the technologies involved in tritium control and cleanup of effluents, tritium removal, or immobilization and disposal of tritium wastes, nor does it address the environmental behaviour of tritium. Refs, figs and tabs

  18. Scoping studies of tritium handling in a tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Cherdack, R.; Watson, J.S.; Clinton, S.D.; Fisher, P.W.

    1975-01-01

    Tritium handling techniques in an experimental fusion power reactor (EPR) are evaluated to determine the requirements of the system and to compare different equipment and techniques for meeting those requirements. Tritium process equipment is needed to (1) evacuate and maintain a vacuum in the plasma vessel and the neutral beam injectors, (2) purify and recycle tritium and deuterium for the plasma fuel cycle, (3) recover tritium from experimental breeding modules, and (4) provide tritium containment and atmospheric cleanup. A development program is outlined to develop and demonstrate the required techniques and equipment and to permit confident design of an EPR for operation by the mid-1980s

  19. Tritium conference days

    International Nuclear Information System (INIS)

    Garnier-Laplace, J.; Lebaron-Jacobs, L.; Sene, M.; Devin, P.; Chretien, V.; Le Guen, B.; Guetat, Ph.; Baglan, N.; Ansoborlo, E.; Boyer, C.; Masson, M.; Bailly-Du-Bois, P.; Jenkinson, St.; Wakeford, R.; Saintigny, Y.; Romeo, P.H.; Thompson, P.; Leterq, D.; Chastagner, F.; Cortes, P.; Philippe, M.; Paquet, F.; Fournier, M.

    2009-01-01

    This document gathers the slides of the available presentations given during this conference day. Twenty presentations out of 21 are assembled in the document and deal with: 1 - tritium in the environment (J. Garnier-Laplace); 2 - status of knowledge about tritium impact on health (L. Lebaron-Jacobs); 3 - tritium, discrete but present everywhere (M. Sene); 4 - management of tritium effluents from Areva NC La Hague site - related impact and monitoring (P. Devin); 5 - tritium effluents and impact in the vicinity of EDF's power plants (V. Chretien and B. Le Guen); 6 - contribution of CEA-Valduc centre monitoring to the knowledge of atmospheric tritiated water transfers to the different compartments of the environment (P. Guetat); 7 - tritium analysis in environment samples: constraints and means (N. Baglan); 8 - organically-linked tritium: the analyst view (E. Ansoborlo); 9 - study of tritium transfers to plants via OBT/HTO air and OBT/HTO free (C. Boyer); 10 - tritium in the British Channel (M. Masson and P. Bailly-Du-Bois); 11 - tritium in British coastal waters (S. Jenkinson); 12 - recent results from epidemiology (R. Wakeford); 13 - effects of tritiated thymidine on hematopoietic stem cells (P.H. Romeo); 14 - tritium management issue in Canada: the point of view from authorities (P. Thompson); 15 - experience feedback of the detritiation process of Valduc centre (D. Leterq); 16 - difficulties linked with tritiated wastes confinement (F. Chastagner); 17 - optimisation of tritium management in the ITER project (P. Cortes); 18 - elements of thought about the management of tritium generated by nuclear facilities (M. Philippe); 19 - CIPR's position about the calculation of doses and risks linked with tritium exposure (F. Paquet); 20 - tritium think tanks (M. Fournier). (J.S.)

  20. Sources of tritium

    International Nuclear Information System (INIS)

    Phillips, J.E.; Easterly, C.E.

    1980-12-01

    A review of tritium sources is presented. The tritium production and release rates are discussed for light water reactors (LWRs), heavy water reactors (HWRs), high temperature gas cooled reactors (HTGRs), liquid metal fast breeder reactors (LMFBRs), and molten salt breeder reactors (MSBRs). In addition, release rates are discussed for tritium production facilities, fuel reprocessing plants, weapons detonations, and fusion reactors. A discussion of the chemical form of the release is included. The energy producing facilities are ranked in order of increasing tritium production and release. The ranking is: HTGRs, LWRs, LMFBRs, MSBRs, and HWRs. The majority of tritium has been released in the form of tritiated water

  1. Process for recovering tritium from molten lithium metal

    Science.gov (United States)

    Maroni, Victor A.

    1976-01-01

    Lithium tritide (LiT) is extracted from molten lithium metal that has been exposed to neutron irradiation for breeding tritium within a thermonuclear or fission reactor. The extraction is performed by intimately contacting the molten lithium metal with a molten lithium salt, for instance, lithium chloride - potassium chloride eutectic to distribute LiT between the salt and metal phases. The extracted tritium is recovered in gaseous form from the molten salt phase by a subsequent electrolytic or oxidation step.

  2. Tritium pellet injector results

    International Nuclear Information System (INIS)

    Fisher, P.W.; Bauer, M.L.; Baylor, L.R.; Deleanu, L.E.; Fehling, D.T.; Milora, S.L.; Whitson, J.C.

    1988-01-01

    Injection of solid tritium pellets is considered to be the most promising way of fueling fusion reactors. The Tritium Proof-of- Principle (TPOP) experiment has demonstrated the feasibility of forming and accelerating tritium pellets. This injector is based on the pneumatic pipe-gun concept, in which pellets are formed in situ in the barrel and accelerated with high-pressure gas. This injector is ideal for tritium service because there are no moving parts inside the gun and because no excess tritium is required in the pellet production process. Removal of 3 He from tritium to prevent blocking of the cryopumping action by the noncondensible gas has been demonstrated with a cryogenic separator. Pellet velocities of 1280 m/s have been achieved for 4-mm-diam by 4-mm-long cylindrical tritium pellets with hydrogen propellant at 6.96 MPa (1000 psi). 10 refs., 10 figs

  3. Environmental aspects of tritium

    International Nuclear Information System (INIS)

    Quisenberry, D.R.

    1979-01-01

    The potential radiological implications of environmental tritium releases must be determined in order to develop a programme for dealing with the tritium inventory predicted for the nuclear power industry which, though still in its infancy, produces tritium in megacurie quantities annually. Should the development of fusion power generation become a reality, it will create a potential source for large releases of tritium, much of it in the gaseous state. At present about 90% of the tritium produced enters the environment through gaseous and liquid effluents and is deposited in the hydrosphere as tritiated water. Tritium can be assimilated by plants and animals and organically bound, regardless of the exposure pathway. However, there appears to be no concentration factor relative to hydrogen at any level of food chains analysed to date. The body burden, for man, is dependent on the exposure pathway and tissue-bound fractions are primarily the result of organically bound tritium in food. (author)

  4. Development of tritium-handling technique

    International Nuclear Information System (INIS)

    Ohmura, Hiroshi; Hosaka, Akio; Okamoto, Takahumi

    1988-01-01

    The overview of developing activities for tritium-handling techniques in IHI are presented. To establish a fusion power plant, tritium handling is one of the key technologies. Recently in JAERI, conceptual design of FER (Fusion Experimental Reactor) has been carried out, and the FER system requires a processing system for a large amount of tritium. IHI concentrate on investigation of fuel gas purification, isotope separation and storage systems under contract with Toshiba Corporation. Design results of the systems and each components are reviewed. IHI has been developing fundamental handling techniques which are the ZrNi bed for hydrogen isotope storage and isotope separation by laser. The ZrNi bed with a tritium storage capacity of 1000 Ci has been constructed and recovery capability of the hydrogen isotope until 10 -4 Torr {0.013 Pa} was confirmed. In laser isotope separation, the optimum laser wave length has been determined. (author)

  5. Modeling and experiments on tritium permeation in fusion reactor blankets

    Science.gov (United States)

    Holland, D. F.; Longhurst, G. R.

    The determination of tritium loss from helium-cooled fusion breeding blankets are discussed. The issues are: (1) applicability of present models to permeation at low tritium pressures; (2) effectiveness of oxide layers in reducing permeation; (3) effectiveness of hydrogen addition as a means to lower tritium permeation; and (4) effectiveness of conversion to tritiated water and subsequent trapping to reduce permeation. Theoretical models applicable to these issues are discussed, and results of experiments in two areas are presented; permeation of mixtures of hydrogen isotopes and conversion to tritiated water.

  6. Modeling and experiments on tritium permeation in fusion reactor blankets

    International Nuclear Information System (INIS)

    Holland, D.F.; Longhurst, G.R.

    1985-01-01

    Issues are discussed that are critical in determining tritium loss from helium-cooled fusion breeding blankets. These issues are: (a) applicability of present models to permeation at low tritium pressures, (b) effectiveness of oxide layers in reducing permeation, (c) effectiveness of hydrogen addition as a means to lower tritium permeation, and (d) effectiveness of conversion to tritiated water and subsequent trapping as a means to reduce permeation. The paper discusses theoretical models applicable to these issues, and presents results of experiments in two areas: permeation of mixtures of hydrogen isotopes and conversion to tritiated water

  7. Organically bound tritium

    International Nuclear Information System (INIS)

    Diabate, S.; Strack, S.

    1993-01-01

    Tritium released into the environment may be incorporated into organic matter. Organically bound tritium in that case will show retention times in organisms that are considerably longer than those of tritiated water which has significant consequences on dose estimates. This article reviews the most important processes of organically bound tritium production and transport through food networks. Metabolic reactions in plant and animal organisms with tritiated water as a reaction partner are of great importance in this respect. The most important production process, in quantitative terms, is photosynthesis in green plants. The translocation of organically bound tritium from the leaves to edible parts of crop plants should be considered in models of organically bound tritium behavior. Organically bound tritium enters the human body on several pathways, either from the primary producers (vegetable food) or at a higher tropic level (animal food). Animal experiments have shown that the dose due to ingestion of organically bound tritium can be up to twice as high as a comparable intake of tritiated water in gaseous or liquid form. In the environment, organically bound tritium in plants and animals is often found to have higher specific tritium concentrations than tissue water. This is not due to some tritium enrichment effects but to the fact that no equilibrium conditions are reached under natural conditions. 66 refs

  8. Tritium calorimeter setup and operation

    International Nuclear Information System (INIS)

    Rodgers, David E.

    2002-01-01

    The LBNL tritium calorimeter is a stable instrument capable of measuring tritium with a sensitivity of 25 Ci. Measurement times range from 8-hr to 7-days depending on the thermal conductivity and mass of the material being measured. The instrument allows accurate tritium measurements without requiring that the sample be opened and subsampled, thus reducing personnel exposure and radioactive waste generation. The sensitivity limit is primarily due to response shifts caused by temperature fluctuation in the water bath. The fluctuations are most likely a combination of insufficient insulation from ambient air and precision limitations in the temperature controller. The sensitivity could probably be reduced to below 5 Ci if the following improvements were made: (1) Extend the external insulation to cover the entire bath and increase the top insulation. (2) Improve the seal between the air space above the bath and the outside air to reduce evaporation. This will limit the response drift as the water level drops. (3) Install an improved temperature controller, preferably with a built in chiller, capable of temperature control to ±0.001 C

  9. A system dynamics model for stock and flow of tritium in fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kwon, Saerom [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Sakamoto, Yoshiteru; Yamanishi, Toshihiko; Tobita, Kenji [Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori-ken 039-3212 (Japan)

    2015-10-15

    Highlights: • System dynamics model of tritium fuel cycle was developed for analyzing stock and flow of tritium in fusion power plants. • Sensitivity of tritium build-up to breeding ratio parameters has been assessed to two plant concepts having 3 GW and 1.5 GW fusion power. • D-D start-up absolutely without initial loading of tritium is possible for both of the 3 GW and 1.5 GW fusion power plant concepts. • Excess stock of tritium is generated by the steady state operation with the value of tritium breeding ratio over unity. - Abstract: In order to analyze self-efficiency of tritium fuel cycle (TFC) and share the systems thinking of TFC among researchers and engineers in the vast area of fusion reactor technology, we develop a system dynamics (SD) TFC model using a commercial software STELLA. The SD-TFC model is illustrated as a pipe diagram which consists of tritium stocks, such as plasma, fuel clean up, isotope separation, fueling with storage and blanket, and pipes connecting among them. By using this model, we survey a possibility of D-D start-up without initial loading of tritium on two kinds of fusion plant having different plasma parameters. The D-D start-up scenario can reduce the necessity of initial loading of tritium through the production in plasma by D-D reaction and in breeding blanket by D-D neutron. The model is also used for considering operation scenario to avoid excess stock of tritium which must be produced at tritium breeding ratio over unity.

  10. Using the Tritium Plasma Experiment to evaluate ITER PFC safety

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Bartlit, J.R.; Causey, R.A.; Haines, J.R.

    1993-01-01

    The Tritium Plasma Experiment was assembled at Sandia National Laboratories, Livermore to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capability of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 x 10 19 ions/cm 2 · s and a plasma temperature of about 15 eV using a plasma that includes tritium. With the closure of the Tritium Research Laboratory at Livermore, the experiment was moved to the Tritium Systems Test Assembly facility at Los Alamos National Laboratory. An experimental program has been initiated there using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. A considerable lack of data exists in these areas for many of the materials, especially beryllium, being considered for use in ITER. Not only will basic material behavior with respect to safety issues in the divertor environment be examined, but innovative techniques for optimizing performance with respect to tritium safety by material modification and process control will be investigated. Supplementary experiments will be carried out at the Idaho National Engineering Laboratory and Sandia National Laboratory to expand and clarify results obtained on the Tritium Plasma Experiment

  11. Confinement and Tritium Stripping Systems for APT Tritium Processing

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Heung, L.K.

    1997-10-20

    This report identifies functions and requirements for the tritium process confinement and clean-up system (PCCS) and provides supporting technical information for the selection and design of tritium confinement, clean-up (stripping) and recovery technologies for new tritium processing facilities in the Accelerator for the Production of Tritium (APT). The results of a survey of tritium confinement and clean-up systems for large-scale tritium handling facilities and recommendations for the APT are also presented.

  12. Confinement and Tritium Stripping Systems for APT Tritium Processing

    International Nuclear Information System (INIS)

    Hsu, R.H.; Heung, L.K.

    1997-01-01

    This report identifies functions and requirements for the tritium process confinement and clean-up system (PCCS) and provides supporting technical information for the selection and design of tritium confinement, clean-up (stripping) and recovery technologies for new tritium processing facilities in the Accelerator for the Production of Tritium (APT). The results of a survey of tritium confinement and clean-up systems for large-scale tritium handling facilities and recommendations for the APT are also presented

  13. Environmental tritium in trees

    International Nuclear Information System (INIS)

    Brown, R.M.

    1979-01-01

    The distribution of environmental tritium in the free water and organically bound hydrogen of trees growing in the vicinity of the Chalk River Nuclear Laboratories (CRNL) has been studied. The regional dispersal of HTO in the atmosphere has been observed by surveying the tritium content of leaf moisture. Measurement of the distribution of organically bound tritium in the wood of tree ring sequences has given information on past concentrations of HTO taken up by trees growing in the CRNL Liquid Waste Disposal Area. For samples at background environmental levels, cellulose separation and analysis was done. The pattern of bomb tritium in precipitation of 1955-68 was observed to be preserved in the organically bound tritium of a tree ring sequence. Reactor tritium was discernible in a tree growing at a distance of 10 km from CRNL. These techniques provide convenient means of monitoring dispersal of HTO from nuclear facilities. (author)

  14. Tritium monitoring techniques

    International Nuclear Information System (INIS)

    DeVore, J.R.; Buckner, M.A.

    1996-05-01

    As part of their operations, the U.S. Navy is required to store or maintain operational nuclear weapons on ships and at shore facilities. Since these weapons contain tritium, there are safety implications relevant to the exposure of personnel to tritium. This is particularly important for shipboard operations since these types of environments can make low-level tritium detection difficult. Some of these ships have closed systems, which can result in exposure to tritium at levels that are below normally acceptable levels but could still cause radiation doses that are higher than necessary or could hamper ship operations. This report describes the state of the art in commercial tritium detection and monitoring and recommends approaches for low-level tritium monitoring in these environments

  15. Tritium control in fusion reactor materials: A model for Tritium Extracting System

    Energy Technology Data Exchange (ETDEWEB)

    Zucchetti, Massimo [DENERG, Politecnico di Torino (Italy); Utili, Marco, E-mail: marco.utili@enea.it [ENEA UTIS – C.R. Brasimone, Bacino del Brasimone, Camugnano, BO (Italy); Nicolotti, Iuri [DENERG, Politecnico di Torino (Italy); Ying, Alice [University of California Los Angeles (UCLA), Los Angeles, CA (United States); Franza, Fabrizio [Karlsruhe Institute of Technology, Karlsruhe (Germany); Abdou, Mohamed [University of California Los Angeles (UCLA), Los Angeles, CA (United States)

    2015-10-15

    Highlights: • A modeling work has been performed to address these issues in view of its utilization for the TES (Tritium Extraction System), in the case of the HCPB TBM and for a Molecular sieve as adsorbent material. • A computational model has been setup and tested in this paper. • The results of experimental measurement of fundamental parameters such as mass transfer coefficients have been implemented in the model. • It turns out the capability to model the extraction process of gaseous tritium compounds and to estimate the breakthrough curves of the two main tritium gaseous species (H2 and HT). - Abstract: In fusion reactors, tritium is bred by lithium isotopes inside the blanket and then extracted. However, tritium can contaminate the reactor structures, and can be eventually released into the environment. Tritium in reactor components should therefore be kept under close control throughout the fusion reactor lifetime, bearing in mind the risk of accidents, the need for maintenance and the detritiation of dismantled reactor components before their re-use or disposal. A modeling work has been performed to address these issues in view of its utilization for the TES (Tritium Extraction System), in the case of the HCPB TBM and for a molecular sieve as adsorbent material. A computational model has been setup and tested. The results of experimental measurement of fundamental parameters such as mass transfer coefficients have been implemented in the model. It turns out the capability of the model to describe the extraction process of gaseous tritium compounds and to estimate the breakthrough curves of the two main tritium gaseous species (H2 and HT).

  16. Tritium control in fusion reactor materials: A model for Tritium Extracting System

    International Nuclear Information System (INIS)

    Zucchetti, Massimo; Utili, Marco; Nicolotti, Iuri; Ying, Alice; Franza, Fabrizio; Abdou, Mohamed

    2015-01-01

    Highlights: • A modeling work has been performed to address these issues in view of its utilization for the TES (Tritium Extraction System), in the case of the HCPB TBM and for a Molecular sieve as adsorbent material. • A computational model has been setup and tested in this paper. • The results of experimental measurement of fundamental parameters such as mass transfer coefficients have been implemented in the model. • It turns out the capability to model the extraction process of gaseous tritium compounds and to estimate the breakthrough curves of the two main tritium gaseous species (H2 and HT). - Abstract: In fusion reactors, tritium is bred by lithium isotopes inside the blanket and then extracted. However, tritium can contaminate the reactor structures, and can be eventually released into the environment. Tritium in reactor components should therefore be kept under close control throughout the fusion reactor lifetime, bearing in mind the risk of accidents, the need for maintenance and the detritiation of dismantled reactor components before their re-use or disposal. A modeling work has been performed to address these issues in view of its utilization for the TES (Tritium Extraction System), in the case of the HCPB TBM and for a molecular sieve as adsorbent material. A computational model has been setup and tested. The results of experimental measurement of fundamental parameters such as mass transfer coefficients have been implemented in the model. It turns out the capability of the model to describe the extraction process of gaseous tritium compounds and to estimate the breakthrough curves of the two main tritium gaseous species (H2 and HT).

  17. Tritium in metals

    International Nuclear Information System (INIS)

    Schober, T.

    1990-01-01

    In this Chapter a review is given of some of the important features of metal tritides as opposed to hydrides and deuterides. After an introduction to the topics of tritium and tritium in metals information will be presented on a variety of metal-tritium systems. Of main interest here are the differences from the classic hydrogen behavior; the so called isotope effect. A second important topic is that of aging effects produced by the accumulation of 3 He in the samples. (orig.)

  18. Tritium sources; Izvori tricijuma

    Energy Technology Data Exchange (ETDEWEB)

    Glodic, S [Institute of Nuclear Sciences VINCA, Belgrade (Yugoslavia); Boreli, F [Elektrotehnicki fakultet, Belgrade (Yugoslavia)

    1993-07-01

    Tritium is the only radioactive isotope of hydrogen. It directly follows the metabolism of water and it can be bound into genetic material, so it is very important to control levels of contamination. In order to define the state of contamination it is necessary to establish 'zero level', i.e. actual global inventory. The importance of tritium contamination monitoring increases with the development of fusion power installations. Different sources of tritium are analyzed and summarized in this paper. (author)

  19. High-pressure tritium

    International Nuclear Information System (INIS)

    Coffin, D.O.

    1976-01-01

    Some solutions to problems of compressing and containing tritium gas to 200 MPa at 700 0 K are discussed. The principal emphasis is on commercial compressors and high-pressure equipment that can be easily modified by the researcher for safe use with tritium. Experience with metal bellows and diaphragm compressors has been favorable. Selection of materials, fittings, and gauges for high-pressure tritium work is also reviewed briefly

  20. Modeling of tritium behavior in Li2O

    International Nuclear Information System (INIS)

    Billone, M.C.; Attaya, H.; Kopasz, J.P.

    1992-08-01

    The TIARA and DISPL2 codes are being developed at Argonne National Laboratory to predict tritium retention and release from lithium ceramics under steady-state and transient conditions, respectively. Tritium retention and release are important design and safety issues for tritium-breeding blankets of fusion reactors. Emphasis has been placed on tritium behavior in Li 2 O because of the selection of this ceramic as a first option for the ITER driver blanket and because of the relatively good material properties data base for Li 2 O. Models and correlations for diffusion, surface desorption/adsorption, and solubility/precipitation of tritium in Li 2 0 have been developed based on well-controlled laboratory data from as-fabricated and irradiated samples. With the models and correlations, the codes are validated to the results of in-reactor purge flow tests. The results of validation of TIARA to tritium retention data from VOM-15H, EXOTIC-2, and CRITIC-1 are presented, along with predictions of tritium retention in BEATRIX-II. For DISPL2, results are presented for tritium release predictions vs. data for MOZART, CRITIC-1, and BEATRIX-II. Recommendations are made for improving both the data base and the modeling to allow extrapolation with reasonable uncertainty levels to fusion reactor design conditions

  1. Materials for breeding blankets

    International Nuclear Information System (INIS)

    Mattas, R.F.; Billone, M.C.

    1995-09-01

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as Primary Blanket Materials, which have the greatest influence in determining the overall design and performance, and Secondary Blanket Materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified

  2. Materials for breeding blankets

    International Nuclear Information System (INIS)

    Mattas, R.F.; Billone, M.C.

    1996-01-01

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as primary blanket materials, which have the greatest influence in determining the overall design and performance, and secondary blanket materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified. (orig.)

  3. Tritium permeation barriers for fusion technology

    International Nuclear Information System (INIS)

    Perujo, A.; Forcey, K.

    1994-01-01

    An important issue concerning the safety, feasibility and fueling (i.e., tritium breeding ratio and recovery from the breeding blanket) of a fusion reactor is the possible tritium leakages through the structural materials and in particular through those operating at high temperatures. The control of tritium permeation could be a critical factor in determining the viability of a future fusion power reactor. The formation of tritium permeation barriers to prevent the loss of tritium to the coolant by diffusion though the structural material seems to be the most practical method to minimize such losses. Many authors have discussed the formation of permeation barriers to reduce the leakage of hydrogen isotopes through proposed first wall and structural materials. In general, there are two routes for the formation of such a barrier, namely: the growth of oxide layers (e.g., Cr 2 O 3 , Al 2 O 3 , etc.) or the application of surface coatings. Non-metals are the most promising materials from the point of view of the formation of permeation barriers. Oxides such as Al 2 O 3 or Cr 2 O 3 or carbides such as SiC or TiC have been proposed. Amongst the metals only tungsten or gold are sufficiently less permeable than steel to warrant investigation as candidate materials for permeation barriers. It is of course possible to grow oxide layers on steel directly by heating in the atmosphere or under a variety of conditions (first route above). The direct oxidizing is normally done in an environment of open-quotes wet hydrogenclose quotes to promote the growth of chromia on, for example, nickel steels or ternary oxides on 316L to prevent corrosion. The application of surface layers (second route above), offers a greater range of materials for the formation of permeation barriers. In addition to reducing permeation, such layers should be adhesive, resistant to attack by corrosive breeder materials and should not crack during thermal cycling

  4. Tritium Issues in Next Step Devices

    International Nuclear Information System (INIS)

    C.H. Skinner; G. Federici

    2001-01-01

    Tritium issues will play a central role in the performance and operation of next-step deuterium-tritium (DT) burning plasma tokamaks and the safety aspects associated with tritium will attract intense public scrutiny. The orders-of-magnitude increase in duty cycle and stored energy will be a much larger change than the increase in plasma performance necessary to achieve high fusion gain and ignition. Erosion of plasma-facing components will scale up with the pulse length from being barely measurable on existing machines to centimeter scale. Magnetic Fusion Energy (MFE) devices with carbon plasma-facing components will accumulate tritium by co-deposition with the eroded carbon and this will strongly constrain plasma operations. We report on a novel laser-based method to remove co-deposited tritium from carbon plasma-facing components in tokamaks. A major fraction of the tritium trapped in a co-deposited layer during the deuterium-tritium (DT) campaign on the Tokamak Fusion Test Reactor (TFTR) was released by heating with a scanning laser beam. This technique offers the potential for tritium removal in a next-step DT device without the use of oxidation and the associated deconditioning of the plasma-facing surfaces and expense of processing large quantities of tritium oxide. The operational lifetime of alternative materials such as tungsten has significant uncertainties due to melt layer loss during disruptions. Production of dust and flakes will need careful monitoring and minimization, and control and accountancy of the tritium inventory will be critical issues. Many of the tritium issues in Inertial Fusion Energy (IFE) are similar to MFE, but some, for example those associated with the target factory, are unique to IFE. The plasma-edge region in a tokamak has greater complexity than the core due to lack of poloidal symmetry and nonlinear feedback between the plasma and wall. Sparse diagnostic coverage and low dedicated experimental run time has hampered the

  5. Tritium Issues in Next Step Devices

    Energy Technology Data Exchange (ETDEWEB)

    C.H. Skinner; G. Federici

    2001-09-05

    Tritium issues will play a central role in the performance and operation of next-step deuterium-tritium (DT) burning plasma tokamaks and the safety aspects associated with tritium will attract intense public scrutiny. The orders-of-magnitude increase in duty cycle and stored energy will be a much larger change than the increase in plasma performance necessary to achieve high fusion gain and ignition. Erosion of plasma-facing components will scale up with the pulse length from being barely measurable on existing machines to centimeter scale. Magnetic Fusion Energy (MFE) devices with carbon plasma-facing components will accumulate tritium by co-deposition with the eroded carbon and this will strongly constrain plasma operations. We report on a novel laser-based method to remove co-deposited tritium from carbon plasma-facing components in tokamaks. A major fraction of the tritium trapped in a co-deposited layer during the deuterium-tritium (DT) campaign on the Tokamak Fusion Test Reactor (TFTR) was released by heating with a scanning laser beam. This technique offers the potential for tritium removal in a next-step DT device without the use of oxidation and the associated deconditioning of the plasma-facing surfaces and expense of processing large quantities of tritium oxide. The operational lifetime of alternative materials such as tungsten has significant uncertainties due to melt layer loss during disruptions. Production of dust and flakes will need careful monitoring and minimization, and control and accountancy of the tritium inventory will be critical issues. Many of the tritium issues in Inertial Fusion Energy (IFE) are similar to MFE, but some, for example those associated with the target factory, are unique to IFE. The plasma-edge region in a tokamak has greater complexity than the core due to lack of poloidal symmetry and nonlinear feedback between the plasma and wall. Sparse diagnostic coverage and low dedicated experimental run time has hampered the

  6. Fusion reactor start-up without an external tritium source

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, S., E-mail: Shanliang.Zheng@ccfe.ac.uk; King, D.B.; Garzotti, L.; Surrey, E.; Todd, T.N.

    2016-02-15

    Highlights: • Investigated the feasibility (including plasma physics, neutronics and economics) of starting a fusion reactor from running pure D–D fusion reactor to gradually move towards the D–T operation. • Proposed building up tritium from making use of neutrons generated by D–D fusion reactions. • Studied plasma physics feasibility for pure D–D operation and provided consistent fusion power and neutron yield in the plasma with different mixture of deuterium and tritium. • Discussed the economics aspect for operating a pure D–D fusion reactor towards a full-power D–T fusion reactor. - Abstract: It has long been recognised that the shortage of external tritium sources for fusion reactors using D–T, the most promising fusion fuel, requires all such fusion power plants (FPP) to breed their own tritium. It is also recognised that the initial start-up of a fusion reactor will require several kilograms of tritium within a scenario in which radioactive decay, ITER and subsequent demonstrator reactors are expected to have consumed most of the known tritium stockpile. To circumvent this tritium fuel shortage and ultimately achieve steady-state operation for a FPP, it is essential to first accumulate sufficient tritium to compensate for loss due to decay and significant retention in the materials in order to start a new FPP. In this work, we propose to accumulate tritium starting from D–D fusion reactions, since D exists naturally in water, and to gradually build up the D–T plasma targeted in fusion reactor designs. There are two likely D–D fusion reaction channels, (1) D + D → T + p, and (2) D + D → He3 + n. The tritium can be generated via the reaction channel ‘(1)’ and the 2.45 MeV neutrons from ‘(2)’ react with lithium-6 in the breeding blanket to produce more tritium to be fed back into plasma fuel. Quantitative evaluations are conducted for two blanket concepts to assess the feasibility and suitability of this approach to FPP

  7. The ITER tritium systems

    International Nuclear Information System (INIS)

    Glugla, M.; Antipenkov, A.; Beloglazov, S.; Caldwell-Nichols, C.; Cristescu, I.R.; Cristescu, I.; Day, C.; Doerr, L.; Girard, J.-P.; Tada, E.

    2007-01-01

    ITER is the first fusion machine fully designed for operation with equimolar deuterium-tritium mixtures. The tokamak vessel will be fuelled through gas puffing and pellet injection, and the Neutral Beam heating system will introduce deuterium into the machine. Employing deuterium and tritium as fusion fuel will cause alpha heating of the plasma and will eventually provide energy. Due to the small burn-up fraction in the vacuum vessel a closed deuterium-tritium loop is required, along with all the auxiliary systems necessary for the safe handling of tritium. The ITER inner fuel cycle systems are designed to process considerable and unprecedented deuterium-tritium flow rates with high flexibility and reliability. High decontamination factors for effluent and release streams and low tritium inventories in all systems are needed to minimize chronic and accidental emissions. A multiple barrier concept assures the confinement of tritium within its respective processing components; atmosphere and vent detritiation systems are essential elements in this concept. Not only the interfaces between the primary fuel cycle systems - being procured through different Participant Teams - but also those to confinement systems such as Atmosphere Detritiation or those to fuelling and pumping - again procured through different Participant Teams - and interfaces to buildings are calling for definition and for detailed analysis to assure proper design integration. Considering the complexity of the ITER Tritium Plant configuration management and interface control will be a challenging task

  8. Radionuclide Basics: Tritium

    Science.gov (United States)

    Tritium is a hydrogen atom that has two neutrons in the nucleus and one proton. It is radioactive and behaves like other forms of hydrogen in the environment. Tritium is produced naturally in the upper atmosphere and as a byproduct of nuclear fission.

  9. In-vessel tritium

    International Nuclear Information System (INIS)

    Ueda, Yoshio; Ohya, Kaoru; Ashikawa, Naoko; Ito, Atsushi M.; Kato, Daiji; Kawamura, Gakushi; Takayama, Arimichi; Tomita, Yukihiro; Nakamura, Hiroaki; Ono, Tadayoshi; Kawashima, Hisato; Shimizu, Katsuhiro; Takizuka, Tomonori; Nakano, Tomohide; Nakamura, Makoto; Hoshino, Kazuo; Kenmotsu, Takahiro; Wada, Motoi; Saito, Seiki; Takagi, Ikuji; Tanaka, Yasunori; Tanabe, Tetsuo; Yoshida, Masafumi; Toma, Mitsunori; Hatayama, Akiyoshi; Homma, Yuki; Tolstikhina, Inga Yu.

    2012-01-01

    The in-vessel tritium research is closely related to the plasma-materials interaction. It deals with the edge-plasma-wall interaction, the wall erosion, transport and re-deposition of neutral particles and the effect of neutral particles on the fuel recycling. Since the in-vessel tritium shows a complex nonlinear behavior, there remain many unsolved problems. So far, behaviors of in-vessel tritium have been investigated by two groups A01 and A02. The A01 group performed experiments on accumulation and recovery of tritium in thermonuclear fusion reactors and the A02 group studied theory and simulation on the in-vessel tritium behavior. In the present article, outcomes of the research are reviewed. (author)

  10. Protection against tritium radiations

    International Nuclear Information System (INIS)

    Bal, Georges

    1964-05-01

    This report presents the main characteristics of tritium, describes how it is produced as a natural or as an artificial radio-element. It outlines the hazards related to this material, presents how materials and tools are contaminated and decontaminated. It addresses the issue of permissible maximum limits: factors of assessment of the risk induced by tritium, maximum permissible activity in body water, maximum permissible concentrations in the atmosphere. It describes the measurement of tritium activity: generalities, measurement of gas activity and of tritiated water steam, tritium-induced ionisation in an ionisation chamber, measurement systems using ionisation chambers, discontinuous detection of tritium-containing water in the air, detection of surface contamination [fr

  11. Analysis of in-situ tritium recovery from solid fusion-reactor blankets

    International Nuclear Information System (INIS)

    Smith, D.L.; Clemmer, R.G.; Jankus, V.Z.; Rest, J.

    1980-01-01

    The proposed concept for in-situ tritium recovery from the STARFIRE blanket involves circulation of a low pressure (approx. 0.05 MPa) helium through formed channels in the highly porous solid breeding material. Tritium generated within the grains must diffuse to the grain boundaries, migrate through the grain boundaries to the particle surface and then percolate through the packed bed to the helium purge channel. Highly porous α-LiAlO 2 with a bimodal pore distribution is proposed for the breeding material to facilitate the tritium release

  12. Development and Verification of Behavior of Tritium Analytic Code (BOTANIC)

    International Nuclear Information System (INIS)

    Park, Min Young; Kim, Eung Soo

    2014-01-01

    VHTR, one of the Generation IV reactor concepts, has a relatively high operation temperature and is usually suggested as a heat source for many industrial processes, including hydrogen production process. Thus, it is vital to trace tritium behavior in the VHTR system and the potential permeation rate to the industrial process. In other words, tritium is a crucial issue in terms of safety in the fission reactor system. Therefore, it is necessary to understand the behavior of tritium and the development of the tool to enable this is vital.. In this study, a Behavior of Tritium Analytic Code (BOTANIC) an analytic tool which is capable of analyzing tritium behavior is developed using a chemical process code called gPROMS. BOTANIC was then further verified using the analytic solutions and benchmark codes such as Tritium Permeation Analysis Code (TPAC) and COMSOL. In this study, the Behavior of Tritium Analytic Code, BOTANIC, has been developed using a chemical process code called gPROMS. The code has several distinctive features including non-diluted assumption, flexible applications and adoption of distributed permeation model. Due to these features, BOTANIC has the capability to analyze a wide range of tritium level systems and has a higher accuracy as it has the capacity to solve distributed models. BOTANIC was successfully developed and verified using analytical solution and the benchmark code calculation result. The results showed very good agreement with the analytical solutions and the calculation results of TPAC and COMSOL. Future work will be focused on the total system verification

  13. Tritium chemistry in fission and fusion reactors

    International Nuclear Information System (INIS)

    Roth, E.; Masson, M.; Briec, M.

    1986-09-01

    We are interested in the behaviour of tritium inside the solids where it is generated both in the case of fission nuclear reactor fuel elements, and in that of blankets of future fusion reactor. In the first case it is desirable to be able to predict whether tritium will be found in the hulls or in the uranium oxide, and under what chemical form, in order to take appropriate steps for it's removal in reprocessing plants. In fusion reactors breeding large amounts of tritium and burning it in the plasma should be accomplished in as short a cycle as possible in order to limit inventories that are associated with huge activities. Mastering the chemistry of every step is therefore essential. Amounts generated are not of the same order of magnitude in the two cases studied. Ternary fissions produce about 66 10 13 Bq (18 000 Ci) per year of tritium in a 1000 MWe fission generator, i.e., about 1.8 10 10 Bq (0.5 Ci) per day per ton of fuel

  14. Tritium Management In HCLL-PPCS Model AB Blanket

    International Nuclear Information System (INIS)

    Ricapito, I.; Aiello, A.; Benamati, G.; Utili, M.; Ciampichetti, A.; Zucchetti, M.

    2006-01-01

    One the main issues in the HCLL blanket development for a prototype fusion reactor is the technical feasibility of the bred tritium processing system. The basis of such concern lies in the very low tritium-Pb17Li Sieverts' constant, as measured by different scientists in the past years. In the PPCS reactor 650 g/d of tritium must be generated in the breeding blanket while less than 1 g/y of tritium has to be released to the environment through the secondary cooling circuit. As a consequence, CPS (Coolant Purification System) plays a fundamental role because it has to keep at an acceptable level the tritium partial pressure in the primary HCS (Helium Cooling Circuit) limiting, therefore, the tritium environmental release through leakage and permeation into the secondary cooling circuit. On the other hand, the He mass flow-rate to be processed by CPS is linear with the tritium permeation rate from the breeder into HCS. Therefore, with the above mentioned low Sieverts' constant values and the consequent high tritium partial pressure in the liquid metal, the possibility to keep acceptable the CPS capacity depends on a highly efficient and stable performance of tritium permeation barriers, to be applied not only on the blanket cooling plates but also on the steam generator walls. However, the experimental results on the tritium permeation barriers under relevant operative conditions were so far quite disappointing. The new data on the Sieverts' constant achieved at ENEA CR Brasimone, one order of magnitude higher than those founding the past, have a big impact in relaxing the above mentioned requirements for the tritium management in PPCS model AB reactor. Besides presenting and discussing these recent experimental results, an updated assessment of the tritium permeation rate from the liquid breeder into HCS through the cooling plates and from HCS into the environment through the steam generators is given in this paper. The consequent new constraints in terms of tritium

  15. Tritium permeation through iron

    International Nuclear Information System (INIS)

    Hagi, Hideki; Hayashi, Yasunori

    1989-01-01

    An experimental method for measuring diffusion coefficients and permeation rates of tritium in metals around room temperature has been established, and their values in iron have been obtained by using the method. Permeation rates of tritium and hydrogen through iron were measured by the electrochemical method in which a tritiated aqueous solution was used as a cathodic electrolyte. Tritium and hydrogen were introduced from one side of a membrane specimen by cathodic polarization, while at the other side of the specimen the permeating tritium and hydrogen were extracted by potentiostatical ionization. The amount of permeated hydrogen was obtained by integrating the anodic current, and that of tritium was determined by measuring the radioactivity of the electrolyte sampled from the extraction side. Diffusion coefficients of tritium (D T ) and hydrogen (D H ) were determined from the time lag of tritium and hydrogen permeation. D T =9x10 -10 m 2 /s and D H =4x10 -9 m 2 /s at 286 K for annealed iron specimens. These values of D T and D H were compared with the previous data of the diffusion coefficients of hydrogen and deuterium, and the isotope effect in diffusion was discussed. (orig.)

  16. Tritium technology. A Canadian overview

    Energy Technology Data Exchange (ETDEWEB)

    Hemmings, R.L. [Canatom NPM (Canada)

    2002-10-01

    An overview of the various tritium research and operational activities in Canada is presented. These activities encompass tritium processing and recovery, tritium interactions with materials, and tritium health and safety. Many of these on-going activities form a sound basis for the tritium use and handling aspects of the ITER project. Tritium management within the CANDU heavy water reactor, associated detritiation facilities, research and development facilities, and commercial industry and improving the understanding of tritium behaviour in humans and the environment remain the focus of a long-standing Canadian interest in tritium. While there have been changes in the application of this knowledge and experience over time, the operating experience and the supporting research and development continue to provide for improved plant and facility operations, an improved understanding of tritium safety issues, and improved products and tools that facilitate tritium management. (author)

  17. Tritium technology. A Canadian overview

    International Nuclear Information System (INIS)

    Hemmings, R.L.

    2002-01-01

    An overview of the various tritium research and operational activities in Canada is presented. These activities encompass tritium processing and recovery, tritium interactions with materials, and tritium health and safety. Many of these on-going activities form a sound basis for the tritium use and handling aspects of the ITER project. Tritium management within the CANDU heavy water reactor, associated detritiation facilities, research and development facilities, and commercial industry and improving the understanding of tritium behaviour in humans and the environment remain the focus of a long-standing Canadian interest in tritium. While there have been changes in the application of this knowledge and experience over time, the operating experience and the supporting research and development continue to provide for improved plant and facility operations, an improved understanding of tritium safety issues, and improved products and tools that facilitate tritium management. (author)

  18. Metabolism and dosimetry of tritium

    International Nuclear Information System (INIS)

    Hill, R.L.; Johnson, J.R.

    1993-01-01

    This document was prepared as a review of the current knowledge of tritium metabolism and dosimetry. The physical, chemical, and metabolic characteristics of various forms of tritium are presented as they pertain to performing dose assessments for occupational workers and for the general public. For occupational workers, the forms of tritium discussed include tritiated water, elemental tritium gas, skin absorption from elemental tritium gas-contaminated surfaces, organically bound tritium in pump oils, solvents and other organic compounds, metal tritides, and radioluminous paints. For the general public, age-dependent tritium metabolism is reviewed, as well as tritiated water, elemental tritium gas, organically bound tritium, organically bound tritium in food-stuffs, and tritiated methane. 106 refs

  19. Experience in handling concentrated tritium

    International Nuclear Information System (INIS)

    Holtslander, W.J.

    1985-12-01

    The notes describe the experience in handling concentrated tritium in the hydrogen form accumulated in the Chalk River Nuclear Laboratories Tritium Laboratory. The techniques of box operation, pumping systems, hydriding and dehydriding operations, and analysis of tritium are discussed. Information on the Chalk River Tritium Extraction Plant is included as a collection of reprints of papers presented at the Dayton Meeting on Tritium Technology, 1985 April 30 - May 2

  20. Problems of anthropogenic tritium limitation

    Directory of Open Access Journals (Sweden)

    Kochetkov О.A.

    2013-12-01

    Full Text Available This article contains the current situation in respect to the environmental concentrations of anthropogenic and natural tritium. There are presented and analyzed domestic standards for НТО of all Radiation Safety Standards (NRB, as well as the regulations analyzed for tritium in drinking water taken in other countries today. This article deals with the experience of limitation of tritium and focuses on the main problem of rationing of tritium — rationing of organically bound tritium.

  1. Safety and environmental advantages of using tritium-lean targets for inertial fusion

    International Nuclear Information System (INIS)

    Arzeni, S.; Latkowski, J. F.; Logan, B. G.; Meier, W. R.; Moir, R. W.; Perkins, L. J.; Sanz, J.

    1999-01-01

    While traditional inertial fusion energy target designs typically use equimolar portions of deuterium and tritium and have areal densities (ρr) of ∼ 3 g/cm 2 , significant safety and environmental (S and E) advantages may be obtained through the use of high-density (ρr ∼ 10 g/cm 2 ) targets with tritium components as low as 0.5%. Such targets would absorb much of the neutron energy within the target and could be self-sufficient from a tritium breeding point of view. Tritium self-sufficiency within the target would free target chamber designers from the need to use lithium-bearing blanket materials, while low inventories within each target would translate into low inventories in target fabrication facilities. Absorption of much of the neutron energy within the target, the extremely low tritium inventories, and the greatly moderated neutron spectrum, make ''tritium-lean'' targets appear quite attractive from an S and E perspective

  2. A study on conceptual design of tritium production fusion reactor based on spherical torus

    International Nuclear Information System (INIS)

    He Kaihui; Huang Jinhua

    2003-01-01

    Conceptual design of an advanced tritium production reactor based on spherical torus (ST), which is an intermediate application of fusion energy, is presented. Different from traditional Tokamak tritium production reactor design, advanced plasma physics performance and compact structural characteristics of ST are used to minimize tritium leakage and to maximize tritium breeding ratio with arrangement of tritium production blankets as possible as it can do within vacuum vessel in order to produce certain amount of excess tritium except self-sufficient plasma core, corresponding plant availability 40% or more. Based on 2D neutronics calculation, preliminary conceptual design of ST-TPR is presented. Based on systematical analysis, design risk, uncertainty and backup are introduced generally for the backgrounds of next detailed conceptual design. (authors)

  3. Conceptual design of tritium production fusion reactor based on spherical torus

    International Nuclear Information System (INIS)

    He Kaihui; Huang Jinhua

    2003-01-01

    Conceptual design of an advanced tritium production fusion reactor based on spherical torus, which is intermediate application of fusion energy, was presented in this paper. Differing from the traditional tokamak tritium production reactor design, advanced plasma physics performance and compact structural characteristics of ST were used to minimize tritium leakage and maximize tritium breeding ratio with arrangement of tritium production blankets within vacuum vessel as possible in order to produce 1 kg excess tritium except need of self-sufficient plasma core with 40% or more corresponding plant availability. Based on 2D neutronics calculation, preliminary conceptual design of ST-TPR was presented, providing the backgrounds and reference for next detailed conceptual design

  4. The impact of tritium solubility and diffusivity on inventory and permeation in liquid breeder blankets

    International Nuclear Information System (INIS)

    Caorlin, M.; Gervasini, G.; Reiter, F.

    1988-01-01

    The authors reviewed hydrogen solubility and diffusivity data for liquid lithium-based compounds which are potential breeding blanket materials in NET-type fusion devices. These data have been used to assess tritium permeation and inventory in separately cooled NET blankets and in self cooled blankets with a vanadium first wall. The results for the separately cooled NET-liquid breeder show that tritium permeation is negligible for lithium, a serious problem for Pb-17Li and a critical one for Flibe. The total tritium inventory is lowest in lithium, high in Pb-17Li and very high in Flibe. The high tritium partial pressure for Flibe or Pb-17Li can be reduced in a self cooled blanket with a vanadium first wall. Permeation into the plasma reduces the blanket tritium inventory and permeation. Tritium recovery can be combined with the plasma exhaust

  5. Tritium protective clothing

    International Nuclear Information System (INIS)

    Fuller, T.P.; Easterly, C.E.

    1979-06-01

    Occupational exposures to radiation from tritium received at present nuclear facilities and potential exposures at future fusion reactor facilities demonstrate the need for improved protective clothing. Important areas relating to increased protection factors of tritium protective ventilation suits are discussed. These areas include permeation processes of tritium through materials, various tests of film permeability, selection and availability of suit materials, suit designs, and administrative procedures. The phenomenological nature of film permeability calls for more standardized and universal test methods, which would increase the amount of directly useful information on impermeable materials. Improvements in suit designs could be expedited and better communicated to the health physics community by centralizing devlopmental equipment, manpower, and expertise in the field of tritium protection to one or two authoritative institutions

  6. Tritium in plants

    International Nuclear Information System (INIS)

    Vichot, L.; Losset, Y.

    2009-01-01

    The presence of tritium in the environment stems from its natural production by cosmic rays, from the fallout of the nuclear weapon tests between 1953 and 1964, and locally from nuclear industry activities. A part of the tritiated water contained in the foliage of plants is turned into organically bound tritium (OBT) by photosynthesis. The tritium of OBT, that is not exchangeable and then piles up in the plant, can be used as a marker of the past. It has been shown that the quantity of OBT contained in the age-rings of an oak that grew near the CEA center of Valduc was directly correlated with the tritium releases of the center. (A.C.)

  7. Tritium-v. 2

    International Nuclear Information System (INIS)

    1987-01-01

    Several bibliographical references about tritium are shown. The following aspects are presented: properties, analysis, monitoring, dosimetry reactions, labelling, industrial production, radiological protection, applications to science, technology and industry and some processes to obtain the element. (E.G.) [pt

  8. Tritium protective clothing

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, T. P.; Easterly, C. E.

    1979-06-01

    Occupational exposures to radiation from tritium received at present nuclear facilities and potential exposures at future fusion reactor facilities demonstrate the need for improved protective clothing. Important areas relating to increased protection factors of tritium protective ventilation suits are discussed. These areas include permeation processes of tritium through materials, various tests of film permeability, selection and availability of suit materials, suit designs, and administrative procedures. The phenomenological nature of film permeability calls for more standardized and universal test methods, which would increase the amount of directly useful information on impermeable materials. Improvements in suit designs could be expedited and better communicated to the health physics community by centralizing devlopmental equipment, manpower, and expertise in the field of tritium protection to one or two authoritative institutions.

  9. Thin film tritium dosimetry

    Science.gov (United States)

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  10. Management of tritium wastes

    International Nuclear Information System (INIS)

    Kisalu, J.; Mellow, D.G.; Pennington, J.D.; Thompson, H.M.; Wood, E.

    1991-07-01

    This work provides a review of the management of tritium wastes with particular reference to current practice, possible alternatives and to the implications of any alternatives considered. It concludes that reduction in UK emissions from nuclear industry is feasible but at a cost out of all proportion to the reduction in dose commitment achievable. Commercial usage of tritium involves importation at several times the UK nuclear production level although documentation is sparse. (author)

  11. PRODUCTION OF TRITIUM

    Science.gov (United States)

    Jenks, G.H.; Shapiro, E.M.; Elliott, N.; Cannon, C.V.

    1963-02-26

    This invention relates to a process for the production of tritium by subjecting comminuted solid lithium fluoride containing the lithium isotope of atomic mass number 6 to neutron radiation in a self-sustaining neutronic reactor. The lithium fiuoride is heated to above 450 deg C. in an evacuated vacuum-tight container during radiation. Gaseous radiation products are withdrawn and passed through a palladium barrier to recover tritium. (AEC)

  12. Tritium in nuclear power plants

    International Nuclear Information System (INIS)

    Badyaev, V.V.; Egorov, Yu.A.; Sklyarov, V.P.; Stegachev, G.V.

    1981-01-01

    The problem of tritium formation during NPP operation is considered on the basis of available published data. Tritium characteristics are given, sources of the origin of natural and artificial tritium are described. NPP contribution to the total tritium amount in the environment is determined, as well as contribution of each process in the reactor to the quantity of tritium, produced at the NPP. Thermal- and fast-neutron reactions with tritium production are shown, their contribution to the total amount of tritium in a coolant is estimated, taking into account the type of reactor. Data on tritium content in NPP wastes and in the air of working premises are presented. Methods for sampling and sample preparation to measurements as well as the appropriate equipment are considered. Design of the gas-discharge counter of internal filling, used for measuring tritium activity in samples is described [ru

  13. Final programmatic environmental impact statement for tritium supply and recycling

    International Nuclear Information System (INIS)

    1995-10-01

    Tritium, a radioactive gas used in all of the Nation's nuclear weapons, has a short half-life and must be replaced periodically in order for the weapon to operate as designed. Currently, there is no capability to produce the required amounts of tritium within the Nuclear Weapons Complex. The PEIS for Tritium Supply and Recycling evaluates the alternatives for the siting, construction, and operation of tritium supply and recycling facilities at each of five candidate sites: the Idaho National Engineering Laboratory, the Nevada Test Site, the Oak Ridge Reservation, the Pantex Plant, and the Savannah River Site. Alternatives for new tritium supply and recycling facilities consist of four different tritium supply technologies: Heavy Water Reactor, Modular High Temperature Gas-Cooled Reactor, Advanced Light Water Reactor, and Accelerator Production of Tritium. The PEIS also evaluates the impacts of the DOE purchase of an existing operating or partially completed commercial light water reactor or the DOE purchase of irradiation services contracted from commercial power reactors. Additionally, the PEIS includes an analysis of multipurpose reactors that would produce tritium, dispose of plutonium, and produce electricity. Evaluation of impacts on land resources, site infrastructure, air quality and acoustics, water resources, geology and soils, biotic resources, cultural and paleontological resources, socioeconomics, radiological and hazardous chemical impacts during normal operation and accidents to workers and the public, waste management, and intersite transport are included in the assessment

  14. Draft programmatic environmental impact statement for tritium supply and recycling

    International Nuclear Information System (INIS)

    1995-02-01

    Tritium, a radioactive gas used in all of the Nation's nuclear weapons, has a short half-life and must be replaced periodically in order for the weapon to operate as designed. Currently, the Nation has no tritium production capability. The Tritium Supply and Recycling PEIS evaluates the alternatives for the siting, construction, and operation of tritium supply and recycling facilities at each of five candidate sites: the Idaho Engineering Laboratory, the Nevada Test Site, the Oak Ridge Reservation, the Pantex Plant, and the Savannah River Site. Alternatives for new tritium supply and recycling facilities consist of four different tritium supply technologies; Heavy Water Reactor, Modular High Temperature Gas-cooled Reactor, Advanced Light Water Reactor, and Accelerator Production of Tritium. The PEIS also evaluates the impacts of using a commercial light water reactor, either as a contingency in the event of a national emergency or if purchased by the DOE and converted to defense purposes. Additionally, the PEIS includes an analysis of multi-purpose reactors which would produce tritium, dispose of plutonium and produce electricity. Volume I contains the findings of these analyses, Volume II contains the Appendices and supporting data

  15. Japanese university program on tritium radiobiology and environmental tritium

    International Nuclear Information System (INIS)

    Okada, Shigefumi

    1989-01-01

    The university program of the tritium study in the Special Research Project of Nuclear Fusion (1980-1989) is now on its 9th year. The study's aim is to assess tritium risk on man and environment for development of Japanese Nuclear Fusion Program. The tritium study begun by establishing various tritium safe-handling devices and methods to protect scientists from tritium contamination. Then, the tritium studies were initiated in three areas: The first was the studies on biological effects of tritiated water, where their RBE values, their modifying factors and mechanisms were investigated. Also, several human monitoring systems for detection of tritium-induced damage were developed. The second was the metabolic studies of tritium, including a daily tritium monitoring system, methods to enhance excretion of tritiated water from body and means to prevent oxidation of tritium gas in the body. The third was the study of environmental tritium. Tritium levels in environmental waters of various types were estimated all-over in Japan and their seasonal or regional variation were analyzed. Last two years, the studies were extended to estimate tritium activities of plants, foods and man in Japan. (author)

  16. Tritium Assay and Dispensing of KEPRI Tritium Lab

    International Nuclear Information System (INIS)

    Sohn, S. H.; Song, K. M.; Lee, S. K.; Lee, K.W.; Ko, B. W.

    2009-01-01

    The Wolsong Tritium Removal Facility(WTRF) has been constructed to reduce tritium levels in the heavy water systems and environmental emissions at the site. The WTRF was designed to process 100 kg/h of heavy water with the overall tritium extraction efficiency of 97% per single pass and to produce ∼700 g of tritium as T2 per year at the feed concentration of 0.37 TBq/kg. The high purity tritium greater than 99% is immobilized as a metal hydride to secure its long term storage. The recovered tritium will be made available for industrial uses and some research applications in the future. Then KEPRI is constructing the tritium lab. to build-up infrastructure to support tritium research activities and to support tritium control and accountability systems for tritium export. This paper describes the initial phases of the tritium application program including the laboratory infrastructure to support the tritium related R and D activities and the tritium controls in Korea

  17. Comparison of tritium production facilities

    International Nuclear Information System (INIS)

    He Kaihui; Huang Jinhua

    2002-01-01

    Detailed investigation and research on the source of tritium, tritium production facilities and their comparison are presented based on the basic information about tritium. The characteristics of three types of proposed tritium production facilities, i.e., fissile type, accelerator production tritium (APT) and fusion type, are presented. APT shows many advantages except its rather high cost; fusion reactors appear to offer improved safety and environmental impacts, in particular, tritium production based on the fusion-based neutron source costs much lower and directly helps the development of fusion energy source

  18. Deuterium-tritium fuel self-sufficiency in fusion reactors

    International Nuclear Information System (INIS)

    Abdou, M.A.; Vold, E.L.; Gung, C.Y.; Youssef, M.Z.; Shin, K.

    1986-01-01

    Conditions necessary to achieve deuterium-tritium fuel self-sufficiency in fusion reactors are derived through extensive modeling and calculations of the required and achievable tritium breeding ratios as functions of the many reactor parameters and candidate design concepts. It is found that the excess margin in the breeding potential is not sufficient to cover all present uncertainties. Thus, the goal of attaining fuel self-sufficiency significantly restricts the allowable parameter space and design concepts. For example, the required breeding ratio can be reduced by (A) attaining high tritium fractional burnup, >5%, in the plasma, (B) achieving very high reliability, >99%, and very short times, <1 day, to fix failures in the tritium processing system, and (C) ensuring that nonradioactive decay losses from all subsystems are extremely low, e.g., <0.1% for the plasma exhaust processing system. The uncertainties due to nuclear data and calculational methods are found to be significant, but they are substantially smaller than those due to uncertainties in system definition

  19. Visual tritium imaging of In-Vessel surfaces

    International Nuclear Information System (INIS)

    Gentile, C. A.; Zweben, S. J.; Skinner, C. H.; Young, K. M.; Langish, S. W.; Nishi, M. F.; Shu, W. M.; Parker, J.; Isobe, K.

    2000-01-01

    A imaging detector has been developed for the purpose of providing a non-destructive, real time method of determining tritium concentrations on the surface of internal TFTR vacuum vessel components. The detector employs a green phosphor screen (P31, zinc sulfide: copper) with a wave length peak of 530 nm, a charge-coupled device (CCD) camera linked to a computer, and a detection chamber for inserting components recovered from the vacuum vessel. This detector is capable of determining tritium concentrations on the surfaces. The detector provides a method of imaging tritium deposition on the surfaces in a fairly rapid fashion

  20. Visual tritium imaging of in-vessel surfaces

    International Nuclear Information System (INIS)

    Gentile, C.A.; Zweben, S.J.; Skinner, C.H.; Young, K.M.; Langish, S.W.; Nishi, M.F.; Shu, W.M.; Parker, J.; Isobe, K.

    2000-01-01

    An imaging detector has been developed for the purpose of providing a non-destructive, real time method of determining tritium concentrations on the surface of internal TFTR vacuum vessel components. The detector employs a green phosphor screen (P31, zinc sulfide: copper) with a wave length peak of 530 nm, a charge-coupled device (CCD) camera linked to a computer, and a detection chamber for inserting components recovered from the vacuum vessel. This detector is capable of determining tritium concentrations on the surfaces. The detector provides a method of imaging tritium deposition on the surfaces in a fairly rapid fashion

  1. Thermo-mechanical characterization of ceramic pebbles for breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Lo Frano, Rosa, E-mail: rosa.lofrano@ing.unipi.it; Aquaro, Donato; Scaletti, Luca

    2016-11-01

    Highlights: • Experimental activities to characterize the Li{sub 4}SiO{sub 4}. • Compression tests of pebbles. • Experimental evaluation of thermal conductivity of pebbles bed at different temperatures. • Experimental test with/without compression load. - Abstract: An open issue for fusion power reactor is to design a suitable breeding blanket capable to produce the necessary quantity of the tritium and to transfer the energy of the nuclear fusion reaction to the coolant. The envisaged solution called Helium-Cooled Pebble Bed (HCPB) breeding blanket foresees the use of lithium orthosilicate (Li{sub 4}SiO{sub 4}) or lithium metatitanate (Li{sub 2}TiO{sub 3}) pebble beds. The thermal mechanical properties of the candidate pebble bed materials are presently extensively investigated because they are critical for the feasibility and performances of the numerous conceptual designs which use a solid breeder. This study is aimed at the investigation of mechanical properties of the lithium orthosilicate and at the characterization of the main chemical, physical and thermo-mechanical properties taking into account the production technology. In doing that at the Department of Civil and Industrial Engineering (DICI) of the University of Pisa adequate experiments were carried out. The obtained results may contribute to characterize the material of the pebbles and to optimize the design of the envisaged fusion breeding blankets.

  2. Tritium emissions reduction facility (TERF)

    International Nuclear Information System (INIS)

    Lamberger, P.H.; Hedley, W.H.

    1993-01-01

    Tritium handling operations at Mound include production of tritium-containing devices, evaluation of the stability of tritium devices, tritium recovery and enrichment, tritium process development, and research. In doing this work, gaseous process effluents containing 400,000 to 1,000,000 curies per year of tritium are generated. These gases must be decontaminated before they can be discharged to the atmosphere. They contain tritium as elemental hydrogen, as tritium oxide, and as tritium-containing organic compounds at low concentrations (typically near one ppm). The rate at which these gases is generated is highly variable. Some tritium-containing gas is generated at all times. The systems used at Mound for capturing tritium from process effluents have always been based on the open-quotes oxidize and dryclose quotes concept. They have had the ability to remove tritium, regardless of the form it was in. The current system, with a capacity of 1.0 cubic meter of gas per minute, can effectively remove tritium down to part-per-billion levels

  3. Tritium production distribution in the accelerator production of tritium device

    International Nuclear Information System (INIS)

    Kidman, R.B.

    1997-11-01

    Helium-3 ( 3 He) gas is circulated throughout the accelerator production of tritium target/blanket (T/B) assembly to capture neutrons and convert 3 He to tritium. Because 3 He is very expensive, it is important to know the tritium producing effectiveness of 3 He at all points throughout the T/B. The purpose of this paper is to present estimates of the spatial distributions of tritium production, 3 He inventory, and the 3 He FOM

  4. Modeling tritium behavior in Li{sub 2}ZrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M C [Argonne National Lab., IL (United States). Fusion Power Program

    1998-03-01

    Lithium metazirconate (Li{sub 2}ZrO{sub 3}) is a promising tritium breeder material for fusion reactors because of its excellent tritium release characteristics. In particular, for water-cooled breeding blankets (e.g., ITER), Li{sub 2}ZrO{sub 3} is appealing from a design perspective because of its good tritium release at low operating temperatures. The steady-state and transient tritium release/retention database for Li{sub 2}ZrO{sub 3} is reviewed, along with conventional diffusion and first-order surface desorption models which have been used to match the database. A first-order surface desorption model is recommended in the current work both for best-estimate and conservative (i.e., inventory upper-bound) predictions. Model parameters are determined and validated for both types of predictions, although emphasis is placed on conservative design predictions. The effects on tritium retention of ceramic microstructure, protium partial pressure in the purge gas and purge gas flow rate are discussed, along with other mechanisms for tritium retention which may not be dominant in the experiments, but may be important in blanket design analyses. The proposed tritium retention/release model can be incorporated into a transient thermal performance code to enable whole-blanket predictions of tritium retention/release during cyclic reactor operation. Parameters for the ITER driver breeding blanket are used to generate a numerical set of model predictions for steady-state operation. (author)

  5. Tritium transport in HCLL and WCLL DEMO blankets

    Energy Technology Data Exchange (ETDEWEB)

    Candido, Luigi [DENERG, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Utili, Marco [ENEA UTIS- C.R. Brasimone, Bacino del Brasimone, Camugnano, BO (Italy); Nicolotti, Iuri [DENERG, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Zucchetti, Massimo, E-mail: massimo.zucchetti@polito.it [DENERG, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2016-11-01

    Highlights: • Tritium inventories and tritium losses are the main output of the presented model for HCLL and WCLL. • A parametric study has been performed, to show the behavior of the two systems when certain parameters are changed, in order to minimize inventories and/or losses. • An improved design is needed, in order to reduce the radiological hazard related to tritium activity. According to test number 7, HCLL-BB could be able to have a tritium inventory of 33.05 g and losses of 19.55 Ci/d. • WCLL-BB shows a very low radiological risk, much lower than that suggested (inventory: 17.48 g, losses: 3.2 Ci/d). An ptimization study has been performed aiming to minimize the water flow rate for an upgraded design. • Both for HCLL and WCLL, the most critical parameters able to produce relevant variations in inventories and losses are the helium/water fraction, the CPS/WDS and the permeation reduction factors. - Abstract: The Helium-Cooled Lithium Lead (HCLL) and Water-Cooled Lithium Lead (WCLL) Breeding Blankets are two of the four blanket designs proposed for DEMO reactor. The study of tritium transport inside the blankets is fundamental to assess their preliminary design and safety features. A mathematical model has been derived, in a new form making makes easier to determine the most critical components as far as tritium losses and tritium inventories are concerned, and to model the tritium performance of the whole system. Two cases have been studied, the former with tritium generation rate constant in time and the latter considering a typical pulsed operation for a time span of 100 h. Tritium inventories and tritium losses are the main output of the model. Tritium concentrations, inventories and losses are initially calculated and compared for the two blankets, in a reference case without permeation barriers or cold traps. A parametric study to show the behavior of the two systems when certain parameters are changed, in order to minimize inventories and

  6. Tritium analysis at TFTR

    International Nuclear Information System (INIS)

    Voorhees, D.R.; Rossmassler, R.L.; Zimmer, G.

    1995-01-01

    The tritium analytical system at TFRR is used to determine the purity of tritium bearing gas streams in order to provide inventory and accountability measurements. The system includes a quadrupole mass spectrometer and beta scintillator originally configured at Monsanto Mound Research Laboratory in the late 1970's and early 1980's. The system was commissioned and tested between 1991 and 1992 and is used daily for analysis of calibration standards, incoming tritium shipments, gases evolved from uranium storage beds and measurement of gases returned to gas holding tanks. The low resolution mass spectrometer is enhanced by the use of a metal getter pump to aid in resolving the mass 3 and 4 species. The beta scintillator complements the analysis as it detects tritium bearing species that often are not easily detected by mass spectrometry such as condensable species or hydrocarbons containing tritium. The instruments are controlled by a personal computer with customized software written with a graphical programming system designed for data acquisition and control. A discussion of the instrumentation, control systems, system parameters, procedural methods, algorithms, and operational issues will be presented. Measurements of gas holding tanks and tritiated water waste streams using ion chamber instrumentation are discussed elsewhere

  7. Verification of tritium production evaluation procedure using Monte Carlo code MCNP for in-pile test of fusion blanket with JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Y. E-mail: nagao@jmtr.oarai.jaeri.go.jp; Nakamichi, K.; Tsuchiya, M.; Ishitsuka, E.; Kawamura, H

    2000-11-01

    To evaluate exactly the total amount of tritium production in tritium breeding materials during in-pile test with JMTR, the 'tritium monitor' has been produced and evaluation of total tritium generation was done by using 'tritium monitor' in preliminary in-pile mock-up, and verification of procedure concerning tritium production evaluation was conducted by using Monte Carlo code MCNP and nuclear cross section library of FSXLIBJ3R2. Li-Al alloy (Li 3.4 wt.%, 95.5% enrichment of {sup 6}Li) was selected as tritium monitor material for the evaluation on the total amount of tritium production in high {sup 6}Li enriched materials. From the results of preliminary experiment, calculated amounts of total tritium production at each 'tritium monitor', which was installed in the preliminary in-pile mock-up, were about 50-290% higher than the measured values. Concerning tritium measurement, increase of measurement error in tritium leak form measuring system to measure small amount of tritium (0.2-0.7 mCi in tritium monitor) was found in the results of present experiment. The tendency for overestimation of calculated thermal neutron flux in the range of 1-6x10{sup 13} n cm{sup -2} per s was found in JMTR and the reason may be due to the beryllium cross section data base in JENDL3.2.

  8. Verification of tritium production evaluation procedure using Monte Carlo code MCNP for in-pile test of fusion blanket with JMTR

    International Nuclear Information System (INIS)

    Nagao, Y.; Nakamichi, K.; Tsuchiya, M.; Ishitsuka, E.; Kawamura, H.

    2000-01-01

    To evaluate exactly the total amount of tritium production in tritium breeding materials during in-pile test with JMTR, the 'tritium monitor' has been produced and evaluation of total tritium generation was done by using 'tritium monitor' in preliminary in-pile mock-up, and verification of procedure concerning tritium production evaluation was conducted by using Monte Carlo code MCNP and nuclear cross section library of FSXLIBJ3R2. Li-Al alloy (Li 3.4 wt.%, 95.5% enrichment of 6 Li) was selected as tritium monitor material for the evaluation on the total amount of tritium production in high 6 Li enriched materials. From the results of preliminary experiment, calculated amounts of total tritium production at each 'tritium monitor', which was installed in the preliminary in-pile mock-up, were about 50-290% higher than the measured values. Concerning tritium measurement, increase of measurement error in tritium leak form measuring system to measure small amount of tritium (0.2-0.7 mCi in tritium monitor) was found in the results of present experiment. The tendency for overestimation of calculated thermal neutron flux in the range of 1-6x10 13 n cm -2 per s was found in JMTR and the reason may be due to the beryllium cross section data base in JENDL3.2

  9. Analysis of tritium behaviour and recovery from a water-cooled Pb17Li blanket

    International Nuclear Information System (INIS)

    Malara, C.; Casini, G.; Viola, A.

    1995-01-01

    The question of the tritium recovery in water-cooled Pb17Li blankets has been under investigation for several years at JRC Ispra. The method which has been more extensively analysed is that of slowly circulating the breeder out from the blanket units and of extracting the tritium from it outside the plasma vacuum vessel by helium gas purging or vacuum degassing in a suited process apparatus. A computerized model of the tritium behaviour in the blanket units and in the extraction system was developed. It includes four submodels: (1) tritium permeation process from the breeder to the cooling water as a function of the local operative conditions (tritium concentration in Pb17Li, breeder temperature and flow rate); (2) tritium mass balance in each breeding unit; (3) tritium desorption from the breeder material to the gas phase of the extraction system; (4) tritium extraction efficiency as a function of the design parameters of the recovery apparatus. In the present paper, on the basis of this model, a parametric study of the tritium permeation rate in the cooling water and of the tritium inventory in the blanket is carried out. Results are reported and discussed in terms of dimensionless groups which describe the relative effects of the overall resistance on tritium transfer to the cooling water (with and without permeation barriers), circulating Pb17Li flow rate and extraction efficiency of the tritium recovery unit. The parametric study is extended to the recovery unit in the case of tritium extraction by helium purge or vacuum degassing in a droplet spray unit. (orig.)

  10. Tritium pellet injector for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foust, C.R.; Milora, S.L.

    1992-01-01

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) plasma phase. An existing deuterium pellet injector (DPI) was modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed for frozen pellets ranging in size from 3 to 4 mm in diameter in arbitrarily programmable firing sequences at tritium pellet speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller (PLC). The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were also made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed and the TPI was tested at ORNL with deuterium pellets. Results of the testing program at ORNL are described. The TPI has been installed and operated on TFTR in support of the CY-92 deuterium plasma run period. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and tritium gloveboxes and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  11. Tritium - is it underestimated

    International Nuclear Information System (INIS)

    Whitlock, G.D.

    1980-01-01

    Practical experience in the use of the Whitlock Tritium Meter in various laboratories and industrial establishments throughout the world has shown that:-a) Measurements by smear/wipe tests can often be in error by three orders of magnitude or more; b) Sub-visual surface scratches (8μ deep) are radiologically important; c) Volatile forms of tritium exist in 20% to 30% of establishments visited. It is concluded that a) the widespread use of smear/wipe techniques for the assessment of 3 H surface contamination based on the assumption that 10% of removable activity is collected by the smear/wipe should be re-examined and b) tritium surface contamination assessed as 'fixed' can contain volatile fractions with a hazard potential which may be considerably greater than the hazard from removable activity at present covered by maximum permissible level recommendations. (H.K.)

  12. Tritium in HTR systems

    International Nuclear Information System (INIS)

    Steinwarz, W.

    1987-07-01

    Starting from the basis of the radiological properties of tritium, the provisions of present-day radiation protection legislation are discussed in the context of the handling of this radionuclide in HTR plants. Tritium transportation is then followed through from the place of its creation up until the sink, i.e. disposal and/or environmental route, and empirical values obtained in experiments and in plant operation translated into guidelines for plant design and planning. The use of the example of modular HTR plants permits indication that environmental contamination via the 'classical' routes of air and water emissions, and contamination of products, and resulting consumer exposure, are extremely low even on the assumption of extreme conditions. This leads finally to a requirement that the expenditure for implementation of measures for further reduction of tritium activity rates be measured against low radiological effect. (orig.) [de

  13. Atmospheric tritium. Measurement and application

    International Nuclear Information System (INIS)

    Frejaville, Gerard

    1967-02-01

    The possible origins of atmospheric tritium are reviewed and discussed. A description is given of enrichment (electrolysis and thermal diffusion) and counting (gas counters and liquid scintillation counters) processes which can be used for determining atmospheric tritium concentrations. A series of examples illustrates the use of atmospheric tritium for resolving a certain number of hydrological and glaciological problems. (author) [fr

  14. Handling of tritium at TFTR

    International Nuclear Information System (INIS)

    Pierce, C.W.; Howe, H.J.; Yemin, L.; Lind, K.

    1977-01-01

    Some of the engineering approaches taken at TFTR for the tritium control systems are discussed as the requirements being placed on the tritium systems by the operating scenarios of the Tokamak. The tritium control systems presently being designed for TFTR will limit the annual release to the environment to less than 100 curies

  15. Slave Breeding

    OpenAIRE

    Sutch, Richard

    1986-01-01

    This paper reviews the historical work on slave breeding in the ante-bellum United States. Slave breeding consisted of interference in the sexual life of slaves by their owners with the intent and result of increasing the number of slave children born. The weight of evidence suggests that slave breeding occurred in sufficient force to raise the rate of growth of the American slave population despite evidence that only a minority of slave-owners engaged in such practices.

  16. Development of tritium technology at the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Anderson, J.L.; Bartlit, J.R.

    1982-01-01

    The Tritium Systems Test Assembly (TSTA) at the Los Alamos National Laboratory is dedicated to the development, demonstration, and interfacing of technologies related to the deuterium-tritium fuel cycle for large scale fusion reactor systems starting with the Fusion Engineering Device (FED) or the International Tokamak Reactor (INTOR). This paper briefly describes the fuel cycle and safety systems at TSTA including the Vacuum Facility, Fuel Cleanup, Isotope Separation, Transfer Pumping, Emergency Tritium Cleanup, Tritium Waste Treatment, Tritium Monitoring, Data Acquisition and Control, Emergency Power and Gas Analysis systems. Discussed in further detail is the experimental program proposed for the startup and testing of these systems

  17. Monitoring of tritium

    Science.gov (United States)

    Corbett, James A.; Meacham, Sterling A.

    1981-01-01

    The fluid from a breeder nuclear reactor, which may be the sodium cooling fluid or the helium reactor-cover-gas, or the helium coolant of a gas-cooled reactor passes over the portion of the enclosure of a gaseous discharge device which is permeable to hydrogen and its isotopes. The tritium diffused into the discharge device is radioactive producing beta rays which ionize the gas (argon) in the discharge device. The tritium is monitored by measuring the ionization current produced when the sodium phase and the gas phase of the hydrogen isotopes within the enclosure are in equilibrium.

  18. Commissioning of a DT fusion reactor without external supply of tritium

    International Nuclear Information System (INIS)

    Asaoka, Y.; Konishi, S.; Nishio, S.; Hiwatari, R.; Okano, K.; Yoshida, T.; Tomabechi, K.

    2001-01-01

    Commissioning of a DT fusion reactor without external supply of tritium is discussed. The DD reactions in a DT-oriented fusion reactor with external power injection by neutral beams produce tritium and neutrons. Tritium produced by the DD reaction together with that produced in the blanket by the 2.45 MeV neutron is re-circulated into the plasma. Then, the DT reaction rate increases gradually, as tritium concentration in plasma builds up towards the level of nominal operation. Time required to reach the nominal operational condition, i.e. 50 % tritium in plasma, is estimated with assumptions based on a model of fusion power plant. As a result, the start-up period of a DT fusion reactor without external supply of tritium is estimated to be approximately 55 days, with the plasma parameters of CREST having a high performance blanket and tritium processing systems. Major factors to determine the start-up period are DD and DT reaction rates, net tritium breeding gain of the plant and dead inventory in/on facing materials. Elimination of a constraint for fusion reactor deployment and operation without any tritium transportation in and out of plant through its entire life may be possible. (author)

  19. Tritium interactions of potential importance to fusion reactor systems: technology requirements

    International Nuclear Information System (INIS)

    Wilkes, W.R.

    1976-01-01

    The tritium technology requirements created by the controlled thermonuclear research program to develop a demonstration fusion power reactor by the year 2000 are reviewed. It is found that the majority of the technological advances which are needed to ensure adequate tritium containment in a tritium breeding power reactor need to be demonstrated on a pilot scale by approximately 1983, so that they may be incorporated into EPR-II, the second of two planned experimental power reactors. The most important advances include development of containment materials with permeabilities to tritium well below measured values for stainless steel; large scale, low inventory deuterium-tritium separation systems; and improved monitoring and assay systems. There are less critical requirements for information about the effects of tritium and helium on the mechanical properties of materials, the effects of tritium on biological systems, and data on physical and chemical properties of tritium. Substantial progress needs to be made on these problems early enough to permit possible solutions to be tested on EPR-I. In addition, major improvements in tritium handling equipment are required for EPR-I. Those technological problems for which solutions have not yet been demonstrated by EPR-II must be solved by 1989 if they are to be assured successful application in the demonstration reactor

  20. Is tritium an issue for high temperature reactors?

    Energy Technology Data Exchange (ETDEWEB)

    Fütterer, Michael A., E-mail: michael.fuetterer@ec.europa.eu [European Commission – Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, 1755 ZG Petten (Netherlands); D’Agata, Elio [European Commission – Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, 1755 ZG Petten (Netherlands); Raepsaet, Xavier [Commissariat à l’Energie Atomique et aux Energies Alternatives, DEN/DM2S, 91191 Gif-sur-Yvette Cedex (France)

    2016-09-15

    In a high temperature reactor, tritium is produced by a number of mechanisms. Due to its high mobility, some of this tritium ends up in the primary helium cooling circuit from where it can be extracted by the coolant purification system to keep the partial pressure of tritiated compounds low. The remaining partial pressure of tritium in the coolant is the driving force for permeation across the heat exchanger from the primary cooling system into the secondary cooling system. From there the contamination may further propagate and ultimately escape into the environment. This paper summarizes a study on the different tritium control options capable of meeting possible future safety requirements. Our results indicate that compliance with plausible tritium control requirements can indeed be achieved with reasonable effort both for electricity generation using a closed steam cycle and for process steam generation with an open steam cycle. However, for new-build HTR, definite country-specific licensing requirements (e.g. chronic and accidental tritium release) are yet to be determined and will shape the required tritium control strategy.

  1. Technology benefits resulting from accelerator production of tritium

    International Nuclear Information System (INIS)

    1998-01-01

    One of the early and most dramatic uses of nuclear transformations was in development of the nuclear weapons that brought World War II to an end. Despite that difficult introduction, nuclear weapons technology has been used largely as a deterrent to war throughout the latter half of the twentieth century. The Accelerator Production of Tritium (APT) offers a clean, safe, and reliable means of producing the tritium (a heavy form of hydrogen) needed to maintain the nuclear deterrent. Tritium decays away naturally at a rate of about 5.5% per year; therefore, the tritium reservoirs in nuclear weapons must be periodically replenished. In recent years this has been accomplished by recycling tritium from weapons being retired from the stockpile. Although this strategy has served well since the last US tritium production reactor was shut down in 1988, a new tritium production capability will be required within ten years. Some benefits will result from direct utilization of some of the APT proton beam; others could result from advances in the technologies of particle accelerators and high power spallation targets. The APT may save thousands of lives through the production of medical isotopes, and it may contribute to solving the nation's problem in disposing of long-lived nuclear wastes. But the most significant benefit may come from advancing the technology, so that the great potential of accelerator applications can be realized during our lifetimes

  2. Is Tritium an Issue for High Temperature Reactors?

    International Nuclear Information System (INIS)

    Fütterer, Michael A.; D'Agata, Elio; Raepsaet, Xavier

    2014-01-01

    In a High Temperature Reactor, tritium is produced by a number of mechanisms. Due to its high mobility, some of this tritium ends up in the primary helium cooling circuit from where it can be extracted by the coolant purification system to keep the partial pressure of tritiated compounds low. The remaining partial pressure of tritium in the coolant is the driving force for permeation across the heat exchanger from the primary cooling system into the secondary cooling system. From there the contamination may further propagate and ultimately escape into the environment. This paper summarizes a study on the different tritium control options capable of meeting possible future safety requirements. Our results indicate that compliance with plausible tritium control requirements can indeed be achieved with reasonable effort both for electricity generation using a closed steam cycle and for process steam generation with an open steam cycle. However, for new-build HTR, definite country-specific licensing requirements (e.g. chronic and accidental tritium release) are yet to be determined and will shape the required tritium control strategy. (author)

  3. Design of a tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    Milora, S.L.; Gouge, M.J.; Fisher, P.W.; Combs, S.K.; Cole, M.J.; Wysor, R.B.; Fehling, D.T.; Foust, C.R.; Baylor, L.R.; Schmidt, G.L.; Barnes, G.W.; Persing, R.G.

    1991-01-01

    The TFTR tritium pellet injector (TPI) is designed to provide a tritium pellet fueling capability with pellet speeds in the 1- to 3 km/s-range for the TFTR D-T phase. The existing TFTR deuterium pellet injector is being modified at Oak Ridge National Laboratory to provide a fourshot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns a two -stage light gas gun driver. The pipe gun concept has been qualified for tritium operation by the tritium proof-of-principle injector experiments conducted on the Tritium Systems Test Assembly at Los Alamos National Laboratory. In these experiments, tritium and D-T pellets were accelerated to speeds near 1.5 km/s. The TPI is being designed for pellet sizes in the range from 3.43 to 4.0 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation will be controlled by a programmable logic controller. 7 refs., 4 figs

  4. Tritium in rad waste management

    International Nuclear Information System (INIS)

    Gandhi, P.M.; Ali, S.S.; Mathur, R.K.; Rastogi, R.C.

    1990-01-01

    Radioactive waste arising from PHWR's are invariably contaminated with tritium activity. Their disposal is crucial as it governs the manner and extent of radioactive contamination of human environment. The technique of tritium measurement and its application plays an important role in assessing the safety of the disposal system. Thus, typical applications involving tritium measurements include the evaluation of a site for solid waste burial facility and evaluation of a water body for liquid waste dispersal. Tritium measurement is also required in assessing safe air route dispersal of tritium. (author)

  5. ARIES-I tritium system

    International Nuclear Information System (INIS)

    Sze, D.K.; Tam, S.W.; Billone, M.C.; Hassanein, A.M.; Martin, R.

    1990-09-01

    A key safety concern in a D-T fusion reactor is the tritium inventory. There are three components in a fusion reactor with potentially large inventories, i.e., the blanket, the fuel processing system and the plasma facing components. The ARIES team selected the material combinations, decided the operating conditions and refined the processing systems, with the aiming of minimizing the tritium inventories and leakage. The total tritium inventory for the ARIES-I reactor is only 700 g. This paper discussed the calculations and assumptions we made for the low tritium inventory. We also addressed the uncertainties about the tritium inventory. 13 refs., 2 figs., 3 tabs

  6. Properties of tritium and its compounds

    International Nuclear Information System (INIS)

    Belovodskij, L.F.; Gaevoj, V.K.; Grishmanovskij, V.I.

    1985-01-01

    Ways of tritium preparation and different aspects of its application are considered. Physicochemical properties of this isotope and some compounds of it - tritium oxides, lithium, titanium, zirconium, uranium tritides, tritium organic compounds - are discussed. In particular, diffusion of tritium and its oxide through different materials, tritium oxidation processes, decomposition of tritium-containing compounds under the action of self-radiation are considered. Main radiobiological tritium properties are described

  7. Safety and environmental advantages of breeding blanketless fusion reactors

    International Nuclear Information System (INIS)

    Zucchetti, M.; Merola, M.; Matera, R.

    1994-01-01

    Next-step reactors will use DT cycle. However, environmental advantage will be the main chance for fusion to compete with other energy sources. The environmental problems of DT cycle due to tritium and neutron activation, are examined. Fusion commercial reactors could be based on alternative fuel cycles like D-He3. Advantages and disadvantages of this fuel cycle are outlined. All the technologies related with the self-breeding of tritium and the concept of breeding blanket itself may be not reactor relevant. In the frame of the Next-step studies, the potential advantages of intermediate DT devices without breeding blanket are discussed. Simplified design, lower cost, higher safety are the main ones. The problem of the source of tritium is examined. (author)

  8. Use of tritium and sources

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi

    1997-01-01

    There are many kinds of tritium, sources in the environment. The maximum inventory of them is the nuclear tests, although the atmospheric nuclear test has not been carried out since 1981. So that the inventory originated from them will decrease. By the latest data in 1989, the total amount of released tritium was about 24 PBq/yr by the use of atomic energy in the world. The maximum source was the heavy water moderated reactors, for example, CANDU reactor. In the future, large amount of tritium inventory may be the fusion reactor. The test of JET (Joint European Torus) released about 600 GBq of tritium until March in 1992. 80-90% of them were tritium water (HTO). The amount of tritium released from industries and medicine are limited. Although ITER has a large amount of tritium inventory, the amount of release is seemed not to be larger than other nuclear power facility. (S.Y.)

  9. Tritium transport calculations for the IFMIF Tritium Release Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Jana, E-mail: jana.freund@kit.edu; Arbeiter, Frederik; Abou-Sena, Ali; Franza, Fabrizio; Kondo, Keitaro

    2014-10-15

    Highlights: • Delivery of material data for the tritium balance in the IFMIF Tritium Release Test Module. • Description of the topological models in TMAP and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). • Computation of release of tritium from the breeder solid material into the purge gas. • Computation of the loss of tritium over the capsule wall, rig hull, container wall and purge gas return line. - Abstract: The IFMIF Tritium Release Test Module (TRTM) is projected to measure online the tritium release from breeder ceramics and beryllium pebble beds under high energy neutron irradiation. Tritium produced in the pebble bed of TRTM is swept out continuously by a purge gas flow, but can also permeate into the module's metal structures, and can be lost by permeation to the environment. According analyses on the tritium inventory are performed to support IFMIF plant safety studies, and to support the experiment planning. This paper describes the necessary elements for calculation of the tritium transport in the Tritium Release Test Module as follows: (i) applied equations for the tritium balance, (ii) material data from literature and (iii) the topological models and the computation of the five different cases; namely release of tritium from the breeder solid material into the purge gas, loss of tritium over the capsule wall, rig hull, container wall and purge gas return line in detail. The problem of tritium transport in the TRTM has been studied and analyzed by the Tritium Migration Analysis Program (TMAP) and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). TMAP has been developed at INEEL and now exists in Version 7. FUS-TPC Code was written in MATLAB with the original purpose to study the tritium transport in Helium Cooled Lead Lithium (HCLL) blanket and in a later version the Helium Cooled Pebble Bed (HCPB) blanket by [6] (Franza, 2012). This code has been further modified to be applicable to the TRTM. Results from the

  10. Tritium transport calculations for the IFMIF Tritium Release Test Module

    International Nuclear Information System (INIS)

    Freund, Jana; Arbeiter, Frederik; Abou-Sena, Ali; Franza, Fabrizio; Kondo, Keitaro

    2014-01-01

    Highlights: • Delivery of material data for the tritium balance in the IFMIF Tritium Release Test Module. • Description of the topological models in TMAP and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). • Computation of release of tritium from the breeder solid material into the purge gas. • Computation of the loss of tritium over the capsule wall, rig hull, container wall and purge gas return line. - Abstract: The IFMIF Tritium Release Test Module (TRTM) is projected to measure online the tritium release from breeder ceramics and beryllium pebble beds under high energy neutron irradiation. Tritium produced in the pebble bed of TRTM is swept out continuously by a purge gas flow, but can also permeate into the module's metal structures, and can be lost by permeation to the environment. According analyses on the tritium inventory are performed to support IFMIF plant safety studies, and to support the experiment planning. This paper describes the necessary elements for calculation of the tritium transport in the Tritium Release Test Module as follows: (i) applied equations for the tritium balance, (ii) material data from literature and (iii) the topological models and the computation of the five different cases; namely release of tritium from the breeder solid material into the purge gas, loss of tritium over the capsule wall, rig hull, container wall and purge gas return line in detail. The problem of tritium transport in the TRTM has been studied and analyzed by the Tritium Migration Analysis Program (TMAP) and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). TMAP has been developed at INEEL and now exists in Version 7. FUS-TPC Code was written in MATLAB with the original purpose to study the tritium transport in Helium Cooled Lead Lithium (HCLL) blanket and in a later version the Helium Cooled Pebble Bed (HCPB) blanket by [6] (Franza, 2012). This code has been further modified to be applicable to the TRTM. Results from the

  11. Tritium determination in water

    International Nuclear Information System (INIS)

    Gavini, Ricardo M.

    2008-01-01

    An analytical procedure for the determination of tritium in water is described in this paper. The determination is carried out in presence of other radionuclides, such as Fe-55, Ni-63, Mn-54, Zn-65, Co-60, Cd-109, Sr-90, Cs-134 and Cs-137. The method consists in a simple distillation stage prior to measurement by liquid scintillation counting. The samples containing beta and gamma emitters are conditioned with a (NO 3 ) 2 Pb solution and Na(OH) up to pH = 7 - 8. This produces lead hydroxide precipitation that allows fixing volatile elements, which could be transported together with tritium, and may increase the extinction degree of the sample or interfere with the counting process. Special attention must be paid if presence of Fe-55 (E max ∼ 5.95 keV) is suspected as it might not be distinguished from tritium (E max ∼ 18 keV), leading to an overestimation of tritium activity. Different tests were carried to obtain the optimum method conditions, to achieve the purification of the tritium and a pH near to 7 in the distilled. The detection limit (2σ) was 8.0 Bq/l and the distillation performance was 98.3 %. This technique was applied to water samples containing Fe-55 and other gamma radionuclides in 1M hydrochloric acid media in successive Environmental Measurements Laboratory (EML), U.S. Department of Energy (DOE) intercomparison programs. The results obtained were very satisfactory and are presented in this paper. (author)

  12. Tritium recovery and separation from CTR plasma exhausts and secondary containment atmospheres

    International Nuclear Information System (INIS)

    Forrester, R.C. III; Watson, J.S.

    1975-01-01

    Recent experimental successes have generated increased interest in the development of thermonuclear reactors as power sources for the future. This paper examines tritium containment problems posed by an operating CTR and sets forth some processing schemes currently being evaluated at the Oak Ridge National Laboratory. An appreciation of the CTR tritium management problem can best be realized by recalling that tritium production rates for various fission reactors range from 2 x 10 4 to 9 x 10 5 Ci/yr per 1000 MW(e). Present estimates of tritium production in a CTR blanket exceed 10 9 Ci/yr for the same level of power generation, and tritium process systems may handle 10 to 20 times that amount. Tritium's high permeability through most materials of construction at high temperatures makes secondary containment mandatory for most piping. Processing of these containment atmospheres will probably involve conversion of the tritium to a nonpermeating form (T 2 O) followed by trapping on conventional beds of desiccant material. In a similar fashion, all purge streams and process fluid vent gases will be subjected to tritium recovery prior to atmospheric release. Two tritium process systems will be required, one to recover tritium produced by breeding in the blanket and another to recover unburned tritium in the plasma exhaust. Plasma exhaust processing will be unconventional since the exhaust gas pressure will lie between 10 -3 and 10 -6 torr. Treatment of this gas stream will entail the removal of small quantities of protium and helium from a much larger deuterium-tritium mixture which will be recycled. (U.S.)

  13. Inclusion and difusion studies of D in fusion breeding blanket candidate materials

    Energy Technology Data Exchange (ETDEWEB)

    Fan, L.

    2015-07-01

    Deuterium-Tritium (D-T) reaction is the most practical fusion reaction on the way to harness fusion energy. As tritium presents trace quantities on Earth [1], tritium fuel is essential to be generated simultaneously with the D-T reaction in a commerical fusion power plant. Tritium can be obtained in the lithium contained breeding blanket as a transmutation product of nuclear reaction 6Li (n, a)T. Li2T iO3 is considered to be one promising candidate solid tritium breeder material, due to its high lithium density, low activation, compatiblity with structure materials and high chemical stability. The tritium generated in Li2T iO3 breeding blanket needs to be collected and recycled back to the fusion reaction. Therefore, the study of the diffusion characteristic of breeder material Li2T iO3 is necessary to determine tritium mobility and tritium extraction efficiency. In order to study tritium release mechanism of Li2T iO3 breeding material in a fusion power plant environment, a fusion like neutron spectrum is essential while it is now not availble in any laboratory. One alternative is using ion accelerator or implantor to get energetic hydrogenic (H,D,T) ions impacting on breeding material, to simulate the tritium distribution situation. Because of the radioactive property of tritium which will complicate processing procedure, another isotope of hydrogen Deuterium is actually used to be studied. The defect structure in Li2T iO3, due to reactor exposure to fusion generated particles and ? ray irradiation, is achieved by energetic Ti ions. SRIM program is implemented to simulate the D ion or Ti ion distributions after bombarding, as well as the defects. X-ray diffraction technique helps to identify phase compositions. Transmission electron microscopy technique is used to observe the microstructures (Author)

  14. 233U breeding and neutron multiplying blankets for fusion reactors

    International Nuclear Information System (INIS)

    Cook, A.G.; Maniscalco, J.A.

    1975-01-01

    In this work, along with a previous paper three possible uses of 14-MeV deuterium--tritium fusion neutrons are investigated: energy production, neutron multiplication, and fissile-fuel breeding. The results presented include neutronic studies of fissioning and nonfissioning thorium systems, tritium breeding systems, various fuel options (UO 2 , UC, UC 2 , etc.), and uranium as well as refractory metal first-wall neutron-multiplying regions. A brief energy balance and an estimate of potential revenues for fusion devices are given to help illustrate the potentials of these designs

  15. Tritium in the aquatic environment

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Hoffman, F.O.; Frank, M.L.

    1986-02-01

    Tritium is of environmental importance because it is released from nuclear facilities in relatively large quantities and because it has a half life of 12.26 y. Most of the tritium released into the atmosphere eventually reaches the aqueous environment, where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered studies of algae, aquatic macrophytes, invertebrates, fish, and the food chain, were that aquatic organisms incorporate tritium into their tissue-free water very rapidly and reach concentrations near those of the external medium. The rate at which tritium from tritiated water is incorporated into the organic matter of cells is slower than the rate of its incorporation into the tissue-free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster, and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water alone. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the ''carrier'' molecule. No evidence was found that biomagnification of tritium occurs at higher trophic levels. Radiation doses from tritium releases to large populations of humans will most likely come from the consumption of contaminated water rather than contaminated aquatic food products

  16. Tritium. Today's and tomorrow's developments

    International Nuclear Information System (INIS)

    Gazal, S.; Amiard, J.C.; Caussade, Bernard; Chenal, Christian; Hubert, Francoise; Sene, Monique

    2010-01-01

    Radioactive hydrogen isotope, tritium is one of the radionuclides which is the most released in the environment during the normal operation of nuclear facilities. The increase of nuclear activities and the development of future generations of reactors, like the EPR and ITER, would lead to a significant increase of tritium effluents in the atmosphere and in the natural waters, thus raising many worries and questions. Aware about the importance of this question, the national association of local information commissions (ANCLI) wished to make a status of the existing knowledge concerning tritium and organized in 2008 a colloquium at Orsay (France) with an inquiring approach. The scientific committee of the ANCLI, renowned for its expertise skills, mobilized several nuclear specialists to carry out this thought. This book represents a comprehensive synthesis of today's knowledge about tritium, about its management and about its impact on the environment and on human health. Based on recent scientific data and on precise examples, it treats of the overall questions raised by this radionuclide: 1 - tritium properties and different sources (natural and anthropic), 2 - the problem of tritiated wastes management; 3 - the bio-availability and bio-kinetics of the different tritium species; 4 - the tritium labelling of environments; 5 - tritium measurement and modeling of its environmental circulation; 6 - tritium radio-toxicity and its biological and health impacts; 7 - the different French and/or international regulations concerning tritium. (J.S.)

  17. Tritium breeders and tritium permeation barrier coatings for fusion reactor

    International Nuclear Information System (INIS)

    Yamawaki, Michio; Kawamura, Hiroshi; Tsuchiya, Kunihiko

    2004-01-01

    A state of R and D of tritium breeders and tritium permeation barrier coatings for fusion reactor is explained. A list of candidate for tritium breeders consists of ceramics containing lithium, for examples, Li 2 O, Li 2 TiO 3 , Li 2 ZrO 3 , Li 4 SiO 4 and LiAlO 2 . The characteristics and form are described. The optimum particle size is from 1 to 10 μm. The production technologies of tritium breeders in the world are stated. Characteristics of ceramics with lithium as tritium breeders are compared. TiC, TiN/TiC, Al 2 O 3 and Cr 2 O 3 -SiO 2 -P 2 O 5 are tritium permeation barrier coating materials. These production methods and evaluation of characteristics are explained. (S.Y.)

  18. Environmental monitoring for tritium in tritium separation facility

    International Nuclear Information System (INIS)

    Varlam, Carmen; Stefanescu, Ioan; Steflea, Dumitru; Lazar, Roxana Elena

    2001-01-01

    The Cryogenic Pilot is an experimental project in the nuclear energy national research program, which has the aim of developing technologies for tritium and deuterium separation by cryogenic distillation. The experimental installation is located 15 km near the highest city of the area and 1 km near Olt River. An important chemical activity is developed in the area and chemical plants make up almost entire neighborhood of the Experimental Cryogenic Pilot. It is necessary to emphasize this aspect because the hall sewage system of the pilot is connected with the one of other three chemical plants from vicinity. This is the reason why we progressively established elements of an environmental monitoring program well in advance of tritium operation in order to determine baseline levels. The first step was the tritium level monitoring in environmental water and sewage from neighboring industrial activity. In this work, a low background liquid scintillation was used to determine tritium activity concentration according to ISO 9698/1998 standard. We measured drinking water, precipitation, river water, underground water and wastewater. The tritium level was between 10 TU and 27 TU what indicates that there is no source of tritium contamination in the neighborhood of Cryogenic Pilot. In order to determine baseline levels we decided to monitor monthly each location. In this paper it is presented a standard method used for tritium determination in water samples, the precautions needed to achieve reliable results and the evolution of tritium level in different location near the Experimental Pilot for Tritium and Deuterium Cryogenic Separation. (authors)

  19. Environmental monitoring for tritium at tritium separation facility

    International Nuclear Information System (INIS)

    Varlam, C.; Stefanescu, I.; Steflea, D.; Lazar, R.E.

    2001-01-01

    The Cryogenic Pilot is an experimental project in the nuclear energy national research program, which has the aim of developing technologies for tritium and deuterium separation by cryogenic distillation. The experimental installation is located 15 km near the highest city of the area and 1 km near Olt River. An important chemical activity is developed in the area and the Experimental Cryogenic Pilot's, almost the entire neighborhood are chemical plants. It is necessary to emphasize this aspect because the sewerage system is connected with the other three chemical plants from the neighborhood. This is the reason that we progressively established elements of an environmental monitoring program well in advance of tritium operation in order to determine baseline levels. The first step was the tritium level monitoring in environmental water and waste water of industrial activity from neighborhood. In this work, a low background liquid scintillation is used to determine tritium activity concentration according to ISO 9698/1998. We measured drinking water, precipitation, river water, underground water and waste water. The tritium level was between 10 TU and 27 TU that indicates there is no source of tritium contamination in the neighborhood of Cryogenic Pilot. In order to determine baseline levels we decide to monitories monthly each location. In this paper a standard method is presented which it is used for tritium determination in water sample, the precautions needed in order to achieve reliable results, and the evolution of tritium level in different location near the Experimental Pilot Tritium and Deuterium Cryogenic Separation.(author)

  20. Tritium concentration monitor

    International Nuclear Information System (INIS)

    Shono, Kosuke.

    1991-01-01

    A device for measuring the concentration of tritium in gaseous wastes in a power plant and a nuclear fuel reprocessing plant is reduced in the size and improved in performance. The device of the present invention pressurizes a sampling gas and cools it to a dew point. Water content in the sampling gas cooled to the dew point is condensated and recovered to a fine tube-like water content recovering container. The concentration of the recovered condensates is measured by a tritium density analyzer. With such procedures, since the specimen is pressurized, the dew point can be elevated. Accordingly, the size of the cooling device can be decreased, enabling to contribute to the reduction of the size of the entire device. Further, since the water content recovering device is formed as a fine tube, the area of contact between the specimen gas and the liquid condensated water can be reduced. Accordingly, evaporation of the liquid condensates can be prevented. (I.S.)

  1. Metabolism of organically bound tritium

    International Nuclear Information System (INIS)

    Travis, C.C.

    1984-01-01

    The classic methodology for estimating dose to man from environmental tritium ignores the fact that organically bound tritium in foodstuffs may be directly assimilated in the bound compartment of tissues without previous oxidation. We propose a four-compartment model consisting of a free body water compartment, two organic compartments, and a small, rapidly metabolizing compartment. The utility of this model lies in the ability to input organically bound tritium in foodstuffs directly into the organic compartments of the model. We found that organically bound tritium in foodstuffs can increase cumulative total body dose by a factor of 1.7 to 4.5 times the free body water dose alone, depending on the bound-to-loose ratio of tritium in the diet. Model predictions are compared with empirical measurements of tritium in human urine and tissue samples, and appear to be in close agreement. 10 references, 4 figures, 3 tables

  2. A prototype wearable tritium monitor

    International Nuclear Information System (INIS)

    Surette, R. A.; Dubeau, J.

    2008-01-01

    Sudden unexpected changes in tritium-in-air concentrations in workplace air can result in significant unplanned exposures. Although fixed area monitors are used to monitor areas where there is a potential for elevated tritium in air concentrations, they do not monitor personnel air space and may require some time for acute tritium releases to be detected. There is a need for a small instrument that will quickly alert staff of changing tritium hazards. A moderately sensitive tritium instrument that workers could wear would bring attention to any rise in tritium levels that were above predetermined limits and help in assessing the potential hazard therefore minimizing absorbed dose. Hand-held instruments currently available can be used but require the assistance of a fellow worker or restrict the user to using only one hand to perform some duties. (authors)

  3. Effects of tritium in elastomers

    International Nuclear Information System (INIS)

    Zapp, P.E.

    1982-01-01

    Elastomers are used as flange gaskets in the piping system of the Savannah River Plant tritium facilities. A number of elastomers is being examined to identify those compounds more radiation-resistant than the currently specified Buna-N rubber and to study the mechanism of tritium radiation damage. Radiation resistance is evaluated by compression set tests on specimens exposed to about 1 atm tritium for several months. Initial results show that ethylene-propylene rubber and three fluoroelastomers are superior to Buna-N. Off-gassing measurements and autoradiography show that retained surface absorption of tritium varies by more than an order of magnitude among the different elastomer compounds. Therefore, tritium solubility and/or exchange may have a role in addition to that of chemical structure in the damage process. Ongoing studies of the mechanism of radiation damage include: (1) tritium absorption kinetics, (2) mass spectroscopy of radiolytic products, and (3) infrared spectroscopy

  4. Tritium Storage Material

    International Nuclear Information System (INIS)

    Cowgill, Donald F.; Luo, Weifang; Smugeresky, John E.; Robinson, David B.; Fares, Stephen James; Ong, Markus D.; Arslan, Ilke; Tran, Kim L.; McCarty, Kevin F.; Sartor, George B.; Stewart, Kenneth D.; Clift, W. Miles

    2008-01-01

    Nano-structured palladium is examined as a tritium storage material with the potential to release beta-decay-generated helium at the generation rate, thereby mitigating the aging effects produced by enlarging He bubbles. Helium retention in proposed structures is modeled by adapting the Sandia Bubble Evolution model to nano-dimensional material. The model shows that even with ligament dimensions of 6-12 nm, elevated temperatures will be required for low He retention. Two nanomaterial synthesis pathways were explored: de-alloying and surfactant templating. For de-alloying, PdAg alloys with piranha etchants appeared likely to generate the desired morphology with some additional development effort. Nano-structured 50 nm Pd particles with 2-3 nm pores were successfully produced by surfactant templating using PdCl salts and an oligo(ethylene oxide) hexadecyl ether surfactant. Tests were performed on this material to investigate processes for removing residual pore fluids and to examine the thermal stability of pores. A tritium manifold was fabricated to measure the early He release behavior of this and Pd black material and is installed in the Tritium Science Station glove box at LLNL. Pressure-composition isotherms and particle sizes of a commercial Pd black were measured.

  5. Toxicity of tritium

    International Nuclear Information System (INIS)

    Dobson, R.L.

    1979-01-01

    Among radionuclides of importance in atomic energy, 3 H has relatively low toxicity. The main health and environmental worry is the possibility that significant biological effects may follow from protracted exposure to low concentrations in water. To examine this possible hazard and measure toxicity at low tritium concentrations, chronic exposure studies were done on mice and monkeys. During vulnerable developmental periods animals were exposed to 3 HOH, and mice were exposed also to 60 Co gamma irradiation and energy-related chemical agents. The biological endpoint measured was the irreversible loss of female germ cells. Effects from tritium were observed at surprisingly low concentrations where 3 H was found more damaging than previously thought. Comparisons between tritium and gamma radiation showed the relative biological effectiveness (RBE) to be greater than 1 and to reach approximately 3 at very low exposures. For perspective, other comparisons were made: between radiation and chemical agents, which revealed parallels in action on germ cells, and between pre- and postnatal exposure, which warn of possible special hazard to the fetus from both classes of energy-related byproducts

  6. Biological effects of tritium

    International Nuclear Information System (INIS)

    Nieto, M.

    1985-01-01

    The aim of this project is to study the thermal effects on proliferation activity in the intestinal epithelium of the goldfish acclimated at different temperatures (stationary state). The cell division occurs only at certain phases of the circadian cycle when the proliferative activity is synchronized or trained by an environmental factor such as light-dark cycle. Another aspect of the project is the study of the biological effects, non-stochastic, on cell kinetics in animals chronically exposed to low dose rates or tritium and gamma rays from 60 CO, used as a standard radiation. The influence on the accumulated dose per cell and cycle cell in function of the duration of the cell cycle at different acclimation temperatures should be considered. To calculate the risk of tritium contamination from nuclear power plants (radiation exposure), the organic tissue-bond is of decisive importance due to the long turnover of the organic tissue-bond in organisms favouring transport of tritium to other organisms of the ecosystem and to man. (author)

  7. Tritium removal and retention device

    International Nuclear Information System (INIS)

    Boyle, R.F.; Durigon, D.D.

    1980-01-01

    A device is provided for removing and retaining tritium from a gaseous medium, and also a method of manufacturing the device. The device, consists of an inner core of zirconium alloy, preferably Zircaloy-4, and an outer adherent layer of nickel which acts as a selective and protective window for passage of tritium. The tritium then reacts with or is absorbed by the zirconium alloy, and is retained until such time as it is desirable to remove it during reprocessing. (auth)

  8. An overview of tritium production

    International Nuclear Information System (INIS)

    He Kaihui; Huang Jinghua; Feng Kaiming

    2002-01-01

    The characteristics of three types of proposed tritium production facilities, fissile type, accelerator production tritium (APT), and fusion type, are presented. The fissile reactors, especially commercial light water reactor, use comparatively mature technology and are designed to meet current safety and environmental guidelines. Conversely, APT shows many advantages except its rather high cost, while fusion reactors appear to offer improved safety and environmental impact, in particular, tritium production based on the fusion-based neutron source. However, its cost keeps unknown

  9. Tritium safety issues for TFCX

    International Nuclear Information System (INIS)

    Reilly, H.J.; Piet, S.J.; Merrill, B.J.

    1985-01-01

    Estimated tritium releases from the Tokamak Fusion Core Experiment are compared to the expected limits. A reaction kinetics model is described that predicts the conversion of tritium to the oxide form in free space. An analysis of the required capacity of the Emergency Tritium Cleanup System is also presented. The conclusions of this work are expected to be applicable to other experimental fusion devices that are now being considered

  10. Tritium monitor and collection system

    Science.gov (United States)

    Bourne, G.L.; Meikrantz, D.H.; Ely, W.E.; Tuggle, D.G.; Grafwallner, E.G.; Wickham, K.L.; Maltrud, H.R.; Baker, J.D.

    1992-01-14

    This system measures tritium on-line and collects tritium from a flowing inert gas stream. It separates the tritium from other non-hydrogen isotope contaminating gases, whether radioactive or not. The collecting portion of the system is constructed of various zirconium alloys called getters. These alloys adsorb tritium in any of its forms at one temperature and at a higher temperature release it as a gas. The system consists of four on-line getters and heaters, two ion chamber detectors, two collection getters, and two guard getters. When the incoming gas stream is valved through the on-line getters, 99.9% of it is adsorbed and the remainder continues to the guard getter where traces of tritium not collected earlier are adsorbed. The inert gas stream then exits the system to the decay chamber. Once the on-line getter has collected tritium for a predetermined time, it is valved off and the next on-line getter is valved on. Simultaneously, the first getter is heated and a pure helium purge is employed to carry the tritium from the getter. The tritium loaded gas stream is then routed through an ion chamber which measures the tritium activity. The ion chamber effluent passes through a collection getter that readsorbs the tritium and is removable from the system once it is loaded and is then replaced with a clean getter. Prior to removal of the collection getter, the system switches to a parallel collection getter. The effluent from the collection getter passes through a guard getter to remove traces of tritium prior to exiting the system. The tritium loaded collection getter, once removed, is analyzed by liquid scintillation techniques. The entire sequence is under computer control except for the removal and analysis of the collection getter. 7 figs.

  11. Tritium accounting for PHWR plants

    International Nuclear Information System (INIS)

    Nair, P.S.; Duraisamy, S.

    2012-01-01

    Tritium, the radioactive isotope of hydrogen, is produced as a byproduct of the nuclear reactions in the nuclear power plants. In a Pressurized Heavy Water Reactor (PHWR) tritium activity is produced in the Heat Transport and Moderator systems due to neutron activation of deuterium in heavy water used in these systems. Tritium activity build up occurs in some of the water systems in the PHWR plants through pick up from the plant atmosphere, inadvertent D 2 O ingress from other systems or transfer during processes. The tritium, produced by the neutron induced reactions in different systems in the reactor undergoes multiple processes such as escape through leaks, storage, transfer to external locations, decay, evaporation and diffusion and discharge though waste streams. Change of location of tritium inventory takes place during intentional transfer of heavy water, both reactor grade and downgraded, from one system to another. Tritium accounting is the application of accounting techniques to maintain knowledge of the tritium inventory present in different systems of a facility and to construct activity balances to detect any discrepancy in the physical inventories. It involves identification of all the tritium hold ups, transfers and storages as well as measurement of tritium inventories in various compartments, decay corrections, environmental release estimations and evaluation of activity generation during the accounting period. This paper describes a methodology for creating tritium inventory balance based on periodic physical inventory taking, tritium build up, decay and release estimations. Tritium accounting in the PHWR plants can prove to be an effective regulatory tool to monitor its loss as well as unaccounted release to the environment. (author)

  12. Evaluation of tritium transport in the biomass-fusion hybrid system and its environmental impact

    Energy Technology Data Exchange (ETDEWEB)

    Namba, Kyosuke [Graduate School of Energy Science, Kyoto University, Kyoto (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Kyoto (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Kyoto (Japan); Yamamoto, Yasushi [Faculty of Engineering Science, Kansai University, Osaka (Japan)

    2015-10-15

    Highlights: • We assumed that tritium migrates from biomass hybrid fusion system to fuel cell vehicles. • We developed a seven-compartment model to describe the water flow and tritium in an urban area Osaka. • Tritium concentration of surface soil water run by 4 Bq/L level after 60 years later. • The tritium does not deserve health hazard but easily detectable in the environment. - Abstract: The behavior of tritium contained in the biofuel produced by the fusion energy is analyzed. Hydrogen product is contaminated with tritium from breeding blanket of fusion plant within the regulation limit and released to atmosphere when used for fuel cell vehicles. In the model city, Osaka, seven-compartment model describes the behavior of exhausted tritium by adapting the environment water flow and its migration was analyzed with STELLA system dynamics code. Tritium (HTO) with a concentration of 5000 Bq//m{sup 3} exhausted from the running vehicle increases decades and reaches steady state after about 50 years, at around 40 Bq/m{sup 3} in atmosphere and 4 Bq/L in surface soil water that does not deserve health hazard, however causes contamination of large populated area.

  13. Tritium-assisted fusion breeders

    International Nuclear Information System (INIS)

    Greenspan, E.; Miley, G.H.

    1983-08-01

    This report undertakes a preliminary assessment of the prospects of tritium-assisted D-D fuel cycle fusion breeders. Two well documented fusion power reactor designs - the STARFIRE (D-T fuel cycle) and the WILDCAT (Cat-D fuel cycle) tokamaks - are converted into fusion breeders by replacing the fusion electric blankets with 233 U producing fission suppressed blankets; changing the Cat-D fuel cycle mode of operation by one of the several tritium-assisted D-D-based modes of operation considered; adjusting the reactor power level; and modifying the resulting plant cost to account for the design changes. Three sources of tritium are considered for assisting the D-D fuel cycle: tritium produced in the blankets from lithium or from 3 He and tritium produced in the client fission reactors. The D-D-based fusion breeders using tritium assistance are found to be the most promising economically, especially the Tritium Catalyzed Deuterium mode of operation in which the 3 He exhausted from the plasma is converted, by neutron capture in the blanket, into tritium which is in turn fed back to the plasma. The number of fission reactors of equal thermal power supported by Tritium Catalyzed Deuterium fusion breeders is about 50% higher than that of D-T fusion breeders, and the profitability is found to be slightly lower than that of the D-T fusion breeders

  14. TFTR tritium operations lessons learned

    International Nuclear Information System (INIS)

    Gentile, C.A.; Raftopoulos, S.; LaMarche, P.

    1996-01-01

    The Tokamak Fusion Test Reactor which is the progenitor for full D-T operating tokamaks has successfully processed > 81 grams of tritium in a safe and efficient fashion. Many of the fundamental operational techniques associated with the safe movement of tritium through the TFTR facility were developed over the course of many years of DOE tritium facilities (LANL, LLNL, SRS, Mound). In the mid 1980's The Tritium Systems Test Assembly (TSTA) at LANL began reporting operational techniques for the safe handling of tritium, and became a major conduit for the transfer of safe tritium handling technology from DOE weapons laboratories to non-weapon facilities. TFTR has built on many of the TSTA operational techniques and has had the opportunity of performing and enhancing these techniques at America's first operational D-T fusion reactor. This paper will discuss negative pressure employing 'elephant trunks' in the control and mitigation of tritium contamination at the TFTR facility, and the interaction between contaminated line operations and Δ pressure control. In addition the strategy employed in managing the movement of tritium through TFTR while maintaining an active tritium inventory of < 50,000 Ci will be discussed. 5 refs

  15. Overview of tritium fast-fission yields

    International Nuclear Information System (INIS)

    Tanner, J.E.

    1981-03-01

    Tritium production rates are very important to the development of fast reactors because tritium may be produced at a greater rate in fast reactors than in light water reactors. This report focuses on tritium production and does not evaluate the transport and eventual release of the tritium in a fast reactor system. However, if an order-of-magnitude increase in fast fission yields for tritium is confirmed, fission will become the dominant production source of tritium in fast reactors

  16. Technology developments for improved tritium management

    International Nuclear Information System (INIS)

    Miller, J.M.; Spagnolo, D.A.

    1994-06-01

    Tritium technology developments have been an integral part of the advancement of CANDU reactor technology. An understanding of tritium behaviour within the heavy-water systems has led to improvements in tritium recovery processes, tritium measurement techniques and overall tritium control. Detritiation technology has been put in place as part of heavy water and tritium management practices. The advances made in these technologies are summarized. (author). 20 refs., 5 figs

  17. Experimental study of permeation and selectivity of zeolite membranes for tritium processes

    Energy Technology Data Exchange (ETDEWEB)

    Borisevich, Olga; Antunes, Rodrigo; Demange, David, E-mail: david.demange@kit.edu

    2015-10-15

    Highlights: • We report about new experimental results on advanced membranes for tritium processing especially for the DEMO breeding blanket. • High permeances are measured on different zeolite MFI membranes made by film deposition or pore plugging. • Selectivity for H{sub 2}/He is limited requiring a multi-stage membrane process. • Selectivity of H{sub 2}O/He seems high enough to operate one single module. - Abstract: Zeolites are known as tritium compatible inorganic materials widely used in packed beds as driers in detritiation systems and are also suggested for tritium removal from helium at cryogenic temperature. The Tritium Laboratory Karlsruhe (TLK) proposed a new fully continuous approach for tritium extraction from the solid breeding blanket of fusion machines that improves the overall tritium management and minimizes both the tritium inventory and processing time. It is based on membrane permeation as a pre-concentration stage upstream of a final tritium recovery stage using a catalytic Pd-based membrane reactor. Zeolite membranes were identified as the most promising candidates for the pre-concentration stage. In the present work the tubular zeolite MFI membrane provided by the Institute for Ceramic Technologies and Systems (IKTS, Hermsdorf, Germany) is studied to consolidate the proposed approach. The permeation measurements for single gases hydrogen (replacing radioactive tritium) and helium, for binary mixtures H{sub 2}/He and H{sub 2}O/He at different concentrations and temperatures are presented. The tested membrane demonstrates a high performance, almost independent from the inlet composition in the case of a gaseous mixture, while the transport in the presence of water vapour is strongly related to the temperature of the mixture and component concentrations.

  18. Tritium sorption by cement and subsequent release

    International Nuclear Information System (INIS)

    Ono, F.; Tanaka, S.; Yamawaki, M.

    1994-01-01

    In a fusion reactor or tritium handling facilities, contamination of concrete by tritium and subsequent release from it to the reactor or experimental rooms is a matter of problem for safety control of tritium and management of operational environment. In order to evaluate these tritium behavior, interaction of tritiated water with concrete or cement should be clarified. In the present study, HTO sorption and subsequent release from cement were studied by combining various experimental methods. From the basic studies on tritium-cement interactions, it has become possible to evaluate tritium uptake by cement or concrete and subsequent tritium release behavior as well as tritium removing methods from them

  19. JET experiments with tritium and deuterium–tritium mixtures

    NARCIS (Netherlands)

    Horton, L.; Batistoni, P.; Boyer, H.; Challis, C.; Ciric, D.; Donne, A. J. H.; Eriksson, L. G.; Garcia, J.; Garzotti, L.; Gee, S.; Hobirk, J.; Joffrin, E.; Jones, T.; King, D. B.; Knipe, S.; Litaudon, X.; Matthews, G. F.; Monakhov, I.; Murari, A.; Nunes, I.; Riccardo, V.; Sips, A. C. C.; Warren, R.; Weisen, H.; Zastrow, K. D.

    2016-01-01

    Extensive preparations are now underway for an experiment in the Joint European Torus (JET) using tritium and deuterium–tritium mixtures. The goals of this experiment are described as well as the progress that has been made in developing plasma operational scenarios and physics reference pulses for

  20. Tritium contaminated waste management at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Jalbert, R.A.; Carlson, R.V.

    1987-01-01

    The Tritium Systems Test Assembly (TSTA) at Los Alamos continues to move toward full operation of an integrated, full-sized, computer-controlled fusion fuel processing loop. Concurrent nonloop experiments further the development of advanced tritium technologies and handling methods. Since tritium operations began in June 1984, tritium contaminated wastes have been produced at TSTA that are roughly typical in kind and amount of those to be produced by tritium fueling operations at fusion reactors. Methods of managing these wastes are described, including information on some methods of decontamination so that equipment can be reused. Data are given on the kinds and amounts of wastes and the general level of contamination. Also included are data on environmental emissions and doses to personnel that have resulted from TSTA operations. Particular problems in waste managements are discussed

  1. Tritium transport and control in the FED

    International Nuclear Information System (INIS)

    Rogers, M.L.

    1981-01-01

    The tritium systems for the FED have three primary purposes. The first is to provide tritium and deuterium fuel for the reactor. This fuel can be new tritium or deuterium delivered to the plant site, or recycled DT from the reactor that must be processed before it can be recycled. The second purpose of the FED tritium systems is to provide state-of-the-art tritium handling to limit worker radiation exposure and to minimize tritium losses to the environment. The final major objective of the FED tritium systems is to provide an integrated system test of the tritium handling technology necessary to support the fusion reactor program. Every effort is being made to incorporate available information from the Tritium System Test Assembly (TSTA) at Los Alamos National Laboratory, the Tokamak Fusion Test Reactor (TFTR) tritium systems, and the tritium handling information generated within DOE for the past 20 years

  2. Ontario Hydro diversifies into tritium

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A report is given on a plant which is to be built at the Darlington Candu reactor site in Canada for the extraction of tritium from heavy water. As tritium is used as a fuel in fusion research the market for it is expected to grow. The design of the system is outlined with the help of a flow diagram. (U.K.)

  3. Tritium containment in fusion facilities

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1978-01-01

    The key environmental control systems that have been identified and are being developed are listed. A brief description of each of the following systems is given: primary process materials, permeation barriers, secondary containment, tritium waste treatment, emergency tritium cleanup, maintenance procedures, and tertiary containment

  4. The tritium operations experience on TFTR

    International Nuclear Information System (INIS)

    Halle, A. von; Anderson, J.L.; Gentile, C.; Grisham, L.; Hosea, J.; Kamperschroer, J.; LaMarche, P.; Oldaker, M.; Nagy, A.; Raftopoulos, S.; Stevenson, T.

    1995-01-01

    The Tokamak Fusion Test Reactor (TFTR) tritium gas system is administratively limited to 5 grams of tritium and provides the feedstock gas for the neutral beam and torus injection systems. Tritium operations on TFTR began with leak checking of gas handling systems, qualification of the gas injection systems, and high power plasma operations using trace amounts of tritium in deuterium feedstock gas. Full tritium operation commenced with four highly diagnosed neutral beam pulses into a beamline calorimeter to verify planned tritium beam operating routines and to demonstrate the deuterium to tritium beam isotope exchange. Since that time, TFTR has successfully operated each of the twelve neutral beam ion sources in tritium during hundreds of tritium beam pulses and torus gas injections. This paper describes the TFTR tritium gas handling systems and TFTR tritium operations of the gas injection systems and the neutral beam ion sources. Tritium accounting and accountability is discussed, including tritium retention issues of the torus limiters and beam impinged surfaces of the beamline components. Also included is tritium beam velocity analysis that compares the neutral beam extracted ion species composition for deuterium and tritium and that determines the extent of beam isotope exchange on subsequent deuterium and tritium beam pulses. The required modifications to TFTR operating routines to meet the U.S. Department of Energy regulations for a low hazard nuclear facility and the problems encountered during initial tritium operations are described. (orig.)

  5. The tritium operations experience on TFTR

    International Nuclear Information System (INIS)

    von Halle, A.; Gentile, C.

    1994-01-01

    The Tokamak Fusion Test Reactor (TFTR) tritium gas system is administratively limited to 5 grains of tritium and provides the feedstock gas for the neutral beam and torus injection systems. Tritium operations on TFTR began with leak checking of gas handling systems, qualification of the gas injection systems, and high power plasma operations using using trace amounts of tritium in deuterium feedstock gas. Full tritium operation commenced with four highly diagnosed neutral beam pulses into a beamline calorimeter to verify planned tritium beam operating routines and to demonstrate the deuterium to tritium beam isotope exchange. Since that time, TFTR has successfully operated each of the twelve neutral beam ion sources in tritium during hundreds of tritium beam pulses and torus gas injections. This paper describes- the TFTR tritium gas handling systems and TFTR tritium operations of the gas injection systems and the neutral beam ion sources. Tritium accounting and accountability is discussed, including tritium retention issues of the torus limiters and beam impinged surfaces of the beamline components. Also included is tritium beam velocity analysis that compares the neutral beam extracted ion species composition for deuterium and tritium and that determines the extent of beam isotope exchange on subsequent deuterium and tritium beam pulses. The required modifications to TFTR operating routines to meet the US Department of Energy regulations for a low hazard nuclear facility and the problems encountered during initial tritium operations are described

  6. Tritium in the food chain

    International Nuclear Information System (INIS)

    Koenig, L.A.

    1988-01-01

    Tritium is a hydrogen isotope taking part in the global hydrogen cycle as well as in all metabolic processes. The resultant problems with respect to the food chain are summarized briefly with emphasis on 'organically bound tritium'. However, only a small number of the numerous publications on this topic can be taken into consideration. Publications describing experiments under defined conditions are reported, thus allowing a semiempirical interpretation to be made. Tritium activity measurements of food grown in the vicinity of the Karlsruhe Nuclear Research Center have been carried out. A list of the results is given. A dose assessment is performed under simplifying assumptions. Even when the organically bound tritium is taken into account, a radiation exposure of less than 1% of that of K-40 is obtained under these conditions. To avoid misinterpretation, the specific activity (Bq H-3/g H) of water-bound and organically bound tritium has to be considered separately. (orig.) [de

  7. Tritium metabolism in rat tissues

    International Nuclear Information System (INIS)

    Takeda, H.

    1982-01-01

    As part of a series of studies designed to evaluate the relative radiotoxicity of various tritiated compounds, metabolism of tritium in rat tissues was studied after administration of tritiated water, leucine, thymidine, and glucose. The distribution and retention of tritium varied widely, depending on the chemical compound administered. Tritium introduced as tritiated water behaved essentially as body water and became uniformly distributed among the tissues. However, tritium administered as organic compounds resulted in relatively high incorporation into tissue constituents other than water, and its distribution differed among the various tissues. Moreover, the excretion rate of tritium from tissues was slower for tritiated organic compounds than for tritiated water. Administrationof tritiated organic compounds results in higher radiation doses to the tissues than does administration of tritiated water. Among the tritiated compounds examined, for equal radioactivity administered, leucine gave the highest radiation dose, followed in turn by thymidine, glucose, and water. (author)

  8. Tritium behaviour in higher plants

    International Nuclear Information System (INIS)

    Guenot, J.

    1984-05-01

    Vine grapes and potato seedlings have been exposed in situ to tritiated water vapor and 14 C labeled carbon dioxide. Leaves sampling was done during and after the exposition. Measurements allowed to distinguish the three forms of tritium in leaves, i.e. tissue free water tritium (TFWT) and organically bound tritium (OBT), in exchangeable position or not. The results lead to a description of the dynamical behaviour of tritium between these three compartments. It has been shown that 20% of organically bound hydrogen is readily exchangeable thus being in permanent isotopic equilibium with tissue free water. Moreover, the activity of nonexchangeable OBT appears to be strongly related to the organic 14 C, which shows that photosynthesis is responsible of tritium incorporation in organic nonexchangeable position, and occurs with a 20% discrimination in favor of protium. In contrast with the other two compartments, this fixation is almost irreversible, which is a fact of importance from a radiological point of view [fr

  9. Tritium practices past and present

    International Nuclear Information System (INIS)

    Gede, V.P.; Gildea, P.D.

    1980-01-01

    History of the production and use of tritium, as well as handling techniques, are reviewed. Handling techniques first used at Lawrence Livermore National Laboratory made use of glass vacuum systems and relatively crude ion chambers for monitoring airborne activity. The first use of inert atmosphere glove boxes demonstrated that uptake through the skin could be a serious personnel exposure problem. Growing environmental concerns in the early 1970's resulted in the implementation by the Atomic Energy Commission of a new criteria to limit atmospheric tritium releases to levels as low as practicable. An important result of the new criteria was the development of containment and recovery systems to capture tritium rather than vent it to the atmosphere. The Sandia National Laboratories, Livermore, Tritium Research Laboratory containment and decontamination systems are presented as a typical example of this technology. The application of computers to control systems is expected to provide the greatest potential for change in future tritium handling practices

  10. Permeation of hydrogen at low pressures through stainless steel and implications for tritium control in fusion reactor systems

    International Nuclear Information System (INIS)

    Axtmann, R.C.; Johnson, E.F.; Kuehler, C.W.

    1976-01-01

    New experimental data on the permeation of hydrogen through stainless steel indicate that at driving pressures below 10 -2 torr, the permeation rate is linearly dependent on the driving pressure. A possible consequence is that the permeation rates of hydrogenic species in fusion reactor systems might be much lower than those reported in contemporary conceptual design studies which assume that the rates are dependent on the square root of the driving pressure. The important implications of these low permeation rates are: (1) tritium losses to the environment may be more dependent on ordinary leaks from equipment than on permeation to the steam cycle; (2) recovery of tritium from breeding blankets via permeation windows may be impracticable; and (3) recovery of tritium from breeding blankets not dependent on permeation windows may be simplified by the possibility of operating at much higher average tritium concentrations in the blanket and cooling systems

  11. Photoproduction of tritium

    International Nuclear Information System (INIS)

    Becker, J.A.; Anderson, J.D.; Weiss, M.S.

    1995-01-01

    3 H (Tritium) is required for maintenance of nuclear weapons in the stockpile. The National Defense need for 3 H was historically met by the Savannah River Facility. This facility is no longer safe for operation. 3 H decays with a mean lifetime τ = 17.8 y, and therefore new methods of 3 H production are required to meet US military requirements. Irradiation of 7 Li by low-energy photons produces tritium ( 3 H) via the photodisintegration process. Waste heat from the 7 Li target can be extracted and used for the direct generation of electricity. Other advantages include: negligible residual radioactivity, simple target technology, small low-energy electron accelerators for bremsstrahlung production (the photon source), developed liquid metal technology, modularity, simple extraction of 3 H from a recirculating 7 Li target, abundant supply of 7 Li, and straightforward target-accelerator-bremsstrahlung converter interface. A schematic plant characterized by very low risk is described, and a figure-of-merit is obtained

  12. Tritium-surface interactions

    International Nuclear Information System (INIS)

    Kirkaldy, J.S.

    1983-06-01

    The report deals broadly with tritium-surface interactions as they relate to a fusion power reactor enterprise, viz., the vacuum chamber, first wall, peripherals, pumping, fuel recycling, isotope separation, repair and maintenance, decontamination and safety. The main emphasis is on plasma-surface interactions and the selection of materials for fusion chamber duty. A comprehensive review of the international (particularly U.S.) research and development is presented based upon a literature review (about 1 000 reports and papers) and upon visits to key laboratories, Sandia, Albuquerque, Sandia, Livermore and EGβG Idaho. An inventory of Canadian expertise and facilities for RβD on tritium-surface interactions is also presented. A number of proposals are made for the direction of an optimal Canadian RβD program, emphasizing the importance of building on strength in both the technological and fundamental areas. A compendium of specific projects and project areas is presented dealing primarily with plasma-wall interactions and permeation, anti-permeation materials and surfaces and health, safety and environmental considerations. Potential areas of industrial spinoff are identified

  13. Development of an on-line tritium monitor with gamma-ray rejection and energy discrimination

    International Nuclear Information System (INIS)

    Cox, S.A.; Yule, T.J.; Bennett, E.F.

    1981-01-01

    With the prospect of large fusion facilities coming on-line in the not-too-distant future, it is becoming increasingly important that an on-line tritium-monitoring system be developed which is capable of detecting small amounts of released tritium. Since tritium oxide is some 400 times as hazardous as elemental tritium, it is necessary to distinguish between the two in order to properly evaluate the hazard. Presently available on-line instrumentation has marginal sensitivity, is unable to distinguish between the two forms of tritium, and has poor discrimination against background gamma radiation and air activation products. The objective of our program is to develop a monitoring system with the capability of distinguishing between the two forms of tritium, detecting tritium with a sensitivity of a fraction of an MPC/sub a/ (1 MPC/sub a/ = 5. x 10 - 6 Ci/M 3 ) for the oxide, and discriminating against gamma activity and airborne activity other than tritium

  14. Tritium assay of Li2O pellets in the LBM/LOTUS experiments

    International Nuclear Information System (INIS)

    Quanci, J.; Azam, S.; Bertone, P.

    1986-01-01

    One of the objectives of the Lithium Blanket Module (LBM) program is to test the ability of advanced neutronics codes to model the tritium breeding characteristics of a fusion blanket exposed to a toroidal fusion neutron source. The LBM consists of over 20,000 cylindrical lithium oxide pellets and numerous diagnostic pellets and wafers. The LBM has been irradiated at the Ecole Polytechnique Federale de Lausanne (EPFL) LOTUS facility with a Haefely sealed neutron generator that gives a point deuterium-tritium neutron source up to 5 x 10 12 14-MeV n/s. Both Princeton Plasma Physics Lab. (PPPL) and EPFL assayed the tritium bred at various positions in the LBM. EPFL employed a dissolution technique while PPPL recovered the tritium by a thermal extraction method

  15. Tritium systems for the TITAN reversed-field pinch fusion reactor design

    International Nuclear Information System (INIS)

    Martin, R.C.; Sze, D.K.; Bartlit, J.R.; Gierszewski, P.J.

    1987-01-01

    Tritium systems for the TITAN reversed-field pinch (RFP) fusion reactor study have been designed for two blanket concepts. The TITAN-1 design uses a self-cooled liquid-lithium blanket. The TITAN-2 design uses a self-cooled aqueous-solution blanket, with lithium nitrate dissolved in the water for tritium breeding. Tritium inventory, release, and safety margins are within regulatory limits, at acceptable costs. Major issues for TITAN-1 are plasma-driven permeation, the need for a secondary coolant loop, tritium storage requirements, redundancy in the plasma exhaust system, and minimal isotopic distillation of the exhaust. TITAN-1 fuel cleanup, reprocessing, and air detritiation systems are described in detail

  16. Torus evacuation and tritium handling on NET

    International Nuclear Information System (INIS)

    Dinner, P.; Chazalon, M.; Iseli, M.

    1986-08-01

    The use of tritium as a fuel affects the design of many systems, as well as requiring several new systems not needed on non DT-burning Tokamaks. This paper summarizes: major tritium process interconnections, tritium flows and inventories; primary requirements, preferred design alternatives, and related development issues; design philosophy for tritium and primary vacuum systems. 14 refs

  17. Contribution to the tritium continental effect

    International Nuclear Information System (INIS)

    Lewis, R.R.; Froehlich, K.; Hebert, D.

    1987-01-01

    The results of tritium measurements of atmospheric water vapour and precipitation samples for 1982 and 1983 are presented. The data were used to establish a simple model describing the tritium continental effect taking into account re-evaporation of tritium from the continental land surfaces and man-made tritium. (author)

  18. Contribution to the tritium continental effect

    International Nuclear Information System (INIS)

    Lewis, R.R.; Froehlich, K.; Hebert, D.

    1987-01-01

    The results of tritium measurements of atmospheric water vapour and precipitation samples for 1982 and 1983 are presented. The data were used to establish a simple model describing the tritium continental effect taking into account re-evaporation of tritium from the continental land surfaces. Some comments on man made tritium are given. (author)

  19. Development of tritium permeation barriers on Al base in Europe

    Science.gov (United States)

    Benamati, G.; Chabrol, C.; Perujo, A.; Rigal, E.; Glasbrenner, H.

    The development of the water cooled lithium lead (WCLL) DEMO fusion reactor requires the production of a material capable of acting as a tritium permeation barrier (TPB). In the DEMO blanket reactor permeation barriers on the structural material are required to reduce the tritium permeation from the Pb-17Li or the plasma into the cooling water to acceptable levels (HIP) technology and spray (this one developed also for repair) deposition techniques. The final goal is to select a reference technique to be used in the blanket of the DEMO reactor and in the ITER test module fabrication. The activities performed in four European laboratories are summarised here.

  20. IN-SITU TRITIUM BETA DETECTOR

    International Nuclear Information System (INIS)

    Berthold, J.W.; Jeffers, L.A.

    1998-01-01

    The objectives of this three-phase project were to design, develop, and demonstrate a monitoring system capable of detecting and quantifying tritium in situ in ground and surface waters, and in water from effluent lines prior to discharge into public waterways. The tritium detection system design is based on measurement of the low energy beta radiation from the radioactive decay of tritium using a special form of scintillating optical fiber directly in contact with the water to be measured. The system consists of the immersible sensor module containing the optical fiber, and an electronics package, connected by an umbilical cable. The system can be permanently installed for routine water monitoring in wells or process or effluent lines, or can be moved from one location to another for survey use. The electronics will read out tritium activity directly in units of pico Curies per liter, with straightforward calibration. In Phase 1 of the project, we characterized the sensitivity of fluor-doped plastic optical fiber to tritium beta radiation. In addition, we characterized the performance of photomultiplier tubes needed for the system. In parallel with this work, we defined the functional requirements, target specifications, and system configuration for an in situ tritium beta detector that would use the fluor-doped fibers as primary sensors of tritium concentration in water. The major conclusions from the characterization work are: A polystyrene optical fiber with fluor dopant concentration of 2% gave best performance. This fiber had the highest dopant concentration of any fibers tested. Stability may be a problem. The fibers exposed to a 22-day soak in 120 F water experienced a 10x reduction in sensitivity. It is not known whether this was due to the build up of a deposit (a potentially reversible effect) or an irreversible process such as leaching of the scintillating dye. Based on the results achieved, it is premature to initiate Phase 2 and commit to a prototype

  1. IN-SITU TRITIUM BETA DETECTOR

    Energy Technology Data Exchange (ETDEWEB)

    J.W. Berthold; L.A. Jeffers

    1998-04-15

    The objectives of this three-phase project were to design, develop, and demonstrate a monitoring system capable of detecting and quantifying tritium in situ in ground and surface waters, and in water from effluent lines prior to discharge into public waterways. The tritium detection system design is based on measurement of the low energy beta radiation from the radioactive decay of tritium using a special form of scintillating optical fiber directly in contact with the water to be measured. The system consists of the immersible sensor module containing the optical fiber, and an electronics package, connected by an umbilical cable. The system can be permanently installed for routine water monitoring in wells or process or effluent lines, or can be moved from one location to another for survey use. The electronics will read out tritium activity directly in units of pico Curies per liter, with straightforward calibration. In Phase 1 of the project, we characterized the sensitivity of fluor-doped plastic optical fiber to tritium beta radiation. In addition, we characterized the performance of photomultiplier tubes needed for the system. In parallel with this work, we defined the functional requirements, target specifications, and system configuration for an in situ tritium beta detector that would use the fluor-doped fibers as primary sensors of tritium concentration in water. The major conclusions from the characterization work are: A polystyrene optical fiber with fluor dopant concentration of 2% gave best performance. This fiber had the highest dopant concentration of any fibers tested. Stability may be a problem. The fibers exposed to a 22-day soak in 120 F water experienced a 10x reduction in sensitivity. It is not known whether this was due to the build up of a deposit (a potentially reversible effect) or an irreversible process such as leaching of the scintillating dye. Based on the results achieved, it is premature to initiate Phase 2 and commit to a prototype

  2. Influence of additives and impurities in sweep gas and solid tritium release behaviour from lithium ceramics (review)

    International Nuclear Information System (INIS)

    Tanaka, Satoru

    1991-01-01

    Tritium release from solid breeding material is affected by small amounts of additives or impurities in the sweep gas or solid itself. Addition of hydrogen or water vapor to the sweep gas is reported to enhance the surface reaction of tritium release. Doping to solid breeder with elements of different valence from lithium has a possibility to improve tritium diffusion in the solid. Surface reaction and migration behavior in bulk are believed to be also affected by impurities in the sweep gas and in the solid. In order to model tritium release behavior in the blanket of fusion reactor, the mechanism of interaction with these additives or impurities must be quantitatively formulated. However, the mechanism of these remains to be elucidated. In this paper effects of these additives and impurities on tritium migration are reviewed. The mechanism of surface reaction for He+H 2 sweep gas is also discussed. (orig.)

  3. Overview of the tritium system of Ignitor

    International Nuclear Information System (INIS)

    Rizzello, C.; Tosti, S.

    2008-01-01

    Among the recent design activities of the Ignitor program, the analysis of the tritium system has been carried out with the aim to describe the main equipments and the operations needed for supplying the deuterium-tritium mixtures and recovering the plasma exhaust. In fact, the tritium system of Ignitor provides for injecting deuterium-tritium mixtures into the vacuum chamber in order to sustain the fusion reaction: furthermore, it generally manages and controls the tritium and the tritiated materials of the machine fuel cycle. Main functions consist of tritium storage and delivery, tritium injection, tritium recovery from plasma exhaust, treatment of the tritiated wastes, detritiation of the contaminated atmospheres, tritium analysis and accountability. In this work an analysis of the designed tritium system of Ignitor is summarized

  4. Computer code for calculating personnel doses due to tritium exposures

    International Nuclear Information System (INIS)

    Graham, C.L.; Parlagreco, J.R.

    1977-01-01

    This report describes a computer code written in LLL modified Fortran IV that can be used on a CDC 7600 for calculating personnel doses due to internal exposures to tritium. The code is capable of handling various exposure situations and is also capable of detecting a large variety of data input errors that would lead to errors in the dose assessment. The critical organ is the body water

  5. Thermal mechanical analysis of a solid breeding blanket

    International Nuclear Information System (INIS)

    Aquaro, Donato

    2003-01-01

    This paper deals with a theoretical model of thermal mechanical behaviour of pebble beds, used as neutron multiplier or tritium breeder in the breeding blanket of a fusion nuclear reactor. The model tries to sum up the advantages of the two approaches ('discrete' method and macroscopic method), presently used for analysing the pebble bed behaviour, without their intrinsic disadvantages. The developed method has the capability to describe the microscopic behaviour of the single sphere (as the discrete approach does), and the capability to model complex structures under variable loads, typical of the macroscopic approach, without doing the unrealistic assumption of continuum homogeneous and isotropic material. The model describes the thermal mechanical behaviour of a single sphere compressed in elastic plastic conditions. The obtained relations have been extrapolated to regular lattices of spheres and subsequently to pebble beds (characterised by a macroscopic parameter called 'packing factor') of simple geometric shapes using statistical considerations. The results of the model have been assessed by comparison with results obtained by means of numerical simulations and experimental tests. The ongoing activity is the implementation in a FEM code of a new finite element, which represents one or several regular lattices of spheres, the non linear stiffness of which is obtained from the mono dimensional compression model of one sphere. The results of the numerical simulation permits to construct and display the strain and stress distribution of the single spheres by means of an implemented graphical interface

  6. Tritium, biography of an element

    International Nuclear Information System (INIS)

    Keller, C.

    1980-01-01

    Tritium is the lightest radioactive atom, an isotope of hydrogen. In science it has many uses, particularly for marking organic molecules in order to find out about biochemical and medical processes. But also the traces of tritium contained in rain or sea water are used for investigations; they range from establishing the vintage of old wines to ascertaining sea water mixtures. Tritium will become important in large-scale technology if it should become possible to construct fusion reactors, since it is one of the fuels. (orig.) [de

  7. Tritium monitor for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jalbert, R.A.

    1982-08-01

    This report describes the design, operation, and performance of a flow-through ion-chamber instrument designed to measure tritium concentrations in air containing /sup 13/N, /sup 16/N, and /sup 41/Ar produced by neutrons generated by D-T fusion devices. The instrument employs a chamber assembly consisting of two coaxial ionization chambers. The inner chamber is the flow-through measuring chamber and the outer chamber is used for current subtraction. A thin wall common to both chambers is opaque to the tritium betas. Currents produced in the two chambers by higher energy radiation are automatically subtracted, leaving only the current due to tritium.

  8. The organically bound tritium: an analyst vision

    International Nuclear Information System (INIS)

    Ansoborlo, E.; Baglan, N.

    2009-01-01

    The authors report the work of a work group on tritium analysis. They recall the different physical forms of tritium: gas (HT, hydrogen-tritium), water vapour (HTO or tritiated water) or methane (CH3T), but also in organic compounds (OBT, organically bound tritium) which are either exchangeable or non-exchangeable. They evoke measurement techniques and methods, notably to determine the tritium volume activity. They discuss the possibilities to analyse and distinguish exchangeable and non-exchangeable OBTs

  9. Tritium monitoring at the Sandia Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Devlin, T.K.

    1978-10-01

    Sandia Laboratories at Livermore, California, is presently beginning operation of a Tritium Research Laboratory (TRL). The laboratory incorporates containment and cleanup facilities such that any unscheduled tritium release is captured rather than vented to the atmosphere. A sophisticated tritium monitoring system is in use at the TRL to protect operating personnel and the environment, as well as ensure the safe and effective operation of the TRL decontamination systems. Each monitoring system has, in addition to a local display, a display in a centralized control room which, when coupled room which, when coupled with the TRL control computer, automatically provides an immediate assessment of the status of the entire facility. The computer controls a complex alarm array status of the entire facility. The computer controls a complex alarm array and integrates and records all operational and unscheduled tritium releases

  10. Computer control of the TFTR tritium storage and delivery system

    International Nuclear Information System (INIS)

    Youssef, N.; Phillips, H.; Yemin, L.; Dong, J.; Pierce, C.

    1980-01-01

    The Tritium Storage and Delivery System (TSDS) will deliver to the torus the required tritium gas in precisely controlled injection profiles. This system will utilize advanced Central Instrumentation, Control and Data Acquisition (CICADA) computer-control techniques, in normal and malfunction-recovery modes of operation. The control scheme of the TSDS is built of three main control scenarios. An operating mode defines the permissives, sequence and path of a process during each scenario. The computerized control of the TSDS has four distinct advantages: (1) versatile control with fast response times both for tritium gas generation and for gas injection into the torus; (2) ease of selecting the proper operating modes of a control scenario, (3) ease of operation without disturbing the multiple levels of containment, and (4) simple fast trouble shooting of system malfunction utilizing programmed procedures and on-line diagnosis. The TSDS has both remote nd local control capability

  11. JET experiments with tritium and deuterium–tritium mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Lorne, E-mail: Lorne.Horton@jet.uk [JET Exploitation Unit, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); European Commission, B-1049 Brussels (Belgium); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Batistoni, P. [Unità Tecnica Fusione - ENEA C. R. Frascati - via E. Fermi 45, Frascati (Roma), 00044, Frascati (Italy); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Boyer, H.; Challis, C.; Ćirić, D. [CCFE, Culham Science Centre, Abingdon OX14 3DB, Oxon (United Kingdom); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Donné, A.J.H. [EUROfusion Programme Management Unit, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); FOM Institute DIFFER, PO Box 1207, NL-3430 BE Nieuwegein (Netherlands); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Eriksson, L.-G. [European Commission, B-1049 Brussels (Belgium); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Garcia, J. [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Garzotti, L.; Gee, S. [CCFE, Culham Science Centre, Abingdon OX14 3DB, Oxon (United Kingdom); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Hobirk, J. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Joffrin, E. [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); and others

    2016-11-01

    Highlights: • JET is preparing for a series of experiments with tritium and deuterium–tritium mixtures. • Physics objectives include integrated demonstration of ITER operating scenarios, isotope and alpha physics. • Technology objectives include neutronics code validation, material studies and safety investigations. • Strong emphasis on gaining experience in operation of a nuclear tokamak and training scientists and engineers for ITER. - Abstract: Extensive preparations are now underway for an experiment in the Joint European Torus (JET) using tritium and deuterium–tritium mixtures. The goals of this experiment are described as well as the progress that has been made in developing plasma operational scenarios and physics reference pulses for use in deuterium–tritium and full tritium plasmas. At present, the high performance plasmas to be tested with tritium are based on either a conventional ELMy H-mode at high plasma current and magnetic field (operation at up to 4 MA and 4 T is being prepared) or the so-called improved H-mode or hybrid regime of operation in which high normalised plasma pressure at somewhat reduced plasma current results in enhanced energy confinement. Both of these regimes are being re-developed in conjunction with JET's ITER-like Wall (ILW) of beryllium and tungsten. The influence of the ILW on plasma operation and performance has been substantial. Considerable progress has been made on optimising performance with the all-metal wall. Indeed, operation at the (normalised) ITER reference confinement and pressure has been re-established in JET albeit not yet at high current. In parallel with the physics development, extensive technical preparations are being made to operate JET with tritium. The state and scope of these preparations is reviewed, including the work being done on the safety case for DT operation and on upgrading machine infrastructure and diagnostics. A specific example of the latter is the planned calibration at

  12. Thought experiment with tritium

    International Nuclear Information System (INIS)

    Anderson, H.F.; Everhart, J.L.; Hobrock, D.L.; Seabaugh, P.W.

    1995-01-01

    An experiment is proposed in which a minimum of thirty (30) grams of tritium is packaged as lithium tritide in a steel container weighing several kilograms. After decontamination of the outside surface, calorimetry measurements would be made, and the unit would be weighed very accurately. After several decades, the calorimeter and weight measurements would be repeated. If the weight measurements could be made with the required accuracy, it would be possible to correlate the observed change in mass with the total energy emitted (calculated from the mean energy measured by calorimetry) over the time interval. If successful, this experiment would, in the opinion of the authors, be the first laboratory experiment to directly verify the equivalency of mass and energy. 4 refs., 2 figs., 3 tabs

  13. Tritium containment of controlled thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Tanaka, Yoshihisa; Tsukumo, Kiyohiko; Suzuki, Tatsushi

    1979-01-01

    It is well known that tritium is used as the fuel for nuclear fusion reactors. The neutrons produced by the nuclear fusion reaction of deuterium and tritium react with lithium in blankets, and tritium is produced. The blankets reproduce the tritium consumed in the D-T reaction. Tritium circulates through the main cooling system and the fuel supply and evacuation system, and is accumulated. Tritium is a radioactive substance emitting β-ray with 12.6 year half-life, and harmful to human bodies. It is an isotope of hydrogen, and apt to diffuse and leak. Especially at high temperature, it permeates through materials, therefore it is important to evaluate the release of tritium into environment, to treat leaked tritium to reduce its release, and to select the method of containing tritium. The permeability of tritium and its solubility in structural materials are discussed. The typical blanket-cooling systems of nuclear fusion reactors are shown, and the tungsten coating of steam generator tubes and tritium recovery system are adopted for reducing tritium leak. In case of the Tokamak type reactor of JAERI, the tritium recovery system is installed, in which the tritium gas produced in blankets is converted to tritium steam with a Pd-Pt catalytic oxidation tower, and it is dehydrated and eliminated with a molecular sieve tower, then purified and recovered. (Kako, I.)

  14. Tritium transport around nuclear facilities

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Sweet, C.W.

    1981-01-01

    The transport and cycling of tritium around nuclear facilities is reviewed with special emphasis on studies at the Savannah River Laboratory, Aiken, South Carolina. These studies have shown that the rate of deposition from the atmosphere, the site of deposition, and the subsequent cycling are strongly influenced by the compound with which the tritium is associated. Tritiated hydrogen is largely deposited in the soil, while tritiated water is deposited in the greatest quantity in the vegetation. Tritiated hydrogen is converted in the soil to tritiated water that leaves the soil slowly, through drainage and transpiration. Tritiated water deposited directly to the vegetation leaves the vegetation more rapidly after exposure. Only a small part of the tritium entering the vegetation becomes bound in organic molecules. However, it appears tht the existence of soil organic compounds with tritium concentrations greater than the equilibrium concentration in the associated water can be explained by direct metabolism of tritiated hydrogen in vegetation

  15. TFTR tritium inventory accountability system

    International Nuclear Information System (INIS)

    Saville, C.; Ascione, G.; Elwood, S.; Nagy, A.; Raftopoulos, S.; Rossmassler, R.; Stencel, J.; Voorhees, D.; Tilson, C.

    1995-01-01

    This paper discusses the program, PPPL (Princeton Plasma Physics Laboratory) Material Control and Accountability Plan, that has been implemented to track US Department of Energy's tritium and all other accountable source material. Specifically, this paper details the methods used to measure tritium in various systems at the Tokamak Fusion Test Reactor; resolve inventory differences; perform inventory by difference inside the Tokamak; process and measure plasma exhaust and other effluent gas streams; process, measure and ship scrap or waste tritium on molecular sieve beds; and detail organizational structure of the Material Control and Accountability group. In addition, this paper describes a Unix-based computerized software system developed at PPPL to account for all tritium movements throughout the facility. 5 refs., 2 figs

  16. Tritium management for fusion reactors

    International Nuclear Information System (INIS)

    Rouyer, J.L.; Djerassi, H.

    1985-01-01

    To determine a waste management strategy, one has to identify first the wastes (quantities, activities, etc.), then to define options, and to compare these options by appropriate criteria and evaluations. Two European Associations are working together, i.e., Studsvik and CEA, on waste treatment and tritium problems. A contribution to fusion specific tritiated waste management strategy is presented. It is demonstrated that the best strategy is to retain tritium (outgas and recover, or immobilize it) so that residual tritium releases are kept to a minimum. For that, wastes are identified, actual regulations are described and judged inadequate without amendments for fusion problems. Appropriate criteria are defined. Options for treatment and disposal of tritiated wastes are proposed and evaluated. A tritium recovery solution is described

  17. Tritium transport around nuclear faciliteis

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Sweet, C.W.

    1982-01-01

    The transport and cycling of tritium around nuclear facilities is reviewed with special emphasis on studies at the Savannah River Laboratory, Aiken, South Carolina. These studies have shown that the rate of deposition from the atmosphere, the site of deposition, and the subsequent cycling are strongly influenced by the compound with which the tritium is associated. Tritiated hydrogen is largely deposited in the soil, while tritiated water is deposited in the greatest quantity in the vegetation. Tritiated hydrogen is converted in the soil to tritiated water that leaves the soil slowly, through drainage and transpiration. Tritiated water deposited directly to the vegetation leaves the vegetation more rapidly after exposure. Only a small part of the tritium entering the vegetation becomes bound in organic molecules. However, it appears that the existence of soil organic compounds with tritium concentrations greater than the equilibrium concentration in the associated water can be explained by direct metabolism of tritiated hydrogen in vegetation. (J.P.N.)

  18. Tritium in fusion reactor components

    International Nuclear Information System (INIS)

    Watson, J.S.; Fisher, P.W.; Talbot, J.B.

    1980-01-01

    When tritium is used in a fusion energy experiment or reactor, several implications affect and usually restrict the design and operation of the system and involve questions of containment, inventory, and radiation damage. Containment is expected to be particularly important both for high-temperature components and for those components that are prone to require frequent maintenance. Inventory is currently of major significance in cases where safety and environmental considerations limit the experiments to very low levels of tritium. Fewer inventory restrictions are expected as fusion experiments are placed in more-remote locations and as the fusion community gains experience with the use of tritium. However, the advent of power-producing experiments with high-duty cycle will again lead to serious difficulties based principally on tritium availability; cyclic operations with significant regeneration times are the principal problems

  19. Tritium control and accountability instructions

    International Nuclear Information System (INIS)

    Wall, W.R.; Cruz, S.L.

    1985-08-01

    This instruction describes the tritium accountability procedures practiced by the Tritium Research Laboratory, at Sandia National Laboratories, Livermore. The accountability procedures are based upon the Sandia National Laboratories, Livermore, Nuclear Materials Operations Manual, SAND83-8036. The Nuclear Materials Operations Manual describes accountability techniques which are in compliance with the Department of Energy 5630 series Orders, Code of Federal Regulations, and Sandia National Laboratories Instructions

  20. Tritium control and accountability instructions

    International Nuclear Information System (INIS)

    Wall, W.R.

    1981-03-01

    This instruction describes the tritium accountability procedures practiced by the Tritium Research Laboratory, Building 968 at Sandia National Laboratories, Livermore. The accountability procedures are based upon the Sandia National Laboratories, Livermore, Nuclear Materials Operations Manual, SAND78-8018. The Nuclear Materials Operations Manual describes accountability techniques which are in compliance with the Department of Energy Manual, Code of Federal Regulations, and Sandia National Laboratories Instructions

  1. Design and test about de tritium system to filling tritium glove box

    International Nuclear Information System (INIS)

    Lei, Jiarong; Du, Yang; Yang, Yong

    2008-01-01

    In order to deal tritium permeated from inflating tritium system at the scene of inflating tritium, dealing waste tritium gas system was designed according to demand and action of dealing waste tritium gas from inflating tritium, and the data of character and volume about appliance of catalyst reaction and drying agent was calculated. Through the test at the scene of inflating tritium, it is result that dealing waste tritium gas system's efficiency reaches above 85% average in circulatory system, so that it can be used in practice extensively. (author)

  2. Separation of Tritium from Wastewater

    International Nuclear Information System (INIS)

    JEPPSON, D.W.

    2000-01-01

    A proprietary tritium loading bed developed by Molecular Separations, Inc (MSI) has been shown to selectively load tritiated water as waters of hydration at near ambient temperatures. Tests conducted with a 126 (micro)C 1 tritium/liter water standard mixture showed reductions to 25 (micro)C 1 /L utilizing two, 2-meter long columns in series. Demonstration tests with Hanford Site wastewater samples indicate an approximate tritium concentration reduction from 0.3 (micro)C 1 /L to 0.07 (micro)C 1 /L for a series of two, 2-meter long stationary column beds Further reduction to less than 0.02 (micro)C 1 /L, the current drinking water maximum contaminant level (MCL), is projected with additional bed media in series. Tritium can be removed from the loaded beds with a modest temperature increase and the beds can be reused Results of initial tests are presented and a moving bed process for treating large quantities of wastewaters is proposed. The moving bed separation process appears promising to treat existing large quantities of wastewater at various US Department of Energy (DOE) sites. The enriched tritium stream can be grouted for waste disposition. The separations system has also been shown to reduce tritium concentrations in nuclear reactor cooling water to levels that allow reuse. Energy requirements to reconstitute the loading beds and waste disposal costs for this process appear modest

  3. Tritium research activities in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ki Jung, E-mail: kjjung@nfri.re.kr [National Fusion Research Institute, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Yun, Sei-Hun, E-mail: shyun@nfri.re.kr [National Fusion Research Institute, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Chang, Min Ho; Kang, Hyun-Goo; Chung, Dongyou; Cho, Seungyon; Lee, Hyeon Gon [National Fusion Research Institute, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Chung, Hongsuk; Choi, Woo-Seok [Korea Atomic Energy Research Institute, Yusung-gu, Daejeon 305-353 (Korea, Republic of); Song, Kyu-Min; Moon, Chang-Bae [Korea Hydro & Nuclear Power Central Research Institute, Yusung-gu, Daejeon 305-343 (Korea, Republic of); Lee, Euy Soo [Dongguk University, Jung-gu, Seoul, 100-715 (Korea, Republic of); Cho, Jungho; Kim, Dong-Sun [Kongju National University, Cheonan, Chungnam, 330-717 (Korea, Republic of); Moon, Hung-Man [Daesung Industrial Gases Co., Ltd., Danwon-gu, Ansan-si, Gyeonggi-do, 425-090 (Korea, Republic of); Noh, Seung Jeong [Dankook University, Suji-gu, Yongin-si, Gyeonggi-do, 448-701 (Korea, Republic of); Ju, Hyunchul [Inha University, Nam-gu, Incheon, 402-751 (Korea, Republic of); Hong, Tae-Whan [Korea National University of Transportation, Chungju, Chungbuk, 380-702 (Korea, Republic of)

    2016-12-15

    Highlights: • NFRI, KAERI and KHNP CRI are major leading group for the ITER tritium SDS design; studying engineering, simulation of hydride bed, risk analysis (on safety, HAZOP), basic study, control logic & sequential operation, and others. KHNP has WTRF which gives favorable experiences for collaboration researchers. • Supplementary research partners: Five Universities (Dongguk University and POSTECH, Inha University, Dankook University, Korea National Transport University, and Kongju National University) and one industrial company (Daesung Industrial Gases Co., Ltd.); studying on basic and engineering, programming & simulation on the various topics for ITER tritium SDS, TEP, ISS, ADS, and etc. - Abstract: Major progress in tritium research in the Republic of Korea began when Korea became responsible for ITER tritium Storage and Delivery System (SDS) procurement package which is part of the ITER Fuel Cycle. To deliver the tritium SDS package, a variety of research institutes, universities and industry have respectively taken roles and responsibilities in developing technologies that have led to significant progress. This paper presents the current work and status of tritium related technological research and development (R&D) in Korea and introduces future R&D plans in the area of fuel cycle systems for fusion power generation.

  4. Tritium concentrations in tree ring cellulose

    International Nuclear Information System (INIS)

    Kaji, Toshio; Momoshima, Noriyuki; Takashima, Yoshimasa.

    1989-01-01

    Measurements of tritium (tissue bound tritium; TBT) concentration in tree rings are presented and discussed. Such measurement is expected to provide a useful means of estimating the tritium level in the environment in the past. The concentration of tritium bound in the tissue (TBT) in a tree ring considered to reflect the environmental tritium level in the area at the time of the formation of the ring, while the concentration of tritium in the free water in the tissue represents the current environmental tritium level. First, tritium concentration in tree ring cellulose sampled from a cedar tree grown in a typical environment in Fukuoka Prefecture is compared with the tritium concentration in precipitation in Tokyo. Results show that the year-to-year variations in the tritium concentration in the tree rings agree well with those in precipitation. The maximum concentration, which occurred in 1963, is attibuted to atmospheric nuclear testing which was performed frequently during the 1961 - 1963 period. Measurement is also made of the tritium concentration in tree ring cellulose sampled from a pine tree grown near the Isotope Center of Kyushu University (Fukuoka). Results indicate that the background level is higher probably due to the release of tritium from the facilities around the pine tree. Thus, measurement of tritium in tree ring cellulose clearly shows the year-to-year variation in the tritium concentration in the atmosphere. (N.K.)

  5. Tritium recovery from tritiated water with a two-stage palladium membrane reactor

    International Nuclear Information System (INIS)

    Birdsell, S.A.; Willms, R.S.

    1997-01-01

    A process to recover tritium from tritiated water has been successfully demonstrated at TSTA. The 2-stage palladium membrane reactor (PMR) is capable of recovering tritium from water without generating additional waste. This device can be used to recover tritium from the substantial amount of tritiated water that is expected to be generated in the International Thermonuclear Experimental Reactor both from torus exhaust and auxiliary operations. A large quantity of tritiated waste water exists world wide because the predominant method of cleaning up tritiated streams is to oxidize tritium to tritiated water. The latter can be collected with high efficiency for subsequent disposal. The PMR is a combined catalytic reactor/permeator. Cold (non-tritium) water processing experiments were run in preparation for the tritiated water processing tests. Tritium was recovered from a container of molecular sieve loaded with 2,050 g (2,550 std. L) of water and 4.5 g of tritium. During this experiment, 27% (694 std. L) of the water was processed resulting in recovery of 1.2 g of tritium. The maximum water processing rate for the PMR system used was determined to be 0.5 slpm. This correlates well with the maximum processing rate determined from the smaller PMR system on the cold test bench and has resulted in valuable scale-up and design information

  6. Advancement Of Tritium Powered Betavoltaic Battery Systems FY16 EOY Report

    Energy Technology Data Exchange (ETDEWEB)

    Staack, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gaillard, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-10-12

    The goal of this work is to increase the power output of tritium-powered betavoltaic batteries and investigate the change in power output and film resistance in real-time during tritium loading of adsorbent films. To this end, several tritium-compatible test vessels with the capability of measuring both the resistivity of a tritium trapping film and the power output of a betavoltaic device in-situ have been designed and fabricated using four electrically insulated feedthroughs in tritium-compatible load cells. Energy conversion devices were received from Widetronix, a betavoltaic manufacturing firm based in Ithaca, NY. Thin films were deposited on the devices and capped with palladium to facilitate hydrogen loading. Gold contacts were then deposited on top of the films to allow resistivity measurements of the film during hydrogen loading. Finally, the chips were wire bonded and installed in the test cells. The cells were then baked-out under vacuum and leak checked at temperature to reduce the chances of tritium leaks during loading. Following the bake-out, IV curves were measured to verify no internal wires were compromised, and the cells were delivered to Tritium for loading. Tritium loading is anticipated in October, 2017.

  7. Tritium recovery from tritiated water with a two-stage palladium membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Birdsell, S.A.; Willms, R.S.

    1997-04-01

    A process to recover tritium from tritiated water has been successfully demonstrated at TSTA. The 2-stage palladium membrane reactor (PMR) is capable of recovering tritium from water without generating additional waste. This device can be used to recover tritium from the substantial amount of tritiated water that is expected to be generated in the International Thermonuclear Experimental Reactor both from torus exhaust and auxiliary operations. A large quantity of tritiated waste water exists world wide because the predominant method of cleaning up tritiated streams is to oxidize tritium to tritiated water. The latter can be collected with high efficiency for subsequent disposal. The PMR is a combined catalytic reactor/permeator. Cold (non-tritium) water processing experiments were run in preparation for the tritiated water processing tests. Tritium was recovered from a container of molecular sieve loaded with 2,050 g (2,550 std. L) of water and 4.5 g of tritium. During this experiment, 27% (694 std. L) of the water was processed resulting in recovery of 1.2 g of tritium. The maximum water processing rate for the PMR system used was determined to be 0.5 slpm. This correlates well with the maximum processing rate determined from the smaller PMR system on the cold test bench and has resulted in valuable scale-up and design information.

  8. Final programmatic environmental impact statement for tritium supply and recycling. Volume III

    International Nuclear Information System (INIS)

    1995-10-01

    Tritium, a radioactive gas used in all of the Nation's nuclear weapons, has a short half-life and must be replaced periodically in order for the weapon to operate as designed. Currently, there is no capability to produce the required amounts of tritium within the Nuclear Weapons Complex. The PEIS for Tritium Supply and Recycling evaluates the alternatives for the siting, construction, and operation of tritium supply and recycling facilities at each of five candidate sites: the Idaho National Engineering Laboratory, the Nevada Test Site, the Oak Ridge Reservation, the Pantex Plant, and the Savannah River Site. Alternatives for new tritium supply and recycling facilities consist of four different tritium supply technologies: Heavy Water Reactor, Modular High Temperature Gas-Cooled Reactor, Advanced Light Water Reactor, and Accelerator Production of Tritium. The PEIS also evaluates the impacts of the DOE purchase of an existing operating or partially completed commercial light water reactor or the DOE purchase of irradiation services contracted from commercial power reactors. Additionally, the PEIS includes an analysis of multipurpose reactors that would produce tritium, dispose of plutonium, and produce electricity. Evaluation of impacts on land resources, site infrastructure, air quality and acoustics, water resources, geology and soils, biotic resources, cultural and paleontological resources, socioeconomics, radiological and hazardous chemical impacts during normal operation and accidents to workers and the public, waste management, and intersite transport are included in the assessment

  9. Final programmatic environmental impact statement for tritium supply and recycling. Volume 1

    International Nuclear Information System (INIS)

    1995-10-01

    Tritium, a radioactive gas used in all of the Nation's nuclear weapons, has a short half-life and must be replaced periodically in order for the weapon to operate as designed. Currently, there is no capability to produce the required amounts of tritium within the Nuclear Weapons Complex. The PEIS for Tritium Supply and Recycling evaluates the alternatives for the siting, construction, and operation of tritium supply and recycling facilities at each of five candidate sites: the Idaho National Engineering Laboratory, the Nevada Test Site, the Oak Ridge Reservation, the Pantex Plant, and the Savannah River Site. Alternatives for new tritium supply and recycling facilities consist of four different tritium supply technologies: Heavy Water Reactor, Modular High Temperature Gas-Cooled Reactor, Advanced Light Water Reactor, and Accelerator Production of Tritium. The PEIS also evaluates the impacts of the DOE purchase of an existing operating or partially completed commercial light water reactor or the DOE purchase of irradiation services contracted from commercial power reactors. Additionally, the PEIS includes an analysis of multipurpose reactors that would produce tritium, dispose of plutonium, and produce electricity. Evaluation of impacts on land resources, site infrastructure, air quality and acoustics, water resources, geology and soils, biotic resources, cultural and paleontological resources, socioeconomics, radiological and hazardous chemical impacts during normal operation and accidents to workers and the public, waste management, and intersite transport are included in the assessment. 550 refs

  10. Recovery of tritium from CANDU reactors, its storage and monitoring of its migration in the environment

    International Nuclear Information System (INIS)

    Holtslander, W.J.; Osborne, R.V.

    1979-07-01

    Tritium is produced in CANDU heavy water reactors mainly by neutron activation of deuterium. The typical production rate is 2.4 kCi per megawatt-year (89 TBq. per megawatt-year. In Pickering Generating Station the average concentration of tritium in the moderators has reached 16 Ci.kg -1 (0.6 TBq.kg -1 ) and in coolants, 0.5 Ci.kg -1 (0.02 TBq.kg -1 ). Concentrations will continue to increase towards an equilibrium determined by the production rate, the tritium decay rate and heavy water replacement. Tritium removal methods that are being considered for a pilot plant design are catalytic exchange of DTO with D 2 and electrolysis of D 2 O/DTO to provide feed for cryogenic distillation of D 2 /DT/T 2 . Storage methods for the removed tritium - as elemental gas, as metal hydrides and in cements - are also being investigated. Transport of tritiated wastes should not be a particularly difficult problem in light of extensive experience in transporting tritiated heavy water. Methods for determining the presence of tritium in the environment of any tritium handling facility are well established and have the capability of measuring concentrations of tritium down to current ambient values. (author)

  11. Exploration for tritium-free water

    International Nuclear Information System (INIS)

    Hussain, S.D.

    1982-10-01

    Tritium-free water is generally required in large quantities for the preparation of laboratory tritium standards as well as blanks which are used to determine background count rate in the measurement of low level tritium concentrations in water samples by liquid scintillation counting method. In order to meet the requirements of tritium-free water and save the recurring expenditure on its import from abroad, exploration for locating its source in the country was undertaken. Water samples collected from a few possible sources were analysed precisely for their tritium content at the International Atomic Energy Agency, Vienna, Austria and a source of tritium-free water was determined. (authors)

  12. Toward the ultimate goal of tritium self-sufficiency: Technical issues and requirements imposed on ARIES advanced power plants

    International Nuclear Information System (INIS)

    El-Guebaly, Laila A.; Malang, Siegfried

    2009-01-01

    Due to the lack of external tritium sources, all fusion power plants must demonstrate a closed tritium fuel cycle. The tritium breeding ratio (TBR) must exceed unity by a certain margin. The key question is: how large is this margin and how high should the calculated TBR be? The TBR requirement is design and breeder-dependent and evolves with time. At present, the ARIES requirement is 1.1 for the calculated overall TBR of LiPb systems. The Net TBR during plant operation could be around 1.01. The difference accounts for deficiencies in the design elements (nuclear data evaluation, neutronics code validation, and 3D modeling tools). Such a low Net TBR of 1.01 is potentially achievable in advanced designs employing advanced physics and technology. A dedicated R and D effort will reduce the difference between the calculated TBR and Net TBR. A generic breeding issue encountered in all fusion designs is whether any fusion design will over-breed or under-breed during plant operation. To achieve the required Net TBR with sufficient precision, an online control of tritium breeding is highly recommended for all fusion designs. This can easily be achieved for liquid breeders through online adjustment of Li enrichment.

  13. Monitoring system of the Tritium Research Laboratory, Sandia Laboratories, Livermore, CA

    International Nuclear Information System (INIS)

    Wall, W.R.; Hafner, R.S.; Westfall, D.L.; Ristau, R.D.

    1978-11-01

    Automated tritium monitoring is now in use at the Tritium Research Laboratory (TRL). Betatec 100 tritium monitors, along with several Sandia-designed accessories, have been combined with a PDP 11/40 computer to automatically read and record tritium concentrations of room air, containment, and cleanup systems. Each individual monitoring system, in addition to a local display in the area of interest, has a visible/audible display in the control room. Each system is then channeled into the PDP 11/40 computer, providing immediate assessment of the status of the entire laboratory from a central location. Measurement capability ranges from μCi/m 3 levels for room air monitoring to kCi/m 3 levels for glove box and cleanup systems monitoring. In this report the overall monitoring system and its capabilities are discussed, with detailed descriptions given of monitors and their components

  14. Studies on chemical phenomena of high concentration tritium water and organic compounds of tritium from viewpoint of the tritium confinement

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Hayashi, Takumi; Iwai, Yasunori; Isobe, Kanetsugu; Hara, Masanori; Sugiyama, Takahiko; Okuno, Kenji

    2009-01-01

    As a part of the grant-in-aid for scientific research on priority areas entitled 'frontiers of tritium researches toward fusion reactors', coordinated two research programs on chemical phenomena of high concentration tritium water and organic compounds of tritium from view point of the tritium confinement have been conducted by the C01 team. The results are summarized as follows: (1) Chemical effects of the high concentration tritium water on stainless steels as structural materials of fusion reactors were investigated. Basic data on tritium behaviors at the metal-water interface and corrosion of metal in tritium water were obtained. (2) Development of the tritium confinement and extraction system for the circulating cooling water in the fusion reactor was studied. Improvement was obtained in the performance of a chemical exchange column and catalysts as major components of the water processing system. (J.P.N.)

  15. Construction and operation of a tritium extraction facility at the Savannah River Site. Final environmental impact statement

    International Nuclear Information System (INIS)

    1999-03-01

    DOE proposes to construct and operate a Tritium Extraction Facility (TEF) at H Area on the Savannah River Site (SRS) to provide the capability to extract tritium from commercial light water reactor (CLWR) targets and from targets of similar design. The proposed action is also DOE's preferred alternative. An action alternative is to construct and operate TEF at the Allied General Nuclear Services facility, which is adjacent to the eastern side of the SRS. Under the no-action alternative DOE could incorporate tritium extraction capabilities in the accelerator for production of tritium. This EIS is linked to the Final Programmatic Environmental Impact Statement for Tritium Supply and Recycling, from which DOE determined that it would produce tritium either in an accelerator or in a commercial light water reactor. The purpose of the proposed action and alternatives evaluated in this EIS is to provide tritium extraction capability to support either tritium production technology. The EIS assesses the environmental impacts from the proposed action and the alternatives, including the no action alternative

  16. Capability Paternalism

    NARCIS (Netherlands)

    Claassen, R.J.G.|info:eu-repo/dai/nl/269266224

    A capability approach prescribes paternalist government actions to the extent that it requires the promotion of specific functionings, instead of the corresponding capabilities. Capability theorists have argued that their theories do not have much of these paternalist implications, since promoting

  17. An assembly of tritium production experiment

    International Nuclear Information System (INIS)

    Abe, Toshihiko

    1981-01-01

    An assembly for tritium production experiment, i.e. Tritium Extraction System (TREX) constructed as a small scale test facility for tritium production, and Tritium Removal System (TRS) attached to TREX, and the preliminary results of the experiments with them are described. The radiological safety of the process and operation is also an important consideration. Lithium-aluminum alloy was selected as the most promising target material. The following matters are involved in the scope of production technology: the selection of a target material and target preparation, reactor irradiation, the construction of a facility for the extraction of tritium from the irradiated target, the establishment of the optimum conditions of extraction, the purification, collection and storage of tritium, and the inspection of the product. The tritium production experiment at JAERI is yet on the initial stage; the development is to be continued with the stepwise increase of the scale of tritium production. (J.P.N.)

  18. Tritium in the environment. Knowledge synthesis

    International Nuclear Information System (INIS)

    2009-01-01

    This report first presents the nuclear and physical-chemical properties of tritium and addresses the notions of bioaccumulation, bio-magnification and remanence. It describes and comments the natural and anthropic origins of tritium (natural production, quantities released in the environment in France by nuclear tests, nuclear plants, nuclear fuel processing plants, research centres). It describes how tritium is measured as a free element (sampling, liquid scintillation, proportional counting, enrichment method) or linked to organic matter (combustion, oxidation, helium-3-based measurement). It discusses tritium concentrations noticed in different parts of the environment (soils, continental waters, sea). It describes how tritium is transferred to ecosystems (transfer of atmospheric tritium to ground ecosystems, and to soft water ecosystems). It discusses existing models which describe the behaviour of tritium in ecosystems. It finally describes and comments toxic effects of tritium on living ground and aquatic organisms

  19. Recommended radiological controls for tritium operations

    International Nuclear Information System (INIS)

    Mansfield, G.

    1992-01-01

    This informal report presents recommendations for an adequate radiological protection program for tritium operations. Topics include hazards analysis, facility design, personnel protection equipment, training, operational procedures, radiation monitoring, to include surface and airborne tritium contamination, and program management

  20. Use of system code to estimate equilibrium tritium inventory in fusion DT machines, such as ARIES-AT and components testing facilities

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Merrill, B.

    2014-01-01

    Highlights: • With the use of a system code, tritium burn-up fraction (f burn ) can be determined. • Initial tritium inventory for steady state DT machines can be estimated. • f burn of ARIES-AT, CFETR and FNSF-AT are in the range of 1–2.8%. • Respective total tritium inventories of are 7.6 kg, 6.1 kg, and 5.2 kg. - Abstract: ITER is under construction and will begin operation in 2020. This is the first 500 MW fusion class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a system code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1–2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively

  1. Use of system code to estimate equilibrium tritium inventory in fusion DT machines, such as ARIES-AT and components testing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C., E-mail: wongc@fusion.gat.com [General Atomics, San Diego, CA (United States); Merrill, B. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2014-10-15

    Highlights: • With the use of a system code, tritium burn-up fraction (f{sub burn}) can be determined. • Initial tritium inventory for steady state DT machines can be estimated. • f{sub burn} of ARIES-AT, CFETR and FNSF-AT are in the range of 1–2.8%. • Respective total tritium inventories of are 7.6 kg, 6.1 kg, and 5.2 kg. - Abstract: ITER is under construction and will begin operation in 2020. This is the first 500 MW{sub fusion} class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a system code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1–2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively.

  2. Tritium in metals: Techniques of preparation

    International Nuclear Information System (INIS)

    Laesser, R.; Klatt, K.H.; Mecking, P.; Wenzl, H.

    1982-08-01

    In order to study the behavior of tritium in metals, an all metal apparatus has been built for the safe handling of 100 mg of tritium. Samples of palladium, vanadium, niobium, and tantalum were loaded with tritium, deuterium or hydrogen. Some details of the phase diagrams could be established by DTA and by measurement of the lattice parameters. The diffusion of tritium in V, Nb, and Ta was studied with the Gorsky-effect. (TWO)

  3. Tritium decontamination of machine components and walls

    International Nuclear Information System (INIS)

    Hircq, B.; Wong, K.Y.; Jalbert, R.A.; Shmayda, W.T.

    1991-01-01

    Tritium decontamination techniques for machine components and their application at tritium handling facilities are reviewed. These include commonly used methods such as vacuuming, purging, thermal desorption and isotopic exchange as well as less common methods such as chemical/electrochemical etching, plasma discharge cleaning, and destructive methods. Problems associated with tritium contamination of walls and use of protective coatings are reviewed. Tritium decontamination considerations at fusion facilities are discussed

  4. Polymeric media for tritium fixation

    International Nuclear Information System (INIS)

    Franz, J.A.; Burger, L.L.

    1975-01-01

    The synthesis and leach testing of several polymeric media for tritium fixation are presented. Tritiated bakelite, poly(acrylonitrile) and polystyrene successfully fixed tritium. Tritium leach rates at the tracer level appear to be negligible. Advantages and disadvantages of the processes are discussed, and further bench-scale investigations underway are reported. Rough cost estimates are presented for the different media and are compared with alternate approaches such as deep-well injection and long-term tank storage. Polymeric media costs are high compared to deep-well storage and are of the same order of magnitude per liter of water as for isotopic enrichment. With this limitation, polymeric media can be economically feasible only for highly concentrated tritiated wastes. It is recommended that the bakelite and polystyrene processes be examined on a larger scale to permit more accurate cost analysis and process design. (auth)

  5. Tritium processing using metal hydrides

    International Nuclear Information System (INIS)

    Mallett, M.W.

    1986-01-01

    E.I. duPont de Nemours and Company is commissioned by the US Department of Energy to operate the Savannah River Plant and Laboratory. The primary purpose of the plant is to produce radioactive materials for national defense. In keeping with current technology, new processes for the production of tritium are being developed. Three main objectives of this new technology are to ease the processing of, ease the storage of, and to reduce the operating costs of the tritium production facility. Research has indicated that the use of metal hydrides offers a viable solution towards satisfying these objectives. The Hydrogen and Fuels Technology Division has the responsibility to conduct research in support of the tritium production process. Metal hydride technology and its use in the storage and transportation of hydrogen will be reviewed

  6. Implanted-tritium permeation experiments

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Holland, D.F.; Casper, L.A.; Hsu, P.Y.; Miller, L.G.; Schmunk, R.E.; Watts, K.D.; Wilson, C.J.; Kershner, C.J.; Rogers, M.L.

    1982-04-01

    In fusion reactors, charge exchange neutral atoms of tritium coming from the plasma will be implanted into the first wall and other interior structures. EG and G Idaho is conducting two experiments to determine the magnitude of permeation into the coolant streams and the retention of tritium in those structures. One experiment uses an ion gun to implant deuterium. The ion gun will permit measurements to be made for a variety of implantation energies and fluxes. The second experiment utilizes a fission reactor to generate a tritium implantation flux by the 3 He(n,p) 3 H reaction. This experiment will simulate the fusion reactor radiation environment. We also plan to verify a supporting analytical code development program, in progress, by these experiments

  7. Tritium emissions from a detritiation facility

    International Nuclear Information System (INIS)

    Rodrigo, L.; El-Behairy, O.; Boniface, H.; Hotrum, C.; McCrimmon, K.

    2010-01-01

    Tritium is produced in heavy-water reactors through neutron capture by the deuterium atom. Annual production of tritium in a CANDU reactor is typically 52-74 TBq/MW(e). Some CANDU reactor operators have implemented detritiation technology to reduce both tritium emissions and dose to workers and the public from reactor operations. However, tritium removal facilities also have the potential to emit both elemental tritium and tritiated water vapor during operation. Authorized releases to the environment, in Canada, are governed by Derived Release Limits (DRLs). DRLs represent an estimate of a release that could result in a dose of 1 mSv to an exposed member of the public. For the Darlington Nuclear Generating Station, the DRLs for airborne elemental tritium and tritiated water emissions are ~15.6 PBq/week and ~825 TBq/week respectively. The actual tritium emissions from Darlington Tritium Removal Facility (DTRF) are below 0.1% of the DRL for elemental tritium and below 0.2% of the DRL for tritiated water vapor. As part of an ongoing effort to further reduce tritium emissions from the DTRF, we have undertaken a review and assessment of the systems design, operating performance, and tritium control methods in effect at the DTRF on tritium emissions. This paper discusses the results of this study. (author)

  8. Tritium inventory prediction in a CANDU plant

    International Nuclear Information System (INIS)

    Song, M.J.; Son, S.H.; Jang, C.H.

    1995-01-01

    The flow of tritium in a CANDU nuclear power plant was modeled to predict tritium activity build-up. Predictions were generally in good agreement with field measurements for the period 1983--1994. Fractional contributions of coolant and moderator systems to the environmental tritium release were calculated by least square analysis using field data from the Wolsong plant. From the analysis, it was found that: (1) about 94% of tritiated heavy water loss came from the coolant system; (2) however, about 64% of environmental tritium release came from the moderator system. Predictions of environmental tritium release were also in good agreement with field data from a few other CANDU plants. The model was used to calculate future tritium build-up and environmental tritium release at Wolsong site, Korea, where one unit is operating and three more units are under construction. The model predicts the tritium inventory at Wolsong site to increase steadily until it reaches the maximum of 66.3 MCi in the year 2026. The model also predicts the tritium release rate to reach a maximum of 79 KCi/yr in the year 2012. To reduce the tritium inventory at Wolsong site, construction of a tritium removal facility (TRF) is under consideration. The maximum needed TRF capacity of 8.7 MCi/yr was calculated to maintain tritium concentration effectively in CANDU reactors

  9. Tritium oxidation and exchange: preliminary studies

    International Nuclear Information System (INIS)

    Phillips, J.E.; Easterly, C.E.

    1978-05-01

    The radiological hazard resulting from an exposure to either tritium oxide or tritium gas is discussed and the factors contributing to the hazard are presented. From the discussion it appears that an exposure to tritium oxide vapor is 10 4 to 10 5 times more hazardous than exposure to tritium gas. Present and future sources of tritium are briefly considered and indicate that most of the tritium has been and is being released as tritium oxide. The likelihood of gaseous releases, however, is expected to increase in the future, calling to task the present general release assumption that 100% of all tritium released is as oxide. Accurate evaluation of the hazards from a gaseous release will require a knowledge of the conversion rate of tritium gas to tritium oxide. An experiment for determining the conversion rate of tritium gas to tritium oxide is presented along with some preliminary data. The conversion rates obtained for low initial concentrations (10 -4 to 10 -1 mCi/ml) indicate the conversion may proceed more rapidly than would be expected from an extrapolation of previous data taken at higher concentrations

  10. Bioassay guideline 2: guidelines for tritium bioassay

    International Nuclear Information System (INIS)

    1983-01-01

    This guideline is one of a series under preparation by the Federal-Provincial Working Group on Bioassay and In Vivo Monitoring Criteria. In this report tritium compounds have been grouped into four categories for the purpose of calculating Annual Limits on Intake and Investigation Levels: tritium gas, tritiated water, tritium-labelled compounds and nucleic acid precursors

  11. 10 CFR 30.55 - Tritium reports.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Tritium reports. 30.55 Section 30.55 Energy NUCLEAR..., Inspections, Tests, and Reports § 30.55 Tritium reports. (a)-(b) [Reserved] (c) Except as specified in paragraph (d) of this section, each licensee who is authorized to possess tritium shall report promptly to...

  12. Toxicity and dosimetry of tritium

    International Nuclear Information System (INIS)

    Myers, D.K.; Johnson, J.R.

    1991-01-01

    Tritium doses to the general public are very low (currently about 0.2 μSv per year). Radiation doses from tritium to members of the public living in the vicinity of a CANDU power station are higher but rarely exceed 20 μSv per year or 1% of normal exposures to radiation from all natural sources, but doses to some radiation workers can approach ten mSv per year. The relative biological effectiveness (RBE) of tritium beta rays varies appreciably depending upon the biological endpoint. Observed RBE values at low doses and low dose-rates are usually about 2 to 3 when tritium beta rays are compared to 60 Co gamma rays but are closer to 1 than to 2 when compared to 200 kVp X-rays. This conclusion is supported by microdosimetric considerations of the quality of tritium beta rays, 60 Co gamma rays and X-rays. Since X-rays have traditionally been accepted as reference radiation by the International Commission on Radiological Protection, it seems reasonable that the quality factor (Q) assigned to tritium beta rays should be close to one. Recommended procedures in Canada for estimation of effective dose equivalents from exposures to HTO and HT assume that Q = 1 and that body water represents 67% of the mass of soft tissue; they take into account conversions of HTO to appear to be reasonable for radiation protection purposes when the source of exposure is HTO or HT, but will not be adequate for exposures to other tritiated compounds. (modified author abstract) (137 refs., 11 figs., 12 tabs.)

  13. Tritium turnover in succulent plants

    International Nuclear Information System (INIS)

    Krishnamoorthy, T.M.; Gogate, S.S.; Soman, S.D.

    1977-01-01

    Measurements of turnover rates for tissue free water tritium (TFWT) and tissue bound tritium (TBT) were carried out in three succulent plants, Opuntia sp., E. Trigona and E. Mili using tritiated water as tracer. The estimated half-times were 52, 57.5 and 80 days for TFWT and 212, 318 and 132 days for TBT in the stems of the above plants respectively. Opuntia sp. showed significant incorporation of TBT, 10% of TFWT on weight basis, while the other two plants showed lesser incorporation, 2-3% of TFWT. However, the leaves of E. Mili indicated the same level of fixation of TBT as the stem of Opuntia sp. (author)

  14. Optimizing tritium extraction from a Permeator Against Vacuum (PAV) by dimensional design using different tritium transport modeling tools

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, P., E-mail: pablomiguel.martinez@ciemat.es [CIEMAT-LNF (Laboratorio Nacional de Fusion), Madrid (Spain); Moreno, C. [CIEMAT-LNF (Laboratorio Nacional de Fusion), Madrid (Spain); Martinez, I. [SENER Ingenieria y Sistemas, Provenca 392, 4a 08025 Barcelona (Spain); Sedano, L. [CIEMAT-LNF (Laboratorio Nacional de Fusion), Madrid (Spain)

    2012-08-15

    The Permeator Against Vacuum (PAV) has been conceived as the simplest, cost effective and reliable technology system dedicated to tritium extraction from breeding liquid metals. An optimal design of a PAV requires a detailed hydraulic design optimization for established operational ranges (HCLL at low velocities of {approx}1 mm/s or DCLL in the ranges of tens of cm/s). The present work analyses the PAV extraction efficiency dependency on the design parameters as optimum on-line Tritium Extraction System (TES). Three different models have been built for that purpose: one through physically refined 1D tritium transport computation using TMAP7 (unique simulation tool with QA for ITER); and two further detailed models on 2D/3D FEM tool (COMSOL Multi-physics 4.0). The geometry used in this work is a simplification of Fuskite{sup Registered-Sign} conceptual design developed at CIEMAT, consisting of a set of cylindrical and concentric {alpha}-Fe double membranes enclosing a vacuumed space and in contact with in-pipe flowing LiPb eutectic. The aim of this paper is to give the first steps to establish the optimal design parameters of a PAV and evaluate the state-of-the-art of these models.

  15. Tritium processing in JT-60U

    International Nuclear Information System (INIS)

    Miya, Naoyuki; Masaki, Kei

    1997-01-01

    Tritium retention analysis and tritium concentration measurement have been made during the large Tokamak JT-60U deuterium operations. This work has been carried out to evaluate the tritium retention for graphite tiles inside the vacuum vessel and tritium release characteristics in the tritium cleanup operations. JT-60U has carried out D-D experiments since July 1991. In the deuterium operations during the first two years, about 1.7 x 10 19 D-D fusion neutrons were produced by D (d, p) T reactions in plasma, which are expected to produce ∼31 GBq of tritium. The tritium produced is evacuated by a pumping system. A part of tritium is, however, trapped in the graphite tiles. Several sample tiles were removed from the vessel and the retained tritium Distribution in the tiles was measured using a liquid scintillator. The results of poloidal distribution showed that the tritium concentration in the divertor tiles was higher than that in the first wall tiles and it peaked in the tiles between two strike points of divertor magnetic lines. Tritium concentration in the exhaust gas from the vessel have also been measured with an ion chamber during the tritium cleanup operations with hydrogen divertor discharges and He-GDC. Total of recovered tritium during the cleanup operations was ∼ 7% of that generated. The results of these measurements showed that the tritium of 16-23 GBq still remained in the graphite tiles, which corresponded to about 50-70% of the tritium generated in plasma. The vessel is ventilated during the in-vessel maintenance works, then the atmosphere is always kept lower than the legal concentration guide level of 0.7 Bq/cm 3 for radiation work permit requirements. (author)

  16. Distribution and behavior of tritium in the Coolant-Salt Technology Facility

    International Nuclear Information System (INIS)

    Mays, G.T.; Smith, A.N.; Engel, J.R.

    1977-04-01

    A 1000-MW(e) Molten-Salt Breeder Reactor (MSBR) is expected to produce 2420 Ci/day of tritium. As much as 60 percent of the tritium produced may be transported to the reactor steam system (assuming no retention by the secondary coolant salt), where it would be released to the environment. Such a release rate would be unacceptable. Experiments were conducted in an engineering-scale facility--the Coolant-Salt Technology Facility (CSTF)--to examine the potential of sodium fluoroborate, the proposed coolant salt for an MSBR, for sequestering tritium. The salt was believed to contain chemical species capable of trapping tritium. A series of 5 experiments--3 transient and 2 steady-state experiments--was conducted from July of 1975 through June of 1976 where tritium was added to the CSTF. The CSTF circulated sodium fluoroborate at temperatures and pressures typical of MSBR operating conditions. Results from the experiments indicated that over 90 percent of tritium added at steady-state conditions was trapped by sodium fluoroborate and appeared in the off-gas system in a chemically combined (water-soluble) form and that a total of approximately 98 percent of the tritium added at steady-state conditions was removed through the off-gas system overall

  17. Tritium monitoring in environment at ICIT Tritium Separation Facility

    International Nuclear Information System (INIS)

    Varlam, Carmen; Stefanescu, I.; Vagner, Irina; Faurescu, I.; Toma, A.; Dulama, C.; Dobrin, R.

    2008-01-01

    Full text: The Cryogenic Pilot is an experimental project developed within the national nuclear energy research program, which is designed to develop the required technologies for tritium and deuterium separation by cryogenic distillation of heavy water. The process used in this installation is based on a combination between liquid-phase catalytic exchange (LPCE) and cryogenic distillation. Basically, there are two ways that the Cryogenic Pilot could interact with the environment: by direct atmospheric release and through the sewage system. This experimental installation is located 15 km near the region biggest city and in the vicinity - about 1 km, of Olt River. It must be specified that in the investigated area there is an increased chemical activity; almost the entire Experimental Cryogenic Pilot's neighborhood is full of active chemical installations. This aspect is really essential for our study because the sewerage system is connected with the other three chemical plants from the neighborhood. For that reason we progressively established elements of an environmental monitoring program well in advance of tritium operation in order to determine baseline levels. The first step was the tritium level monitoring in environmental water and wastewater of industrial activity from neighborhood. In order to establish the base level of tritium concentration in the environment around the nuclear facilities, we investigated the sample preparation treatment for different types of samples: onion, green beams, grass, apple, garden lettuce, tomato, cabbage, strawberry and grapes. We used azeotropic distillation of all types of samples, the carrier solvent being toluene from different Romanian providers. All measurements for the determination of environmental tritium concentration were performed using liquid scintillation counting (LSC), with the Quantulus 1220 spectrometer. (authors)

  18. Automation system for tritium contaminated surface monitoring

    International Nuclear Information System (INIS)

    Culcer, Mihai; Iliescu, Mariana; Curuia, Marian; Raceanu, Mircea; Enache, Adrian; Stefanescu, Ioan; Ducu, Catalin; Malinovschi, Viorel

    2005-01-01

    The low energy of betas makes tritium difficult to detect. However, there are several methods used in tritium detection, such as liquid scintillation and ionization chambers. Tritium on or near a surface can be also detected using proportional counter and, recently, solid state devices. The paper presents our results in the design and achievement of a surface tritium monitor using a PIN photodiode as a solid state charged particle detector to count betas emitted from the surface. That method allows continuous, real-time and non-destructively measuring of tritium. (authors)

  19. Tritium compatibility of alumina and Fosterite

    Energy Technology Data Exchange (ETDEWEB)

    Coffin, D.O.

    1979-09-01

    Many pressure measurements are required to control processing of the fuel gases associated with fusion power reactors. Since most pressure transducers respond to changes in pressure sensitive electrical parameters, insulators will be required to withstand chronic exposures to concentrated tritium. For this investigation samples of alumina and Fosterite were exposed to concentrated tritium gas for 11 weeks. Gas phase impurities were then analyzed for clues that would indicate decomposition of the exposed materials. The only gaseous impurity resulting from these tritium exposures was tritio-methane, which is always produced when tritium is stored in stainless steel containers. There was no evidence that either alumina or Fosterite decomposed in the presence of tritium.

  20. Management of tritium at nuclear facilities

    International Nuclear Information System (INIS)

    1984-01-01

    This report presents extending summaries of the works of the participants to an IAEA co-ordinated research programme, ''Handling Tritium - bearing effluents and wastes''. The subjects covered include production of tritium in nuclear power plants (mainly heavy water and light water reactors), as well as at reprocessing plants; removal and enrichment of tritium at nuclear facilities; conditioning methods and characteristics of immobilized tritium of low and high concentration; some potential methods of storage and disposal of tritium. In addition to the conclusions of this three-years work, possible activities in the field are recommended

  1. Study on tritium recovery from breeder materials

    International Nuclear Information System (INIS)

    Moriyama, H.; Moritani, K.

    1997-01-01

    For the development of fusion reactor blanket systems, some of the key issues on the tritium recovery performance of solid and liquid breeder materials were studied. In the case of solid breeder materials, a special attention was focussed on the effects of irradiation on the tritium recovery performance, and tritium release experiments, luminescence measurements of irradiation defects and modeling studies were systematically performed. For liquid breeder materials, tritium recovery experiments from molten salt and liquid lithium were performed, and the technical feasibility of tritium recovery methods was discussed. (author)

  2. Tritons and tritides as the solute and diffusing species in ceramic tritium breeders

    International Nuclear Information System (INIS)

    Fischer, A.K.; Johnson, C.E.

    1987-01-01

    Intragranular diffusion of tritium is an inherent participant in the process of releasing tritium from lithium-containing ceramics that are used to breed tritium in a fusion reactor. The nature of this transport is reviewed in terms of the understanding established for the mechanism of hydrogen migration in other oxides, namely, that the diffusing species is the proton and that it moves from oxide ion to oxide ion, thereby giving rise to apparent hydroxide migration. Analogously, the triton, transiently bonded to successive oxides and forming successive tritoxides, is taken to be the dominant migrating species in ceramic breeders. In addition, tritide becomes a significant participant at low oxygen activity. The relationship of tritons and tritides as the migrating species to the observed release of both reduced and oxidized forms can be understood in terms of the thermodynamic conditions that prevail. Mechanisms exist that can be proposed to rationalize the participation of these species

  3. Comparison of the tritium residence times of various ceramic breeder materials irradiated in EXOTIC experiments 4 and 5

    International Nuclear Information System (INIS)

    Kwast, H.; Elen, J.D.; Conrad, R.; Casadio, S.; Werle, H.; Verstappen, G.

    1990-09-01

    Tritium residence times have been determined for various ceramic tritium breeding materials from in-situ release measurements. The irradiations, codenamed EXOTIC (EXtraction Of Tritium In Ceramics), were carried out in the High Flux Reactor (HFR) Petten. During the irradiation more than 450 transients were performed and the corresponding tritium release measured. Materials supplied by SCK/CEN (Li 2 ZrO 3 ), CEA (Li 2 ZrO 3 and LiAlO 2 ), ENEA (LiAlO 2 ), KfK (Li 4 SiO 4 ), NRL (Li 6 Zr 2 O 7 ) and ECN (Li 8 ZrO 6 ) were irradiated in EXOTIC-5 to compare the tritium residence times obtained under equal conditions. Apart from differences in density, grain size, pore size and OPV it appeared that the tritium residence times of the lithium zirconates (pellets) were shorter than those of the Li 4 SiO 4 pebbles. The tritium residence times of the Li 4 SiO 4 pebbles were shorter than those of the LiAlO 2 pellets. (author). 7 refs.; 5 figs.; 3 tabs

  4. Generation of gaseous tritium standards

    International Nuclear Information System (INIS)

    Hohorst, F.A.

    1994-09-01

    The determination of aqueous and non-aqueous tritium in gaseous samples is one type of determination often requested of radioanalytical laboratories. This determination can be made by introducing the sample as a gas into a sampling train containing two silica gel beds separated by.a catalytic oxidizer bed. The first bed traps tritiated water. The sample then passes into and through the oxidizer bed where non-aqueous tritium containing species are oxidized to water and other products of combustion. The second silica gel bed then traps the newly formed tritiated water. Subsequently, silica gel is removed to plastic bottles, deionized water is added, and the mixture is permitted to equilibrate. The tritium content of the equilibrium mixture is then determined by conventional liquid scintillation counting (LSC). For many years, the moisture content of inert, gaseous samples has been determined using monitors which quantitatively electrolyze the moisture present after that moisture has been absorbed by phosphorous pentoxide or other absorbents. The electrochemical reaction is quantitative and definitive, and the energy consumed during electrolysis forms the basis of the continuous display of the moisture present. This report discusses the experimental evaluation of such a monitor as the basis for a technique for conversion of small quantities of SRMs of tritiated water ( 3 HOH) into gaseous tritium standards ( 3 HH)

  5. Tritium-labelled abscisic acid

    International Nuclear Information System (INIS)

    Pluciennik, H.; Michalski, L.

    1991-01-01

    A simple method for the preparation of biologically active abscisic acid (growth inhibiting plant hormone) labelled with tritium is described. The product obtained has a specific radioactivity of 1.12 GBq mmol -1 : the yield is about 60% as compared to the initial amount of the substance used. (author) 7 refs.; 2 figs

  6. Tritium Level in Romanian Precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Varlam, C.; Stefanescu, I.; Faurescu, I.; Bogdan, D.; Soare, A. [Institute for Cryogenic and Isotope Technologies, Rm. Valcea (Romania); Duliu, O. G. [Faculty of Physics, University of Bucharest, Magurele (Romania)

    2013-07-15

    Romania is one of the countries that has no station included in GNIP (Global Network of Isotopes in Precipitation) on its territory. This paper presents results regarding the tritium concentration in precipitation for the period 1999-2009. The precipitation fell at the Institute for cryogenic and Isotope technologies (geographical coordinates: altitude 237 m, latitude 45{sup o}02'07' N, longitude 24{sup o}17'03' E) an was collected both individually and as a composite average of each month. It was individually measured and the average was calculated and compared with the tritium concentration measured in the composite sample. tritium concentration levels ranged from 9.9 {+-} 2.1 TU for 2004 and 13.7 {+-} 2.2 TU for 2009. Comparing the arithmetic mean values with the weighted mean for the period of observation, it was noticed that the higher absolute values of the weighted means were constant. It was found that for the calculated monthly average for the period of observation (1999-2009), the months with the maximum tritium concentration are the same as the months with the maximum amount of precipitation. This behaviour is typical for the monitored location. (author)

  7. Tritium behavior intentionally released in the room

    International Nuclear Information System (INIS)

    Kobayashi, K.; Hayashi, T.; Iwai, Y.; Yamanishi, T.; Willms, R. S.; Carlson, R. V.

    2008-01-01

    To construct a fusion reactor with high safety and acceptability, it is necessary to establish and to ensure tritium safe handling technology. Tritium should be well-controlled not to be released to the environment excessively and to prevent workers from excess exposure. It is especially important to grasp tritium behavior in the final confinement area, such as the room and/or building. In order to obtain data for actual tritium behavior in a room and/or building, a series of intentional Tritium Release Experiments (TREs) were planned and carried out within a radiologically controlled area (main cell) at Tritium System Test Assembly (TSTA) in Los Alamos National Laboratory (LANL) under US-JAPAN collaboration program. These experiments were carried out three times. In these experiments, influence of a difference in the tritium release point and the amount of hydrogen isotope for the initial tritium behavior in the room were suggested. Tritium was released into the main cell at TSTA/LANL. The released tritium reached a uniform concentration about 30 - 40 minutes in all the experiments. The influence of the release point and the amount of hydrogen isotope were not found to be important in these experiments. The experimental results for the initial tritium behavior in the room were also simulated well by the modified three-dimensional eddy flow analysis code FLOW-3D. (authors)

  8. Tritium pellet injection sequences for TFTR

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Milora, S.L.; Attenberger, S.E.; Singer, C.E.; Schmidt, G.L.

    1983-01-01

    Tritium pellet injection into neutral deuterium, beam heated deuterium plasmas in the Tokamak Fusion Test Reactor (TFTR) is shown to be an attractive means of (1) minimizing tritium use per tritium discharge and over a sequence of tritium discharges; (2) greatly reducing the tritium load in the walls, limiters, getters, and cryopanels; (3) maintaining or improving instantaneous neutron production (Q); (4) reducing or eliminating deuterium-tritium (D-T) neutron production in non-optimized discharges; and (5) generally adding flexibility to the experimental sequences leading to optimal Q operation. Transport analyses of both compression and full-bore TFTR plasmas are used to support the above observations and to provide the basis for a proposed eight-pellet gas gun injector for the 1986 tritium experiments

  9. Imaging of tritium implanted into graphite

    International Nuclear Information System (INIS)

    Malinowski, M.E.; Causey, R.A.

    1988-01-01

    The extensive use of graphite in plasma-facing surfaces of tokamaks such as the Tokamak Fusion Test Reactor, which has planned tritium discharges, makes two-dimensional tritium detection techniques important in helping to determine torus tritium inventories. We have performed experiments in which highly oriented pyrolytic graphite (HOPG) samples were first tritium implanted with fluences of ∼10 16 T/cm 2 at energies approx. 0 C resulted in no discernible motion of tritium along the basal plane, but did show that significant desorption of the implanted tritium occurred. The current results indicate that tritium in quantities of 10 12 T/cm 2 in tritiated components could be readily detected by imaging at lower magnifications

  10. Calculation of tritium release from reactor's stack

    International Nuclear Information System (INIS)

    Akhadi, M.

    1996-01-01

    Method for calculation of tritium release from nuclear to environment has been discussed. Part of gas effluent contain tritium in form of HTO vapor released from reactor's stack was sampled using silica-gel. The silica-gel was put in the water to withdraw HTO vapor absorbed by silica-gel. Tritium concentration in the water was measured by liquid scintillation counter of Aloka LSC-703. Tritium concentration in the gas effluent and total release of tritium from reactor's stack during certain interval time were calculated using simple mathematic formula. This method has examined for calculation of tritium release from JRR-3M's stack of JAERI, Japan. From the calculation it was obtained the value of tritium release as much as 4.63 x 10 11 Bq during one month. (author)

  11. Tritium systems test assembly stabilization

    International Nuclear Information System (INIS)

    Jasen, William G.; Michelotti, Roy A.; Anast, Kurt R.; Tesch, Charles

    2004-01-01

    The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium technology Research and Development (R and D) primarily for future fusion power reactors. The facility was conceived in mid 1970's, operations commenced in early 1980's, stabilization and deactivation began in 2000 and were completed in 2003. The facility will remain in a Surveillance and Maintenance (S and M) mode until the Department of Energy (DOE) funds demolition of the facility, tentatively in 2009. A safe and stable end state was achieved by the TSTA Facility Stabilization Project (TFSP) in anticipation of long term S and M. At the start of the stabilization project, with an inventory of approximately 140 grams of tritium, the facility was designated a Hazard Category (HC) 2 Non-Reactor Nuclear facility as defined by US Department of Energy standard DOE-STD-1027-92 (1997). The TSTA facility comprises a laboratory area, supporting rooms, offices and associated laboratory space that included more than 20 major tritium handling systems. The project's focus was to reduce the tritium inventory by removing bulk tritium, tritiated water wastes, and tritium-contaminated high-inventory components. Any equipment that remained in the facility was stabilized in place. All of the gloveboxes and piping were rendered inoperative and vented to atmosphere. All equipment, and inventoried tritium contamination, remaining in the facility was left in a safe-and-stable state. The project used the End Points process as defined by the DOE Office of Environmental Management (web page http://www.em.doe.- gov/deact/epman.htmtlo) document and define the end state required for the stabilization of TSTA Facility. The End Points process added structure that was beneficial through virtually all phases of the project. At completion of the facility stabilization project the residual tritium inventory was approximately 3,000 curies, considerably less than the 1.6-gram threshold for a HC 3 facility. TSTA is now

  12. Isotope exchange reactions on ceramic breeder materials and their effect on tritium inventory

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, M; Baba, A [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering; Kawamura, Y; Nishi, M

    1998-03-01

    Though lithium ceramic materials such as Li{sub 2}O, LiAlO{sub 2}, Li{sub 2}ZrO{sub 3}, Li{sub 2}TiO{sub 3} and Li{sub 4}SiO{sub 4} are considered as breeding materials in the blanket of a D-T fusion reactor, the release behavior of the bred tritium in these solid breeder materials has not been fully understood. The isotope exchange reaction rate between hydrogen isotopes in the purge gas and tritium on the surface of breeding materials have not been quantified yet, although helium gas with hydrogen or deuterium is planned to be used as the blanket purge gas in the recent blanket designs. The mass transfer coefficient representing the isotope exchange reaction between H{sub 2} and D{sub 2}O or that between D{sub 2} and H{sub 2}O in the ceramic breeding materials bed is experimentally obtained in this study. Effects of isotope exchange reactions on the tritium inventory in the bleeding blanket is discussed based on data obtained in this study where effects of diffusion of tritium in the grain, absorption of water in the bulk of grain, and adsorption of water on the surface of grain, together with two types of isotope exchange reactions are considered. The way to estimate the tritium inventory in a Li{sub 2}ZrO{sub 3} blanket used in this study shows a good agreement with data obtained in such in-situ experiments as MOZART, EXOTIC-5, 6 and TRINE experiments. (author)

  13. Breeds of cattle

    NARCIS (Netherlands)

    Buchanan, David S.; Lenstra, Johannes A.

    2015-01-01

    This chapter gives an overview on the different breeds of cattle (Bos taurus and B. indicus). Cattle breeds are presented and categorized according to utility and mode of origin. Classification and phylogeny of breeds are also discussed. Furthermore, a description of cattle breeds is provided.

  14. Monitoring tritium in air containing other beta-emitters using ion chambers

    International Nuclear Information System (INIS)

    Jalbert, R.A.

    1975-01-01

    A flow-through ionization chamber instrument is described which is capable of measuring tritium in air containing high concentrations of other beta emitters. The instrument employs a separate concentric chamber with a thin common wall opaque only to tritium betas. Currents produced in the two chambers are subtracted leaving only the current due to tritium. With a 1.6-l sampling chamber and an 18-s time constant, tritium concentrations of 10 -6 μCi/ml to 10 -4 μCi/ml are measured with 2 sigma confidence in background beta concentrations of 4 x 10 -5 μCi/ml to 0.4 muCi/ml, respectively. (auth)

  15. Tritium assay of Li/sub 2/O in the LBM/LOTUS experiments

    International Nuclear Information System (INIS)

    Quanci, J.; Azam, S.; Bertone, P.

    1986-01-01

    The Lithium Blanket Module (LBM) is an assembly of over 20,000 cylindrical lithium oxide pellets in an array representative of a limited-coverage breeding zone for a toroidal fusion device. A principal objective of the LBM program is to test the ability of advanced neutronics coding to model the tritium breeding characteristics of a fusion device blanket. The LBM has been irradiated at the Ecole Polytechnique Federale de Lausanne (EPFL) LOTUS facility with a 14 MeV point-neutron source. Princeton Plasma Physics Laboratory (PPPL) and EPFL assayed the tritium bred in lithium oxide diagnostic samples placed at various positions in the LBM. PPPL employed a thermal extraction technique while EPFL used a dissolution method. The results for the assay are reported and compared to MCNP Monte Carlo neutronics calculations for the LBM/LOTUS system

  16. Neutronic analysis of a dual He/LiPb coolant breeding blanket for DEMO

    International Nuclear Information System (INIS)

    Catalan, J.P.; Ogando, F.; Sanz, J.; Palermo, I.; Veredas, G.; Gomez-Ros, J.M.; Sedano, L.

    2011-01-01

    A conceptual design of a DEMO fusion reactor is being developed under the Spanish Breeding Blanket Technology Programme: TECNO F US based on a He/LiPb dual coolant blanket as reference design option. The following issues have been analyzed to address the demonstration of the neutronic reliability of this conceptual blanket design: power amplification capacity of the blanket, tritium breeding capability for fuel self-sufficiency, power deposition due to nuclear heating in superconducting coils and material damage (dpa, gas production) to estimate the operational life of the steel-made structural components in the blanket and vacuum vessel (VV). In order to optimize the shielding of the coils different combinations of water and steel have been considered for the gap of the VV. The used neutron source is based on an axi-symmetric 2D fusion reaction profile for the given plasma equilibrium configuration. MCNPX has been used for transport calculations and ACAB has been used to handle gas production and damage energy cross sections.

  17. Tritium containment and blanket design challenges for a 1 GWe mirror fusion central power station

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1976-06-01

    Tritium containment and removal problems associated with the blanket and power-systems for a mirror fusion reactor are identified and conceptual process designs are devised to reduce emissions to the environment below 1 Ci/day. The blanket concept development proceeds by starting with this emission goal of 1 Ci/day and working inward to the blanket. At each decision point, worker safety, operational labor costs, and capital cost tradeoffs are contrasted. The conceptual design uses air for the reactor hall with a continuous catalytic oxidizer-molecular sieve adsorber cleanup system to maintain a 40 μCi/m 3 tritium level (5 μCi/m 3 HTO) against 180 Ci/day leakage from reactor components, energy recovery systems, and process piping. This blanket contains submodules with Li 2 Be 2 O 3 --Be for tritium breeding and submodules with Be for mostly energy production. Tritium production in both is handled by separately containing this breeding material and scavenging this container with lithium vapor-doped helium gas stream

  18. Analysis on tritium permeation in tritium storage bed with gas flowing calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hirofumi; Hayashi, Takumi; Suzuki, Takumi; Nishi, Masataka [Japan Atomic Energy Research Inst., Naka Fusion Research Establishment, Department of Fusion Engineering Research, Naka, Ibaraki (Japan); Yoshida, Hiroshi [Japan Atomic Energy Research Inst., Naka Fusion Research Establishment, ITER-Joint Centeral Team, Naka, Ibaraki (Japan)

    2000-10-01

    Tritium permeation amount in a tritium storage bed with gas flowing calorimetric was evaluated under a condition of new operation mode for International Thermonuclear Experimental Reactor (ITER). As a result, tritium permeation under the new operation mode was estimated to be about twice of that under the practical operation mode. This result show that it would be regardless in a view point of material control of tritium, however, it was suggested to be required additional tritium removal or evacuate system in a view points of safety control or performance of accountability or thermal insulating of the tritium storage bed. (author)

  19. Tritium transport studies with use of the ISEP NPA during tritium trace experimental campaign on JET

    International Nuclear Information System (INIS)

    Mironov, M I; Afanasyev, V I; Murari, A; Santala, M; Beaumont, P

    2010-01-01

    The neutral particle analyzer (NPA) known as ISEP (Ion SEParator) was applied to measure the tritium neutral flux during the tritium trace experiment (TTE) on JET. The energy dependence (in the 5-28 keV energy range) of the tritium neutral flux rise time after a short ∼100 ms tritium gas puff into deuterium plasmas has been observed for the first time. The dependence has been interpreted as being due to the penetration of the tritium ions from the plasma boundary into the core and has been used for the calculation of the tritium diffusion coefficient and convective velocity values.

  20. In-situ tritium recovery from Li2O irradiated in fast neutron flux - Beatrix-II temperature change specimen

    International Nuclear Information System (INIS)

    Slagle, O.D.; Hollenberg, G.W.; Kurasawa, T.; Verrall, R.A.

    1992-01-01

    The Beatrix-II irradiation experiment is an in-situ tritium release experiment to evaluate the stability and tritium release characteristics of Li 2 O under fast neutron irradiation to extended burnups. A thin annular ring specimen capable of temperature changes was irradiated in Phase I of the experiment to a lithium burnup of 5%. The primary emphasis of the test plan was to determine the effect and interrelationship of gas composition and temperature on the tritium inventory with increasing temperature and a series of specific temperature changes were carried out at intervals throughout the experiment to characterize the effect of burnup. Decreasing the amount of hydrogen in the sweep gas resulted in an increase in the tritium inventory in the Li 2 O specimen. The tritium recovery during startup and shutdown was observed to be strongly influenced by the composition of the sweep gas

  1. Review of recent japanese activities on tritium accountability in fusion reactors

    International Nuclear Information System (INIS)

    Fukada, Satoshi; Oya, Yasuhisa; Hatano, Yuji

    2016-01-01

    Highlights: • Review of Japanese tritium-safety research is given from several viewpoints. • The keywords are tritium accountability and self sufficiency. • Tritium-relating history, tritium facilities and legal regulation are introduced. - Abstract: After introduction of Japanese history or recent topics on tritium (T)-relating research and T-handling capacity in facilities or universities, present activities on T engineering research in Japan are summarized in short in terms of T accountability on safety. The term of safety includes wide processes from T production, assay, storing, confinement, transfer through safety handling finally to shipment of its waste. In order to achieve reliable operation of fusion reactors, several unit processes included in the T cycle of fusion reactors are investigated. Especially, the following recent advances are focused: T retention in plasma facing materials, emergency detritiation system including fire case, T leak through metal tube walls, oxide coating and water detritiation. Strict control, storing and accurate measurement are especially demanded for T accountability depending on various molecular species. Since kg-order T of vaporable radioisotope (RI) will be handled in a fuel cycle or breeding system of a fusion reactor, the accuracy of <0.1% is demanded far over the conventional technology status. Necessity to control T balance within legal restrictions is always kept in mind for operation of the future reactor.

  2. Review of recent japanese activities on tritium accountability in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fukada, Satoshi, E-mail: sfukada@nucl.kyushu-u.ac.jp [Dept. Advanced Energy Engineering Science, Kyushu University, 6-1 Kasuga-Koen, Kasuga, 816-8580 (Japan); Oya, Yasuhisa [College of Science, Academic Institute, Shizuoka University, 836 Otani, Suruga-ku, Shizuoka 422-8529 (Japan); Hatano, Yuji [Hydrogen Isotope Research Center, Organization for Promotion Research, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan)

    2016-12-15

    Highlights: • Review of Japanese tritium-safety research is given from several viewpoints. • The keywords are tritium accountability and self sufficiency. • Tritium-relating history, tritium facilities and legal regulation are introduced. - Abstract: After introduction of Japanese history or recent topics on tritium (T)-relating research and T-handling capacity in facilities or universities, present activities on T engineering research in Japan are summarized in short in terms of T accountability on safety. The term of safety includes wide processes from T production, assay, storing, confinement, transfer through safety handling finally to shipment of its waste. In order to achieve reliable operation of fusion reactors, several unit processes included in the T cycle of fusion reactors are investigated. Especially, the following recent advances are focused: T retention in plasma facing materials, emergency detritiation system including fire case, T leak through metal tube walls, oxide coating and water detritiation. Strict control, storing and accurate measurement are especially demanded for T accountability depending on various molecular species. Since kg-order T of vaporable radioisotope (RI) will be handled in a fuel cycle or breeding system of a fusion reactor, the accuracy of <0.1% is demanded far over the conventional technology status. Necessity to control T balance within legal restrictions is always kept in mind for operation of the future reactor.

  3. Tritium sorption by cement and subsequent release

    International Nuclear Information System (INIS)

    Ono, F.; Yamawaki, M.

    1995-01-01

    In a fusion reactor or tritium-handling facilities, contamination of concrete by tritium and subsequent release from it to the reator or experimental room is a matter of problem for safe control of tritium and management of operational environment. In order to evaluate this tritium behavior, interaction of tritiated water with concrete or cement should be clarified. In the present study, HTO sorption and subsequent release from cement were experimentally studied.(1)Sorption experiments were conducted using columns packed with cement particles of different sizes. From the analysis of the breakthrough curve, tritium diffusivity in macropores and microparticles were evaluated.(2)From the short-term tritium release experiments, effective desorption rate constants were evaluated and the effects of temperature and moisture were studied.(3)In the long-term tritium release experiments to 6000h, the tritium release mechanism was found to be composed of three kinds of water: initially from capillary water, and in the second stage from gel water and from the water in the cement crystal.(4)Tritium release behavior by heat treatment to 800 C was studied. A high temperature above 600 C was required for the tritium trapped in the crystal water to be released. (orig.)

  4. The LLNL portable tritium processing system

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The end of the Cold War significantly reduced the need for facilities to handle radioactive materials for the US nuclear weapons program. The LLNL Tritium Facility was among those slated for decommissioning. The plans for the facility have since been reversed, and it remains open. Nevertheless, in the early 1990s, the cleanup (the Tritium Inventory Removal Project) was undertaken. However, removing the inventory of tritium within the facility and cleaning up any pockets of high-level residual contamination required that we design a system adequate to the task and meeting today's stringent standards of worker and environmental protection. In collaboration with Sandia National Laboratory and EG ampersand G Mound Applied Technologies, we fabricated a three-module Portable Tritium Processing System (PTPS) that meets current glovebox standards, is operated from a portable console, and is movable from laboratory to laboratory for performing the basic tritium processing operations: pumping and gas transfer, gas analysis, and gas-phase tritium scrubbing. The Tritium Inventory Removal Project is now in its final year, and the portable system continues to be the workhorse. To meet a strong demand for tritium services, the LLNL Tritium Facility will be reconfigured to provide state-of-the-art tritium and radioactive decontamination research and development. The PTPS will play a key role in this new facility

  5. The Chalk River Tritium Extraction Plant

    International Nuclear Information System (INIS)

    Holtslander, W.J.; Harrison, T.E.; Spagnolo, D.A.

    1990-01-01

    The Chalk River Tritium Extraction Plant for removal of tritium from heavy water is described. Tritium is present in the heavy water from research reactors in the form of DTO at a concentration in the range of 1-35 Ci/kg. It is removed by a combination of catalytic exchange to transfer the tritium from DTO to DT, followed by cryogenic distillation to separate and concentrate the tritium to T 2 . The tritium product is reacted with titanium and packaged for transportation and storage as titanium tritide. The plant processes heavy water at a rate of 25 kg/h and removes 80% of the tritium and 90% of the protium per pass. Catalytic exchange is carried out in the liquid phase using a proprietary wetproofed catalyst. The plant serves two roles in the Canadian fusion program: it produces pure tritium for use in fusion research and development, and it demonstrates on an industrial scale many of the tritium technologies that are common to the tritium systems in fusion reactors (author)

  6. The Chalk River Tritium Extraction Plant

    Energy Technology Data Exchange (ETDEWEB)

    Holtslander, W J; Harrison, T E; Spagnolo, D A

    1990-07-01

    The Chalk River Tritium Extraction Plant for removal of tritium from heavy water is described. Tritium is present in the heavy water from research reactors in the form of DTO at a concentration in the range of 1-35 Ci/kg. It is removed by a combination of catalytic exchange to transfer the tritium from DTO to DT, followed by cryogenic distillation to separate and concentrate the tritium to T{sub 2}. The tritium product is reacted with titanium and packaged for transportation and storage as titanium tritide. The plant processes heavy water at a rate of 25 kg/h and removes 80% of the tritium and 90% of the protium per pass. Catalytic exchange is carried out in the liquid phase using a proprietary wetproofed catalyst. The plant serves two roles in the Canadian fusion program: it produces pure tritium for use in fusion research and development, and it demonstrates on an industrial scale many of the tritium technologies that are common to the tritium systems in fusion reactors (author)

  7. Estimation of Biological Effects of Tritium.

    Science.gov (United States)

    Umata, Toshiyuki

    2017-01-01

    Nuclear fusion technology is expected to create new energy in the future. However, nuclear fusion requires a large amount of tritium as a fuel, leading to concern about the exposure of radiation workers to tritium beta radiation. Furthermore, countermeasures for tritium-polluted water produced in decommissioning of the reactor at Fukushima Daiichi Nuclear Power Station may potentially cause health problems in radiation workers. Although, internal exposure to tritium at a low dose/low dose rate can be assumed, biological effect of tritium exposure is not negligible, because tritiated water (HTO) intake to the body via the mouth/inhalation/skin would lead to homogeneous distribution throughout the whole body. Furthermore, organically-bound tritium (OBT) stays in the body as parts of the molecules that comprise living organisms resulting in long-term exposure, and the chemical form of tritium should be considered. To evaluate the biological effect of tritium, the effect should be compared with that of other radiation types. Many studies have examined the relative biological effectiveness (RBE) of tritium. Hence, we report the RBE, which was obtained with radiation carcinogenesis classified as a stochastic effect, and serves as a reference for cancer risk. We also introduce the outline of the tritium experiment and the principle of a recently developed animal experimental system using transgenic mouse to detect the biological influence of radiation exposure at a low dose/low dose rate.

  8. Tritium inventories and tritium safety design principles for the fuel cycle of ITER

    International Nuclear Information System (INIS)

    Cristescu, I.R.; Cristescu, I.; Doerr, L.; Glugla, M.; Murdoch, D.

    2007-01-01

    Within the tritium plant of ITER a total inventory of about 2-3 kg will be necessary to operate the machine in the DT phase. During plasma operation, tritium will be distributed in the different sub-systems of the fuel cycle. A tool for tritium inventory evaluation within each sub-system of the fuel cycle is important with respect to both the process of licensing ITER and also for operation. It is very likely that measurements of total tritium inventories may not be possible for all sub-systems; however, tritium accounting may be achieved by modelling its hold-up within each sub-system and by validating these models in real-time against the monitored flows and tritium streams between the sub-systems. To get reliable results, an accurate dynamic modelling of the tritium content in each sub-system is necessary. A dynamic model (TRIMO) for tritium inventory calculation reflecting the design of each fuel cycle sub-systems was developed. The amount of tritium needed for ITER operation has a direct impact on the tritium inventories within the fuel cycle sub-systems. As ITER will function in pulses, the main characteristics that influence the rapid tritium recovery from the fuel cycle as necessary for refuelling are discussed. The confinement of tritium within the respective sub-systems of the fuel cycle is one of the most important safety objectives. The design of the deuterium/tritium fuel cycle of ITER includes a multiple barrier concept for the confinement of tritium. The buildings are equipped with a vent detritiation system and re-circulation type room atmosphere detritiation systems, required for tritium confinement barrier during possible tritium spillage events. Complementarily to the atmosphere detritiation systems, in ITER a water detritiation system for tritium recovery from various sources will also be operated

  9. The tritium content of precipitation and groundwater at Yola, Nigeria ...

    African Journals Online (AJOL)

    Tritium is a radioactive isotope of hydrogen which occurs in precipitation. In groundwater studies tritium measurements give information on the time of recharge to the system; the tritium content of precipitation being used to estimate the input of tritium to the groundwater system. At Yola, the tritium ontents in precipitation and ...

  10. Tritium in Exit Signs | RadTown USA | US EPA

    Science.gov (United States)

    2017-08-07

    Many exit signs contain tritium to light the sign without batteries or electricity. Using tritium in exit signs allows the sign to remain lit if the power goes out. Tritium is most dangerous when it is inhaled or swallowed. Never tamper with a tritium exit sign. If a tritium exit sign is broken, leave the area immediately and notify the building maintenance staff.

  11. Simulation of tritium behavior after intended tritium release in ventilated room

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Hayashi, Takumi; Yamanishi, Toshihiko; Kobayashi, Kazuhiro; Nishi, Masataka

    2001-01-01

    At the Tritium Process Laboratory (TPL) at the Japan Atomic Energy Research Institute (JAERI), Caisson Assembly for Tritium Safety study (CATS) with 12 m 3 of large airtight vessel (Caisson) was fabricated for confirmation and enhancement of fusion reactor safety to estimate tritium behavior in the case where a tritium leak event should happen. One of the principal objectives of the present studies is the establishment of simulation method to predict the tritium behavior after the tritium leak event should happen in a ventilated room. The RNG model was found to be valid for eddy flow calculation in the 50 m 3 /h ventilated Caisson with acceptable engineering precision. The calculated initial and removal tritium concentration histories after intended tritium release were consistent with the experimental observations in the 50 m 3 /h ventilated Caisson. It is found that the flow near a wall plays an important role for the tritium transport in the ventilated room. On the other hand, tritium behavior intentionally released in the 3,000 m 3 of tritium handling room was investigated experimentally under a US-Japan collaboration. The tritium concentration history calculated with the same method was consistent with the experimental observations, which proves that the present developed method can be applied to the actual scale of tritium handling room. (author)

  12. Behaviour of tritium in the environment

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: There is considerable interest in the behaviour of radionuclides of global character that may be released to the environment through the development of nuclear power. Tritium is of particular interest due to its direct incorporation into water and organic tissue. Although there has been a large decrease (more than ten times) in tritium concentration since the stopping of nuclear weapons tests in the atmosphere, the construction in the near future of many water reactors and in the far future of fusion reactors could increase the present levels. Progress has been made during recent years in the assessment of tritium distribution, in detection methods and in biological studies While several meetings have given scientists an opportunity to present papers on tritium, no specific symposium on this topic has been organized by the IAEA since 1961. Thus the purpose of the meeting was to review recent advances and to report on the practical aspects of tritium utilization and monitoring. The symposium was jointly organized with OECD/NEA, in co-operation with the US Department of Energy and the Lawrence Livermore Laboratory. Papers were presented on distribution of tritium, evaluation of future discharges, measurement of tritium, tritium in the aquatic environment, tritium in the terrestrial environment, tritium in man and monitoring of tritium Very interesting papers were given on distribution of tritium and participants got a good idea of the circulation of this radionuclide Some new data were provided on tritium pollution from luminous compounds and we learnt that the tritium release of the Swiss luminous compounds industry is of the same order of magnitude as the tritium release of Windscale. Projections indicate that, in the USA, the total quantity of tritium contained in discarded digital watches will be equal, approximately ten years in the future, to the release of nuclear power reactors Whereas nuclear reactor discharges are controlled there is no control

  13. Subsystem software for TSTA [Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Mann, L.W.; Claborn, G.W.; Nielson, C.W.

    1987-01-01

    The Subsystem Control Software at the Tritium System Test Assembly (TSTA) must control sophisticated chemical processes through the physical operation of valves, motor controllers, gas sampling devices, thermocouples, pressure transducers, and similar devices. Such control software has to be capable of passing stringent quality assurance (QA) criteria to provide for the safe handling of significant amounts of tritium on a routine basis. Since many of the chemical processes and physical components are experimental, the control software has to be flexible enough to allow for trial/error learning curve, but still protect the environment and personnel from exposure to unsafe levels of radiation. The software at TSTA is implemented in several levels as described in a preceding paper in these proceedings. This paper depends on information given in the preceding paper for understanding. The top level is the Subsystem Control level

  14. Capability ethics

    OpenAIRE

    Robeyns, Ingrid

    2012-01-01

    textabstractThe capability approach is one of the most recent additions to the landscape of normative theories in ethics and political philosophy. Yet in its present stage of development, the capability approach is not a full-blown normative theory, in contrast to utilitarianism, deontological theories, virtue ethics, or pragmatism. As I will argue in this chapter, at present the core of the capability approach is an account of value, which together with some other (more minor) normative comm...

  15. Development of a tritium monitor combined with an electrochemical tritium pump using a proton conducting oxide

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M. [National Institute for Fusion Science, Toki, Gifu (Japan); Sugiyama, T. [Nagoya University, Fro-cho, Chikusa-ku, Nagoya (Japan)

    2015-03-15

    The detection of low level tritium is one of the key issues for tritium management in tritium handling facilities. Such a detection can be performed by tritium monitors based on proton conducting oxide technique. We tested a tritium monitoring system composed of a commercial proportional counter combined with an electrochemical hydrogen pump equipped with CaZr{sub 0.9}In{sub 0.1}O{sub 3-α} as proton conducting oxide. The hydrogen pump operated at 973 K under electrolysis conditions using tritiated water vapor (HTO). The proton conducting oxide extracts tritium molecules (HT) from HTO and tritium concentration is measured by the proportional counter. The advantage of the proposed tritium monitoring system is that it is able to convert HTO into molecular hydrogen.

  16. Tritium labelled steroids, preparation process and application to synthesis of tritium labelled estrane derivatives

    International Nuclear Information System (INIS)

    1978-01-01

    Process for preparing new steroids labelled with tritium in 6.7 and comprising in 3 a blocked ketonic group as ketal, thioketal or derivatives. Application of these products to the synthesis of tritium labelled estrane derivatives [fr

  17. Radiological training for tritium facilities

    International Nuclear Information System (INIS)

    1996-12-01

    This program management guide describes a recommended implementation standard for core training as outlined in the DOE Radiological Control Manual (RCM). The standard is to assist those individuals, both within DOE and Managing and Operating contractors, identified as having responsibility for implementing the core training recommended by the RCM. This training may also be given to radiological workers using tritium to assist in meeting their job specific training requirements of 10 CFR 835

  18. Radiological training for tritium facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This program management guide describes a recommended implementation standard for core training as outlined in the DOE Radiological Control Manual (RCM). The standard is to assist those individuals, both within DOE and Managing and Operating contractors, identified as having responsibility for implementing the core training recommended by the RCM. This training may also be given to radiological workers using tritium to assist in meeting their job specific training requirements of 10 CFR 835.

  19. Tritium environmental transport studies at TFTR

    International Nuclear Information System (INIS)

    Ritter, P.D.; Dolan, T.J.; Longhurst, G.R.

    1993-01-01

    Environmental tritium concentrations will be measured near the Tokamak Fusion Test Reactor (TFTR) to help validate dynamic models of tritium transport in the environment. For model validation the database must contain sequential measurements of tritium concentrations in key environmental compartments. Since complete containment of tritium is an operational goal, the supplementary monitoring program should be able to glean useful data from an unscheduled acute release. Portable air samplers will be used to take samples automatically every 4 hours for a weak after an acute release, thus obtaining the time resolution needed for code validation. Samples of soil, vegetation, and foodstuffs will be gathered daily at the same locations as the active air monitors. The database may help validate the plant/soil/air part of tritium transport models and enhance environmental tritium transport understanding for the International Thermonuclear Experimental Reactor (ITER)

  20. Tritium environmental transport studies at TFTR

    Science.gov (United States)

    Ritter, P. D.; Dolan, T. J.; Longhurst, G. R.

    1993-06-01

    Environmental tritium concentrations will be measured near the Tokamak Fusion Test Reactor (TFTR) to help validate dynamic models of tritium transport in the environment. For model validation the database must contain sequential measurements of tritium concentrations in key environmental compartments. Since complete containment of tritium is an operational goal, the supplementary monitoring program should be able to glean useful data from an unscheduled acute release. Portable air samplers will be used to take samples automatically every 4 hours for a week after an acute release, thus obtaining the time resolution needed for code validation. Samples of soil, vegetation, and foodstuffs will be gathered daily at the same locations as the active air monitors. The database may help validate the plant/soil/air part of tritium transport models and enhance environmental tritium transport understanding for the International Thermonuclear Experimental Reactor (ITER).

  1. Purification of tritium-free water

    International Nuclear Information System (INIS)

    Hussain, S.D.

    1982-10-01

    Ground water which has been out of contact with the atmosphere for a long time as compared to the half life of tritium (12.43 years) does not contain any measureable amount of tritium. Such water is called tritium-free water. It may contain dissolved and suspended impurities and has to be purified before it can be used for the preparation of blanks and standards required in the routine measurement of low level tritium in water samples. The purification of tritium-free water by distillation in a closed system has been described. The quality of processed tritium-free water was precisely checked at International Atomic Energy Agency (IAEA) Vienna and found satisfactory. (authors)

  2. Modeling tritium transport in the environment

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1986-01-01

    A model of tritium transport in the environment near an atmospheric source of tritium is presented in the general context of modeling material cycling in ecosystems. The model was developed to test hypotheses about the process involved in tritium cycling. The temporal and spatial scales of the model were picked to allow comparison to environmental monitoring data collected in the vicinity of the Savannah River Plant. Initial simulations with the model showed good agreement with monitoring data, including atmospheric and vegetation tritium concentrations. The model can also simulate values of tritium in vegetation organic matter if the key parameter distributing the source of organic hydrogen is varied to fit the data. However, because of the lack of independent conformation of the distribution parameter, there is still uncertainty about the role of organic movement of tritium in the food chain, and its effect on the dose to man

  3. Tritium Removal from Carbon Plasma Facing Components

    International Nuclear Information System (INIS)

    Skinner, C.H.; Coad, J.P.; Federici, G.

    2003-01-01

    Tritium removal is a major unsolved development task for next-step devices with carbon plasma-facing components. The 2-3 order of magnitude increase in duty cycle and associated tritium accumulation rate in a next-step tokamak will place unprecedented demands on tritium removal technology. The associated technical risk can be mitigated only if suitable removal techniques are demonstrated on tokamaks before the construction of a next-step device. This article reviews the history of codeposition, the tritium experience of TFTR (Tokamak Fusion Test Reactor) and JET (Joint European Torus) and the tritium removal rate required to support ITER's planned operational schedule. The merits and shortcomings of various tritium removal techniques are discussed with particular emphasis on oxidation and laser surface heating

  4. Comparison of Tritium Component Failure Rate Data

    International Nuclear Information System (INIS)

    Lee C. Cadwallader

    2004-01-01

    Published failure rate values from the US Tritium Systems Test Assembly, the Japanese Tritium Process Laboratory, the German Tritium Laboratory Karlsruhe, and the Joint European Torus Active Gas Handling System have been compared. This comparison is on a limited set of components, but there is a good variety of data sets in the comparison. The data compared reasonably well. The most reasonable failure rate values are recommended for use on next generation tritium handling system components, such as those in the tritium plant systems for the International Thermonuclear Experimental Reactor and the tritium fuel systems of inertial fusion facilities, such as the US National Ignition Facility. These data and the comparison results are also shared with the International Energy Agency cooperative task on fusion component failure rate data

  5. History of 232-F, tritium extraction processing

    International Nuclear Information System (INIS)

    Blackburn, G.W.

    1994-08-01

    In 1950 the Atomic Energy Commission authorized the Savannah River Project principally for the production of tritium and plutonium-239 for use in thermonuclear weapons. 232-F was built as an interim facility in 1953--1954, at a cost of $3.9M. Tritium extraction operations began in October, 1955, after the reactor and separations startups. In July, 1957 a larger tritium facility began operation in 232-H. In 1958 the capacity of 232-H was doubled. Also, in 1957 a new task was assigned to Savannah River, the loading of tritium into reservoirs that would be actual components of thermonuclear weapons. This report describes the history of 232-F, the process for tritium extraction, and the lessons learned over the years that were eventually incorporated into the new Replacement Tritium Facility

  6. Effects of interfering constituents on tritium smears

    International Nuclear Information System (INIS)

    Levi, G.D. Jr.; Cheeks, K.E.

    1993-01-01

    Tritium smears are performed by Health Protection Operations (HPO) to assess transferable contamination on work place surfaces, materials for movement outside Radiologically Controlled Areas (RCA), and product containers being shipped between facilities. Historically, gas proportional counters were used to detect transferable tritium contamination collected by smearing. Because tritium is a low-energy beta emitter, gas proportional counters do not provide the sensitivity or the counting efficiency to accurately measure the tritium activity on the smear. Liquid Scintillation Counters (LSC) provide greater counting efficiency for the low-energy beta particles along with greater reliability and reproducibility compared to gas flow proportional counters. The purpose of this technical evaluation was to determine the effects of interfering constituents such as filters, dirt and oil on the counting efficiency and tritium recoveries of tritium smears by LSC

  7. Experiments on tritium behavior in beryllium, (2)

    International Nuclear Information System (INIS)

    Ishitsuka, Etsuo; Kawamura, Hiroshi; Nakata, Hirokatsu; Sugai, Hiroyuki; Tanase, Masakazu.

    1990-02-01

    Beryllium has been used as the neutron reflector of material testing reactor and as the neutron multiplier for the fusion reactor lately. To study the tritium behavior in beryllium, we conducted the experiments, i.e., tritium release by recoil or diffusion by using the hot-pressed beryllium which had been produced both tritium and helium by neutron irradiation. From our experiments, we found that (1) amount of tritium production per one cycle irradiation (lasting 22 days) of JMTR is 10 mCi/g, (2) amount of tritium per surface area of hot-pressed beryllium released by recoil is 4 μCi/cm 2 , (3) diffusion coefficient of tritium in a temperature range of 800 ∼1180degC can be expressed with the following equation; D = 8.7 x 10 4 exp(-2.9x10 5 /R/T) cm 2 /s. (author)

  8. Regulating tritium in drinking water

    International Nuclear Information System (INIS)

    Fluke, R.

    1994-01-01

    This article incorporates an article by E. Koehl from an internal Ontario Hydro publication, and a letter from the Joint Committee of Health and Safety of the Royal Society of Canada and the Canadian Academy of Engineering, submitted to the Ontario Minister of the Environment and Energy. The Advisory Committee on Environmental Standards had recommended that the limit for tritium in Ontario drinking water be reduced from 40,000 to 100 Bq/L, with a further reduction to 20 in five years. Some facts and figures are adduced to show that the effect of tritium in drinking water in Ontario is negligible compared to the effect of background radiation. The risk from tritium to the people of Ontario is undetectably small, and the attempt to estimate this risk by linear extrapolation is extremely dubious. Regulation entails social and economic costs, and the government ought to ensure that the benefits exceed the costs. The costs translate into nothing less than wasted opportunity to save lives in other ways. 3 refs

  9. Tritium management in fusion reactors

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1978-05-01

    This is a review paper covering the key environmental and safety issues and how they have been handled in the various magnetic and inertial confinement concepts and reference designs. The issues treated include: tritium accident analyses, tritium process control, occupational safety, HTO formation rate from the gas-phase, disposal of tritium contaminated wastes, and environmental impact--each covering the Joint European Tokamak (J.E.T. experiment), Tokamak Fusion Test Reactor (TFTR), Russian T-20, The Next Step (TNS) designs by Westinghouse/ORNL and General Atomic/ANL, the ANL and ORNL EPR's, the G.A. Doublet Demonstration Reactor, the Italian Fintor-D and the ORNL Demo Studies. There are also the following full scale plant reference designs: UWMAK-III, LASL's Theta Pinch Reactor Design (RTPR), Mirror Fusion Reactor (MFR), Tandem Mirror Reactor (TMR), and the Mirror Hybrid Reactor (MHR). There are four laser device breakeven experiments, SHIVA-NOVA, LLL reference designs, ORNL Laser Fusion power plant, the German ''Saturn,'' and LLL's Laser Fusion EPR I and II

  10. Refurbishing tritium contaminated ion sources

    International Nuclear Information System (INIS)

    Wright, K.E.; Carnevale, R.H.; McCormack, B.E.; Stevenson, T.; Halle, A. von

    1995-01-01

    Extended tritium experimentation on TFTR has necessitated refurbishing Neutral Beam Long Pulse Ion Sources (LPIS) which developed operational difficulties, both in the TFTR Test Cell and later, in the NB Source Refurbishment Shop. Shipping contaminated sources off-site for repair was not permissible from a transport and safety perspective. Therefore, the NB source repair facility was upgraded by relocating fixtures, tooling, test apparatus, and three-axis coordinate measuring equipment; purchasing and fabricating fume hoods; installing exhaust vents; and providing a controlled negative pressure environment in the source degreaser/decon area. Appropriate air flow monitors, pressure indicators, tritium detectors and safety alarms were also included. The effectiveness of various decontamination methods was explored while the activation was monitored. Procedures and methods were developed to permit complete disassembly and rebuild of an ion source while continuously exhausting the internal volume to the TFTR Stack to avoid concentrations of tritium from outgassing and minimize personnel exposure. This paper presents upgrades made to the LPIS repair facility, various repair tasks performed, and discusses the effectiveness of the decontamination processes utilized

  11. Tritium production in fusion reactors

    International Nuclear Information System (INIS)

    Roth, E.

    1981-08-01

    The present analyses on the possibilities of extracting tritium from the liquid and solid fusion reactor blankets show up many problems. A consistent ensemble of materials and devices for extracting the heat and the tritium has not yet been integrated in a fusion reactor blanket project. The dimensioning of the many pipes required for shifting the tritium can only be done very approximately and the volume taken up by the blanket is difficult to evaluate, etc. The utilization of present data leads to over-dimensioning the installations by prudence and perhaps rejecting the best solutions. In order to measure the parameters of the most promising materials, work must be carried out on well defined samples and not only determine the base physical-chemical coefficients, such as thermal conductivity, scattering coefficients, Sievert parameters, but also the kinetic parameters conventional in chemical engineering, such as the hourly space rates of degassing. It is also necessary to perform long duration experiments under radiation and at operating temperatures, or above, in order to study the ageing of the bodies employed [fr

  12. Tritium radioluminescent devices, Health and Safety Manual

    Energy Technology Data Exchange (ETDEWEB)

    Traub, R.J.; Jensen, G.A.

    1995-06-01

    This document consolidates available information on the properties of tritium, including its environmental chemistry, its health physics, and safe practices in using tritium-activated RL lighting. It also summarizes relevant government regulations on RL lighting. Chapters are divided into a single-column part, which provides an overview of the topic for readers simply requiring guidance on the safety of tritium RL lighting, and a dual-column part for readers requiring more technical and detailed information.

  13. Overview of light sources powered by tritium

    International Nuclear Information System (INIS)

    Wu Jian; Lei Jiarong; Liu Wenke

    2012-01-01

    Due to their long lifespan and stable intensity, light sources initiated by tritium instead of electricity or batteries are suitable for low level lighting applications. Therefore, tritium-based radioluminescent (RL) light sources are widely used in both military and civil applications. However, traditional tritium lights with the gas tube structure have several shortcomings: (1) the phosphors are opaque; (2) the glass tube is fragile and easily broken; and (3) the beta kinetic energy is attenuated due to the sorption by the gas; etc. As a result, further application of the tritium lights is limited. In this paper, the lighting mechanism and radiation safety of tritium-based RL light sources are briefly reviewed. Besides, the history and prospects of the development of tritium-based RL light source are discussed. Due to their long lifespan and stable intensity, light sources initiated by tritium instead of electricity or batteries are suitable for low level lighting applications. Therefore, tritium- based radioluminescent (RL) light sources are widely used in both military and civil applications. However, traditional tritium lights with the gas tube structure have several short- comings: (1) the phosphors are opaque; (2) the glass tube is fragile and easily broken; and (3) the beta kinetic energy is attenuated due to the sorption by the gas; etc. As a result, further application of the tritium lights is limited. In this paper, the lighting mechanism and radiation safety of tritium-based RL, light sources are briefly reviewed. Besides, the history and prospects of the development of tritium-based RL light source are discussed. (authors)

  14. Degradation of elastomers by tritium beta radiation

    International Nuclear Information System (INIS)

    Zapp, P.E.; Tuer, G.L. Jr.

    1984-01-01

    Based on its tritium radiation resistance, ethylene propylene rubber has been selected as a candidate for replacement of nitrile rubber in the SRP tritium facilities. A specification for flange gasket material has been developed for ethylene propylene such that its mechanical properties are similar to those of nitrile rubber. In-process testing of ethylene propylene and nitrile gaskets will be conducted in the tritium facilities under identical exposure conditions

  15. Tritium radioluminescent devices, Health and Safety Manual

    International Nuclear Information System (INIS)

    Traub, R.J.; Jensen, G.A.

    1995-06-01

    This document consolidates available information on the properties of tritium, including its environmental chemistry, its health physics, and safe practices in using tritium-activated RL lighting. It also summarizes relevant government regulations on RL lighting. Chapters are divided into a single-column part, which provides an overview of the topic for readers simply requiring guidance on the safety of tritium RL lighting, and a dual-column part for readers requiring more technical and detailed information

  16. Effluent Treatment Facility tritium emissions monitoring

    International Nuclear Information System (INIS)

    Dunn, D.L.

    1991-01-01

    An Environmental Protection Agency (EPA) approved sampling and analysis protocol was developed and executed to verify atmospheric emissions compliance for the new Savannah River Site (SRS) F/H area Effluent Treatment Facility. Sampling equipment was fabricated, installed, and tested at stack monitoring points for filtrable particulate radionuclides, radioactive iodine, and tritium. The only detectable anthropogenic radionuclides released from Effluent Treatment Facility stacks during monitoring were iodine-129 and tritium oxide. This paper only examines the collection and analysis of tritium oxide

  17. The movement of tritium in ecological systems

    International Nuclear Information System (INIS)

    Polevoy, Y; Laichter, Y.

    1988-11-01

    This literature survey summarizes the interaction of tritium gas and tritiated water with various components of the ecological system. The intake of tritium gas and tritiated water in plants and soil is described as well as the location of the highest measurable concentration. This information may serve as a basis for risk assessment from tritium to man through the food chain and enables effective tracing of its concentration in the environment. (author)

  18. Dynamic Capabilities

    DEFF Research Database (Denmark)

    Grünbaum, Niels Nolsøe; Stenger, Marianne

    2013-01-01

    The findings reveal a positive relationship between dynamic capabilities and innovation performance in the case enterprises, as we would expect. It was, however, not possible to establish a positive relationship between innovation performance and profitability. Nor was there any positive...... relationship between dynamic capabilities and profitability....

  19. Capability ethics

    NARCIS (Netherlands)

    I.A.M. Robeyns (Ingrid)

    2012-01-01

    textabstractThe capability approach is one of the most recent additions to the landscape of normative theories in ethics and political philosophy. Yet in its present stage of development, the capability approach is not a full-blown normative theory, in contrast to utilitarianism, deontological

  20. Organic breeding: New trend in plant breeding

    Directory of Open Access Journals (Sweden)

    Berenji Janoš

    2009-01-01

    Full Text Available Organic breeding is a new trend in plant breeding aimed at breeding of organic cultivars adapted to conditions and expectations of organic plant production. The best proof for the need of organic cultivars is the existence of interaction between the performances of genotypes with the kind of production (conventional or organic (graph. 1. The adaptation to low-input conditions of organic production by more eddicient uptake and utilization of plant nutrients is especially important for organic cultivars. One of the basic mechanism of weed control in organic production is the competition of organic cultivars and weeds i.e. the enhanced ability of organic cultivars to suppress the weeds. Resistance/tolerance to diseases and pests is among the most important expectations toward the organic cultivars. In comparison with the methods of conventional plant breeding, in case of organic plant breeding limitations exist in choice of methods for creation of variability and selection classified as permitted, conditionally permitted and banned. The use of genetically modified organisms and their derivated along with induced mutations is not permitted in organic production. The use of molecular markers in organic plant breeding is the only permitted modern method of biotechnology. It is not permitted to patent the breeding material of organic plant breeding or the organic cultivars. .

  1. Tritium in the environment. NCRP Report No. 62

    International Nuclear Information System (INIS)

    Eisenbud, M.

    1979-01-01

    The NCRP (National Council on Radiation Protection and Measurements) Report No. 62 on tritium is described. Tritium production from various sources, distribution and environmental kinetics, biological behaviour and the dosimetry of tritium are discussed. (author)

  2. The introduction of tritium in lactose and saccharose by isotope exchange with gaseous tritium

    International Nuclear Information System (INIS)

    Akulov, G.P.; Snetkova, E.V.; Kaminskij, Yu.L.; Kudelin, B.K.; Efimova, V.L.

    1991-01-01

    Methods for conducting reactions of catalytic protium-tritium isotopic exchange with gaseous tritium were developed in order to synthesize tritium labelled lactose and saccharose. These methods enabled to prepare these labelled disaccharides with high molar activity. The yield was equal to 50-60%, radiochemical purity ∼ 95%

  3. Tritium in precipitation of Vostok (Antarctica): conclusions on the tritium latitude effect.

    Science.gov (United States)

    Hebert, Detlef

    2011-09-01

    During the Antarctic summer of 1985 near the Soviet Antarctic station Vostok, firn samples for tritium measurements were obtained down to a depth of 2.40 m. The results of the tritium measurements are presented and discussed. Based on this and other data, conclusions regarding the tritium latitude effect are derived.

  4. Design of a Multi-Tube Pd-Membrane Module for Tritium Recovery from He in DEMO

    Directory of Open Access Journals (Sweden)

    Marco Incelli

    2016-10-01

    Full Text Available Dense self-supported Pd-alloy membranes are used to selectively separate hydrogen and hydrogen isotopes. In particular, deuterium (D and tritium (T are currently identified as the main elements for the sustainability of the nuclear fusion reaction aimed at carbon free power generation. In the fusion nuclear reactors, a breeding blanket produces the tritium that is extracted and purified before being sent to the plasma chamber in order to sustain the fusion reaction. In this work, the application of Pd-alloy membranes has been tested for recovering tritium from a solid breeding blanket through a helium purge stream. Several simulations have been performed in order to optimize the design of a Pd-Ag multi-tube module in terms of geometry, operating parameters, and membrane module configuration (series vs. parallel. The results demonstrate that a pre-concentration stage before the Pd-membrane unit is mandatory because of the very low tritium concentration in the He which leaves the breeding blanket of the fusion reactor. The most suitable operating conditions could be reached by: (i increasing the hydrogen partial pressure in the lumen side and (ii decreasing the shell pressure. The preliminary design of a membrane unit has been carried out for the case of the DEMO fusion reactor: the optimized membrane module consists of an array of 182 Pd-Ag tubes of 500 mm length, 10 mm diameter, and 0.100 mm wall thickness (total active area of 2.85 m2.

  5. Tritium loss in molten flibe systems

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Anderl, R.A. [Idaho National Eng. and Environ. Lab., Idaho Falls, ID (United States); Scott Willms, R. [Los Alamos National Lab., NM (United States)

    2000-04-01

    An emerging issue relative to beryllium technology in fusion involves tritium interactions with molten beryllium-bearing salts. Innovative designs for fusion reactors, both magnetic and inertially confined, feature the molten salt mixture 2LiF.BeF{sub 2}, commonly called Flibe, as a tritium breeder and coolant. Tritium is bred in the Flibe as neutrons from the plasma are absorbed by Li atoms, which then transmute to tritium and helium. Transmutation of tritium from Be also occurs. Among the issues to be resolved for such coolant systems is the potential loss of tritium from the Flibe coolant to the walls of the system, particularly through heat exchanger tubes, and from there into secondary coolants or working fluids and the environment. Effectively removing tritium from Flibe in clean-up units is also important. In quiescent or low Reynolds number flow, tritium movement through Flibe is governed by diffusion. For Flibe in turbulent flow, as in heat exchanger tubes, transport is by turbulent mixing, and the same flow conditions and structural design features that maximize heat transfer to the heat exchanger walls will enhance the transport of tritium to those same surfaces. Analyses have been performed to estimate the fractional loss of tritium through heat exchanger tubes and release rates from Flibe droplets in vacuum disengagers in molten Flibe systems. The calculations suggest unacceptably large losses of tritium through heat exchanger tubes. The gravity of the implications of these estimates calls for experimental verification to determine if tritium losses through molten Flibe heat exchangers or other Flibe systems can really be so high and whether vacuum disengagers will really work. There is also a need for better information on evolution of tritium from Flibe droplets in a vacuum. Several experiments are presently being planned to address these issues and are discussed. These include experiments to induce tritium in Flibe using spontaneous fission neutrons

  6. Process and system for removing tritium

    International Nuclear Information System (INIS)

    Ridgely, J.N.

    1976-01-01

    A process and system for removing tritium, particularly from high temperature gas cooled atomic reactors (HTGR), is disclosed. Portions of the reactor coolant, which is permeated with the pervasive tritium atom, are processed to remove the tritium. Under conditions of elevated temperature and pressure, the reactor coolant is combined with gaseous oxygen, resulting in the formation of tritiated water vapor from the tritium in the reactor coolant and the gaseous oxygen. The tritiated water vapor and the remaining gaseous oxygen are then successively removed by fractional liquefaction steps. The reactor coolant is then recirculated to the reactor

  7. Tritium stripping by a catalytic exchange stripper

    International Nuclear Information System (INIS)

    Heung, L.K.; Gibson, G.W.; Ortman, M.S.

    1991-01-01

    A catalytic exchange process for stripping elemental tritium from gas streams has been demonstrated. The process uses a catalyzed isotopic exchange reaction between tritium in the gas phase and protium or deuterium in the solid phase on alumina. The reaction is catalyzed by platinum deposited on the alumina. The process has been tested with both tritium and deuterium. Decontamination factors (ration of inlet and outlet tritium concentrations) as high as 1000 have been achieved, depending on inlet concentration. The test results and some demonstrated applications are presented

  8. Tritium immobilization and packaging using metal hydrides

    International Nuclear Information System (INIS)

    Holtslander, W.J.; Yaraskavitch, J.M.

    1981-04-01

    Tritium recovered from CANDU heavy water reactors will have to be packaged and stored in a safe manner. Tritium will be recovered in the elemental form, T 2 . Metal tritides are effective compounds in which to immobilize the tritium as a stable non-reactive solid with a high tritium capacity. The technology necessary to prepare hydrides of suitable metals, such as titanium and zirconium, have been developed and the properties of the prepared materials evaluated. Conceptual designs of packages for containing metal tritides suitable for transportation and long-term storage have been made and initial testing started. (author)

  9. Development of tritium handing technology(II)

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. S.; Ahn, D. H.; Kim, K. R. [KAERI, Taejon (Korea, Republic of); Yook, D. S.; Song, K. M.; Son, S. H. [KEPRI, Taejon (Korea, Republic of); Lee, K. J.; Jung, H. Y.; Song, M. C. [KAIST, Taejon (Korea, Republic of)

    2004-02-01

    The buildup rate of tritium in heavy water moderator and coolant of pressurized heavy water reactors in Wolsong Nuclear Power Plant is about 4MCi/a. The control of tritium is of increasing concern to the power reactor industry and general public in Korea. Metal tritides have the advantage of significantly decreasing the volume required to store tritium without increasing the pressure of storage vessel. Titanium hydride was safely used for the long-term storage of tritium. The experimental thermodynamic P-C-T data show that titanium soaks up hydrogen isotope gas at ambient temperature and modest pressures.

  10. Tritium loss in molten flibe systems

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Scott Willms, R.

    2000-01-01

    An emerging issue relative to beryllium technology in fusion involves tritium interactions with molten beryllium-bearing salts. Innovative designs for fusion reactors, both magnetic and inertially confined, feature the molten salt mixture 2LiF.BeF 2 , commonly called Flibe, as a tritium breeder and coolant. Tritium is bred in the Flibe as neutrons from the plasma are absorbed by Li atoms, which then transmute to tritium and helium. Transmutation of tritium from Be also occurs. Among the issues to be resolved for such coolant systems is the potential loss of tritium from the Flibe coolant to the walls of the system, particularly through heat exchanger tubes, and from there into secondary coolants or working fluids and the environment. Effectively removing tritium from Flibe in clean-up units is also important. In quiescent or low Reynolds number flow, tritium movement through Flibe is governed by diffusion. For Flibe in turbulent flow, as in heat exchanger tubes, transport is by turbulent mixing, and the same flow conditions and structural design features that maximize heat transfer to the heat exchanger walls will enhance the transport of tritium to those same surfaces. Analyses have been performed to estimate the fractional loss of tritium through heat exchanger tubes and release rates from Flibe droplets in vacuum disengagers in molten Flibe systems. The calculations suggest unacceptably large losses of tritium through heat exchanger tubes. The gravity of the implications of these estimates calls for experimental verification to determine if tritium losses through molten Flibe heat exchangers or other Flibe systems can really be so high and whether vacuum disengagers will really work. There is also a need for better information on evolution of tritium from Flibe droplets in a vacuum. Several experiments are presently being planned to address these issues and are discussed. These include experiments to induce tritium in Flibe using spontaneous fission neutrons

  11. Management of Tritium in ITER Waste

    International Nuclear Information System (INIS)

    Rosanvallon, S.; Benchikhoune, M.; Ciattaglia, S.; Uzan, J. Elbez; Na, B. C.; Taylor, N.; Gastaldi, O.

    2011-01-01

    ITER will use tritium as fuel. Procedures and processes are thus put in place in order to recover the tritium that is not used in the fusion reaction, including from waste and effluents. The tritium thus recovered can be re-injected into the fuel cycle. Moreover, tritium content and thus outgassing may be a safety concern, because of the potential for releases to the environment, both from the facility and from the final disposal (subjected to stringent acceptance criteria in the current waste final disposal). The aim of this paper is to present the measures considered to deal with the specific case of tritium in the liquid and solid waste that will arise from ITER operation and decommissioning. It concerns the processes that are considered from the waste production to its final disposal and in particular: the tritium removal stages (in-situ divertor baking at 350 C and tritium removal from solid waste and liquid and gaseous effluents), the removal of dust contamination (dust containing tritium produced by plasma-wall interaction and by the maintenance/ refurbishment processes) and the measures to enable safe processing and storage of the waste (wall-liner in the hot cell facility to limit concrete contamination and interim storage enabling tritium decay for waste that could not be directly accepted in the host-country final disposal facilities). (authors)

  12. Tritium resources available for fusion reactors

    Science.gov (United States)

    Kovari, M.; Coleman, M.; Cristescu, I.; Smith, R.

    2018-02-01

    The tritium required for ITER will be supplied from the CANDU production in Ontario, but while Ontario may be able to supply 8 kg for a DEMO fusion reactor in the mid-2050s, it will not be able to provide 10 kg at any realistic starting time. The tritium required to start DEMO will depend on advances in plasma fuelling efficiency, burnup fraction, and tritium processing technology. It is in theory possible to start up a fusion reactor with little or no tritium, but at an estimated cost of 2 billion per kilogram of tritium saved, it is not economically sensible. Some heavy water reactor tritium production scenarios with varying degrees of optimism are presented, with the assumption that only Canada, the Republic of Korea, and Romania make tritium available to the fusion community. Results for the tritium available for DEMO in 2055 range from zero to 30 kg. CANDU and similar heavy water reactors could in theory generate additional tritium in a number of ways: (a) adjuster rods containing lithium could be used, giving 0.13 kg per year per reactor; (b) a fuel bundle with a burnable absorber has been designed for CANDU reactors, which might be adapted for tritium production; (c) tritium production could be increased by 0.05 kg per year per reactor by doping the moderator with lithium-6. If a fusion reactor is started up around 2055, governments in Canada, Argentina, China, India, South Korea and Romania will have the opportunity in the years leading up to that to take appropriate steps: (a) build, refurbish or upgrade tritium extraction facilities; (b) extend the lives of heavy water reactors, or build new ones; (c) reduce tritium sales; (d) boost tritium production in the remaining heavy water reactors. All of the alternative production methods considered have serious economic and regulatory drawbacks, and the risk of diversion of tritium or lithium-6 would also be a major concern. There are likely to be serious problems with supplying tritium for future

  13. Effects of tritium on electron multiplier performance

    International Nuclear Information System (INIS)

    Kerst, R.A.; Malinowski, M.E.

    1980-01-01

    In developing diagnostic instruments for fusion reactors, it is necessary to measure the effects of tritium contamination on channel electron multipliers (CEM). A CEM was exposed to T 2 pressures of up to 1.5 x 10 -1 Pa, with exposure quantities ranging up to 8800 Pa-s. The counting rate of the CEM is shown to consist of a prompt (Type I) signal caused by gas-phase tritium and a residual (Type II) signal, probably caused by near-surface tritium. The potential for using CEMs for observing the dynamics of tritium adsorption and absorption is discussed

  14. Separation of tritium from other hydrogen isotopes

    International Nuclear Information System (INIS)

    Roth, E.

    1988-01-01

    The paper describes a plant that has been operated at Marcoule for tritium production and used thermal diffusion enrichment, a facility that was built in Saclay to enrich hydrogen in tritium for low level measurements, and the Laue Langevin Institute tritium extraction plant. Details are given on the project under construction for the tritium separation facility at JET using Gas Chromatography, and on proposals for circuits for NET. Studies on catalysers for liquid phase catalytic exchange, on electrolysers, or different gas chromatography arrangements, are described. Systems designed for reprocessing plants, for detritiation of heavy water by distillation are briefly accounted for

  15. Measurement of tritium concentration in urine

    International Nuclear Information System (INIS)

    Sekiyama, Shigenobu; Deshimaru, Takehide

    1979-01-01

    Concerning the safety management of the advanced thermal reactor ''Fugen'', the internal exposure management for tritium is important, because heavy water is used as the moderator in the reactor, and tritium is produced in the heavy water. Tritium is the radioactive nuclide with the maximum β-ray energy of 18 keV, and the radiation exposure is limited to the internal exposure in human bodies, as tritium is taken in through the skin and by breathing. The tritium concentration in urine of the operators of the Fugen plant was measured. As for tritium measurement, the analysis of raw urine, the analysis after passing through mixed ion exchange resin and the analysis after distillation are applied. The scintillator, the liquid scintillation counter, the ion exchange resin and the distillator are introduced. The preliminary survey was conducted on the urine sample, the scintillator the calibration, etc. The measuring condition, the measurement of efficiency, and the limitation of detection with various background are explained, with the many experimental data and the calculating formula. Concerning the measured tritium concentration in urine, the tritium concentrations in distilled urine, raw urine and the urine refined with ion exchange resin were compared, and the correlation formulae are presented. The actual tritium concentration value in urine was less than 50 pci/ml. The measuring methods of raw urine and the urine refined with ion exchange resin are adequate as they are quick and accurate. (Nakai, Y.)

  16. Accelerator production of tritium plant design and supporting engineering development and demonstration work

    International Nuclear Information System (INIS)

    Lisowski, P.W.

    1997-11-01

    Tritium is an isotope of hydrogen with a half life of 12.3 years. Because it is essential for US thermonuclear weapons to function, tritium must be periodically replenished. Since K reactor at Savannah River Site stopped operating in 1988, tritium has been recycled from dismantled nuclear weapons. This process is possible only as long as many weapons are being retired. Maintaining the stockpile at the level called for in the present Strategic Arms Reduction Treaty (START-I) will require the Department of Energy to have an operational tritium production capability in the 2005--2007 time frame. To make the required amount of tritium using an accelerator based system (APT), neutrons will be produced through high energy proton reactions with tungsten and lead. Those neutrons will be moderated and captured in 3 He to make tritium. The APT plant design will use a 1,700 MeV linear accelerator operated at 100 mA. In preparation for engineering design, starting in October 1997 and subsequent construction, a program of engineering development and demonstration is underway. That work includes assembly and testing of the first 20 MeV of the low energy plant linac at 100 mA, high-energy linac accelerating structure prototyping, radiofrequency power system improvements, neutronic efficiency measurements, and materials qualifications

  17. Behavior of tritium in the environment. Proceedings series

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Fifty papers are presented in these proceedings. Individual items are being entered onto the data base. The papers are grouped into seven sections for purposes of continuity. These sections include: distribution of tritium (7 papers); evaluation of future discharges (3 papers); measurement of tritium (3 papers); tritium in the aquatic environment (10 papers); tritium in the terrestrial environment (13 papers); tritium in man (8 papers); and monitoring of tritium (6 papers). (ERB)

  18. The monitoring system of the Tritium Research Laboratory, Sandia Laboratories, Livermore, California

    International Nuclear Information System (INIS)

    Hafner, R.S.; Westfall, D.L.; Ristau, R.D.

    1978-01-01

    Computerized tritium monitoring is now in use at the Tritium Research Laboratory (TRL). Betatec 100 tritium monitors, along with several Sandia designed accessories, have been combined with a PDP 11/40 computer to provide maximum personnel and environmental protection. Each individual monitoring system, in addition to a local display in the area of interest, has a visual/audible display in the control room. Each system is then channeled into the PDP 11/40 computer, providing immediate assessment of the status of the entire laboratory from a central location. Measurement capability ranges from uCi/m 3 levels for room air monitoring to KCi/m 3 levels for glove box and process system monitoring. The overall monitoring system and its capabilities will be presented

  19. Preliminary Analysis on Decay Heat Removal Capability of Helium Cooled Solid Breeder Test Blanket Module

    International Nuclear Information System (INIS)

    Ahn, Mu Young; Cho, Seung Yon; Kim, Duck Hoi; Lee, Eun Seok; Kim, Hyung Seok; Suh, Jae Seung; Yun, Sung Hwan; Cho, Nam Zin

    2007-01-01

    One of the main ITER goals is to test and validate design concepts of tritium breeding blankets relevant to DEMO or fusion power plants. Korea Helium-Cooled Solid Breeder (HCSB) Test Blanket Module (TBM) has been developed with overall objectives of achieving this goal. The TBM employs high pressure helium to cool down the First Wall (FW), Side Wall (SW) and Breeding Zone (BZ). Therefore, safety consideration is a part of the design process. Each ITER Party performing the TBM program is requested to reach a similar level of confidence in the TBM safety analysis. To meet ITER's request, Failure Mode and Effects Analysis (FMEA) studies have been performed on the TBM to identify the Postulated Initial Event (PIE). Although FMEA on the KO TBM has not been completed, in-vessel, in-box and ex-vessel Loss Of Coolant Accident (LOCA) are considered as enveloping cases of PIE in general. In this paper, accidental analyses for the three selected LOCA were performed to investigate the decay heat removal capability of the TBM. To simulate transient thermo-hydraulic behavior of the TBM for the selected scenarios, RELAP5/MOD3.2 code was used

  20. Parametric analysis of LIBRETTO-4 and 5 in-pile tritium transport model on EcosimPro

    Energy Technology Data Exchange (ETDEWEB)

    Alcalde, Pablo Martínez, E-mail: pablomiguel.martinez@externos.ciemat.es [Universidad Nacional de Educación a Distancia (UNED), c/Juan del Rosal 12, 28040 Madrid (Spain); Moreno, Carlos; Ibarra, Ángel [CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain)

    2014-10-15

    Highlights: • Introduction of a new tritium transport model of LIBRETTO-4 and 5 on EcosimPro{sup ®}. • Analysis of model input parameter and variable sensitivities and effects on tritium simulated fluxes. • Demonstrations of high tritium out-flux dependencies on lead-lithium parameters. • Rough fitting achievements proposed by Li17Pb solubility or recombination increase. - Abstract: A new model for LIBRETTO-4/1, 4/2 and 5 experiments have been developed on ECOSIMPro{sup ©} tool to simulate tritium in-pile breeding and transport into two separate purge gas channels with He + 0.1%H{sub 2}. Release from lead lithium eutectic plenum with coupled permeation through an austenitic steel wall on the first and single permeation through EUROFER-97 in the temperature ranges of 300–550 °C can be simulated tuning the transport parameters involved. A parametric study has been performed to reduce the degrees of freedom and to determine the error caused in the simulation due to the uncertainty in experimental input data. The information obtained is essential for the experimental benchmarking. The Tritium Permeation Percentage (TPP) is an output calculated parameter with low variations between 2 and 6% along the whole experimental time easy to compare (730 Full Power Days for LIBRETTO-4 and 520 for 5). Tritium transport parameter ranges verifying this output are defined herein.

  1. Determination of tritium by counting; Dosage du tritium par comptage

    Energy Technology Data Exchange (ETDEWEB)

    Schott, R; Froment, G; Pinson, J; Genty, C [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1968-07-01

    Ionisation chamber assay of tritium in any gaseous mixture is a simple, fast and accurate method. We used the method of relative determination by comparison to a standard rather than the method of absolute assay in which case the constants are known with too little accuracy. The efficiency of the chamber was studied in connection to the pressure inside the chamber and its total volume. The calibration is linear in the range we are taking into account (1 to 80 millicuries). The reproducibility of the method is good: 13 runs gave a coefficient of variation of 1.6 per cent. The relative accuracy was found equal to {+-} 1.3 per cent. To end the paper, we describe in detail the apparatus and the ways of proceedings. (authors) [French] Le comptage du tritium par chambre d'ionisation est une methode simple, rapide et precise pour determiner la teneur en tritium d'un melange gazeux quelconque. Nous avons prefere utiliser la methode de determination relative par rapport a un etalon car, dans le cas d'une determination absolue, les constantes sont connues avec une trop grande incertitude. L'efficacite de la chambre a ete etudiee en fonction de la variation de la pression d'argon a l'interieur de la chambre et du volume total, de cette derniere. L'etalonnage s'est revele lineaire dans le domaine de mesures qui nous interessaient (1 a 80 millicuries). La reproductibillte de la methode est tres bonne, le coefficient de variation pour une serie de 13 essais etant de 1,6 pour cent, quant a la precision relative, elle a ete evaluee a {+-} 1,3 pour cent. Pour terminer, nous donnons une description detaillee de l'appareillage utilise et du mode operatoire suivi. (auteurs)

  2. Study and application of hydrophobic catalyst in treating tritium waste

    International Nuclear Information System (INIS)

    Dan, Gui-ping; Zhang, Dong; Qiu, Yong-mei; Yuan, Guo-Qi

    2008-01-01

    Tritium decontamination from tritium waste is important for the management of tritium waste. Tritium removal from waste tritium oxide can not only get tritium, but also reduce the amount of waste tritium. At the meantime, by cleaning the tritium pollution gas can also reduce the tritium exhausting from tritium facility. At present, the process of hydrogen isotopic exchange in tritium removal from waste tritium oxide and coordination oxidisation-adsorption in tritium cleaning from waste tritium gas are the mainly methods. In these methods, hydrophobic catalysts which can be used in these process are the key technology. There are many references about their preparing and applying, but few on the estimation about their performance changing during their applying. However, their performance stability on isotopic catalytic exchange and catalytic oxidisation will affect their using in reaction. Hydrophobic catalyst Pt-SDB which can be used in tritium isotopic exchange between tritium oxide and hydrogen and the cleaning of tritium pollution gas have been prepared in our laboratory in early days. In order to estimating their performance stability during their using, this work will investigate their stability on their catalytic activity and their radiation-resistance tritium. (author)

  3. Neutronic performance optimization study of Indian fusion demo reactor first wall and breeding blanket

    International Nuclear Information System (INIS)

    Swami, H.L.; Danani, C.

    2015-01-01

    In frame of design studies of Indian Nuclear Fusion DEMO Reactor, neutronic performance optimization of first wall and breeding blanket are carried out. The study mainly focuses on tritium breeding ratio (TBR) and power density responses estimation of breeding blanket. Apart from neutronic efficiency of existing breeding blanket concepts for Indian DEMO i.e. lead lithium ceramic breeder and helium cooled solid breeder concept other concepts like helium cooled lead lithium and helium-cooled Li_8PbO_6 with reflector are also explored. The aim of study is to establish a neutronically efficient breeding blanket concept for DEMO. Effect of first wall materials and thickness on breeding blanket neutronic performance is also evaluated. For this study 1 D cylindrical neutronic model of DEMO has been constructed according to the preliminary radial build up of Indian DEMO. The assessment is being done using Monte Carlo based radiation transport code and nuclear cross section data file ENDF/B- VII. (author)

  4. Gossiping Capabilities

    DEFF Research Database (Denmark)

    Mogensen, Martin; Frey, Davide; Guerraoui, Rachid

    Gossip-based protocols are now acknowledged as a sound basis to implement collaborative high-bandwidth content dissemination: content location is disseminated through gossip, the actual contents being subsequently pulled. In this paper, we present HEAP, HEterogeneity Aware gossip Protocol, where...... nodes dynamically adjust their contribution to gossip dissemination according to their capabilities. Using a continuous, itself gossip-based, approximation of relative capabilities, HEAP dynamically leverages the most capable nodes by (a) increasing their fanouts (while decreasing by the same proportion...... declare a high capability in order to augment their perceived quality without contributing accordingly. We evaluate HEAP in the context of a video streaming application on a 236 PlanetLab nodes testbed. Our results shows that HEAP improves the quality of the streaming by 25% over a standard gossip...

  5. The effective cost of tritium for tokamak fusion power reactors with reduced tritium production systems

    International Nuclear Information System (INIS)

    Gilligan, J.G.; Evans, K.

    1983-01-01

    If sufficient tritium cannot be produced and processed in tokamak blankets then at least two alternatives are possible. Tritium can be purchased; or reactors with reduced tritium (RT) content in the plasma can be designed. The latter choice may require development of magnet technology etc., but the authors show that the impact on the cost-of-electricity may be mild. Cost tradeoffs are compared to the market value of tritium. Adequate tritium production in fusion blankets is preferred, but the authors show there is some flexibility in the deployment of fusion if this is not possible

  6. Tritium sorption on protective coatings for concrete

    International Nuclear Information System (INIS)

    Miller, J.M.; Senohrabek, J.A.; Allsop, P.A.

    1992-11-01

    Because of the high sorption level of tritium on unprotected concrete, a program to examine the effectiveness of various concrete coatings and sealants in reducing tritium sorption was undertaken, and various exposure conditions were examined. Coatings of epoxy, polyurethane, bituminous sealant, bituminous sealant covered with polyvinylidene chloride wrap, alkyd paint, and sodium silicate were investigated with tritium (HTO) vapor concentration, humidity and contact time being varied. An exposure to HT was also carried out, and the effect of humidity on the tritium desorption rate was investigated. The relative effectiveness of the coatings was in the order of bituminous sealant + wrap > bituminous sealant > solvent-based epoxy > 100%-solids epoxy > alkyd paint > sodium silicate. The commercially available coatings for concrete resulted in tritium sorption being reduced to less than 7% of unprotected concrete. This was improved to ∼0.1% with the use of the Saran wrap (polyvinylidene chloride). The amount of tritium sorbed was proportional to tritium concentration. The total tritium sorbed decreased with an increase in humidity. A saturation effect was observed with increasing exposure time for both the coated and unprotected samples. Under the test conditions, complete saturation was not achieved within the maximum 8-hour contact time, except for the solvent-based epoxy. The desorption rate increased with a higher-humidity air purge stream. HT desorbed more rapidly than HTO, but the amount sorbed was smaller. The experimental program showed that HTO sorption by concrete can be significantly reduced with the proper choice of coating. However, tritium sorption on concrete and proposed coatings will continue to be a concern until the effects of the various conditions that affect the adsorption and desorption of tritium are firmly established for both chronic and acute tritium release conditions. Material sorption characteristics must also be considered in

  7. Transfer and incorporation of tritium in mammals

    International Nuclear Information System (INIS)

    Hoek, J. van den; Juan, N.B.

    1979-01-01

    The metabolism of tritium in mammals has been studied in a number of laboratories which have participated in the IAEA Co-ordinated Research Programme on the Behaviour of Tritium in the Environment. The results of these studies are discussed and related to data obtained elsewhere. The animals studied are small laboratory and domestic animals. Tritium has been administered as THO, both in single and long-term dosing experiments, and also as organically bound tritium. The biological half-life of tritium in the body water pool has been determined in different species. The following values have been found: 1.1 days in mice; 13.2 days in kangaroo rats; 3.8 days in pigs; 4.1 days in lactating versus 8.3 in non-lactating goats and 3.1-4.0 days in lactating cows and steers. Much attention has been paid to the incorporation of tritium into organic constituents, both in the animal organism (organs, tissues) and in the secretions of the animal after continuous administration of tritium, mostly as THO. When compared with tritium levels in body water, and expressed as the ratio of specific activities, values of 0.25 and 0.40 have been found in mice liver and testis respectively. In cow's milk, these ratios vary from 0.30 for casein to 0.60 for lactose. The transfer of tritium into milk after continuous ingestion of THO by a lactating cow is about 1.50% of the daily ingested tritium per litre of milk. Some results of experiments, utilizing organically bound tritium, are also presented. (author)

  8. Development of a hydrogen permeation sensor for future tritium applications

    Energy Technology Data Exchange (ETDEWEB)

    Llivina, L.; Colominas, S.; Abellà, J., E-mail: sergi.colominas@iqs.es

    2014-10-15

    Highlights: • Designing and testing of a hydrogen permeation sensor. • Palladium and α-iron have been used as a hydrogen permeation materials in the sensor. • The experiments performed using both membranes showed that the operation of the sensors in the equilibrium mode required at least several hours to reach the hydrogen equilibrium pressure. - Abstract: Tritium monitoring in lithium–lead eutectic is of great importance for the performance of liquid blankets in fusion reactors. In addition, tritium measurements will be required in order to proof tritium self-sufficiency in liquid metal breeding systems. On-line hydrogen (isotopes) sensors must be design and tested in order to accomplish these goals. In this work, an experimental set up was designed in order to test the permeation hydrogen sensors at 500 °C. This experimental set-up allowed working with controlled environments (different hydrogen partial pressures) and the temperature was measured using a thermocouple connected to a temperature controller that regulated an electrical heater. In a first set of experiments, a hydrogen sensor was constructed using an α-iron capsule as an active hydrogen area. The sensor was mounted and tested in the experimental set up. In a second set of experiments the α-iron capsule was replaced by a welded thin palladium disk in order to minimize the death volume. The experiments performed using both membranes (α-iron and palladium) showed that the operation of the sensors in the equilibrium mode required at least several hours to reach the hydrogen equilibrium pressure.

  9. Development of a tritium recovery system from CANDU tritium removal facility

    International Nuclear Information System (INIS)

    Draghia, M.; Pasca, G.; Porcariu, F.

    2015-01-01

    The main purpose of the Tritium Recovery System (TRS) is to reduce to a maximum possible extent the release of tritium from the facility following a tritium release in confinement boundaries and also to have provisions to recover both elemental and vapors tritium from the purging gases during maintenance and components replacement from various systems processing tritium. This work/paper proposes a configuration of Tritium Recovery System wherein elemental tritium and water vapors are recovered in a separated, parallel manner. The proposed TRS configuration is a combination of permeators, a platinum microreactor (MR) and a trickle bed reactor (TBR) and consists of two branches: one branch for elemental tritium recovery from tritiated deuterium gas and the second one for tritium recovery from streams containing a significant amount of water vapours but a low amount, below 5%, of tritiated gas. The two branches shall work in a complementary manner in such a way that the bleed stream from the permeators shall be further processed in the MR and TBR in view of achieving the required decontamination level. A preliminary evaluation of the proposed TRS in comparison with state of the art tritium recovery system from tritium processing facilities is also discussed. (authors)

  10. Development of a tritium recovery system from CANDU tritium removal facility

    Energy Technology Data Exchange (ETDEWEB)

    Draghia, M.; Pasca, G.; Porcariu, F. [SC.IS.TECH SRL, Timisoara (Romania)

    2015-03-15

    The main purpose of the Tritium Recovery System (TRS) is to reduce to a maximum possible extent the release of tritium from the facility following a tritium release in confinement boundaries and also to have provisions to recover both elemental and vapors tritium from the purging gases during maintenance and components replacement from various systems processing tritium. This work/paper proposes a configuration of Tritium Recovery System wherein elemental tritium and water vapors are recovered in a separated, parallel manner. The proposed TRS configuration is a combination of permeators, a platinum microreactor (MR) and a trickle bed reactor (TBR) and consists of two branches: one branch for elemental tritium recovery from tritiated deuterium gas and the second one for tritium recovery from streams containing a significant amount of water vapours but a low amount, below 5%, of tritiated gas. The two branches shall work in a complementary manner in such a way that the bleed stream from the permeators shall be further processed in the MR and TBR in view of achieving the required decontamination level. A preliminary evaluation of the proposed TRS in comparison with state of the art tritium recovery system from tritium processing facilities is also discussed. (authors)

  11. Weapons Engineering Tritium Facility, Building 205, Technical Area 16: Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    1991-04-01

    The Weapons Engineering Tritium Facility (WETF) was planned by the US Department of Energy (DOE) to retain at Los Alamos National Laboratory the capability of repackaging small quantities of tritium to exacting specifications. Small quantities of tritium are required for energy research and development activities and for research on nuclear weapons test devices carried out as part of the laboratory mission. The WETF is an improved design proposed to replace an aging Los Alamos facility where tritium has been repackaged for many years. This Environmental Assessment evaluates the environmental consequences to be expected from operating the new facility, for which construction was completed in 1984, compared with those from continuing to operate the old facility. The document was prepared for compliance with NEPA. In operation, the WETF will incorporate state-of-the-art systems for containing tritium in glove boxes and capturing any tritium released into the glove box exhaust system and the laboratory atmosphere. Liquid discharges from the WETF would contain less than 1% of the tritium found in effluents from the present facility. Effluent streams would be surface discharges and would not enter the aquifer from which municipal water supplies are drawn. The quantity of solid radioactive waste generated at the WETF would be approximately the same as that generated at the present facility. The risk to the public from normal tritium-packaging operations would be significantly less from the WETF than from the present facility. The proposed action will reduce the adverse environmental impacts caused by tritium repackaging by substantially reducing the amount of tritium that escapes to the environment. 35 refs., 3 figs., 21 tabs

  12. The design of an automated electrolytic enrichment apparatus for tritium

    Energy Technology Data Exchange (ETDEWEB)

    Myers, J.L.

    1994-12-01

    The Radiation Analytical Sciences Section at Laboratory at Lawrence Livermore National Laboratory performs analysis of low-level tritium concentrations in various natural water samples from the Tri-Valley Area, DOE Nevada Test Site, Site 300 in Tracy, CA, and other various places around the world. Low levels of tritium, a radioactive isotope of hydrogen, which is pre-concentrated in the RAS laboratory using an electrolytic enrichment apparatus. Later these enriched waters are analyzed by liquid scintillation counting to determine the activity of tritium. The enrichment procedure and the subsequent purification process by vacuum distillation are currently undertaken manually, hence being highly labor-intensive. The whole process typically takes about 2 to 3 weeks to complete a batch of 30 samples, with a dedicated personnel operating the process. The goal is to automate the entire process, specifically having the operation PC-LabVIEW{trademark} controlled with real-time monitoring capability. My involvement was in the design and fabrication of a prototypical automated electrolytic enrichment cell. Work will be done on optimizing the electrolytic process by assessing the different parameters of the enrichment procedure. Hardware and software development have also been an integral component of this project.

  13. Tritium release of titan-tritium layers in air, aqueous solutions and living organisms of animals

    International Nuclear Information System (INIS)

    Biro, J.; Feher, I.; Mate, L.; Varga, L.

    1978-01-01

    Samples containing 400-1100 MBq (10-30 mCi) tritium were prepared and the effect of storage time on tritium release was followed. In 250 days one thousandth of the tritium was released in aqueous solution; in air the ratio of release per hour fell in the range of 10 -6 -10 -7 . Ti-T plates with different storage times were surgically placed in the abdomen of rats. Their tritium release dropped with time and the activity appearing in the circulation was lower than that of plates with 5-6 orders of magnitude. Checking the tritium incorporation of neutron generator operators it must be held in mind that only a minor part of tritium can be detected by the measurement of the tritium content of urine. (author)

  14. Doses due to tritium releases by NET - data base and relevant parameters on biological tritium behaviour

    International Nuclear Information System (INIS)

    Diabate, S.; Strack, S.

    1990-12-01

    This study gives an overview on the current knowledge about the behaviour of tritium in plants and in food chains in order to evaluate the ingestion pathway modelling of existing computer codes for dose estimations. The tritium uptake and retention by plants standing at the beginning of the food chains is described. The different chemical forms of tritium, which may be released into the atmosphere (HT, HTO and tritiated organics), and incorporation of tritium into organic material of plants are considered. Uptake and metabolism of tritiated compounds in animals and man are reviewed with particular respect to organically bound tritium and its significance for dose estimations. Some basic remarks on tritium toxicity are also included. Furthermore, a choice of computer codes for dose estimations due to chronic or accidental tritium releases has been compared with respect to the ingestion pathway. (orig.) [de

  15. Tritium removal using vanadium hydride

    International Nuclear Information System (INIS)

    Hill, F.B.; Wong, Y.W.; Chan, Y.N.

    1978-01-01

    The results of an initial examination of the feasibility of separation of tritium from gaseous protium-tritium mixtures using vanadium hydride in cyclic processes is reported. Interest was drawn to the vanadium-hydrogen system because of the so-called inverse isotope effect exhibited by this system. Thus the tritide is more stable than the protide, a fact which makes the system attractive for removal of tritium from a mixture in which the light isotope predominates. The initial results of three phases of the research program are reported, dealing with studies of the equilibrium and kinetics properties of isotope exchange, development of an equilibrium theory of isotope separation via heatless adsorption, and experiments on the performance of a single heatless adsorption stage. In the equilibrium and kinetics studies, measurements were made of pressure-composition isotherms, the HT--H 2 separation factors and rates of HT--H 2 exchange. This information was used to evaluate constants in the theory and to understand the performance of the heatless adsorption experiments. A recently developed equilibrium theory of heatless adsorption was applied to the HT--H 2 separation using vanadium hydride. Using the theory it was predicted that no separation would occur by pressure cycling wholly within the β phase but that separation would occur by cycling between the β and γ phases and using high purge-to-feed ratios. Heatless adsorption experiments conducted within the β phase led to inverse separations rather than no separation. A kinetic isotope effect may be responsible. Cycling between the β and γ phases led to separation but not to the predicted complete removal of HT from the product stream, possibly because of finite rates of exchange. Further experimental and theoretical work is suggested which may ultimately make possible assessment of the feasibility and practicability of hydrogen isotope separation by this approach

  16. A new tritium process monitor based on scintillating fibres

    International Nuclear Information System (INIS)

    Pacenti, P.; Edwards, R.A.H.; Monte, A. de; Campi, F.

    1998-01-01

    The main requirements for tritium monitoring in processes related with fusion fuel cycle are low tritium memory, fast response and accuracy, in decreasing order of importance. At present, in-line tritium monitoring in such tritium processing is done mostly using ionization chambers, which suffer a number of drawbacks: output and sensitivity depends on total gas pressure, composition and flow, etc., and have problems such as tritium memory and generally of saturation effect at high tritium concentrations. Solid scintillators can only work well with tritium if they offer a large surface area, because tritium is absorbed within the first microns of material. The present design uses entirely inorganic scintillator and construction materials, chosen to minimize tritium memory. The described on line and real time tritium detector presents some advantages in comparison with well established flow-through tritium process monitors, such as ionization chambers and thermal conductivity detectors. (authors)

  17. Conceptual design of tritium treatment facility

    International Nuclear Information System (INIS)

    Tachikawa, Katsuhiro

    1982-01-01

    In connection with the development of fusion reactors, the development of techniques concerning tritium fuel cycle, such as the refining and circulation of fuel, the recovery of tritium from blanket, waste treatment and safe handling, is necessary. In Japan Atomic Energy Research Institute, the design of the tritium process research laboratory has been performed since fiscal 1977, in which the following research is carried out: 1) development of hydrogen isotope separation techniques by deep cooling distillation method and thermal diffusion method, 2) development of the refining, collection and storage techniques for tritium using metallic getters and palladium-silver alloy films, and 3) development of the safe handling techniques for tritium. The design features of this facility are explained, and the design standard for radiation protection is shown. At present, in the detailed design stage, the containment of tritium and safety analysis are studied. The building is of reinforced concrete, and the size is 48 m x 26 m. Glove boxes and various tritium-removing facilities are installed in two operation rooms. Multiple wall containment system and tritium-removing facilities are explained. (Kako, I.)

  18. A review of tritium licensing requirements

    International Nuclear Information System (INIS)

    Meikle, A.B.

    1982-12-01

    Present Canadian regulations and anticipated changes to these regulations relevant to the utilization of tritium in fusion facilities and in commercial applications have been reviewed. It is concluded that there are no serious licensing obstacles, but there are a number of requirements which must be met. A license will be required from Atomic Energy Control Board if Ontario Hydro tritium is to be applied by other users. A license is required from the Federal Government to export or import tritium. A licensed container will be required for the storage and shipping of tritium. The containers being designed by AECL and Ontario Hydro and which are currently being tested will adequately store and ship all of the Ontario Hydro tritium but are unnecessarily large for the small quantities required by the commercial tritium users. Also, some users may prefer to receive tritium in gaseous form. An additional, smaller container should be considered. The licensing of overseas fusion facilities for the use of tritium is seen as a major undertaking offering opportunities to Canadian Fusion Fuels Technology Project to undertake health, safety and environmental analysis on behalf of these facilities

  19. Immobilization and packaging of recovered tritium

    International Nuclear Information System (INIS)

    Holtslander, W.J.; Miller, J.M.

    1982-09-01

    The evaluation of metal hydrides as a medium for immobilization of tritium is reviewed. The work demonstrated methods of preparation and examined the properties of titanium and zirconium hydride for this application. Methods of packaging the metal hydrides for transportation and recoverable storage of tritium were also examined

  20. A study of electrolytic tritium production

    International Nuclear Information System (INIS)

    Storms, E.K.; Talcott, C.L.

    1990-01-01

    Tritium production is being investigated using cathodes made from palladium and its alloys with various surface treatments. Three anode materials have been studied as well as different impurities in the electrolyte. Tritium has been produced in about 10% of the cells studied but there is, as yet, no pattern of behavior that would make the effect predictable. 15 refs., 4 figs., 6 tabs

  1. Enantiospecific tritium labeling of 28-homocastasterone

    Czech Academy of Sciences Publication Activity Database

    Elbert, Tomáš; Patil, Mahadeo Rajshekhar; Marek, Aleš

    2017-01-01

    Roč. 60, č. 3 (2017), s. 176-182 ISSN 0362-4803 R&D Projects: GA AV ČR IAA400550801 Institutional support: RVO:61388963 Keywords : 28-homocastasterone * brassinosteroids * enantiospecific reaction * tritium dehalogenation * tritium labeling Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 1.745, year: 2016

  2. Synthesis of tritium-labeled fosfomycin

    International Nuclear Information System (INIS)

    Mertel, H.E.; Meriwether, H.T.

    1982-01-01

    Tritium gas was used as a labeling agent for the preparation of [1,2- 3 H]fosfomycin. Introduction of tritium into a precursor, the synthesis including resolution of the intermediate racemic 1,2-epoxypropylphosphonic acid, and preparation of both amine and calcium salts of the labeled antibiotic are described. (author)

  3. Tritium Systems Test Facility. Volume II. Appendixes

    International Nuclear Information System (INIS)

    Anderson, G.W.; Battleson, K.W.; Bauer, W.

    1976-10-01

    This document includes the following appendices: (1) vacuum pumping, (2) tritium migration into the power cycle, (3) separation of hydrogen isotopes, (4) tritium research laboratory, (5) TSTF containment and cleanup, (6) instrumentation and control, (7) gas heating in torus, and (8) TSTF fuel loop operating procedures

  4. Tritium Systems Test Facility. Volume I

    International Nuclear Information System (INIS)

    Anderson, G.W.; Battleson, K.W.; Bauer, W.

    1976-10-01

    Sandia Laboratories proposes to build and operate a Tritium Systems Test Facility (TSTF) in its newly completed Tritium Research Laboratory at Livermore, California (see frontispiece). The facility will demonstrate at a scale factor of 1:200 the tritium fuel cycle systems for an Experimental Power Reactor (EPR). This scale for each of the TSTF subsystems--torus, pumping system, fuel purifier, isotope separator, and tritium store--will allow confident extrapolation to EPR dimensions. Coolant loop and reactor hall cleanup facilities are also reproduced, but to different scales. It is believed that all critical details of an EPR tritium system will be simulated correctly in the facility. Tritium systems necessary for interim devices such as the Ignition Test Reactor (ITR) or The Next Step (TNS) can also be simulated in TSTF at other scale values. The active tritium system will be completely enclosed in an inert atmosphere glove box which will be connected to the existing Gas Purification System (GPS) of the Tritium Research Laboratory. In effect, the GPS will become the scaled environmental control system which otherwise would have to be built especially for the TSTF

  5. Tritium waste disposal technology in the US

    International Nuclear Information System (INIS)

    Albenesius, E.L.; Towler, O.A.

    1983-01-01

    Tritium waste disposal methods in the US range from disposal of low specific activity waste along with other low-level waste in shallow land burial facilities, to disposal of kilocurie amounts in specially designed triple containers in 65' deep augered holes located in an aird region of the US. Total estimated curies disposed of are 500,000 in commercial burial sites and 10 million curies in defense related sites. At three disposal sites in humid areas, tritium has migrated into the ground water, and at one arid site tritium vapor has been detected emerging from the soil above the disposal area. Leaching tests on tritium containing waste show that tritium in the form of HTO leaches readily from most waste forms, but that leaching rates of tritiated water into polymer impregnated concrete are reduced by as much as a factor of ten. Tests on improved tritium containment are ongoing. Disposal costs for tritium waste are 7 to 10 dollars per cubic foot for shallow land burial of low specific activity tritium waste, and 10 to 20 dollars per cubic foot for disposal of high specific activity waste. The cost of packaging the high specific activity waste is 150 to 300 dollars per cubic foot. 18 references

  6. Tritium labeling of detonation nanodiamonds.

    Science.gov (United States)

    Girard, Hugues A; El-Kharbachi, Abdelouahab; Garcia-Argote, Sébastien; Petit, Tristan; Bergonzo, Philippe; Rousseau, Bernard; Arnault, Jean-Charles

    2014-03-18

    For the first time, the radioactive labeling of detonation nanodiamonds was efficiently achieved using a tritium microwave plasma. According to our measurements, the total radioactivity reaches 9120 ± 120 μCi mg(-1), with 93% of (3)H atoms tightly bonded to the surface and up to 7% embedded into the diamond core. Such (3)H doping will ensure highly stable radiolabeled nanodiamonds, on which surface functionalization is still allowed. This breakthrough opens the way to biodistribution and pharmacokinetics studies of nanodiamonds, while this approach can be scalable to easily treat bulk quantities of nanodiamonds at low cost.

  7. Energetic-economic analysis of inertial fusion plants with tritium commercial production

    International Nuclear Information System (INIS)

    Vezzani, M.; Cerullo, N.; Lanza, S.

    2000-01-01

    The realization of nuclear power plants based on fusion principles is expected to be, at the moment, very expensive. As a result the expected cost of electricity (COE) of fusion power plants is much higher than the COE of fission and fossil power plants. Thus it is necessary to study new solutions for fusion power plant designs to reduce the COE. An interesting solution for the first generation of fusion plants is to produce a surplus of tritium for commercial purposes. The present paper is concerned with the study of whether such a tritium surplus production can improve the plant economic balance, so that the COE is reduced, and to what extent. The result was that such a production allows a considerable reduction of COE and seems to be a good direction for development for the first generation of fusion power plants. To give an example, for a reference inertial confinement fusion (ICF) power plant the rise of the plant net tritium breeding ratio (TBR n ) from 1 to 1.2 would allow, in the conservative estimate of a tritium market price (C T ) of 5 M$/kg, a COE reduction of about 20%. In the estimate of a TBR n rise from 1 to 1.3 and of a C T value of 10 M$/kg, COE reduction could be more than 50%! In conclusion, the present paper points out the influence of TBR increase on COE reduction. Such a conclusion, which holds true for every fusion plant, is much more valid for ICF plants in which it is possible to reach higher TBR values and to use tritium extraction systems easily. Thus, considering the relevant economic advantages, a commercial tritium surplus production should not be disregarded for first generation fusion power plant designs, in particular for ICF plant designs

  8. Status of advanced tritium breeder development for DEMO in the broader approach activities in Japan

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi; Oikawa, Fumiaki; Nishitani, Takeo

    2010-01-01

    DEMO reactors require ' 6 Li-enriched ceramic tritium breeders' which have high tritium breeding ratios (TBRs) in the blanket designs of both EU and JA. Both parties have been promoting the development of fabrication technologies of Li 2 TiO 3 pebbles and of Li 4 SiO 4 pebbles including the reprocessing. However, the fabrication techniques of tritium breeders pebbles have not been established for large quantities. Therefore, these parties launch a collaborative project on scaleable and reliable production routes of advanced tritium breeders. In addition, this project aims to develop fabrication techniques allowing effective reprocessing of 6 Li. The development of the production and 6 Li reprocessing techniques includes preliminary fabrication tests of breeder pebbles, reprocessing of lithium, and suitable out-of-pile characterizations. The R and D on the fabrication technologies of the advanced tritium breeders and the characterization of developed materials has been started between the EU and Japan in the DEMO R and D of the International Fusion Energy Research Centre (IFERC) project as a part of the Broader Approach activities from 2007 to 2016. The equipment for production of advanced breeder pebbles is planned will be installed in the DEMO R and D building at Rokkasho, Japan. The design work in this facility was carried out. The specifications of the pebble production apparatuses and related equipment in this facility were fixed, and the basic data of these apparatuses was obtained. In this design work, the preliminary investigations of the dissolution and purification process of tritium breeders were carried out. From the results of the preliminary investigations, lithium resources of 90% above were recovered by the aqueous dissolving methods using HNO 3 and H 2 O 2 . The removal efficiency of 60 Co by the addition in the dissolved solutions of lithium ceramics were 97-99.9% above using activated carbon impregnated with 8-hydroxyquinolinol. In this report

  9. HYLIFE-II tritium management system

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Dolan, T.J.

    1993-06-01

    The tritium management system performs seven functions: (1) tritium gas removal from the blast chamber, (2) tritium removal from the Flibe, (3) tritium removal from helium sweep gas, (4) tritium removal from room air, (5) hydrogen isotope separation, (6) release of non-hazardous gases through the stack, (7) fixation and disposal of hazardous effluents. About 2 TBq/s (5 MCi/day) of tritium is bred in the Flibe (Li 2 BeF 4 ) molten salt coolant by neutron absorption. Tritium removal is accomplished by a two-stage vacuum disengager in each of three steam generator loops. Each stage consists of a spray of 0.4 mm diameter, hot Flibe droplets into a vacuum chamber 4 m in diameter and 7 m tall. As droplets fall downward into the vacuum, most of the tritium diffuses out and is pumped away. A fraction Φ∼10 -5 of the tritium remains in the Flibe as it leaves the second stage of the vacuum disengager, and about 24% of the remaining tritium penetrates through the steam generator tubes, per pass, so the net leakage into the steam system is about 4.7 MBq/s (11 Ci/day). The required Flibe pumping power for the vacuum disengager system is 6.6 MW. With Flibe primary coolant and a vacuum disengager, an intermediate coolant loop is not needed to prevent tritium from leaking into the steam system. An experiment is needed to demonstrate vacuum disengager operation with Flibe. A secondary containment shell with helium sweep gas captures the tritium permeating out of the Flibe ducts, limiting leaks there to about 1 Ci/day. The tritium inventory in the reactor is about 190 g, residing mostly in the large Flibe recirculation duct walls. The total cost of the tritium management system is 92 M$, of which the vacuum disengagers cost = 56%, the blast chamber vacuum system = 15%, the cryogenic plant = 9%, the emergency air cleanup and waste treatment systems each = 6%, the protium removal system = 3%, and the fuel storage system and inert gas system each = 2%

  10. Experiences with decontaminating tritium-handling apparatus

    International Nuclear Information System (INIS)

    Maienschein, J.L.; Garcia, F.; Garza, R.G.; Kanna, R.L.; Mayhugh, S.R.; Taylor, D.T.

    1992-01-01

    Tritium-handling apparatus has been decontaminated as part of the downsizing of the LLNL Tritium Facility. Two stainless-steel glove boxes that had been used to process lithium deuteride-tritide (LiDT) slat were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. In this paper the details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium, in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculational method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given

  11. Uptake of atmospheric tritium by market foods

    International Nuclear Information System (INIS)

    Inoue, Y.; Tanaka-Miyamoto, K.; Iwakura, T.

    1992-01-01

    In this paper uptake of tritium by market foods from tritiated water vapor in the air is investigated using cereals and beans purchased in Deep River, Canada. The concentrations of tissue free water tritium (TFWT) and organically bound tritium (OBT) range from 12 to 79% and from 10 to 38% respectively, of that estimated for atmospheric water vapor of the sampling month. The specific activity ratios of OBT to TFWT were constant for cereals, but variable for beans. The elevated OBT was shown to be the result of isotopic exchange of labile hydrogen by the fact that washing the foods with tritium free-water reduced their tritium contents to levels characteristic of their production sites

  12. Disposal of tritium-exposed metal hydrides

    International Nuclear Information System (INIS)

    Nobile, A.; Motyka, T.

    1991-01-01

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R ampersand D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed

  13. DOE handbook: Tritium handling and safe storage

    International Nuclear Information System (INIS)

    1999-03-01

    The DOE Handbook was developed as an educational supplement and reference for operations and maintenance personnel. Most of the tritium publications are written from a radiological protection perspective. This handbook provides more extensive guidance and advice on the null range of tritium operations. This handbook can be used by personnel involved in the full range of tritium handling from receipt to ultimate disposal. Compliance issues are addressed at each stage of handling. This handbook can also be used as a reference for those individuals involved in real time determination of bounding doses resulting from inadvertent tritium releases. This handbook provides useful information for establishing processes and procedures for the receipt, storage, assay, handling, packaging, and shipping of tritium and tritiated wastes. It includes discussions and advice on compliance-based issues and adds insight to those areas that currently possess unclear DOE guidance

  14. Diurnal variations of tritium uptake by plants

    International Nuclear Information System (INIS)

    Hettinger, M.; Diabate, S.; Strack, S.

    1991-02-01

    The influence of the diurnal cycle is important for the behaviour of environmental tritium in the vegetation. A mathematical model has been used to calculate the deposition of tritium in plants as a function of diurnal variations of climatic parameters. The necessary physiological parameters (relationship of net photosynthesis and growth) were derived from growth experiments for tomatoes and maize. In chamber experiments, tomato and maize plants were exposed to tritium with natural diurnal variations of the climatic conditions. Within the range of standard deviations the measured concentrations of tritium in tissue free water of tomatoes correspond well to the estimated values. Furthermore, the incorporation into non-exchangeable organically bound tritium (OBT nx) can be sufficiently modelled and explained. There are deviations from the estimated concentrations in some parts of maize leaves. (orig.) [de

  15. DOE handbook: Tritium handling and safe storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The DOE Handbook was developed as an educational supplement and reference for operations and maintenance personnel. Most of the tritium publications are written from a radiological protection perspective. This handbook provides more extensive guidance and advice on the null range of tritium operations. This handbook can be used by personnel involved in the full range of tritium handling from receipt to ultimate disposal. Compliance issues are addressed at each stage of handling. This handbook can also be used as a reference for those individuals involved in real time determination of bounding doses resulting from inadvertent tritium releases. This handbook provides useful information for establishing processes and procedures for the receipt, storage, assay, handling, packaging, and shipping of tritium and tritiated wastes. It includes discussions and advice on compliance-based issues and adds insight to those areas that currently possess unclear DOE guidance.

  16. Methane generated from graphite--tritium interaction

    International Nuclear Information System (INIS)

    Coffin, D.O.; Walthers, C.R.

    1979-01-01

    When hydrogen isotopes are separated by cryogenic distillation, as little as 1 ppM of methane will eventually plug the still as frost accumulates on the column packings. Elemental carbon exposed to tritium generates methane spontaneously, and yet some dry transfer pumps, otherwise compatible with tritium, convey the gas with graphite rotors. This study was to determine the methane production rate for graphite in tritium. A pump manufacturer supplied graphite samples that we exposed to tritium gas at 0.8 atm. After 137 days we measured a methane synthesis rate of 6 ng/h per cm 2 of graphite exposed. At this rate methane might grow to a concentration of 0.01 ppM when pure tritium is transferred once through a typical graphite--rotor transfer pump. Such a low methane level will not cause column blockage, even if the cryogenic still is operated continuously for many years

  17. Tritium issues in commercial pressurized water reactors

    International Nuclear Information System (INIS)

    Jones, G.

    2008-01-01

    Tritium has become an important radionuclide in commercial Pressurized Water Reactors because of its mobility and tendency to concentrate in plant systems as tritiated water during the recycling of reactor coolant. Small quantities of tritium are released in routine regulated effluents as liquid water and as water vapor. Tritium has become a focus of attention at commercial nuclear power plants in recent years due to inadvertent, low-level, chronic releases arising from routine maintenance operations and from component failures. Tritium has been observed in groundwater in the vicinity of stations. The nuclear industry has undertaken strong proactive corrective measures to prevent recurrence, and continues to eliminate emission sources through its singular focus on public safety and environmental stewardship. This paper will discuss: production mechanisms for tritium, transport mechanisms from the reactor through plant, systems to the environment, examples of routine effluent releases, offsite doses, basic groundwater transport and geological issues, and recent nuclear industry environmental and legal ramifications. (authors)

  18. The organic tritium in the environment

    International Nuclear Information System (INIS)

    Kirchmann, R.

    1979-01-01

    Sources, organization process, and biological availability of organic tritium released in the environment, transfer of organic tritium in the environment from methane or soil to plants and from food to mammals, transfer of tritium in aquatic ecosystems, and dose to man resulting of the ingestion of tritiated food were reviewed and discussed. Some data about transfer of organic tritium in terrestrial and aquatic ecosystems reported by literatures were summarized and were supplied with recent data on biological accumulation of organic tritium in the food chain. It was stressed that more research must be done in future because data available were still insufficient. Last, some research programs in progress or planned were stated. (Tsunoda, M.)

  19. Handling of tritium-bearing wastes

    International Nuclear Information System (INIS)

    1981-01-01

    The generation of nuclear power and reprocessing of nuclear fuel results in the production of tritium and the possible need to control the release of tritium-contaminated effluents. In assessing the need for controls, it is necessary to know the production rates of tritium at different nuclear facilities, the technologies available for separating tritium from different gaseous and liquid streams, and the methods that are satisfactory for storage and disposal of tritiated wastes. The intention in applying such control technologies and methods is to avoid undesirable effects on the environment, and to reduce the radiation burden on operational personnel and the general population. This technical report is a result of the IAEA Technical Committee Meeting on Handling of Tritium-bearing Effluents and Wastes, which was held in Vienna, 4 - 8 December 1978. It summarizes the main topics discussed at the meeting and appends the more detailed reports on particular aspects that were prepared for the meeting by individual participants

  20. Recent environmental tritium levels in Japan

    International Nuclear Information System (INIS)

    Iwakura, T.; Inoue, Y.; Tanaka, K.; Kasida, Y.

    1982-01-01

    Data of the tritium surveillance program are summarized for the period of 1967 through 1980. Samples of surface water, tap water, coastal sea water and ground water were collected from environs of commercial nuclear power plants and nuclear facilities, and were analyzed by liquid scintillation counting. Although the results show some differences in tritium concentrations in water samples from various part of the country, there is a general tendency of the concentration in surface waters to decline as a function of time. This implies that environmental waters in Japan generally have not been influenced by the discharged effluents of the facilities or the stations with regard to tritium contamination and that the tritium content of precipitation still plays the dominant role in reflecting annual variation of tritium concentration in surface waters. (J.P.N.)

  1. Catalytic membrane reactor for tritium extraction system from He purge

    International Nuclear Information System (INIS)

    Santucci, Alessia; Incelli, Marco; Sansovini, Mirko; Tosti, Silvano

    2016-01-01

    Highlights: • In the HCBB blanket, the produced tritium is recovered by purging with helium; membrane technologies are able to separate tritium from helium. • The paper presents the results of two experimental campaigns. • In the first, a Pd–Ag diffuser for hydrogen separation is tested at several operating conditions. • In the second, the ability of a Pd–Ag membrane reactor for water decontamination is assessed by performing isotopic swamping and water gas shift reactions. - Abstract: In the Helium Cooled Pebble Bed (HCPB) blanket concept, the produced tritium is recovered purging the breeder with helium at low pressure, thus a tritium extraction system (TES) is foreseen to separate the produced tritium (which contains impurities like water) from the helium gas purge. Several R&D activities are running in parallel to experimentally identify most promising TES technologies: particularly, Pd-based membrane reactors (MR) are under investigation because of their large hydrogen selectivity, continuous operation capability, reliability and compactness. The construction and operation under DEMO relevant conditions (that presently foresee a He purge flow rate of about 10,000 Nm 3 /h and a H 2 /He ratio of 0.1%) of a medium scale MR is scheduled for next year, while presently preliminary experiments on a small scale reactor are performed to identify most suitable operative conditions and catalyst materials. This work presents the results of an experimental campaign carried out on a Pd-based membrane aimed at measuring the capability of this device in separating hydrogen from the helium. Many operative conditions have been investigated by considering different He/H 2 feed flow ratios, several lumen pressures and reactor temperatures. Moreover, the performances of a membrane reactor (composed of a Pd–Ag tube having a wall thickness of about 113 μm, length 500 mm and diameter 10 mm) in processing the water contained in the purge gas have been measured by using

  2. Catalytic membrane reactor for tritium extraction system from He purge

    Energy Technology Data Exchange (ETDEWEB)

    Santucci, Alessia, E-mail: alessia.santucci@enea.it [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Incelli, Marco [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy); DEIM, University of Tuscia, Via del Paradiso 47, 01100 Viterbo (Italy); Sansovini, Mirko; Tosti, Silvano [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy)

    2016-11-01

    Highlights: • In the HCBB blanket, the produced tritium is recovered by purging with helium; membrane technologies are able to separate tritium from helium. • The paper presents the results of two experimental campaigns. • In the first, a Pd–Ag diffuser for hydrogen separation is tested at several operating conditions. • In the second, the ability of a Pd–Ag membrane reactor for water decontamination is assessed by performing isotopic swamping and water gas shift reactions. - Abstract: In the Helium Cooled Pebble Bed (HCPB) blanket concept, the produced tritium is recovered purging the breeder with helium at low pressure, thus a tritium extraction system (TES) is foreseen to separate the produced tritium (which contains impurities like water) from the helium gas purge. Several R&D activities are running in parallel to experimentally identify most promising TES technologies: particularly, Pd-based membrane reactors (MR) are under investigation because of their large hydrogen selectivity, continuous operation capability, reliability and compactness. The construction and operation under DEMO relevant conditions (that presently foresee a He purge flow rate of about 10,000 Nm{sup 3}/h and a H{sub 2}/He ratio of 0.1%) of a medium scale MR is scheduled for next year, while presently preliminary experiments on a small scale reactor are performed to identify most suitable operative conditions and catalyst materials. This work presents the results of an experimental campaign carried out on a Pd-based membrane aimed at measuring the capability of this device in separating hydrogen from the helium. Many operative conditions have been investigated by considering different He/H{sub 2} feed flow ratios, several lumen pressures and reactor temperatures. Moreover, the performances of a membrane reactor (composed of a Pd–Ag tube having a wall thickness of about 113 μm, length 500 mm and diameter 10 mm) in processing the water contained in the purge gas have been

  3. Tritium decay helium-3 effects in tungsten

    Directory of Open Access Journals (Sweden)

    M. Shimada

    2017-08-01

    Full Text Available Tritium (T implanted by plasmas diffuses into bulk material, especially rapidly at elevated temperatures, and becomes trapped in neutron radiation-induced defects in materials that act as trapping sites for the tritium. The trapped tritium atoms will decay to produce helium-3 (3He atoms at a half-life of 12.3 years. 3He has a large cross section for absorbing thermal neutrons, which after absorbing a neutron produces hydrogen (H and tritium ions with a combined kinetic energy of 0.76 MeV through the 3He(n,HT nuclear reaction. The purpose of this paper is to quantify the 3He produced in tungsten by tritium decay compared to the neutron-induced helium-4 (4He produced in tungsten. This is important given the fact that helium in materials not only creates microstructural damage in the bulk of the material but alters surface morphology of the material effecting plasma-surface interaction process (e.g. material evolution, erosion and tritium behavior of plasma-facing component materials. Effects of tritium decay 3He in tungsten are investigated here with a simple model that predicts quantity of 3He produced in a fusion DEMO FW based on a neutron energy spectrum found in literature. This study reveals that: (1 helium-3 concentration was equilibrated to ∼6% of initial/trapped tritium concentration, (2 tritium concentration remained approximately constant (94% of initial tritium concentration, and (3 displacement damage from 3He(n,HT nuclear reaction became >1 dpa/year in DEMO FW.

  4. Tritium behavior in an aquatic ecosystem

    International Nuclear Information System (INIS)

    Komatsu, K.

    1982-01-01

    Tritium behavior in aquatic organisms through a model food chain was investigated. In this model food chain, tritium in water reaches bacteria or Japanese killifish via diatoms and brine shrimps. Tritium accumulation in these organisms as organic bound form was expressed as the R value which is defined as the ratio of tritium specific activity in lyophilized organisms (μCi/gH) to that in water (μCi/gH). The maximum R values were 0.5 in diatoms: Chaetoceros gracilis, 0.2 in bacteria: Escherichia coli, 0.5 in brine shrimps: Artemia salina, and 0.32 in Japanese killifish: Oryzias latipes under the growing condition in which tritium accumulation was due to tritium in tritiated water and not tritiated foods. Brine shrimps and Japanese killifish were grown from larve to adult in tritiated sea water and were fed on tritiated foods (model food chain). Their R values were 0.70 and 0.67, respectively. Bacteria, which grew in tritiated water by adding the hydrolysate of tritiated brine shrimps, showed a maximum R value at 0.32. The R values of each organ of Japanese killifish and of DNA and the nucleotides purified from brine shrimps growing in tritiated water with or without tritiated food were measured to estimate the tritium distribution in the body or various molecules of the organisms. These results did not indicate concentration of tritium in specific organs or compounds. The changes of specific activity of tritium in these organisms were measured when they were transferred to non-tritiated water. These retention of tritium was not only different among the tissues but also depended on whether or not the organisms were reared with tritiated foods. (author)

  5. Capability approach

    DEFF Research Database (Denmark)

    Jensen, Niels Rosendal; Kjeldsen, Christian Christrup

    Lærebogen er den første samlede danske præsentation af den af Amartya Sen og Martha Nussbaum udviklede Capability Approach. Bogen indeholder en præsentation og diskussion af Sen og Nussbaums teoretiske platform. I bogen indgår eksempler fra såvel uddannelse/uddannelsespolitik, pædagogik og omsorg....

  6. ICIT activities related to tritium management

    International Nuclear Information System (INIS)

    Zamfirache, Marius; Bornea, Anisia; Stefanescu, Ioan; Ana, George; Stefan, Liviu

    2016-01-01

    Highlights: • We present the main directions of ICIT research in the field of hydrogen isotopes. • Tritium Removal Facility became a nuclear installation. • ICIT had begun the transfer of detritiation technology. - Abstract: National Research and Development Institute for Cryogenics and Isotopic Technologies (ICIT) was established in 1970 as a research focused Industrial Pilot Plant. This new Institute was created with the purpose to develop the heavy water production technology. This technology has been successfully transferred to the heavy water production plant in 1988 (with a capacity of 360 t/year). Currently, research within ICIT is focused on the following main objectives: support for the National Nuclear Program, hydrogen and fuel cells, cryogenics, environment. Within ICIT it has been built an Experimental Pilot Plant having as the main objective the development of a technology for heavy water detritiation. The purpose of this Pilot Plant is to obtain technological data and functional characteristics of specific equipment in order to design a Detritiation Facility used for Nuclear Power Plants with CANDU reactors. This work is focused on the presentation of ICIT research activities, perspectives and its capability related to water detritiation technologies and also to on issues in the field of nuclear fusion.

  7. Issues Associated with Tritium Legacy Materials

    International Nuclear Information System (INIS)

    Mills, Michael

    2008-01-01

    This paper highlights some of the issues associated with the treatment of legacy materials linked to research into tritium over many years and also of materials used to contain or store tritium. The aim of the work is to recover tritium where practicable, and to leave the residual materials passively safe, either for disposal or for continued storage. A number of materials are currently stored at AWE which either contain tritium or have been used in tritium processing. It is essential that these materials are characterised such that a strategy may be developed for their safe stewardship, and ultimately for their treatment and disposal. Treatment processes for such materials are determined by the application of best practicable means (BPM) studies in accordance with the requirements of the Environment Agency of England and Wales. Clearly, it is necessary to understand the objectives of legacy material treatment / processing and the technical options available before a definitive BPM study is implemented. The majority of tritium legacy materials with which we are concerned originate from the decommissioning of a facility that was operational from the late 1950's through to the late 1990's when, on post-operative clear-out (POCO), the entire removable and transportable tritium inventory was moved to new, purpose built facilities. One of the principle tasks to be undertaken in the new facilities is the treatment of the legacy materials to recover tritium wherever practicable, and render the residual materials passively safe for disposal or continued storage. Where tritium recovery was not reasonably or technically feasible, then a means to assure continued safe storage was to be devised and implemented. The legacy materials are in the following forms: - Uranium beds which may or may not contain adsorbed tritium gas; - Tritium gas stored in containers; - Tritide targets for neutron generation; - Tritides of a broad spectrum of metals manufactured for research / long

  8. PDRD (SR13046) TRITIUM PRODUCTION FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.; Sheetz, S.

    2013-09-30

    Utilizing the results of Texas A&M University (TAMU) senior design projects on tritium production in four different small modular reactors (SMR), the Savannah River National Laboratory’s (SRNL) developed an optimization model evaluating tritium production versus uranium utilization under a FY2013 plant directed research development (PDRD) project. The model is a tool that can evaluate varying scenarios and various reactor designs to maximize the production of tritium per unit of unobligated United States (US) origin uranium that is in limited supply. The primary module in the model compares the consumption of uranium for various production reactors against the base case of Watts Bar I running a nominal load of 1,696 tritium producing burnable absorber rods (TPBARs) with an average refueling of 41,000 kg low enriched uranium (LEU) on an 18 month cycle. After inputting an initial year, starting inventory of unobligated uranium and tritium production forecast, the model will compare and contrast the depletion rate of the LEU between the entered alternatives. This is an annual tritium production rate of approximately 0.059 grams of tritium per kilogram of LEU (g-T/kg-LEU). To date, the Nuclear Regulatory Commission (NRC) license has not been amended to accept a full load of TPBARs so the nominal tritium production has not yet been achieved. The alternatives currently loaded into the model include the three light water SMRs evaluated in TAMU senior projects including, mPower, Holtec and NuScale designs. Initial evaluations of tritium production in light water reactor (LWR) based SMRs using optimized loads TPBARs is on the order 0.02-0.06 grams of tritium per kilogram of LEU used. The TAMU students also chose to model tritium production in the GE-Hitachi SPRISM, a pooltype sodium fast reactor (SFR) utilizing a modified TPBAR type target. The team was unable to complete their project so no data is available. In order to include results from a fast reactor, the SRNL

  9. Simulated breeding with QU-GENE graphical user interface.

    Science.gov (United States)

    Hathorn, Adrian; Chapman, Scott; Dieters, Mark

    2014-01-01

    Comparing the efficiencies of breeding methods with field experiments is a costly, long-term process. QU-GENE is a highly flexible genetic and breeding simulation platform capable of simulating the performance of a range of different breeding strategies and for a continuum of genetic models ranging from simple to complex. In this chapter we describe some of the basic mechanics behind the QU-GENE user interface and give a simplified example of how it works.

  10. A vacuum disengager for tritium removal from HYLIFE-II Reactor Flibe

    International Nuclear Information System (INIS)

    Dolan, T.J.; Longhurst, G.R.; Garcia-Otero, E.

    1992-01-01

    We have designed a vacuum disengager system to remove tritium from the Flibe (Li 2 BeF 4 ) molten salt coolant of the HYLIFE-II fusion reactor. There is a two-stage vacuum disengager in each of three intermediate heat exchanger (IHX) loops. Each stage consists of a vacuum chamber 4 m in diameter and 7 m tall. As 0.2 mm diameter molten salt droplets fall vertically downward into the vacuum, most of the tritium diffuses out of the droplets and is pumped away. A fraction Φ ∼10 -5 of the 8.6 MCi/day tritium source (from breeding in the Flibe and from unburned fuel) remains in the Flibe as it leaves the vacuum disengagers, and about 21% of that permeates into the intermediate coolant loop, so about 20 Ci/day leak into the steam system. With Flibe primary coolant and a vacuum disengager, it appears that an intermediate coolant loop is not needed to prevent tritium from leaking into the steam system. An experiment is needed to demonstrate Flibe vacuum disengager operation

  11. Tritium release and retention properties of highly neutron-irradiated beryllium pebbles from HIDOBE-01 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V., E-mail: vladimir.chakin@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R.; Moeslang, A.; Klimenkov, M.; Kolb, M.; Vladimirov, P.; Kurinskiy, P.; Schneider, H.-C. [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Til, S. van; Magielsen, A.J. [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2013-11-15

    The current helium cooled pebble bed (HCPB) tritium breeding blanket concept for fusion reactors includes a bed of 1 mm diameter beryllium pebbles to act as a neutron multiplier. Beryllium pebbles, fabricated by the rotating electrode method, were neutron irradiated in the HFR in Petten within the HIDOBE-01 experiment. This study presents tritium release and retention properties and data on microstructure evolution of beryllium pebbles irradiated at 630, 740, 873, 948 K up to a damage dose of 18 dpa, corresponding to a helium accumulation of about 3000 appm. The measured cumulative released activity from the beryllium pebbles irradiated at 948 K was found to be significantly lower than the calculated value. After irradiation at 873 and 948 K scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses revealed large pores or bubbles in the bulk and oxide films with a thickness of up to 8 μm at the surface of the beryllium pebbles. The radiation-enhanced diffusion of tritium and the formation of open porosity networks accelerate the tritium release from the beryllium pebbles during the high-flux neutron irradiation.

  12. Optimization of tritium management within the ITER project

    International Nuclear Information System (INIS)

    Cortes, P.; Elbez-Uzan, J.; Glugla, M.; Rosanvallon, S.; Ciattaglia, S.; Iseli, M.; Rodriguez-Rodrigo, L.

    2009-01-01

    The authors describe the tritium cycle existing within the ITER project and which has been considered since its beginning. They indicate how confinement systems ensure tritium confinement, how tritium is recovered and processed. They indicate the different tritium management optimization ways which have been identified and integrated into the ITER design

  13. 10 CFR 39.55 - Tritium neutron generator target sources.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target....77. (b) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg...

  14. Tritium module for ITER/Tiber system code

    International Nuclear Information System (INIS)

    Finn, P.A.; Willms, S.; Busigin, A.; Kalyanam, K.M.

    1988-01-01

    A tritium module was developed for the ITER/Tiber system code to provide information on capital costs, tritium inventory, power requirements and building volumes for these systems. In the tritium module, the main tritium subsystems/emdash/plasma processing, atmospheric cleanup, water cleanup, blanket processing/emdash/are each represented by simple scaleable algorithms. 6 refs., 2 tabs

  15. Simultaneous measurement of tritium and radiocarbon by ultra-low-background proportional counting.

    Science.gov (United States)

    Mace, Emily; Aalseth, Craig; Alexander, Tom; Back, Henning; Day, Anthony; Hoppe, Eric; Keillor, Martin; Moran, Jim; Overman, Cory; Panisko, Mark; Seifert, Allen

    2017-08-01

    Use of ultra-low-background capabilities at Pacific Northwest National Laboratory provide enhanced sensitivity for measurement of low-activity sources of tritium and radiocarbon using proportional counters. Tritium levels are nearly back to pre-nuclear test backgrounds (~2-8 TU in rainwater), which can complicate their dual measurement with radiocarbon due to overlap in the beta decay spectra. We present results of single-isotope proportional counter measurements used to analyze a dual-isotope methane sample synthesized from ~120mg of H 2 O and present sensitivity results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Tritium Decay Helium-3 Effects in Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Merrill, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructural evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible tritium

  17. Quantitative analysis of tritium distribution in austenitic stainless steels welds

    International Nuclear Information System (INIS)

    Roustila, A.; Kuromoto, N.; Brass, A.M.; Chene, J.

    1994-01-01

    Tritium autoradiography was used to study the tritium distribution in laser and arc (TIG) weldments performed on tritiated AISI 316 samples. Quantitative values of the local tritium concentration were obtained from the microdensitometric analysis of the autoradiographs. This procedure was used to map the tritium concentration in the samples before and after laser and TIG treatments. The effect of the detritiation conditions and of welding on the tritium distribution in the material is extensively characterized. The results illustrate the interest of the technique for predicting a possible embrittlement of the material associated with a local enhancement of the tritium concentration and the presence of helium 3 generated by tritium decay. ((orig.))

  18. Transfer of fallout tritium from environment to human body

    International Nuclear Information System (INIS)

    Hisamatsu, Shun-ichi; Takizawa, Yukio

    1989-01-01

    A large quntity of tritium will be used as a fuel of nuclear fusion in the future. It is, therefore, considered important to elucidate tritium behavior present in the environment and the process of tritium transfer from the environment to the human body. Fallout tritium is an applicable material in searching for the long term behavior of tritium in the environment. This paper focuses on the American, Italian, Japanese literature concerning fallout tritium in food and in the human body. The specific activity ratio of bound to free tritium poses an important problem. The mechanism of biological concentration must await further studies. (N.K.) 63 refs

  19. Tritium distributing in stainless steel determined by chemical etchin

    International Nuclear Information System (INIS)

    Xiong Yifu; Luo Deli; Chen Changan; Chen Shicun; Jing Wenyong

    2009-01-01

    The depth distribution of tritium in stainless steel was measured by chemical etching. The results show that the method can more quantitatively evaluate the tritium distributing in stainless steel. The maximum amount of tritium which distributed in crystal lattice of stainless steel is limitted by its solubility at room temperature. The other form of tritium in stainless steel is gaseous tritium that are trapped by defects, impurities, fractures, etc. within it. The gaseous tritium is several times more than the solid-dissolved tritium. (authors)

  20. Tritium production and processing in a Tokamak reactor

    International Nuclear Information System (INIS)

    Leger, D.

    1986-09-01

    Important aspects of the tritium system in Tokamak reactors that have to be controlled are overviewed in this paper. The doubling time is one of them, that is to say the time required to produce, in addition to the tritium burned enough tritium to be able to supply the initial tritium inventory. Another one is the tritium permeation through walls. In addition to the permeation phenomena, large tritium inventories are trapped in the reactor structural material. Finally, the different atmospheres of halls, etc.., that can be contaminated with tritium, have to be reprocessed

  1. Tritium monitor with improved gamma-ray discrimination

    Science.gov (United States)

    Cox, Samson A.; Bennett, Edgar F.; Yule, Thomas J.

    1985-01-01

    Apparatus and method for selective measurement of tritium oxide in an environment which may include other radioactive components and gamma radiation, the measurement including the selective separation of tritium oxide from a sample gas through a membrane into a counting gas, the generation of electrical pulses individually representative by rise times of tritium oxide and other radioactivity in the counting gas, separation of the pulses by rise times, and counting of those pulses representative of tritium oxide. The invention further includes the separate measurement of any tritium in the sample gas by oxidizing the tritium to tritium oxide and carrying out a second separation and analysis procedure as described above.

  2. Introduction to Wolsong Tritium Removal Facility (WTRF)

    International Nuclear Information System (INIS)

    Song, K. M.; Sohn, S. H.; Kang, D. W.; Chung, H. S.

    2005-01-01

    Four CANDU 6 reactors have been operated at Wolsong site. Tritium is primarily produced in heavywater-moderated-power reactors by neutron capture of deuterium nuclei in the heavy water moderator and coolant. The concentration of tritium in the reactor moderator and coolant systems increases with time of reactor operation. For CANDU 6 reactors, the estimated equilibrium values are ∼3 TBq/kg-D 2 O in the moderator and ∼74 GBq/kg-D 2 O in the coolant, where the production rate is balanced by tritium decay and water makeup and loss process. The tritium level in the moderator heavy water of Wolsong Unit-1 is getting higher for about 20-year operation and is over 2.22x10 12 Bq/kg at the end of 2003. It was known that the tritium levels in the moderators of the other units would be also steadily increased. In order to reduce the tritium activity, KHNP has committed to construct a Tritium Removal Facility (TRF) at the Wolsong site

  3. Environmental monitoring for tritium separation facility

    International Nuclear Information System (INIS)

    Varlam, Carmen; Stefanescu, Ioan; Steflea, Dumitru; Lazar, Roxana Elena

    2001-01-01

    The Cryogenic Pilot is an experimental project within the nuclear energy national research program, which has the aim of developing technologies for tritium and deuterium separation by cryogenic distillation. The experimental installation is located 15 km near the highest city of the area and 1 km near Olt River. An important chemical activity is developed in the area and almost all the neighbors of the Experimental Cryogenic Pilot are chemical plants. It is necessary to emphasize this aspect because the sewage system is connected with the other tree chemical plants from the neighborhood. In this work, a low background liquid scintillation is used to determine tritium activity concentration according to ISO 9698/1998. We measured drinking water, precipitation, river water, underground and waste water. The tritium level was between 10 TU and 27 TU what indicates that there is no sources of tritium contamination in the neighborhood of Cryogenic Pilot. In order to determine baseline levels we decided to monitor monthly each location. In this paper it is presented the standard method used for tritium determination in water samples, the precautions needed in order to achieve reliable results, and the evolution of tritium level in different location near the Tritium and Deuterium Cryogenic Separation Experimental Pilot. (authors)

  4. Analysis of the organically bound tritium

    International Nuclear Information System (INIS)

    Baglan, N.; Alanic, G.

    2011-01-01

    In environmental samples, tritium is very often combined with the fraction of bulk water accumulated in the sample but also in the form of organically bound tritium. When the tritium is organically bound, 2 forms can coexist: the exchangeable fraction and the non-exchangeable fraction. The analysis of the different forms of tritium present in the sample is necessary to assess the sanitary hazards due to tritium. The total tritium is obtained from the analysis of the water released when the fresh sample is burnt while the organically bound tritium is obtained from the analysis of the water released when the dry extract of the sample is burnt. The measurement of the exchangeable fraction and the non-exchangeable fraction requires an additional stage of labile exchange. The exchangeable fraction is determined from the analysis of the water released during the labile exchange and the non-exchangeable fraction is determined from the water released during the combustion of the dry extract of the labile exchange

  5. Little tritium goes a long way

    International Nuclear Information System (INIS)

    Albright, D.; Taylor, T.B.

    1988-01-01

    Faced with mounting safety problems in its military production reactors, the Energy Department will soon ask Congress to fund the construction of at least one new multibillion dollar tritium production reactor. Energy estimates that building such a reactor could take ten years, and it says that in the interim it needs to continue producing tritium at the Savannah River reactors. In fact, it plans to resume operating its Savannah River reactors at full power as soon as possible. The United States must keep producing tritium if the US-Soviet nuclear arms race continues its present course. If the arms race continues, the Energy Department has two basic options: it could run the Savannah River reactors for several more decades or it could use these reactors until it has built a new one. Operating the Savannah River reactors at full or low power may be risky, even if they undergo extensive safety modifications, since no one knows at what power these reactors can be operated safely. Despite these pressing issues, most of the substantive debate about the role of tritium in nuclear weapons and the requirement for more tritium production is taking place in secret. The public debate largely ignores the broader questions of whether the United States needs to produce tritium and what impact possible agreements reducing nuclear arsenals might have on US tritium requirements

  6. Tritium Room Air Monitor Operating Experience Review

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Cadwallader; B. J. Denny

    2008-09-01

    Monitoring the breathing air in tritium facility rooms for airborne tritium is a radiological safety requirement and a best practice for personnel safety. Besides audible alarms for room evacuation, these monitors often send signals for process shutdown, ventilation isolation, and cleanup system actuation to mitigate releases and prevent tritium spread to the environment. Therefore, these monitors are important not only to personnel safety but also to public safety and environmental protection. This paper presents an operating experience review of tritium monitor performance on demand during small (1 mCi to 1 Ci) operational releases, and intentional airborne inroom tritium release tests. The tritium tests provide monitor operation data to allow calculation of a statistical estimate for the reliability of monitors annunciating in actual tritium gas airborne release situations. The data show a failure to operate rate of 3.5E-06/monitor-hr with an upper bound of 4.7E-06, a failure to alarm on demand rate of 1.4E-02/demand with an upper bound of 4.4E-02, and a spurious alarm rate of 0.1 to 0.2/monitor-yr.

  7. Quick management of accidental tritium exposure cases

    International Nuclear Information System (INIS)

    Singh, V. P.; Badiger, N. M.; Managanvi, S. S.; Bhat, H. R.

    2008-01-01

    Removal half-life (RHL) of tritium is one of the best means for optimising medical treatment, reduction of committed effective dose (CED) and quick/easy handling of a large group of workers for medical treatment reference. The removal of tritium from the body depends on age, temperature, relative humidity and daily rainfall; so tritium removal rate, its follow-up and proper data analysis and recording are the best techniques for management of accidental acute tritium exposed cases. The decision of referring for medical treatment or medical intervention (MI) would be based on workers' tritium RHL history taken from their bodies at the facilities. The workers with tritium intake up to 1 ALI shall not be considered for medical treatment as it is a derived limit of annual total effective dose. The short-term MI may be considered for tritium intake of 1-10 ALI; however, if the results show intake ≥100 ALI, extended strong medical/therapeutic intervention may be recommended based on the severity of exposure for maximum CED reduction requirements and annual total effective dose limit. The methodology is very useful for pressurized heavy water reactors (PHWRs) which are mainly operated by Canada and India and future fusion reactor technologies. Proper management will optimise the cases for medical treatment and enhance public acceptance of nuclear fission and fusion reactor technologies. (authors)

  8. Quick management of accidental tritium exposure cases.

    Science.gov (United States)

    Singh, Vishwanath P; Badiger, N M; Managanvi, S S; Bhat, H R

    2012-07-01

    Removal half-life (RHL) of tritium is one of the best means for optimising medical treatment, reduction of committed effective dose (CED) and quick/easy handling of a large group of workers for medical treatment reference. The removal of tritium from the body depends on age, temperature, relative humidity and daily rainfall; so tritium removal rate, its follow-up and proper data analysis and recording are the best techniques for management of accidental acute tritium exposed cases. The decision of referring for medical treatment or medical intervention (MI) would be based on workers' tritium RHL history taken from their bodies at the facilities. The workers with tritium intake up to 1 ALI shall not be considered for medical treatment as it is a derived limit of annual total effective dose. The short-term MI may be considered for tritium intake of 1-10 ALI; however, if the results show intake ≥100 ALI, extended strong medical/therapeutic intervention may be recommended based on the severity of exposure for maximum CED reduction requirements and annual total effective dose limit. The methodology is very useful for pressurized heavy water reactors (PHWRs) which are mainly operated by Canada and India and future fusion reactor technologies. Proper management will optimise the cases for medical treatment and enhance public acceptance of nuclear fission and fusion reactor technologies.

  9. Isotopic fractionation of tritium in biological systems.

    Science.gov (United States)

    Le Goff, Pierre; Fromm, Michel; Vichot, Laurent; Badot, Pierre-Marie; Guétat, Philippe

    2014-04-01

    Isotopic fractionation of tritium is a highly relevant issue in radiation protection and requires certain radioecological considerations. Sound evaluation of this factor is indeed necessary to determine whether environmental compartments are enriched/depleted in tritium or if tritium is, on the contrary, isotopically well-distributed in a given system. The ubiquity of tritium and the standard analytical methods used to assay it may induce biases in both the measurement and the signification that is accorded to the so-called fractionation: based on an exhaustive review of the literature, we show how, sometimes large deviations may appear. It is shown that when comparing the non-exchangeable fraction of organically bound tritium (neOBT) to another fraction of tritium (e.g. tritiated water) the preparation of samples and the measurement of neOBT reported frequently led to underestimation of the ratio of tritium to hydrogen (T/H) in the non-exchangeable compartment by a factor of 5% to 50%. In the present study, corrections are proposed for most of the biological matrices studied so far. Nevertheless, the values of isotopic fractionation reported in the literature remain difficult to compare with each other, especially since the physical quantities and units often vary between authors. Some improvements are proposed to better define what should encompass the concepts of exchangeable and non-exchangeable fractions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Method of extracting tritium from heavy water

    International Nuclear Information System (INIS)

    Tsuchiya, Hiroyuki; Kikuchi, Makoto; Asakura, Yamato; Yusa, Hideo.

    1979-01-01

    Purpose: To extract tritium in heavy water by combining isotope exchange reaction with liquefaction distillation to increase the concentration of recovered tritium, thereby reducing the quantity of radioactive wastes recovered. Constitution: Heavy water containing tritium from a reactor is introduced into a tritium separator through a conduit pipe. On the other hand, a D 2 gas is introduced through the conduit pipe in the lower part of a tritium separator to transfer tritium into D 2 gas by isotope exchange. The D 2 gas containing DT is introduced into a liquefaction distillation tower together with an outlet gas of a converter supplied through a pipeline. The converter is filled with net-like metals of platinum group such as Pt, Ni, Pd and the like, and the D 2 gas affluent in DT, extracted from the distillation tower is converted into D 2 and T 2 . The gas which has been introduced into the liquefaction distillation tower is liquefied. The D 2 gas of low boiling point components reaches the tower top, and the T 2 gas of high boiling point components is concentrated at the tower bottom, and is rendered into tritium water in a recoupler and stored in a water storage apparatus. (Yoshino, Y.)

  11. Risks of tritium and their mitigation

    International Nuclear Information System (INIS)

    Ichimasa, Y.; Shiba, H.; Ichimasa, M.; Chikuuti, M.; Akita, Y.

    1992-01-01

    In this study, the effects of an antibacterial drug, norfloxacin, and an antibiotic, clindamycin, on in vivo oxidation of tritium gas in rats were investigated. Wistar strain male rats were used. They were provided with a standard diet, water ad libitum, and maintained in glass metabolic cages of approximately 20 liters capacity. The air flow and temperature were controlled. To investigate the availability of norfloxacin and clindamycin on the inhibition effects of the oxidation of tritium gas, two types of the experiments were conducted one was that, before the exposure to tritium gas for 2 hours, norfloxacin or clindamycin was administrated to rats three times a day for 4 days, and the other was administration of a drug after tritium gas exposure. After the exposure to tritium gas, blood, the liver, urine and feces samples were collected from rats and the radioactivity of them was determined after combustion using a sample oxidizer. In the case of norfloxacin, tritium concentration in rat body decreased one fifth of that in non-treated rats. On the other hand, administration of clindamycin shortened the biological half-life of tritium in urine to three fifth of that of non-treated rats. (author)

  12. ITER Dynamic Tritium Inventory Modeling Code

    International Nuclear Information System (INIS)

    Cristescu, Ioana-R.; Doerr, L.; Busigin, A.; Murdoch, D.

    2005-01-01

    A tool for tritium inventory evaluation within each sub-system of the Fuel Cycle of ITER is vital, with respect to both the process of licensing ITER and also for operation. It is very likely that measurements of total tritium inventories may not be possible for all sub-systems, however tritium accounting may be achieved by modeling its hold-up within each sub-system and by validating these models in real-time against the monitored flows and tritium streams between the systems. To get reliable results, an accurate dynamic modeling of the tritium content in each sub-system is necessary. In order to optimize the configuration and operation of the ITER fuel cycle, a dynamic fuel cycle model was developed progressively in the decade up to 2000-2001. As the design for some sub-systems from the fuel cycle (i.e. Vacuum pumping, Neutral Beam Injectors (NBI)) have substantially progressed meanwhile, a new code developed under a different platform to incorporate these modifications has been developed. The new code is taking over the models and algorithms for some subsystems, such as Isotope Separation System (ISS); where simplified models have been previously considered, more detailed have been introduced, as for the Water Detritiation System (WDS). To reflect all these changes, the new code developed inside EU participating team was nominated TRIMO (Tritium Inventory Modeling), to emphasize the use of the code on assessing the tritium inventory within ITER

  13. Measurement of tritium in environment, (2)

    International Nuclear Information System (INIS)

    Chaya, Ikuo; Kagami, Tadaaki; Hamamura, Norikatsu

    1975-01-01

    In order to know the amount of natural tritium in environmental water and also to know the tendency of tritium concentration in surface water which is necessary for the measurement of ground water age, the tritium concentration in rain, river, and sea water in Aichi Prefecture were measured. In order to make the appropriate utilization of ground water such as city water and hot springs and to elucidate the effect of ground water utilization on ground subsidence, it is desirable to clarify the state of underground water-bearing strata, the flow direction and flow speed of ground water, and the change of ground water quality owing to the flow. As the means of knowing the flow speed of ground water, the age determination with tritium was carried out. The amount of tritium was determined by measuring the concentrated samples with a liquid scintillation counter. The tritium concentration in river was 1.7 times as much as that in rain water, and it is attributed to the time difference from raining to flowing in rivers. The tritium concentration in sea water was high at the estuary of Kiso River, and about a half of it in the other places. The water of the hot spring source in Nobi Plain is the old ground water soaked more than 20 years ago. The city water sources utilizing ground water shallower than 300 m use both new and old ground water. (Kako, I.)

  14. ENTREPRENEURIAL CAPABILITIES

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard; Nielsen, Thorkild

    2003-01-01

    The aim of this article is to analyse entrepreneurship from an action research perspective. What is entrepreneurship about? Which are the fundamental capabilities and processes of entrepreneurship? To answer these questions the article includes a case study of a Danish entrepreneur and his networ....... Finally, the article discuss, how more long term action research methods could be integrated into the entrepreneurial processes and the possible impacts of such an implementation?...

  15. Tritium

    Science.gov (United States)

    2011-11-01

    Fraction The probability that a triton injected into a reactor is burned in the reaction (1) before it escapes the confinement region in the case of MFE , or...vσ〉 = 3.68× 10−18 T 2/3 i exp ( − 19.94 T 1/3 i ) . (12) For a representative MFE ion temperature Ti = 20 keV, (13) we find from (12) that 〈vσ〉 = 3.22

  16. Modelling the Environmental Transfer of Tritium and Carbon-14 to Biota and Man. Report of the Tritium and Carbon-14 Working Group of EMRAS Theme 1

    International Nuclear Information System (INIS)

    2012-01-01

    -specific information as possible on land use, local soil properties and predominant plant cultivars and animal breeds; - implementing realistic growth curves for the plant cultivars of interest; - basing all sub-models on the physical approaches available for the disciplines in question. For example, knowledge from the agricultural sciences should be used to improve models for crop growth, photosynthesis and translocation; - recognizing and accounting for any unusual conditions (water stress, an uncommon cultivar or breed) in the model application. Further work in the following areas would help to improve tritium and 14 C dose assessments: - testing and improving models for the following processes: plant uptake of HTO at night and when it is raining; OBT formation in plants at night; translocation of OBT to fruit and roots; isotopic discrimination; tritium behaviour in soils following deposition from the atmosphere; and tritium behaviour in winter; - modifying the steady-state models for chronic releases to account for the fact that fluctuations in release rates and meteorological conditions result in a state of quasi- equilibrium in the environment, rather than the complete equilibrium assumed by the models; - developing a standard conceptual model for accidental tritium releases; - investigating and understanding the large OBT/HTO ratios that have been observed in soils, plants and fish under conditions that are ostensibly at equilibrium. The ten scenarios developed by the Tritium/C14 WG provide a valuable source of test data for validating environmental tritium and 14 C models.

  17. Modelling the Environmental Transfer of Tritium and Carbon-14 to Biota and Man. Report of the Tritium and Carbon-14 Working Group of EMRAS Theme 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    of interest; - incorporating as much site-specific information as possible on land use, local soil properties and predominant plant cultivars and animal breeds; - implementing realistic growth curves for the plant cultivars of interest; - basing all sub-models on the physical approaches available for the disciplines in question. For example, knowledge from the agricultural sciences should be used to improve models for crop growth, photosynthesis and translocation; - recognizing and accounting for any unusual conditions (water stress, an uncommon cultivar or breed) in the model application. Further work in the following areas would help to improve tritium and {sup 14}C dose assessments: - testing and improving models for the following processes: plant uptake of HTO at night and when it is raining; OBT formation in plants at night; translocation of OBT to fruit and roots; isotopic discrimination; tritium behaviour in soils following deposition from the atmosphere; and tritium behaviour in winter; - modifying the steady-state models for chronic releases to account for the fact that fluctuations in release rates and meteorological conditions result in a state of quasi- equilibrium in the environment, rather than the complete equilibrium assumed by the models; - developing a standard conceptual model for accidental tritium releases; - investigating and understanding the large OBT/HTO ratios that have been observed in soils, plants and fish under conditions that are ostensibly at equilibrium. The ten scenarios developed by the Tritium/C14 WG provide a valuable source of test data for validating environmental tritium and {sup 14}C models.

  18. Phase 1 Final Report for In-Situ Tritium Beta Detector

    Energy Technology Data Exchange (ETDEWEB)

    Berthold, J.W.; Jeffers, L.A.

    1998-04-15

    The objectives of this three-phase project were to design, develop, and demonstrate a monitoring system capable of detecting and quantifying tritium in situ in ground and surface waters, and in water from effluent lines prior to discharge into public waterways. The tritium detection system design is based on measurement of the low energy beta radiation from the radioactive decay of tritium using a special form of scintillating optical fiber directly in contact with the water to be measured. The system consists of the immersible sensor module containing the optical fiber, and an electronics package, connected by an umbilical cable. The system can be permanently installed for routine water monitoring in wells or process or effluent lines, or can be moved from one location to another for survey use. The electronics will read out tritium activity directly in units of pico Curies per liter, with straightforward calibration. In Phase 1 of the project, we characterized the sensitivity of fluor-doped plastic optical fiber to tritium beta radiation. In addition, we characterized the performance of photomultiplier tubes needed for the system. In parallel with this work, we defined the functional requirements, target specifications, and system configuration for an in situ tritium beta detector that would use the fluor-doped fibers as primary sensors of tritium concentration in water. The major conclusions from the characterization work are: A polystyrene optical fiber with fluor dopant concentration of 2% gave best performance. This fiber had the highest dopant concentration of any fibers tested. Stability may be a problem. The fibers exposed to a 22-day soak in 120 F water experienced a 10x reduction in sensitivity. It is not known whether this was due to the build up of a deposit (a potentially reversible effect) or an irreversible process such as leaching of the scintillating dye.

  19. Genomic dairy cattle breeding

    DEFF Research Database (Denmark)

    Mark, Thomas; Sandøe, Peter

    2010-01-01

    the thoughts of breeders and other stakeholders on how to best make use of genomic breeding in the future. Intensive breeding has played a major role in securing dramatic increases in milk yield since the Second World War. Until recently, the main focus in dairy cattle breeding was on production traits...... it less accountable to the concern of private farmers for the welfare of their animals. It is argued that there is a need to mobilise a wide range of stakeholders to monitor developments and maintain pressure on breeding companies so that they are aware of the need to take precautionary measures to avoid...

  20. Tritium labeling of amino acids and peptides with liquid and solid tritium

    International Nuclear Information System (INIS)

    Peng, C.T.; Hua, R.L.; Souers, P.C.; Coronado, P.R.

    1988-01-01

    Amino acids and peptides were labeled with liquid and solid tritium at 21 K and 9 K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenyl-alanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritium are potentially useful agents for labeling peptides and proteins. 11 refs., 1 fig., 3 tabs