WorldWideScience

Sample records for triple-alpha reaction rate

  1. S-matrix calculation of the triple-alpha reaction

    Science.gov (United States)

    Fushiki, Ikko; Lamb, D. Q.

    1987-01-01

    An S-matrix formalism is developed which can be applied to reactions in which electron screening is important, including three-body reactions and reactions involving weak interactions. The various regimes of the triple-alpha reactions are systematically discussed, and a new nonresonant regime at high densities is identified. Using the S-matrix formalism, an analytic expression is obtained for the screened triple-alpha reactions which is accurate for all temperatures and densities. The results are compared with those of Cameron (1959) and Nomoto et al. (1985), and the latter's expression for the unscreened reaction rate is verified. However, it is shown that the reaction rate in the pycnonuclear regime cannot be obtained from the unscreened rate using a screening factor, and that the results of Nomoto et al. therefore cannot be used in this regime.

  2. Variation of fundamental constants and the triple-alpha reaction in Population III stars and BBN

    International Nuclear Information System (INIS)

    Coc, Alain

    2012-01-01

    The effect of variations of the fundamental constants on the thermonuclear rate of the triple alpha reaction, 4 He(αα, γ) 12 C, that bridges the gap between 4 He and 12 C is investigated. We have followed the evolution of 15 and 60 M sun zero metallicity stellar models, up to the end of core helium burning. The calculated oxygen and carbon abundances resulting from helium burning can then be used to constrain the variation of the fundamental constants. To investigate the effect of an enhanced triple alpha reaction rate in Big-Bang Nucleosynthesis, we first evaluated Standard Big-Bang Nucleosynthesis CNO production with a network of more than 400 reactions using the TALYS code to calculate missing rates.

  3. Enhancement of the Triple Alpha Rate in a Hot Dense Medium

    Science.gov (United States)

    Beard, Mary; Austin, Sam M.; Cyburt, Richard

    2017-09-01

    In a sufficiently hot and dense astrophysical environment the rate of the triple-alpha (3 α ) reaction can increase greatly over the value appropriate for helium burning stars owing to hadronically induced deexcitation of the Hoyle state. In this Letter we use a statistical model to evaluate the enhancement as a function of temperature and density. For a density of 106 g cm-3 enhancements can exceed a factor of 100. In high temperature or density situations, the enhanced 3 α rate is a better estimate of this rate and should be used in these circumstances. We then examine the effect of these enhancements on production of 12C in the neutrino wind following a supernova explosion and in an x-ray burster.

  4. Screened Thermonuclear Reaction Rates on Magnetar Surfaces

    International Nuclear Information System (INIS)

    Hong-Lin, Liu; Zhi-Quan, Luo; Jing-Jing, Liu; Xiang-Jun, Lai

    2008-01-01

    Improving Salpeter's method, we discuss the effect of superstrong magnetic fields (such as those of magnetars) on thermonuclear reaction rates. These most interesting reactions, including the hydrogen burning by the CNO cycle and the helium burning by the triple alpha reaction, are investigated as examples on the magnetar surfaces. The obtained result shows that the superstrong magnetic fields can increase the thermonuclear reaction rates by many orders of magnitude. The enhancement may have significant influence for further study research of the magnetars, especially for the x-ray luminosity observation and the evolution of magnetars. (geophysics, astronomy, and astrophysics)

  5. Nuclear reaction rates and opacity in massive star evolution calculations

    International Nuclear Information System (INIS)

    Bahena, D; Klapp, J; Dehnen, H

    2010-01-01

    Nuclear reaction rates and opacity are important parameters in stellar evolution. The input physics in a stellar evolution code determines the main theoretical characteristics of the stellar structure, evolution and nucleosynthesis of a star. For different input physics, in this work we calculate stellar evolution models of very massive first stars during the hydrogen and helium burning phases. We have considered 100 and 200M s un galactic and pregalactic stars with metallicity Z = 10 -6 and 10 9 , respectively. The results show important differences from old to new formulations for the opacity and nuclear reaction rates, in particular the evolutionary tracks are significantly affected, that indicates the importance of using up to date and reliable input physics. The triple alpha reaction activates sooner for pregalactic than for galactic stars.

  6. On Thermonuclear Reaction Rates

    OpenAIRE

    Haubold, H. J.; Mathai, A. M.

    1996-01-01

    Nuclear reactions govern major aspects of the chemical evolution of galaxies and stars. Analytic study of the reaction rates and reaction probability integrals is attempted here. Exact expressions for the reaction rates and reaction probability integrals for nuclear reactions in the cases of nonresonant, modified nonresonant, screened nonresonant and resonant cases are given. These are expressed in terms of H-functions, G-functions and in computable series forms. Computational aspects are als...

  7. Stellar helium burning in other universes: A solution to the triple alpha fine-tuning problem

    Science.gov (United States)

    Adams, Fred C.; Grohs, Evan

    2017-01-01

    Motivated by the possible existence of other universes, with different values for the fundamental constants, this paper considers stellar models in universes where 8Be is stable. Many previous authors have noted that stars in our universe would have difficulty producing carbon and other heavy elements in the absence of the well-known 12C resonance at 7.6 MeV. This resonance is necessary because 8Be is unstable in our universe, so that carbon must be produced via the triple alpha reaction to achieve the requisite abundance. Although a moderate change in the energy of the resonance (200-300 keV) will indeed affect carbon production, an even smaller change in the binding energy of beryllium (∼100 keV) would allow 8Be to be stable. A stable isotope with A = 8 would obviate the need for the triple alpha process in general, and the 12C resonance in particular, for carbon production. This paper explores the possibility that 8Be can be stable in other universes. Simple nuclear considerations indicate that bound states can be realized, with binding energy ∼ 0.1 - 1 MeV, if the fundamental constants vary by a ∼ few - 10 %. In such cases, 8Be can be synthesized through helium burning, and 12C can be produced later through nuclear burning of beryllium. This paper focuses on stellar models that burn helium into beryllium; once the universe in question has a supply of stable beryllium, carbon production can take place during subsequent evolution in the same star or in later stellar generations. Using both a semi-analytic stellar structure model as well as a state-of-the-art stellar evolution code, we find that viable stellar configurations that produce beryllium exist over a wide range of parameter space. Finally, we demonstrate that carbon can be produced during later evolutionary stages.

  8. Thermonuclear reaction rates. III

    International Nuclear Information System (INIS)

    Harris, M.J.; Fowler, W.A.; Caughlan, G.R.; Zimmerman, B.A.

    1983-01-01

    Stellar thermonuclear reaction rates are revised and updated, adding a number of new important reaction rates. Several reactions with large negative Q-values are included, and examples of them are discussed. The importance of the decay rates for Mg-26(p,n) exp 26 Al and Al-26(n,p) exp 26 Mg for stellar studies is emphasized. 19 references

  9. Resonant thermonuclear reaction rate

    International Nuclear Information System (INIS)

    Haubold, H.J.; Mathai, A.M.

    1986-01-01

    Basic physical principles for the resonant and nonresonant thermonuclear reaction rates are applied to find their standard representations for nuclear astrophysics. Closed-form representations for the resonant reaction rate are derived in terms of Meijer's G-function. Analytic representations of the resonant and nonresonant nuclear reaction rates are compared and the appearance of Meijer's G-function is discussed in physical terms

  10. Applications of Reaction Rate

    Science.gov (United States)

    Cunningham, Kevin

    2007-01-01

    This article presents an assignment in which students are to research and report on a chemical reaction whose increased or decreased rate is of practical importance. Specifically, students are asked to represent the reaction they have chosen with an acceptable chemical equation, identify a factor that influences its rate and explain how and why it…

  11. What Is a Reaction Rate?

    Science.gov (United States)

    Schmitz, Guy

    2005-01-01

    The definition of reaction rate is derived and demonstrations are made for the care to be taken while using the term. Reaction rate can be in terms of a reaction property, the extent of reaction and thus it is possible to give a definition applicable in open and closed systems.

  12. Reaction rate of propene pyrolysis.

    Science.gov (United States)

    Han, Peipei; Su, Kehe; Liu, Yan; Wang, Yanli; Wang, Xin; Zeng, Qingfeng; Cheng, Laifei; Zhang, Litong

    2011-10-01

    The reaction rate of propene pyrolysis was investigated based on the elementary reactions proposed in Qu et al., J Comput Chem 2009, 31, 1421. The overall reaction rate was developed with the steady-state approximation and the rate constants of the elementary reactions were determined with the variational transition state theory. For the elementary reaction having transition state, the vibrational frequencies of the selected points along the minimum energy path were calculated with density functional theory at B3PW91/6-311G(d,p) level and the energies were improved with the accurate model chemistry method G3(MP2). For the elementary reaction without transition state, the frequencies were calculated with CASSCF/6-311G(d,p) and the energies were refined with the multireference configuration interaction method MRCISD/6-311G(d,p). The rate constants were evaluated within 200-2000 K and the fitted three-parameter expressions were obtained. The results are consistent with those in the literatures in most cases. For the overall rate, it was found that the logarithm of the rate and the reciprocal temperature have excellent linear relationship above 400 K, predicting that the rate follows a typical first-order law at high temperatures of 800-2000 K, which is also consistent with the experiments. The apparent activation energy in 800-2000 K is 317.3 kJ/mol from the potential energy surface of zero Kelvin. This value is comparable with the energy barriers, 365.4 and 403.7 kJ/mol, of the rate control steps. However, the apparent activation energy, 215.7 kJ/mol, developed with the Gibbs free energy surface at 1200 K is consistent with the most recent experimental result 201.9 ± 0.6 kJ/mol. Copyright © 2011 Wiley Periodicals, Inc.

  13. Reaction rates when barriers fluctuate

    OpenAIRE

    Reimann, Peter

    1999-01-01

    Reaction rates when barriers fluctuate : a path integral approach / P. Hänggi and P. Reimann. - In: International Conference on Path Integrals from peV to TeV : Proceedings of the ... / eds.: R. Casalbuoni ... - Singapore u.a. : World Scientific, 1999. - S. 407-409

  14. Nuclear reaction rates and the primordial nucleosynthesis

    OpenAIRE

    Mishra, Abhishek; Basu, D. N.

    2011-01-01

    The theoretical predictions of the primordial abundances of elements in the big-bang nucleosynthesis (BBN) are dominated by uncertainties in the input nuclear reaction rates. We investigate the effect of modifying these reaction rates on light element abundance yields in BBN by replacing the thirty-five reaction rates out of the existing eighty-eight. We have studied these yields as functions of evolution time or temperature. We find that using these new reaction rates results in only a littl...

  15. The Rate Laws for Reversible Reactions.

    Science.gov (United States)

    King, Edward L.

    1986-01-01

    Provides background information for teachers on the rate laws for reversible reactions. Indicates that although prediction of the form of the rate law for a reverse reaction given the rate law for the forward reaction is not certain, the number of possibilities is limited because of relationships described. (JN)

  16. Method of controlling fusion reaction rates

    Science.gov (United States)

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-01-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  17. Reaction Order Ambiguity in Integrated Rate Plots

    Science.gov (United States)

    Lee, Joe

    2008-01-01

    Integrated rate plots are frequently used in reaction kinetics to determine orders of reactions. It is often emphasised, when using this methodology in practice, that it is necessary to monitor the reaction to a substantial fraction of completion for these plots to yield unambiguous orders. The present article gives a theoretical and statistical…

  18. Reaction rates for reaction-diffusion kinetics on unstructured meshes.

    Science.gov (United States)

    Hellander, Stefan; Petzold, Linda

    2017-02-14

    The reaction-diffusion master equation is a stochastic model often utilized in the study of biochemical reaction networks in living cells. It is applied when the spatial distribution of molecules is important to the dynamics of the system. A viable approach to resolve the complex geometry of cells accurately is to discretize space with an unstructured mesh. Diffusion is modeled as discrete jumps between nodes on the mesh, and the diffusion jump rates can be obtained through a discretization of the diffusion equation on the mesh. Reactions can occur when molecules occupy the same voxel. In this paper, we develop a method for computing accurate reaction rates between molecules occupying the same voxel in an unstructured mesh. For large voxels, these rates are known to be well approximated by the reaction rates derived by Collins and Kimball, but as the mesh is refined, no analytical expression for the rates exists. We reduce the problem of computing accurate reaction rates to a pure preprocessing step, depending only on the mesh and not on the model parameters, and we devise an efficient numerical scheme to estimate them to high accuracy. We show in several numerical examples that as we refine the mesh, the results obtained with the reaction-diffusion master equation approach those of a more fine-grained Smoluchowski particle-tracking model.

  19. Effective reaction rates for diffusion-limited reaction cycles.

    Science.gov (United States)

    Nałęcz-Jawecki, Paweł; Szymańska, Paulina; Kochańczyk, Marek; Miękisz, Jacek; Lipniacki, Tomasz

    2015-12-07

    Biological signals in cells are transmitted with the use of reaction cycles, such as the phosphorylation-dephosphorylation cycle, in which substrate is modified by antagonistic enzymes. An appreciable share of such reactions takes place in crowded environments of two-dimensional structures, such as plasma membrane or intracellular membranes, and is expected to be diffusion-controlled. In this work, starting from the microscopic bimolecular reaction rate constants and using estimates of the mean first-passage time for an enzyme-substrate encounter, we derive diffusion-dependent effective macroscopic reaction rate coefficients (EMRRC) for a generic reaction cycle. Each EMRRC was found to be half of the harmonic average of the microscopic rate constant (phosphorylation c or dephosphorylation d), and the effective (crowding-dependent) motility divided by a slowly decreasing logarithmic function of the sum of the enzyme concentrations. This implies that when c and d differ, the two EMRRCs scale differently with the motility, rendering the steady-state fraction of phosphorylated substrate molecules diffusion-dependent. Analytical predictions are verified using kinetic Monte Carlo simulations on the two-dimensional triangular lattice at the single-molecule resolution. It is demonstrated that the proposed formulas estimate the steady-state concentrations and effective reaction rates for different sets of microscopic reaction rates and concentrations of reactants, including a non-trivial example where with increasing diffusivity the fraction of phosphorylated substrate molecules changes from 10% to 90%.

  20. Reaction rate of hydrolysis of iodine

    International Nuclear Information System (INIS)

    Miyake, Yoshikazu; Eguchi, Wataru; Adachi, Motonari

    1979-01-01

    Absorption rates of dilute iodine vapor contained in air by aqueous mixtures of sodium hydroxide and boric acid were measured using a laminar liquid jet column absorber at 298 K. Absorption rates in this system are controlled by a series of complex reactions taking place in the liquid phase. The reaction rate constant of iodine hydrolysis in the aqueous phase was determined from the absorption rates observed under the conditions that the base-catalytic hydrolysis reaction of iodine can be considered to be irreversible and that other reactions can be neglected. The absorption rates calculated theoretically with the rate constant value obtained above were in good accordance with the whole experimental data observed for a wide range of experimental conditions. (author)

  1. The investigation on CNO burning reaction rate

    International Nuclear Information System (INIS)

    He Jianhua; Yang Jinqing; Peng Qiuhe

    1992-01-01

    The Barrier Penetration Model has been used to calculate the heavy ion fusion cross section and it does give a good description of the experimental data in existence. Based on this, the reaction rates of CNO fusion at various temperature have been calculated and the approximated analytic expressions of the reaction rates versus temperature have also been given. For the reaction rates of 12 C + 12 C and 16 O + 16 O, our results are evidently smaller than the results given by Caughlan et al. in 1985. Especially for the reaction 16 O + 16 O, its new rate is only a small fraction (1/7-1/20 depending on the temperature) of the rate by Caughlan et al. at the temperature range T a = 0.5-5.0. Our results are very important for the studies of stellar evolution of massive stars, supernovae and nucleosynthesis

  2. Rates of Thermonuclear Reactions in Dense Plasmas

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Bornatici, M.

    2000-01-01

    The problem of plasma screening of thermonuclear reactions has attracted considerable scientific interest ever since Salpeter's seminal paper, but it is still faced with controversial statements and without any definite conclusion. It is of relevant importance to thermonuclear reactions in dense astrophysical plasmas, for which charge screening can substantially affect the reaction rates. Whereas Salpeter and a number of subsequent investigations have dealt with static screening, Carraro, Schafer, and Koonin have drawn attention to the fact that plasma screening of thermonuclear reactions is an essentially dynamic effect. In addressing the issue of collective plasma effects on the thermonuclear reaction rates, the first critical overview of most of the work carried out so far is presented and the validity of the test particle approach is assessed. In contrast to previous investigations, we base our description on the kinetic equation for nonequilibrium plasmas, which accounts for the effects on the rates of thermonuclear reactions of both plasma fluctuations and screening and allows one to analyze explicitly the effects of the fluctuations on the reaction rates. Such a kinetic formulation is more general than both Salpeter's approach and the recently developed statistical approaches and makes it possible to obtain a more comprehensive understanding of the problem. A noticeable result of the fluctuation approach is that the static screening, which affects both the interaction and the self-energy of the reacting nuclei, does not affect the reaction rates, in contrast with the results obtained so far. Instead, a reduction of the thermonuclear reaction rates is obtained as a result of the effect of plasma fluctuations related to the free self-energy of the reacting nuclei. A simple physical explanation of the slowing down of the reaction rates is given, and the relation to the dynamically screened test particle approach is discussed. Corrections to the reaction rates

  3. Reaction rates for mesoscopic reaction-diffusion kinetics.

    Science.gov (United States)

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.

  4. Reaction rates for a generalized reaction-diffusion master equation.

    Science.gov (United States)

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is of the order of the reaction radius of a reacting pair of molecules.

  5. Effective dynamics along given reaction coordinates, and reaction rate theory.

    Science.gov (United States)

    Zhang, Wei; Hartmann, Carsten; Schütte, Christof

    2016-12-22

    In molecular dynamics and related fields one considers dynamical descriptions of complex systems in full (atomic) detail. In order to reduce the overwhelming complexity of realistic systems (high dimension, large timescale spread, limited computational resources) the projection of the full dynamics onto some reaction coordinates is examined in order to extract statistical information like free energies or reaction rates. In this context, the effective dynamics that is induced by the full dynamics on the reaction coordinate space has attracted considerable attention in the literature. In this article, we contribute to this discussion: we first show that if we start with an ergodic diffusion process whose invariant measure is unique then these properties are inherited by the effective dynamics. Then, we give equations for the effective dynamics, discuss whether the dominant timescales and reaction rates inferred from the effective dynamics are accurate approximations of such quantities for the full dynamics, and compare our findings to results from approaches like Mori-Zwanzig, averaging, or homogenization. Finally, by discussing the algorithmic realization of the effective dynamics, we demonstrate that recent algorithmic techniques like the "equation-free" approach and the "heterogeneous multiscale method" can be seen as special cases of our approach.

  6. Reaction-diffusion with stochastic decay rates.

    Science.gov (United States)

    Lapeyre, G John; Dentz, Marco

    2017-07-26

    Understanding anomalous transport and reaction kinetics due to microscopic physical and chemical disorder is a long-standing goal in many fields including geophysics, biology, and engineering. We consider reaction-diffusion characterized by fluctuations in both transport times and decay rates. We introduce and analyze a model framework that explicitly connects microscopic fluctuations with the mescoscopic description. For broad distributions of transport and reaction time scales we compute the particle density and derive the equations governing its evolution, finding power-law decay of the survival probability, and spatially varying decay that leads to subdiffusion and an asymptotically stationary surviving-particle density. These anomalies are clearly attributable to non-Markovian effects that couple transport and chemical properties in both reaction and diffusion terms.

  7. The Theory of Absolute Reaction Rates

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 7. The Theory of Absolute Reaction Rates. Henry Eyring. Classics Volume 17 Issue 7 July 2012 pp 704-711. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/017/07/0704-0711. Author Affiliations.

  8. Pycnonuclear reaction rates for binary ionic mixtures

    Science.gov (United States)

    Ichimaru, S.; Ogata, S.; Van Horn, H. M.

    1992-01-01

    Through a combination of compositional scaling arguments and examinations of Monte Carlo simulation results for the interparticle separations in binary-ionic mixture (BIM) solids, we have derived parameterized expressions for the BIM pycnonuclear rates as generalizations of those in one-component solids obtained previously by Salpeter and Van Horn and by Ogata et al. We have thereby discovered a catalyzing effect of the heavier elements, which enhances the rates of reactions among the lighter elements when the charge ratio exceeds a critical value of approximately 2.3.

  9. An approximate classical unimolecular reaction rate theory

    Science.gov (United States)

    Zhao, Meishan; Rice, Stuart A.

    1992-05-01

    We describe a classical theory of unimolecular reaction rate which is derived from the analysis of Davis and Gray by use of simplifying approximations. These approximations concern the calculation of the locations of, and the fluxes of phase points across, the bottlenecks to fragmentation and to intramolecular energy transfer. The bottleneck to fragment separation is represented as a vibration-rotation state dependent separatrix, which approximation is similar to but extends and improves the approximations for the separatrix introduced by Gray, Rice, and Davis and by Zhao and Rice. The novel feature in our analysis is the representation of the bottlenecks to intramolecular energy transfer as dividing surfaces in phase space; the locations of these dividing surfaces are determined by the same conditions as locate the remnants of robust tori with frequency ratios related to the golden mean (in a two degree of freedom system these are the cantori). The flux of phase points across each dividing surface is calculated with an analytic representation instead of a stroboscopic mapping. The rate of unimolecular reaction is identified with the net rate at which phase points escape from the region of quasiperiodic bounded motion to the region of free fragment motion by consecutively crossing the dividing surfaces for intramolecular energy exchange and the separatrix. This new theory generates predictions of the rates of predissociation of the van der Waals molecules HeI2, NeI2 and ArI2 which are in very good agreement with available experimental data.

  10. Rate coefficient for the reaction N + NO

    Science.gov (United States)

    Fox, J. L.

    1994-01-01

    Evidence has been advanced that the rate coefficient for the reaction N + NO right arrow N2 + O has a small positive temperature dependence at the high temperatures (900 to 1500 K) that prevail in the terrestrial middle and upper thermosphere by Siskind and Rusch (1992), and at the low temperatures (100 to 200 K) of the Martian lower thermosphere by Fox (1993). Assuming that the rate coefficient recommended by the Jet Propulsion Laboratory evaluation (DeMore et al., 1992) is accurate at 300 K, we derive here the low temperature value of the activation energy for this reaction and thus the rate coefficient that best fits the Viking 1 measured NO densities. We find that the fit is acceptable for a rate coefficient of about 1.3 x 10(exp -10)(T/300)(exp 0.5)exp(-400/T) and better for a value of about 2.5 x 10(exp -10)(T/300)(exp 0.5)exp(-600/T)cu cm/s.

  11. BAYESIAN ESTIMATION OF THERMONUCLEAR REACTION RATES

    Energy Technology Data Exchange (ETDEWEB)

    Iliadis, C.; Anderson, K. S. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Coc, A. [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS/IN2P3, Univ. Paris-Sud, Université Paris–Saclay, Bâtiment 104, F-91405 Orsay Campus (France); Timmes, F. X.; Starrfield, S., E-mail: iliadis@unc.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1504 (United States)

    2016-11-01

    The problem of estimating non-resonant astrophysical S -factors and thermonuclear reaction rates, based on measured nuclear cross sections, is of major interest for nuclear energy generation, neutrino physics, and element synthesis. Many different methods have been applied to this problem in the past, almost all of them based on traditional statistics. Bayesian methods, on the other hand, are now in widespread use in the physical sciences. In astronomy, for example, Bayesian statistics is applied to the observation of extrasolar planets, gravitational waves, and Type Ia supernovae. However, nuclear physics, in particular, has been slow to adopt Bayesian methods. We present astrophysical S -factors and reaction rates based on Bayesian statistics. We develop a framework that incorporates robust parameter estimation, systematic effects, and non-Gaussian uncertainties in a consistent manner. The method is applied to the reactions d(p, γ ){sup 3}He, {sup 3}He({sup 3}He,2p){sup 4}He, and {sup 3}He( α , γ ){sup 7}Be, important for deuterium burning, solar neutrinos, and Big Bang nucleosynthesis.

  12. Chlorination of Amino Acids: Reaction Pathways and Reaction Rates.

    Science.gov (United States)

    How, Zuo Tong; Linge, Kathryn L; Busetti, Francesco; Joll, Cynthia A

    2017-05-02

    Chlorination of amino acids can result in the formation of organic monochloramines or organic dichloramines, depending on the chlorine to amino acid ratio (Cl:AA). After formation, organic chloramines degrade into aldehydes, nitriles and N-chloraldimines. In this paper, the formation of organic chloramines from chlorination of lysine, tyrosine and valine were investigated. Chlorination of tyrosine and lysine demonstrated that the presence of a reactive secondary group can increase the Cl:AA ratio required for the formation of N,N-dichloramines, and potentially alter the reaction pathways between chlorine and amino acids, resulting in the formation of unexpected byproducts. In a detailed investigation, we report rate constants for all reactions in the chlorination of valine, for the first time, using experimental results and modeling. At Cl:AA = 2.8, the chlorine was found to first react quickly with valine (5.4 × 10 4 M -1 s -1 ) to form N-monochlorovaline, with a slower subsequent reaction with N-monochlorovaline to form N,N-dichlorovaline (4.9 × 10 2 M -1 s -1 ), although some N-monochlorovaline degraded into isobutyraldehyde (1.0 × 10 -4 s -1 ). The N,N-dichlorovaline then competitively degraded into isobutyronitrile (1.3 × 10 -4 s -1 ) and N-chloroisobutyraldimine (1.2 × 10 -4 s -1 ). In conventional drinking water disinfection, N-chloroisobutyraldimine can potentially be formed in concentrations higher than its odor threshold concentration, resulting in aesthetic challenges and an unknown health risk.

  13. Fusion Reaction Rate in an Inhomogeneous Plasma

    International Nuclear Information System (INIS)

    Son, S.; Fisch, N.J.

    2004-01-01

    The local fusion rate, obtained from the assumption that the distribution is a local Maxwellian, is inaccurate if mean-free-paths of fusing particles are not sufficiently small compared with the inhomogeneity length of the plasma. We calculate the first order correction of P0 in terms of the small spatial gradient and obtain a non-local modification of P(sub)0 in a shock region when the gradient is not small. Use is made of the fact that the fusion reaction cross section has a relatively sharp peak as a function of energy

  14. Reaction rate calculations via transmission coefficients

    International Nuclear Information System (INIS)

    Feit, M.D.; Alder, B.J.

    1985-01-01

    The transmission coefficient of a wavepacket traversing a potential barrier can be determined by steady state calculations carried out in imaginary time instead of by real time dynamical calculations. The general argument is verified for the Eckart barrier potential by a comparison of transmission coefficients calculated from real and imaginary time solutions of the Schroedinger equation. The correspondence demonstrated here allows a formulation for the reaction rate that avoids difficulties due to both rare events and explicitly time dependent calculations. 5 refs., 2 figs

  15. Cold adaptation of enzyme reaction rates.

    Science.gov (United States)

    Bjelic, Sinisa; Brandsdal, Bjørn O; Aqvist, Johan

    2008-09-23

    A major issue for organisms living at extreme temperatures is to preserve both stability and activity of their enzymes. Cold-adapted enzymes generally have a reduced thermal stability, to counteract freezing, and show a lower enthalpy and a more negative entropy of activation compared to mesophilic and thermophilic homologues. Such a balance of thermodynamic activation parameters can make the reaction rate decrease more linearly, rather than exponentially, as the temperature is lowered, but the structural basis for rate optimization toward low working temperatures remains unclear. In order to computationally address this problem, it is clear that reaction simulations rather than standard molecular dynamics calculations are needed. We have thus carried out extensive computer simulations of the keto-enol(ate) isomerization steps in differently adapted citrate synthases to explore the structure-function relationships behind catalytic rate adaptation to different temperatures. The calculations reproduce the absolute rates of the psychrophilic and mesophilic enzymes at 300 K, as well as the lower enthalpy and more negative entropy of activation of the cold-adapted enzyme, where the latter simulation result is obtained from high-precision Arrhenius plots. The overall catalytic effect originates from electrostatic stabilization of the transition state and enolate and the reduction of reorganization free energy. The simulations, however, show psychrophilic, mesophilic, and hyperthermophilic citrate synthases to have increasingly stronger electrostatic stabilization of the transition state, while the energetic penalty in terms of internal protein interactions follows the reverse order with the cold-adapted enzyme having the most favorable energy term. The lower activation enthalpy and more negative activation entropy observed for cold-adapted enzymes are found to be associated with a decreased protein stiffness. The origin of this effect is, however, not localized to the

  16. Effect of excited states on thermonuclear reaction rates

    International Nuclear Information System (INIS)

    Sargood, D.G.

    1983-01-01

    Values of the ratio of the thermonuclear reaction rate of a reaction, with target nuclei in a thermal distribution of energy states, to the reaction rate with all target nuclei in their ground states are tabulated for neutron, proton and α-particle induced reactions on the naturally occurring nuclei from 20 Ne to 70 Zn, at temperatures of 1, 2, 3.5 and 5x10 9 K. The ratios are determined from reaction rates based on statistical model cross sections

  17. Representing Rate Equations for Enzyme-Catalyzed Reactions

    Science.gov (United States)

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  18. The Theory of Absolute Reaction Rates

    Indian Academy of Sciences (India)

    Admin

    ... theory overcame all obstacles and is presently the most successful theory for chemical reactions. The Classic in this issue is the paper by Eyring, presented at this meeting. It summarizes the contributions of his group till that date, and is one of the most important papers in the theory of chemical reactions. K L Sebastian ...

  19. Temperature dependence of muonium reaction rates in the gas phase

    International Nuclear Information System (INIS)

    Fleming, D.G.; Garner, D.M.; Mikula, R.J.; British Columbia Univ., Vancouver

    1981-01-01

    A study of the temperature dependence of reaction rates has long been an important tool in establishing reaction pathways in chemical reactions. This is particularly true for the reactions of muonium (in comparison with those of hydrogen) since a measurement of the activation energy for chemical reaction is sensitive to both the height and the position of the potential barrier in the reaction plane. For collision controlled reactions, on the other hand, the reaction rate is expected to exhibit a weak T 1 sup(/) 2 dependence characteristic of the mean collision velocity. These concepts are discussed and their effects illustrated in a comparison of the chemical and spin exchange reaction rates of muonium and hydrogen in the temperature range approx.300-approx.500 K. (orig.)

  20. The Theory of Absolute Reaction Rates

    Indian Academy of Sciences (India)

    Admin

    them, and try and discover whether they enable us to relate known phenomena, and to extend our knowledge.” History shows that the activated complex theory overcame all obstacles and is presently the most successful theory for chemical reactions. The Classic in this issue is the paper by Eyring, presented at this meeting.

  1. Thermonuclear reaction rates in a deuterium-tritium plasma

    International Nuclear Information System (INIS)

    Beckman, L.

    1978-12-01

    In a deuterium-tritium plasma six thermonuclear reactions take place between the deuterons, tritons and the 3 He-particles formed in about half of the d-d-reactions. The rate constants for these six reactions have been calculated from the latest evaluations of the reaction cross sections which were available. In some cases, notably the reactions t+t, t+ 3 He and 3 He+ 3 He, the number of published cross section measurements is small, and the uncertainty in the calculated rate constants consequently large. Analytical expressions for the rate constants as functions of the plasma temperature have been set up. (author)

  2. Comparison of DSMC Reaction Models with QCT Reaction Rates for Nitrogen

    Science.gov (United States)

    2016-07-17

    include area code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Comparison of DSMC Reaction Models with QCT Reaction Rates ...controls vibration coupling A is adjusted to match thermal reaction rate Simplest to implement, not tied to any other model Distribution A: Approved for...General trend: reaction rate increases with v • TCE, QK: lack of vibrational favoring results in much lower slope as compared to the benchmark QCT • VFD: φ

  3. Rates for some reactions involving 42Ca and 44Ca

    International Nuclear Information System (INIS)

    Cheng, C.W.; King, J.D.

    1980-01-01

    Ground-state reaction rates have been deduced from recent cross section measurements for the 42 CA(α, n) 45 Ti, 42 Ca(p, γ) 43 Sc, and 44 Ca(p, n) 44 Sc reactions. Comparison of these rates with those calculated from a statistical model of nuclear reactions. (Woosley et al) shows good agreement for the first two, but the 44 Ca(p, n) rate is more than a factor of 2 less than the theoretical prediction. Stellar reaction rates have been derived from the ground-state rates by multiplying the ground-state rates by the ratio of stellar to ground-state rates given by the statistical model. Both ground-state and stellar rates have been represented by analytic functions of the temperature. The role of these reactions in the approach to quasi-equilibrium during explosive silicon burning is discussed

  4. Effect of nuclear reaction rates on primordial abundances

    International Nuclear Information System (INIS)

    Mishra, Abhishek; Basu, D.N.

    2011-01-01

    The theoretical predictions of the primordial abundances of elements in the big-bang nucleosynthesis (BBN) are dominated by uncertainties in the input nuclear reaction rates. The effect of modifying these reaction rates on light element abundance yields in BBN by replacing the thirty-five reaction rates out of the existing eighty-eight has been investigated. Also the study have been taken of these yields as functions of evolution time or temperature. Here it has been found that using these new reaction rates results in only a little increase in helium mass fraction over that obtained previously in BBN calculations. This allows insights into the role of the nuclear reaction rates in the setting of the neutron-to-proton ratio during the BBN epoch. We observe that most of these nuclear reactions have minimal effect on the standard BBN abundance yields of 6 Li and 7 Li

  5. Rate coefficients for hydrogen abstraction reaction of pinonaldehyde

    Indian Academy of Sciences (India)

    The H abstraction reaction from the –CHO group was found to be the most dominant reaction channelamong all the possible reaction pathways and its corresponding rate coefficient at 300 K is kEckart's unsymmetrical= 3.86 ×10-10 cm3 molecule-1 s-1. Whereas the channel with immediate lower activation energy is the ...

  6. Rate coefficients for hydrogen abstraction reaction of pinonaldehyde ...

    Indian Academy of Sciences (India)

    The H abstraction reaction from the –CHO group was found to be the most dominant reaction channelamong all the possible reaction pathways and its corresponding rate coefficient at 300 K is kEckart's unsymmetrical= 3.86 ×10-10 cm3 molecule-1 s-1. Whereas the channel with immediate lower activation energy is the ...

  7. Field Based Constraints on Reaction Rates in the Crust

    Science.gov (United States)

    Baxter, E. F.

    2004-12-01

    Modern research in plate boundary processes involving metamorphism frequently employs complex physical models. Such models require some quantification (or assumption) of the rate at which metamorphic reactions, or chemical exchange, proceed in natural systems. Here, a compilation of available quantitative field-based constraints on high temperature reaction rates will be presented. These include quantifications based on isotopic exchange, porphyroblast and reaction corona growth models, geochronology, and textural analysis. Additionally, natural strain rates provide an important upper bound on simultaneous reaction rates by virtue of a direct mechanistic link between reaction and strain that applies in most situations within the deforming crust. These data show that reaction rates attending regional metamorphism are 4-7 orders of magnitude slower than most laboratory-based predictions. A general rate law for regional metamorphic reactions has been derived which best describes these field-based data: log10(Rnet) = .0029T-9.6±1, where Rnet is the net reaction rate in g/cm2/yr and T is temperature (C) (Baxter 2003, JGSL). Reaction rates attending contact metamorphism differ from laboratory-based predictions by less than 2 orders of magnitude, and are in closest agreement at higher temperatures. Regional metamorphic reaction rates may be limited by comparatively lesser (or transient) availability of aqueous fluid in the intergranular medium, slower heat input, and smaller deviations from equilibrium. Implications of slow natural metamorphic reaction rates may include a delay in the completion of metamorphic reactions which release (or take in) volatiles, and transform the mineralogy of the crust in dynamic plate boundary settings such as subduction zones.

  8. A review of reaction rates in high temperature air

    Science.gov (United States)

    Park, Chul

    1989-01-01

    The existing experimental data on the rate coefficients for the chemical reactions in nonequilibrium high temperature air are reviewed and collated, and a selected set of such values is recommended for use in hypersonic flow calculations. For the reactions of neutral species, the recommended values are chosen from the experimental data that existed mostly prior to 1970, and are slightly different from those used previously. For the reactions involving ions, the recommended rate coefficients are newly chosen from the experimental data obtained more recently. The reacting environment is assumed to lack thermal equilibrium, and the rate coefficients are expressed as a function of the controlling temperature, incorporating the recent multitemperature reaction concept.

  9. Enzymatic spectrophotometric reaction rate determination of aspartame

    Directory of Open Access Journals (Sweden)

    Trifković Kata T.

    2015-01-01

    Full Text Available Aspartame is an artificial sweetener of low caloric value (approximately 200 times sweeter than sucrose. Aspartame is currently permitted for use in food and beverage production in more than 90 countries. The application of aspartame in food products requires development of rapid, inexpensive and accurate method for its determination. The new assay for determination of aspartame was based on set of reactions that are catalyzed by three different enzymes: α-chymotrypsin, alcohol oxidase and horseradish peroxidase. Optimization of the proposed method was carried out for: (i α-chymotrypsin activity; (ii time allowed for α-chymotrypsin action, (iii temperature. Evaluation of the developed method was done by determining aspartame content in “diet” drinks, as well as in artificial sweetener pills. [Projekat Ministarstva nauke Republike Srbije, br. III46010

  10. Inferring differences in the distribution of reaction rates across conditions

    NARCIS (Netherlands)

    Hendrickx, D.M.; Hoefsloot, H.C.J.; Hendriks, M.M.W.B.; Vis, D.J.; Canelas, A.B.; Teusink, B.; Smilde, A.K.

    2012-01-01

    Elucidating changes in the distribution of reaction rates in metabolic pathways under different conditions is a central challenge in systems biology. Here we present a method for inferring regulation mechanisms responsible for changes in the distribution of reaction rates across conditions from

  11. Temperature effects on lithium-nitrogen reaction rates

    International Nuclear Information System (INIS)

    Ijams, W.J.; Kazimi, M.S.

    1985-08-01

    A series of experiments have been run with the aim of measuring the reaction rate of lithium and nitrogen over a wide spectrum of lithium pool temperatures. In these experiments, pure nitrogen was blown at a controlled flow rate over a preheated lithium pool. The pool had a surface area of approximately 4 cm 2 and a total volume of approximately 6 cm 3 . The system pressure varied from 0 to 4 psig. The reaction rate was very small - approximately 0.002 to 0.003 g Li min cm 2 for lithium temperatures below 500 0 C. Above 500 0 C the reaction rate began to increase sharply, and reached a maximum of approximately 0.80 g Li min cm 2 above 700 0 C. It dropped off beyond 1000 0 C and seemed to approach zero at 1150 0 C. The maximum reaction rate observed in these forced convection experiments was higher by 60% than those previously observed in experiments where the nitrogen flowed to the reaction site by means of natural convection. During a reaction, a hard nitride layer built up on the surface of the lithium pool - its effect on the reaction rate was observed. The effect of the nitrogen flow rate on the reaction rate was also observed

  12. Charged particle induced thermonuclear reaction rates: a compilation for astrophysics

    International Nuclear Information System (INIS)

    Grama, C.

    1999-01-01

    We report on the results of the European network NACRE (Nuclear Astrophysics Compilation of REaction rates). The principal reason for setting up the NACRE network has been the necessity of building up a well-documented and detailed compilation of rates for charged-particle induced reactions on stable targets up to Si and on unstable nuclei of special significance in astrophysics. This work is meant to supersede the only existing compilation of reaction rates issued by Fowler and collaborators. The main goal of NACRE network was the transparency in the procedure of calculating the rates. More specifically this compilation aims at: 1. updating the experimental and theoretical data; 2. distinctly identifying the sources of the data used in rate calculation; 3. evaluating the uncertainties and errors; 4. providing numerically integrated reaction rates; 5. providing reverse reaction rates and analytical approximations of the adopted rates. The cross section data and/or resonance parameters for a total of 86 charged-particle induced reactions are given and the corresponding reaction rates are calculated and given in tabular form. Uncertainties are analyzed and realistic upper and lower bounds of the rates are determined. The compilation is concerned with the reaction rates that are large enough for the target lifetimes shorter than the age of the Universe, taken equal to 15 x 10 9 y. The reaction rates are provided for temperatures lower than T = 10 10 K. In parallel with the rate compilation a cross section data base has been created and located at the site http://pntpm.ulb.ac.be/nacre..htm. (authors)

  13. Enhancement of reaction rates for catalytic benzaldehyde ...

    Indian Academy of Sciences (India)

    The effect of pressured carbon dioxide on heterogeneous hydrogenation of benzaldehyde and homogeneous dehydration of sorbitol in water solvent was studied. Initial hydrogenation rates of benzaldehyde over a charcoal-supported palladium catalyst in water at 313 K were enhanced by the addition of carbon dioxide.

  14. Enhancement of reaction rates for catalytic benzaldehyde ...

    Indian Academy of Sciences (India)

    Abstract. The effect of pressured carbon dioxide on heterogeneous hydrogenation of benzaldehyde and homogeneous dehydration of sorbitol in water solvent was studied. Initial hydrogenation rates of benzaldehyde over a charcoal-supported palladium catalyst in water at 313 K were enhanced by the addition of carbon ...

  15. Estimating the Backup Reaction Wheel Orientation Using Reaction Wheel Spin Rates Flight Telemetry from a Spacecraft

    Science.gov (United States)

    Rizvi, Farheen

    2013-01-01

    A report describes a model that estimates the orientation of the backup reaction wheel using the reaction wheel spin rates telemetry from a spacecraft. Attitude control via the reaction wheel assembly (RWA) onboard a spacecraft uses three reaction wheels (one wheel per axis) and a backup to accommodate any wheel degradation throughout the course of the mission. The spacecraft dynamics prediction depends upon the correct knowledge of the reaction wheel orientations. Thus, it is vital to determine the actual orientation of the reaction wheels such that the correct spacecraft dynamics can be predicted. The conservation of angular momentum is used to estimate the orientation of the backup reaction wheel from the prime and backup reaction wheel spin rates data. The method is applied in estimating the orientation of the backup wheel onboard the Cassini spacecraft. The flight telemetry from the March 2011 prime and backup RWA swap activity on Cassini is used to obtain the best estimate for the backup reaction wheel orientation.

  16. Charged-particle thermonuclear reaction rates: II. Tables and graphs of reaction rates and probability density functions

    International Nuclear Information System (INIS)

    Iliadis, C.; Longland, R.; Champagne, A.E.; Coc, A.; Fitzgerald, R.

    2010-01-01

    Numerical values of charged-particle thermonuclear reaction rates for nuclei in the A=14 to 40 region are tabulated. The results are obtained using a method, based on Monte Carlo techniques, that has been described in the preceding paper of this issue (Paper I). We present a low rate, median rate and high rate which correspond to the 0.16, 0.50 and 0.84 quantiles, respectively, of the cumulative reaction rate distribution. The meaning of these quantities is in general different from the commonly reported, but statistically meaningless expressions, 'lower limit', 'nominal value' and 'upper limit' of the total reaction rate. In addition, we approximate the Monte Carlo probability density function of the total reaction rate by a lognormal distribution and tabulate the lognormal parameters μ and σ at each temperature. We also provide a quantitative measure (Anderson-Darling test statistic) for the reliability of the lognormal approximation. The user can implement the approximate lognormal reaction rate probability density functions directly in a stellar model code for studies of stellar energy generation and nucleosynthesis. For each reaction, the Monte Carlo reaction rate probability density functions, together with their lognormal approximations, are displayed graphically for selected temperatures in order to provide a visual impression. Our new reaction rates are appropriate for bare nuclei in the laboratory. The nuclear physics input used to derive our reaction rates is presented in the subsequent paper of this issue (Paper III). In the fourth paper of this issue (Paper IV) we compare our new reaction rates to previous results.

  17. High-precision (p,t) reactions to determine reaction rates of explosive stellar processes

    NARCIS (Netherlands)

    Matić, Andrija

    2007-01-01

    The aim of my study was to investigate the nuclear structure of 22Mg and 26Si. These two nuclei play a significant role in stellar reaction processes at high temperatures. On base of the obtained nuclear structure we calculated the stellar reaction rates for the following reactions: 18Ne(α,p)21Na,

  18. The local and observed photochemical reaction rates revisited.

    Science.gov (United States)

    Alfano, Orlando M; Irazoqui, Horacio A; Cassano, Alberto E

    2009-07-01

    In a broad sense, photochemical reactions proceed through pathways involving several reaction steps. The initiation step is the absorption of energy both by the reactant or sensitizer molecules and in some cases, by the catalyst, leading to intermediate products that ultimately give rise to stable end products. Preferably, the reaction rate expression is derived from a proposed mechanism together with sound simplifying assumptions; otherwise, it may be adopted on an empirical basis. Under a kinetic control regime, the rate expression thus obtained depends on the local rate of photon absorption according to a power law whose exponent very often ranges from one half to unity. The kinetic expression should be valid at every point of the reactor volume. However, due to radiation attenuation in an absorbing and/or scattering medium, the value of the photon absorption rate is always a function of the spatial position. Therefore, the overall photochemical reaction rate will not be uniform throughout the entire reaction zone, and the distinction between local and volume average photochemical reaction rates becomes mandatory. Experimental values of reaction rates obtained from concentration measurements performed in well-mixed reaction cells are, necessarily, average values. Consequently, for validation purposes, experimental results from these cells must be compared with volume averages of the mechanistically or empirically derived local reaction rate expressions. In this work it is shown that unless the rate is first order with respect to the photon absorption rate or the attenuation in the absorbing and/or scattering medium is kept very low, when the averaging operation is not performed, significant errors may be expected.

  19. APUAMA: a software tool for reaction rate calculations.

    Science.gov (United States)

    Euclides, Henrique O; P Barreto, Patricia R

    2017-06-01

    APUAMA is a free software designed to determine the reaction rate and thermodynamic properties of chemical species of a reagent system. With data from electronic structure calculations, the APUAMA determine the rate constant with tunneling correction, such as Wigner, Eckart and small curvature, and also, include the rovibrational level of diatomic molecules. The results are presented in the form of Arrhenius-Kooij form, for the reaction rate, and the thermodynamic properties are written down in the polynomial form. The word APUAMA means "fast" in Tupi-Guarani Brazilian language, then the code calculates the reaction rate on a simple and intuitive graphic interface, the form fast and practical. As program output, there are several ASCII files with tabulated information for rate constant, rovibrational levels, energy barriers and enthalpy of reaction, Arrhenius-Kooij coefficient, and also, the option to the User save all graphics in BMP format.

  20. Rate constant for reaction of atomic hydrogen with germane

    Science.gov (United States)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1990-01-01

    Due to the interest in the chemistry of germane in the atmospheres of Jupiter and Saturn, and because previously reported kinetic reaction rate studies at 298 K gave results differing by a factor of 200, laboratory measurements were performed to determine the reaction rate constant for H + GeH4. Results of the study at 298 K, obtained via the direct technique of flash photolysis-resonance fluorescence, yield the reaction rate constant, k = (4.08 + or - 0.22) x 10(exp -12) cu cm/s.

  1. Theory of Crowding Effects on Bimolecular Reaction Rates.

    Science.gov (United States)

    Berezhkovskii, Alexander M; Szabo, Attila

    2016-07-07

    An analytical expression for the rate constant of a diffusion-influenced bimolecular reaction in a crowded environment is derived in the framework of a microscopic model that accounts for: (1) the slowdown of diffusion due to crowding and the dependence of the diffusivity on the distance between the reactants, (2) a crowding-induced attractive short-range potential of mean force, and (3) nonspecific reversible binding to the crowders. This expression spans the range from reaction to diffusion control. Crowding can increase the reaction-controlled rate by inducing an effective attraction between reactants but decrease the diffusion-controlled rate by reducing their relative diffusivity.

  2. The Effect of Screening Factors and Thermonuclear Reaction Rates ...

    Indian Academy of Sciences (India)

    to calculate the equation of state by inserting deviations from ideal gas under high ... ideal interactions must be taken into account in equation of state. ..... (30). The star's thermonuclear reaction rate and energy generation can be obtained from these relations. For example; 1H(p, e. + υ)2D and 3He(3He, 2p)4He reactions ...

  3. Improved predictions of nuclear reaction rates with the TALYS reaction code for astrophysical applications

    International Nuclear Information System (INIS)

    Goriely, S.; Hilaire, S.; Koning, A.J

    2008-01-01

    Context. Nuclear reaction rates of astrophysical applications are traditionally determined on the basis of Hauser-Feshbach reaction codes. These codes adopt a number of approximations that have never been tested, such as a simplified width fluctuation correction, the neglect of delayed or multiple-particle emission during the electromagnetic decay cascade, or the absence of the pre-equilibrium contribution at increasing incident energies. Aims. The reaction code TALYS has been recently updated to estimate the Maxwellian-averaged reaction rates that are of astrophysical relevance. These new developments enable the reaction rates to be calculated with increased accuracy and reliability and the approximations of previous codes to be investigated. Methods. The TALYS predictions for the thermonuclear rates of relevance to astrophysics are detailed and compared with those derived by widely-used codes for the same nuclear ingredients. Results. It is shown that TALYS predictions may differ significantly from those of previous codes, in particular for nuclei for which no or little nuclear data is available. The pre-equilibrium process is shown to influence the astrophysics rates of exotic neutron-rich nuclei significantly. For the first time, the Maxwellian- averaged (n, 2n) reaction rate is calculated for all nuclei and its competition with the radiative capture rate is discussed. Conclusions. The TALYS code provides a new tool to estimate all nuclear reaction rates of relevance to astrophysics with improved accuracy and reliability. (authors)

  4. Accurate and approximate thermal rate constants for polyatomic chemical reactions

    International Nuclear Information System (INIS)

    Nyman, Gunnar

    2007-01-01

    In favourable cases it is possible to calculate thermal rate constants for polyatomic reactions to high accuracy from first principles. Here, we discuss the use of flux correlation functions combined with the multi-configurational time-dependent Hartree (MCTDH) approach to efficiently calculate cumulative reaction probabilities and thermal rate constants for polyatomic chemical reactions. Three isotopic variants of the H 2 + CH 3 → CH 4 + H reaction are used to illustrate the theory. There is good agreement with experimental results although the experimental rates generally are larger than the calculated ones, which are believed to be at least as accurate as the experimental rates. Approximations allowing evaluation of the thermal rate constant above 400 K are treated. It is also noted that for the treated reactions, transition state theory (TST) gives accurate rate constants above 500 K. TST theory also gives accurate results for kinetic isotope effects in cases where the mass of the transfered atom is unchanged. Due to neglect of tunnelling, TST however fails below 400 K if the mass of the transferred atom changes between the isotopic reactions

  5. Analysis of reaction schemes using maximum rates of constituent steps

    Science.gov (United States)

    Motagamwala, Ali Hussain; Dumesic, James A.

    2016-01-01

    We show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, rmax,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of rmax,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of rmax,i can be used to predict the rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. This approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps. PMID:27162366

  6. Analysis of reaction schemes using maximum rates of constituent steps.

    Science.gov (United States)

    Motagamwala, Ali Hussain; Dumesic, James A

    2016-05-24

    We show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, rmax,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of rmax,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of rmax,i can be used to predict the rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. This approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps.

  7. Statistical methods for thermonuclear reaction rates and nucleosynthesis simulations

    International Nuclear Information System (INIS)

    Iliadis, Christian; Champagne, Art E; Longland, Richard; Coc, Alain; Timmes, F X

    2015-01-01

    Rigorous statistical methods for estimating thermonuclear reaction rates and nucleosynthesis are becoming increasingly established in nuclear astrophysics. The main challenge being faced is that experimental reaction rates are highly complex quantities derived from a multitude of different measured nuclear parameters (e.g., astrophysical S-factors, resonance energies and strengths, particle and γ-ray partial widths). We discuss the application of the Monte Carlo method to two distinct, but related, questions. First, given a set of measured nuclear parameters, how can one best estimate the resulting thermonuclear reaction rates and associated uncertainties? Second, given a set of appropriate reaction rates, how can one best estimate the abundances from nucleosynthesis (i.e., reaction network) calculations? The techniques described here provide probability density functions that can be used to derive statistically meaningful reaction rates and final abundances for any desired coverage probability. Examples are given for applications to s-process neutron sources, core-collapse supernovae, classical novae, and Big Bang nucleosynthesis. (paper)

  8. Nonlinear dynamical effects on reaction rates in thermally fluctuating environments.

    Science.gov (United States)

    Kawai, Shinnosuke; Komatsuzaki, Tamiki

    2010-07-21

    A framework to calculate the rate constants of condensed phase chemical reactions of manybody systems is presented without relying on the concept of transition state. The theory is based on a framework we developed recently adopting a multidimensional underdamped Langevin equation in the region of a rank-one saddle. The theory provides a reaction coordinate expressed as an analytical nonlinear functional of the position coordinates and velocities of the system (solute), the friction constants, and the random force of the environment (solvent). Up to moderately high temperature, the sign of the reaction coordinate can determine the final destination of the reaction in a thermally fluctuating media, irrespective of what values the other (nonreactive) coordinates may take. In this paper, it is shown that the reaction probability is analytically derived as the probability of the reaction coordinate being positive, and that the integration with the Boltzmann distribution of the initial conditions leads to the exact reaction rate constant when the local equilibrium holds and the quantum effect is negligible. Because of analytical nature of the theory taking into account all nonlinear effects and their combination with fluctuation and dissipation, the theory naturally provides us with the firm mathematical foundation of the origin of the reactivity of the reaction in a fluctuating media.

  9. Extension of a Kinetic-Theory Approach for Computing Chemical-Reaction Rates to Reactions with Charged Particles

    Science.gov (United States)

    Liechty, Derek S.; Lewis, Mark J.

    2010-01-01

    Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction rate information) are extended to include reactions involving charged particles and electronic energy levels. The proposed extensions include ionization reactions, exothermic associative ionization reactions, endothermic and exothermic charge exchange reactions, and other exchange reactions involving ionized species. The extensions are shown to agree favorably with the measured Arrhenius rates for near-equilibrium conditions.

  10. General properties of astrophysical reaction rates in explosive nucleosynthesis

    International Nuclear Information System (INIS)

    Rauscher, Thomas

    2013-01-01

    Fundamental differences in the prediction of reaction rates with intermediate and heavy target nuclei compared to the ones with light nuclei are discussed, with special emphasis on stellar modifications of the rates. Ground and excited state contributions to the stellar rates are quantified, deriving a linear weighting of excited state contributions despite of a Boltzmann population of the nuclear states. A Coulomb suppression effect of the excited state contributions is identified, acting against the usual Q-value rule in some reactions. The proper inclusion of experimental data in revised stellar rates is shown, containing revised uncertainties. An application to the s-process shows that the actual uncertainties in the neutron capture rates are larger than would be expected from the experimental errors alone. Sensitivities of reaction rates and cross sections are defined and their application in reaction studies is discussed. The conclusion provides a guide to experiment as well as theory on how to best improve the rates used in astrophysical simulations and how to assess their uncertainties.

  11. Measurement of reaction rates for different neutron induced reactions in27Al.

    Science.gov (United States)

    Schulc, Martin; Baroň, Petr; Novák, Evžen; Jánský, Bohumil; Harutyunyan, Davit

    2016-12-01

    The presented paper aims to compare various measured neutron induced reaction rates in Aluminium with computed ones in different nuclear data libraries. A 252 Cf neutron source with emission rate of 9.53E8 n/s was used. Reactions involved in the study were 27 Al(n,g), 27 Al (n,p) and 27 Al (n,α). Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effects of Surfactants on the Rate of Chemical Reactions

    Directory of Open Access Journals (Sweden)

    B. Samiey

    2014-01-01

    Full Text Available Surfactants are self-assembled compounds that depend on their structure and electric charge can interact as monomer or micelle with other compounds (substrates. These interactions which may catalyze or inhibit the reaction rates are studied with pseudophase, cooperativity, and stoichiometric (classical models. In this review, we discuss applying these models to study surfactant-substrate interactions and their effects on Diels-Alder, redox, photochemical, decomposition, enzymatic, isomerization, ligand exchange, radical, and nucleophilic reactions.

  13. Benchmark calculations of thermal reaction rates. I - Quantal scattering theory

    Science.gov (United States)

    Chatfield, David C.; Truhlar, Donald G.; Schwenke, David W.

    1991-01-01

    The thermal rate coefficient for the prototype reaction H + H2 yields H2 + H with zero total angular momentum is calculated by summing, averaging, and numerically integrating state-to-state reaction probabilities calculated by time-independent quantum-mechanical scattering theory. The results are very carefully converged with respect to all numerical parameters in order to provide high-precision benchmark results for confirming the accuracy of new methods and testing their efficiency.

  14. RPMDrate: Bimolecular chemical reaction rates from ring polymer molecular dynamics

    KAUST Repository

    Suleimanov, Yu.V.

    2013-03-01

    We present RPMDrate, a computer program for the calculation of gas phase bimolecular reaction rate coefficients using the ring polymer molecular dynamics (RPMD) method. The RPMD rate coefficient is calculated using the Bennett-Chandler method as a product of a static (centroid density quantum transition state theory (QTST) rate) and a dynamic (ring polymer transmission coefficient) factor. The computational procedure is general and can be used to treat bimolecular polyatomic reactions of any complexity in their full dimensionality. The program has been tested for the H+H2, H+CH 4, OH+CH4 and H+C2H6 reactions. © 2012 Elsevier B.V. All rights reserved.

  15. The reaction rates of electrons with native and irradiated ribonuclease

    International Nuclear Information System (INIS)

    Schuessler, H.; Ebert, M.; Davies, J.V.

    1977-01-01

    The rate of reaction of hydrated electrons with proteins depends, amongst other things, on the conformational structure of the protein, and irradiation itself causes conformational changes in proteins. A study has been made of variations in the reaction rates of hydrated electrons with RNase pre-irradiated by the Linac or by a 60 Co γ-source. The reaction rate constants varied with the pre-irradiation dose, the concentration of phosphate buffer, the enzyme concentration and also the presence of 10 -2 M ethanol. These variations serve to emphasize the importance of the tertiary structure of biological molecules in irradiation processes and have significant implications in the mathematical analysis of the inactivation of enzymes in steady-state irradiation processes. (U.K.)

  16. Cross-section and reaction rates for some reactions involved in explosive nucleosynthesis

    International Nuclear Information System (INIS)

    Cheng, C.W.

    1979-03-01

    Total proton-induced and alpha-induced reaction cross sections have been determined for the 24 Mg(α,n), 25 Mg(p,n), 26 Mg(p,n), 27 Al(p,n), 28 Si(α,n), 42 Ca(p,γ), 42 Ca(α,n) and 44 Ca(p,n) reactions from energies near threshold (except the exothermic (p,γ) reaction) to about 3 to 4 MeV above threshold. The product nuclei are all positron emitters with half-lives ranging from about 3 sec to about 4 hours. From the measured cross sections reaction rates have been calculated in the temperature range 1 9 9 =1, at which the discrepancy is large. Included also are analytic forms for (p,n), (α,n), and (p,γ) reactions which can be used to describe the reaction rate within the temperature range 1 9 <=6 and which agree with the experimental rates at the discrete temperatures where the reaction rates have been calculated

  17. Reaction rate of 24Mg(p,γ)25Al

    International Nuclear Information System (INIS)

    Powell, D.C.; Iliadis, C.; Champagne, A.E.; Grossmann, C.A.; Hale, S.E.; Hansper, V.Y.; McLean, L.K.

    1999-01-01

    The proton-capture reaction on 24 Mg has been investigated in the bombarding energy range of E p =0.2-1.7 MeV. Resonance properties (strengths, branching ratios and lifetimes) of low-energy resonances have been measured. From the experimental results, accurate proton partial widths, γ-ray partial widths and total widths (Γ p , Γ γ , and Γ) have been deduced. The present experimental information establishes the 24 Mg+p reaction rates over the temperature range T=0.02-2.0 GK with statistical uncertainties of 5% to 21%. Our recommended reaction rates deviate from previous estimates by 18% to 45%. Based on our results, we can rule out the recent suggestion that the total width of the E R =223 keV resonance has a significant influence on the reaction rates. We also discuss several effects that might give rise to systematic uncertainties in the reaction rates. The astrophysical implications for hydrogen burning of 24 Mg at low stellar temperatures are presented

  18. Effects of ion and electron screening on thermonuclear reaction rates

    International Nuclear Information System (INIS)

    Brady, L.R. Jr.

    1977-01-01

    The effects of screening by ions and electrons on thermonuclear reaction rates in stellar plasmas are considered. The enhancement of the reaction rate ranges from negligible to extremely large (on the order of 10 26 or greater). In order to calculate these effects, the potential about a given reacting nucleus is determined. First, Boltzmann-Vlasov and Poisson-Boltzmann equations are solved to yield a Yukawa potential. A suitable approximation to this potential is integrated in the action integral to give the barrier penetration. The screened reaction rate is then found by the saddle-point method. In developing a general formalism to calculate the screened reaction rate and the screening factor, effects due to the finite size of the nucleus are considered and found to be negligible. An expression for the screening factor for resonant reaction rates is also derived. A different and relatively simple approach, based on work of Stewart and Pyatt (1966), is used to find the barrier penetration from the action integral in two approximations: a modified Coulomb potential and a constant-shift potential. Screening factors are calculated for carbon burning at T 6 = 100 and T 6 = 400 for a wide range of densities and also for several examples in late stellar evolution. These screening factors are, for the most part, greater than those given by most others by a few percent at low density to 4 or more orders of magnitude at T 6 = 100 and rho = 10 10 g/cm 3 . Near the edge of the crystalline lattice region, however, they are significantly lower than those of some others. The increase in reaction rates for carbon burning indicates that carbon ignition may occur at lower densities than previously thought and may affect the density at which a supernova shock may occur

  19. Liquid Film Diffusion on Reaction Rate in Submerged Biofilters

    DEFF Research Database (Denmark)

    Christiansen, Pia; Hollesen, Line; Harremoës, Poul

    1995-01-01

    Experiments were carried out in order to investigate the influence of liquid film diffusion on reaction rate in a submerged biofilter with denitrification and in order to compare with a theoretical study of the mass transfer coefficient. The experiments were carried out with varied flow, identifi...... by the empty bed velocity of inflow and recirculation, respectively 1.3, 2.8, 5.6 and 10.9 m/h. The filter material consisted of 3 mm biostyren spheres. The results indicate that the influence of liquid film diffusion on reaction rate can be ignored....

  20. Liquid Film Diffusion on Reaction Rate in Submerged Biofilters

    DEFF Research Database (Denmark)

    Christiansen, Pia; Hollesen, Line; Harremoës, Poul

    1995-01-01

    Experiments were carried out in order to investigate the influence of liquid film diffusion on reaction rate in a submerged biofilter with denitrification and in order to compare with a theoretical study of the mass transfer coefficient. The experiments were carried out with varied flow, identified...... by the empty bed velocity of inflow and recirculation, respectively 1.3, 2.8, 5.6 and 10.9 m/h. The filter material consisted of 3 mm biostyren spheres. The results indicate that the influence of liquid film diffusion on reaction rate can be ignored....

  1. The Influence of Particle Charge on Heterogeneous Reaction Rate Coefficients

    Science.gov (United States)

    Aikin, A. C.; Pesnell, W. D.

    2000-01-01

    The effects of particle charge on heterogeneous reaction rates are presented. Many atmospheric particles, whether liquid or solid are charged. This surface charge causes a redistribution of charge within a liquid particle and as a consequence a perturbation in the gaseous uptake coefficient. The amount of perturbation is proportional to the external potential and the square of the ratio of debye length in the liquid to the particle radius. Previous modeling has shown how surface charge affects the uptake coefficient of charged aerosols. This effect is now included in the heterogeneous reaction rate of an aerosol ensemble. Extension of this analysis to ice particles will be discussed and examples presented.

  2. Enhancing the reaction rates of Morita-Baylis-Hillman reaction in heterocyclic aldehydes by substitutions.

    Science.gov (United States)

    Kunnikuruvan, Sooraj; Batra, Sanjay; Nair, Nisanth N

    2012-11-12

    The molecular origin of the experimentally observed pronounced difference in the rates of Morita-Baylis-Hillman (MBH) reaction in heterocyclic aldehydes, depending on the position of the formyl group, is investigated herein by using DFT-based mechanistic studies and free energy computations. These calculations are based on the 1,4-diazobicyclo[2.2.2]octane (DABCO)-catalyzed MBH reaction of methyl acrylate with substituted 4- and 5-isoxazolecarbaldehyde, which are slow- and fast-reacting substrates, respectively. As a result of this study, we propose that by tailoring ring substitutions the reactivity of the formyl group for MBH reactions may be enhanced in slow-reacting heterocyclic aldehydes. This proposition is demonstrated by enhancing the rate of the MBH reaction in 4-isoxazolecarbaldehyde more than 10(4) -fold by installing an ester substitution at the C-3 position. Similarly, the reactivity of the formyl group towards the MBH reaction in substituted 3-pyrazolecarbaldehyde and pyridinecarbaldehyde is shown to be increased several-fold by a halo substitution. We also confirm that the reasons for different reactivities of heterocyclic aldehydes and the proposed scheme for improving the reaction rates remains valid for all the three mechanisms proposed for the MBH reaction, namely, Hill-Isaacs, McQuade, and Aggarwal. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Improved predictions of nuclear reaction rates for astrophysics applications with the TALYS reaction code

    International Nuclear Information System (INIS)

    Goriely, S.; Hilaire, S.; Koning, A.J.

    2008-01-01

    Nuclear reaction rates for astrophysics applications are traditionally determined on the basis of Hauser-Feshbach reaction codes, like MOST. These codes use simplified schemes to calculate the capture reaction cross section on a given target nucleus, not only in its ground state but also on the different thermally populated states of the stellar plasma at a given temperature. Such schemes include a number of approximations that have never been tested, such as an approximate width fluctuation correction, the neglect of delayed particle emission during the electromagnetic decay cascade or the absence of the pre-equilibrium contribution at increasing incident energies. New developments have been brought to the reaction code TALYS to estimate the Maxwellian-averaged reaction rates of astrophysics relevance. These new developments give us the possibility to calculate with an improved accuracy the reaction cross sections and the corresponding astrophysics rates. The TALYS predictions for the thermonuclear rates of astrophysics relevance are presented and compared with those obtained with the MOST code on the basis of the same nuclear ingredients for nuclear structure properties, optical model potential, nuclear level densities and γ-ray strength. It is shown that, in particular, the pre-equilibrium process significantly influences the astrophysics rates of exotic neutron-rich nuclei. The reciprocity theorem traditionally used in astrophysics to determine photo-rates is also shown no to be valid for exotic nuclei. The predictions obtained with different nuclear inputs are also analyzed to provide an estimate of the theoretical uncertainties still affecting the reaction rate prediction far away from the experimentally known regions. (authors)

  4. Adherence and systemic reaction rates to allergy immunotherapy among veterans.

    Science.gov (United States)

    Ellenburg, Joseph T; Lieberman, Jay A; Pattanaik, Debendra

    2016-01-01

    Although allergen immunotherapy (AIT) is effective and safe, nonadherence is common. Limited data exist regarding adherence to AIT, factors that affect adherence, and systemic reactions associated with AIT among veteran populations. To evaluate adherence to AIT and the prevalence of reactions secondary to AIT among patients at the Veterans Affairs Medical Center, Memphis, Tennessee. A retrospective chart review was performed of veterans who received AIT at a single Veterans Affairs facility. Age, race, sex, the total number of shots, travel distance, a diagnosis of posttraumatic stress disorder (PTSD), and the number of severe adverse reactions were compared between the veterans who were adherent and veterans who were nonadherent. The overall adherence rate was 60.9%. Factors associated with adherence were a chart diagnosis of PTSD (29.3% [adherent group] versus 13.6% [nonadherent group]; p = 0.03) and home residence being a further distance from the facility (21.9 miles / 35.2 kilometers [adherent group] versus 18.0 miles / 28.9 kilometers [nonadherent group]; p = 0.03). Patients who were adherent received an average of more total injections compared with patients who were nonadherent. Age, sex, race, and history of systemic reactions during AIT displayed no statistically significant differences between the groups. There were a total of 20 systemic reactions, and the systemic reaction rate was 0.2% per AIT encounter and 0.1% per injection. AIT adherence and systemic reaction rates among veterans at our facility was comparable with similar studies. Adherence was associated with a chart diagnosis of PTSD and home residence that was further away from the clinic.

  5. X particle effect for 6Li reaction rates calculations

    International Nuclear Information System (INIS)

    Kocak, G.; Balantekin, A. B.

    2009-01-01

    The inferred primordial 6 L i-7 L i abundances are different from standard big bang nucleosynthesis results, 6 L i is 1000 times larger and 7 L i is 3 times smaller than the big bang prediction. In big bang nucleosynthesis, negatively charged massive X particles a possible solution to explain this primordial Li abundances problem [1]. In this study, we consider only X particle effect for nuclear reactions to obtain S-factor and reaction rates for Li. All S-factors calculated within the Optical Model framework for d(α,γ)6 L i system. We showed that the enhancement effect of massive negatively charged X particle for 6 L i system reaction rate.(author)

  6. Reaction rate for carbon burning in massive stars

    Science.gov (United States)

    Jiang, C. L.; Santiago-Gonzalez, D.; Almaraz-Calderon, S.; Rehm, K. E.; Back, B. B.; Auranen, K.; Avila, M. L.; Ayangeakaa, A. D.; Bottoni, S.; Carpenter, M. P.; Dickerson, C.; DiGiovine, B.; Greene, J. P.; Hoffman, C. R.; Janssens, R. V. F.; Kay, B. P.; Kuvin, S. A.; Lauritsen, T.; Pardo, R. C.; Sethi, J.; Seweryniak, D.; Talwar, R.; Ugalde, C.; Zhu, S.; Bourgin, D.; Courtin, S.; Haas, F.; Heine, M.; Fruet, G.; Montanari, D.; Jenkins, D. G.; Morris, L.; Lefebvre-Schuhl, A.; Alcorta, M.; Fang, X.; Tang, X. D.; Bucher, B.; Deibel, C. M.; Marley, S. T.

    2018-01-01

    Carbon burning is a critical phase for nucleosynthesis in massive stars. The conditions for igniting this burning stage, and the subsequent isotope composition of the resulting ashes, depend strongly on the reaction rate for 12C+12C fusion at very low energies. Results for the cross sections for this reaction are influenced by various backgrounds encountered in measurements at such energies. In this paper, we report on a new measurement of 12C+12C fusion cross sections where these backgrounds have been minimized. It is found that the astrophysical S factor exhibits a maximum around Ecm=3.5 -4.0 MeV, which leads to a reduction of the previously predicted astrophysical reaction rate.

  7. Semiclassical Calculation of Reaction Rate Constants for Homolytical Dissociations

    Science.gov (United States)

    Cardelino, Beatriz H.

    2002-01-01

    There is growing interest in extending organometallic chemical vapor deposition (OMCVD) to III-V materials that exhibit large thermal decomposition at their optimum growth temperature, such as indium nitride. The group III nitrides are candidate materials for light-emitting diodes and semiconductor lasers operating into the blue and ultraviolet regions. To overcome decomposition of the deposited compound, the reaction must be conducted at high pressures, which causes problems of uniformity. Microgravity may provide the venue for maintaining conditions of laminar flow under high pressure. Since the selection of optimized parameters becomes crucial when performing experiments in microgravity, efforts are presently geared to the development of computational OMCVD models that will couple the reactor fluid dynamics with its chemical kinetics. In the present study, we developed a method to calculate reaction rate constants for the homolytic dissociation of III-V compounds for modeling OMCVD. The method is validated by comparing calculations with experimental reaction rate constants.

  8. Neutron detector for fusion reaction-rate measurements

    International Nuclear Information System (INIS)

    Lerche, R.A.; Phillion, D.W.; Tietbohl, G.L.

    1993-01-01

    We have developed a fast, sensitive neutron detector for recording the fusion reaction-rate history of inertial-confinement fusion (ICF) experiments. The detector is based on the fast rise-time of a commercial plastic scintillator (BC-422) and has a response 7 neutrons

  9. The Effect of Screening Factors and Thermonuclear Reaction Rates ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 31; Issue 3. The Effect of Screening Factors and Thermonuclear Reaction Rates in the Pre-main Sequence Evolution of Low Mass Stars. İ. Küçük Ş. Çalışkan. Volume 31 Issue 3 September 2010 pp 135-145 ...

  10. Rates of ionic reactions with charged nanoparticles in aqueous media

    NARCIS (Netherlands)

    Duval, J.F.L.; Leeuwen, van H.P.

    2012-01-01

    A theory is developed to evaluate the electrostatic correction for the rate of reaction between a small ion and a charged ligand nanoparticle. The particle is assumed to generally consist of an impermeable core and a shell permeable to water and ions. A derivation is proposed for the ion diffusion

  11. Calculation of multigroup reaction rates for the Ghana Research ...

    African Journals Online (AJOL)

    The discrete ordinate spatial model, which pro-vides solution to the differential form of the transport equation by the Carlson-SN (N=4) approach was adopted to solve the Ludwig-Boltzmann multigroup neutron transport equation for this analysis. The results show that for any fissile resonance absorber, the reaction rates ...

  12. Estimation of the rate of volcanism on Venus from reaction rate measurements

    Science.gov (United States)

    Fegley, Bruce, Jr.; Prinn, Ronald G.

    1989-01-01

    Laboratory rate data for the reaction between SO2 and calcite to form anhydrite are presented. If this reaction rate represents the SO2 reaction rate on Venus, then all SO2 in the Venusian atmosphere will disappear in 1.9 Myr unless volcanism replenishes the lost SO2. The required volcanism rate, which depends on the sulfur content of the erupted material, is in the range 0.4-11 cu km of magma erupted per year. The Venus surface composition at the Venera 13, 14, and Vega 2 landing sites implies a volcanism rate of about 1 cu km/yr. This geochemically estimated rate can be used to determine if either (or neither) of two discordant geophysically estimated rates is correct. It also suggests that Venus may be less volcanically active than the earth.

  13. Effect of Hydrodynamic Interactions on Reaction Rates in Membranes.

    Science.gov (United States)

    Oppenheimer, Naomi; Stone, Howard A

    2017-07-25

    The Brownian motion of two particles in three dimensions serves as a model for predicting the diffusion-limited reaction rate, as first discussed by von Smoluchowski. Deutch and Felderhof extended the calculation to account for hydrodynamic interactions between the particles and the target, which results in a reduction of the rate coefficient by about half. Many chemical reactions take place in quasi-two-dimensional systems, such as on the membrane or surface of a cell. We perform a Smoluchowski-like calculation in a quasi-two-dimensional geometry, i.e., a membrane surrounded by fluid, and account for hydrodynamic interactions between the particles. We show that rate coefficients are reduced relative to the case of no interactions. The reduction is more pronounced than the three-dimensional case due to the long-range nature of two-dimensional flows. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Rate constant for reaction of hydroxyl radicals with bicarbonate ions

    International Nuclear Information System (INIS)

    Buxton, G.V.; Elliot, A.J.

    1986-01-01

    The rate constant for reaction of hydroxyl radicals with the bicarbonate ion has been determined to be 8.5 x 10 6 dm 3 mol -1 s -1 . This value was calculated from: the measured rate of formation of the CO 3 - radical in pulsed electron irradiation of bicarbonate solutions over the pH range 7.0 to 9.4; the pK for the equilibrium HCO 3 - = CO 3 2- + H + ; and the rate constant for hydroxyl radicals reacting with the carbonate ion. (author)

  15. Scaling of geochemical reaction rates via advective solute transport.

    Science.gov (United States)

    Hunt, A G; Ghanbarian, B; Skinner, T E; Ewing, R P

    2015-07-01

    Transport in porous media is quite complex, and still yields occasional surprises. In geological porous media, the rate at which chemical reactions (e.g., weathering and dissolution) occur is found to diminish by orders of magnitude with increasing time or distance. The temporal rates of laboratory experiments and field observations differ, and extrapolating from laboratory experiments (in months) to field rates (in millions of years) can lead to order-of-magnitude errors. The reactions are transport-limited, but characterizing them using standard solute transport expressions can yield results in agreement with experiment only if spurious assumptions and parameters are introduced. We previously developed a theory of non-reactive solute transport based on applying critical path analysis to the cluster statistics of percolation. The fractal structure of the clusters can be used to generate solute distributions in both time and space. Solute velocities calculated from the temporal evolution of that distribution have the same time dependence as reaction-rate scaling in a wide range of field studies and laboratory experiments, covering some 10 decades in time. The present theory thus both explains a wide range of experiments, and also predicts changes in the scaling behavior in individual systems with increasing time and/or length scales. No other theory captures these variations in scaling by invoking a single physical mechanism. Because the successfully predicted chemical reactions include known results for silicate weathering rates, our theory provides a framework for understanding changes in the global carbon cycle, including its effects on extinctions, climate change, soil production, and denudation rates. It further provides a basis for understanding the fundamental time scales of hydrology and shallow geochemistry, as well as the basis of industrial agriculture.

  16. Scaling of geochemical reaction rates via advective solute transport

    Science.gov (United States)

    Hunt, A. G.; Ghanbarian, B.; Skinner, T. E.; Ewing, R. P.

    2015-07-01

    Transport in porous media is quite complex, and still yields occasional surprises. In geological porous media, the rate at which chemical reactions (e.g., weathering and dissolution) occur is found to diminish by orders of magnitude with increasing time or distance. The temporal rates of laboratory experiments and field observations differ, and extrapolating from laboratory experiments (in months) to field rates (in millions of years) can lead to order-of-magnitude errors. The reactions are transport-limited, but characterizing them using standard solute transport expressions can yield results in agreement with experiment only if spurious assumptions and parameters are introduced. We previously developed a theory of non-reactive solute transport based on applying critical path analysis to the cluster statistics of percolation. The fractal structure of the clusters can be used to generate solute distributions in both time and space. Solute velocities calculated from the temporal evolution of that distribution have the same time dependence as reaction-rate scaling in a wide range of field studies and laboratory experiments, covering some 10 decades in time. The present theory thus both explains a wide range of experiments, and also predicts changes in the scaling behavior in individual systems with increasing time and/or length scales. No other theory captures these variations in scaling by invoking a single physical mechanism. Because the successfully predicted chemical reactions include known results for silicate weathering rates, our theory provides a framework for understanding changes in the global carbon cycle, including its effects on extinctions, climate change, soil production, and denudation rates. It further provides a basis for understanding the fundamental time scales of hydrology and shallow geochemistry, as well as the basis of industrial agriculture.

  17. Inferring differences in the distribution of reaction rates across conditions.

    Science.gov (United States)

    Hendrickx, Diana M; Hoefsloot, Huub C J; Hendriks, Margriet M W B; Vis, Daniël J; Canelas, André B; Teusink, Bas; Smilde, Age K

    2012-09-01

    Elucidating changes in the distribution of reaction rates in metabolic pathways under different conditions is a central challenge in systems biology. Here we present a method for inferring regulation mechanisms responsible for changes in the distribution of reaction rates across conditions from correlations in time-resolved data. A reversal of correlations between conditions reveals information about regulation mechanisms. With the use of a small in silico hypothetical network, based on only the topology and directionality of a known pathway, several regulation scenarios can be formulated. Confronting these scenarios with experimental data results in a short list of possible pathway regulation mechanisms associated with the reversal of correlations between conditions. This procedure allows for the formulation of regulation scenarios without detailed prior knowledge of kinetics and for the inference of reaction rate changes without rate information. The method was applied to experimental time-resolved metabolomics data from multiple short-term perturbation-response experiments in S. cerevisiae across aerobic and anaerobic conditions. The method's output was validated against a detailed kinetic model of glycolysis in S. cerevisiae, which showed that the method can indeed infer the correct regulation scenario.

  18. Measuring one nucleon transfer reaction 24Mg( p, d)23Mg for astrophysical reaction rates

    Science.gov (United States)

    Lee, E. J.; Chae, K. Y.

    2017-12-01

    The level structure of a radionuclide 23Mg has been studied by using the 24Mg( p, d)23Mg one nucleon transfer reaction measurement for the astrophysical 19Ne(α, γ)23Mg reaction rate. A 41 MeV proton beam was produced and accelerated at the 25 MV tandem accelerator of the Holifield Radioactive Ion Beam Facility of the Oak Ridge National Laboratory in the United States. The beam particles impinged on an isotopically-enriched 24Mg solid target. Angular distributions of recoiling deuterons were extracted by using a large area silicon strip detector array. By comparing the experimentally-obtained angular distributions with zero range distorted wave Born approximation calculations, spins and parities of three energy levels of 23Mg could be constrained for the first time, which is very important information needed to understand the 19Ne(α, γ)23Mg reaction rate.

  19. A model for reaction rates in turbulent reacting flows

    Science.gov (United States)

    Chinitz, W.; Evans, J. S.

    1984-01-01

    To account for the turbulent temperature and species-concentration fluctuations, a model is presented on the effects of chemical reaction rates in computer analyses of turbulent reacting flows. The model results in two parameters which multiply the terms in the reaction-rate equations. For these two parameters, graphs are presented as functions of the mean values and intensity of the turbulent fluctuations of the temperature and species concentrations. These graphs will facilitate incorporation of the model into existing computer programs which describe turbulent reacting flows. When the model was used in a two-dimensional parabolic-flow computer code to predict the behavior of an experimental, supersonic hydrogen jet burning in air, some improvement in agreement with the experimental data was obtained in the far field in the region near the jet centerline. Recommendations are included for further improvement of the model and for additional comparisons with experimental data.

  20. Effect of uncertainties in nuclear reaction rate on nucleosynthesis paths

    International Nuclear Information System (INIS)

    Yamamoto, Kazuyuki; Ohta, Masahisa; Kato, Kiyoshi; Wada, Takahiro

    2010-01-01

    We propose a Monte Carlo analysis that provides us with a useful diagnostic method to identify the nucleosynthesis paths giving helpful information to understand the nuclear burning mechanism in stellar evolution, connecting with network calculations. Applying the Monte Carlo analysis to the nucleosynthesis in the He shell flash model, we show that a considerable change in synthesis paths occurs from 16 O to Ne isotopes depending on the reaction rate of 17 O(n,γ) 18 O. (author)

  1. Estimation of the Polymerization Rate of Liquid Propylene Using Adiabatic Reaction Calorimetry and Reaction Dilatometry

    NARCIS (Netherlands)

    Al-haj Ali, Mohammad; Betlem, Ben; Roffel, Brian; Weickert, Günter

    2007-01-01

    The use of pressure-drop and constant-pressure dilatometry for obtaining rate data for liquid propylene polymerization in filled batch reactors was examined. The first method uses reaction temperature and pressure as well as the compressibility of the reactor contents to calculate the polymerization

  2. Charged-Particle Thermonuclear Reaction Rates: IV. Comparison to Previous Work

    OpenAIRE

    Iliadis, Christian; Longland, Richard; Champagne, Art; Coc, Alain

    2010-01-01

    We compare our Monte Carlo reaction rates (see Paper II of this series) to previous results that were obtained by using the classical method of computing thermonuclear reaction rates. For each reaction, the comparison is presented using two types of graphs: the first shows the change in reaction rate uncertainties, while the second displays our new results normalized to the previously recommended reaction rate. We find that the rates have changed significantly for almost all reactions conside...

  3. Application of semiclassical methods to reaction rate theory

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Rigoberto [Univ. of California, Berkeley, CA (United States)

    1993-11-01

    This work is concerned with the development of approximate methods to describe relatively large chemical systems. This effort has been divided into two primary directions: First, we have extended and applied a semiclassical transition state theory (SCTST) originally proposed by Miller to obtain microcanonical and canonical (thermal) rates for chemical reactions described by a nonseparable Hamiltonian, i.e. most reactions. Second, we have developed a method to describe the fluctuations of decay rates of individual energy states from the average RRKM rate in systems where the direct calculation of individual rates would be impossible. Combined with the semiclassical theory this latter effort has provided a direct comparison to the experimental results of Moore and coworkers. In SCTST, the Hamiltonian is expanded about the barrier and the ``good`` action-angle variables are obtained perturbatively; a WKB analysis of the effectively one-dimensional reactive direction then provides the transmission probabilities. The advantages of this local approximate treatment are that it includes tunneling effects and anharmonicity, and it systematically provides a multi-dimensional dividing surface in phase space. The SCTST thermal rate expression has been reformulated providing increased numerical efficiency (as compared to a naive Boltzmann average), an appealing link to conventional transition state theory (involving a ``prereactive`` partition function depending on the action of the reactive mode), and the ability to go beyond the perturbative approximation.

  4. Bayesian Estimation of Thermonuclear Reaction Rates for Deuterium+Deuterium Reactions

    Science.gov (United States)

    Gómez Iñesta, Á.; Iliadis, C.; Coc, A.

    2017-11-01

    The study of d+d reactions is of major interest since their reaction rates affect the predicted abundances of D, 3He, and 7Li. In particular, recent measurements of primordial D/H ratios call for reduced uncertainties in the theoretical abundances predicted by Big Bang nucleosynthesis (BBN). Different authors have studied reactions involved in BBN by incorporating new experimental data and a careful treatment of systematic and probabilistic uncertainties. To analyze the experimental data, Coc et al. used results of ab initio models for the theoretical calculation of the energy dependence of S-factors in conjunction with traditional statistical methods based on χ 2 minimization. Bayesian methods have now spread to many scientific fields and provide numerous advantages in data analysis. Astrophysical S-factors and reaction rates using Bayesian statistics were calculated by Iliadis et al. Here we present a similar analysis for two d+d reactions, d(d, n)3He and d(d, p)3H, that has been translated into a total decrease of the predicted D/H value by 0.16%.

  5. Thermonuclear reaction rates for proton induced reactions on 41K and neutron induced reactions on 41Ca

    International Nuclear Information System (INIS)

    Sevior, M.E.; Anderson, M.R.; Mitchell, L.W.; Kennett, S.R.; Sargood, D.G.

    1981-01-01

    The yield of γ-rays from the reaction 41 K(p,γ) 42 Ca has been measured as a function of bombarding energy over the range 0.68-2.48 MeV and from the reaction 41 K(p,αγ) 38 Ar over the range 1.20-2.48 MeV, and the yield of neutrons from the reaction 41 K(p,n) 41 Ca has been measured from threshold to a bombarding energy of 2.48 MeV. The energy dependence of the cross sections is compared with statistical-model calculations with global optical model parameters in all particle channels. The calculations seriously overestimate the cross section for the neutron channel and underestimate those for the other channels. A reduction in the imaginary well depth in the neutron channel leads to good agreement with all the data. Statistical-model calculations with this modified set of parameters are then carried out to provide cross sections for the astrophysically interesting reactions 41 Ca(n,p) 41 K, 41 Ca(n,α) 38 Ar, and 41 Ca(n,γ) 42 Ca. Thermonuclear reaction rates are calculated for all six reactions over the temperature range 5 x 10 8 - 10 1 0K which includes the range of temperatures of interest in nucleosynthesis calculations

  6. Optimized reaction mechanism rate rules for ignition of normal alkanes

    KAUST Repository

    Cai, Liming

    2016-08-11

    The increasing demand for cleaner combustion and reduced greenhouse gas emissions motivates research on the combustion of hydrocarbon fuels and their surrogates. Accurate detailed chemical kinetic models are an important prerequisite for high fidelity reacting flow simulations capable of improving combustor design and operation. The development of such models for many new fuel components and/or surrogate molecules is greatly facilitated by the application of reaction classes and rate rules. Accurate and versatile rate rules are desirable to improve the predictive accuracy of kinetic models. A major contribution in the literature is the recent work by Bugler et al. (2015), which has significantly improved rate rules and thermochemical parameters used in kinetic modeling of alkanes. In the present study, it is demonstrated that rate rules can be used and consistently optimized for a set of normal alkanes including n-heptane, n-octane, n-nonane, n-decane, and n-undecane, thereby improving the predictive accuracy for all the considered fuels. A Bayesian framework is applied in the calibration of the rate rules. The optimized rate rules are subsequently applied to generate a mechanism for n-dodecane, which was not part of the training set for the optimized rate rules. The developed mechanism shows accurate predictions compared with published well-validated mechanisms for a wide range of conditions.

  7. Reaction of H2 with O2 in Excited Electronic States: Reaction Pathways and Rate Constants.

    Science.gov (United States)

    Pelevkin, Alexey V; Loukhovitski, Boris I; Sharipov, Alexander S

    2017-12-21

    Comprehensive quantum chemical analysis with the use of the multireference state-averaged complete active space self-consistent field approach was carried out to study the reactions of H 2 with O 2 in a 1 Δ g , b 1 Σ g + , c 1 Σ u - , and A' 3 Δ u electronically excited states. The energetically favorable reaction pathways and possible intersystem crossings have been revealed. The energy barriers were refined employing the extended multiconfiguration quasi-degenerate second-order perturbation theory. It has been shown that the interaction of O 2 (a 1 Δ g ) and O 2 (A' 3 Δ u ) with H 2 occurs through the H-abstraction process with relatively low activation barriers that resulted in the formation of the HO 2 molecule in A″ and A' electronic states, respectively. Meanwhile, molecular oxygen in singlet sigma states (b 1 Σ g + and c 1 Σ u - ) was proved to be nonreactive with respect to the molecular hydrogen. Appropriate rate constants for revealed reaction and quenching channels have been estimated using variational transition-state theory including corrections for the tunneling effect, possible nonadiabatic transitions, and anharmonicity of vibrations for transition states and reactants. It was demonstrated that the calculated reaction rate constant for the H 2 + O 2 (a 1 Δ g ) process is in reasonable agreement with known experimental data. The Arrhenius approximations for these processes have been proposed for the temperature range T = 300-3000 K.

  8. Primordial lithium: New reaction rates, new abundances, new constraints

    International Nuclear Information System (INIS)

    Kawano, L.; Schramm, D.; Steigman, G.

    1986-12-01

    Newly measured nuclear reaction rates for 3 H(α,γ) 7 Li (higher than previous values) and 7 Li(p,α) 4 He (lower than previous values) are shown to increase the 7 Li yield from big bang nucleosynthesis for lower baryon to photon ratio (eta ≤ 4 x 10 -10 ); the yield for higher eta is not affected. New, independent determinations of Li abundances in extreme Pop II stars are in excellent agreement with the earlier work of the Spites and give continued confidence in the use of 7 Li in big bang baryon density determinations. The new 7 Li constraints imply a lower limit on eta of 2 x 10 -10 and an upper limit of 5 x 10 -10 . This lower limit to eta is concordant with that obtained from considerations of D + 3 He. The upper limit is consistent with, but even more restrictive than, the D bound. With the new rates, any observed primordial Li/H ratio below 10 -10 would be inexplicable by the standard big bang nucleosynthesis. A review is made of the strengths and possible weaknesses of utilizing conclusions drawn from big bang lithium considerations. An appendix discusses the null effect of a factor of 32 increase in the experimental rate for the D(d,γ) 4 He reaction. 28 refs., 1 fig

  9. RPMDRATE: Bimolecular chemical reaction rates from ring polymer molecular dynamics

    Science.gov (United States)

    Suleimanov, Yu. V.; Allen, J. W.; Green, W. H.

    2013-03-01

    We present RPMDRATE, a computer program for the calculation of gas phase bimolecular reaction rate coefficients using the ring polymer molecular dynamics (RPMD) method. The RPMD rate coefficient is calculated using the Bennett-Chandler method as a product of a static (centroid density quantum transition state theory (QTST) rate) and a dynamic (ring polymer transmission coefficient) factor. The computational procedure is general and can be used to treat bimolecular polyatomic reactions of any complexity in their full dimensionality. The program has been tested for the H+H2, H+CH4, OH+CH4 and H+C2H6 reactions. Catalogue identifier: AENW_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: MIT license No. of lines in distributed program, including test data, etc.: 94512 No. of bytes in distributed program, including test data, etc.: 1395674 Distribution format: tar.gz Programming language: Fortran 90/95, Python (version 2.6.x or later, including any version of Python 3, is recommended). Computer: Not computer specific. Operating system: Any for which Python, Fortran 90/95 compiler and the required external routines are available. Has the code been vectorized or parallelized?: The program can efficiently utilize 4096+ processors, depending on problem and available computer. At low temperatures, 110 processors are reasonable for a typical umbrella integration run with an analytic potential energy function and gradients on the latest x86-64 machines.

  10. Metal-silicon reaction rates - The effects of capping

    Science.gov (United States)

    Weizer, Victor G.; Fatemi, Navid S.

    1989-01-01

    Evidence is presented showing that the presence of the commonly used anti-reflection coating material Ta2O5 on the free surface of contact metallization can either suppress or enhance, depending on the system, the interaction that takes place at elevated temperatures between the metallization and the underlying Si. The cap layer is shown to suppress both the generation and annihilation of vacancies at the free surface of the metal which are necessary to support metal-Si interactons. Evidence is also presented indicating that the mechanical condition of the free metal surface has a significant effect on the metal-silicon reaction rate.

  11. Reaction rates in a theory of mechanochemical pathways.

    Science.gov (United States)

    Quapp, Wolfgang; Bofill, Josep Maria

    2016-10-15

    If one applies mechanical stress to a molecule in a defined direction then one generates a new, effective potential energy surface (PES). Changes for minima and saddle points (SP) by the stress are described by Newton trajectories on the original PES (Quapp and Bofill, Theor. Chem. Acc. 2016, 135, 113). The barrier of a reaction fully breaks down for the maximal value of the norm of the gradient of the PES along a pulling Newton trajectory. This point is named barrier breakdown point (BBP). Depending on the pulling direction, different reaction pathways can be enforced. If the exit SP of the chosen pulling direction is not the lowest SP of the reactant valley, on the original PES, then the SPs must change their role anywhere: in this case the curve of the log(rate) over the pulling force of a forward reaction can show a deviation from the normal concave curvature. We discuss simple, two-dimensional examples for this model to understand more deeply the mechanochemistry of molecular systems under a mechanical stress. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Effect of Substrate Character on Heterogeneous Ozone Reaction Rate with Individual PAHs and Their Reaction Mixtures

    Science.gov (United States)

    Holmen, B. A.; Stevens, T.

    2009-12-01

    Vehicle exhaust contains many unregulated chemical compounds that are harmful to human health and the natural environment, including polycyclic aromatic hydrocarbons (PAH), a class of organic compounds derived from fuel combustion that can be carcinogenic and mutagenic. PAHs have been quantified in vehicle-derived ultrafine particles (Dphealth problems, including respiratory and cardiac disease. Once emitted into the atmosphere, particle-bound PAHs can undergo “aging” reactions with oxidants, such as ozone, to form more polar species. These polar reaction products include species such as quinones that can be more toxic than the parent PAH compounds. Here, 0.4ppm ozone was reacted over a 24-hour period with the 16 EPA priority PAHs plus coronene adsorbed to (i) a quartz fiber filter and (ii) NIST diesel PM. The difference in the PAH/O3 heterogeneous reaction rate resulting from the two substrates will be discussed. The experiments were completed by spiking a known PAH mixture to the solid, reacting the samples with gas-phase ozone, and determining both PAH loss over time and products formed, using thermal-desorption gas chromatography / mass spectrometry (TD-GC/MS). The individual PAHs anthracene, phenanthrene, and fluorene, adsorbed to a QFF were also separately reacted with 0.4 ppm ozone. A volatilization control and the collection of volatilized PAHs using a Tenax-packed thermal desorption vial completed the mass balance and aided determination parent-product relationships. Heterogeneous reaction products analyzed directly without derivatization indicate the formation of 9,10-anthracenedione, 9H-fluoren-9-one, and (1,1’-biphenyl)-2,2’-dicarboxaldehyde from the reaction of ozone with the PAH mix on a QFF, but only 9,10-anthracenedione was detected for the diesel PM reaction. The implications of these results for aging of diesel particulate in urban environments will be discussed.

  13. Charged-particle thermonuclear reaction rates: IV. Comparison to previous work

    International Nuclear Information System (INIS)

    Iliadis, C.; Longland, R.; Champagne, A.E.; Coc, A.

    2010-01-01

    We compare our Monte Carlo reaction rates (see Paper II of this issue) to previous results that were obtained by using the classical method of computing thermonuclear reaction rates. For each reaction, the comparison is presented using two types of graphs: the first shows the change in reaction rate uncertainties, while the second displays our new results normalized to the previously recommended reaction rate. We find that the rates have changed significantly for almost all reactions considered here. The changes are caused by (i) our new Monte Carlo method of computing reaction rates (see Paper I of this issue), and (ii) newly available nuclear physics information (see Paper III of this issue).

  14. Solvent effects on solvated electron reaction rates in diols

    International Nuclear Information System (INIS)

    Idriss-Ali, K.M.; Freeman, G.R.

    1984-01-01

    The rate constant ksub(S) of solvated electron reaction with a solute S in an alcohol can depend strongly upon the electron solvation energy (trap depth) and on the liquid viscosity eta (diffusion coefficients). The rate constant tends to be smaller when either the solvation energy or the viscosity is larger. An appropriate indicator of solvation energy in this context is Esub(r), the energy at 0.5 Asub(max) on the low energy side of the optical absorption band. Differences in solvent viscosity are normalized by taking the ratio ksub(S)/ksub(N), where N is nitrobenzene and Ksub(N) is nearly diffusion controlled. There is an enormous difference between Ksub(S)/ksub(N) for an inefficient S such as toluene in monohydric and dihydric alcohols. At Esub(r) = 146 kJ/mol the value of k (toluene)/ksub(N) is 200 fold greater in a di-ol than in a mono-ol. This remarkable difference between reactivity in di- and mono-ols is smaller for more reactive solutes; the factor is 60 for allyl alcohol and 2 for acetone. In both di- and mono-ols differences in solute reactivity are associated with entropy of activation, not with energy of activation. The entropy of activation is related to the extent of solvent rearrangement that is needed about the reaction site to give a stable product. (author)

  15. Ozonation of norfloxacin and levofloxacin in water: Specific reaction rate constants and defluorination reaction.

    Science.gov (United States)

    Ling, Wencui; Ben, Weiwei; Xu, Ke; Zhang, Yu; Yang, Min; Qiang, Zhimin

    2018-03-01

    The degradation kinetics and mechanism of two typical fluoroquinolones (FQs), norfloxacin (NF) and levofloxacin (LOF), by ozone in water were investigated. Semi-continuous mode and competition kinetics mode experiments were conducted to determine the reaction rate constants of target FQs with ozone and OH, separately. Results indicate that both NF and LOF were highly reactive toward ozone, and the reactivity was strongly impacted by the solution pH. The specific reaction rate constants of the diprotonated, monoprotonated and deprotonated species were determined to be 7.20 × 10 2 , 8.59 × 10 3 , 4.54 × 10 5  M -1  s -1 respectively for NF and 1.30 × 10 3 , 1.40 × 10 4 , 1.33 × 10 6  M -1  s -1 respectively for LOF. The reaction rate constants of target FQs toward OH were measured to be (4.81-7.41) × 10 9  M -1  s -1 in the pH range of 6.3-8.3. Furthermore, NF was selected as a model compound to clarify the degradation pathways, with a particular focus on the defluorination reaction. The significant release of F - ions and the formation of three F-free organic byproducts indicated that defluorination was a prevalent pathway in ozonation of FQs, while six F-containing organic byproducts indicated that ozone also attacked the piperazinyl and quinolone moieties. Escherichia coli growth inhibition tests revealed that ozonation could effectively eliminate the antibacterial activity of target FQ solutions, and the residual antibacterial activity had a negative linear correlation with the released F - concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Relationship among reaction rate, release rate and efficiency of nanomachine-based targeted drug delivery.

    Science.gov (United States)

    Zhao, Qingying; Li, Min; Luo, Jun

    2017-12-04

    In nanomachine applications towards targeted drug delivery, drug molecules released by nanomachines propagate and chemically react with tumor cells in aqueous environment. If the nanomachines release drug molecules faster than the tumor cells react, it will result in loss and waste of drug molecules. It is a potential issue associated with the relationship among reaction rate, release rate and efficiency. This paper aims to investigate the relationship among reaction rate, release rate and efficiency based on two drug reception models. We expect to pave a way for designing a control method of drug release. We adopted two analytical methods that one is drug reception process based on collision with tumors and another is based on Michaelis Menten enzymatic kinetics. To evaluate the analytical formulations, we used the well-known simulation framework N3Sim to establish simulations. The analytical results of the relationship among reaction rate, release rate and efficiency is obtained, which match well with the numerical simulation results in a 3-D environment. Based upon two drug reception models, the results of this paper would be beneficial for designing a control method of nanomahine-based drug release.

  17. The effects of vacuum polarization on thermonuclear reaction rates

    Science.gov (United States)

    Gould, Robert J.

    1990-01-01

    Added to the pure Coulomb potential, the contribution from vacuum polarization increases the barrier, reducing the wave function (u) for reacting nuclei within the range of nuclear forces. The cross section and reaction rate are then reduced accordingly by a factor proportional to u squared. The effect is treated by evaluating the vacuum polarization potential as a small correction to the Coulomb term, then computing u in a WKB formulation. The calculation is done analytically employing the small r power-series expansion for the Uehling potential to express the final result in terms of convenient parameters. At a temperature of 1.4 x 10 to the 7th K the (negative) correction is 1.3 percent for the fundamental fusion process p + p yields d + e(+) + nu.

  18. Faster rates with less catalyst in template-directed reactions

    Science.gov (United States)

    Kanavarioti, A.; Baird, E. E.

    1995-01-01

    We have recently shown that the polycytidylic acid-directed polymerization of guanosine 5'-monophosphate 2-methylimidazolide (2-MeImpG) is amenable to kinetic study and that rate determinations as a function of 2-MeImpG concentration can reveal much mechanistic detail (Kanavarioti et al. 1993). Here we report kinetic data which show that, once the reaction has been initiated by the formation of dimers, the elongation of dimers to form longer oligomers is accelerated by decreasing polycytidylate (poly(C)) concentration from 0.05 to 0.002 M. This result is consistent with the previously proposed mechanism. The increase in the observed pseudo-first order rate constant for formation of the trimer, k3', and the corresponding constant for formation of oligomers longer than the trimer, ki' (ki' is independent of oligomer length for i > or = 4), with decreasing template concentration for a given monomer concentration is attributed to an increase in template occupancy as template concentration is reduced.

  19. Reaction-rate formula in out of equilibrium quantum field theory

    OpenAIRE

    Niegawa, A.; Okano, K.; Ozaki, H.

    1999-01-01

    A complete derivation, from first principles, of the reaction-rate formula for a generic reaction taking place in an out of equilibrium quantum-field system is given. It is shown that the formula involves no finite-volume correction. Each term of the reaction-rate formula represents a set of physical processes that contribute to the reaction under consideration.

  20. On the mechanism of effective chemical reactions with turbulent mixing of reactants and finite rate of molecular reactions

    International Nuclear Information System (INIS)

    Vorotilin, V. P.

    2017-01-01

    A generalization of the theory of chemical transformation processes under turbulent mixing of reactants and arbitrary values of the rate of molecular reactions is presented that was previously developed for the variant of an instantaneous reaction [13]. The use of the features of instantaneous reactions when considering the general case, namely, the introduction of the concept of effective reaction for the reactant volumes and writing a closing conservation equation for these volumes, became possible due to the partition of the whole amount of reactants into “active” and “passive” classes; the reactants of the first class are not mixed and react by the mechanism of instantaneous reactions, while the reactants of the second class approach each other only through molecular diffusion, and therefore their contribution to the reaction process can be neglected. The physical mechanism of reaction for the limit regime of an ideal mixing reactor (IMR) is revealed and described. Although formally the reaction rate in this regime depends on the concentration of passive fractions of the reactants, according to the theory presented, the true (hidden) mechanism of the reaction is associated only with the reaction of the active fractions of the reactants with vanishingly small concentration in the volume of the reactor. It is shown that the rate constant of fast chemical reactions can be evaluated when the mixing intensity of reactants is much less than that needed to reach the mixing conditions in an IMR.

  1. On the ambiguity of the reaction rate constants in multivariate curve resolution for reversible first-order reaction systems.

    Science.gov (United States)

    Schröder, Henning; Sawall, Mathias; Kubis, Christoph; Selent, Detlef; Hess, Dieter; Franke, Robert; Börner, Armin; Neymeyr, Klaus

    2016-07-13

    If for a chemical reaction with a known reaction mechanism the concentration profiles are accessible only for certain species, e.g. only for the main product, then often the reaction rate constants cannot uniquely be determined from the concentration data. This is a well-known fact which includes the so-called slow-fast ambiguity. This work combines the question of unique or non-unique reaction rate constants with factor analytic methods of chemometrics. The idea is to reduce the rotational ambiguity of pure component factorizations by considering only those concentration factors which are possible solutions of the kinetic equations for a properly adapted set of reaction rate constants. The resulting set of reaction rate constants corresponds to those solutions of the rate equations which appear as feasible factors in a pure component factorization. The new analysis of the ambiguity of reaction rate constants extends recent research activities on the Area of Feasible Solutions (AFS). The consistency with a given chemical reaction scheme is shown to be a valuable tool in order to reduce the AFS. The new methods are applied to model and experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2009-08-01

    This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  3. Constrained least squares methods for estimating reaction rate constants from spectroscopic data

    NARCIS (Netherlands)

    Bijlsma, S.; Boelens, H.F.M.; Hoefsloot, H.C.J.; Smilde, A.K.

    2002-01-01

    Model errors, experimental errors and instrumental noise influence the accuracy of reaction rate constant estimates obtained from spectral data recorded in time during a chemical reaction. In order to improve the accuracy, which can be divided into the precision and bias of reaction rate constant

  4. Estimating reaction rate constants: comparison between traditional curve fitting and curve resolution

    NARCIS (Netherlands)

    Bijlsma, S.; Boelens, H. F. M.; Hoefsloot, H. C. J.; Smilde, A. K.

    2000-01-01

    A traditional curve fitting (TCF) algorithm is compared with a classical curve resolution (CCR) approach for estimating reaction rate constants from spectral data obtained in time of a chemical reaction. In the TCF algorithm, reaction rate constants an estimated from the absorbance versus time data

  5. Pop-It Beads to Introduce Catalysis of Reaction Rate and Substrate Depletion Effects

    Science.gov (United States)

    Gehret, Austin U.

    2017-01-01

    A kinesthetic classroom activity was designed to help students understand enzyme activity and catalysis of reaction rate. Students served the role of enzymes by manipulating Pop-It Beads as the catalytic event. This activity illuminates the relationship between reaction rate and reaction progress by allowing students to experience first-hand the…

  6. Students' Ideas about Reaction Rate and Its Relationship with Concentration or Pressure

    Science.gov (United States)

    Cakmakci, Gultekin; Leach, John; Donnelly, James

    2006-01-01

    This cross-sectional study identifies key conceptual difficulties experienced by upper secondary school and pre-service chemistry teachers (N = 191) in the area of reaction rates. Students' ideas about reaction rates were elicited through a series of written tasks and individual interviews. In this paper, students' ideas related to reaction rate…

  7. Big-Bang reaction rates within the R-matrix model

    Energy Technology Data Exchange (ETDEWEB)

    Descouvemont, P. [Physique Nucleaire Theorique et Physique Mathematique, CP229, Universite Libre de Bruxelles, B-1050 Brussels (Belgium); Adahchour, A. [Physique Nucleaire Theorique et Physique Mathematique, CP229, Universite Libre de Bruxelles, B-1050 Brussels (Belgium); Angulo, C. [Centre de Recherches du Cyclotron, Universite catholique de Louvain, Chemin du cyclotron 2, B-1348 Louvain-la-Neuve (Belgium); Coc, A. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS/IN2P3/UPS, Bat. 104, F-91405 Orsay Campus (France); Vangioni-Flam, E. [Institut d' Astrophysique de Paris, CNRS, 98 bis Bd. Arago, F-75014 Paris (France)

    2005-07-25

    We use the R-matrix theory to fit S-factor data on nuclear reactions involved in Big Bang nucleosynthesis. We derive the reaction rates with associated uncertainties, which are evaluated on statistical grounds. We provide S factors and reaction rates in tabular and graphical formats (available at http://pntpm3.ulb.ac.be/bigbang)

  8. "Depletion": A Game with Natural Rules for Teaching Reaction Rate Theory.

    Science.gov (United States)

    Olbris, Donald J.; Herzfeld, Judith

    2002-01-01

    Depletion is a game that reinforces central concepts of reaction rate theory through simulation. Presents the game with a set of follow-up questions suitable for either a quiz or discussion. Also describes student reaction to the game. (MM)

  9. Reaction rate oscillations during catalytic CO oxidation: A brief overview

    Science.gov (United States)

    Tsotsis, T. T.; Sane, R. C.

    1987-01-01

    It is not the intent here to present a comprehensive review of the dynamic behavior of the catalytic oxidation of CO. This reaction is one of the most widely studied in the field of catalysis. A review paper by Engel and Ertl has examined the basic kinetic and mechanistic aspects, and a comprehensive paper by Razon and Schmitz was recently devoted to its dynamic behavior. Those interested in further study of the subject should consult these reviews and a number of general review papers on catalytic reaction dynamics. The goal is to present a brief overview of certain interesting aspects of the dynamic behavior of this reaction and to discuss a few questions and issues, which are still the subject of study and debate.

  10. Calculation of multigroup reaction rates for the Ghana Research ...

    African Journals Online (AJOL)

    The corresponding number of nuclear reactions occurring in the fuel material of the lattice cell was also computed for the U235 fissile resonance absorber. The discrete ordinate spatial model, which pro-vides solution to the differential form of the transport equation by the Carlson-SN (N=4) approach was adopted to solve ...

  11. Constant rate thermal analysis of a dehydrogenation reaction

    Czech Academy of Sciences Publication Activity Database

    Perejon, A.; Perez-Maqueda, L. A.; Sanchez-Jimenez, P.E.; Criado, J. M.; Murafa, Nataliya; Šubrt, Jan

    2016-01-01

    Roč. 6, č. 84 (2016), s. 81454-81460 ISSN 2046-2069 Institutional support: RVO:61388980 Keywords : solid-state reactions * hydrogen storage properties * milled magnesium hydride Subject RIV: CA - Inorganic Chemistry Impact factor: 3.108, year: 2016

  12. Quick and Easy Rate Equations for Multistep Reactions

    Science.gov (United States)

    Savage, Phillip E.

    2008-01-01

    Students rarely see closed-form analytical rate equations derived from underlying chemical mechanisms that contain more than a few steps unless restrictive simplifying assumptions (e.g., existence of a rate-determining step) are made. Yet, work published decades ago allows closed-form analytical rate equations to be written quickly and easily for…

  13. for the inference of Furan combustion reaction rate

    KAUST Repository

    Long, Quan

    2016-01-06

    We carry out the design of experiments for the identification of the reaction parameters in Furan combustion. The lacks of information on the true value of the control parameters, specifically, the initial temperature and the initial TBHP concentration, are considered in the design procedure by errors-invariables models. We use two types of observables. The first is a scaler observable, i.e., half decay time of the [TBHP]. The second is the time history of the concentration.

  14. Rate coefficients for hydrogen abstraction reaction of pinonaldehyde ...

    Indian Academy of Sciences (India)

    Abstract. The kinetics of the reaction between pinonaldehyde (C10H16O2) and Cl atom were studied using high level ab initio G3(MP2) and DFT based MPWB1K/6-31+G(d) and MPW1K/6-31+G(d) levels of theo- ries coupled with Conventional Transition State Theory in the temperature range between 200 and 400 K. The.

  15. Collective plasma corrections to thermonuclear reactions rates in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tsytovich, V.N. [General Physics Institute, Moscow (Russian Federation)

    2002-01-01

    General kinetic equations for nuclear reaction in dense plasmas are obtained. They take into account the first order collective plasma effects. Together with previously known corrections proportional to Z{sub i}Z{sub j}, the product of the charges Z{sub i} and Z{sub j} of two interacting nuclei, it is shown that there exist corrections proportional to the squares Z{sub i}{sup 2} and Z{sub j}{sup 2} of the charges. It is shown that the Salpeter's [1] correction due to the plasma screening of the interaction potential is at least r/d smaller (r is the nuclei size and d is Debye screening length) than previously thought and is zero in the approximation when the terms of the order r/d are neglected. But the correlation effects in the first approximation in the parameter 1/N{sub d} (where N{sub d} is the number of particle in the Debye sphere) give corrections which often coincide with the first order Salpeter's corrections (found by expansion in another small parameter, the ratio of thermal energy to Gamov's energy). The correlation corrections are {proportional_to} Z{sub i}Z{sub j}, have a different physical meaning than the corrections [1], can have a different sign and are present for reactions where the Salpeter's corrections are zero. Previously in astrophysical applications it was widely used the interpolation formulas between weak and strong Salpeter's screening corrections. Since the correlation correction take place the previously known Salpeter's corrections and the strong correlation corrections is difficult to describe analytically, the interpolation formulas between the weak and strong correlations cannot be yet found. A new type of corrections are found here which are proportional to the square of the charges. They are due to collective change in electrostatic self-energy of the plasma system during the nuclear reactions. The latter corrections are found by taking into account the changes of plasma particle fluctuations by

  16. Multiscale Investigation on Biofilm Distribution and Its Impact on Macroscopic Biogeochemical Reaction Rates: BIOFILM DISTRIBUTION AND RATE SCALING

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhifeng [Institute of Surface-Earth System Science, Tianjin University, Tianjin China; Pacific Northwest National Laboratory, Richland WA USA; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland WA USA; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen China; Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland WA USA; School of Earth Science and Engineering, Nanjing University, Nanjing China; Bailey, Vanessa L. [Pacific Northwest National Laboratory, Richland WA USA

    2017-11-01

    Biofilms are critical locations for biogeochemical reactions in the subsurface environment. The occurrence and distribution of biofilms at microscale as well as their impacts on macroscopic biogeochemical reaction rates are still poorly understood. This paper investigated the formation and distributions of biofilms in heterogeneous sediments using multiscale models, and evaluated the effects of biofilm heterogeneity on local and macroscopic biogeochemical reaction rates. Sediment pore structures derived from X-ray computed tomography were used to simulate the microscale flow dynamics and biofilm distribution in the sediment column. The response of biofilm formation and distribution to the variations in hydraulic and chemical properties was first examined. One representative biofilm distribution was then utilized to evaluate its effects on macroscopic reaction rates using nitrate reduction as an example. The results revealed that microorganisms primarily grew on the surfaces of grains and aggregates near preferential flow paths where both electron donor and acceptor were readily accessible, leading to the heterogeneous distribution of biofilms in the sediments. The heterogeneous biofilm distribution decreased the macroscopic rate of biogeochemical reactions as compared with those in homogeneous cases. Operationally considering the heterogeneous biofilm distribution in macroscopic reactive transport models such as using dual porosity domain concept can significantly improve the prediction of biogeochemical reaction rates. Overall, this study provided important insights into the biofilm formation and distribution in soils and sediments as well as their impacts on the macroscopic manifestation of reaction rates.

  17. Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1997-01-01

    of the thermokinetic description of reaction rates to include the influence of effecters. Here the reaction rate is written as a linear function of the logarithm of the metabolite concentrations. With this type of rate function it is shown that the approach of Delgado and Liao [Biochem. J. (1992) 282, 919-927] can......Metabolic control analysis is a powerful technique for the evaluation of flux control within biochemical pathways. Its foundation is the elasticity coefficients and the flux control coefficients (FCCs). On the basis of a thermokinetic description of reaction rates it is here shown...... that the elasticity coefficients can be calculated directly from the pool levels of metabolites at steady state. The only requirement is that one thermodynamic parameter be known, namely the reaction affinity at the intercept of the tangent in the inflection point of the curve of reaction rate against reaction...

  18. Effects of salt concentration on the reaction rate of Glc with amino acids, peptides, and proteins.

    Science.gov (United States)

    Yamaguchi, Keiko; Noumi, Yuri; Nakajima, Katsumi; Nagatsuka, Chiharu; Aizawa, Haruko; Nakawaki, Rie; Mizude, Eri; Otsuka, Yuzuru; Homma, Takeshi; Chuyen, Nguyen Van

    2009-11-01

    The reaction between the amino group and the carbonyl group is important in food quality control. Furthermore, advanced glycation end products from foods are considered to relate to aging and diabetes. Thus, it is important to control this reaction. In this study, we investigated the effects of salt concentration on the rates of browning reaction of amino acid, peptides, and proteins. A high concentration of sodium chloride retarded the reaction rate of Glc with amino acids as measured with the absorbance at 470 nm, but did not change the browning rate of Glc with peptides. On the other hand, sodium chloride retarded the browning reaction rate of proteins as measured with polymerization degree or by the loss of Lys. It is hoped that the results of this study will be applied in the control of amino-carbonyl reaction rates in the food industry.

  19. Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1997-01-01

    Metabolic control analysis is a powerful technique for the evaluation of flux control within biochemical pathways. Its foundation is the elasticity coefficients and the flux control coefficients (FCCs). On the basis of a thermokinetic description of reaction rates it is here shown...... that the elasticity coefficients can be calculated directly from the pool levels of metabolites at steady state. The only requirement is that one thermodynamic parameter be known, namely the reaction affinity at the intercept of the tangent in the inflection point of the curve of reaction rate against reaction...... of the thermokinetic description of reaction rates to include the influence of effecters. Here the reaction rate is written as a linear function of the logarithm of the metabolite concentrations. With this type of rate function it is shown that the approach of Delgado and Liao [Biochem. J. (1992) 282, 919-927] can...

  20. Charged-particle thermonuclear reaction rates: I. Monte Carlo method and statistical distributions

    International Nuclear Information System (INIS)

    Longland, R.; Iliadis, C.; Champagne, A.E.; Newton, J.R.; Ugalde, C.; Coc, A.; Fitzgerald, R.

    2010-01-01

    A method based on Monte Carlo techniques is presented for evaluating thermonuclear reaction rates. We begin by reviewing commonly applied procedures and point out that reaction rates that have been reported up to now in the literature have no rigorous statistical meaning. Subsequently, we associate each nuclear physics quantity entering in the calculation of reaction rates with a specific probability density function, including Gaussian, lognormal and chi-squared distributions. Based on these probability density functions the total reaction rate is randomly sampled many times until the required statistical precision is achieved. This procedure results in a median (Monte Carlo) rate which agrees under certain conditions with the commonly reported recommended 'classical' rate. In addition, we present at each temperature a low rate and a high rate, corresponding to the 0.16 and 0.84 quantiles of the cumulative reaction rate distribution. These quantities are in general different from the statistically meaningless 'minimum' (or 'lower limit') and 'maximum' (or 'upper limit') reaction rates which are commonly reported. Furthermore, we approximate the output reaction rate probability density function by a lognormal distribution and present, at each temperature, the lognormal parameters μ and σ. The values of these quantities will be crucial for future Monte Carlo nucleosynthesis studies. Our new reaction rates, appropriate for bare nuclei in the laboratory, are tabulated in the second paper of this issue (Paper II). The nuclear physics input used to derive our reaction rates is presented in the third paper of this issue (Paper III). In the fourth paper of this issue (Paper IV) we compare our new reaction rates to previous results.

  1. Upper atmosphere research: Reaction rate and optical measurements

    Science.gov (United States)

    Stief, L. J.; Allen, J. E., Jr.; Nava, D. F.; Payne, W. A., Jr.

    1990-01-01

    The objective is to provide photochemical, kinetic, and spectroscopic information necessary for photochemical models of the Earth's upper atmosphere and to examine reactions or reactants not presently in the models to either confirm the correctness of their exclusion or provide evidence to justify future inclusion in the models. New initiatives are being taken in technique development (many of them laser based) and in the application of established techniques to address gaps in the photochemical/kinetic data base, as well as to provide increasingly reliable information.

  2. Assessment of adverse reaction rates during gadoteridol-enhanced MR imaging in 28,078 patients.

    Science.gov (United States)

    Morgan, Desiree E; Spann, J Stephen; Lockhart, Mark E; Winningham, Beth; Bolus, David N

    2011-04-01

    To determine adverse reaction rates in a tertiary care clinical setting after adoption of gadoteridol as the institutional routine magnetic resonance (MR) imaging contrast agent. With institutional review board approval, informed consent waiver, and HIPAA compliance, a prospective observational study of 28 078 patients who underwent intravenous gadoteridol-enhanced MR imaging from July 2007 to December 2009 was performed. Reactions were recorded by technologists who noted types of reactions, method of injection, and treatment. Reactions were classified as mild, moderate, or severe per American College of Radiology definitions. Comparisons of reaction rates with dose and method of injection were analyzed with the Fisher exact and χ(2) tests. Overall reaction rate was 0.666% (187 patients), including 177 mild, six moderate, and four severe reactions. Treatment was given in 27 patients (14.4%). The most frequent reaction was nausea (and/or vomiting) in 149 patients (79.7% of patients with any adverse reaction, 0.530% of overall population). Method of injection did not affect reaction rate or severity. There was no difference in type or severity of reactions in comparison of patients receiving half the dose versus patients receiving the standard dose (P = .33-.75). The observed adverse reaction rate to gadoteridol was lower than previously reported. Specifically, the rate of nausea (0.530%) was less than half the rate (1.4%) in clinical trials of 1251 patients, leading to FDA approval in 1992. Rates of adverse reactions for this macrocyclic contrast agent are comparable to those published for linear gadolinium-based contrast agents. © RSNA, 2011.

  3. Rate Constants for the Reactions of Hydroxyl Radical with Several Alkanes, Cycloalkanes, and Dimethyl Ether

    Science.gov (United States)

    DeMore, W.; Bayes, K.

    1998-01-01

    Relative rate experiements were used to measure rate constants and temperature denpendencies of the reactions of OH with propane, n-butane, n-pentane, n-hexane, cyclopropane, cyclobutane, cyclopentane, and dimethyl ether.

  4. Effect of temperature oscillation on chemical reaction rates in the atmosphere

    Science.gov (United States)

    Eberstein, I. J.

    1974-01-01

    The effect of temperature fluctuations on atmospheric ozone chemistry is examined by considering the Chapman photochemical theory of ozone transport to calculate globally averaged ozone production rates from mean reaction rates, activation energies, and recombination processes.

  5. The 8Li(α, n)11B Reaction Rate at Astrophysical Temperatures

    Science.gov (United States)

    La Cognata, Marco; Del Zoppo, Antonio

    2011-08-01

    At temperatures (0.5-1.2) × 109 K, the 8Li + 4He → 11B+n reaction can allow for 12C and heavier element production in the framework of the inhomogeneous big bang nucleosynthesis. At temperatures (2.5-5) × 109 K, it can influence the production of seed nuclei, later burnt to heavier elements by means of rapid neutron capture reactions, during Type II supernova explosions. Previous determinations of the reaction rate show an untenable disagreement. In this work, a new reaction rate calculation is proposed for the intervals of astrophysical interest. This new recommendation turns out to be up to a factor of five larger than the most recent rate in the literature, thus enforcing the role of 8Li + 4He → 11B+n as a candidate for key astrophysical reactions. The analytical expression of the recommended reaction rate is given.

  6. THE 8Li(α, n)11B REACTION RATE AT ASTROPHYSICAL TEMPERATURES

    International Nuclear Information System (INIS)

    La Cognata, Marco; Del Zoppo, Antonio

    2011-01-01

    At temperatures (0.5-1.2) x 10 9 K, the 8 Li + 4 He → 11 B+n reaction can allow for 12 C and heavier element production in the framework of the inhomogeneous big bang nucleosynthesis. At temperatures (2.5-5) x 10 9 K, it can influence the production of seed nuclei, later burnt to heavier elements by means of rapid neutron capture reactions, during Type II supernova explosions. Previous determinations of the reaction rate show an untenable disagreement. In this work, a new reaction rate calculation is proposed for the intervals of astrophysical interest. This new recommendation turns out to be up to a factor of five larger than the most recent rate in the literature, thus enforcing the role of 8 Li + 4 He → 11 B+n as a candidate for key astrophysical reactions. The analytical expression of the recommended reaction rate is given.

  7. Evaluation of Chemical Kinetic for Mathematics Model Reduction of Cadmium Reaction Rate, Constant and Reaction Orde in to Electrochemical Process

    International Nuclear Information System (INIS)

    Prayitno

    2007-01-01

    The experiment was reduction of cadmium rate with electrochemical influenced by time process, concentration, current strength and type of electrode plate. The aim of the experiment was to know the influence, mathematic model reduction of cadmium the reaction rate, reaction rate constant and reaction orde influenced by time process, concentration, current strength and type of electrode plate. Result of research indicate the time processing if using plate of copper electrode is during 30 minutes and using plate of aluminium electrode is during 20 minutes. Condition of strong current that used in process of electrochemical is only 0.8 ampere and concentration effective is 5.23 mg/l. The most effective type Al of electrode plate for reduction from waste and the efficiency of reduction is 98 %. (author)

  8. Reaction rate constants of HO2 + O3 in the temperature range 233-400 K

    Science.gov (United States)

    Wang, Xiuyan; Suto, Masako; Lee, L. C.

    1988-01-01

    The reaction rate constants of HO2 + O3 were measured in the temperature range 233-400 K using a discharge flow system with photofragment emission detection. In the range 233-253 K, the constants are approximately a constant value, and then increase with increasing temperature. This result suggests that the reaction may have two different channels. An expression representing the reaction rate constants is presented.

  9. Compilation and R-matrix analysis of Big Bang nuclear reaction rates

    International Nuclear Information System (INIS)

    Descouvemont, Pierre; Adahchour, Abderrahim; Angulo, Carmen; Coc, Alain; Vangioni-Flam, Elisabeth

    2004-01-01

    We use the R-matrix theory to fit low-energy data on nuclear reactions involved in Big Bang nucleosynthesis. Special attention is paid to the rate uncertainties which are evaluated on statistical grounds. We provide S factors and reaction rates in tabular and graphical formats

  10. THEORETICAL REACTION RATES OF 12C(α, γ)16O BELOW T9 = 3

    International Nuclear Information System (INIS)

    Katsuma, M.

    2012-01-01

    The astrophysical reaction rates of 12 C(α,γ) 16 O below T 9 = 3, calculated from the potential model, are provided in tabular form and as analytic expressions. The uncertainties of the reaction rates are estimated by using variations of the model parameters.

  11. Rate of reaction of dimethylmercury with oxygen atoms in the gas phase

    DEFF Research Database (Denmark)

    Egsgaard, Helge

    1986-01-01

    The rate constant for the reaction of atomic oxygen (O(3P)) with dimethylmercury has been measured at room temperature at a pressure of about 1 Torr using a fast flow system with electron paramagnetic resonance and mass spectrometric detection. Some reaction products were identified. The rate...

  12. Putting Reaction Rates and Collision Theory in the Hands of Your Students.

    Science.gov (United States)

    Evenson, Andy

    2002-01-01

    Describes a simulation that can be used to give concrete analogies of collision theory and the factors that affect reaction rates including temperature, concentration, catalyst, and molecular orientation. The simulation works best if done as an introduction to the concepts to help prevent misconceptions about reaction rates and collision theory.…

  13. Reaction rate estimation of controlled-release antifouling paint binders: Rosin-based systems

    DEFF Research Database (Denmark)

    Meseguer Yebra, Diego; Kiil, Søren; Dam-Johansen, Kim

    2005-01-01

    accuracies. The latter is important because very low steady state reaction rates (about 0.70 +/- 0.26 mu g Zn(2+)cm(-2)day(-1) at 25 degrees C and pH 8.2) are measured. Steady state reaction rates of Cu2+- and Mg2+ -derivatives are also determined and discussed. The experimental procedures developed are used...... rather than pointing at a certain diffusion control in the reaction rate experiments. The reverse reaction is found not to affect the hydrolysis rate within the pores, of antifouling paints significantly. It is concluded, from the reaction mechanism proposed, that the observed partial exchange of Zn2......Biofouling on ship hulls is prevented by the use of antifouling (A/F) paints. Typically, sea water soluble rosin or rosin-derivatives are used as the primary means of adjusting the polishing rate of the current chemically active self-polishing paint systems to a suitable value. Previous studies...

  14. Enhancement of D-T reaction rate due to D-T contact

    International Nuclear Information System (INIS)

    Hitoki, Shigehisa; Ogasawara, Masatada; Aono, Osamu.

    1979-09-01

    The reaction rate that is appropriate for magnetized nonuniform plasma is numerically calculated to investigate the enhancement of the D-T reaction rate. Spatial separation of the guiding center distributions of D and T enhances the reaction rate. Cases of several guiding center configurations are investigated. The largest enhancement is obtained, when both guiding center distributions are delta-functions which are separated by a length that corresponds to the Gamow peak energy. As compared with the case of no separation of D and T, the maximum enhancing factors obtained are 2.3 for total reaction rate and 1.6 for local reaction rate. Cases of the guiding center distributions with finite widths are also investigated. (author)

  15. Diffusion-controlled reaction. V. Effect of concentration-dependent diffusion coefficient on reaction rate in graft polymerization

    International Nuclear Information System (INIS)

    Imre, K.; Odian, G.

    1979-01-01

    The effect of diffusion on radiation-initiated graft polymerization has been studied with emphasis on the single- and two-penetrant cases. When the physical properties of the penetrants are similar, the two-penetrant problems can be reduced to the single-penetrant problem by redefining the characteristic parameters of the system. The diffusion-free graft polymerization rate is assumed to be proportional to the upsilon power of the monomer concentration respectively, and, in which the proportionality constant a = k/sub p/R/sub i//sup w//k/sub t//sup z/, where k/sub p/ and k/sub t/ are the propagation and termination rate constants, respectively, and R/sub i/ is the initiation rate. The values of upsilon, w, and z depend on the particular reaction system. The results of earlier work were generalized by allowing a non-Fickian diffusion rate which predicts an essentially exponential dependence on the monomer concentration of the diffusion coefficient, D = D 0 [exp(deltaC/M)], where M is the saturation concentration. A reaction system is characterized by the three dimensionless parameters, upsilon, delta, and A = (L/2)[aM/sup (upsilon--1)//D 0 ]/sup 1/2/, where L is the polymer film thickness. Graft polymerization tends to become diffusion controlled as A increases. Larger values of delta and ν cause a reaction system to behave closer to the diffusion-free regime. Transition from diffusion-free to diffusion-controlled reaction involves changes in the dependence of the reaction rate on film thickness, initiation rate, and monomer concentration. Although the diffusion-free rate is w order in initiation rate, upsilon order in monomer, and independent of film thickness, the diffusion-controlled rate is w/2 order in initiator rate and inverse first-order in film thickness. Dependence of the diffusion-controlled rate on monomer is dependent in a complex manner on the diffusional characteristics of the reaction system. 11 figures, 4 tables

  16. The Impact of Nuclear Reaction Rate Uncertainties on the Evolution of Core-collapse Supernova Progenitors

    Science.gov (United States)

    Fields, C. E.; Timmes, F. X.; Farmer, R.; Petermann, I.; Wolf, William M.; Couch, S. M.

    2018-02-01

    We explore properties of core-collapse supernova progenitors with respect to the composite uncertainties in the thermonuclear reaction rates by coupling the probability density functions of the reaction rates provided by the STARLIB reaction rate library with MESA stellar models. We evolve 1000 models of 15{M}ȯ from the pre-main sequence to core O-depletion at solar and subsolar metallicities for a total of 2000 Monte Carlo stellar models. For each stellar model, we independently and simultaneously sample 665 thermonuclear reaction rates and use them in a MESA in situ reaction network that follows 127 isotopes from 1H to 64Zn. With this framework we survey the core mass, burning lifetime, composition, and structural properties at five different evolutionary epochs. At each epoch we measure the probability distribution function of the variations of each property and calculate Spearman rank-order correlation coefficients for each sampled reaction rate to identify which reaction rate has the largest impact on the variations on each property. We find that uncertainties in the reaction rates of {}14{{N}}{({{p}},γ )}15{{O}}, triple-α, {}12{{C}}{(α ,γ )}16{{O}}, 12C(12C,p)23Na, 12C(16O, p)27Al, 16O(16O,n)31S, 16O(16O, p)31P, and 16O(16O,α)28Si dominate the variations of the properties surveyed. We find that variations induced by uncertainties in nuclear reaction rates grow with each passing phase of evolution, and at core H-, He-depletion they are of comparable magnitude to the variations induced by choices of mass resolution and network resolution. However, at core C-, Ne-, and O-depletion, the reaction rate uncertainties can dominate the variation, causing uncertainty in various properties of the stellar model in the evolution toward iron core-collapse.

  17. Rate constants for some electrophilic reactions of benzyl, benzhydryl, and trityl cations in solution

    International Nuclear Information System (INIS)

    Ujdak, R.J.; Jones, R.L.; Dorfman, L.M.

    1976-01-01

    Absolute rate constants have been determined by the pulse radiolysis technique for several electrophilic reactions of the benzyl, the benzhydryl, and the trityl cation in 1,2-dichloroethane solution. The rate constants for the reactions of these carbonium ions with chloride ion, with bromide ion, and with iodide ion are all very nearly the same, namely 6 x 10 10 M -1 s -1 at 24 0 C. The values very likely represent the diffusion controlled limit for the ion combination reactions. The rate constants for the reactions with triethylamine, tri-n-propylamine, and tri-n-butylamine range from 2.0 x 10 9 to 7 x 10 6 M -1 s -1 at 24 0 C. With increasing phenyl substitution, the decreasing trend in the magnitude of the rate constant is consistent with the combined electronic and steric effects. With increasing size of the amine, the decrease in the value of the rate constant seems to indicate that the steric effect predominates. The values of the rate constants for reactions of benzyl and benzhydryl cation with methanol, ethanol, and 2-propanol indicate the following. The rate constant is higher for reaction with the alcohol dimer in solution than with alcohol monomer. The rate constants for reaction with alcohol monomer have values of 1 x 10 8 M -1 s -1 or lower

  18. The effect of temperature fluctuations of reaction rate constants in turbulent reacting flows

    Science.gov (United States)

    Chinitz, W.; Antaki, P. J.; Kassar, G. M.

    1981-01-01

    Current models of turbulent reacting flows frequently use Arrhenius reaction rate constants obtained from static or laminar flow theory and/or experiments, or from best fits of static, laminar, and turbulent data. By treating the reaction rate constant as a continuous random variable which is temperature-dependent, the present study assesses the effect of turbulent temperature fluctuations on the reaction rate constant. This model requires that a probability density function (PDF) describing the nature of the fluctuations be specified. Three PDFs are examined: the clipped Gaussian, the beta PDF, and the ramp model. All the models indicate that the reaction rate constant is greater in a turbulent flow field than in an equivalent laminar flow. In addition, an amplification ratio, which is the ratio of the turbulent rate constant to the laminar rate constant, is defined and its behavior as a function of the mean temperature fluctuations is described

  19. Chiral polymerization in open systems from chiral-selective reaction rates.

    Science.gov (United States)

    Gleiser, Marcelo; Nelson, Bradley J; Walker, Sara Imari

    2012-08-01

    We investigate the possibility that prebiotic homochirality can be achieved exclusively through chiral-selective reaction rate parameters without any other explicit mechanism for chiral bias. Specifically, we examine an open network of polymerization reactions, where the reaction rates can have chiral-selective values. The reactions are neither autocatalytic nor do they contain explicit enantiomeric cross-inhibition terms. We are thus investigating how rare a set of chiral-selective reaction rates needs to be in order to generate a reasonable amount of chiral bias. We quantify our results adopting a statistical approach: varying both the mean value and the rms dispersion of the relevant reaction rates, we show that moderate to high levels of chiral excess can be achieved with fairly small chiral bias, below 10%. Considering the various unknowns related to prebiotic chemical networks in early Earth and the dependence of reaction rates to environmental properties such as temperature and pressure variations, we argue that homochirality could have been achieved from moderate amounts of chiral selectivity in the reaction rates.

  20. Reaction rate and composition dependence of the stability of thermonuclear burning on accreting neutron stars

    International Nuclear Information System (INIS)

    Keek, L.; Cyburt, R. H.; Heger, A.

    2014-01-01

    The stability of thermonuclear burning of hydrogen and helium accreted onto neutron stars is strongly dependent on the mass accretion rate. The burning behavior is observed to change from Type I X-ray bursts to stable burning, with oscillatory burning occurring at the transition. Simulations predict the transition at a 10 times higher mass accretion rate than observed. Using numerical models we investigate how the transition depends on the hydrogen, helium, and CNO mass fractions of the accreted material, as well as on the nuclear reaction rates of 3α and the hot-CNO breakout reactions 15 O(α, γ) 19 Ne and 18 Ne(α, p) 21 Na. For a lower hydrogen content the transition is at higher accretion rates. Furthermore, most experimentally allowed reaction rate variations change the transition accretion rate by at most 10%. A factor 10 decrease of the 15 O(α, γ) 19 Ne rate, however, produces an increase of the transition accretion rate of 35%. None of our models reproduce the transition at the observed rate, and depending on the true 15 O(α, γ) 19 Ne reaction rate, the actual discrepancy may be substantially larger. We find that the width of the interval of accretion rates with marginally stable burning depends strongly on both composition and reaction rates. Furthermore, close to the stability transition, our models predict that X-ray bursts have extended tails where freshly accreted fuel prolongs nuclear burning.

  1. Estimation of the prevalence and rate of acute transfusion reactions occurring in Windhoek, Namibia

    Science.gov (United States)

    Meza, Benjamin P.L.; Lohrke, Britta; Wilkinson, Robert; Pitman, John P.; Shiraishi, Ray W.; Bock, Naomi; Lowrance, David W.; Kuehnert, Matthew J.; Mataranyika, Mary; Basavaraju, Sridhar V.

    2014-01-01

    Background Acute transfusion reactions are probably common in sub-Saharan Africa, but transfusion reaction surveillance systems have not been widely established. In 2008, the Blood Transfusion Service of Namibia implemented a national acute transfusion reaction surveillance system, but substantial under-reporting was suspected. We estimated the actual prevalence and rate of acute transfusion reactions occurring in Windhoek, Namibia. Methods The percentage of transfusion events resulting in a reported acute transfusion reaction was calculated. Actual percentage and rates of acute transfusion reactions per 1,000 transfused units were estimated by reviewing patients’ records from six hospitals, which transfuse >99% of all blood in Windhoek. Patients’ records for 1,162 transfusion events occurring between 1st January – 31st December 2011 were randomly selected. Clinical and demographic information were abstracted and Centers for Disease Control and Prevention National Healthcare Safety Network criteria were applied to categorize acute transfusion reactions1. Results From January 1 – December 31, 2011, there were 3,697 transfusion events (involving 10,338 blood units) in the selected hospitals. Eight (0.2%) acute transfusion reactions were reported to the surveillance system. Of the 1,162 transfusion events selected, medical records for 785 transfusion events were analysed, and 28 acute transfusion reactions were detected, of which only one had also been reported to the surveillance system. An estimated 3.4% (95% confidence interval [CI]: 2.3–4.4) of transfusion events in Windhoek resulted in an acute transfusion reaction, with an estimated rate of 11.5 (95% CI: 7.6–14.5) acute transfusion reactions per 1,000 transfused units. Conclusion The estimated actual rate of acute transfusion reactions is higher than the rate reported to the national haemovigilance system. Improved surveillance and interventions to reduce transfusion-related morbidity and mortality

  2. Temperature-Dependent Rate Coefficients for the Reaction of CH2OO with Hydrogen Sulfide.

    Science.gov (United States)

    Smith, Mica C; Chao, Wen; Kumar, Manoj; Francisco, Joseph S; Takahashi, Kaito; Lin, Jim Jr-Min

    2017-02-09

    The reaction of the simplest Criegee intermediate CH 2 OO with hydrogen sulfide was measured with transient UV absorption spectroscopy in a temperature-controlled flow reactor, and bimolecular rate coefficients were obtained from 278 to 318 K and from 100 to 500 Torr. The average rate coefficient at 298 K and 100 Torr was (1.7 ± 0.2) × 10 -13 cm 3 s -1 . The reaction was found to be independent of pressure and exhibited a weak negative temperature dependence. Ab initio quantum chemistry calculations of the temperature-dependent reaction rate coefficient at the QCISD(T)/CBS level are in reasonable agreement with the experiment. The reaction of CH 2 OO with H 2 S is 2-3 orders of magnitude faster than the reaction with H 2 O monomer. Though rates of CH 2 OO scavenging by water vapor under atmospheric conditions are primarily controlled by the reaction with water dimer, the H 2 S loss pathway will be dominated by the reaction with monomer. The agreement between experiment and theory for the CH 2 OO + H 2 S reaction lends credence to theoretical descriptions of other Criegee intermediate reactions that cannot easily be probed experimentally.

  3. Steady and nonsteady rates of reaction in a heterogeneously catalyzed reaction: Oxidation of CO on platinum, experiments and simulations

    Science.gov (United States)

    Ehsasi, M.; Matloch, M.; Frank, O.; Block, J. H.; Christmann, K.; Rys, F. S.; Hirschwald, W.

    1989-10-01

    The rate of reaction for oxidation of CO over (210) and (111) single-crystal surfaces of platinum has been studied as a function of reactant pressures (PO2,PCO) and sample temperature (T), both experimentally and by computer simulation. Experimental results on both surfaces show regions with a steady high rate of reaction followed by a nonsteady transition region and, at high CO pressures, a region with low reactivity caused by CO poisoning of the surface. At constant sample temperature, the transition region can be narrow and depends critically on the ratio of the gas phase concentration of reactants (PCO/PO2). The temperature dependences of the experimental data indicate that the critical ratio and the details for the occurrence of CO poisoning are strongly affected by surface processes such as adsorption, desorption, and diffusion ordering and reconstruction phenomena. A computer simulation model of the Langmuir-Hinshelwood surface reaction as developed by Ziff et al. was used for the simulation of the reaction under flow conditions. The initial fair agreement between this model and the experiment can be significantly improved if processes such as adsorption, desorption, and diffusion are taken into account in an extended simulation model which in turn provides an insight into the kinetics of adsorbate poisoning and the effect of adsorbate-induced processes on the reaction.

  4. Viscosity Dependence of Some Protein and Enzyme Reaction Rates: Seventy-Five Years after Kramers.

    Science.gov (United States)

    Sashi, Pulikallu; Bhuyan, Abani K

    2015-07-28

    Kramers rate theory is a milestone in chemical reaction research, but concerns regarding the basic understanding of condensed phase reaction rates of large molecules in viscous milieu persist. Experimental studies of Kramers theory rely on scaling reaction rates with inverse solvent viscosity, which is often equated with the bulk friction coefficient based on simple hydrodynamic relations. Apart from the difficulty of abstraction of the prefactor details from experimental data, it is not clear why the linearity of rate versus inverse viscosity, k ∝ η(-1), deviates widely for many reactions studied. In most cases, the deviation simulates a power law k ∝ η(-n), where the exponent n assumes fractional values. In rate-viscosity studies presented here, results for two reactions, unfolding of cytochrome c and cysteine protease activity of human ribosomal protein S4, show an exceedingly overdamped rate over a wide viscosity range, registering n values up to 2.4. Although the origin of this extraordinary reaction friction is not known at present, the results indicate that the viscosity exponent need not be bound by the 0-1 limit as generally suggested. For the third reaction studied here, thermal dissociation of CO from nativelike cytochrome c, the rate-viscosity behavior can be explained using Grote-Hynes theory of time-dependent friction in conjunction with correlated motions intrinsic to the protein. Analysis of the glycerol viscosity-dependent rate for the CO dissociation reaction in the presence of urea as the second variable shows that the protein stabilizing effect of subdenaturing amounts of urea is not affected by the bulk viscosity. It appears that a myriad of factors as diverse as parameter uncertainty due to the difficulty of knowing the exact reaction friction and both mode and consequences of protein-solvent interaction work in a complex manner to convey as though Kramers rate equation is not absolute.

  5. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.

    Science.gov (United States)

    Liu, Y R; Duan, Z P; Zhang, Z Y; Ou, Z C; Huang, F L

    2016-11-05

    The primary goal of this research is to develop a three-term mesoscopic reaction rate model that consists of a hot-spot ignition, a low-pressure slow burning and a high-pressure fast reaction terms for shock initiation of multi-component Plastic Bonded Explosives (PBX). Thereinto, based on the DZK hot-spot model for a single-component PBX explosive, the hot-spot ignition term as well as its reaction rate is obtained through a "mixing rule" of the explosive components; new expressions for both the low-pressure slow burning term and the high-pressure fast reaction term are also obtained by establishing the relationships between the reaction rate of the multi-component PBX explosive and that of its explosive components, based on the low-pressure slow burning term and the high-pressure fast reaction term of a mesoscopic reaction rate model. Furthermore, for verification, the new reaction rate model is incorporated into the DYNA2D code to simulate numerically the shock initiation process of the PBXC03 and the PBXC10 multi-component PBX explosives, and the numerical results of the pressure histories at different Lagrange locations in explosive are found to be in good agreements with previous experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Global dynamics and transition state theories: Comparative study of reaction rate constants for gas-phase chemical reactions.

    Science.gov (United States)

    Ju, Li-Ping; Han, Ke-Li; Zhang, John Z H

    2009-01-30

    In this review article, we present a systematic comparison of the theoretical rate constants for a range of bimolecular reactions that are calculated by using three different classes of theoretical methods: quantum dynamics (QD), quasi-classical trajectory (QCT), and transition state theory (TST) approaches. The study shows that the difference of rate constants between TST results and those of the global dynamics methods (QD and QCT) are seen to be related to a number of factors including the number of degrees-of-freedom (DOF), the density of states at transition state (TS), etc. For reactions with more DOF and higher density of states at the TS, it is found that the rate constants from TST calculations are systematically higher than those obtained from global dynamics calculations, indicating large recrossing effect for these systems. The physical insight of this phenomenon is elucidated in the present review. (c) 2008 Wiley Periodicals, Inc.

  7. The time dependence of rate constants of esub(aq)sup(-) reactions

    International Nuclear Information System (INIS)

    Burcl, R.; Byakov, V.M.; Grafutin, V.I.

    1982-01-01

    Published data about the time dependence of rate constants k(esub(aq)sup(-)+Ac) of esub(aq)sup(-) reactions with the acceptor Ac are analyzed, using the results of rate constant k(Ps+Ac) measurements for positronium reactions. It is shown that neither esub(aq)sup(-) nor Ps reaction rate constants depend on time in the observable range. Experimentally found concentration dependence of k(esub(aq)sup(-)+Ac) is due to other factors, connected with the existence of electric charge of esub(aq)sup(-), e.g. ionic strength, tunnelling effect etc. (author)

  8. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reaction flows

    Science.gov (United States)

    Magnotti, F.; Diskin, G.; Matulaitis, J.; Chinitz, W.

    1984-01-01

    The use of silane (SiH4) as an effective ignitor and flame stabilizing pilot fuel is well documented. A reliable chemical kinetic mechanism for prediction of its behavior at the conditions encountered in the combustor of a SCRAMJET engine was calculated. The effects of hydrogen addition on hydrocarbon ignition and flame stabilization as a means for reduction of lengthy ignition delays and reaction times were studied. The ranges of applicability of chemical kinetic models of hydrogen-air combustors were also investigated. The CHARNAL computer code was applied to the turbulent reaction rate modeling.

  9. Comparing transfusion reaction rates for various plasma types: a systematic review and meta-analysis/regression.

    Science.gov (United States)

    Saadah, Nicholas H; van Hout, Fabienne M A; Schipperus, Martin R; le Cessie, Saskia; Middelburg, Rutger A; Wiersum-Osselton, Johanna C; van der Bom, Johanna G

    2017-09-01

    We estimated rates for common plasma-associated transfusion reactions and compared reported rates for various plasma types. We performed a systematic review and meta-analysis of peer-reviewed articles that reported plasma transfusion reaction rates. Random-effects pooled rates were calculated and compared between plasma types. Meta-regression was used to compare various plasma types with regard to their reported plasma transfusion reaction rates. Forty-eight studies reported transfusion reaction rates for fresh-frozen plasma (FFP; mixed-sex and male-only), amotosalen INTERCEPT FFP, methylene blue-treated FFP, and solvent/detergent-treated pooled plasma. Random-effects pooled average rates for FFP were: allergic reactions, 92/10 5 units transfused (95% confidence interval [CI], 46-184/10 5 units transfused); febrile nonhemolytic transfusion reactions (FNHTRs), 12/10 5 units transfused (95% CI, 7-22/10 5 units transfused); transfusion-associated circulatory overload (TACO), 6/10 5 units transfused (95% CI, 1-30/10 5 units transfused); transfusion-related acute lung injury (TRALI), 1.8/10 5 units transfused (95% CI, 1.2-2.7/10 5 units transfused); and anaphylactic reactions, 0.8/10 5 units transfused (95% CI, 0-45.7/10 5 units transfused). Risk differences between plasma types were not significant for allergic reactions, TACO, or anaphylactic reactions. Methylene blue-treated FFP led to fewer FNHTRs than FFP (risk difference = -15.3 FNHTRs/10 5 units transfused; 95% CI, -24.7 to -7.1 reactions/10 5 units transfused); and male-only FFP led to fewer cases of TRALI than mixed-sex FFP (risk difference = -0.74 TRALI/10 5 units transfused; 95% CI, -2.42 to -0.42 injuries/10 5 units transfused). Meta-regression demonstrates that the rate of FNHTRs is lower for methylene blue-treated compared with FFP, and the rate of TRALI is lower for male-only than for mixed-sex FFP; whereas no significant differences are observed between plasma types for allergic reactions, TACO

  10. Hydrogen isotope exchange reaction rates in tritium, hydrogen and deuterium mixed gases

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko

    1992-01-01

    Hydrogen isotope exchange reaction rates in H 2 +T 2 , D 2 +T 2 and H 2 +D 2 +T 2 mixed gases, as induced by tritium decay and beta radiation, were experimentally measured by laser Raman spectrometry. Initially a glass cell was filled with T 2 gas to a pressure of 30-40 kPa, and an equivalent partial pressure of H 2 and/or D 2 was added. The first-order hydrogen isotope exchange reaction rates were 5.54x10 -2 h -1 for H 2 +T 2 mixed gas and 4.76x10 -2 h -1 for D 2 +T 2 . The actual HT producing rate was nearly equivalent to the rate of DT, but the reverse reaction rate of HT was faster than that of DT. The exchange reaction rates between H, D and T showed the isotope effect, HD>HT>DT. The hydrogen isotope exchange reaction rates observed were about twenty times larger than ion formation rates by beta radiation. This result suggests that a free radical chain reaction in hydrogen isotopes is occurring. (orig.)

  11. Multiscale Investigation on Biofilm Distribution and Its Impact on Macroscopic Biogeochemical Reaction Rates

    Science.gov (United States)

    Yan, Zhifeng; Liu, Chongxuan; Liu, Yuanyuan; Bailey, Vanessa L.

    2017-11-01

    Biofilms are critical locations for biogeochemical reactions in the subsurface environment. The occurrence and distribution of biofilms at microscale as well as their impacts on macroscopic biogeochemical reaction rates are still poorly understood. This paper investigated the formation and distributions of biofilms in heterogeneous sediments using multiscale models and evaluated the effects of biofilm heterogeneity on local and macroscopic biogeochemical reaction rates. Sediment pore structures derived from X-ray computed tomography were used to simulate the microscale flow dynamics and biofilm distribution in the sediment column. The response of biofilm formation and distribution to the variations in hydraulic and chemical properties was first examined. One representative biofilm distribution was then utilized to evaluate its effects on macroscopic reaction rates using nitrate reduction as an example. The results revealed that microorganisms primarily grew on the surfaces of grains and aggregates near preferential flow paths where both electron donor and acceptor were readily accessible, leading to the heterogeneous distribution of biofilms in the sediments. The heterogeneous biofilm distribution decreased the macroscopic rate of biogeochemical reactions as compared with those in homogeneous cases. Operationally considering the heterogeneous biofilm distribution in macroscopic reactive transport models such as using dual porosity domain concept can significantly improve the prediction of biogeochemical reaction rates. Overall, this study provided important insights into the biofilm formation and distribution in soils and sediments as well as their impacts on the macroscopic manifestation of reaction rates.

  12. Sensitivity study of explosive nucleosynthesis in type Ia supernovae: Modification of individual thermonuclear reaction rates

    Science.gov (United States)

    Bravo, Eduardo; Martínez-Pinedo, Gabriel

    2012-05-01

    Background: Type Ia supernovae contribute significantly to the nucleosynthesis of many Fe-group and intermediate-mass elements. However, the robustness of nucleosynthesis obtained via models of this class of explosions has not been studied in depth until now.Purpose: We explore the sensitivity of the nucleosynthesis resulting from thermonuclear explosions of massive white dwarfs with respect to uncertainties in nuclear reaction rates. We put particular emphasis on indentifying the individual reactions rates that most strongly affect the isotopic products of these supernovae.Method: We have adopted a standard one-dimensional delayed detonation model of the explosion of a Chandrasekhar-mass white dwarf and have postprocessed the thermodynamic trajectories of every mass shell with a nucleosynthetic code to obtain the chemical composition of the ejected matter. We have considered increases (decreases) by a factor of 10 on the rates of 1196 nuclear reactions (simultaneously with their inverse reactions), repeating the nucleosynthesis calculations after modification of each reaction rate pair. We have computed as well hydrodynamic models for different rates of the fusion reactions of 12C and of 16O. From the calculations we have selected the reactions that have the largest impact on the supernova yields, and we have computed again the nucleosynthesis using two or three alternative prescriptions for their rates, taken from the JINA REACLIB database. For the three reactions with the largest sensitivity we have analyzed as well the temperature ranges where a modification of their rates has the strongest effect on nucleosynthesis.Results: The nucleosynthesis resulting from the type Ia supernova models is quite robust with respect to variations of nuclear reaction rates, with the exception of the reaction of fusion of two 12C nuclei. The energy of the explosion changes by less than ˜4% when the rates of the reactions 12C+12C or 16O+16O are multiplied by a factor of ×10 or

  13. Capture cross-section and rate of the 14 C (n, γ) 15 C reaction from ...

    Indian Academy of Sciences (India)

    We calculate the Coulomb dissociation of 15C on a Pb target at 68 MeV/u incident beam energy within the fully quantum mechanical distorted wave Born approximation formalism of breakup reactions. The capture cross-section and the subsequent rate of the 14C(, )15C reaction are calculated from the ...

  14. Selected specific rates of reactions of transients from water in aqueous solution. II. Hydrogen atom

    International Nuclear Information System (INIS)

    Anbar, M.; Farhataziz; Ross, A.B.

    1975-05-01

    Rates of reactions of hydrogen atoms (from radiolysis of water and other sources) with organic and inorganic molecules, ions, and transients in aqueous solution were tabulated. Directly measured rates obtained by kinetic spectroscopy or conductimetric methods, and relative rates determined by competition kinetics are included. (U.S.)

  15. Charged-particle induced thermonuclear reaction rates: a compilation for astrophysics

    International Nuclear Information System (INIS)

    Grama, Cornelia

    1999-01-01

    The rapidly growing wealth of nuclear data becomes less and less easily accessible to the astrophysics community. Mastering this volume of information and making it available in an accurate and usable form for incorporation into stellar evolution or nucleosynthesis models become urgent goals of prime necessity. We report on the results of the European network NACRE (Nuclear Astrophysics Compilation of REaction rates). The principal motivation for the setting-up of the NACRE network has been the necessity of building up a well-documented and detailed compilation of rates for charged -particle induced reactions on stable targets up to Si and on unstable nuclei of special significance in astrophysics. This work is meant to supersede the only existing compilation of reaction rates issued by Fowler and collaborators. The cross section data and/or resonance parameters for a total of 86 charged-particle induced reactions are given and the corresponding reaction rates are calculated and given in tabular form. When cross section data are not available in the whole needed range of energies the theoretical predictions obtained in the framework of the Hauser-Feshbach model are used. Uncertainties are analyzed and realistic upper and lower bounds of the rates are determined. Reverse reaction rates and analytical approximations of the adopted rates are also provided. (author)

  16. Charged-particle induced thermonuclear reaction rates: a compilation for astrophysics

    International Nuclear Information System (INIS)

    Grama, Cornelia; Angulo, C.; Arnould, M.

    2000-01-01

    The rapidly growing wealth of nuclear data becomes less and less easily accessible to the astrophysics community. Mastering this volume of information and making it available in an accurate and usable form for incorporation into stellar evolution or nucleosynthesis models become urgent goals of prime necessity. we report on the results of the European network NACRE (Nuclear Astrophysics Compilation of REaction rates). The principal motivation for the setting-up of the NACRE network has been the necessity of building up a well-documented and detailed compilation of rates for charged-particle induced reactions on stable targets up to Si and on unstable nuclei of special significance in astrophysics. This work is meant to supersede the only existing compilation of reaction rates issued by Fowler and collaborators. The cross section data and/or resonance parameters for a total of 86 charged-particle induced reactions are given and the corresponding reaction rates are calculated and given in tabular form. When cross section data are not available in the whole needed range of energies, the theoretical predictions obtained in the framework of the Hauser-Feshbach model is used. Uncertainties are analyzed and realistic upper and lower bounds of the rates are determined. Reverse reaction rates and analytical approximations of the adopted rates are also provided. (authors)

  17. Abstraction and exchange contributions to the rate constant of muonium + hydrogen chloride reaction

    International Nuclear Information System (INIS)

    Lagana, A.; Ciccarelli, L.

    1987-01-01

    Quantum collinear rate constants for the abstraction and the exchange channels of the Mu + HCl reaction have been calculated in order to have an estimate of the relative efficiency of the two processes in promoting reactivity for this system. (orig.)

  18. Abstraction and exchange contributions to the rate constant of muonium+hydrogen chloride reaction

    Science.gov (United States)

    Laganà, A.; Ciccarelli, L.

    1987-02-01

    Quantum collinear rate constants for the abstraction and the exchange channels of the Mu+HCl reaction have been calculated in order to have an estimate of the relative efficiency of the two processes in promoting reactivity for this system.

  19. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    Science.gov (United States)

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA

    2003-04-01

    The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.

  20. Nonequilibrium Contribution to the Rate of Reaction. III. Isothermal Multicomponent Systems

    Science.gov (United States)

    Shizgal, B.; Karplus, M.

    1970-10-01

    The nonequilibrium contribution to the reaction rate of an isothermal multicomponent system is obtained by solution of the appropriate Chapman-Enskog equation; the system is composed of reactive species in contact with a heat bath of inert atoms M.

  1. Reaction mechanisms and rate constants of waste degradation in landfill bioreactor systems with enzymatic-enhancement.

    Science.gov (United States)

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, S

    2014-06-01

    Augmenting leachate before recirculation with peroxidase enzymes is a novel method to increase the available carbon, and therefore the food supply to microorganisms at the declining phase of the anaerobic landfill bioreactor operation. In order to optimize the enzyme-catalyzed leachate recirculation process, it is necessary to identify the reaction mechanisms and determine rate constants. This paper presents a kinetic model developed to ascertain the reaction mechanisms and determine the rate constants for enzyme catalyzed anaerobic waste degradation. The maximum rate of reaction (Vmax) for MnP enzyme-catalyzed reactors was 0.076 g(TOC)/g(DS).day. The catalytic turnover number (k(cat)) of the MnP enzyme-catalyzed was 506.7 per day while the rate constant (k) of the un-catalyzed reaction was 0.012 per day. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Diffusion-controlled reaction rates for two active sites on a sphere.

    Science.gov (United States)

    Shoup, David E

    2014-01-01

    The diffusion-limited reaction rate of a uniform spherical reactant is generalized to anisotropic reactivity. Previous work has shown that the protein model of a uniform sphere is unsatisfactory in many cases. Competition of ligands binding to two active sites, on a spherical enzyme or cell is studied analytically. The reaction rate constant is given for two sites at opposite ends of the species of interest. This is compared with twice the reaction rate for a single site. It is found that the competition between sites lowers the reaction rate over what is expected for two sites individually. Competition between sites does not show up, until the site half angle is greater than 30 degrees. Competition between sites is negligible until the site size becomes large. The competitive effect grows as theta becomes large. The maximum effect is given for theta = pi/2.

  3. On the existence of and mechanism for microwave-specific reaction rate enhancement.

    Science.gov (United States)

    Dudley, Gregory B; Richert, Ranko; Stiegman, A E

    2015-04-01

    The use of microwave radiation to drive chemical reactions has become ubiquitous in almost all fields of chemistry. In all of these areas it is principally due to rapid and convenient heating resulting in significantly higher rates of reaction, with other advantages including enhanced product selectivity and control of materials properties. Although microwave heating continues to grow as an enabling technology, fundamental research into the nature of microwave heating has not grown at the same rate. In the case of chemical reactions run in homogeneous solution, particularly synthetic organic reactions, there is considerable controversy over the origins of rate enhancement, with a fundamental question being whether there exist microwave-specific effects, distinct from what can be attained under conventional convective heating, that can accelerate a reaction rate. In this Perspective, we discuss unique aspects of microwave heating of molecules in solution and discuss the origin and nature of microwave-specific effects arising from the process of "selective heating" of reactants in solution. Integral to this discussion is work from the field of dielectric relaxation spectroscopy, which provides a model for selective heating by Debye relaxation processes. The Perspective also includes a critical discussion of hypotheses of non-thermal effects (alternatively classified here as resonant processes) and an outline of specific reaction parameters for chemical systems in which microwave-specific Debye relaxation processes can result in observable reaction rate enhancement.

  4. Coloring Rate of Phenolphthalein by Reaction with Alkaline Solution Observed by Liquid-Droplet Collision.

    Science.gov (United States)

    Takano, Yuuka; Kikkawa, Shigenori; Suzuki, Tomoko; Kohno, Jun-ya

    2015-06-11

    Many important chemical reactions are induced by mixing two solutions. This paper presents a new way to measure rates of rapid chemical reactions induced by mixing two reactant solutions using a liquid-droplet collision. The coloring reaction of phenolphthalein (H2PP) by a reaction with NaOH is investigated kinetically. Liquid droplets of H2PP/ethanol and NaOH/H2O solutions are made to collide, which induces a reaction that transforms H2PP into a deprotonated form (PP(2-)). The concentration of PP(2-) is evaluated from the RGB values of pixels in the colored droplet images, and is measured as a function of the elapsed time from the collision. The obtained rate constant is (2.2 ± 0.7) × 10(3) M(-1) s(-1), which is the rate constant for the rate-determining step of the coloring reaction of H2PP. This method was shown to be applicable to determine rate constants of rapid chemical reactions between two solutions.

  5. Nuclear-reaction rates in the thermonuclear runaway phase of accreting neutron stars

    International Nuclear Information System (INIS)

    Wiescher, M.; Barnard, V.; Goerres, J.; Fisker, J.L.; Martinez-Pinedo, G.; Langanke, K.; Rembges, F.; Thielemann, F.K.; Schatz, H.

    2002-01-01

    The rp-process has been suggested as the dominant nucleosynthesis process in explosive hydrogen burning at high temperature and density conditions. The process is characterized by a sequence of fast proton capture reactions and subsequent β-decays. The reaction path of the rp-process runs along the drip line up to Z∼50. Most of the charged-particle reaction rates for the reaction path are presently based on statistical Hauser-Feshbach calculations. While these rates are supposed to be reliable within a factor of two for conditions of high density in the compound nuclei, discrepancies may occur for nuclei near closed shells or near the proton drip line where the Q-values of proton capture processes are typically very small. It has been argued that the thermonuclear runaway is less sensitive to the reaction rates because of the rapid time-scale of the event. However, since these processes may operate at the same time-scale as fast mixing and convection processes, a change in reaction rates indeed may have a significant impact. In this paper we present two examples, the break-out from the hot CNO cycles, and the thermonuclear runaway in X-ray bursts itself, where changes in reaction rates have a direct impact on time-scale, energy generation and nucleosynthesis predictions for the explosive event. (orig.)

  6. [Relationships among human follicular fluid-induced acrosome reaction, sperm morphology and in vitro fertilization rates].

    Science.gov (United States)

    Li, Jian-ping; Zhong, Ying; Wu, Dong; Ai, Ling; Wang, Sheng; Tan, Chao; Zeng, Wei-qian; Liu, Jing; Ma, Guang-ping

    2006-07-01

    To assess the relationships among human follicular fluid-induced acrosome reaction, sperm morphology and in vitro fertilization rates. The relationships among human follicular fluid-induced acrosome reaction, sperm morphology and in vitro fertilization rates were investigated by Spearman rank correlation in 79 infertile couples. And the sperm morphology analysis was performed by crystal violet staining and based on strict criteria. A significant positive correlation was found between the percentage of human follicular fluid-induced acrosome reaction and that of normal sperm morphology (n = 49, r = 0.3763, P reaction and in vitro fertilization rates or between that of normal sperm morphology and in vitro fertilization rates (n = 21, r = 0.2666, P > 0.05 and n = 50, r = 0.0018, P > 0.05, respectively). There is a significant positive correlation between the percentage of human follicular fluid-induced acrosome reaction and that of normal sperm morphology, but no such correlation either between the percentage of human follicular fluid-induced acrosome reaction and in vitro fertilization rates or between that of normal sperm morphology and in vitro fertilization rates.

  7. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Lindquist, W Brent

    2009-03-03

    The overall goal of the project was to bridge the gap between our knowledge of small-scale geochemical reaction rates and reaction rates meaningful for modeling transport at core scales. The working hypothesis was that reaction rates, determined from laboratory measurements based upon reactions typically conducted in well mixed batch reactors using pulverized reactive media may be significantly changed in in situ porous media flow due to rock microstructure heterogeneity. Specifically we hypothesized that, generally, reactive mineral surfaces are not uniformly accessible to reactive fluids due to the random deposition of mineral grains and to the variation in flow rates within a pore network. Expected bulk reaction rates would therefore have to be correctly up-scaled to reflect such heterogeneity. The specific objective was to develop a computational tool that integrates existing measurement capabilities with pore-scale network models of fluid flow and reactive transport. The existing measurement capabilities to be integrated consisted of (a) pore space morphology, (b) rock mineralogy, and (c) geochemical reaction rates. The objective was accomplished by: (1) characterizing sedimentary sandstone rock morphology using X-ray computed microtomography, (2) mapping rock mineralogy using back-scattered electron microscopy (BSE), X-ray dispersive spectroscopy (EDX) and CMT, (3) characterizing pore-accessible reactive mineral surface area, and (4) creating network models to model acidic CO{sub 2} saturated brine injection into the sandstone rock samples.

  8. Reevaluation of the O+(2P) reaction rate coefficients derived from atmosphere explorer C observations

    International Nuclear Information System (INIS)

    Chang, T.; Torr, D.G.; Richards, P.G.; Solomon, S.C.

    1993-01-01

    O + ( 2 P) is an important species for studies of the ionosphere and thermosphere: its emission at 7320 angstrom can be used as a diagnostic of the thermospheric atomic oxygen density. Unfortunately, there are no laboratory measurements of the O and N 2 reaction rates which are needed to determine the major sinks of O + ( 2 P). The reaction rates that are generally used were determined from aeronomic data by Rusch et al. but there is evidence that several important inputs that they used should be changed. The authors have recalculated the O and N 2 reaction rates for O + ( 2 P) using recent improvements in the solar EUV flux, cross sections, and photoelectron fluxes. For the standard solar EUV flux, the new N 2 reaction rate of 3.4 ± 1.5 x 10 -10 cm 3 s -1 is close to the value obtained by Rusch et al., but the new O reaction rate of 4.0 ± 1.9 x 10 -10 cm 3 s -1 is about 8 times larger. These new reaction rates are derived using neutral densities, electron density, and solar EUV fluxes measured by Atmosphere Explorer C in 1974 during solar minimum. The new theoretical emission rates are in good agreement with the data for the two orbits studied by Rusch et al. and they are in reasonable agreement with data from five additional orbits that are used in this study. The authors have also examined the effect of uncertainties in the solar EUV flux on the derived reaction rates and found that 15% uncertainties in the solar flux could cause additional uncertainties of up to a factor of 1.5 in the O quenching rate. 19 refs., 4 figs., 8 tabs

  9. Reaction Rates Of Olivine Carbonation - An Experimental Study Using Synthetic Fluid Inclusions As Micro-Reactors

    Science.gov (United States)

    Sendula, E.; Lamadrid, H. M.; Bodnar, R. J.

    2017-12-01

    Ultramafic and mafic rocks (e.g. peridotites, serpentinites and basalts) are being considered as possible targets for CO2 sequestration via mineral carbonation. The determination of reaction kinetics and the factors that control mineralization are important in order to understand and predict fluid-rock reactions between the injected CO2 and the host rocks. Here we present results of experiments focused on determining the reaction rates of carbonation of olivine as a function of initial CO2 concentration (20 mol% and 11 mol%) in the aqueous solution and temperature (100°C and 50°C). We used a recently developed experimental method (Lamadrid et al., 2017) that uses synthetic fluid inclusions as micro-reactors. The micro-reactor technique coupled with non-destructive Raman spectroscopy allows us to monitor the reaction progress in situ and in real time, by quantifying the amount of CO2 consumed in the reaction as a function of time. Results show a measurable decrease of CO2 density in the fluid inclusions as a result of the reaction between the CO2-bearing aqueous phase and olivine. Magnesite formation begins within several hours at 100°C and most of the CO2 was consumed within two days. At 50°C, however, magnesite nucleation and precipitation required weeks to months to begin, and the reaction rates were about an order of magnitude slower than in the experiments at 100°C. No significant differences were observed in the reaction rates as a function of initial CO2 concentration. The application of the synthetic fluid inclusion technique as micro-reactors coupled with non-destructive analytical techniques is a promising tool to monitor rates of fluid-rock reactions in situ and in real time, allowing detailed micron-scale investigations. The technique can be applied to a wide variety of chemical systems, host minerals, reaction products, fluid densities, temperatures, and different starting fluid compositions.

  10. Helium generation reaction rates for 6Li and 10B in benchmark facilities

    International Nuclear Information System (INIS)

    Farrar, Harry IV; Oliver, B.M.; Lippincott, E.P.

    1980-01-01

    The helium generation rates for 10 B and 6 Li have been measured in two benchmark reactor facilities having neutron spectra similar to those found in a breeder reactor. The irradiations took place in the Coupled Fast Reactivity Measurements Facility (CFRMF) and in the 10% enriched 235 U critical assembly, BIG-10. The helium reaction rates were obtained by precise high-sensitivity gas mass spectrometric analyses of the helium content of numerous small samples. Comparison of these reaction rates with other reaction rates measured in the same facilities, and with rates calculated from published cross sections and from best estimates of the neutron spectral shapes, indicate significant discrepancies in the calculated values. Additional irradiations in other benchmark facilities have been undertaken to better determine the energy ranges where the discrepancies lie

  11. Reaction rates of ozone and terpenes adsorbed to model indoor surfaces.

    Science.gov (United States)

    Springs, M; Wells, J R; Morrison, G C

    2011-08-01

    Reaction rates and reaction probabilities have been quantified on model indoor surfaces for the reaction of ozone with two monoterpenes (Δ(3) -carene and d-limonene). Molar surface loadings were obtained by performing breakthrough experiments in a plug-flow reactor (PFR) packed with beads of glass, polyvinylchloride or zirconium silicate. Reaction rates and probabilities were determined by equilibrating the PFR with both the terpene and the ozone and measuring the ozone consumption rate. To mimic typical indoor conditions, temperatures of 20, 25, and 30°C were used in both types of experiments along with a relative humidity ranging from 10% to 80%. The molar surface loading decreased with increased relative humidity, especially on glass, suggesting that water competed with the terpenes for adsorption sites. The ozone reactivity experiments indicate that higher surface loadings correspond with higher ozone uptake. The reaction probability for Δ(3) -carene with ozone ranged from 2.9 × 10(-6) to 3.0 × 10(-5) while reaction probabilities for d-limonene ranged from 2.8 × 10(-5) to 3.0 × 10(-4) . These surface reaction probabilities are roughly 10-100 times greater than the corresponding gas-phase values. Extrapolation of these results to typical indoor conditions suggests that surface conversion rates may be substantial relative to gas-phase rates, especially for lower volatility terpenoids. At present, it is unclear how important heterogeneous reactions will be in influencing indoor concentrations of terpenes, ozone and their reaction products. We observe that surface reaction probabilities were 10 to 100 times greater than their corresponding gas-phase values. Thus indoor surfaces do enhance effective reaction rates and adsorption of terpenes will increase ozone flux to otherwise low-reactivity surfaces. Extrapolation of these results to typical indoor conditions suggests that surface conversion rates may be substantial relative to gas-phase rates, especially

  12. Reaction rate and energy-loss rate for photopair production by relativistic nuclei

    Science.gov (United States)

    Chodorowski, Michal J.; Zdziarski, Andrzej A.; Sikora, Marek

    1992-01-01

    The process of e(+/-) pair production by relativistic nuclei on ambient photons is considered. The process is important for cosmic-ray nuclei in interstellar and intergalactic space as well as in galactic and extragalactic compact objects. The rate of this process is given by an integral of the cross section over the photon angular and energy distribution. In the case of isotropic photons, the angular integration is performed to provide an expression for the rate at given photon energy in the nucleus rest frame. The total rate then becomes a single integral of that rate over the photon energy distribution. Formulas are also given for the fractional energy loss of a relativistic nucleus colliding with a photon of a given energy in the rest frame. The nucleus energy-loss rate is integrated over the photon angular distribution in the case of isotropic photons, and simple fits are provided.

  13. Cross sections and reaction rates of d+{sup 8}Li reactions involved in Big Bang nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Balbes, M.J. [Ohio State Univ., Columbus, OH (United States). Dept. of Physics; Farrell, M.M. [Ohio State Univ., Columbus, OH (United States). Dept. of Physics; Boyd, R.N. [Ohio State Univ., Columbus, OH (United States). Dept. of Physics]|[Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); Gu, X. [Ohio State Univ., Columbus, OH (United States). Dept. of Physics; Hencheck, M. [Ohio State Univ., Columbus, OH (United States). Dept. of Physics; Kalen, J.D. [Ohio State Univ., Columbus, OH (United States). Dept. of Physics; Mitchell, C.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Physics; Kolata, J.J. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Lamkin, K. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Smith, R. [Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104 (United States); Tighe, R. [Lawrence Berkeley Laboratory, Berkeley, CA 94720 (United States); Ashktorab, K. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Becchetti, F.D. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Brown, J. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Roberts, D. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Wang, T.F. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Humphrey, D. [Department of Physics, University of Western Kentucky, Bowling Green, KY 42101 (United States); Vourvopoulos, G. [Department of Physics, University of Western Kentucky, Bowling Green, KY 42101 (United States); Islam, M.S. [Department of Physics, Ball State University, Muncie, IN 47306 (United States)

    1995-02-20

    We have measured angular distributions of the {sup 2}H({sup 8}Li, {sup 7}Li){sup 3}H and {sup 2}H({sup 8}Li, {sup 9}Be)n reactions at E{sub c.m.}=1.5 to 2.8 MeV using an {sup 8}Li-radioactive-beam technique. Astrophysical S-factors and reaction rates were calculated from the measured cross sections. Although the {sup 2}H({sup 8}Li, {sup 9}Be)n cross section is small, it can contribute to {sup 9}Be synthesis. The {sup 2}H({sup 8}Li, {sup 7}Li){sup 3}H reaction has a sufficiently large cross section to destroy {sup 8}Li, which may decrease the synthesis of heavier elements. No products from the {sup 2}H({sup 8}Li, {sup 9}Li)p reaction were detected. We also present the results of calculations using the inhomogeneous model of primordial nucleosynthesis in several regions of parameter space. ((orig.))

  14. Astrophysical reaction rate for α(αn,γ)9Be by photodisintegration

    International Nuclear Information System (INIS)

    Sumiyoshi, K.; Utsunomiya, H.; Goko, S.; Kajino, T.

    2002-01-01

    We study the astrophysical reaction rate for the formation of 9 Be through the three body reaction α(αn,γ). This reaction is one of the key reactions which could bridge the mass gap at A=8 nuclear systems to produce intermediate-to-heavy mass elements in alpha- and neutron-rich environments such as r-process nucleosynthesis in supernova explosions, s-process nucleosynthesis in asymptotic giant branch (AGB) stars, and primordial nucleosynthesis in baryon inhomogeneous cosmological models. To calculate the thermonuclear reaction rate in a wide range of temperatures, we numerically integrate the thermal average of cross sections assuming a two-steps formation through a metastable 8 Be, α+α[rlhar2] 8 Be(n,γ) 9 Be. Off-resonant and on-resonant contributions from the ground state in 8 Be are taken into account. As input cross section, we adopt the latest experimental data by photodisintegration of 9 Be with laser-electron photon beams, which covers all relevant resonances in 9 Be. Experimental data near the neutron threshold are added with γ-ray flux corrections and a new least-squares analysis is made to deduce resonance parameters in the Breit-Wigner formulation. Based on the photodisintegration cross section, we provide the reaction rate for α(αn,γ) 9 Be in the temperature range from T 9 =10 -3 to T 9 =10 1 (T 9 is the temperature in units of 10 9 K) both in the tabular form and in the analytical form for potential usage in nuclear reaction network calculations. The calculated reaction rate is compared with the reaction rates of the CF88 and the NACRE compilations. The CF88 rate, which is based on the photoneutron cross section for the 1/2 + state in 9 Be by Berman et al., is valid at T 9 >0.028 due to lack of the off-resonant contribution. The CF88 rate differs from the present rate by a factor of two in a temperature range T 9 ≥0.1. The NACRE rate, which adopted different sources of experimental information on resonance states in 9 Be, is 4-12 times

  15. Low rate of cetuximab hypersensitivity reactions in Northeast Tennessee: An Appalachian effect?

    Science.gov (United States)

    Adams, C Brooke; Street, D Sierra; Crass, Melanie; Bossaer, John B

    2016-12-01

    Cetuximab is a monoclonal antibody with a known risk of hypersensitivity reactions. Early studies showed hypersensitivity reaction rates of 3%, but there appears to be a higher incidence in the southeastern United States. To confirm the findings from nearby institutions that cetuximab-associated hypersensitivity reactions occur in approximately 20% of patients in the southeastern United States. A retrospective chart review was conducted at Johnson City Medical Center in Johnson City, Tennessee. Each patient's first infusion was analyzed for hypersensitivity reaction, as well as for demographic information such as allergy and smoking history, pre-medications, and malignancy type. Data from the first infusion of cetuximab were collected for a total of 71 patients with various malignancies. The overall rate of grade 3 or higher hypersensitivity reaction was 1.4%, and total rate of hypersensitivity reaction was 8.5%. These findings more closely correlate to the early clinical trials and package insert. Both severe (p = 0.001) and any-grade (p = 0.002) hypersensitivity reaction occurred less frequently in one Southeastern Appalachian medical center compared to academic medical centers directly to the east and west. Patients in southern Appalachia may be less likely to develop cetuximab hypersensitivity reactions compared to surrounding areas in the Southeastern U.S. These results lend support to the theory that exposure to lonestar ticks (Amblyomma americanum) may be responsible for the development of IgE antibodies to cetuximab that cause hypersensitivity reactions. The development of quick and reliable bedside predictors of cetuximab hypersensitivity reactions may aid clinicians considering the use of cetuximab. © The Author(s) 2015.

  16. REACLIB: A Reaction Rate Library for the Era of Collaborative Science

    Science.gov (United States)

    Meisel, Zachary

    2008-10-01

    Thermonuclear reaction rates and weak decay rates are of great importance to modern nuclear astrophysics. They are critical in the study of many topics such as Big Bang Nucleosynthesis, X-ray bursts, Supernovae, and S-process element formation, among others. The Joint Institute for Nuclear Astrophysics (JINA) has been created to increase connectivity amongst nuclear astrophysicists in our modern age of highly collaborative science. Within JINA there has been an effort to create a frequently updated and readily accessible database of thermonuclear reactions and weak decay rates. This database is the REACLIB library, which can be accessed at the web address: http://www.nscl.msu.edu/˜nero/db/. Here I will discuss the JINA REACLIB Project, including a new procedure to fit reaction rates as a function of temperature that takes full advantage of physicality. With these updated reaction rates, astrophysical modelers will no longer have to worry about the adverse effects of using obsolete reaction rate libraries lacking physical behavior.

  17. Reevaluation of the O(+)(2P) reaction rate coefficients derived from Atmosphere Explorer C observations

    Science.gov (United States)

    Chang, T.; Torr, D. G.; Richards, P. G.; Solomon, S. C.

    1993-01-01

    O(+)(2P) is an important species for studies of the ionosphere and thermosphere: its emission at 7320 A can be used as a diagnostic of the thermospheric atomic oxygen density. Unfortunately, there are no laboratory measurements of the O and N2 reaction rates which are needed to determine the major sinks of (O+)(2p). We have recalculated the O and N2 reaction rates for O(+) (2P) using recent improvements in the solar EUV flux, cross sections, and photoelectron fluxes. For the standard solar EUV flux, the new N2 reaction rate of 3.4 +/- 1.5 x 10 exp -10 cu cm/s is close to the value obtained by Rusch et al. (1977), but the new O reaction rate of 4.0 +/- 1.9 x 10 exp -10 cu cm/sec is about 8 times larger. These new reaction rates are derived using neutral densities, electron density, and solar EUV fluxes measured by Atmosphere Explorer C in 1974 during solar minimum. The new theoretical emission rates are in good agreement with the data for the two orbits studied by Rusch et al.

  18. Determination of the enzyme reaction rate in a differential fixed-bed reactor: a case study

    Directory of Open Access Journals (Sweden)

    Baruque Filho E.A.

    2001-01-01

    Full Text Available The reaction rate of starch hydrolysis catalyzed by a glucoamylase covalently bound to chitin particles was measured in a Differential Fixed-Bed Reactor (DFBR. Under selected test conditions the initial reaction rate may represent biocatalyst activity. Some aspects which influence measurement of the initial reaction rate of an immobilized enzyme were studied: the amount of desorbed enzyme and its hydrolytic activity, the extent of pore blockage of the biocatalyst caused by substrate solution impurities and the internal and external diffusional mass transfer effects. The results showed that the enzyme glucoamylase was firmly bound to the support, as indicated by the very low amount of desorbed protein found in the recirculating liquid. Although this protein was very active, its contribution to the overall reaction rate was negligible. It was observed that the biocatalyst pores were susceptible to being blocked by the impurities of the starch solution. This latter effect was accumulative, increasing with the number of sequential experiments carried out. When the substrate solution was filtered before use, very reliable determinations of immobilized enzyme reaction rates could be performed in the DFBR. External and internal diffusional resistences usually play a significant role in fixed-bed reactors. However, for the experimental system studied, internal mass transfer effects were not significant, and it was possible to select an operational condition (recirculation flow rate value that minimized the external diffusional limitations.

  19. [Incidence rate of adverse reaction/event by Qingkailing injection: a Meta-analysis of single rate].

    Science.gov (United States)

    Ai, Chun-ling; Xie, Yan-ming; Li, Ming-quan; Wang, Lian-xin; Liao, Xing

    2015-12-01

    To systematically review the incidence rate of adverse drug reaction/event by Qingkailing injection. Such databases as the PubMed, EMbase, the Cochrane library, CNKI, VIP WanFang data and CBM were searched by computer from foundation to July 30, 2015. Two reviewers independently screened literature according to the inclusion and exclusion criteria, extracted data and cross check data. Then, Meta-analysis was performed by using the R 3.2.0 software, subgroup sensitivity analysis was performed based on age, mode of medicine, observation time and research quality. Sixty-three studies involving 9,793 patients with Qingkailing injection were included, 367 cases of adverse reactions/events were reported in total. The incidence rate of adverse reaction in skin and mucosa group was 2% [95% CI (0.02; 0.03)]; the digestive system adverse reaction was 6% [95% CI(0.05; 0.07); the injection site adverse reaction was 4% [95% CI (0.02; 0.07)]. In the digestive system as the main types of adverse reactions/events, incidence of children and adults were 4.6% [0.021 1; 0.097 7] and 6.9% [0.053 5; 0.089 8], respectively. Adverse reactions to skin and mucous membrane damage as the main performance/event type, the observation time > 7 days and ≤ 7 days incidence of 3% [0.012 9; 0.068 3] and 1.9% [0.007 8; 0.046 1], respectively. Subgroup analysis showed that different types of adverse reactions, combination in the incidence of adverse reactions/events were higher than that of single drug, the difference was statistically significant (P reactions occur, and clinical rational drug use, such as combination, age and other fators, and the influence factors vary in different populations. Therefore, clinical doctors for children and the elderly use special care was required for a clear and open spirit injection, the implementation of individualized medication.

  20. Rate constant and reaction coordinate of Trp-cage folding in explicit water

    NARCIS (Netherlands)

    Juraszek, J.; Bolhuis, P.G.

    2008-01-01

    We report rate constant calculations and a reaction coordinate analysis of the rate-limiting folding and unfolding process of the Trp-cage mini-protein in explicit solvent using transition interface sampling. Previous transition path sampling simulations revealed that in this (un)folding process the

  1. Rate constants for the reaction of OH radicals with 1-chloroalkanes at 295 K

    DEFF Research Database (Denmark)

    Markert, F.; Nielsen, O.J.

    1992-01-01

    The rate constants for the reaction of OH radicals with a series of 1-chloroalkanes were measured at 295 K and at a total pressure of 1 atm. The rate constants were obtained by using the absolute technique of pulse radiolysis combined with kinetic UV-spectroscopy. The results are discussed in terms...

  2. Reaction rates of Criegee intermediates with water vapor and hydrogen sulfide

    Science.gov (United States)

    Smith, M. C.; Boering, K. A.

    2016-12-01

    Criegee intermediates are byproducts of the reaction of alkenes with ozone. Bimolecular reactions of Criegee intermediates can lead to the production of low-volatility organic compounds and acids in the atmosphere, which in turn play a role in determining the concentration, size, and optical properties of aerosols. Recently, a novel method for producing measurable quantities of stabilized Criegee intermediates in the laboratory paved the way for the development of new experimental techniques to study their chemical properties and predict their importance in the atmosphere. Our lab uses transient UV absorption spectroscopy to measure the formation and decay of Criegee intermediates in a flow cell, using 8-pass absorption of a bright plasma light source combined with sensitive balanced photodiode detection. Here we measured the transient absorption of CH2OO and obtained rate coefficients for its reaction with water dimer from 283 to 324 K. The fast reaction of CH2OO with water dimer is thought to dominate CH2OO removal in the atmosphere, but reaction rates can vary considerably under different conditions of temperature, humidity, and pressure. The rate of the reaction of CH2OO with water dimer was found to exhibit a strong negative temperature dependence. Due to the strong temperature dependence, and shifting competition between water dimer and water monomer (which has a positive temperature dependence), the effective loss rate of CH2OO by reaction with water vapor is highly sensitive to atmospheric conditions. We also present the first measurements of the reaction rate between CH2OO and hydrogen sulfide, which is analogous to the water molecule and may have significance in areas with volcanic activity.

  3. Rate Constant Change of Photo Reaction of Bacteriorhodopsin Observed in Trimeric Molecular System.

    Science.gov (United States)

    Tsujiuchi, Yutaka; Masumoto, Hiroshi; Goto, Takashi

    2016-04-01

    To elucidate the time evolution of photo reaction of bacteriorhodopsin in glycerol mixed purple membrane at around 196 K under irradiation by red light, a kinetic model was constructed. The change of absorption with irradiation at times of 560 nm and 412 nm was analyzed for the purpose of determining reaction rates of photo reaction of bacteriorhodopsin and its product M intermediate. In this study it is shown that reaction rates of conversion from bacteriorhodopsin to the M intermediate can be explained by a set of linear differential equations. This model analysis concludes that bacteriorhodopsin in which constitutes a trimer unit with other two bacteriorhodopsin molecules changes into M intermediates in the 1.73 of reaction rate, in the initial step, and according to the number of M intermediate in a trimer unit, from three to one, the reaction rate of bacteriorhodopsin into M intermediates smaller as 1.73, 0.80, 0.19 which caused by influence of inter-molecular interaction between bacteriorhodopsin.

  4. How does substitution affect the unimolecular reaction rates of Criegee intermediates?

    Science.gov (United States)

    Yin, Cangtao; Takahashi, Kaito

    2017-05-17

    To gain an understanding of the substitution effect on the unimolecular reaction rate coefficients for Criegee intermediates (CIs), we performed ab initio calculations for CH 2 OO, CH 3 CHOO, (CH 3 ) 2 COO, CH 3 CH 2 CHOO, CH 2 CHCHOO and CHCCHOO. The energies of the CIs, products and transition states were calculated with QCISD(T)/CBS//B3LYP/6-311+G(2d,2p), while the rate coefficients were calculated with anharmonic vibrational correction by using second order vibrational perturbation theory. It was found that for single bonded substitutions, the hydrogen transfer reaction dominates for the syn-conformers, while the OO bending reaction dominates for the anti-conformers. However once a double bond or a triple bond is added, the OO bending reaction dominates for both syn and anti-conformers. The rate coefficients for OO bending reaction show a significant increase when adding a methyl group or ethyl group. On the other hand, the addition of unsaturated vinyl and acetylene groups usually results in a slower thermal decomposition compared to the substitution with saturated carbon groups. Interestingly, for syn_Syn-CH 2 CHCHOO, a special five member ring closure reaction forming dioxole was calculated to have an extremely fast rate coefficient of 9312 s -1 at room temperature.

  5. Rate Coefficient Measurements of the Reaction CH3 + O2 = CH3O + O

    Science.gov (United States)

    Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.

    1999-01-01

    Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, sub -0.47 ) x 10(exp 13) e(-15813 +/- 587 K/T)/cubic cm.mol.s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.

  6. Rate Coefficient Measurements of the Reaction CH3+O2+CH3O+O

    Science.gov (United States)

    Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.

    1999-01-01

    Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, -0.47)) X 10(exp 13) exp(- 15813 +/- 587 K/T)cc/mol s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.

  7. Chemical Reaction Rate Coefficients from Ring Polymer Molecular Dynamics: Theory and Practical Applications.

    Science.gov (United States)

    Suleimanov, Yury V; Aoiz, F Javier; Guo, Hua

    2016-11-03

    This Feature Article presents an overview of the current status of ring polymer molecular dynamics (RPMD) rate theory. We first analyze the RPMD approach and its connection to quantum transition-state theory. We then focus on its practical applications to prototypical chemical reactions in the gas phase, which demonstrate how accurate and reliable RPMD is for calculating thermal chemical reaction rate coefficients in multifarious cases. This review serves as an important checkpoint in RPMD rate theory development, which shows that RPMD is shifting from being just one of recent novel ideas to a well-established and validated alternative to conventional techniques for calculating thermal chemical rate coefficients. We also hope it will motivate further applications of RPMD to various chemical reactions.

  8. Calculation of astrophysical S-factor and reaction rate in 12C(p, γ)13N reaction

    Science.gov (United States)

    Moghadasi, A.; Sadeghi, H.; Pourimani, R.

    2018-02-01

    The 12C(p, γ)13N reaction is the first process in the CNO cycle. Also it is a source of low-energy solar neutrinos in various neutrino experiments. Therefore, it is of high interest to gain data of the astrophysical S-factor in low energies. By applying Faddeev's method, we calculated wave functions for the bound state of 13N. Then the cross sections for resonance and non-resonance were calculated through using Breit-Wigner and direct capture cross section formulae, respectively. After that, we calculated the total S-factor and compared it with previous experimental data, revealing a good agreement altogether. Then, we extrapolated the S-factor in zero energy and the result was 1.32 ± 0.19 (keV.b). In the end, we calculated reaction rate and compared it with NACRE data.

  9. A variable reaction rate model for chlorine decay in drinking water due to the reaction with dissolved organic matter.

    Science.gov (United States)

    Hua, Pei; Vasyukova, Ekaterina; Uhl, Wolfgang

    2015-05-15

    A second order kinetic model for simulating chlorine decay in bulk water due to the reaction with dissolved organic matter (DOM) was developed. It takes into account the decreasing reactivity of dissolved organic matter using a variable reaction rate coefficient (VRRC) which decreases with an increasing conversion. The concentration of reducing species is surrogated by the maximum chlorine demand. Temperature dependency, respectively, is described by the Arrhenius-relationship. The accuracy and adequacy of the proposed model to describe chlorine decay in bulk water were evaluated and shown for very different waters and different conditions such as water mixing or rechlorination by applying statistical tests. It is thus very well suited for application in water quality modeling for distribution systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Analyzing Reaction Rates with the Distortion/Interaction‐Activation Strain Model

    Science.gov (United States)

    2017-01-01

    Abstract The activation strain or distortion/interaction model is a tool to analyze activation barriers that determine reaction rates. For bimolecular reactions, the activation energies are the sum of the energies to distort the reactants into geometries they have in transition states plus the interaction energies between the two distorted molecules. The energy required to distort the molecules is called the activation strain or distortion energy. This energy is the principal contributor to the activation barrier. The transition state occurs when this activation strain is overcome by the stabilizing interaction energy. Following the changes in these energies along the reaction coordinate gives insights into the factors controlling reactivity. This model has been applied to reactions of all types in both organic and inorganic chemistry, including substitutions and eliminations, cycloadditions, and several types of organometallic reactions. PMID:28447369

  11. Analyzing Reaction Rates with the Distortion/Interaction-Activation Strain Model.

    Science.gov (United States)

    Bickelhaupt, F Matthias; Houk, Kendall N

    2017-08-14

    The activation strain or distortion/interaction model is a tool to analyze activation barriers that determine reaction rates. For bimolecular reactions, the activation energies are the sum of the energies to distort the reactants into geometries they have in transition states plus the interaction energies between the two distorted molecules. The energy required to distort the molecules is called the activation strain or distortion energy. This energy is the principal contributor to the activation barrier. The transition state occurs when this activation strain is overcome by the stabilizing interaction energy. Following the changes in these energies along the reaction coordinate gives insights into the factors controlling reactivity. This model has been applied to reactions of all types in both organic and inorganic chemistry, including substitutions and eliminations, cycloadditions, and several types of organometallic reactions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  12. The rate of the reaction between CN and C2H2 at interstellar temperatures

    Science.gov (United States)

    Woon, D. E.; Herbst, E.

    1997-01-01

    The rate coefficient for the important interstellar reaction between CN and C2H2 has been calculated as a function of temperature between 10 and 300 K. The potential surface for this reaction has been determined through ab initio quantum chemical techniques; the potential exhibits no barrier in the entrance channel but does show a small exit channel barrier, which lies below the energy of reactants. Phase-space calculations for the reaction dynamics, which take the exit channel barrier into account, show the same unusual temperature dependence as determined by experiment, in which the rate coefficient at first increases as the temperature is reduced below room temperature and then starts to decrease as the temperature drops below 50-100 K. The agreement between theory and experiment provides strong confirmation that the reaction occurs appreciably at cool interstellar temperatures.

  13. Effective reaction rates in diffusion-limited phosphorylation-dephosphorylation cycles.

    Science.gov (United States)

    Szymańska, Paulina; Kochańczyk, Marek; Miękisz, Jacek; Lipniacki, Tomasz

    2015-02-01

    We investigate the kinetics of the ubiquitous phosphorylation-dephosphorylation cycle on biological membranes by means of kinetic Monte Carlo simulations on the triangular lattice. We establish the dependence of effective macroscopic reaction rate coefficients as well as the steady-state phosphorylated substrate fraction on the diffusion coefficient and concentrations of opposing enzymes: kinases and phosphatases. In the limits of zero and infinite diffusion, the numerical results agree with analytical predictions; these two limits give the lower and the upper bound for the macroscopic rate coefficients, respectively. In the zero-diffusion limit, which is important in the analysis of dense systems, phosphorylation and dephosphorylation reactions can convert only these substrates which remain in contact with opposing enzymes. In the most studied regime of nonzero but small diffusion, a contribution linearly proportional to the diffusion coefficient appears in the reaction rate. In this regime, the presence of opposing enzymes creates inhomogeneities in the (de)phosphorylated substrate distributions: The spatial correlation function shows that enzymes are surrounded by clouds of converted substrates. This effect becomes important at low enzyme concentrations, substantially lowering effective reaction rates. Effective reaction rates decrease with decreasing diffusion and this dependence is more pronounced for the less-abundant enzyme. Consequently, the steady-state fraction of phosphorylated substrates can increase or decrease with diffusion, depending on relative concentrations of both enzymes. Additionally, steady states are controlled by molecular crowders which, mostly by lowering the effective diffusion of reactants, favor the more abundant enzyme.

  14. Effective reaction rates in diffusion-limited phosphorylation-dephosphorylation cycles

    Science.gov (United States)

    Szymańska, Paulina; Kochańczyk, Marek; Miekisz, Jacek; Lipniacki, Tomasz

    2015-02-01

    We investigate the kinetics of the ubiquitous phosphorylation-dephosphorylation cycle on biological membranes by means of kinetic Monte Carlo simulations on the triangular lattice. We establish the dependence of effective macroscopic reaction rate coefficients as well as the steady-state phosphorylated substrate fraction on the diffusion coefficient and concentrations of opposing enzymes: kinases and phosphatases. In the limits of zero and infinite diffusion, the numerical results agree with analytical predictions; these two limits give the lower and the upper bound for the macroscopic rate coefficients, respectively. In the zero-diffusion limit, which is important in the analysis of dense systems, phosphorylation and dephosphorylation reactions can convert only these substrates which remain in contact with opposing enzymes. In the most studied regime of nonzero but small diffusion, a contribution linearly proportional to the diffusion coefficient appears in the reaction rate. In this regime, the presence of opposing enzymes creates inhomogeneities in the (de)phosphorylated substrate distributions: The spatial correlation function shows that enzymes are surrounded by clouds of converted substrates. This effect becomes important at low enzyme concentrations, substantially lowering effective reaction rates. Effective reaction rates decrease with decreasing diffusion and this dependence is more pronounced for the less-abundant enzyme. Consequently, the steady-state fraction of phosphorylated substrates can increase or decrease with diffusion, depending on relative concentrations of both enzymes. Additionally, steady states are controlled by molecular crowders which, mostly by lowering the effective diffusion of reactants, favor the more abundant enzyme.

  15. Mean field ring polymer molecular dynamics for electronically nonadiabatic reaction rates.

    Science.gov (United States)

    Duke, Jessica Ryan; Ananth, Nandini

    2016-12-22

    We present a mean field ring polymer molecular dynamics method to calculate the rate of electron transfer (ET) in multi-state, multi-electron condensed-phase processes. Our approach involves calculating a transition state theory (TST) estimate to the rate using an exact path integral in discrete electronic states and continuous Cartesian nuclear coordinates. A dynamic recrossing correction to the TST rate is then obtained from real-time dynamics simulations using mean field ring polymer molecular dynamics. We employ two different reaction coordinates in our simulations and show that, despite the use of mean field dynamics, the use of an accurate dividing surface to compute TST rates allows us to achieve remarkable agreement with Fermi's golden rule rates for nonadiabatic ET in the normal regime of Marcus theory. Further, we show that using a reaction coordinate based on electronic state populations allows us to capture the turnover in rates for ET in the Marcus inverted regime.

  16. Hydrogen abstraction mechanisms and reaction rates of toluene+NO3.

    Science.gov (United States)

    Ma, Yongmei; Su, Kehe; Zhang, Jin; Wang, Yanli; Wang, Xin; Liu, Yan

    2015-08-01

    The hydrogen abstraction reaction mechanisms of toluene molecule by NO3 radical were investigated theoretically with quantum chemistry and reaction kinetics. All the molecular structures, vibrational properties, and the intrinsic reaction coordinates were determined with B3LYP/6-311G(d,p). The non-dynamic electronic correlations were examined with the CASSCF dominant configurations. The energies and the potential energy profiles were refined with accurate model chemistry G3(MP2). Rate constants were determined using the CVT method over the temperature range 200-2000 K. It was found that in addition to the side chain H-abstraction, the ring H-abstraction reactions are also possible. The side chain H-abstraction rate constant is in very good agreement with the available experiments and has a non-Arrhenius characteristic. Nevertheless, all the ring H-abstractions follow the Arrhenius behavior well. The over-all reaction was found to have a complex reaction mechanism in which the side chain H-abstraction is dominant below 700 K while the ring H-abstractions are competitive above 800 K. The approximate apparent activation energies E app are 15.5 and 66.4 kJ mol(-1) at 300-700 K and 800-2000 K, respectively. Graphical Abstract The calculation of the reaction rate indicates that the over-all reaction has a complex mechanism. The reaction proceeds mainly by the side chain H-abstraction at temperatures lower than 700 K and is nearly irreversible, while the competition of the ring H-abstractions becomes observable at higher temperatures and is reversible.

  17. An investigation of the reaction kinetics of luciferase and the effect of ionizing radiation on the reaction rate.

    Science.gov (United States)

    Berovic, Nikolas; Parker, David J; Smith, Michael D

    2009-04-01

    The bioluminescence produced by luciferase, a firefly enzyme, requires three substrates: luciferin, ATP and oxygen. We find that ionizing radiation, in the form of a proton beam from a cyclotron, will eliminate dissolved oxygen prior to any damage to other substrates or to the protein. The dose constant for removal of oxygen is 70 +/- 20 Gy, a much smaller dose than required to cause damage to protein. Removal of oxygen, which is initially in excess, leads to a sigmoidal response of bioluminescence to radiation dose, consistent with a Michaelis-Menten relationship to substrate concentration. When excess oxygen is exhausted, the response becomes exponential. Following the irradiation, bioluminescence recovers due to a slow leak of oxygen into the solution. This may also explain previous observations on the response of bioluminescent bacteria to radiation. We have studied the dependence of the reaction rate on enzyme and substrate concentration and propose a model for the reaction pathway consistent with this data. The light output from unirradiated samples decreases significantly with time due to product inhibition. We observe that this inhibition rate changes dramatically immediately after a sample is exposed to the beam. This sudden change of the inhibition rate is unexplained but shows that enzyme regulatory function responds to ionizing radiation at a dose level less than 0.6 Gy.

  18. Measurement of reaction rates of interest in stellar structure and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Terrasi, F.; D`Onofrio, A. [Dipt. di Scienze Ambientali, Seconda Univ. di Napoli, Caserta (Italy)]|[INFN, Napoli (Italy); Campajola, L.; Imbriani, G. [INFN, Napoli (Italy)]|[Dipt. di Scienze Fisiche, Univ. Federico II, Napoli (Italy); Gialanella, L. [INFN, Napoli (Italy)]|[Dipt. di Scienze Fisiche, Univ. Federico II, Napoli (Italy)]|[Inst. fuer Experimentalphysik III, Ruhr-Univ. Bochum, Bochum (Germany); Greife, U.; Rolfs, C.; Strieder, F.; Trautvetter, H.P. [Inst. fuer Experimentalphysik III, Ruhr-Univ. Bochum, Bochum (Germany); Roca, V.; Romano, M. [INFN, Napoli (Italy)]|[Dipt. di Scienze Fisiche, Univ. Federico II, Napoli (Italy); Straniero, O. [Osservatorio Astronomico di Collurania, Teramo (Italy)

    1998-06-01

    Accurate determinations of reaction rates at astrophysical energies are very important in stellar structure and evolution studies. The cases of two key reactions, namely {sup 7}Be(p,{gamma}){sup 8}B and {sup 12}C({alpha},{gamma}){sup 16}O are discussed, both from the point of view of their astrophysical interest and of the experimental difficulties in the measurement of their cross section. (orig.)

  19. Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment

    Science.gov (United States)

    Marcus, R. A.

    1964-01-01

    In its usual form activated complex theory assumes a quasi-equilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced.

  20. A review of the rates of reaction of unirradiated uranium in gaseous atmospheres

    International Nuclear Information System (INIS)

    Pearce, R.J.

    1989-10-01

    The review collates available quantitative rate data for the reaction of unirradiated uranium in dry and moist air, steam and carbon dioxide based atmospheres at temperatures ranging from room temperature to above the melting point of uranium. Reactions in nitrogen and carbon monoxide are also considered. The aim of the review is to provide a compilation of base data for the hazard analysis of fault conditions relating to Magnox fuel. (author)

  1. Absolute rate parameters for the reaction of ground state atomic oxygen with dimethyl sulfide and episulfide

    Science.gov (United States)

    Lee, J. H.; Timmons, R. B.; Stief, L. J.

    1976-01-01

    It is pointed out that the investigated reaction of oxygen with dimethyl sulfide may play an important role in photochemical smog formation and in the chemical evolution of dense interstellar clouds. Kinetic data were obtained with the aid of the flash photolysis-resonance fluorescence method. The photodecomposition of molecular oxygen provided the oxygen atoms for the experiments. The decay of atomic oxygen was studied on the basis of resonance fluorescence observations. Both reactions investigated were found to be fast processes. A negative temperature dependence of the rate constants for reactions with dimethyl sulfide was observed.

  2. A simple recipe for modeling reaction-rate in flows with turbulent-combustion

    Science.gov (United States)

    Girimaji, Sharath S.

    1991-01-01

    A computationally viable scheme to account for chemical reaction in turbulent flows is presented. The multivariate beta-pdf model for multiple scalar mixing forms the basis of this scheme. Using the model scalar joint pdf and a general form of the instantaneous reaction-rate, the unclosed chemical reaction terms are expressed as simple functions of scalar means and the turbulent scalar energy. The calculation procedure requires that the mean scalar equations and only one other transport equation - for the turbulent scalar energy - be solved.

  3. Comparison of mass loss rate in reaction of silica with carbon from different investigation results

    Directory of Open Access Journals (Sweden)

    J. Węgrzyn

    2015-07-01

    Full Text Available In the process of carbothermic reaction of SiO2 + mC, key reactions appear on the surfaces of both SiO2 and C grains. However, the values of these surfaces are not known. Assuming the simplest case, quartzite and carbon grains are spheres, total surfaces of reaction were calculated for grains of carbon and quartzite respectively. This enabled to determine the rate of weight loss referred to the unit area of C and SiO2.

  4. Thermonuclear 19F(p, {{\\boldsymbol{\\alpha }}}_{0})16O reaction rate

    Science.gov (United States)

    He, Jian-Jun; Lombardo, Ivano; Dell’Aquila, Daniele; Xu, Yi; Zhang, Li-Yong; Liu, Wei-Ping

    2018-01-01

    The thermonuclear 19F(p, {{{α }}}0)16O reaction rate in the temperature region 0.007–10 GK has been derived by re-evaluating the available experimental data, together with the low-energy theoretical R-matrix extrapolations. Our new rate deviates by up to about 30% compared to the previous results, although all rates are consistent within the uncertainties. At very low temperature (e.g. 0.01 GK) our reaction rate is about 20% lower than the most recently published rate, because of a difference in the low energy extrapolated S-factor and a more accurate estimate of the reduced mass used in the calculation of the reaction rate. At temperatures above ∼1 GK, our rate is lower, for instance, by about 20% around 1.75 GK, because we have re-evaluated the previous data (Isoya et al., Nucl. Phys. 7, 116 (1958)) in a meticulous way. The present interpretation is supported by the direct experimental data. The uncertainties of the present evaluated rate are estimated to be about 20% in the temperature region below 0.2 GK, and are mainly caused by the lack of low-energy experimental data and the large uncertainties in the existing data. Asymptotic giant branch (AGB) stars evolve at temperatures below 0.2 GK, where the 19F(p, {{α }})16O reaction may play a very important role. However, the current accuracy of the reaction rate is insufficient to help to describe, in a careful way, the fluorine over-abundances observed in AGB stars. Precise cross section (or S factor) data in the low energy region are therefore needed for astrophysical nucleosynthesis studies. Supported by National Natural Science Foundation of China (11490562, 11490560, 11675229) and National Key Research and Development Program of China (2016YFA0400503)

  5. Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Titanium

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers procedures for measuring reaction rates by the activation reactions 46Ti(n,p) 46Sc + 47Ti(n, np)46Sc. Note 1—Since the cross section for the (n,np) reaction is relatively small for energies less than 12 MeV and is not easily distinguished from that of the (n,p) reaction, this test method will refer to the (n,p) reaction only. 1.2 The reaction is useful for measuring neutrons with energies above approximately 4.4 MeV and for irradiation times up to about 250 days (for longer irradiations, see Practice E 261). 1.3 With suitable techniques, fission-neutron fluence rates above 109 cm–2·s–1 can be determined. However, in the presence of a high thermal-neutron fluence rate, 46Sc depletion should be investigated. 1.4 Detailed procedures for other fast-neutron detectors are referenced in Practice E 261. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all...

  6. Reaction rate constants of H-abstraction by OH from large ketones: measurements and site-specific rate rules.

    Science.gov (United States)

    Badra, Jihad; Elwardany, Ahmed E; Farooq, Aamir

    2014-06-28

    Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (C=O) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (C=O), and the prime is used to differentiate different neighboring environments of a methylene group):

  7. Subsurface mineralisation. Rate of CO2 mineralisation and geomechanical effects on host and seal formations. A review of relevant reactions and reaction rate data. First interim report

    International Nuclear Information System (INIS)

    Hangx, S.

    2005-03-01

    There is general agreement that CO2 emissions need to be reduced in order to limit climate change and global warming effects. One way of disposing of carbon dioxide is by subsurface mineralisation, which entails the injection of CO2 into the subsurface where it will be converted into carbonates, and hence rendered immobile. Research on subsurface mineralisation is the main focus of Work Package 4.1 of the Dutch international research programme CATO (CO2 capture, transport and storage). CATO aims to build up a strong and coherent knowledge network, combined with adequate dissemination of knowledge, in the area of CO2 capture, transport and storage. This network will gather and validate knowledge, develop novel technologies for CO2 capture and storage, built up capacity to implement these technologies, and explore to which extent specific Clean Fossil Fuel options are acceptable to society. The principle behind CO2 sequestration by subsurface mineralisation is based on a number of sequential chemical reactions: (1) CO2 dissolves in the reservoir water to form carbonic acid, and subsequently bicarbonate; (2) the bicarbonate reacts with cations present in the reservoir water in order to form stable carbonates. If sufficient cations are present, these reactions can lead to the long term, safe, storage of carbon dioxide as stable carbonates. When CO2 is injected into an impure sandstone reservoir, feldspars and clays present in the rock will act as the cation source, and protons present in the reservoir water, as a result of carbon dioxide dissolution, will leach out the necessary cations from the silicate structure. In order to model the progress, efficiency and geochemical/geomechanical effects of any such mineralisation process, data are needed on the response of appropriate reservoir rocks to CO2 injections.The title PhD project forms part of CATO Workpackage WP 4.1. It aims to (1) determine the reaction rates of any relevant reactions taking place; (2) characterise

  8. Degradation of (14)C-labeled few layer graphene via Fenton reaction: Reaction rates, characterization of reaction products, and potential ecological effects.

    Science.gov (United States)

    Feng, Yiping; Lu, Kun; Mao, Liang; Guo, Xiangke; Gao, Shixiang; Petersen, Elijah J

    2015-11-01

    Graphene has attracted considerable commercial interest due to its numerous potential applications. It is inevitable that graphene will be released into the environment during the production and usage of graphene-enabled consumer products, but the potential transformations of graphene in the environment are not well understood. In this study, (14)C-labeled few layer graphene (FLG) enabled quantitative measurements of FLG degradation rates induced by the iron/hydrogen peroxide induced Fenton reaction. Quantification of (14)CO2 production from (14)C-labeled FLG revealed significant degradation of FLG after 3 days with high H2O2 (200 mmol L(-1)) and iron (100 μmol L(-1)) concentrations but substantially lower rates under environmentally relevant conditions (0.2-20 mmol L(-1) H2O2 and 4 μmol L(-1) Fe(3+)). Importantly, the carbon-14 labeling technique allowed for quantification of the FLG degradation rate at concentrations nearly four orders of magnitude lower than those typically used in other studies. These measurements revealed substantially faster degradation rates at lower FLG concentrations and thus studies with higher FLG concentrations may underestimate the degradation rates. Analysis of structural changes to FLG using multiple orthogonal methods revealed significant FLG oxidation and multiple reaction byproducts. Lastly, assessment of accumulation of the degraded FLG and intermediates using aquatic organism Daphnia magna revealed substantially decreased body burdens, which implied that the changes to FLG caused by the Fenton reaction may dramatically impact its potential ecological effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using NiFe oxide

    KAUST Repository

    Nurlaela, Ela

    2016-01-25

    The present work compares oxygen evolution reaction (OER) in electrocatalysis and photocatalysis in aqueous solutions using nanostructured NiFeOx as catalysts. The impacts of pH and reaction temperature on the electrocatalytic and photocatalytic OER kinetics were investigated. For electrocatalysis, a NiFeOx catalyst was hydrothermally decorated on Ni foam. In 1 M KOH solution, the NiFeOx electrocatalyst achieved 10 mA cm-2 at an overpotential of 260 mV. The same catalyst was decorated on the surface of Ta3N5 photocatalyst powder. The reaction was conducted in the presence of 0.1 M Na2S2O8 as a strong electron scavenger, thus likely leading to the OER being kinetically relevant. When compared with the bare Ta3N5, NiFeOx/Ta3N5 demonstrated a 5-fold improvement in photocatalytic activity in the OER under visible light irradiation, achieving a quantum efficiency of 24 % at 480 nm. Under the conditions investigated, a strong correlation between the electrocatalytic and photocatalytic performances was identified: an improvement in electrocatalysis corresponded with an improvement in photocatalysis without altering the identity of the materials. The rate change at different pH was likely associated with electrocatalytic kinetics that accordingly influenced the photocatalytic rates. The sensitivity of the reaction rates with respective to the reaction temperature resulted in an apparent activation energy of 25 kJ mol-1 in electrocatalysis, whereas that in photocatalysis was 16 kJ mol-1. The origin of the difference in these activation energy values is likely attributed to the possible effects of temperature on the individual thermodynamic and kinetic parameters of the reaction process. The work described herein demonstrates a method of “transferring the knowledge of electrocatalysis to photocatalysis” as a strong tool to rationally and quantitatively understand the complex reaction schemes involved in photocatalytic reactions.

  10. Reaction rate constant of HO2+O3 measured by detecting HO2 from photofragment fluorescence

    Science.gov (United States)

    Manzanares, E. R.; Suto, Masako; Lee, Long C.; Coffey, Dewitt, Jr.

    1986-01-01

    A room-temperature discharge-flow system investigation of the rate constant for the reaction 'HO2 + O3 yields OH + 2O2' has detected HO2 through the OH(A-X) fluorescence produced by photodissociative excitation of HO2 at 147 nm. A reaction rate constant of 1.9 + or - 0.3 x 10 to the -15th cu cm/molecule per sec is obtained from first-order decay of HO2 in excess O3; this agrees well with published data.

  11. Correlation analysis of the progesterone-induced sperm acrosome reaction rate and the fertilisation rate in vitro.

    Science.gov (United States)

    Jiang, T; Qin, Y; Ye, T; Wang, Y; Pan, J; Zhu, Y; Duan, L; Li, K; Teng, X

    2015-10-01

    In this study, we aimed to investigate whether progesterone-induced acrosome reaction (AR) rate could be an indicator for fertilisation rate in vitro. Twenty-six couples with unexplained infertility and undergoing in vitro fertilisation (IVF) treatment were involved. On the oocytes retrieval day after routine IVF, residual sperm samples were collected to receive progesterone induction (progesterone group) or not (control group). AR rate was calculated and fertilisation rate was recorded. The correlation between progesterone-induced AR and fertilisation rate and between sperm normal morphology and 3PN (tripronuclear) were analysed using the Spearman correlation analysis. The AR rate of progesterone group was statistically higher than that of the control group (15.6 ± 5.88% versus 9.66 ± 5.771%, P rate (r = -0.053, P > 0.01) or rate of high-quality embryo development (r = -0.055, P > 0.01). Normal sperm morphology also showed no significant correlation with the amount of 3PN zygotes (r = 0.029, P > 0.01), rate of 3PN zygotes production (r = 0.20, P > 0.01), rate of 3PN embryo development (r = -0.406, P > 0.01), fertilisation rate (r = -0.148, P > 0.01) or progesterone-induced AR rate (r = 0.214, P > 0.01). Progesterone can induce AR in vitro significantly; however, the progesterone-induced AR may not be used to indicate fertilisation rate. © 2014 Blackwell Verlag GmbH.

  12. Consistency between kinetics and thermodynamics: general scaling conditions for reaction rates of nonlinear chemical systems without constraints far from equilibrium.

    Science.gov (United States)

    Vlad, Marcel O; Popa, Vlad T; Ross, John

    2011-02-03

    We examine the problem of consistency between the kinetic and thermodynamic descriptions of reaction networks. We focus on reaction networks with linearly dependent (but generally kinetically independent) reactions for which only some of the stoichiometric vectors attached to the different reactions are linearly independent. We show that for elementary reactions without constraints preventing the system from approaching equilibrium there are general scaling relations for nonequilibrium rates, one for each linearly dependent reaction. These scaling relations express the ratios of the forward and backward rates of the linearly dependent reactions in terms of products of the ratios of the forward and backward rates of the linearly independent reactions raised to different scaling powers; the scaling powers are elements of the transformation matrix, which relates the linearly dependent stoichiometric vectors to the linearly independent stoichiometric vectors. These relations are valid for any network of elementary reactions without constraints, linear or nonlinear kinetics, far from equilibrium or close to equilibrium. We show that similar scaling relations for the reaction routes exist for networks of nonelementary reactions described by the Horiuti-Temkin theory of reaction routes where the linear dependence of the mechanistic (elementary) reactions is transferred to the overall (route) reactions. However, in this case, the scaling conditions are valid only at the steady state. General relationships between reaction rates of the two levels of description are presented. These relationships are illustrated for a specific complex reaction: radical chlorination of ethylene.

  13. New Approach for Investigating Reaction Dynamics and Rates with Ab Initio Calculations.

    Science.gov (United States)

    Fleming, Kelly L; Tiwary, Pratyush; Pfaendtner, Jim

    2016-01-21

    Herein, we demonstrate a convenient approach to systematically investigate chemical reaction dynamics using the metadynamics (MetaD) family of enhanced sampling methods. Using a symmetric SN2 reaction as a model system, we applied infrequent metadynamics, a theoretical framework based on acceleration factors, to quantitatively estimate the rate of reaction from biased and unbiased simulations. A systematic study of the algorithm and its application to chemical reactions was performed by sampling over 5000 independent reaction events. Additionally, we quantitatively reweighed exhaustive free-energy calculations to obtain the reaction potential-energy surface and showed that infrequent metadynamics works to effectively determine Arrhenius-like activation energies. Exact agreement with unbiased high-temperature kinetics is also shown. The feasibility of using the approach on actual ab initio molecular dynamics calculations is then presented by using Car-Parrinello MD+MetaD to sample the same reaction using only 10-20 calculations of the rare event. Owing to the ease of use and comparatively low-cost of computation, the approach has extensive potential applications for catalysis, combustion, pyrolysis, and enzymology.

  14. Electrochemical reaction rates in a dye sentisised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, Lasse; West, Keld; Winter-Jensen, Bjørn

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide / tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide / tri......-iodide couple should be fast at the counter electrode, i.e. this electrode must have a high catalytic activity towards the redox couple, and the same reaction must be slow on the photo electrode. The catalytic activity is investigated for platinum, poly(3,4-ethylenedioxythiophene) (PEDOT), polypyrrole (PPy......), and polyaniline (PANI) - all deposited onto fluorine doped tin oxide (FTO) glass. Both Pt and PEDOT are found to have sufficiently high catalytic activities for practical use as counter electrode in DSSC. The reaction resistance on FTO and anatase confirmed the beneficial effect of a compact anatase layer on top...

  15. Examining the reaction of monetary policy to exchange rate changes: A nonlinear ARDL approach

    Science.gov (United States)

    Manogaran, Lavaneesvari; Sek, Siok Kun

    2017-04-01

    Previous studies showed the exchange rate changes can have significant impacts on macroeconomic performance. Over fluctuation of exchange rate may lead to economic instability. Hence, monetary policy rule tends to react to exchange rate changes. Especially, in emerging economies where the policy-maker tends to limit the exchange rate movement through interventions. In this study, we seek to investigate how the monetary policy rule reacts to exchange rate changes. The nonlinear autoregressive distributed lag (NARDL) model is applied to capture the asymmetric effect of exchange rate changes on monetary policy reaction function (interest rate). We focus the study in ASEAN5 countries (Indonesia, Malaysia, Philippines, Thailand and Singapore). The results indicated the existence of asymmetric effect of exchange rates changes on the monetary reaction function for all ASEAN5 countries in the long-run. Where, in majority of the cases the monetary policy is reacting to the appreciation and depreciation of exchange rate by raising the policy rate. This affirms the intervention of policymakers with the `fear of floating' behavior.

  16. Measuring kinetic rate constants of multiple-component reactions with optical biosensors.

    Science.gov (United States)

    Edwards, David A; Evans, Ryan M; Li, Wenbin

    2017-09-15

    One may measure the kinetic rate constants associated with biochemical reactions using an optical biosensor: an instrument in which ligand molecules are convected through a flow cell over a surface to which receptors are immobilized. If there are multiple reactants, one is faced with the problem of fitting multiple kinetic rate constants to one signal, since data from all of the reacting species is lumped together. Even in the presence of ambiguous data, one may use a series of experiments to accurately determine the rate constants. Moreover, the true set of rate constants may be identified by either postprocessing the signals or adjusting the ligand inflow concentrations. Published by Elsevier Inc.

  17. Numerical Analysis Of Hooke Jeeves-Runge Kutta To Determine Reaction Rate Equation In Pyrrole Polymerization

    International Nuclear Information System (INIS)

    Gunawan, Indra; Sulistyo, Harry; Rochmad

    2001-01-01

    The numerical analysis of Hooke Jeeves Methods combined with Runge Kutta Methods is used to determine the exact model of reaction rate equation of pyrrole polymerization. Chemical polymerization of pyrrole was conducted with FeCI 3 / pyrrole solution at concentration ratio of 1.62 mole / mole and 2.18 mole / mole with varrying temperature of 28, 40, 50, and 60 o C. FeCl 3 acts as an oxidation agent to form pyrrole cation that will polymerize. The numerical analysis was done to examine the exact model of reaction rate equation which is derived from reaction equation of initiation, propagation, and termination. From its numerical analysis, it is found that the pyrrole polymerization follows third order of pyrrole cation concentration

  18. Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Aluminum

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method covers procedures measuring reaction rates by the activation reaction 27Al(n,α)24Na. 1.2 This activation reaction is useful for measuring neutrons with energies above approximately 6.5 MeV and for irradiation times up to about 2 days (for longer irradiations, see Practice E261). 1.3 With suitable techniques, fission-neutron fluence rates above 106 cm−2·s−1 can be determined. 1.4 Detailed procedures for other fast neutron detectors are referenced in Practice E261. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  19. Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures

    Science.gov (United States)

    Schweigert, Igor

    2015-06-01

    Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and chemical energy release. Mesoscale modeling of these ``hot spots'' requires a reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DoD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.

  20. Cross sections and rate coefficients for charge exchange reactions of protons with hydrocarbon molecules

    International Nuclear Information System (INIS)

    Janev, R.K.; Kato, T.; Wang, J.G.

    2001-05-01

    The available experimental and theoretical cross section data on charge exchange processes in collisions of protons with hydrocarbon molecules have been collected and critically assessed. Using well established scaling relationships for the charge exchange cross sections at low and high collision energies, as well as the known rate coefficients for these reactions in the thermal energy region, a complete cross section database is constructed for proton-C x H y charge exchange reactions from thermal energies up to several hundreds keV for all C x H y molecules with x=1, 2, 3 and 1 ≤ y ≤ 2x + 2. Rate coefficients for these charge exchange reactions have also been calculated in the temperature range from 0.1 eV to 20 keV. (author)

  1. Reaction rates and kinetic isotope effects of H2 + OH → H2O + H.

    Science.gov (United States)

    Meisner, Jan; Kästner, Johannes

    2016-05-07

    We calculated reaction rate constants including atom tunneling of the reaction of dihydrogen with the hydroxy radical down to a temperature of 50 K. Instanton theory and canonical variational theory with microcanonical optimized multidimensional tunneling were applied using a fitted potential energy surface [J. Chen et al., J. Chem. Phys. 138, 154301 (2013)]. All possible protium/deuterium isotopologues were considered. Atom tunneling increases at about 250 K (200 K for deuterium transfer). Even at 50 K the rate constants of all isotopologues remain in the interval 4 ⋅ 10(-20) to 4 ⋅ 10(-17) cm(3) s(-1), demonstrating that even deuterated versions of the title reaction are possibly relevant to astrochemical processes in molecular clouds. The transferred hydrogen atom dominates the kinetic isotope effect at all temperatures.

  2. Rate constant for the reaction of O(3P) with diacetylene from 210 to 423 K

    Science.gov (United States)

    Mitchell, M. B.; Nava, D. F.; Stief, L. J.

    1986-01-01

    The absolute rate constant for the reaction of O(3P) with diacetylene (C4H2) has been measured as a function of pressure and temperature by the flash-photolysis/resonance-fluorescence method. At 298 K and below, no pressure dependence of the rate constant was observed, but at 423 K a moderate (factor-of-2) increase was detected in the range 3 to 75 torr Ar.Results at or near the high-pressure limit are represented by an Arrhenius expression over the temperature range 210 to 423 K. The results are compared with previous determinations, all of which employed the discharge-flow/mass-spectrometry technique. The mechanism of the reaction is considered, including both primary and secondary processes. The heats of formation of the reactants, adducts, and products for the O(3P) + C4H2 reaction are discussed and contrasted with those for O(3P) + C2H2.

  3. Rate constant for the reaction of atomic oxygen with phosphine at 298 K

    Science.gov (United States)

    Stief, L. J.; Payne, W. A.; Nava, D. F.

    1987-01-01

    The rate constant for the reaction of atomic oxygen with phosphine has been measured at 298 K using flash photolysis combined with time-resolved detection of O(3P) via resonance fluorescence. Atomic oxygen was produced by flash photolysis of N2O or NO highly diluted in argon. The results were shown to be independent of (PH3), (O), total pressure and the source of O(3P). The mean value of all the experiments is k1 = (3.6 + or -0.8) x 10 to the -11th cu cm/s (1 sigma). Two previous measurements of k1 differed by more than an order of magnitude, and the results support the higher value obtained in a discharge flow-mass spectrometry study. A comparison with rate data for other atomic and free radical reactions with phosphine is presented, and the role of these reactions in the aeronomy or photochemistry of Jupiter and Saturn is briefly considered.

  4. SENSMG: First-Order Sensitivities of Neutron Reaction Rates, Reaction-Rate Ratios, Leakage, keff, and α Using PARTISN

    Energy Technology Data Exchange (ETDEWEB)

    Favorite, Jeffrey A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-21

    SENSMG is a tool for computing first-order sensitivities of neutron reaction rates, reaction-rate ratios, leakage, keff, and α using the PARTISN multigroup discrete-ordinates code. SENSMG computes sensitivities to all of the transport cross sections and data (total, fission, nu, chi, and all scattering moments), two edit cross sections (absorption and capture), and the density for every isotope and energy group. It also computes sensitivities to the mass density for every material and derivatives with respect to all interface locations. The tool can be used for one-dimensional spherical (r) and two-dimensional cylindrical (r-z) geometries. The tool can be used for fixed-source and eigenvalue problems. The tool implements Generalized Perturbation Theory (GPT) as discussed by Williams and Stacey. Section II of this report describes the theory behind adjoint-based sensitivities, gives the equations that SENSMG solves, and defines the sensitivities that are output. Section III describes the user interface, including the input file and command line options. Section IV describes the output. Section V gives some notes about the coding that may be of interest. Section VI discusses verification, which is ongoing. Section VII lists needs and ideas for future work. Appendix A lists all of the input files whose results are presented in Sec. VI.

  5. A modified Gaussian integration method for thermal reaction rate calculation in U- and Pu-isotopes

    International Nuclear Information System (INIS)

    Bosevski, T.; Fredin, B.

    1966-01-01

    An advanced multi-group cell calculations a lot of data information is very often necessary, and hence the data administration will be elaborate, and the spectrum calculation will be time consuming. We think it is possible to reduce the necessary data information by using an effective reaction rate integration method well suited for U- and Pu-absorptions (author)

  6. Probing the Rate-Determining Step of the Claisen-Schmidt Condensation by Competition Reactions

    Science.gov (United States)

    Mak, Kendrew K. W.; Chan, Wing-Fat; Lung, Ka-Ying; Lam, Wai-Yee; Ng, Weng-Cheong; Lee, Siu-Fung

    2007-01-01

    Competition experiments are a useful tool for preliminary study of the linear free energy relationship of organic reactions. This article describes a physical organic experiment for upper-level undergraduates to identify the rate-determining step of the Claisen-Schmidt condensation of benzaldehyde and acetophenone by studying the linear free…

  7. Nuclear reaction rate uncertainties and astrophysical modeling: Carbon yields from low-mass giants

    International Nuclear Information System (INIS)

    Herwig, Falk; Austin, Sam M.; Lattanzio, John C.

    2006-01-01

    Calculations that demonstrate the influence of three key nuclear reaction rates on the evolution of asymptotic giant branch stars have been carried out. We study the case of a star with an initial mass of 2 M · and a metallicity of Z=0.01, somewhat less than the solar metallicity. The dredge-up of nuclear processed material from the interior of the star and the yield predictions for carbon are sensitive to the rate of the 14 N(p,γ) 15 O and triple-α reactions. These reactions dominate the H- and He-burning shells of stars in this late evolutionary phase. Published uncertainty estimates for each of these two rates propagated through stellar evolution calculations cause uncertainties in carbon enrichment and yield predictions of about a factor of 2. The other important He-burning reaction, 12 C(α,γ) 16 O, although associated with the largest uncertainty in our study, does not have a significant influence on the abundance evolution compared with other modeling uncertainties. This finding remains valid when the entire evolution from the main sequence to the tip of the asymptotic giant branch is considered. We discuss the experimental sources of the rate uncertainties addressed here and give some outlooks for future work

  8. Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment

    Science.gov (United States)

    Marcus, R. A.

    1964-01-01

    In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.

  9. Effect of Conceptual Change Approach on Students' Understanding of Reaction Rate Concepts

    Science.gov (United States)

    Kingir, Sevgi; Geban, Omer

    2012-01-01

    The purpose of the present study was to investigate the effect of conceptual change text oriented instruction compared to traditional instruction on 10th grade students' understanding of reaction rate concepts. 45 students from two classes of the same teacher in a public high school participated in this study. Students in the experimental group…

  10. The Effect of Conceptual Change Pedagogy on Students' Conceptions of Rate of Reaction

    Science.gov (United States)

    Calik, Muammer; Kolomuc, Ali; Karagolge, Zafer

    2010-01-01

    This paper reports on an investigation of the effect of conceptual change pedagogy on students' conceptions of "rate of reaction" concepts. The study used a pre-test/post-test non-equivalent comparison group design approach and the sample consisted of 72 Turkish grade-11 students (aged 16-18 years) selected from two intact classrooms.…

  11. Should thermostatted ring polymer molecular dynamics be used to calculate thermal reaction rates?

    Energy Technology Data Exchange (ETDEWEB)

    Hele, Timothy J. H., E-mail: tjhh2@cam.ac.uk [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Suleimanov, Yury V. [Computation-based Science and Technology Research Center, Cyprus Institute, 20 Kavafi St., Nicosia 2121 (Cyprus); Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)

    2015-08-21

    We apply Thermostatted Ring Polymer Molecular Dynamics (TRPMD), a recently proposed approximate quantum dynamics method, to the computation of thermal reaction rates. Its short-time transition-state theory limit is identical to rigorous quantum transition-state theory, and we find that its long-time limit is independent of the location of the dividing surface. TRPMD rate theory is then applied to one-dimensional model systems, the atom-diatom bimolecular reactions H + H{sub 2}, D + MuH, and F + H{sub 2}, and the prototypical polyatomic reaction H + CH{sub 4}. Above the crossover temperature, the TRPMD rate is virtually invariant to the strength of the friction applied to the internal ring-polymer normal modes, and beneath the crossover temperature the TRPMD rate generally decreases with increasing friction, in agreement with the predictions of Kramers theory. We therefore find that TRPMD is approximately equal to, or less accurate than, ring polymer molecular dynamics for symmetric reactions, and for certain asymmetric systems and friction parameters closer to the quantum result, providing a basis for further assessment of the accuracy of this method.

  12. Defense Nuclear Agency Reaction Rate Handbook. Second Edition. Revision Number 6

    Science.gov (United States)

    1972-03-01

    Analysis Center General Electric, TEMPO Santa Barbara , California ^k B /W^ » 11 MEMORANDUM To: From: All Recipients of the DNA Reaction Rate...Wray, K.L., J. Chem. Phys. 38, 1518(1963). 19-10. Kiefer , J.H., and R.W. Lutz, Eleventh Symp. (Intl.) on Combustion, The Combustion Inst

  13. Should thermostatted ring polymer molecular dynamics be used to calculate thermal reaction rates?

    Science.gov (United States)

    Hele, Timothy J H; Suleimanov, Yury V

    2015-08-21

    We apply Thermostatted Ring Polymer Molecular Dynamics (TRPMD), a recently proposed approximate quantum dynamics method, to the computation of thermal reaction rates. Its short-time transition-state theory limit is identical to rigorous quantum transition-state theory, and we find that its long-time limit is independent of the location of the dividing surface. TRPMD rate theory is then applied to one-dimensional model systems, the atom-diatom bimolecular reactions H + H2, D + MuH, and F + H2, and the prototypical polyatomic reaction H + CH4. Above the crossover temperature, the TRPMD rate is virtually invariant to the strength of the friction applied to the internal ring-polymer normal modes, and beneath the crossover temperature the TRPMD rate generally decreases with increasing friction, in agreement with the predictions of Kramers theory. We therefore find that TRPMD is approximately equal to, or less accurate than, ring polymer molecular dynamics for symmetric reactions, and for certain asymmetric systems and friction parameters closer to the quantum result, providing a basis for further assessment of the accuracy of this method.

  14. Efficient Computation of Transition State Resonances and Reaction Rates from a Quantum Normal Form

    NARCIS (Netherlands)

    Schubert, Roman; Waalkens, Holger; Wiggins, Stephen

    2006-01-01

    A quantum version of a recent formulation of transition state theory in phase space is presented. The theory developed provides an algorithm to compute quantum reaction rates and the associated Gamov-Siegert resonances with very high accuracy. The algorithm is especially efficient for

  15. Simultaneous time-resolved measurement of the reaction rates and the refractive index of photopolymerization processes

    NARCIS (Netherlands)

    Bak, Tomasz M; Beusink, J Bianca; Subramaniam, Vinod; Kanger, Johannes S

    2010-01-01

    We explore the use of imaging surface plasmon resonance (iSPR) to simultaneously measure the refractive index and reaction rates of the commercially available Ormocore photosensitive resist during photopolymerization. To this end, we adapted a commercially available iSPR device. We demonstrate good

  16. Enzyme reaction rate studies in electromotor neurons of the weakly electric fish Apteronotus leptorhynchus

    NARCIS (Netherlands)

    Straatsburg, I. H.; de Graaf, F.; van Noorden, C. J.; van Raamsdonk, W.

    1989-01-01

    A histochemical analysis of reaction rates of a series of enzymes was performed in electromotor neurons of the weakly electric fish Apteronotus leptorhynchus. These neurons were selected because of their functional homogeneity. The high metabolic activity of these cells as well as their large size

  17. Thermonuclear F-19(p,alpha(0))O-16 reaction rate

    Czech Academy of Sciences Publication Activity Database

    He, J. J.; Lombardo, I.; Dell'Aquila, D.; Xu, Yi; Zang, L. Y.; Liu, W. P.

    2018-01-01

    Roč. 42, č. 1 (2018), č. článku 015001. ISSN 1674-1137 Institutional support: RVO:61389005 Keywords : asymptotic giant branch (AGB) star * nucleosynthesis * astrophysical S factor * cross section * reaction rate Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.084, year: 2016

  18. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer.

    Science.gov (United States)

    Chen, Modi; Titcombe, Mari; Jiang, Jingkun; Jen, Coty; Kuang, Chongai; Fischer, Marc L; Eisele, Fred L; Siepmann, J Ilja; Hanson, David R; Zhao, Jun; McMurry, Peter H

    2012-11-13

    Climate models show that particles formed by nucleation can affect cloud cover and, therefore, the earth's radiation budget. Measurements worldwide show that nucleation rates in the atmospheric boundary layer are positively correlated with concentrations of sulfuric acid vapor. However, current nucleation theories do not correctly predict either the observed nucleation rates or their functional dependence on sulfuric acid concentrations. This paper develops an alternative approach for modeling nucleation rates, based on a sequence of acid-base reactions. The model uses empirical estimates of sulfuric acid evaporation rates obtained from new measurements of neutral molecular clusters. The model predicts that nucleation rates equal the sulfuric acid vapor collision rate times a prefactor that is less than unity and that depends on the concentrations of basic gaseous compounds and preexisting particles. Predicted nucleation rates and their dependence on sulfuric acid vapor concentrations are in reasonable agreement with measurements from Mexico City and Atlanta.

  19. Corrosion potential detection method, potential characteristic simulation method for reaction rate and plant monitoring system using the same

    International Nuclear Information System (INIS)

    Sakai, Masanori; Onaka, Noriyuki; Takahashi, Tatsuya; Yamanaka, Hiroshi.

    1995-01-01

    In a calculation controlling device for a plant monitoring system, concentrations of materials concerning reaction materials in a certain state of a reaction process, and an actually measured value for the potential of a material in this state are substituted into a reaction rate equation obtained in accordance with a reaction process model. With such procedures, a relation between the reaction rate (current value) and the potential of the material can be obtained. A potential at which the reaction rates of an anode reaction and a cathode reaction contained in a corrosion reaction are made equal is determined by a numerical value calculation, based on an electrochemical hybrid potential logic by using the reaction rate equation, the reaction rate information relative to the corrosion reaction of the material and the concentration of the material concerning the corrosion reaction is obtained by a numerical value calculation. Then, simulation for the corrosion potential is enabled based on the handling corresponding to the actual reaction. Further, even for a portion which can not be measured actually, the corrosion potential can be recognized by simulation. (N.H.)

  20. The Effects of Mixing, Reaction Rates, and Stoichiometry on Yield for Mixing Sensitive Reactions—Part I: Model Development

    Directory of Open Access Journals (Sweden)

    Syed Imran A. Shah

    2012-01-01

    Full Text Available There are two classes of mixing sensitive reactions: competitive-consecutive and competitive-parallel. The yield of desired product from these coupled reactions depends on how fast the reactants are brought together. Recent experimental results have suggested that the mixing effect may depend strongly on the stoichiometry of the reactions. To investigate this, a 1D, dimensionless, reaction-diffusion model at the micromixing scale was developed. Assuming constant mass concentration and mass diffusivities, systems of PDE's were derived on a mass fraction basis for both types of reactions. Two dimensionless reaction rate ratios and a single general Damköhler number emerged from the analysis. The resulting dimensionless equations were used to investigate the effects of mixing, reaction rate ratio, and reaction stoichiometry. As expected, decreasing either the striation thickness or the dimensionless rate ratio maximizes yield, the reaction stoichiometry has a considerable effect on yield, and all three variables interact strongly.

  1. Rate Coefficients for the OH + (CHO)2 (Glyoxal) Reaction Between 240 and 400 K

    Science.gov (United States)

    Feierabend, K. J.; Talukdar, R. K.; Zhu, L.; Ravishankara, A. R.; Burkholder, J. B.

    2006-12-01

    Glyoxal (CHO)2, the simplest dialdehyde, is an end product formed in the atmospheric oxidation of biogenic hydrocarbons, for example, isoprene. As such, glyoxal plays a role in regional air quality and ozone production in certain locations. Glyoxal is lost in the atmosphere via UV photolysis and reaction with OH. However, the currently available rate coefficient data for the OH + glyoxal reaction is limited to a single room- temperature measurement made using the relative rate method. A determination of the rate coefficient temperature dependence is therefore needed for a more complete interpretation of the atmospheric processing of glyoxal. This study reports the rate coefficient for the OH + (CHO)2 reaction measured under pseudo- first-order conditions in OH ([(CHO)2] > 1000 [OH]0). OH radicals were produced using 248 nm pulsed laser photolysis of H2O2 or HNO3 and detected by pulsed laser induced fluorescence. The concentration of glyoxal in the reactor was determined using three independent techniques; gas flow rates as well as in situ UV and IR absorption. The total pressure in the reactor was varied from 40 to 300 Torr (He), and the rate coefficient was found to be independent of pressure over the temperature range studied. The rate coefficient exhibits a negative temperature dependence between 240 and 400 K consistent with the dependence previously observed for many other aldehydes. Our room-temperature rate coefficient is smaller than the relative rate value that is currently recommended for use in atmospheric model calculations. Our measured rate coefficients are discussed with respect to those for other aldehydes. The atmospheric implications of our work will also be discussed.

  2. Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer

    Science.gov (United States)

    Green, C.T.; Böhlke, J.K.; Bekins, B.A.; Phillips, S.P.

    2010-01-01

    Gradients in contaminant concentrations and isotopic compositions commonly are used to derive reaction parameters for natural attenuation in aquifers. Differences between field-scale (apparent) estimated reaction rates and isotopic fractionations and local-scale (intrinsic) effects are poorly understood for complex natural systems. For a heterogeneous alluvial fan aquifer, numerical models and field observations were used to study the effects of physical heterogeneity on reaction parameter estimates. Field measurements included major ions, age tracers, stable isotopes, and dissolved gases. Parameters were estimated for the O2 reduction rate, denitrification rate, O 2 threshold for denitrification, and stable N isotope fractionation during denitrification. For multiple geostatistical realizations of the aquifer, inverse modeling was used to establish reactive transport simulations that were consistent with field observations and served as a basis for numerical experiments to compare sample-based estimates of "apparent" parameters with "true" (intrinsic) values. For this aquifer, non-Gaussian dispersion reduced the magnitudes of apparent reaction rates and isotope fractionations to a greater extent than Gaussian mixing alone. Apparent and true rate constants and fractionation parameters can differ by an order of magnitude or more, especially for samples subject to slow transport, long travel times, or rapid reactions. The effect of mixing on apparent N isotope fractionation potentially explains differences between previous laboratory and field estimates. Similarly, predicted effects on apparent O2 threshold values for denitrification are consistent with previous reports of higher values in aquifers than in the laboratory. These results show that hydrogeological complexity substantially influences the interpretation and prediction of reactive transport. ?? 2010 by the American Geophysical Union.

  3. Automated Prediction of Catalytic Mechanism and Rate Law Using Graph-Based Reaction Path Sampling.

    Science.gov (United States)

    Habershon, Scott

    2016-04-12

    In a recent article [ J. Chem. Phys. 2015 , 143 , 094106 ], we introduced a novel graph-based sampling scheme which can be used to generate chemical reaction paths in many-atom systems in an efficient and highly automated manner. The main goal of this work is to demonstrate how this approach, when combined with direct kinetic modeling, can be used to determine the mechanism and phenomenological rate law of a complex catalytic cycle, namely cobalt-catalyzed hydroformylation of ethene. Our graph-based sampling scheme generates 31 unique chemical products and 32 unique chemical reaction pathways; these sampled structures and reaction paths enable automated construction of a kinetic network model of the catalytic system when combined with density functional theory (DFT) calculations of free energies and resultant transition-state theory rate constants. Direct simulations of this kinetic network across a range of initial reactant concentrations enables determination of both the reaction mechanism and the associated rate law in an automated fashion, without the need for either presupposing a mechanism or making steady-state approximations in kinetic analysis. Most importantly, we find that the reaction mechanism which emerges from these simulations is exactly that originally proposed by Heck and Breslow; furthermore, the simulated rate law is also consistent with previous experimental and computational studies, exhibiting a complex dependence on carbon monoxide pressure. While the inherent errors of using DFT simulations to model chemical reactivity limit the quantitative accuracy of our calculated rates, this work confirms that our automated simulation strategy enables direct analysis of catalytic mechanisms from first principles.

  4. Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer

    Science.gov (United States)

    Green, Christopher T.; Böhlke, John Karl; Bekins, Barbara A.; Phillips, Steven P.

    2010-01-01

    Gradients in contaminant concentrations and isotopic compositions commonly are used to derive reaction parameters for natural attenuation in aquifers. Differences between field‐scale (apparent) estimated reaction rates and isotopic fractionations and local‐scale (intrinsic) effects are poorly understood for complex natural systems. For a heterogeneous alluvial fan aquifer, numerical models and field observations were used to study the effects of physical heterogeneity on reaction parameter estimates. Field measurements included major ions, age tracers, stable isotopes, and dissolved gases. Parameters were estimated for the O2 reduction rate, denitrification rate, O2 threshold for denitrification, and stable N isotope fractionation during denitrification. For multiple geostatistical realizations of the aquifer, inverse modeling was used to establish reactive transport simulations that were consistent with field observations and served as a basis for numerical experiments to compare sample‐based estimates of “apparent” parameters with “true“ (intrinsic) values. For this aquifer, non‐Gaussian dispersion reduced the magnitudes of apparent reaction rates and isotope fractionations to a greater extent than Gaussian mixing alone. Apparent and true rate constants and fractionation parameters can differ by an order of magnitude or more, especially for samples subject to slow transport, long travel times, or rapid reactions. The effect of mixing on apparent N isotope fractionation potentially explains differences between previous laboratory and field estimates. Similarly, predicted effects on apparent O2threshold values for denitrification are consistent with previous reports of higher values in aquifers than in the laboratory. These results show that hydrogeological complexity substantially influences the interpretation and prediction of reactive transport.

  5. Product distributions, rate constants, and mechanisms of LiH +H reactions

    Science.gov (United States)

    Defazio, Paolo; Petrongolo, Carlo; Gamallo, Pablo; González, Miguel

    2005-06-01

    We present a quantum-mechanical investigation of the LiH depletion reaction LiH +H→Li+H2 and of the H exchange reaction LiH +H'→LiH'+H. We report product distributions, rate constant, and mechanism of the former, and rate constant and mechanism of the latter reaction. We use the potential-energy surface by Dunne et al. [Chem. Phys. Lett. 336, 1 (2001)], the real-wave-packet method by Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)], and the J-shifting approximation. The H21 nuclear-spin statistics and progressions of vib-rotational states (v',j') rule both initial-state-resolved and thermal product distributions, which have saw-toothed shapes with odd j' preferred with respect to even j'. At high collision energies and temperatures, we obtain a regular 3-to-1 intensity alternation of rotational states. At low collision energies and temperatures, the degeneracy and density of many H2 levels can, however, give more irregular distributions. During the collision, the energy flows from the reactant translational mode to the product vibration and recoil ones. The rate constants of both reactions are not Arrhenius type because the reactions are barrier-less. The low-temperature, LiH depletion rate constant is larger than the H exchange one, whereas the contrary holds at high temperature. The real-time mechanisms show the nuclear rearrangements of the nonreactive channel and of the reactive ones, and point out that the LiH depletion is preferred over the H exchange at short times. This confirms the rate-constant results.

  6. Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework

    Energy Technology Data Exchange (ETDEWEB)

    Gong, R [Georgia Institute of Technology; Lu, C [Georgia Institute of Technology; Luo, Jian [Georgia Institute of Technology; Wu, Wei-min [Stanford University; Cheng, H. [Stanford University; Criddle, Craig [Stanford University; Kitanidis, Peter K. [Stanford University; Gu, Baohua [ORNL; Watson, David B [ORNL; Jardine, Philip M [ORNL; Brooks, Scott C [ORNL

    2011-03-01

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.

  7. Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Copper

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method covers procedures for measuring reaction rates by the activation reaction 63Cu(n,α)60Co. The cross section for 60Co produced in this reaction increases rapidly with neutrons having energies greater than about 5 MeV. 60Co decays with a half-life of 1925.27 days (±0.29 days)(1) and emits two gamma rays having energies of 1.1732278 and 1.332492 MeV (1). The isotopic content of natural copper is 69.17 % 63Cu and 30.83 % 65Cu (2). The neutron reaction, 63Cu(n,γ)64Cu, produces a radioactive product that emits gamma rays which might interfere with the counting of the 60Co gamma rays. 1.2 With suitable techniques, fission-neutron fluence rates above 109 cm−2·s−1 can be determined. The 63Cu(n,α)60Co reaction can be used to determine fast-neutron fluences for irradiation times up to about 15 years (for longer irradiations, see Practice E261). 1.3 Detailed procedures for other fast-neutron detectors are referenced in Practice E261. 1.4 This standard does not purport to address all of the...

  8. Effects of Water Molecule on CO Oxidation by OH: Reaction Pathways, Kinetic Barriers, and Rate Constants.

    Science.gov (United States)

    Zhang, Linyao; Yang, Li; Zhao, Yijun; Zhang, Jiaxu; Feng, Dongdong; Sun, Shaozeng

    2017-07-06

    The water dilute oxy-fuel combustion is a clean combustion technology for near-zero emission power; and the presence of water molecule could have both kinetic and dynamic effects on combustion reactions. The reaction OH + CO → CO 2 + H, one of the most important elementary reactions, has been investigated by extensive electronic structure calculations. And the effects of a single water molecule on CO oxidation have been studied by considering the preformed OH(H 2 O) complex reacts with CO. The results show little change in the reaction pathways, but the additional water molecule actually increases the vibrationally adiabatic energy barriers (V a G ). Further thermal rate constant calculations in the temperature range of 200 to 2000 K demonstrate that the total low-pressure limit rate constant for the water assisted OH(H 2 O) + CO → CO 2 + H 2 O + H reaction is 1-2 orders lower than that of the water unassisted one, which is consistent with the change of V a G . Therefore, the hydrated radical OH(H 2 O) would actually slow down the oxidation of CO. Meanwhile, comparisons show that the M06-2X/aug-cc-pVDZ method gives a much better estimation in energy and thus is recommended to be employed for direct dynamics simulations.

  9. Design of experiments for zeroth and first-order reaction rates.

    Science.gov (United States)

    Amo-Salas, Mariano; Martín-Martín, Raúl; Rodríguez-Aragón, Licesio J

    2014-09-01

    This work presents optimum designs for reaction rates experiments. In these experiments, time at which observations are to be made and temperatures at which reactions are to be run need to be designed. Observations are performed along time under isothermal conditions. Each experiment needs a fixed temperature and so the reaction can be measured at the designed times. For these observations under isothermal conditions over the same reaction a correlation structure has been considered. D-optimum designs are the aim of our work for zeroth and first-order reaction rates. Temperatures for the isothermal experiments and observation times, to obtain the most accurate estimates of the unknown parameters, are provided in these designs. D-optimum designs for a single observation in each isothermal experiment or for several correlated observations have been obtained. Robustness of the optimum designs for ranges of the correlation parameter and comparisons of the information gathered by different designs are also shown. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A randomised controlled trial of two infusion rates to decrease reactions to antivenom.

    Directory of Open Access Journals (Sweden)

    Geoffrey K Isbister

    Full Text Available BACKGROUND: Snake envenoming is a major clinical problem in Sri Lanka, with an estimated 40,000 bites annually. Antivenom is only available from India and there is a high rate of systemic hypersensitivity reactions. This study aimed to investigate whether the rate of infusion of antivenom reduced the frequency of severe systemic hypersensitivity reactions. METHODS AND FINDINGS: This was a randomized comparison trial of two infusion rates of antivenom for treatment of non-pregnant adult patients (>14 y with snake envenoming in Sri Lanka. Snake identification was by patient or hospital examination of dead snakes when available and confirmed by enzyme-immunoassay for Russell's viper envenoming. Patients were blindly allocated in a 11 randomisation schedule to receive antivenom either as a 20 minute infusion (rapid or a two hour infusion (slow. The primary outcome was the proportion with severe systemic hypersensitivity reactions (grade 3 by Brown grading system within 4 hours of commencement of antivenom. Secondary outcomes included the proportion with mild/moderate hypersensitivity reactions and repeat antivenom doses. Of 1004 patients with suspected snakebites, 247 patients received antivenom. 49 patients were excluded or not recruited leaving 104 patients allocated to the rapid antivenom infusion and 94 to the slow antivenom infusion. The median actual duration of antivenom infusion in the rapid group was 20 min (Interquartile range[IQR]:20-25 min versus 120 min (IQR:75-120 min in the slow group. There was no difference in severe systemic hypersensitivity reactions between those given rapid and slow infusions (32% vs. 35%; difference 3%; 95%CI:-10% to +17%;p = 0.65. The frequency of mild/moderate reactions was also similar. Similar numbers of patients in each arm received further doses of antivenom (30/104 vs. 23/94. CONCLUSIONS: A slower infusion rate would not reduce the rate of severe systemic hypersensitivity reactions from current high

  11. A comparison of adverse reaction rates for PAS C versus plasma platelet units.

    Science.gov (United States)

    Cohn, Claudia S; Stubbs, James; Schwartz, Joseph; Francis, Richard; Goss, Cheryl; Cushing, Melissa; Shaz, Beth; Mair, David; Brantigan, Barbara; Heaton, W Andrew

    2014-08-01

    Plasma constituents have been implicated in some types of platelet (PLT) transfusion reactions. Leukoreduced apheresis PLTs stored in InterSol have 65% less plasma than apheresis PLTs stored in 100% plasma (PPs). This study compared transfusion reaction rates in InterSol PLTs (PLT additive solution [PAS] C) versus PPs. The study design was an open-label, nonrandomized retrospective review. Statistical methods were applied to substantiate noninferiority and superiority of PAS C compared to PP in terms of transfusion reaction rates. Adverse reactions (ARs) were categorized using the Biovigilance Component of the National Healthcare Safety Network. Active surveillance was used to monitor all transfusions, both with ARs and without ARs. A total of 14,005 transfusions from six study sites were included, with 9845 PP transfusions given to 2202 patients and 4160 PAS C to 1444 patients. A total of 165 ARs were reported. Percentages of transfusions with ARs were 1.37% for PPs, 0.55% for PAS C, and 1.13% overall. The relative risk (RR) for PAS C versus PPs was calculated as 0.403 with an upper confidence limit (UCL) of 0.663. Overall, ARs with the highest incidence were allergic transfusion reactions (ATRs) and febrile nonhemolytic transfusion reactions (FNHTRs), at 0.66 and 0.40% of total transfusions reported, respectively. The relative risks (UCLs) for ATRs and FNHTRs, respectively, were 0.350 (0.686) and 0.336 (0.827). PAS C PLTs were statistically superior and noninferior to PPs with respect to the transfusion-related AR rate. PAS C noninferiority and superiority were also demonstrated for ATRs and FNHTRs, separately. © 2014 AABB.

  12. Simplified Representation of Partial and Total Rate Constants of Complex-Forming Bimolecular Reactions.

    Science.gov (United States)

    Troe, J

    2015-12-17

    The temperature and pressure dependence of partial and total rate constants of complex-forming bimolecular reactions are investigated with the goal to obtain simplified and compact rate constant expressions suitable for data compilations. The transition of the reactions from low pressure chemical activation to high pressure association character is analyzed. The two processes are modeled separately first by solving master equations, leading to "inverse" and "normal" falloff curves, respectively, and allowing for a compact representation of the separated rate constants. It is shown that broadening factors of the two falloff curves are different, and those of chemical activation often approaching unity. Coupling of the two separate processes then is modeled in a simplified manner. Finally, thermal redissociation of the adducts formed by association is accounted for.

  13. Addition and spin exchange rate constants by longitudinal field μSR: the Mu + NO reaction

    International Nuclear Information System (INIS)

    Senba, Masayoshi; Gonzalez, A.C.; Kempton, J.R.; Arseneau, D.J.; Pan, J.J.; Tempelmann, A.; Fleming, D.G.

    1991-01-01

    The addition reaction Mu + NO + M → MuNO + M and the spin exchange reaction Mu(↑) + NO(↓)→Mu(↓)+NO(↑) have been measured by longitudinal field μSR at room temperature in the presence of up to 58 atm of N 2 as inert collider. The pressure dependence of the longitudinal relaxation rate due to the addition reaction (λ c ) demonstrates that the system is still in the low pressure regime in this pressure range. The corresponding termolecular rate constant has been determined as k 0.Mu =(1.10±0.25)x10 -32 cm 6 molecules -2 s -1 , almost 4 times smaller than the corresponding H atom reaction k 0,H =3.90x10 -32 cm 6 molecules -2 s -1 . The average value of the spin exchange rate constants in the 2.5-58 atm pressure range, k SE = (3.16±0.06)x10 -10 cm 3 molecule -1 s -1 , is in good agreement with previous values obtained by transverse field μSR. (orig.)

  14. Thermodynamic and molecular origin of interfacial rate enhancements and endo-selectivities of a Diels-Alder reaction.

    Science.gov (United States)

    Beniwal, Vijay; Kumar, Anil

    2017-02-08

    Organic reactions in general display large rate accelerations when performed under interfacial conditions, such as on water or at ionic liquid interfaces. However, a clear picture of the physicochemical factors responsible for this large rate enhancements is not available. To gain an understanding of the thermodynamic and molecular origin of these large rate enhancements, we performed a Diels-Alder reaction between cyclopentadiene and methyl acrylate at ionic liquid/n-hexane interfaces. This study describes, for the first time, a methodology for the calculation of the activation parameters of an interfacial reaction. It has been seen that the energy of activation for an interfacial reaction is much smaller than that of the corresponding homogeneous reaction, resulting into the large rate acceleration for the interfacial reaction. Furthermore, the study describes the effects of the alkyl chain length of ionic liquid cations, the extent of heterogeneity, and the polarity of ionic liquids on the rate constants and stereoselectivity of the reaction.

  15. Rates of chemical reaction and atmospheric heating during core debris expulsion from a pressurized vessel

    International Nuclear Information System (INIS)

    Powers, D.A.; Tarbell, W.W.; Brockman, J.E.; Pilch, M.

    1986-01-01

    Core debris may be expelled from a pressurized reactor vessel during a severe nuclear reactor accident. Experimental studies of core debris expulsion from pressurized vessels have established that the expelled material can be lofted into the atmosphere of the reactor containment as particulate 0.4 to 2 mm in diameter. These particles will vigorously react with steam and oxygen in the containment atmosphere. Data on such reactions during tests with 80 kg of expelled melt will be reported. A model of the reaction rates based on gas phase mass transport will be described and shown to account for atmospheric heating and aerosol generation observed in the tests

  16. Aqueous Complexation Reactions Governing the Rate and Extent of Biogeochemical U(VI) Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Scott C. Brooks; Wenming Dong; Sue Carroll; Jim Fredrickson; Ken Kemner; Shelly Kelly

    2006-06-01

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments. In addition, the work plan is designed to: (1) Generate fundamental scientific understanding on the relationship between U(VI) chemical speciation and its susceptibility to biogeochemical reduction reactions. ? Elucidate the controls on the rate and extent of contaminant reactivity. (2) Provide new insights into the aqueous and solid speciation of U(VI)/U(IV) under representative groundwater conditions.

  17. Aqueous Complexation Reactions Governing the Rate and Extent of Biogeochemical U(VI) Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Scott C. Brooks; Wenming Dong; Sue Carroll; James K. Fredrickson; Kenneth M. Kemner; Shelly D. Kelly

    2006-06-01

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments. In addition, the work plan is designed to: (1) Generate fundamental scientific understanding on the relationship between U(VI) chemical speciation and its susceptibility to biogeochemical reduction reactions. (2) Elucidate the controls on the rate and extent of contaminant reactivity. (3) Provide new insights into the aqueous and solid speciation of U(VI)/U(IV) under representative groundwater conditions.

  18. Diffusion-influenced reaction rates for active "sphere-prolate spheroid" pairs and Janus dimers

    Science.gov (United States)

    Traytak, Sergey D.; Grebenkov, Denis S.

    2018-01-01

    The purpose of this paper is twofold. First, we provide a concise introduction to the generalized method of separation of variables for solving diffusion problems in canonical domains beyond conventional arrays of spheres. Second, as an important example of its application in the theory of diffusion-influenced reactions, we present an exact solution of the axially symmetric problem on diffusive competition in an array of two active particles (including Janus dumbbells) constructed of a prolate spheroid and a sphere. In particular, we investigate how the reaction rate depends on sizes of active particles, spheroid aspect ratio, particles' surface reactivity, and distance between their centers.

  19. Diffusion-influenced reaction rates for active "sphere-prolate spheroid" pairs and Janus dimers.

    Science.gov (United States)

    Traytak, Sergey D; Grebenkov, Denis S

    2018-01-14

    The purpose of this paper is twofold. First, we provide a concise introduction to the generalized method of separation of variables for solving diffusion problems in canonical domains beyond conventional arrays of spheres. Second, as an important example of its application in the theory of diffusion-influenced reactions, we present an exact solution of the axially symmetric problem on diffusive competition in an array of two active particles (including Janus dumbbells) constructed of a prolate spheroid and a sphere. In particular, we investigate how the reaction rate depends on sizes of active particles, spheroid aspect ratio, particles' surface reactivity, and distance between their centers.

  20. Reaction rate kinetics for in situ combustion retorting of Michigan Antrim oil shale

    Science.gov (United States)

    Rostam-Abadi, M.; Mickelson, R.W.

    1984-01-01

    The intrinsic reaction rate kinetics for the pyrolysis of Michigan Antrim oil shale and the oxidation of the carbonaceous residue of this shale have been determined using a thermogravimetric analysis method. The kinetics of the pyrolysis reaction were evaluated from both isothermal and nonisothermal rate data. The reaction was found to be second-order with an activation energy of 252.2 kJ/mole, and with a frequency factor of 9.25 ?? 1015 sec-1. Pyrolysis kinetics were not affected by heating rates between 0.01 to 0.67??K/s. No evidence of any reactions among the oil shale mineral constituents was observed at temperatures below 1173??K. However, it was found that the presence of pyrite in oil shale reduces the primary devolatilization rate of kerogen and increases the amount of residual char in the spent shale. Carbonaceous residues which were prepared by heating the oil shale at a rate of 0.166??K/s to temperatures between 923??K and 1073??K, had the highest reactivities when oxidized at 0.166??K/s in a gas having 21 volume percent oxygen. Oxygen chemisorption was found to be the initial precursor to the oxidation process. The kinetics governing oxygen chemisorption is (Equation Presented) where X is the fractional coverage. The oxidation of the carbonaceous residue was found also to be second-order. The activation energy and the frequency factor determined from isothermal experiments were 147 kJ/mole and 9.18??107 sec-1 respectively, while the values of these parameters obtained from a nonisothermal experiment were 212 kJ/mole and 1.5??1013 sec-1. The variation in the rate constants is attributed to the fact that isothermal and nonisothermal analyses represent two different aspects of the combustion process.

  1. Rate constants for the slow Mu + propane abstraction reaction at 300 K by diamagnetic RF resonance.

    Science.gov (United States)

    Fleming, Donald G; Cottrell, Stephen P; McKenzie, Iain; Ghandi, Khashayar

    2015-08-14

    The study of kinetic isotope effects for H-atom abstraction rates by incident H-atoms from the homologous series of lower mass alkanes (CH4, C2H6 and, here, C3H8) provides important tests of reaction rate theory on polyatomic systems. With a mass of only 0.114 amu, the most sensitive test is provided by the rates of the Mu atom. Abstraction of H by Mu can be highly endoergic, due to the large zero-point energy shift in the MuH bond formed, which also gives rise to high activation energies from similar zero-point energy corrections at the transition state. Rates are then far too slow near 300 K to be measured by conventional TF-μSR techniques that follow the disappearance of the spin-polarised Mu atom with time. Reported here is the first measurement of a slow Mu reaction rate in the gas phase by the technique of diamagnetic radio frequency (RF) resonance, where the amplitude of the MuH product formed in the Mu + C3H8 reaction is followed with time. The measured rate constant, kMu = (6.8 ± 0.5) × 10(-16) cm(3) s(-1) at 300 K, is surprisingly only about a factor of three slower than that expected for H + C3H8, indicating a dominant contribution from quantum tunneling in the Mu reaction, consistent with elementary transition state theory calculations of the kMu/kH kinetic isotope effect.

  2. Reaction of atomic bromine with acetylene and loss rate of atmospheric acetylene due to reaction with OH, Cl, O, and Br

    Science.gov (United States)

    Payne, W. A.; Nava, D. F.; Brunning, J.; Stief, L. J.

    1986-01-01

    The first-order, diffusion, and bimolecular rate constants for the reaction Br + C2H2 yields C2H3Br are evaluated. The rate constants are measured at 210, 248, 298, and 393 K and at pressures between 15-100 torr Ar using flash photolysis combined with time-resolved detection of atomic bromine via Br resonance radiation. It is observed that the reaction is not affected by pressure or temperature and the bimolecular constant = (4.0 + or - 0.8) x 10 to the -15th cu cm/sec with an error of two standard deviations. The C2H2 + Br reaction rates are compared with reactions of C2H2 with Cl, OH, NH2, and H. The loss rates for atmospheric C2H2 for reactions with OH, Cl, O, and Br are calculated as a function of altitude.

  3. Rates for neutron-capture reactions on tungsten isotopes in iron meteorites. [Abstract only

    Science.gov (United States)

    Masarik, J.; Reedy, R. C.

    1994-01-01

    High-precision W isotopic analyses by Harper and Jacobsen indicate the W-182/W-183 ratio in the Toluca iron meteorite is shifted by -(3.0 +/- 0.9) x 10(exp -4) relative to a terrestrial standard. Possible causes of this shift are neutron-capture reactions on W during Toluca's approximately 600-Ma exposure to cosmic ray particles or radiogenic growth of W-182 from 9-Ma Hf-182 in the silicate portion of the Earth after removal of W to the Earth's core. Calculations for the rates of neutron-capture reactions on W isotopes were done to study the first possibility. The LAHET Code System (LCS) which consists of the Los Alamos High Energy Transport (LAHET) code and the Monte Carlo N-Particle(MCNP) transport code was used to numerically simulate the irradiation of the Toluca iron meteorite by galactic-cosmic-ray (GCR) particles and to calculate the rates of W(n, gamma) reactions. Toluca was modeled as a 3.9-m-radius sphere with the composition of a typical IA iron meteorite. The incident GCR protons and their interactions were modeled with LAHET, which also handled the interactions of neutrons with energies above 20 MeV. The rates for the capture of neutrons by W-182, W-183, and W-186 were calculated using the detailed library of (n, gamma) cross sections in MCNP. For this study of the possible effect of W(n, gamma) reactions on W isotope systematics, we consider the peak rates. The calculated maximum change in the normalized W-182/W-183 ratio due to neutron-capture reactions cannot account for more than 25% of the mass 182 deficit observed in Toluca W.

  4. Reaction Rate Distributions and Ratios in FR0 Assemblies 1, 2 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, T.L.

    1966-06-15

    The spatial distribution of different reaction rates and reaction ratios in Assemblies 1, 2 and 3 of the fast reactor FR0 was measured by fission chamber scans and foil activation technique. Assemblies 1 and 2 had cores of undiluted fuel (uranium metal enriched to 20 % U{sup 235}) while the core of Assembly 3 was diluted with about 30 vol. % graphite. All the systems had a thick copper reflector, The experimental results were compared with calculated values obtained from DSN and TDC multigroup spectra and group cross-section sets for the reactions. Good agreement between experiment and calculations is generally obtained in the core region but in the reflector the neutron spectrum is calculated too hard.

  5. Measurement of weak rates for stellar evolution via the (t,3He) reaction

    International Nuclear Information System (INIS)

    Zegers, R.G.T.

    2007-01-01

    The (t, 3 He) charge-exchange reaction has been developed as a tool to extract Gamow-Teller strengths on nuclei of importance for stellar evolution. A secondary triton beam of 115 MeV/nucleon is used, either produced from a primary α beam, or, since recently, from a primary 16 O beam. Here, the (t, 3 He) reaction is used to study the Gamow-Teller strength distribution in 58 Co via the 58 Ni(t, 3 He) reaction. The experimental results are compared with calculations in large-scale shell models using the kb3g and gxpf1 interactions, as well as existing data from 58 Ni(n, p) and 58 Ni(d, 2 He) experiments. The differences between the data and theoretical models are studied in terms of electron-capture rates in the pre-collapse stages of core-collapse supernovae

  6. The Reaction Mechanism and Rate Constants in the Radiolysis of Fe2+-Cu2+ Solutions

    DEFF Research Database (Denmark)

    Bjergbakke, Erling; Sehested, Knud; Rasmussen, O. Lang

    1976-01-01

    Pulse radiolysis and gamma radiolysis have been used to study the reaction mechanism in the radiolysis of aqueous solutions of Fe2+ and Cu2+. A reaction scheme has been developed and confirmed by computation of the corresponding complete set of differential equations. The rate constants for some...... of the reactions have been determined at different pH's. $k_{{\\rm Cu}^{+}+{\\rm O}_{2}}=4.6\\times 10^{5}$ and $1.0\\times 10^{6}\\ {\\rm mol}^{-1}\\ {\\rm sec}^{-1}$, $k_{{\\rm Cu}^{+}+{\\rm Fe}^{3+}}=5.5\\times 10^{6}$ and $1.3\\times 10^{7}\\ {\\rm mol}^{-1}\\ {\\rm sec}^{-1}$, $k_{{\\rm Cu}({\\rm III)}+{\\rm Fe}^{2+}}=3.3\\times...

  7. Electron capture rates in stars studied with heavy ion charge exchange reactions

    Science.gov (United States)

    Bertulani, C. A.

    2018-01-01

    Indirect methods using nucleus-nucleus reactions at high energies (here, high energies mean ~ 50 MeV/nucleon and higher) are now routinely used to extract information of interest for nuclear astrophysics. This is of extreme relevance as many of the nuclei involved in stellar evolution are short-lived. Therefore, indirect methods became the focus of recent studies carried out in major nuclear physics facilities. Among such methods, heavy ion charge exchange is thought to be a useful tool to infer Gamow-Teller matrix elements needed to describe electron capture rates in stars and also double beta-decay experiments. In this short review, I provide a theoretical guidance based on a simple reaction model for charge exchange reactions.

  8. Effects of the anion salt nature on the rate constants of the aqueous proton exchange reactions.

    Science.gov (United States)

    Paredes, Jose M; Garzon, Andres; Crovetto, Luis; Orte, Angel; Lopez, Sergio G; Alvarez-Pez, Jose M

    2012-04-28

    The proton-transfer ground-state rate constants of the xanthenic dye 9-[1-(2-methyl-4-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one (TG-II), recovered by Fluorescence Lifetime Correlation Spectroscopy (FLCS), have proven to be useful to quantitatively reflect specific cation effects in aqueous solutions (J. M. Paredes, L. Crovetto, A. Orte, J. M. Alvarez-Pez and E. M. Talavera, Phys. Chem. Chem. Phys., 2011, 13, 1685-1694). Since these phenomena are more sensitive to anions than to cations, in this paper we have accounted for the influence of salts with the sodium cation in common, and the anion classified according to the empirical Hofmeister series, on the proton transfer rate constants of TG-II. We demonstrate that the presence of ions accelerates the rate of the ground-state proton-exchange reaction in the same order than ions that affect ion solvation in water. The combination of FLCS with a fluorophore undergoing proton transfer reactions in the ground state, along with the desirable feature of a pseudo-dark state when the dye is protonated, allows one unique direct determination of kinetic rate constants of the proton exchange chemical reaction. This journal is © the Owner Societies 2012

  9. Theoretical and Shock Tube Study of the Rate Constants for Hydrogen Abstraction Reactions of Ethyl Formate.

    Science.gov (United States)

    Wu, Junjun; Khaled, Fethi; Ning, Hongbo; Ma, Liuhao; Farooq, Aamir; Ren, Wei

    2017-08-24

    We report a systematic chemical kinetics study of the H atom abstractions from ethyl formate (EF) by H, O( 3 P), CH 3 , OH, and HO 2 radicals. The geometry optimization and frequency calculation of all the species were conducted using the M06 method and the cc-pVTZ basis set. The one-dimensional hindered rotor treatment of the reactants and transition states and the intrinsic reaction coordinate analysis were also performed at the M06/cc-pVTZ level of theory. The relative electronic energies were calculated at the CCSD(T)/cc-pVXZ (where X = D, T) level of theory and further extrapolated to the complete basis set limit. Rate constants for the tittle reactions were calculated over the temperature range 500-2500 K by the transition state theory (TST) in conjunction with the asymmetric Eckart tunneling effect. In addition, the rate constants of H-abstraction by hydroxyl radical were measured in shock tube experiments at 900-1321 K and 1.4-2.0 atm. Our theoretical rate constants of OH + EF → products agree well with the experimental results within 15% over the experimental temperature range of 900-1321 K. Branching ratios for the five types of H-abstraction reactions were also determined from their individual site-specific rate constants.

  10. Accurate label-free reaction kinetics determination using initial rate heat measurements

    Science.gov (United States)

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Jacobs, Denise; Hagen, Wilfred R.

    2015-01-01

    Accurate label-free methods or assays to obtain the initial reaction rates have significant importance in fundamental studies of enzymes and in application-oriented high throughput screening of enzyme activity. Here we introduce a label-free approach for obtaining initial rates of enzyme activity from heat measurements, which we name initial rate calorimetry (IrCal). This approach is based on our new finding that the data recorded by isothermal titration calorimetry for the early stages of a reaction, which have been widely ignored, are correlated to the initial rates. Application of the IrCal approach to various enzymes led to accurate enzyme kinetics parameters as compared to spectroscopic methods and enabled enzyme kinetic studies with natural substrate, e.g. proteases with protein substrates. Because heat is a label-free property of almost all reactions, the IrCal approach holds promise in fundamental studies of various enzymes and in use of calorimetry for high throughput screening of enzyme activity. PMID:26574737

  11. Theoretical and Shock Tube Study of the Rate Constants for Hydrogen Abstraction Reactions of Ethyl Formate

    KAUST Repository

    Wu, Junjun

    2017-08-03

    We report a systematic chemical kinetics study of the H-atom abstractions from ethyl formate (EF) by H, O(3P), CH3, OH, and HO2 radicals. The geometry optimization and frequency calculation of all the species were conducted using the M06 method and the cc-pVTZ basis set. The one-dimensional hindered rotor treatment of the reactants and transition states and the intrinsic reaction coordinate analysis were also performed at the M06/cc-pVTZ level of theory. The relative electronic energies were calculated at the CCSD(T)/cc-pVXZ (where X = D, T) level of theory and further extrapolated to the complete basis set limit. Rate constants for the tittle reactions were calculated over the temperature range of 500‒2500 K by the transition state theory (TST) in conjunction with asymmetric Eckart tunneling effect. In addition, the rate constants of H-abstraction by hydroxyl radical were measured in shock tube experiments at 900‒1321 K and 1.4‒2.0 atm. Our theoretical rate constants of OH + EF → Products agree well with the experimental results within 15% over the experimental temperature range of 900‒1321 K. Branching ratios for the five types of H-abstraction reactions were also determined from their individual site-specific rate constants.

  12. Simultaneous measurement of anisotropic solute diffusivity and binding reaction rates in biological tissues by FRAP.

    Science.gov (United States)

    Travascio, Francesco; Gu, Wei Yong

    2011-01-01

    Several solutes (e.g., growth factors, cationic solutes, etc.) can reversibly bind to the extracellular matrix (ECM) of biological tissues. Binding interactions have significant implications on transport of such solutes through the ECM. In order to fully delineate transport phenomena in biological tissues, knowledge of binding kinetics is crucial. In this study, a new method for the simultaneous determination of solute anisotropic diffusivity and binding reaction rates was presented. The new technique was solely based on Fourier analysis of fluorescence recovery after photobleaching (FRAP) images. Computer-simulated FRAP tests were used to assess the sensitivity and the robustness of the method to experimental parameters, such as anisotropic solute diffusivity and rates of binding reaction. The new method was applied to the determination of diffusivity and binding rates of 5-dodecanoylaminofluorescein (DAF) in bovine coccygeal annulus fibrosus (AF). Our findings indicate that DAF reversibly binds to the ECM of AF. In addition, it was found that DAF diffusion in AF is anisotropic. The results were in agreement with those reported in previous studies. This study provides a new tool for the simultaneous determination of solute anisotropic diffusion tensor and rates of binding reaction that can be used to investigate diffusive-reactive transport in biological tissues and tissue engineered constructs.

  13. Rate constant for the reaction SO + BrO yields SO2 + Br

    Science.gov (United States)

    Brunning, J.; Stief, L.

    1986-01-01

    The rate of the radical-radical reaction SO + BrO yields SO2 + Br has been determined at 298 K in a discharge flow system near 1 torr pressure with detection of SO and BrO via collision-free sampling mass spectrometry. The rate constant was determined using two different methods: measuring the decay of SO radicals in the presence of an excess of BrO and measuring the decay of BrO radicals in excess SO. The results from the two methods are in reasonable agreement and the simple mean of the two values gives the recommended rate constant at 298 K, k = (5.7 + or - 2.0) x 10 to the -11th cu cm/s. This represents the first determination of this rate constant and it is consistent with a previously derived lower limit based on SO2 formation. Comparison is made with other radical-radical reactions involving SO or BrO. The reaction SO + BrO yields SO2 + Br is of interest for models of the upper atmosphere of the earth and provides a potential coupling between atmospheric sulfur and bromine chemistry.

  14. Rate Constant and Temperature Dependence for the Reaction of Hydroxyl Radicals with 2-Flouropropane (FC-281ea) and Comparison with an Estimated Rate Constant

    Science.gov (United States)

    DeMore, W.; Wilson, E., Jr.

    1998-01-01

    Relative rate experiments were used to measure the rate constant and temperature dependence of the reaction of OH radicals with 2-fluoropropane (HFC-281ea), using ethane, propane, ethyl chloride as reference standards.

  15. Effects of network dissolution changes on pore-to-core upscaled reaction rates for kaolinite and anorthite reactions under acidic conditions

    KAUST Repository

    Kim, Daesang

    2013-11-01

    We have extended reactive flow simulation in pore-network models to include geometric changes in the medium from dissolution effects. These effects include changes in pore volume and reactive surface area, as well as topological changes that open new connections. The computed changes were based upon a mineral map from an X-ray computed tomography image of a sandstone core. We studied the effect of these changes on upscaled (pore-scale to core-scale) reaction rates and compared against the predictions of a continuum model. Specifically, we modeled anorthite and kaolinite reactions under acidic flow conditions during which the anorthite reactions remain far from equilibrium (dissolution only), while the kaolinite reactions can be near-equilibrium. Under dissolution changes, core-scale reaction rates continuously and nonlinearly evolved in time. At higher injection rates, agreement with predictions of the continuum model degraded significantly. For the far-from-equilibrium reaction, our results indicate that the ability to correctly capture the heterogeneity in dissolution changes in the reactive mineral surface area is critical to accurately predict upscaled reaction rates. For the near-equilibrium reaction, the ability to correctly capture the heterogeneity in the saturation state remains critical. Inclusion of a Nernst-Planck term to ensure neutral ionic currents under differential diffusion resulted in at most a 9% correction in upscaled rates.

  16. The effects of physical and geochemical heterogeneities on hydro-geochemical transport and effective reaction rates

    Science.gov (United States)

    Atchley, Adam L.; Navarre-Sitchler, Alexis K.; Maxwell, Reed M.

    2014-09-01

    The role of coupled physical and geochemical heterogeneities in hydro-geochemical transport is investigated by simulating three-dimensional transport in a heterogeneous system with kinetic mineral reactions. Ensembles of 100 physically heterogeneous realizations were simulated for three geochemical conditions: 1) spatially homogeneous reactive mineral surface area, 2) reactive surface area positively correlated to hydraulic heterogeneity, and 3) reactive surface area negatively correlated to hydraulic heterogeneity. Groundwater chemistry and the corresponding effective reaction rates were calculated at three transverse planes to quantify differences in plume evolution due to heterogeneity in mineral reaction rates and solute residence time (τ). The model is based on a hypothetical CO2 intrusion into groundwater from a carbon capture utilization and storage (CCUS) operation where CO2 dissolution and formation of carbonic acid created geochemical dis-equilibrium between fluids and the mineral galena that resulted in increased aqueous lead (Pb2 +) concentrations. Calcite dissolution buffered the pH change and created conditions of galena oversaturation, which then reduced lead concentrations along the flow path. Near the leak kinetic geochemical reactions control the release of solutes into the fluid, but further along the flow path mineral solubility controls solute concentrations. Simulation results demonstrate the impact of heterogeneous distribution of geochemical reactive surface area in coordination with physical heterogeneity on the effective reaction rate (Krxn,eff) and Pb2 + concentrations within the plume. Dissimilarities between ensemble Pb2 + concentration and Krxn,eff are attributed to how geochemical heterogeneity affects the time (τeq) and therefore advection distance (Leq) required for the system to re-establish geochemical equilibrium. Only after geochemical equilibrium is re-established, Krxn,eff and Pb2 + concentrations are the same for all three

  17. The effects of physical and geochemical heterogeneities on hydro-geochemical transport and effective reaction rates.

    Science.gov (United States)

    Atchley, Adam L; Navarre-Sitchler, Alexis K; Maxwell, Reed M

    2014-09-01

    The role of coupled physical and geochemical heterogeneities in hydro-geochemical transport is investigated by simulating three-dimensional transport in a heterogeneous system with kinetic mineral reactions. Ensembles of 100 physically heterogeneous realizations were simulated for three geochemical conditions: 1) spatially homogeneous reactive mineral surface area, 2) reactive surface area positively correlated to hydraulic heterogeneity, and 3) reactive surface area negatively correlated to hydraulic heterogeneity. Groundwater chemistry and the corresponding effective reaction rates were calculated at three transverse planes to quantify differences in plume evolution due to heterogeneity in mineral reaction rates and solute residence time (τ). The model is based on a hypothetical CO2 intrusion into groundwater from a carbon capture utilization and storage (CCUS) operation where CO2 dissolution and formation of carbonic acid created geochemical dis-equilibrium between fluids and the mineral galena that resulted in increased aqueous lead (Pb(2+)) concentrations. Calcite dissolution buffered the pH change and created conditions of galena oversaturation, which then reduced lead concentrations along the flow path. Near the leak kinetic geochemical reactions control the release of solutes into the fluid, but further along the flow path mineral solubility controls solute concentrations. Simulation results demonstrate the impact of heterogeneous distribution of geochemical reactive surface area in coordination with physical heterogeneity on the effective reaction rate (Krxn,eff) and Pb(2+) concentrations within the plume. Dissimilarities between ensemble Pb(2+) concentration and Krxn,eff are attributed to how geochemical heterogeneity affects the time (τeq) and therefore advection distance (Leq) required for the system to re-establish geochemical equilibrium. Only after geochemical equilibrium is re-established, Krxn,eff and Pb(2+) concentrations are the same for all

  18. Reaction rates of α-tocopheroxyl radicals confined in micelles and in human plasma lipoproteins.

    Science.gov (United States)

    Vanzani, Paola; Rigo, Adelio; Zennaro, Lucio; Di Paolo, Maria Luisa; Scarpa, Marina; Rossetto, Monica

    2014-08-01

    α-Tocopherol, the main component of vitamin E, traps highly reactive radicals which otherwise might react with lipids present in plasmatic lipoproteins or in cell membranes. The α-tocopheroxyl radicals generated by this process have also a pro-oxidant action which is contrasted by their reaction with ascorbate or by bimolecular self-reaction (dismutation). The kinetics of this bimolecular self-reaction were explored in solution such as ethanol, and in heterogeneous systems such as deoxycholic acid micelles and in human plasma. According to ESR measurements, the kinetic rate constant (2k(d)) of the bimolecular self-reaction of α-tocopheroxyl radicals in micelles and in human plasma was calculated to be of the order of 10(5) M(-1) s(-1) at 37 °C. This value was obtained considering that the reactive radicals are confined into the micellar pseudophase and is one to two orders of magnitude higher than the value we found in homogeneous phase. The physiological significance of this high value is discussed considering the competition between bimolecular self-reaction and the α-tocopheroxyl radical recycling by ascorbate. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds

    DEFF Research Database (Denmark)

    Pattison, D I; Davies, Michael Jonathan

    2001-01-01

    , absolute second-order rate constants for the reactions of HOCl with protein side chains, model compounds, and backbone amide (peptide) bonds have been determined at physiological pH values. The reactivity of HOCl with potential reactive sites in proteins is summarized by the series: Met (3.8 x 10(7) M(-1......) x s(-1)) > backbone amides (10-10(-3) M(-1) x s(-1)) > Gln(0.03 M(-1) x s(-1)) approximately Asn (0.03 M(-1) x s(-1)). The rate constants for reaction of HOCl with backbone amides (peptide bonds) vary by 4 orders of magnitude with uncharged peptide bonds reacting more readily with HOCl than those....... Proteins are major targets for this oxidant, and such reaction results in side-chain modification, backbone fragmentation, and cross-linking. Despite a wealth of qualitative data for such reactions, little absolute kinetic data is available to rationalize the in vitro and in vivo data. In this study...

  20. Transition path sampling with quantum/classical mechanics for reaction rates.

    Science.gov (United States)

    Gräter, Frauke; Li, Wenjin

    2015-01-01

    Predicting rates of biochemical reactions through molecular simulations poses a particular challenge for two reasons. First, the process involves bond formation and/or cleavage and thus requires a quantum mechanical (QM) treatment of the reaction center, which can be combined with a more efficient molecular mechanical (MM) description for the remainder of the system, resulting in a QM/MM approach. Second, reaction time scales are typically many orders of magnitude larger than the (sub-)nanosecond scale accessible by QM/MM simulations. Transition path sampling (TPS) allows to efficiently sample the space of dynamic trajectories from the reactant to the product state without an additional biasing potential. We outline here the application of TPS and QM/MM to calculate rates for biochemical reactions, by means of a simple toy system. In a step-by-step protocol, we specifically refer to our implementation within the MD suite Gromacs, which we have made available to the research community, and include practical advice on the choice of parameters.

  1. Survival behavior in the cyclic Lotka-Volterra model with a randomly switching reaction rate.

    Science.gov (United States)

    West, Robert; Mobilia, Mauro; Rucklidge, Alastair M

    2018-02-01

    We study the influence of a randomly switching reproduction-predation rate on the survival behavior of the nonspatial cyclic Lotka-Volterra model, also known as the zero-sum rock-paper-scissors game, used to metaphorically describe the cyclic competition between three species. In large and finite populations, demographic fluctuations (internal noise) drive two species to extinction in a finite time, while the species with the smallest reproduction-predation rate is the most likely to be the surviving one (law of the weakest). Here we model environmental (external) noise by assuming that the reproduction-predation rate of the strongest species (the fastest to reproduce and predate) in a given static environment randomly switches between two values corresponding to more and less favorable external conditions. We study the joint effect of environmental and demographic noise on the species survival probabilities and on the mean extinction time. In particular, we investigate whether the survival probabilities follow the law of the weakest and analyze their dependence on the external noise intensity and switching rate. Remarkably, when, on average, there is a finite number of switches prior to extinction, the survival probability of the predator of the species whose reaction rate switches typically varies nonmonotonically with the external noise intensity (with optimal survival about a critical noise strength). We also outline the relationship with the case where all reaction rates switch on markedly different time scales.

  2. Survival behavior in the cyclic Lotka-Volterra model with a randomly switching reaction rate

    Science.gov (United States)

    West, Robert; Mobilia, Mauro; Rucklidge, Alastair M.

    2018-02-01

    We study the influence of a randomly switching reproduction-predation rate on the survival behavior of the nonspatial cyclic Lotka-Volterra model, also known as the zero-sum rock-paper-scissors game, used to metaphorically describe the cyclic competition between three species. In large and finite populations, demographic fluctuations (internal noise) drive two species to extinction in a finite time, while the species with the smallest reproduction-predation rate is the most likely to be the surviving one (law of the weakest). Here we model environmental (external) noise by assuming that the reproduction-predation rate of the strongest species (the fastest to reproduce and predate) in a given static environment randomly switches between two values corresponding to more and less favorable external conditions. We study the joint effect of environmental and demographic noise on the species survival probabilities and on the mean extinction time. In particular, we investigate whether the survival probabilities follow the law of the weakest and analyze their dependence on the external noise intensity and switching rate. Remarkably, when, on average, there is a finite number of switches prior to extinction, the survival probability of the predator of the species whose reaction rate switches typically varies nonmonotonically with the external noise intensity (with optimal survival about a critical noise strength). We also outline the relationship with the case where all reaction rates switch on markedly different time scales.

  3. Reacting gas mixtures in the state-to-state approach: The chemical reaction rates

    Energy Technology Data Exchange (ETDEWEB)

    Kustova, Elena V. [Department of Mathematics and Mechanics, Saint Petersburg State University, 198504 Universitetskiy pr., 28, Saint Petersburg (Russian Federation); Kremer, Gilberto M. [Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba (Brazil)

    2014-12-09

    In this work chemically reacting mixtures of viscous flows are analyzed within the framework of Boltzmann equation. By applying a modified Chapman-Enskog method to the system of Boltzmann equations general expressions for the rates of chemical reactions and vibrational energy transitions are determined as functions of two thermodynamic forces: the velocity divergence and the affinity. As an application chemically reacting mixtures of N{sub 2} across a shock wave are studied, where the first lowest vibrational states are taken into account. Here we consider only the contributions from the first four single quantum vibrational-translational energy transitions. It is shown that the contribution to the chemical reaction rate related to the affinity is much larger than that of the velocity divergence.

  4. Reaction rate distribution measurement and the core performance evaluation in the prototype FBR Monju

    Energy Technology Data Exchange (ETDEWEB)

    Usami, S.; Suzuoki, Z.; Deshimaru, T. [Monju Construction Office, Japan Nuclear Cycle Development Institute, Fukui-ken (Japan); Nakashima, F. [Tsuruga head Office, Japan Nuclear Cycle Development Institute, Fukui-ken (Japan)

    2001-07-01

    Monju is a prototype fast breeder reactor designed to have an output of 280 MW (714 MWt), fueled with mixed oxides of plutonium and uranium and cooled by liquid sodium. The principal data on plant design and performance are shown in Table 1. Monju attained initial criticality in April 1994 and the reactor physics tests were carried out from May through November 1994. The reaction rate distribution measurement by the foil activation method was one of these tests and was carried out in order to verify the core performance and to contribute to the development of the core design methods. On the basis of the reaction rate measurement data, the Monju initial core breeding ratio and the power distribution were evaluated. (author)

  5. Assessing Generic Collective Variables for Determining Reaction Rates in Metadynamics Simulations.

    Science.gov (United States)

    Fu, Christopher D; Oliveira, Luiz F L; Pfaendtner, Jim

    2017-03-14

    A persistent challenge in using the metadynamics method is deciding which degrees of freedom, or collective variables, should be biased because these selections are not obvious and require intuition about the system being studied. There are, however, collective variables, which can be constructed with only basic knowledge about the system studied, that provide an opportunity to alleviate this issue. We simulated two different reacting systems where two types of such collective variables (SPRINT coordinates and the collective variable-driven hyperdynamics method) were biased following the infrequent metadynamics method in order to recover the rates of reactions. We demonstrate that both generic collective variables are capable of reproducing the reaction rates of both systems and can enhance the efficiency of the simulation when compared to typical collective variables.

  6. Reaction rate distribution measurement and the core performance evaluation in the prototype FBR Monju

    International Nuclear Information System (INIS)

    Usami, S.; Suzuoki, Z.; Deshimaru, T.; Nakashima, F.

    2001-01-01

    Monju is a prototype fast breeder reactor designed to have an output of 280 MW (714 MWt), fueled with mixed oxides of plutonium and uranium and cooled by liquid sodium. The principal data on plant design and performance are shown in Table 1. Monju attained initial criticality in April 1994 and the reactor physics tests were carried out from May through November 1994. The reaction rate distribution measurement by the foil activation method was one of these tests and was carried out in order to verify the core performance and to contribute to the development of the core design methods. On the basis of the reaction rate measurement data, the Monju initial core breeding ratio and the power distribution were evaluated. (author)

  7. Sensitivity study of explosive nucleosynthesis in Type Ia supernovae: I. Modification of individual thermonuclear reaction rates

    OpenAIRE

    Bravo, Eduardo; Martínez-Pinedo, Gabriel

    2012-01-01

    Background: Type Ia supernovae contribute significantly to the nucleosynthesis of many Fe-group and intermediate-mass elements. However, the robustness of nucleosynthesis obtained via models of this class of explosions has not been studied in depth until now. Purpose: We explore the sensitivity of the nucleosynthesis resulting from thermonuclear explosions of massive white dwarfs with respect to uncertainties in nuclear reaction rates. We put particular emphasis on indentifying ...

  8. A simple formula for local burnup based on constant relative reaction rate per nuclei

    OpenAIRE

    Yuan, Cenxi; Wang, Xuming; Chen, Shengli

    2015-01-01

    A simple and analytical formula is suggested to solve the problems of the local burnup and the isotope distributions. The present method considers two extreme conditions of neutrons penetrating the fuel rod. Based on these considerations, the formula is obtained to calculate the reaction rates of $^{235}$U, $^{238}$U, and $^{239}$Pu and straightforward the local burnup and the isotope distributions. Starting from an initial burnup level, the parameters of the formula are fitted to the reactio...

  9. Measuring the Electrode Kinetics of Surface Confined Electrode Reactions at a Constant Scan Rate

    OpenAIRE

    Guziejewski, Dariusz; Mirceski, Valentin; Jadresko, Dijana

    2014-01-01

    Abstract: The kinetics of surface confined electrode reactions of alizarin, vitamin B12, and vitamin K2 is measured with square-wave voltammetry over a wide pH interval, by applying the recent methodology for kinetic analysis at a constant scan rate [V. Mirceski, D. Guziejewski, K. Lisichkov, Electrochim. Acta 2013, 114, 667–673]. The reliability and the simplicity of the recent methodology is confirmed. The methodology requires analysis of the peak potential separation o...

  10. Reactivity and reaction rate studies on the fourth loading of ZENITH

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, I.R.; Freemantle, R.G.; Reed, D.L.; Wilson, D.J. [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)] (and others)

    1963-08-15

    The determination of the excess reactivity, control rod worths, prompt neutron lifetime, flux fine structure, and reaction rates of various nuclides for the fourth loading of the heated zero energy reactor ZENITH is described. The core contains 7.76 kg of U235, giving a carbon/U235 atom ratio of 7578, and forms the most dilute of the range studied. Comparisons of the experimental results with calculations using multigroup diffusion codes are presented. (author)

  11. Reactivity and reaction rate studies on the fourth loading of ZENITH

    International Nuclear Information System (INIS)

    Cameron, I.R.; Freemantle, R.G.; Reed, D.L.; Wilson, D.J.

    1963-08-01

    The determination of the excess reactivity, control rod worths, prompt neutron lifetime, flux fine structure, and reaction rates of various nuclides for the fourth loading of the heated zero energy reactor ZENITH is described. The core contains 7.76 kg of U235, giving a carbon/U235 atom ratio of 7578, and forms the most dilute of the range studied. Comparisons of the experimental results with calculations using multigroup diffusion codes are presented. (author)

  12. The rate constant for the CO + H2O2 reaction

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2009-01-01

    The rate constant for the reaction CO + H2O2 -> HOCO + OH (R1) at 713 K is determined based on the batch reactor experiments of Baldwin et al. [ R. R. Baldwin, R. W. Walker, S. J. Webster, Combust. Flame 15 (1970) 167] on decomposition of H2O2 sensitized by CO. The value, k(1) (713 K) = 8.1 x 10...

  13. A Review of the Thermodynamic, Transport, and Chemical Reaction Rate Properties of High-temperature Air

    Science.gov (United States)

    Hansen, C Frederick; Heims, Steve P

    1958-01-01

    Thermodynamic and transport properties of high temperature air, and the reaction rates for the important chemical processes which occur in air, are reviewed. Semiempirical, analytic expressions are presented for thermodynamic and transport properties of air. Examples are given illustrating the use of these properties to evaluate (1) equilibrium conditions following shock waves, (2) stagnation region heat flux to a blunt high-speed body, and (3) some chemical relaxation lengths in stagnation region flow.

  14. Reaction rate constants of H-abstraction by OH from large ketones: Measurements and site-specific rate rules

    KAUST Repository

    Badra, Jihad

    2014-01-01

    Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (CO) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (CO), and the prime is used to differentiate different neighboring environments of a methylene group):P1,CO = 7.38 × 10-14 exp(-274 K/T) + 9.17 × 10-12 exp(-2499 K/T) (285-1355 K)S10,CO = 1.20 × 10-11 exp(-2046 K/T) + 2.20 × 10-13 exp(160 K/T) (222-1464 K)S11,CO = 4.50 × 10-11 exp(-3000 K/T) + 8.50 × 10-15 exp(1440 K/T) (248-1302 K)S11′,CO = 3.80 × 10-11 exp(-2500 K/T) + 8.50 × 10-15 exp(1550 K/T) (263-1370 K)S 21,CO = 5.00 × 10-11 exp(-2500 K/T) + 4.00 × 10-13 exp(775 K/T) (297-1376 K) © 2014 the Partner Organisations.

  15. The Rate Constant for the Reaction H + C2H5 at T = 295 - 150K

    Science.gov (United States)

    Pimentel, Andre S.; Payne, Walter A.; Nesbitt, Fred L.; Cody, Regina J.; Stief, Louis J.

    2004-01-01

    The reaction between the hydrogen atom and the ethyl (C2H3) radical is predicted by photochemical modeling to be the most important loss process for C2H5 radicals in the atmospheres of Jupiter and Saturn. This reaction is also one of the major sources for the methyl radicals in these atmospheres. These two simplest hydrocarbon radicals are the initial species for the synthesis of larger hydrocarbons. Previous measurements of the rate constant for the H + C2H5 reaction varied by a factor of five at room temperature, and some studies showed a dependence upon temperature while others showed no such dependence. In addition, the previous studies were at higher temperatures and generally higher pressures than that needed for use in planetary atmospheric models. The rate constant for the reaction H + C2H5 has been measured directly at T = 150, 202 and 295 K and at P = 1.0 Torr He for all temperatures and additionally at P = 0.5 and 2.0 Torr He at T = 202 K. The measurements were performed in a discharge - fast flow system. The decay of the C2H5 radical in the presence of excess hydrogen was monitored by low-energy electron impact mass spectrometry under pseudo-first order conditions. H atoms and C2H5 radicals were generated rapidly and simultaneously by the reaction of fluorine atoms with H2 and C2H6, respectively. The total rate constant was found to be temperature and pressure independent. The measured total rate constant at each temperature are: k(sub 1)(295K) = (1.02+/-0.24)x10(exp -10), k(sub 1)(202K) = (1.02+/-0.22)x10(exp -10) and k(sub 1)(150K) = (0.93+/-0.21)x10(exp -10), all in units of cu cm/molecule/s. The total rate constant derived from all the combined measurements is k(sub 1) = (l.03+/-0.17)x10(exp -10) cu cm/molecule/s. At room temperature our results are about a factor of two higher than the recommended rate constant and a factor of three lower than the most recently published study.

  16. Computer investigations on the asymptotic behavior of the rate coefficient for the annihilation reaction A + A → product and the trapping reaction in three dimensions.

    Science.gov (United States)

    Litniewski, Marek; Gorecki, Jerzy

    2011-06-28

    We have performed intensive computer simulations of the irreversible annihilation reaction: A + A → C + C and of the trapping reaction: A + B → C + B for a variety of three-dimensional fluids composed of identical spherical particles. We have found a significant difference in the asymptotic behavior of the rate coefficients for these reactions. Both the rate coefficients converge to the same value with time t going to infinity but the convergence rate is different: the O(t(-1/2)) term for the annihilation reaction is higher than the corresponding term for the trapping reaction. The simulation results suggest that ratio of the terms is a universal quantity with the value equal to 2 or slightly above. A model for the annihilation reaction based on the superposition approximation predicts the difference in the O(t(-1/2)) terms, but overestimates the value for the annihilation reaction by about 30%. We have also performed simulations for the dimerization process: A + A → E, where E stands for a dimer. The dimerization decreases the reaction rate due to the decrease in the diffusion constant for A. The effect is successfully predicted by a simple model.

  17. A Simple Formula for Local Burnup and Isotope Distributions Based on Approximately Constant Relative Reaction Rate

    Directory of Open Access Journals (Sweden)

    Cenxi Yuan

    2016-01-01

    Full Text Available A simple and analytical formula is suggested to solve the problems of the local burnup and the isotope distributions. The present method considers two extreme conditions of neutrons penetrating the fuel rod. Based on these considerations, the formula is obtained to calculate the reaction rates of 235U, 238U, and 239Pu and straightforward the local burnup and the isotope distributions. Starting from an initial burnup level, the parameters of the formula are fitted to the reaction rates given by a Monte Carlo (MC calculation. Then the present formula independently gives very similar results to the MC calculation from the starting to high burnup level but takes just a few minutes. The relative reaction rates are found to be almost independent of the radius (except (n,γ of  238U and the burnup, providing a solid background for the present formula. A more realistic examination is also performed when the fuel rods locate in an assembly. A combination of the present formula and the MC calculation is expected to have a nice balance between the numerical accuracy and time consumption.

  18. The influence of the quencher concentration on the rate of simple bimolecular reaction: molecular dynamics study.

    Science.gov (United States)

    Litniewski, Marek

    2005-09-22

    The paper presents the results of large-scale molecular dynamics simulations of the irreversible bimolecular reaction A+B --> C+B for the simple liquid composed of mechanically identical soft spheres. The systems with the total number of molecules corresponding to 10(7)-10(9) are considered. The influence of the concentration of a quencher (B) on the surviving probability of A and the reaction rate is analyzed for a wide range of the concentrations and for two significantly different reduced densities. It is shown that the quencher concentration dependence effect (QCDE) is, in fact, a composition of two QCDE effects: the short-time QCDE that increases the reaction rate and the long-time QCDE that decreases it. The paper also analyzes the influence of the concentration on the steady-state rate constant, k(ss), obtained by integrating the surviving probability. The excess in k(ss) due to finite quencher concentration changes the sign from negative to positive while going from low to high concentrations. Generally, the excess is extremely weak. It attains a 1% level only if the concentration is very high.

  19. Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Nickel

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers procedures for measuring reaction rates by the activation reaction 58Ni(n,p)58Co. 1.2 This activation reaction is useful for measuring neutrons with energies above approximately 2.1 MeV and for irradiation times up to about 200 days in the absence of high thermal neutron fluence rates (for longer irradiations, see Practice E 261). 1.3 With suitable techniques fission-neutron fluence rates densities above 107 cm−2·s−1 can be determined. 1.4 Detailed procedures for other fast-neutron detectors are referenced in Practice E 261. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Note—The burnup corrections were com...

  20. Rate Constant and Branching Fraction for the NH2 + NO2 Reaction

    DEFF Research Database (Denmark)

    Klippenstein, Stephen J.; Harding, Lawrence B.; Glarborg, Peter

    2013-01-01

    The NH2 + NO2 reaction has been studied experimentally and theoretically. On the basis of laser photolysis/LIF experiments, the total rate constant was determined over the temperature range 295–625 K as k1,exp(T) = 9.5 × 10–7(T/K)−2.05 exp(−404 K/T) cm3 molecule–1 s–1. This value is in the upper...... range of data reported for this temperature range. The reactions on the NH2 + NO2 potential energy surface were studied using high level ab initio transition state theory (TST) based master equation methods, yielding a rate constant of k1,theory(T) = 7.5 × 10–12(T/K)−0.172 exp(687 K/T) cm3 molecule–1 s...... with the measured overall rate constant but tend to overestimate the branching ratio defined as β = k1a/(k1a + k1b) at lower temperatures. Modest adjustments of the attractive potentials for the reaction yield values of k1a = 4.3 × 10–6(T/K)−2.191 exp(−229 K/T) cm3 molecule–1 s–1 and k1b = 1.5 × 10–12(T/K)0.032 exp...

  1. NMR studies of the equilibria and reaction rates in aqueous solutions of formaldehyde.

    Science.gov (United States)

    Rivlin, Michal; Eliav, Uzi; Navon, Gil

    2015-03-26

    Formaldehyde has an important role in the chemical industry and in biological sciences. In dilute aqueous solutions of formaldehyde only traces of the molecular formaldehyde are present and the predominant species are methylene glycol and in lower concentrations, dimethylene glycol. The chemical equilibria and reaction rates of the hydration of formaldehyde in H2O and D2O solutions at low concentrations were studied by (1)H and (13)C NMR at various conditions of pH (1.8-7.8) and temperature (278-333 K). These measurements became possible by direct detection of formaldehyde (13)C and (1)H peaks. The equilibrium and rate constants of the dimerization reaction of methylene glycol were also measured. The rate constants for both the hydration and the dimerization reactions were measured by a new version of the conventional selective inversion transfer method. This study, together with previous published work, completes the description of dynamics and equilibria of all the processes occurring in dilute aqueous formaldehyde solutions.

  2. The effect of learning models and emotional intelligence toward students learning outcomes on reaction rate

    Science.gov (United States)

    Sutiani, Ani; Silitonga, Mei Y.

    2017-08-01

    This research focused on the effect of learning models and emotional intelligence in students' chemistry learning outcomes on reaction rate teaching topic. In order to achieve the objectives of the research, with 2x2 factorial research design was used. There were two factors tested, namely: the learning models (factor A), and emotional intelligence (factor B) factors. Then, two learning models were used; problem-based learning/PBL (A1), and project-based learning/PjBL (A2). While, the emotional intelligence was divided into higher and lower types. The number of population was six classes containing 243 grade X students of SMAN 10 Medan, Indonesia. There were 15 students of each class were chosen as the sample of the research by applying purposive sampling technique. The data were analyzed by applying two-ways analysis of variance (2X2) at the level of significant α = 0.05. Based on hypothesis testing, there was the interaction between learning models and emotional intelligence in students' chemistry learning outcomes. Then, the finding of the research showed that students' learning outcomes in reaction rate taught by using PBL with higher emotional intelligence is higher than those who were taught by using PjBL. There was no significant effect between students with lower emotional intelligence taught by using both PBL and PjBL in reaction rate topic. Based on the finding, the students with lower emotional intelligence were quite hard to get in touch with other students in group discussion.

  3. Transfusion reactions in pediatric compared with adult patients: a look at rate, reaction type, and associated products.

    Science.gov (United States)

    Oakley, Fredrick D; Woods, Marcella; Arnold, Shanna; Young, Pampee P

    2015-03-01

    The majority of reports on transfusion reactions address adult patients. Less is known about the types, incidence, and other clinical details of transfusion reactions in pediatric populations. Furthermore, to our knowledge, there have been no previous reports directly comparing these aspects between adults and pediatric patient populations to assess if there are differences. Between the period of January 1, 2011, and February 1, 2013, all reported adult and pediatric transfusion reactions at Vanderbilt University Medical Center (VUMC) were evaluated by transfusion medicine clinical service. The information was subsequently shared with the hemovigilance database. Data provided to hemovigilance included age, sex, blood product associated with the reaction, severity of the reaction, and the type of transfusion reactions. These were collated with hospital and blood bank information system-acquired data on overall admission and product transfusion. A total of 133,671 transfusions were performed at VUMC during the study period including 20,179 platelet (PLT) transfusions, 31,605 plasma transfusions, 79,933 red blood cell (RBC) transfusions, and 2154 cryoprecipitate transfusions. Over the same period, 108 pediatric and 277 adult transfusion reactions were recorded. This corresponds to an incidence of 6.2 reactions per 1000 transfusions within the pediatric (age reactions per 1000 transfusions within the adult population. In both adult and pediatric populations, transfusion reactions were most commonly associated with PLT, followed by RBC, and then plasma transfusions. Within the pediatric population, subset analysis identified multiple differences when compared to the adult population, including an increased incidence of allergic transfusion reactions (2.7/1000 vs. 1.1/1000, p reactions (1.9/1000 vs. 0.47/1000, p reactions (0.29/1000 vs. 0.078/1000, p reaction incidence was the same between sexes in adults, in pediatric patients, reactions were more common in male

  4. Effect of Solvents on the Product Distribution and Reaction Rate of a Buchwald-Hartwig Amination Reaction

    DEFF Research Database (Denmark)

    Christensen, H.; Kiil, Søren; Dam-Johansen, Kim

    2006-01-01

    The Buchwald-Hartwig amination reaction between p-bromotoluene and piperazine in the presence of the homogeneous catalytic system Pd(dba)(2)/(+/-)-BINAP and the base NaO-t-Bu was investigated in two different classes of solvents: aprotic, nonpolar and aprotic, polar. The reaction was carried out...... solvent for the Buchwald-Hartwig amination reaction under the conditions applied was m-xylene....

  5. Kinetic Modeling of the Reaction Rate for Quartz and Carbon Pellet

    Science.gov (United States)

    Li, Fei; Tangstad, Merete

    2018-04-01

    Kinetic modeling of quartz and carbon pellet at temperatures of 1898 K, 1923 K, and 1948 K (1625 °C, 1650 °C, and 1675 °C) was investigated in this study. The carbon materials used were charcoal, coke, coal, and preheated coal. The overall SiC producing reaction can be described by the reaction SiO2 + 3C = SiC + 2CO. In the SiC-producing step, the reaction rate of quartz and carbon pellet can be expressed as {d{ pct}}/dt = ( {1 - 0.40 × X_{fix - C}^{ - 0.86} × FC × {pct}} ) × A × \\exp ( { - E/{{RT}}} ) The carbon factor F C was used to describe the influence of different carbon materials that effect the gas-solid interface reaction. For charcoal, coke, coal, and preheated coal, the F C values were 0.83, 0.80, 0.94, and 0.83, respectively. The pre-exponential factor A values for the preceding four carbon materials were 1.06 × 1016 min-1, 4.21 × 1015 min-1, 3.85 × 109 min-1, and 1.00 × 1025 min-1, respectively. The activation energies E for the SiC-producing step were 570, 563, 336, and 913 kJ/mole for charcoal, coke, coal, and preheated coal pellets, respectively.

  6. Standard Test Method for Measuring Reaction Rates by Analysis of Barium-140 From Fission Dosimeters

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method describes two procedures for the measurement of reaction rates by determining the amount of the fission product 140Ba produced by the non-threshold reactions 235U(n,f), 241Am(n,f), and 239Pu(n,f), and by the threshold reactions 238U(n,f), 237Np(n,f), and 232Th(n,f). 1.2 These reactions produce many fission products, among which is 140Ba, having a half-life of 12.752 days. 140Ba emits gamma rays of several energies; however, these are not easily detected in the presence of other fission products. Competing activity from other fission products requires that a chemical separation be employed or that the 140Ba activity be determined indirectly by counting its daughter product 140La. This test method describes both procedure (a), the nondestructive determination of 140Ba by the direct counting of 140La several days after irradiation, and procedure (b), the chemical separation of 140Ba and the subsequent counting of 140Ba or its daughter 140La. 1.3 With suitable techniques, fission neutron fl...

  7. Sensitivity to Thermonuclear Reaction Rates in Modeling the Abundance Anomalies of NGC 2419

    Science.gov (United States)

    Dermigny, J. R.; Iliadis, C.

    2017-10-01

    Abundance anomalies in globular clusters provide strong evidence for multiple stellar populations within each cluster. These populations are usually interpreted as distinct generations, with the currently observed second-generation stars having formed in part from the ejecta of massive, first-generation “polluter” stars, giving rise to the anomalous abundance patterns. The precise nature of the polluters and their enrichment mechanism are still unclear. Even so, the chemical abundances measured in second-generation stars within the globular cluster NGC 2419 provide insight into this puzzling process. Previous work used Monte Carlo nuclear reaction network calculations to constrain the temperature-density conditions that could reproduce the observed abundances, thereby placing robust limits on the origins of the polluter material. The effect of individual reaction rates on these conditions has not been studied, however. Thus, we perform an exhaustive sensitivity study on the nuclear physics input to determine which reactions have the greatest impact on these predictions. We find that the {}30Si(p,γ){}31P, {}37Ar(p,γ){}38K, {}38Ar(p,γ){}39K, and {}39K(p,γ){}40Ca reactions are all critical in determining the temperature-density conditions, and ultimately, the origins of the polluter material. We conclude with recommendations for future experiments.

  8. Kinetic Modeling of the Reaction Rate for Quartz and Carbon Pellet

    Science.gov (United States)

    Li, Fei; Tangstad, Merete

    2018-01-01

    Kinetic modeling of quartz and carbon pellet at temperatures of 1898 K, 1923 K, and 1948 K (1625 °C, 1650 °C, and 1675 °C) was investigated in this study. The carbon materials used were charcoal, coke, coal, and preheated coal. The overall SiC producing reaction can be described by the reaction SiO2 + 3C = SiC + 2CO. In the SiC-producing step, the reaction rate of quartz and carbon pellet can be expressed as {d{ pct}}/dt = ( {1 - 0.40 × X_{fix - C}^{ - 0.86} × FC × {pct}} ) × A × \\exp ( { - E/{{RT}}} ) The carbon factor F C was used to describe the influence of different carbon materials that effect the gas-solid interface reaction. For charcoal, coke, coal, and preheated coal, the F C values were 0.83, 0.80, 0.94, and 0.83, respectively. The pre-exponential factor A values for the preceding four carbon materials were 1.06 × 1016 min-1, 4.21 × 1015 min-1, 3.85 × 109 min-1, and 1.00 × 1025 min-1, respectively. The activation energies E for the SiC-producing step were 570, 563, 336, and 913 kJ/mole for charcoal, coke, coal, and preheated coal pellets, respectively.

  9. Rate constants for the reaction of CF3O radicals with hydrocarbons at 298 K

    DEFF Research Database (Denmark)

    Kelly, C.; Treacy, J.; Sidebottom, H.W.

    1993-01-01

    Rate constant ratios of the reactions of CF3O radicals with a number of hydrocarbons have been determined at 298 +/- 2 K and atmospheric pressure using a relative rate method. Using a previously determined value k(CF30 + C2H6) = 1.2 x 10(-12) cm3 molecule-1 s-1 these rate constant ratios provide...... estimates of the rate constants: k(CF3O + CH4) = (1.2 +/- 0.1) x 10(-14), k(CF3O + c-C3H6) = (3.6 +/- 0.2) x 10(-13), k(CF3O + C3H8) = (4.7 +/- 0.7) x 10(-12), k(CF3O + (CH3)3CH) = (7.2 +/- 0.5) x 10(-12), k(CF3O + C2H4) = (3.0 +/- 0.1) x 10(-11) and k(CF3O + C6H6) = (3.6 +/- 0.1) x 10(-11) cm3 molecule-1 s......-1. The importance of the reactions of CF3O radicals with hydrocarbons under atmospheric conditions is discussed....

  10. Reaction rate of a composite core-shell nanoreactor with multiple nanocatalysts.

    Science.gov (United States)

    Galanti, Marta; Fanelli, Duccio; Angioletti-Uberti, Stefano; Ballauff, Matthias; Dzubiella, Joachim; Piazza, Francesco

    2016-07-27

    We present a detailed theory for the total reaction rate constant of a composite core-shell nanoreactor, consisting of a central solid core surrounded by a hydrogel layer of variable thickness, where a given number of small catalytic nanoparticles are embedded at prescribed positions and are endowed with a prescribed surface reaction rate constant. Besides the precise geometry of the assembly, our theory accounts explicitly for the diffusion coefficients of the reactants in the hydrogel and in the bulk as well as for their transfer free energy jump upon entering the hydrogel shell. Moreover, we work out an approximate analytical formula for the overall rate constant, which is valid in the physically relevant range of geometrical and chemical parameters. We discuss in depth how the diffusion-controlled part of the rate depends on the essential variables, including the size of the central core. In particular, we derive some simple rules for estimating the number of nanocatalysts per nanoreactor for an efficient catalytic performance in the case of small to intermediate core sizes. Our theoretical treatment promises to provide a very useful and flexible tool for the design of superior performing nanoreactor geometries with optimized nanoparticle load.

  11. Clusters of reaction rates and concentrations in protein networks such as the phosphotransferase system.

    Science.gov (United States)

    Härdin, Hanna M; Zagaris, Antonios; Willms, Allan R; Westerhoff, Hans V

    2014-01-01

    To understand the functioning of living cells, it is often helpful or even necessary to exploit inherent timescale disparities and focus on long-term dynamic behaviour. In the present study, we explore this type of behaviour for the biochemical network of the phosphotransferase system. We show that, during the slow phase that follows a fast initial transient, the network reaction rates are partitioned into clusters corresponding to connected parts of the reaction network. Rates within any of these clusters assume essentially the same value: differences within each cluster are vastly smaller than that from one cluster to another. This rate clustering induces an analogous clustering of the reactive compounds: only the molecular concentrations on the interface between these clusters are produced and consumed at substantially different rates and hence change considerably during the slow phase. The remaining concentrations essentially assume their steady-state values already by the end of the transient phase. Further, we find that this clustering phenomenon occurs for a large number of parameter values and also for models with different topologies; to each of these models, there corresponds a particular network partitioning. Our results show that, in spite of its complexity, the phosphotransferase system tends to behave in a rather simple (yet versatile) way. The persistence of clustering for the perturbed models we examined suggests that it is likely to be encountered in various environmental conditions, as well as in other signal transduction pathways with network structures similar to that of the phosphotransferase system. © 2013 FEBS.

  12. Astrophysical reaction rates from a symmetry-informed first-principles perspective

    Science.gov (United States)

    Dreyfuss, Alison; Launey, Kristina; Baker, Robert; Draayer, Jerry; Dytrych, Tomas

    2017-01-01

    With a view toward a new unified formalism for studying bound and continuum states in nuclei, to understand stellar nucleosynthesis from a fully ab initio perspective, we studied the nature of surface α-clustering in 20Ne by considering the overlap of symplectic states with cluster-like states. We compute the spectroscopic amplitudes and factors, α-decay width, and absolute resonance strength - characterizing major contributions to the astrophysical reaction rate through a low-lying 1- resonant state in 20Ne. As a next step, we consider a fully microscopic treatment for the n+4 He system, based on the successful first-principles No-Core Shell Model/Resonating Group Method (NCSM/RGM) for light nuclei, but with the capability to reach intermediate-mass nuclei. The new model takes advantage of the symmetry-based concept central to the Symmetry-Adapted No-Core Shell Model (SA-NCSM) to reduce computational complexity in physically-informed and methodical way, with sights toward first-principles calculations of rates for important astrophysical reactions, such as the 23 Al(p , γ) 24 Si reaction, believed to have a strong influence on X-ray burst light curves. Supported by the U.S. NSF (OCI-0904874, ACI -1516338) and the U.S. DOE (DE-SC0005248), and benefitted from computing resources provided by Blue Waters and the LSU Center for Computation & Technology.

  13. Reentry blackout prediction for atmospheric reentry demonstrator mission considering uncertainty in chemical reaction rate model

    Science.gov (United States)

    Jung, Minseok; Kihara, Hisashi; Abe, Ken-ichi; Takahashi, Yusuke

    2018-01-01

    A numerical simulation model of plasma flows and electromagnetic waves around a vehicle was developed to predict a radio frequency blackout. Plasma flows in the shock layer and the wake region were calculated using a computational fluid dynamics technique with a three-dimensional model. A finite-catalytic wall condition known to affect plasma properties, such as the number density of electrons, was considered for accurate prediction. A parametric study was performed to investigate the effect of uncertainty in the chemical reaction rate model on evaluating a radio frequency blackout. The behavior of electromagnetic waves in plasma was investigated using a frequency-dependent finite-difference time-domain method. Numerical simulations of reentry blackout were performed for the Atmospheric Reentry Demonstrator mission at various altitudes. The plasma flows and the complex movement of electromagnetic waves around the Atmospheric Reentry Demonstrator vehicle were clarified. The predicted signal loss profile was then directly compared with the experimental flight data to validate the present models. The numerical results generally reproduced the trends over altitudes of the measured data. It is suggested that the present simulation model can be used to investigate the radio frequency blackout and signal loss of electromagnetic waves in the communication of a reentry vehicle. It was confirmed that high associative ionization reaction rates contribute to reducing the electron density in the wake region and radio frequency blackout. It is suggested that the accuracy of predicting the signal loss improved when considering the uncertainty in the chemical reaction model for associative ionizations.

  14. Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    DESIG: E 263 09 ^TITLE: Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron ^SIGNUSE: Refer to Guide E 844 for guidance on the selection, irradiation, and quality control of neutron dosimeters. Refer to Practice E 261 for a general discussion of the determination of fast-neutron fluence rate with threshold detectors. Pure iron in the form of foil or wire is readily available and easily handled. Fig. 1 shows a plot of cross section as a function of neutron energy for the fast-neutron reaction 54Fe(n,p)54Mn (1). This figure is for illustrative purposes only to indicate the range of response of the 54Fe(n,p)54Mn reaction. Refer to Guide E 1018 for descriptions of recommended tabulated dosimetry cross sections. 54Mn has a half-life of 312.13 days (3) (2) and emits a gamma ray with an energy of 834.845 keV (5). (2) Interfering activities generated by neutron activation arising from thermal or fast neutron interactions are 2.57878 (46)-h 56Mn, 44.95-d (8) 59Fe, and 5.27...

  15. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    Science.gov (United States)

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.

  16. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reacting flows

    Science.gov (United States)

    Chinitz, W.

    1986-01-01

    A computationally-viable model describing the interaction between fluid-mechanical turbulence and finite-rate combustion reactions, principally in high-speed flows was developed. Chemical kinetic mechanisms, complete and global, were developed describing the finite rate reaction of fuels of interest to NASA. These fuels included principally hydrogen and silane, although a limited amount of work involved hydrocarbon fuels as well.

  17. High-precision (p,t) reaction measurement to determine Ne-18(alpha,p)Na-21 reaction rates

    NARCIS (Netherlands)

    Matic, A.; van den Berg, A. M.; Harakeh, M. N.; Wörtche, H. J.; Berg, G. P. A.; Couder, M.; Fisker, J. L.; Goerres, J.; LeBlanc, P.; O'Brien, S.; Wiescher, M.; Fujita, K.; Hatanaka, K.; Sakemi, Y.; Shimizu, Y.; Tameshige, Y.; Tamii, A.; Yosoi, M.; Adachi, T.; Fujita, Y.; Shimbara, Y.; Fujita, H.; Wakasa, T.; Hess, P. O.; Brown, B. A.; Schatz, H.

    2009-01-01

    x-ray bursts are identified as thermonuclear explosions in the outer atmosphere of accreting neutron stars. The thermonuclear runaway is fueled by the alpha p process that describes a sequence of (alpha,p) reactions triggered by the Ne-18(alpha,p)Na-21 breakout reaction from the hot CNO cycles. We

  18. Detection rates of trichomonas vaginalis, in different age groups, using real-time polymerase chain reaction.

    Science.gov (United States)

    Stemmer, Shlomo M; Adelson, Martin E; Trama, Jason P; Dorak, M Tevfik; Mordechai, Eli

    2012-10-01

    The study aimed to compare the overall detection rate of Trichomonas vaginalis to Chlamydia trachomatis and Neiserria gonorrhea and report detection rates by age groups. Real-time polymerase chain reaction was used to detect the presence of T. vaginalis, C. trachomatis, and N. gonorrhea in cervical samples obtained from patients during gynecological examinations. A total of 78,428, 119,451, and 117,494 samples from women age 12 to 75 years were retrospectively analyzed for the presence of T. vaginalis, C. trachomatis, and N. gonorrhea, respectively. T. vaginalis and C. trachomatis detection rates in Florida, New Jersey, and Texas were calculated in different age groups. The overall detection rate was 4.3% for T. vaginalis, 3.8% for C. trachomatis, and 0.6% for N. gonorrhea. The overall detection rate of T. vaginalis in Florida was 4.7% (n = 22,504), in New Jersey was 3.6% (n = 22,249), and in Texas was 4.5% (n = 33,675). Calculation of infection rates with T. vaginalis revealed differences between selected age groups with the highest detection rates in all 3 states found in age group 46 to 55 years (6.2%), which was higher than the overall detection rates in other age groups (p rate was found in age group 12 to 25 years (7.3%). The overall infection rates of T. vaginalis were higher compared with those of C. trachomatis and N. gonorrhea. Detection rates of T. vaginalis were found to be highest among women age 46 to 55 years and may be due to T. vaginalis infiltrating the subepithelial glands and being detected only during hormone-induced or antibiotic-induced changes in the vaginal flora.

  19. Experimental determination of reaction rates of water. Hydrogen exchange of tritium with hydrophobic catalysts

    International Nuclear Information System (INIS)

    Bixel, J.C.; Hartzell, B.W.; Park, W.K.

    1976-01-01

    This study was undertaken to obtain data needed for further development of a process for the enrichment and removal of tritium from the water associated with light-water reactors, fuel-reprocessing plants, and tritium-handling laboratories. The approach is based on the use of antiwetting, hydrophobic catalysts which permit the chemical exchange reactions between liquid water and gaseous hydrogen in direct contact, thus eliminating problems of catalyst deactivation and the complexity of reactor design normally associated with current catalytic-detritiation techniques involving gas-phase catalysis. An apparatus and procedure were developed for measuring reaction rates of water-hydrogen chemical exchange with hydrophobic catalysts. Preliminary economic evaluations of the process were made as it might apply to the AGNS fuel reprocessing plant

  20. Channel specific rate constants for reactions of O(1D) with HCl and HBr

    Science.gov (United States)

    Wine, P. H.; Wells, J. R.; Ravishankara, A. R.

    1986-01-01

    The absolute rate coefficients and product yields for reactions of O(1D) with HCl(1) and HBr(2) at 287 K are presently determined by means of the time-resolved resonance fluorescence detection of O(3P) and H(2S) in conjunction with pulsed laser photolysis of O3/HX/He mixtures. Total rate coefficients for O(1D) removal are found to be, in units of 10 to the -10th cu cm/molecule per sec, k(1) = 1.50 + or - 0.18 and k(2) 1.48 + or - 0.16; the absolute accuracy of these rate coefficients is estimated to be + or - 20 percent.

  1. Eight-dimensional quantum reaction rate calculations for the H+CH4 and H2+CH3 reactions on recent potential energy surfaces.

    Science.gov (United States)

    Zhou, Yong; Zhang, Dong H

    2014-11-21

    Eight-dimensional (8D) transition-state wave packet simulations have been performed on two latest potential energy surfaces (PES), the Zhou-Fu-Wang-Collins-Zhang (ZFWCZ) PES [Y. Zhou, B. Fu, C. Wang, M. A. Collins, and D. H. Zhang, J. Chem. Phys. 134, 064323 (2011)] and the Xu-Chen-Zhang (XCZ)-neural networks (NN) PES [X. Xu, J. Chen, and D. H. Zhang, Chin. J. Chem. Phys. 27, 373 (2014)]. Reaction rate constants for both the H+CH4 reaction and the H2+CH3 reaction are calculated. Simulations of the H+CH4 reaction based on the XCZ-NN PES show that the ZFWCZ PES predicts rate constants with reasonable high accuracy for low temperatures while leads to slightly lower results for high temperatures, in line with the distribution of interpolation error associated with the ZFWCZ PES. The 8D H+CH4 rate constants derived on the ZFWCZ PES compare well with full-dimensional 12D results based on the equivalent m-ZFWCZ PES, with a maximum relative difference of no more than 20%. Additionally, very good agreement is shown by comparing the 8D XCZ-NN rate constants with the 12D results obtained on the ZFWCZ-WM PES, after considering the difference in static barrier height between these two PESs. The reaction rate constants calculated for the H2+CH3 reaction are found to be in good consistency with experimental observations.

  2. A kinetic-theory approach for computing chemical-reaction rates in upper-atmosphere hypersonic flows.

    Science.gov (United States)

    Gallis, Michael A; Bond, Ryan B; Torczynski, John R

    2009-09-28

    Recently proposed molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction-rate information) are investigated for chemical reactions occurring in upper-atmosphere hypersonic flows. The new models are in good agreement with the measured Arrhenius rates for near-equilibrium conditions and with both measured rates and other theoretical models for far-from-equilibrium conditions. Additionally, the new models are applied to representative combustion and ionization reactions and are in good agreement with available measurements and theoretical models. Thus, molecular-level chemistry modeling provides an accurate method for predicting equilibrium and nonequilibrium chemical-reaction rates in gases.

  3. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reacting flows

    Science.gov (United States)

    Foy, E.; Ronan, G.; Chinitz, W.

    1982-01-01

    A principal element to be derived from modeling turbulent reacting flows is an expression for the reaction rates of the various species involved in any particular combustion process under consideration. A temperature-derived most-likely probability density function (pdf) was used to describe the effects of temperature fluctuations on the Arrhenius reaction rate constant. A most-likely bivariate pdf described the effects of temperature and species concentrations fluctuations on the reaction rate. A criterion is developed for the use of an "appropriate" temperature pdf. The formulation of models to calculate the mean turbulent Arrhenius reaction rate constant and the mean turbulent reaction rate is considered and the results of calculations using these models are presented.

  4. Quantum chemical and conventional TST calculations of rate constants for the OH + alkane reaction

    International Nuclear Information System (INIS)

    Bravo-Perez, Graciela; Alvarez-Idaboy, J. Raul; Jimenez, Annia Galano; Cruz-Torres, Armando

    2005-01-01

    Reactions of OH with methane, ethane, propane, i-butane, and n-butane have been modeled using ab initio (MP2) and hybrid DFT (BHandHLYP) methods, and the 6-311G(d,p) basis set. Furthermore, single-point calculations at the CCSD(T) level were carried out at the optimized geometries. The rate constants have been calculated using the conventional transition-state theory (CTST). Arrhenius equations are proposed in the temperature range of 250-650 K. Hindered Internal Rotation partition functions calculations were explicitly carried out and included in the total partition functions. These corrections showed to be relevant in the determination of the pre-exponential parameters, although not so important as in the NO 3 + alkane reactions [G. Bravo-Perez, J.R. Alvarez-Idaboy, A. Cruz-Torres, M.E. Ruiz, J. Phys. Chem. A 106 (2002) 4645]. The explicit participation of the tunnel effect has been taken into account. The calculated rate coefficients provide a very good agreement with the experimental data. The best agreement for the overall alkane + OH reactions seemed to occur when the BHandHLYP geometries and partition functions are used. For propane and i-butane, in addition to the respective secondary and tertiary H-abstraction channels, the primary one has been considered. These pathways are confirmed to be significant in spite of the large differences in activation energies between primary and secondary or primary and tertiary channels, respectively of propane and i-butane reactions and should not be disregarded

  5. Quantitative genetics of continuous reaction norms: thermal sensitivity of caterpillar growth rates.

    Science.gov (United States)

    Kingsolver, Joel G; Ragland, Gregory J; Shlichta, J Gwen

    2004-07-01

    A continuous reaction norm or performance curve represents a phenotypic trait of an individual or genotype in which the trait value may vary with some continuous environmental variable. We explore patterns of genetic variation in thermal performance curves of short-term caterpillar growth rate in a population of Pieris rapae. We compare multivariate methods, which treat performance at each test temperature as a distinct trait, with function-valued methods that treat a performance curve as a continuous function. Mean growth rate increased with increasing temperatures from 8 to 35 degrees C, was highest at 35 degrees C, and declined at 40 degrees C. There was substantial and significant variation among full-sib families in their thermal performance curves. Estimates of broad-sense genetic variances and covariances showed that genetic variance in growth rate increased more than 30-fold from low (8-11 degrees C) to high (35-40 degrees C) temperatures, even after differences in mean growth rate across temperatures were removed. Growth rate at 35 and 40 degrees C was negatively correlated genetically, suggesting a genetic trade-off in growth rate at these temperatures; this trade-off may represent either a generalist-specialist trade-off and/or variation in the optimal temperature for growth. The estimated genetic variance-covariance function (G function), the function-valued analog of the variance-covariance matrix (G matrix), was quite bumpy compared with the estimated G matrix; and results of principal component analyses of the G function were difficult to interpret. The use of orthogonal polynomials as the basis functions in current function-valued estimation methods may generate artifacts when the true G function has prominent local features, such as strong negative covariances at nearby temperatures (e.g. at 35 and 40 degrees C); this may be a particular issue for thermal performance curves and other highly nonlinear reaction norms.

  6. PRICE REACTION TO CORPORATE GOVERNANCE RATING ANNOUNCEMENTS AT THE ISTANBUL STOCK EXCHANGE

    Directory of Open Access Journals (Sweden)

    Aslıhan BOZCUK

    2010-01-01

    Full Text Available The purpose of this paper is to investigate the price reaction to corporate governance rating announcements at the Istanbul Stock Exchange and to identify the factors which could be driving the results. Using an event study analysis framework, the cumulative abnormal returns (AR are calculated for various event windows surrounding the announcement day for each firm. The average AR is 0.5% on announcement day, followed by all positive average cumulative ARs for the next 18 days following the announcement. In the multivariate regression analysis, a number of variables are used to proxy for factors suggested as relevant by the agency theory and the corporate governance literature; such as the size of the Audit Committee, the size of the Board of Directors, Corporate Governance Rating of each firm, number of non-executive members on the board, percentage of firm’s stock traded on the market, number of blockholders, family ownership, the price-earnings ratio, the market-to-book ratio and firm size. Audit committee size (P: 0.012 and board size (P: 0.043 together explained 32% of the variation in announcement day returns (F: 5.215, P: 0.018. Surprisingly, the corporate governance rating per se was not found to be significant. Overall, the price reaction on announcement day tends to be higher for firms with larger boards and smaller audit committees.

  7. Rate of information processing and reaction time of aircraft pilots and non-pilots

    Directory of Open Access Journals (Sweden)

    Werner Barkhuizen

    2002-09-01

    Full Text Available Reaction time and rate of information processing are cited as critical components in the make-up of pilots. A need was identified to establish the validity of various chronometric measures in the selection of pilots. Fifty-eight military and commercial pilots and twenty non-pilots were subjected to Schepers’ Computerised Information Processing Test Battery, which measures reaction time, form discrimination time, colour discrimination time, rate of information processing (perceptual and rate of information processing (conceptual. Five hypotheses and one postulate were formulated and tested. The results indicate that pilots could be differentiated from non-pilots with 92,3% accuracy. However, the results need to be cross-validated before they are used for selection. Opsomming Reaksietyd en tempo van inligtingverwerking word as kritieke komponente in die samestelling van vlieëniers beskou. ‘n Behoefte is geïdentifiseer om die geldigheid van verskeie chronometriese metinge in vlieënierskeuring te bepaal. Agt en vyftig militêre en kommersiële vlieëniers en twintig nie-vlieëniers is onderwerp aan Schepers se Gerekenariseerde Inligtingverwerkingstoets-battery wat reaksietyd, vormdiskriminasietyd, kleurdiskriminasietyd, tempo van inligtingverwerking (perseptueel en tempo van inligtingverwerking (konseptueel meet. Vyf hipoteses en een postulaat is gestel en getoets. Die resultate dui daarop dat vlieëniers met 92,3% akkuraatheid van nievlieëniers onderskei kan word. Die resultate behoort egter eers gekruisvalideer te word voordat dit finaal vir keuring gebruik kan word.

  8. Direct Determination of the Simplest Criegee Intermediate (CH2OO) Self Reaction Rate.

    Science.gov (United States)

    Buras, Zachary J; Elsamra, Rehab M I; Green, William H

    2014-07-03

    The rate of self-reaction of the simplest Criegee intermediate, CH2OO, is of importance in many current laboratory experiments where CH2OO concentrations are high, such as flash photolysis and alkene ozonolysis. Using laser flash photolysis while simultaneously probing both CH2OO and I atom by direct absorption, we can accurately determine absolute CH2OO concentrations as well as the UV absorption cross section of CH2OO at our probe wavelength (λ = 375 nm), which is in agreement with a recently published value. Knowing absolute concentrations we can accurately measure kself = 6.0 ± 2.1 × 10(-11)cm(3) molecule(-1) s(-1) at 297 K. We are also able to put an upper bound on the rate coefficient for CH2OO + I of 1.0 × 10(-11) cm(3) molecule(-1) s(-1). Both of these rate coefficients are at least a factor of 5 smaller than other recent measurements of the same reactions.

  9. Oxidative removal of quinclorac by permanganate through a rate-limiting [3 + 2] cycloaddition reaction.

    Science.gov (United States)

    Song, Dean; Cheng, Hanyang; Jiang, Xiaohua; Sun, Huiqing; Kong, Fanyu; Liang, Rongning; Qiang, Zhimin; Liu, Huijuan; Qu, Jiuhui

    2018-04-05

    Quinclorac, a widely used herbicide in agriculture, has been recognized as an emerging environmental pollutant owing to its long persistence and potential risk to humans. However, no related information is available on the degradation of quinclorac by employing oxidants. Herein, the reactivity of quinclorac with permanganate was systematically investigated in water by combining experimental and computational approaches. The reaction followed overall second-order kinetics pointing to a bimolecular rate-limiting step. The second-order rate constant was found to be 3.47 × 10-3 M-1 s-1 at 25 °C, which was independent of pH over the range from 5 to 9 and was dependent on temperature over the range from 19 to 35 °C. The initial product was identified by UPLC-Q-TOF-MS to be mono-hydroxylated quinclorac, which was more susceptible to further oxidation. The result could be supported by the complete simulation of the reaction process in DFT calculations, indicating the [3 + 2] cycloaddition oxidation of the benzene ring in the rate-limiting step. The plausible mechanism was then proposed, accompanied by the analysis of the HOMO indicating the hydroxylation position and of the ESP suggesting a more electron-rich moiety. Considering the high effectiveness and low toxicity, permanganate oxidation was considered to be a very promising technique for removing quinclorac from aquatic environments.

  10. Thermodynamic stability of elementary chemical reactions proceeding at finite rates revisited using Lyapunov function analysis

    International Nuclear Information System (INIS)

    Burande, Chandrakant S.; Bhalekar, Anil A.

    2005-01-01

    The thermodynamic stability of a few representative elementary chemical reactions proceeding at finite rates has been investigated using the recently proposed thermodynamic Lyapunov function and following the steps of Lyapunov's second method (also termed as the direct method) of stability of motion. The thermodynamic Lyapunov function; L s , used herein is the excess rate of entropy production in the thermodynamic perturbation space, which thereby inherits the dictates of the second law of thermodynamics. This Lyapunov function is not the same as the excess entropy rate that one encounters in thermodynamic (irreversible) literature. The model chemical conversions studied in this presentation are A+B→v x X and A+B↔ν x X. For the sake of simplicity, the thermal effects of chemical reactions have been considered as not adding to the perturbation as our main aim was to demonstrate how one should use systematically the proposed thermodynamic Lyapunov function following the steps of Lyapunov's second method of stability of motion. The domains of thermodynamic stability under the constantly acting small disturbances, thermodynamic asymptotic stability and thermodynamic instability in these model systems get established

  11. Rate Constant of the Reaction between CH3O2 Radicals and OH Radicals Revisited.

    Science.gov (United States)

    Assaf, Emmanuel; Song, Bo; Tomas, Alexandre; Schoemaecker, Coralie; Fittschen, Christa

    2016-11-17

    The reaction between CH 3 O 2 and OH radicals has been studied in a laser photolysis cell using the reaction of F atoms with CH 4 and H 2 O for the simultaneous generation of both radicals, with F atoms generated through 248 nm photolysis of XeF 2 . An experimental setup combining cw-Cavity Ring Down Spectroscopy (cw-CRDS) and high repetition rate laser-induced fluorescence (LIF) to a laser photolysis cell has been used. The absolute concentration of CH 3 O 2 was measured by cw-CRDS, while the relative concentration of OH(v = 0) radicals was determined by LIF. To remove dubiety from the quantification of CH 3 O 2 by cw-CRDS in the near-infrared, its absorption cross section has been determined at 7489.16 cm -1 using two different methods. A rate constant of k 1 = (1.60 ± 0.4) × 10 -10 cm 3 s -1 has been determined at 295 K, nearly a factor of 2 lower than an earlier determination from our group ((2.8 ± 1.4) × 10 -10 cm 3 s -1 ) using CH 3 I photolysis as a precursor. Quenching of electronically excited I atoms (from CH 3 I photolysis) in collision with OH(v = 0) is suspected to be responsible for a bias in the earlier, fast rate constant.

  12. Ab initio thermal rate calculations of HO + HO = O(3P) + H2O reaction and isotopologues.

    Science.gov (United States)

    Nguyen, Thanh Lam; Stanton, John F

    2013-04-04

    The forward and reverse reactions, HO + HO ⇌ O((3)P) + H2O, which play roles in both combustion and laboratory studies, were theoretically characterized with a master equation approach to compute thermal reaction rate constants at both the low and high pressure limits. Our ab initio k(T) results for the title reaction and two isotopic variants agree very well with experiments (within 15%) over a wide temperature range. The calculated reaction rate shows a distinctly non-Arrhenius behavior and a strong curvature consistent with the experiment. This characteristic behavior is due to effects of positive barrier height and quantum mechanical tunneling. Tunneling is very important and contributes more than 70% of total reaction rate at room temperature. A prereactive complex is also important in the overall reaction scheme.

  13. Ground reaction forces and loading rates associated with parkour and traditional drop landing techniques.

    Science.gov (United States)

    Puddle, Damien L; Maulder, Peter S

    2013-01-01

    Due to the relative infancy of Parkour there is currently a lack of empirical evidence on which to base specific technique instruction upon. The purpose of this study was to compare the ground reaction forces and loading rates involved in two Parkour landing techniques encouraged by local Parkour instructors and a traditional landing technique recommended in the literature. Ten male participants performed three different drop landing techniques (Parkour precision, Parkour roll, and traditional) onto a force plate. Compared to the traditional technique the Parkour precision technique demonstrated significantly less maximal vertical landing force (38%, p rate (54%, p rate (63%, p rates than the Parkour roll technique as no significant differences were found. The landing techniques encouraged by local Parkour instructors such as the precision and roll appear to be more appropriate for Parkour practitioners to perform than a traditional landing technique due to the lower landing forces and loading rates experienced. Key pointsParkour precision and Parkour roll landings were found to be safer than a traditional landing technique, resulting in lower maximal vertical forces, slower times to maximal vertical force and ultimately lesser loading rates.Parkour roll may be more appropriate (safer) to utilize than the Parkour precision during Parkour landing scenarios.The Parkour landing techniques investigated n this study may be beneficial for landing by non-Parkour practitioners in everyday life.

  14. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms

    Directory of Open Access Journals (Sweden)

    Frank Seebacher

    2017-08-01

    Full Text Available Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM and the AMP-activated protein kinase (AMPK both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits.

  15. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms

    Science.gov (United States)

    Seebacher, Frank; Little, Alexander G.

    2017-01-01

    Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid) endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM) and the AMP-activated protein kinase (AMPK) both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits. PMID:28824463

  16. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms.

    Science.gov (United States)

    Seebacher, Frank; Little, Alexander G

    2017-01-01

    Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid) endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM) and the AMP-activated protein kinase (AMPK) both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits.

  17. Temperature-Dependence of the Rates of Reaction of Trifluoroacetic Acid with Criegee Intermediates.

    Science.gov (United States)

    Chhantyal-Pun, Rabi; McGillen, Max R; Beames, Joseph M; Khan, M Anwar H; Percival, Carl J; Shallcross, Dudley E; Orr-Ewing, Andrew J

    2017-07-24

    The rate coefficients for gas-phase reaction of trifluoroacetic acid (TFA) with two Criegee intermediates, formaldehyde oxide and acetone oxide, decrease with increasing temperature in the range 240-340 K. The rate coefficients k(CH 2 OO + CF 3 COOH)=(3.4±0.3)×10 -10  cm 3  s -1 and k((CH 3 ) 2 COO + CF 3 COOH)=(6.1±0.2)×10 -10  cm 3  s -1 at 294 K exceed estimates for collision-limited values, suggesting rate enhancement by capture mechanisms because of the large permanent dipole moments of the two reactants. The observed temperature dependence is attributed to competitive stabilization of a pre-reactive complex. Fits to a model incorporating this complex formation give k [cm 3  s -1 ]=(3.8±2.6)×10 -18  T 2 exp((1620±180)/T) + 2.5×10 -10 and k [cm 3  s -1 ]=(4.9±4.1)×10 -18  T 2 exp((1620±230)/T) + 5.2×10 -10 for the CH 2 OO + CF 3 COOH and (CH 3 ) 2 COO + CF 3 COOH reactions, respectively. The consequences are explored for removal of TFA from the atmosphere by reaction with biogenic Criegee intermediates. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  18. Redox reaction rates in shallow aquifers: Implications for nitrate transport in groundwater and streams

    Science.gov (United States)

    Tesoriero, Anthony J.

    2012-01-01

    Groundwater age and water chemistry data along flow paths from recharge areas to streams were used to evaluate the trends and transformations of agricultural chemicals. Results from this analysis indicate that median nitrate recharge concentrations in these agricultural areas have increased markedly over the last 50 years from 4 mg N/L in samples collected prior to 1983 to 7.5 mg N/L in samples collected since 1983. The effect that nitrate accumulation in shallow aquifers will have on drinking water quality and stream ecosystems is dependent on the rate of redox reactions along flow paths and on the age distribution of nitrate discharging to supply wells and streams.

  19. The 12C+α reaction rate from the elastic 16O breakup

    International Nuclear Information System (INIS)

    Kiener, J.; Kraus, L.; Lefebvre, A.; Mittig, W.; Motobayashi, T.; De Oliveira-Santos, F.; Stephan, C.; Thibaud, J.P.

    1997-01-01

    Evidence for direct elastic breakup of 16 O into the α- 12 C continuum with relative energies ranging from 900 to 1800 keV has been obtained in the scattering of 1527 MeV 16 O projectiles off 208 Pb. An interpretation of E2 breakup including nuclear and Coulomb contributions leads to reduced electromagnetic transition probabilities and astrophysical S E2 factors in reasonable agreement with direct measurements, showing that the method can be applied to extract the E2 part of the 12 C(α,γ) reaction rate. (orig.)

  20. Selected specific rates of reactions of transients from water in aqueous solution. Hydrated electron, supplemental data. [Reactions with transients from water, with inorganic solutes, and with solutes

    Energy Technology Data Exchange (ETDEWEB)

    Ross, A.B.

    1975-06-01

    A compilation of rates of reactions of hydrated electrons with other transients and with organic and inorganic solutes in aqueous solution appeared in NSRDS-NBS 43, and covered the literature up to early 1971. This supplement includes additional rates which have been published through July 1973.

  1. Rate constant for the reaction C2H5 + HBr → C2H6 + Br.

    Science.gov (United States)

    Golden, David M; Peng, Jingping; Goumri, A; Yuan, J; Marshall, Paul

    2012-06-21

    RRKM theory has been employed to analyze the kinetics of the title reaction, in particular, the once-controversial negative activation energy. Stationary points along the reaction coordinate were characterized with coupled cluster theory combined with basis set extrapolation to the complete basis set limit. A shallow minimum, bound by 9.7 kJ mol(-1) relative to C(2)H(5) + HBr, was located, with a very small energy barrier to dissociation to Br + C(2)H(6). The transition state is tight compared to the adduct. The influence of vibrational anharmonicity on the kinetics and thermochemistry of the title reaction were explored quantitatively. With adjustment of the adduct binding energy by ∼4 kJ mol(-1), the computed rate constants may be brought into agreement with most experimental data in the literature, including new room-temperature results described here. There are indications that at temperatures above those studied experimentally, the activation energy may switch from negative to positive.

  2. Breakdown of the reaction-diffusion master equation with nonelementary rates.

    Science.gov (United States)

    Smith, Stephen; Grima, Ramon

    2016-05-01

    The chemical master equation (CME) is the exact mathematical formulation of chemical reactions occurring in a dilute and well-mixed volume. The reaction-diffusion master equation (RDME) is a stochastic description of reaction-diffusion processes on a spatial lattice, assuming well mixing only on the length scale of the lattice. It is clear that, for the sake of consistency, the solution of the RDME of a chemical system should converge to the solution of the CME of the same system in the limit of fast diffusion: Indeed, this has been tacitly assumed in most literature concerning the RDME. We show that, in the limit of fast diffusion, the RDME indeed converges to a master equation but not necessarily the CME. We introduce a class of propensity functions, such that if the RDME has propensities exclusively of this class, then the RDME converges to the CME of the same system, whereas if the RDME has propensities not in this class, then convergence is not guaranteed. These are revealed to be elementary and nonelementary propensities, respectively. We also show that independent of the type of propensity, the RDME converges to the CME in the simultaneous limit of fast diffusion and large volumes. We illustrate our results with some simple example systems and argue that the RDME cannot generally be an accurate description of systems with nonelementary rates.

  3. Running quietly reduces ground reaction force and vertical loading rate and alters foot strike technique.

    Science.gov (United States)

    Phan, Xuan; Grisbrook, Tiffany L; Wernli, Kevin; Stearne, Sarah M; Davey, Paul; Ng, Leo

    2017-08-01

    This study aimed to determine if a quantifiable relationship exists between the peak sound amplitude and peak vertical ground reaction force (vGRF) and vertical loading rate during running. It also investigated whether differences in peak sound amplitude, contact time, lower limb kinematics, kinetics and foot strike technique existed when participants were verbally instructed to run quietly compared to their normal running. A total of 26 males completed running trials for two sound conditions: normal running and quiet running. Simple linear regressions revealed no significant relationships between impact sound and peak vGRF in the normal and quiet conditions and vertical loading rate in the normal condition. t-Tests revealed significant within-subject decreases in peak sound, peak vGRF and vertical loading rate during the quiet compared to the normal running condition. During the normal running condition, 15.4% of participants utilised a non-rearfoot strike technique compared to 76.9% in the quiet condition, which was corroborated by an increased ankle plantarflexion angle at initial contact. This study demonstrated that quieter impact sound is not directly associated with a lower peak vGRF or vertical loading rate. However, given the instructions to run quietly, participants effectively reduced peak impact sound, peak vGRF and vertical loading rate.

  4. Rate constant and possible pressure dependence of the reaction OH + HO2

    Science.gov (United States)

    Demore, W. B.

    1982-01-01

    The technique of laser-induced fluorescence is used to measure steady-state OH concentrations in the photolysis of water vapor at 184.9 nm and 298 K, with O2 added in trace amounts. He or Ar is present at total pressures in the range 75-730 torr. The results are used in deriving the rate-constant ratio of k1 to k5 to the 1/2 power, where k1 and k5 are the rate constants for the reactions OH + HO2 = H2O + O2 and HO2 + HO2 = O2, respectively. When available values of k5 are used, the results give k1 = (1.2 + or - 0.4) x 10 to the -10 cu cm/s at 1-atm pressure, with evidence of a decline of k1 at lower pressures. No water-vapor effect on k1 is observed.

  5. Atmospheric fate of hydrofluoroethanes and hydrofluorochloroethanes: 1. Rate coefficients for reactions with OH

    Energy Technology Data Exchange (ETDEWEB)

    Gierczak, T.; Talukdar, R.; Lovejoy, E.R.; Ravishankara, A.R. (National Oceanic and Atmospheric Administration, Boulder, CO (USA) Univ. of Colorado, Boulder (USA)); Vaghjiani, G.L. (Univ. of Dayton Research Inst., Edwards AFB, CA (USA))

    1991-03-20

    The rate coefficients for the reactions of OH with five halocarbons (CF{sub 3}CH{sub 2} (HFC 134a), CF{sub 3}CHClF (HCFC 124), CF{sub 3}CHCl{sub 2} (HCFC 123), CH{sub 3}CHF{sub 2} (HFC 152a), and CH{sub 3}CF{sub 2}Cl (HCFC 142b)), which are proposed as alternatives to chlorofluoromethanes, have been measured. A pulsed pholtolysis system and a discharge flow apparatus were used to measure the rate coefficients between approximately 210 and 425 K. Use of the complementary techniques enabled identification of systematic errors and minimization of these errors. The obtained values are compared with values previously measured by other groups. This data base is used in the subsequent paper to calculate the atmospheric lifetimes of the five compounds.

  6. Elementary reaction rate measurements at high temperatures by tunable-laser flash-absorption

    Energy Technology Data Exchange (ETDEWEB)

    Hessler, J.P. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The major objective of this program is to measure thermal rate coefficients and branching ratios of elementary reactions. To perform these measurements, the authors constructed an ultrahigh-purity shock tube to generate temperatures between 1000 and 5500 K. The tunable-laser flash-absorption technique is used to measure the rate of change of the concentration of species which absorb below 50,000 cm{sup {minus}1} e.g.: OH, CH, and CH{sub 3}. This technique is being extended into the vacuum-ultraviolet spectral region where one can measure atomic species e.g.: H, D, C, O, and N; and diatomic species e.g.: O{sub 2}, CO, and OH.

  7. The Effects of Mixing, Reaction Rates, and Stoichiometry on Yield for Mixing Sensitive Reactions—Part II: Design Protocols

    Directory of Open Access Journals (Sweden)

    Syed Imran A. Shah

    2012-01-01

    Full Text Available Competitive-consecutive and competitive-parallel reactions are both mixing sensitive reactions where the yield of desired product depends on how fast the reactants are brought together. Recent experimental results have suggested that the magnitude of the mixing effect may depend strongly on the stoichiometry of the reactions. To investigate this, a 1D, dimensionless, reaction-diffusion model was developed at the micromixing scale, yielding a single general Damköhler number. Dimensionless reaction rate ratios were derived for both reaction schemes. A detailed investigation of the effects of initial mixing condition (striation thickness, dimensionless reaction rate ratio, and reaction stoichiometry on the yield of desired product showed that the stoichiometry has a considerable effect on yield. All three variables were found to interact strongly. Model results for 12 stoichiometries are used to determine the mixing scale and relative rate ratio needed to achieve a specified yield for each reaction scheme. The results show that all three variables need to be considered when specifying reactors for mixing sensitive reactions.

  8. Advanced methods comparisons of reaction rates in the Purdue Fast Breeder Blanket Facility

    International Nuclear Information System (INIS)

    Hill, R.N.; Ott, K.O.

    1988-01-01

    A review of worldwide results revealed that reaction rates in the blanket region are generally underpredicted with the discrepancy increasing with penetration; however, these results vary widely. Experiments in the large uniform Purdue Fast Breeder Blanket Facility (FBBF) blanket yield an accurate quantification of this discrepancy. Using standard production code methods (diffusion theory with 50 group cross sections), a consistent Calculated/Experimental (C/E) drop-off was observed for various reaction rates. A 50% increase in the calculated results at the outer edge of the blanket is necessary for agreement with experiments. The usefulness of refined group constant generation utilizing specialized weighting spectra and transport theory methods in correcting this discrepancy was analyzed. Refined group constants reduce the discrepancy to half that observed using the standard method. The surprising result was that transport methods had no effect on the blanket deviations; thus, transport theory considerations do not constitute or even contribute to an explanation of the blanket discrepancies. The residual blanket C/E drop-off (about half the standard drop-off) using advanced methods must be caused by some approximations which are applied in all current methods. 27 refs., 3 figs., 1 tab

  9. Kinetic sonication effects in aqueous acetonitrile solutions. Reaction rate levelling by ultrasound.

    Science.gov (United States)

    Piiskop, Sander; Salmar, Siim; Tuulmets, Ants; Kuznetsov, Aleksei; Järv, Jaak

    2013-11-01

    The kinetics of the pH-independent hydrolysis of 4-methoxyphenyl dichloroacetate were investigated with and without ultrasonic irradiation in acetonitrile-water binary mixtures containing 0.008 to 35 wt.% of acetonitrile and the kinetic sonication effects (kson/knon) were calculated. Molecular dynamics (MD) simulations of the structure of the solutions were performed with ethyl acetate as the model ester. The ester is preferentially solvated by acetonitrile. The excess of acetonitrile over water in the solvation shell grows fast with an increase in the co-solvent content in the bulk solution. In parallel, the formation of a second solvation shell rich in acetonitrile takes place. Significant kinetic sonication effects for the hydrolysis were explained with facile destruction of the diffuse second solvation shell followed by a rearrangement of the remaining solvent layer under sonication. The rate levelling effect of ultrasound was discussed. In an aqueous-organic binary solvent, independent of the solvent composition, the ultrasonic irradiation evokes changes in the reaction medium which result in an almost identical solvation state of the reagent thus leading to the reaction rate levelling. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Reaction Rate Measurement at the Californium User Facility (CUF) for unfolding the neutron spectrum

    Science.gov (United States)

    Hannan, Mohammad; Ortega, Ruben

    2011-03-01

    Neutron Activation Analysis was used to determine Reaction Rate measurement of several activation detectors at the ORNL Californium User Facility (CUF). The irradiations were performed with 34 mg Cf 252 neutron source strength.. Ten source capsules > 34 mgwerepositionedconcentricallyaroundasamplecavity . Wehavedeterminedabsoluteactivityperatomof 9 detectors : Au 197 (n , γ) Au 198 , Al 27 (n , α) Na 24 , Al 27 (n , p) Mg 27 , Fe 56 (n , p) Mn 5 , Fe 54 (n , p) Mn 54 , In 115 (n , γ) In 116 , Ti 46 (n , p) Sc 46 , Ni 60 (n , p) Co 60 , Fe 58 (n , γ) Fe 59 . Theerrorsarewithin 1.5 - 8 60 and Fe 58 have errors of 46% and 32 %. These high errors may be attributed to the counting statistics. These reaction rate values will be used to unfold the neutron spectrum of the CUF using the MAXED 2000, a computer code for the de convolution of multi sphere neutron spectrometer data and the results are discussed. The authors acknowledge help, advise, and using facility at ORNL-CUF to Dr. Rodger martin and Mr. David C. Galsgow.

  11. The Atmospherically Important Reaction of Hydroxyl Radicals with Methyl Nitrate: A Theoretical Study Involving the Calculation of Reaction Mechanisms, Enthalpies, Activation Energies, and Rate Coefficients.

    Science.gov (United States)

    Ng, Maggie; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M

    2017-09-07

    A theoretical study, involving the calculation of reaction enthalpies, activation energies, mechanisms, and rate coefficients, was made of the reaction of hydroxyl radicals with methyl nitrate, an important process for methyl nitrate removal in the earth's atmosphere. Four reaction channels were considered: formation of H 2 O + CH 2 ONO 2 , CH 3 OOH + NO 2 , CH 3 OH + NO 3 , and CH 3 O + HNO 3 . For all channels, geometry optimization and frequency calculations were performed at the M06-2X/6-31+G** level, while relative energies were improved at the UCCSD(T*)-F12/CBS level. The major channel is found to be the H abstraction channel, to give the products H 2 O + CH 2 ONO 2 . The reaction enthalpy (ΔH 298 K RX ) of this channel is computed as -17.90 kcal mol -1 . Although the other reaction channels are also exothermic, their reaction barriers are high (>24 kcal mol -1 ), and therefore these reactions do not contribute to the overall rate coefficient in the temperature range considered (200-400 K). Pathways via three transition states were identified for the H abstraction channel. Rate coefficients were calculated for these pathways at various levels of variational transition state theory including tunneling. The results obtained are used to distinguish between two sets of experimental rate coefficients, measured in the temperature range of 200-400 K, one of which is approximately an order of magnitude greater than the other. This comparison, as well as the temperature dependence of the computed rate coefficients, shows that the lower experimental values are favored. The implications of the results to atmospheric chemistry are discussed.

  12. Low-Temperature Experimental and Theoretical Rate Constants for the O(1D) + H2 Reaction.

    Science.gov (United States)

    Hickson, Kevin M; Suleimanov, Yury V

    2017-03-09

    In the present joint experimental and theoretical study, we report thermal rate constants for the O( 1 D) + H 2 reaction within the 50-300 K temperature range. Experimental kinetics measurements were performed using a continuous supersonic flow reactor coupled with pulsed laser photolysis for O( 1 D) production and pulsed laser-induced fluorescence in the vacuum ultraviolet wavelength range (VUV LIF) for O( 1 D) detection. Theoretical rate constants were obtained using the ring polymer molecular dynamics (RPMD) approach over the two lowest potential energy surfaces 1 1 A' and 1 1 A″, which possess barrierless and thermally activated energy profiles, respectively. Both the experimental and theoretical rate constants exhibit a weak temperature dependence. The theoretical results show the dominant role of the 1 1 A' ground state and that contribution of the 1 1 A″ excited state to the total thermal rate decreases dramatically at lower temperature. Agreement between the experimental and theoretical results is good, and the discrepancy does not exceed 25%. It is argued that these differences are likely to be due to nonadiabatic couplings between the 1 1 A' and 2 1 A' surfaces.

  13. Effect of ammonia on methane production pathways and reaction rates in acetate-fed biogas processes.

    Science.gov (United States)

    Hao, L P; Mazéas, L; Lü, F; Grossin-Debattista, J; He, P J; Bouchez, T

    2017-04-01

    In order to understand the correlation between ammonia and methanogenesis metabolism, methane production pathways and their specific rates were studied at total ammonium nitrogen (TAN) concentrations of 0.14-9 g/L in three methanogenic sludges fed with acetate, at both mesophilic and thermophilic conditions. Results showed that high levels of TAN had significant inhibition on methanogenesis; this could, however, be recovered via syntrophic acetate oxidation (SAO) coupled with Hydrogenotrophic Methanogenesis (HM) performed by acetate oxidizing syntrophs or through Acetoclastic Methanogenesis (AM) catalyzed by Methanosarcinaceae, after a long lag phase >50 d. Free ammonia (NH 3 ) was the active component for this inhibition, of which 200 mg/L is suggested as the threshold for the pathway shift from AM to SAO-HM. Methane production rate via SAO-HM at TAN of 7-9 g/L was about 5-9-fold lower than that of AM at TAN of 0.14 g/L, which was also lower than the rate of AM pathway recovered at TAN of 7 g/L in the incubations with a French mesophilic inoculum. Thermophilic condition favored the establishment of the SAO-catalyzing microbial community, as indicated by the higher reaction rate and shorter lag phase. The operational strategy is thus suggested to be adjusted when NH 3 exceeds 200 mg/L.

  14. Benzoylformate analogues exhibit differential rate-determining steps in the benzoylformate decarboxylase reaction

    International Nuclear Information System (INIS)

    Garcia, G.A.; Weiss, P.M.; Cook, P.F.; Kenyon, G.L.; Cleland, W.W.

    1987-01-01

    Benzoylformate decarboxylase from Pseudomonas putida is a thiamine pyrophosphate (TPP)-dependent enzyme which converts benzoylformate to benzaldehyde and CO 2 . The rate-determining step(s) in the benzoylformate decarboxylase reaction for a series of substituted benzoylformates (p-CH 3 O, p-CH 3 , p-Cl, and m-F) were studied using solvent deuterium and 13 C kinetic isotope effects. The normal substrate was found to have two partially rate-determining steps; initial tetrahedral adduct formation (D 2 O-sensitive) and decarboxylation ( 13 C-sensitive). D 2 O and 13 C isotope effects indicate that electron-withdrawing substituents (p-Cl and m-F) remove the rate dependence upon decarboxylation such that only a D 2 O effect on (V/K) is observed. Conversely, electron-donating substituents increase the rate-dependence upon decarboxylation such that a larger 13 (V/K) is seen while the D 2 O effects on (V) and (V/K) are not dramatically different from those for benzoylformate. All of the data are consistent with substituent stabilization or destabilization of the carbanionic intermediate formed upon decarboxylation

  15. Benchmark reaction rates, the stability of biological molecules in water, and the evolution of catalytic power in enzymes.

    Science.gov (United States)

    Wolfenden, Richard

    2011-01-01

    The rates of enzyme reactions fall within a relatively narrow range. To estimate the rate enhancements produced by enzymes, and their expected affinities for transition state analog inhibitors, it is necessary to measure the rates of the corresponding reactions in water in the absence of a catalyst. This review describes the spontaneous cleavages of C-C, C-H, C-N, C-O, P-O, and S-O bonds in biological molecules, as well as the uncatalyzed reactions that correspond to phosphoryl transfer reactions catalyzed by kinases and to peptidyl transfer in the ribosome. The rates of these reactions, some with half-lives in excess of one million years, span an overall range of 10¹⁹-fold. Moreover, the slowest reactions tend to be most sensitive to temperature, with rates that increase as much as 10⁷-fold when the temperature is raised from 25° to 100°C. That tendency collapses, by many orders of magnitude, the time that would have been required for chemical evolution on a warm earth. If the catalytic effect of primitive enzymes, like that of modern enzymes and many nonenzymatic catalysts, were mainly to reduce a reaction's enthalpy of activation, then the resulting rate enhancement would have increased automatically as the surroundings cooled. By reducing the time required for early chemical evolution in a warm environment, these findings counter the view that not enough time has passed for terrestrial life to have evolved to its present level of complexity.

  16. Study of the Reaction Rate of Gold Nanotube Synthesis from Sacrificial Silver Nanorods through the Galvanic Replacement Method

    OpenAIRE

    Sunil Kwon; Hyunbae Dong; Sang-Yup Lee

    2010-01-01

    An investigation was carried out about the gold nanotube synthesis via a galvanic replacement reaction. The progress of the gold nanotube synthesis was investigated using electron microscopy and UV-Vis spectroscopy. In addition, the reaction rates of gold nanotube formation in the early stage of the reaction were studied. The chlorine ion concentration linearly increased with the gold precursor concentration but deviated from the stoichiometric amounts. This deviation was probably due to AgCl...

  17. High-precision (p,t) reaction to determine Al-25(p,gamma)Si-26 reaction rates

    NARCIS (Netherlands)

    Matic, A.; van den Berg, A. M.; Harakeh, M. N.; Wörtche, H. J.; Berg, G. P. A.; Couder, M.; Goerres, J.; LeBlanc, P.; O'Brien, S.; Wiescher, M.; Fujita, K.; Hatanaka, K.; Sakemi, Y.; Shimizu, Y.; Tameshige, Y.; Tamii, A.; Yosoi, M.; Adachi, T.; Fujita, Y.; Shimbara, Y.; Fujita, H.; Wakasa, T.; Brown, B. A.; Schatz, H.

    2010-01-01

    Since the identification of ongoing Al-26 production in the universe, the reaction sequence Mg-24(p,gamma)Al-25(beta(+)nu)Mg-25(p,gamma)Al-26 has been studied intensively. At temperatures where the radiative capture on Al-25 (t(1/2) = 7.2 s) becomes faster than the beta(+) decay, the production of

  18. Potential chlorofluorocarbon replacements: OH reaction rate constants between 250 and 315 K and infrared absorption spectra

    Science.gov (United States)

    Garland, Nancy L.; Medhurst, Laura J.; Nelson, H. H.

    1993-12-01

    We measured the rate constant for reactions of the OH radical with several potential chlorofluorocarbon replacements over the temperature range 251-314 K using laser photolysis laser-induced fluorescence techniques. The compounds studied and Arrhenius parameters determined from fits to the measured rate constants are as follows: CHF2OCHF2 (E 134), k(T) = (5.4 ± 3.5) × 10-13 cm3 s-1 exp [(-3.1 ± 0.4 kcal mol-1)/RT]; CF3CH2CF3 (FC 236fa), k(T) = (2.0 ± 1.0) × 10-14 cm3 s-1 exp [(-1.8 ± 0.3 kcal mol-1)/RT]; CF3CHFCHF2 (FC 236ea), k(T) = (2.0 ± 0.9) × 10-13 cm3 s-1 exp [(-2.0 ± 0.3 kcal mol-1)/RT]; and CF3CF2CH2F (FC 236cb), k(T)= (2.6 ± 1.6) × 10-13 cm3 s-1 exp [(-2.2 ± 0.4 kcal mol-1)/RT]. The measured activation energies (2-3 kcal mol-1) are consistent with a mechanism of H atom abstraction. The tropospheric lifetimes, estimated from the measured OH reaction rates, and measured integrated infrared absorption cross sections over the range 770 to 1430 cm-1 suggest that E 134 and FC 236fa may have significant global warming potential, while FC 236ea and FC 236cb do not.

  19. Reaction Coordinate, Free Energy, and Rate of Intramolecular Proton Transfer in Human Carbonic Anhydrase II.

    Science.gov (United States)

    Paul, Sanjib; Paul, Tanmoy Kumar; Taraphder, Srabani

    2018-03-22

    The role of structure and dynamics of an enzyme has been investigated at three different stages of its function including the chemical event it catalyzes. A one-pot computational method has been designed for each of these stages on the basis of classical and/or quantum mechanical-molecular mechanical molecular dynamics and transition path sampling simulations. For a pair of initial and final states A and B separated by a high free-energy barrier, using a two-stage selection process, several collective variables (CVs) are identified that can delineate A and B. However, these CVs are found to exhibit strong cross-coupling over the transition paths. A set of mutually orthogonal order parameters is then derived from these CVs and an optimal reaction coordinate, r, determined applying half-trajectory likelihood maximization along with a Bayesian information criterion. The transition paths are also used to project the multidimensional free energy surface and barrier crossing dynamics along r. The proposed scheme has been applied to the rate-determining intramolecular proton transfer reaction of the well-known enzyme human carbonic anhydrase II. The potential of mean force, F( r), in the absence of the chemical step is found to reproduce earlier results on the equilibrium population of two side-chain orientations of key residue His-64. Estimation of rate constants, k, from mean first passage times for the three different stages of catalysis shows that the rate-determining step of intramolecular proton transfer occurs with k ≃ 1.0 × 10 6 s -1 , in close agreement with known experimental results.

  20. Nonmonotonic Temperature Dependence of the Pressure-Dependent Reaction Rate Constant and Kinetic Isotope Effect of Hydrogen Radical Reaction with Benzene Calculated by Variational Transition-State Theory.

    Science.gov (United States)

    Zhang, Hui; Zhang, Xin; Truhlar, Donald G; Xu, Xuefei

    2017-11-30

    The reaction between H and benzene is a prototype for reactions of radicals with aromatic hydrocarbons. Here we report calculations of the reaction rate constants and the branching ratios of the two channels of the reaction (H addition and H abstraction) over a wide temperature and pressure range. Our calculations, obtained with an accurate potential energy surface, are based on variational transition-state theory for the high-pressure limit of the addition reaction and for the abstraction reaction and on system-specific quantum Rice-Ramsperger-Kassel theory calibrated by variational transition-state theory for pressure effects on the addition reaction. The latter is a very convenient way to include variational effects, corner-cutting tunneling, and anharmonicity in falloff calculations. Our results are in very good agreement with the limited experimental data and show the importance of including pressure effects in the temperature interval where the mechanism changes from addition to abstraction. We found a negative temperature effect of the total reaction rate constants at 1 atm pressure in the temperature region where experimental data are missing and accurate theoretical data were previously missing as well. We also calculated the H + C 6 H 6 /C 6 D 6 and D + C 6 H 6 /C 6 D 6 kinetic isotope effects, and we compared our H + C 6 H 6 results to previous theoretical data for H + toluene. We report a very novel nonmonotonic dependence of the kinetic isotope effect on temperature. A particularly striking effect is the prediction of a negative temperature dependence of the total rate constant over 300-500 K wide temperature ranges, depending on the pressure but generally in the range from 600 to 1700 K, which includes the temperature range of ignition in gasoline engines, which is important because aromatics are important components of common fuels.

  1. The reaction rate for dissociative adsorption of N-2 on stepped Ru(0001): Six-dimensional quantum calculations

    DEFF Research Database (Denmark)

    van Harrevelt, Rob; Honkala, Johanna Karoliina; Nørskov, Jens Kehlet

    2005-01-01

    Quantum-mechanical calculations of the reaction rate for dissociative adsorption of N-2 on stepped Ru(0001) are presented. Converged six-dimensional quantum calculations for this heavy-atom reaction have been performed using the multiconfiguration time-dependent Hartree method. A potential...

  2. Reaction rate studies of glucose-6-phosphate dehydrogenase activity in sections of rat liver using four tetrazolium salts

    NARCIS (Netherlands)

    Butcher, R. G.; van Noorden, C. J.

    1985-01-01

    The reaction rate of glucose-6-phosphate dehydrogenase activity in liver sections from fed and starved rats has been monitored by the continuous measurement at 37 degrees C of the reaction product as it is formed using scanning and integrating microdensitometry. Control media lacked either substrate

  3. Analysis of regularly perturbed lattices and reaction rate distributions from TIC experiments for X7 lattices

    International Nuclear Information System (INIS)

    Ramakrishna, A.; Jagannathan, V.; Jain, R.P.

    2011-01-01

    Highlights: → We conducted analysis of TIC experiments on regularly perturbed lattice experiments using indigenously developed EXCEL, TRIHEX-FA and HEXPIN code system. → Analysis uses diffusion iterative technique (DIT) method which iteratively adjusts the absorber cell cross sections. → For simulation of dry lattice above the critical moderator height a suitable gamma boundary condition has been used. → The calculated fission rate and activation reaction rate distributions are in good agreement with the experiments. - Abstract: Temporary International Collective (TIC) was established in 1972 by an agreement among seven countries, namely, Bulgaria, Czechoslovakia, Germany, Hungary, Poland, Romania and Union of Soviet Socialist Republics. The main objective of TIC was to provide the experimental data for the reactor physics analysis of water cooled and water moderated power reactors (WWER). Extensive experimental work for different core configurations was carried out by TIC countries to investigate the physics behavior of WWER lattices and the results were published in TIC volumes. In this paper, TIC experiments on regularly perturbed cores have been analyzed as part of the validation of indigenous computer codes, EXCEL, TRIHEX-FA and HEXPIN developed at Light Water Reactors Physics Section, B.A.R.C. The few group homogenized parameters of assembly cell or individual lattice cells were obtained by the hexagonal lattice burn-up code EXCEL and the core diffusion calculations were then performed using hexagonal assembly geometric code TRIHEX-FA and the pin-by-pin diffusion code HEXPIN. A transport-diffusion theory correction to the absorber cell cross section by a diffusion iterative technique (DIT) was used to iteratively adjust the absorber cell cross sections such that the transport leakage into the absorber cell is reproduced by diffusion theory. Neutron-nuclear multi-group cross-section libraries in WIMS/D format in 69/172 energy groups have been released

  4. Stress-associated cardiovascular reaction masks heart rate dependence on physical load in mice.

    Science.gov (United States)

    Andreev-Andrievskiy, A A; Popova, A S; Borovik, A S; Dolgov, O N; Tsvirkun, D V; Custaud, M; Vinogradova, O L

    2014-06-10

    When tested on the treadmill mice do not display a graded increase of heart rate (HR), but rather a sharp shift of cardiovascular indices to high levels at the onset of locomotion. We hypothesized that under test conditions cardiovascular reaction to physical load in mice is masked with stress-associated HR increase. To test this hypothesis we monitored mean arterial pressure (MAP) and heart rate in C57BL/6 mice after exposure to stressful stimuli, during spontaneous locomotion in the open-field test, treadmill running or running in a wheel installed in the home cage. Mice were treated with β1-adrenoblocker atenolol (2mg/kg ip, A), cholinolytic ipratropium bromide (2mg/kg ip, I), combination of blockers (A+I), anxiolytic diazepam (5mg/kg ip, D) or saline (control trials, SAL). MAP and HR in mice increased sharply after handling, despite 3weeks of habituation to the procedure. Under stressful conditions of open field test cardiovascular parameters in mice were elevated and did not depend on movement speed. HR values did not differ in I and SAL groups and were reduced with A or A+I. HR was lower at rest in D pretreated mice. In the treadmill test HR increase over speeds of 6, 12 and 18m/min was roughly 1/7-1/10 of HR increase observed after placing the mice on the treadmill. HR could not be increased with cholinolytic (I), but was reduced after sympatholytic (A) or A+I treatment. Anxiolytic (D) reduced heart rate at lower speeds of movement and its overall effect was to unmask the dependency of HR on running speed. During voluntary running in non-stressful conditions of the home cage HR in mice linearly increased with increasing running speeds. We conclude that in test situations cardiovascular reactions in mice are governed predominantly by stress-associated sympathetic activation, rendering efforts to evaluate HR and MAP reactions to workload unreliable. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Mixed quantum classical calculation of proton transfer reaction rates: from deep tunneling to over the barrier regimes.

    Science.gov (United States)

    Xie, Weiwei; Xu, Yang; Zhu, Lili; Shi, Qiang

    2014-05-07

    We present mixed quantum classical calculations of the proton transfer (PT) reaction rates represented by a double well system coupled to a dissipative bath. The rate constants are calculated within the so called nontraditional view of the PT reaction, where the proton motion is quantized and the solvent polarization is used as the reaction coordinate. Quantization of the proton degree of freedom results in a problem of non-adiabatic dynamics. By employing the reactive flux formulation of the rate constant, the initial sampling starts from the transition state defined using the collective reaction coordinate. Dynamics of the collective reaction coordinate is treated classically as over damped diffusive motion, for which the equation of motion can be derived using the path integral, or the mixed quantum classical Liouville equation methods. The calculated mixed quantum classical rate constants agree well with the results from the numerically exact hierarchical equation of motion approach for a broad range of model parameters. Moreover, we are able to obtain contributions from each vibrational state to the total reaction rate, which helps to understand the reaction mechanism from the deep tunneling to over the barrier regimes. The numerical results are also compared with those from existing approximate theories based on calculations of the non-adiabatic transmission coefficients. It is found that the two-surface Landau-Zener formula works well in calculating the transmission coefficients in the deep tunneling regime, where the crossing point between the two lowest vibrational states dominates the total reaction rate. When multiple vibrational levels are involved, including additional crossing points on the free energy surfaces is important to obtain the correct reaction rate using the Landau-Zener formula.

  6. Reaction rate constants of eaq- and OH radicals with alkylbromides(AB) in aqueous solutions (Preprint no. RC-05)

    International Nuclear Information System (INIS)

    Mahal, H.S.; Manohar Lal

    1991-01-01

    The reaction rate constant of e aq - and OH radicals with ethylbromide, l,s,t butylbromide, bromochloroethane, propylbromide, bromopentane, tetrabromoethane and 1,2 dibromoethane in aqueous solutions by pulse radiolysis technique is reported. (author). 8 refs., 1 tab

  7. Cytophotometric analysis of reaction rates of succinate and lactate dehydrogenase activity in rat liver, heart muscle and tracheal epithelium

    NARCIS (Netherlands)

    van Noorden, C. J.; Vogels, I. M.

    1989-01-01

    Reaction rates of succinate and lactate dehydrogenase activity in cryostat sections of rat liver, tracheal epithelium and heart muscle were monitored by continuous measurement of formazan formation by cytophotometry at room temperature. Incubation media contained polyvinyl alcohol as tissue

  8. Revised Production Rates for Na-22 and Mn-54 in Meteorites Using Cross Sections Measured for Neutron-induced Reactions

    Science.gov (United States)

    Sisterson, J. M.; Kim, K. J.; Reedy, R. C.

    2004-01-01

    The interactions of galactic cosmic rays (GCR) with extraterrestrial bodies produce small amounts of radionuclides and stable isotopes. The production rates of many relatively short-lived radionuclides, including 2.6-year Na-22 and 312-day Mn-54, have been measured in several meteorites collected very soon after they fell. Theoretical models used to calculate production rates for comparison with the measured values rely on input data containing good cross section measurements for all relevant reactions. Most GCR particles are protons, but secondary neutrons make most cosmogenic nuclides. Calculated production rates using only cross sections for proton-induced reactions do not agree well with measurements. One possible explanation is that the contribution to the production rate from reactions initiated by secondary neutrons produced in primary GCR interactions should be included explicitly. This, however, is difficult to do because so few of the relevant cross sections for neutron-induced reactions have been measured.

  9. A kinetic study of the reactions between H2O2 and Cu,Zn superoxide dismutase; evidence for an electrostatic control of the reaction rate.

    Science.gov (United States)

    Viglino, P; Scarpa, M; Rotilio, G; Rigo, A

    1988-01-04

    H2O2 was shown to reduce the copper ion of native bovine Cu,Zn superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1) (ECu2+) and to oxidize the reduced enzyme (ECu+). The time-course of these processes was monitored by NMR measurement of the longitudinal relaxation rate of the water protons. A steady-state characterized by the same ratio [ECu2+]/[( EC2+] + [ECu+]) was obtained either by starting from the oxidized or the reduced enzyme. The kinetics of these processes appear to be quite complex, since different reactions between H2O2, or its reaction products, and the enzyme-bound copper control the reaction rate. The solution of the differential equations describing the kinetic processes showed that the oxidation and the reduction of the copper ion by H2O2 are first-order with respect to the copper ion itself only when these processes approach the steady-state. The rate constants of the reduction and oxidation reactions were calculated according to these equations and were found to have comparable values which are in the range 5-80 and 5-45 M-1.min-1, respectively, changing the pH from 5.6 to 7 at 0.21 M ionic strength. This result, together with the dependence of the reaction rates on pH and ionic strength, points to HO2- as the reactive species in both processes, and indicates that the electrostatic control of the access of the peroxide to the active site is the rate-determining step of the two redox reactions.

  10. Monte carlo simulations of Yttrium reaction rates in Quinta uranium target

    Directory of Open Access Journals (Sweden)

    Suchopár M.

    2017-01-01

    Full Text Available The international collaboration Energy and Transmutation of Radioactive Waste (E&T RAW performed intensive studies of several simple accelerator-driven system (ADS setups consisting of lead, uranium and graphite which were irradiated by relativistic proton and deuteron beams in the past years at the Joint Institute for Nuclear Research (JINR in Dubna, Russia. The most recent setup called Quinta, consisting of natural uranium target-blanket and lead shielding, was irradiated by deuteron beams in the energy range between 1 and 8 GeV in three accelerator runs at JINR Nuclotron in 2011 and 2012 with yttrium samples among others inserted inside the setup to measure the neutron flux in various places. Suitable activation detectors serve as one of possible tools for monitoring of proton and deuteron beams and for measurements of neutron field distribution in ADS studies. Yttrium is one of such suitable materials for monitoring of high energy neutrons. Various threshold reactions can be observed in yttrium samples. The yields of isotopes produced in the samples were determined using the activation method. Monte Carlo simulations of the reaction rates leading to production of different isotopes were performed in the MCNPX transport code and compared with the experimental results obtained from the yttrium samples.

  11. Monte carlo simulations of Yttrium reaction rates in Quinta uranium target

    Science.gov (United States)

    Suchopár, M.; Wagner, V.; Svoboda, O.; Vrzalová, J.; Chudoba, P.; Tichý, P.; Kugler, A.; Adam, J.; Závorka, L.; Baldin, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Solnyshkin, A.; Tsoupko-Sitnikov, V.; Tyutyunnikov, S.; Bielewicz, M.; Kilim, S.; Strugalska-Gola, E.; Szuta, M.

    2017-03-01

    The international collaboration Energy and Transmutation of Radioactive Waste (E&T RAW) performed intensive studies of several simple accelerator-driven system (ADS) setups consisting of lead, uranium and graphite which were irradiated by relativistic proton and deuteron beams in the past years at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. The most recent setup called Quinta, consisting of natural uranium target-blanket and lead shielding, was irradiated by deuteron beams in the energy range between 1 and 8 GeV in three accelerator runs at JINR Nuclotron in 2011 and 2012 with yttrium samples among others inserted inside the setup to measure the neutron flux in various places. Suitable activation detectors serve as one of possible tools for monitoring of proton and deuteron beams and for measurements of neutron field distribution in ADS studies. Yttrium is one of such suitable materials for monitoring of high energy neutrons. Various threshold reactions can be observed in yttrium samples. The yields of isotopes produced in the samples were determined using the activation method. Monte Carlo simulations of the reaction rates leading to production of different isotopes were performed in the MCNPX transport code and compared with the experimental results obtained from the yttrium samples.

  12. Rate coefficients for the reactions of hydroxyl radicals with methane and deuterated methanes

    Energy Technology Data Exchange (ETDEWEB)

    Gierczak, T.; Talukdar, R.K.; Herndon, S.C.; Vaghjiani, G.L.; Ravishankara, A.R. [National Oceanic and Atmospheric Administration, Boulder, CO (United States)]|[Univ. of Colorado, Boulder, CO (United States)

    1997-04-24

    The rate coefficients for the reaction of OH with CH{sub 3}D (k{sub 1}), CH{sub 2}D{sub 2} (k{sub 2}), CHD{sub 3} (k{sub 3}), CD{sub 4} (k{sub 4}), and CH{sub 4} (k{sub 5}) as well as that of OD with CH{sub 4} (k{sub 6}) have been measured using the pulsed photolytic production of OH followed by its detection via pulsed laser induced fluorescence. k{sub 1}-k{sub 4} and k{sub 6} were measured between {approx}220 and {approx}415 K, while k{sub 5} was measured down to 195 K. The measured rate coefficients do not strictly obey the Arrhenius expression. However, below 298 K, they can be represented by a given expression. The obtained values of the rate coefficients and kinetic isotope effects are compared with values previously measured or calculated by other groups. The atmospheric implications of this data are briefly discussed. 33 refs., 4 figs., 7 tabs.

  13. Reconsideration of the rate constant for the reaction of hydroxyl radicals with nitric acid

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.S.; Talukdar, R.K.; Ravishankara, A.R. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.]|[Univ. of Colorado, Boulder, CO (United States)

    1999-04-22

    The authors report rate coefficients for the reaction of OH with HNO{sub 3}, k{sub 1}, between 10 and 500 Torr of He, SF{sub 6}, N{sub 2}, and O{sub 2} and at 10 different temperatures between 200 and 375 K. They generated OH via pulsed photolysis of HNO{sub 3} and monitored the [OH] temporal profile via pulsed laser induced fluorescence. Below 300 K the value of k{sub 1} increases rapidly with decreasing temperature and depends on pressure. The pressure dependence of k{sub 1} at low temperature is significantly larger than that obtained by extrapolation of the currently available data. The pressure and temperature dependence is most likely due to a competition between direct abstraction and reactive complex formation. A rate constant expression derived from such a mechanism gives a global fit for k{sub 1} that is applicable to atmospheric conditions. The new rate constant alters the calculated NO{sub 2} to HNO{sub 3} ratio in the lower stratosphere.

  14. Analysis of turbulent free jet hydrogen-air diffusion flames with finite chemical reaction rates

    Science.gov (United States)

    Sislian, J. P.

    1978-01-01

    The nonequilibrium flow field resulting from the turbulent mixing and combustion of a supersonic axisymmetric hydrogen jet in a supersonic parallel coflowing air stream is analyzed. Effective turbulent transport properties are determined using the (K-epsilon) model. The finite-rate chemistry model considers eight reactions between six chemical species, H, O, H2O, OH, O2, and H2. The governing set of nonlinear partial differential equations is solved by an implicit finite-difference procedure. Radial distributions are obtained at two downstream locations of variables such as turbulent kinetic energy, turbulent dissipation rate, turbulent scale length, and viscosity. The results show that these variables attain peak values at the axis of symmetry. Computed distributions of velocity, temperature, and mass fraction are also given. A direct analytical approach to account for the effect of species concentration fluctuations on the mean production rate of species (the phenomenon of unmixedness) is also presented. However, the use of the method does not seem justified in view of the excessive computer time required to solve the resulting system of equations.

  15. Reaction rate constants and mean population percentage for nitrifiers in an alternating oxidation ditch system.

    Science.gov (United States)

    Mantziaras, I D; Katsiri, A

    2011-01-01

    This paper presents a methodology for the determination of reaction rate constants for nitrifying bacteria and their mean population percentage in biomass in an alternating oxidation ditch system. The method used is based on the growth rate equations of the ASM1 model (IWA) (Henze et al. in Activated sludge models ASM1, ASM2, ASM2d, and ASM3. IWA Scientific and Technical Report no. 9, IWA Publishing, London, UK, 2000) and the application of mass balance equations for nitrifiers and ammonium nitrogen in an operational cycle of the ditch system. The system consists of two ditches operating in four phases. Data from a large-scale oxidation ditch pilot plant with a total volume of 120 m(3) within an experimental period of 8 months was used. Maximum specific growth rate for autotrophs (μ(A)) and the half-saturation constant for ammonium nitrogen (K(NH)) were found to be 0.36 day(-1) and 0.65 mgNH(4)-N/l, respectively. Additionally, the average population percentage of the nitrifiers in the biomass was estimated to be around 3%.

  16. Actinometric measurement of solar ultraviolet and development of a weighted solar UV integral. [photochemical reaction rate determination

    Science.gov (United States)

    Gupta, A.; Coulbert, C.

    1978-01-01

    An actinometer has been developed to measure outdoor irradiance in the range 295-400 nm. Actinometric measurements of radiation are based on determination of photochemical reaction rates for reactions of known quantum efficiency. Actinometers have the advantage of providing irradiance data over surfaces of difficult accessibility; in addition, actinometrically determined irradiance data are wavelength weighted and therefore provide a useful means of assessing the degradation rates of polymers employed in solar energy systems.

  17. SGV: a code to evaluate plasma reaction rates to a specified accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Devoto, R.S.; Hanson, J.D.

    1978-09-22

    A FORTRAN code to evaluate binary reaction rates (sigmav) for a plasma to a specified accuracy is described. Distribution functions permitted are (1) two Maxwellian species at different temperatures, (2) beam-Maxwellian, (3) cold gas with Maxwellian, and (4) beam-plasma with mirror distribution of the form f(v) varies as f(v) M (cos theta). Several functional forms are permitted for f(v) and M(cos theta). Cross-section subroutines for a number of interactions involving hydrogen, helium, and electrons are included, as is a routine allowing input of numerical data. The code is written as a subroutine to allow ready incorporation into larger plasma codes.

  18. Relative rate study of the kinetic isotope effect in the 13CH3D + Cl reaction

    DEFF Research Database (Denmark)

    Joelsson, Lars Magnus Torvald; Forecast, Roslyn; Schmidt, Johan Albrecht

    2014-01-01

    The 13CH3D/12CH4kinetic isotope effect, α13CH3D, of CH4 + Cl is determined for the first time, using the relative rate technique and Fourier transform infrared (FTIR) spectroscopy. α13CH3D is found to be 1.60 ± 0.04. In addition, a quantum chemistry/transition state theory model with tunneling...... correction is constructed and the primary cause for α13CH3D is found to be the substantially reduced reactivity of the D atom, which, in turn, can be explained by a significant increase in the reaction barrier due to changes in the vibrational zero point energy and to a lesser extent tunneling....

  19. Combining Bayesian methods and aircraft observations to constrain the HO. + NO2 reaction rate

    Directory of Open Access Journals (Sweden)

    A. G. Carlton

    2012-01-01

    Full Text Available Tropospheric ozone is the third strongest greenhouse gas, and has the highest uncertainty in radiative forcing of the top five greenhouse gases. Throughout the troposphere, ozone is produced by radical oxidation of nitrogen oxides (NOx = NO + NO2. In the upper troposphere (8–10 km, current chemical transport models under-estimate nitrogen dioxide (NO2 observations. Improvements to simulated NOx production from lightning have increased NO2 predictions, but the predictions in the upper troposphere remain biased low. The upper troposphere has low temperatures (T 2 and radicals, is currently over-estimated by 22% in the upper troposphere. The results from this study suggest that the temperature sensitivity of nitric acid formation is lower than currently recommended. Since the formation of nitric acid removes nitrogen dioxide and radicals that drive the production of ozone, the revised reaction rate will affect ozone concentrations in upper troposphere impacting climate and air quality in the lower troposphere.

  20. Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time.

    Science.gov (United States)

    Nalivaiko, Eugene; Davis, Simon L; Blackmore, Karen L; Vakulin, Andrew; Nesbitt, Keith V

    2015-11-01

    Evidence from studies of provocative motion indicates that motion sickness is tightly linked to the disturbances of thermoregulation. The major aim of the current study was to determine whether provocative visual stimuli (immersion into the virtual reality simulating rides on a rollercoaster) affect skin temperature that reflects thermoregulatory cutaneous responses, and to test whether such stimuli alter cognitive functions. In 26 healthy young volunteers wearing head-mounted display (Oculus Rift), simulated rides consistently provoked vection and nausea, with a significant difference between the two versions of simulation software (Parrot Coaster and Helix). Basal finger temperature had bimodal distribution, with low-temperature group (n=8) having values of 23-29 °C, and high-temperature group (n=18) having values of 32-36 °C. Effects of cybersickness on finger temperature depended on the basal level of this variable: in subjects from former group it raised by 3-4 °C, while in most subjects from the latter group it either did not change or transiently reduced by 1.5-2 °C. There was no correlation between the magnitude of changes in the finger temperature and nausea score at the end of simulated ride. Provocative visual stimulation caused prolongation of simple reaction time by 20-50 ms; this increase closely correlated with the subjective rating of nausea. Lastly, in subjects who experienced pronounced nausea, heart rate was elevated. We conclude that cybersickness is associated with changes in cutaneous thermoregulatory vascular tone; this further supports the idea of a tight link between motion sickness and thermoregulation. Cybersickness-induced prolongation of reaction time raises obvious concerns regarding the safety of this technology. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Decomposition reaction rate of BCl3-C3H6(propene)-H2 in the gas phase.

    Science.gov (United States)

    Xiao, Jun; Su, Kehe; Liu, Yan; Ren, Hongjiang; Zeng, Qingfeng; Cheng, Laifei; Zhang, Litong

    2012-07-05

    The decomposition reaction rate in the BCl(3)-C(3)H(6)-H(2) gas phase reaction system in preparing boron carbides was investigated based on the most favorable reaction pathways proposed by Jiang et al. [Theor. Chem. Accs. 2010, 127, 519] and Yang et al. [J. Theor. Comput. Chem. 2012, 11, 53]. The rate constants of all the elementary reactions were evaluated with the variational transition state theory. The vibrational frequencies for the stationary points as well as the selected points along the minimum energy paths (MEPs) were calculated with density functional theory at the B3PW91/6-311G(d,p) level and the energies were refined with the accurate model chemistry method G3(MP2). For the elementary reaction associated with a transition state, the MEP was obtained with the intrinsic reaction coordinates, while for the elementary reaction without transition state, the relaxed potential energy surface scan was employed to obtain the MEP. The rate constants were calculated for temperatures within 200-2000 K and fitted into three-parameter Arrhenius expressions. The reaction rates were investigated by using the COMSOL software to solve numerically the coupled differential rate equations. The results show that the reactions are, consistent with the experiments, appropriate at 1100-1500 K with the reaction time of 30 s for 1100 K, 1.5 s for 1200 K, 0.12 s for 1300 K, 0.011 s for 1400 K, or 0.001 s for 1500 K, for propene being almost completely consumed. The completely dissociated species, boron carbides C(3)B, C(2)B, and CB, have very low concentrations, and C(3)B is the main product at higher temperatures, while C(2)B is the main product at lower temperatures. For the reaction time 1 s, all these concentrations approach into a nearly constant. The maximum value (in mol/m(3)) is for the highest temperature 1500 K with the orders of -13, -17, and -23 for C(3)B, C(2)B, and CB, respectively. It was also found that the logarithm of the overall reaction rate and reciprocal

  2. Rate Coefficient for the (4)Heμ + CH4 Reaction at 500 K: Comparison between Theory and Experiment.

    Science.gov (United States)

    Arseneau, Donald J; Fleming, Donald G; Li, Yongle; Li, Jun; Suleimanov, Yury V; Guo, Hua

    2016-03-03

    The rate constant for the H atom abstraction reaction from methane by the muonic helium atom, Heμ + CH4 → HeμH + CH3, is reported at 500 K and compared with theory, providing an important test of both the potential energy surface (PES) and reaction rate theory for the prototypical polyatomic CH5 reaction system. The theory used to characterize this reaction includes both variational transition-state (CVT/μOMT) theory (VTST) and ring polymer molecular dynamics (RPMD) calculations on a recently developed PES, which are compared as well with earlier calculations on different PESs for the H, D, and Mu + CH4 reactions, the latter, in particular, providing for a variation in atomic mass by a factor of 36. Though rigorous quantum calculations have been carried out for the H + CH4 reaction, these have not yet been extended to the isotopologues of this reaction (in contrast to H3), so it is important to provide tests of less rigorous theories in comparison with kinetic isotope effects measured by experiment. In this regard, the agreement between the VTST and RPMD calculations and experiment for the rate constant of the Heμ + CH4 reaction at 500 K is excellent, within 10% in both cases, which overlaps with experimental error.

  3. Measurements and calculations of 10B(n,He) reaction rates in a control rod in ZPPR

    International Nuclear Information System (INIS)

    Brumbach, S.B.; Collins, P.J.; Grasseschi, G.L.; Oliver, B.M.

    1986-01-01

    The helium accumulation fluence monitor (HAFM) technique has been used to measure the 10 B(n,He) reaction rate within B 4 C pellets in a control rod in ZPPR. Knowledge of this reaction rate is important to control rod design studies because helium production leads to control rod swelling, buildup of gas pressure and a reduction in thermal conductivity which can limit the lifetime of a control rod. We believe these to be the first measurements of boron capture within boron pins in a fast reactor spectrum. Previously reported measurements used 235 U foils to measure fission rates in a control rod, and to infer boron capture rates

  4. The rate of the reaction between C2H and C2H2 at interstellar temperatures

    Science.gov (United States)

    Herbst, E.; Woon, D. E.

    1997-01-01

    The reaction between the radical C2H and the stable hydrocarbon C2H2 is one of the simplest neutral-neutral hydrocarbon reactions in chemical models of dense interstellar clouds and carbon-rich circumstellar shells. Although known to be rapid at temperatures > or = 300 K, the reaction has yet to be studied at lower temperatures. We present here ab initio calculations of the potential surface for this reaction and dynamical calculations to determine its rate at low temperature. Despite a small potential barrier in the exit channel, the calculated rate is large, showing that this reaction and, most probably, more complex analogs contribute to the formation of complex organic molecules in low-temperature sources.

  5. The reaction O((3)P) + HOBr: Temperature dependence of the rate constant and importance of the reaction as an HOBr stratospheric loss process

    Science.gov (United States)

    Nesbitt, F. L.; Monks, P. S.; Payne, W. A.; Stief, L. J.; Toumi, R.

    1995-01-01

    The absolute rate constant for the reaction O((3)P) + HOBr has been measured between T = 233K and 423K using the discharge-flow kinetic technique coupled to mass spectrometric detection. The value of the rate coefficient at room temperature is (2.5 +/- 0.6) x 10(exp -11)cu cm/molecule/s and the derived Arrhenius expression is (1.4 +/- 0.5) x 10(exp -10) exp((-430 +/- 260)/T)cu cm/molecule/s. From these rate data the atmospheric lifetime of HOBr with respect to reaction with O((3)P) is about 0.6h at z = 25 km which is comparable to the photolysis lifetime based on recent measurements of the UV cross section for HOBr. Implications for HOBr loss in the stratosphere have been tested using a 1D photochemical box model. With the inclusion of the rate parameters and products for the O + HOBr reaction, calculated concentration profiles of BrO increase by up to 33% around z = 35 km. This result indicates that the inclusion of the O + HOBr reaction in global atmospheric chemistry models may have an impact on bromine partitioning in the middle atmosphere.

  6. Estimating reaction rate constants from a two-step reaction: a comparison between two-way and three-way methods

    NARCIS (Netherlands)

    Bijlsma, S.; Smilde, A. K.

    2000-01-01

    In this paper, two different spectral datasets are used in order to estimate reaction rate constants using different algorithms. Dataset 1 consists of short-wavelength near-infrared (SW NIR) spectra taken in time of the two-step epoxidation of 2,5-di-tert-butyl-1,4-benzoquinone using tert-butyl

  7. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    Energy Technology Data Exchange (ETDEWEB)

    Kustova, Elena V., E-mail: e.kustova@spbu.ru [Department of Mathematics and Mechanics, Saint Petersburg State University, 198504 Universitetskiy pr. 28, Saint Petersburg (Russian Federation); Kremer, Gilberto M., E-mail: kremer@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba (Brazil)

    2014-12-05

    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N{sub 2} flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure.

  8. Kinetics of low-temperature transitions and a reaction rate theory from non-equilibrium distributions

    Science.gov (United States)

    Aquilanti, Vincenzo; Coutinho, Nayara Dantas; Carvalho-Silva, Valter Henrique

    2017-03-01

    This article surveys the empirical information which originated both by laboratory experiments and by computational simulations, and expands previous understanding of the rates of chemical processes in the low-temperature range, where deviations from linearity of Arrhenius plots were revealed. The phenomenological two-parameter Arrhenius equation requires improvement for applications where interpolation or extrapolations are demanded in various areas of modern science. Based on Tolman's theorem, the dependence of the reciprocal of the apparent activation energy as a function of reciprocal absolute temperature permits the introduction of a deviation parameter d covering uniformly a variety of rate processes, from those where quantum mechanical tunnelling is significant and d 0, corresponding to the Pareto-Tsallis statistical weights: these generalize the Boltzmann-Gibbs weight, which is recovered for d = 0. It is shown here how the weights arise, relaxing the thermodynamic equilibrium limit, either for a binomial distribution if d > 0 or for a negative binomial distribution if d < 0, formally corresponding to Fermion-like or Boson-like statistics, respectively. The current status of the phenomenology is illustrated emphasizing case studies; specifically (i) the super-Arrhenius kinetics, where transport phenomena accelerate processes as the temperature increases; (ii) the sub-Arrhenius kinetics, where quantum mechanical tunnelling propitiates low-temperature reactivity; (iii) the anti-Arrhenius kinetics, where processes with no energetic obstacles are rate-limited by molecular reorientation requirements. Particular attention is given for case (i) to the treatment of diffusion and viscosity, for case (ii) to formulation of a transition rate theory for chemical kinetics including quantum mechanical tunnelling, and for case (iii) to the stereodirectional specificity of the dynamics of reactions strongly hindered by the increase of temperature. This article is part of

  9. A mathematical analysis of Prx2-STAT3 disulfide exchange rate constants for a bimolecular reaction mechanism.

    Science.gov (United States)

    Langford, Troy F; Deen, William M; Sikes, Hadley D

    2018-03-22

    Appreciation of peroxiredoxins as the major regulators of H 2 O 2 concentrations in human cells has led to a new understanding of redox signaling. In addition to their status as the primary reducers of H 2 O 2 to water, the oxidized peroxiredoxin byproduct of this reaction has recently been shown capable of participation in H 2 O 2 -mediated signaling pathways through disulfide exchange reactions with the transcription factor STAT3. The dynamics of peroxidase-transcription factor disulfide exchange reactions have not yet been considered in detail with respect to how these reactions fit into the larger network of competing reactions in human cells. In this study, we used a kinetic model of oxidation and reduction reactions related to H 2 O 2 metabolism in the cytosol of human cells to study the dynamics of peroxiredoxin-2 mediated oxidation of the redox-regulated transcription factor STAT3. In combination with previously reported experimental data, the model was used to estimate the rate coefficient of a biomolecular reaction between Prx2 and STAT3 for two sets of assumptions that constitute lower and upper bound cases. Using these estimates, we calculated the relative rates of the reaction of oxidized peroxiredoxin-2 and STAT3 and other competing reactions in the cytosol. These calculations revealed that peroxiredoxin-2-mediated oxidation of STAT3 likely occurs at a much slower rate than competing reactions in the cytosol. This analysis suggests the existence of more complex mechanisms, potentially involving currently unknown protein-protein recognition partners, which facilitate disulfide exchange reactions between peroxiredoxin-2 and STAT3. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Atmospheric reaction of Cl + methacrolein: a theoretical study on the mechanism, and pressure- and temperature-dependent rate constants.

    Science.gov (United States)

    Sun, Cuihong; Xu, Baoen; Zhang, Shaowen

    2014-05-22

    Methacrolein is a major degradation product of isoprene, the reaction of methacrolein with Cl atoms may play some roles in the degradation of isoprene where these species are relatively abundant. However, the energetics and kinetics of this reaction, which govern the reaction branching, are still not well understood so far. In the present study, two-dimensional potential energy surfaces were constructed to analyze the minimum energy path of the barrierless addition process between Cl and the C═C double bond of methacrolein, which reveals that the terminal addition intermediate is directly formed from the addition reaction. The terminal addition intermediate can further yield different products among which the reaction paths abstracting the aldehyde hydrogen atom and the methyl hydrogen atom are dominant reaction exits. The minimum reaction path for the direct aldehydic hydrogen atom abstraction is also obtained. The reaction kinetics was calculated by the variational transition state theory in conjunction with the master equation method. From the theoretical model we predicted that the overall rate constant of the Cl + methacrolein reaction at 297 K and atmospheric pressure is koverall = 2.3× 10(-10) cm(3) molecule(-1) s(-1), and the branching ratio of the aldehydic hydrogen abstraction is about 12%. The reaction is pressure dependent at P < 10 Torr with the high pressure limit at about 100 Torr. The calculated results could well account for the experimental observations.

  11. Rate constant for the OH + CO reaction - Pressure dependence and the effect of oxygen

    Science.gov (United States)

    Demore, W. B.

    1984-01-01

    The effect of pressure on the rate constant of the OH + CO reaction has been measured for Ar, N2, and SF6 over the pressure range 200-730 torr. All experiments were at room temperature. The method involved laser-induced fluorescence to measure steady-state OH concentrations in the 184.9 nm photolysis of H2O-CO mixtures in the three carrier gases, combined with supplementary measurements of the CO depletion in these same carrier gases in the presence and absence of competing reference reactants. The effect of O2 on the pressure effect was determined. A pressure enhancement of the rate constant was observed for N2 and SF6, but not for Ar, within an experimental error of about 10 percent. The pressure effect for N2 was somewhat lower than previous literature reports, being about 40 percent at 730 torr. For SF6 a factor of two enhancement was seen at 730 torr. In each case it was found that O2 had no effect on the pressure enhancement. The roles of the radical species HCO and HOCO were evaluated.

  12. Standard and Nonstandard Neutrino-Nucleus Reactions Cross Sections and Event Rates to Neutrino Detection Experiments

    Directory of Open Access Journals (Sweden)

    D. K. Papoulias

    2015-01-01

    Full Text Available In this work, we explore ν-nucleus processes from a nuclear theory point of view and obtain results with high confidence level based on accurate nuclear structure cross sections calculations. Besides cross sections, the present study includes simulated signals expected to be recorded by nuclear detectors and differential event rates as well as total number of events predicted to be measured. Our original cross sections calculations are focused on measurable rates for the standard model process, but we also perform calculations for various channels of the nonstandard neutrino-nucleus reactions and come out with promising results within the current upper limits of the corresponding exotic parameters. We concentrate on the possibility of detecting (i supernova neutrinos by using massive detectors like those of the GERDA and SuperCDMS dark matter experiments and (ii laboratory neutrinos produced near the spallation neutron source facilities (at Oak Ridge National Lab by the COHERENT experiment. Our nuclear calculations take advantage of the relevant experimental sensitivity and employ the severe bounds extracted for the exotic parameters entering the Lagrangians of various particle physics models and specifically those resulting from the charged lepton flavour violating μ-→e- experiments (Mu2e and COMET experiments.

  13. The Effects of Changes in Reaction Rates on Simulations of Nova Explosions

    International Nuclear Information System (INIS)

    Starrfield, S.; Iliadis, C.; Hix, W. R.; Timmes, F. X.; Sparks, W. M.

    2007-01-01

    Classical novae participate in the cycle of Galactic chemical evolution in which grains and metal enriched gas in their ejecta, supplementing those of supernovae, AGB stars, and Wolf-Rayet stars, are a source of heavy elements for the ISM. Once in the diffuse gas, this material is mixed with the existing gases and then incorporated into young stars and planetary systems during star formation. Infrared observations have confirmed the presence of carbon, SiC, hydrocarbons, and oxygen-rich silicate grains in nova ejecta, suggesting that some fraction of the pre-solar grains identified in meteoritic material come from novae. The mean mass returned by a nova outburst to the ISM probably exceeds ∼ 2 x 10-4 M·. Using the observed nova rate of 35±11 per year in our Galaxy, it follows that novae introduce more than ∼ 7 x 10-3 M· yr-1 of processed matter into the ISM. Novae are expected to be the major source of 15N and 17O in the Galaxy and to contribute to the abundances of other isotopes in this atomic mass range. Here, we report on how changes in the nuclear reaction rates affect the properties of the outburst and alter the predictions of the contributions of novae to Galactic chemical evolution

  14. Evaporation Rate Study and NDMA Formation from UDMH/NO2 Reaction Products

    Science.gov (United States)

    Buchanan, Vanessa D.; Dee, Louis A.; Baker, David L.

    2003-01-01

    Laboratory samples of uns-dimethylhydrazine (UDMH) fuel/oxidizer (nitrogen dioxide) non-combustion reaction products (UFORP) were prepared using a unique permeation tube technology. Also, a synthetic UFORP was prepared from UDMH, N-nitrosodimethylamine (NDMA), dimethylammonium nitrate, sodium nitrite and purified water. The evaporation rate of UFORP and synthetic UFORP was determined under space vacuum (approx 10(exp -3) Torr) at -40 ?C and 0 ?C. The material remaining was analyzed and showed that the UFORP weight and NDMA concentration decreased over time; however, NDMA had not completely evaporated. Over 85% of the weight was removed by subjecting the UFORP to 10(-3) Torr for 7 hours at -40 ?C and 4 hours at 0 ?C. A mixture of dimethylammonium nitrate and sodium nitrite formed NDMA at a rapid rate in a moist air environment. A sample of UFORP residue was analyzed for formation of NDMA under various conditions. It was found that NDMA was not formed unless nitrite was added.

  15. Analysis of turbulent free-jet hydrogen-air diffusion flames with finite chemical reaction rates

    Science.gov (United States)

    Sislian, J. P.; Glass, I. I.; Evans, J. S.

    1979-01-01

    A numerical analysis is presented of the nonequilibrium flow field resulting from the turbulent mixing and combustion of an axisymmetric hydrogen jet in a supersonic parallel ambient air stream. The effective turbulent transport properties are determined by means of a two-equation model of turbulence. The finite-rate chemistry model considers eight elementary reactions among six chemical species: H, O, H2O, OH, O2 and H2. The governing set of nonlinear partial differential equations was solved by using an implicit finite-difference procedure. Radial distributions were obtained at two downstream locations for some important variables affecting the flow development, such as the turbulent kinetic energy and its dissipation rate. The results show that these variables attain their peak values on the axis of symmetry. The computed distribution of velocity, temperature, and mass fractions of the chemical species gives a complete description of the flow field. The numerical predictions were compared with two sets of experimental data. Good qualitative agreement was obtained.

  16. Experimental measurements of low temperature rate coefficients for neutral-neutral reactions of interest for atmospheric chemistry of Titan, Pluto and Triton: reactions of the CN radical.

    Science.gov (United States)

    Morales, Sébastien B; Le Picard, Sébastien D; Canosa, André; Sims, Ian R

    2010-01-01

    The kinetics of the reactions of cyano radical, CN (X2sigma+) with three hydrocarbons, propane (CH3CH2CH3), propene (CH3CH=CH2) and 1-butyne (CH[triple band]CCH2CH3) have been studied over the temperature range of 23-298 K using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in Uniform Supersonic Flow) apparatus combined with the pulsed laser photolysis-laser induced fluorescence technique. These reactions are of interest for the cold atmospheres of Titan, Pluto and Triton, as they might participate in the formation of nitrogen and carbon bearing molecules, including nitriles, that are thought to play an important role in the formation of hazes and biological molecules. All three reactions are rapid with rate coefficients in excess of 10(-10) cm3 molecule(-1) s(-1) at the lowest temperatures of this study and show behaviour characteristic of barrierless reactions. Temperature dependences, different for each reaction, are compared to those used in the most recent photochemical models of Titan's atmosphere.

  17. Reaction

    African Journals Online (AJOL)

    raoul

    12 janv. 2012 ... Key words: Métastase, rate, colon, carcinome. Received: 28/12/2011 - Accepted: 09/01/2012 - Published: ... tomodensitométriques au moment du diagnostic du cancer primitif ou lors du suivi radiologique régulier des patients atteints de cancers. Le recours à la TEP-FDG couplée au scanner serait d'un ...

  18. Reaction rates and electrical resistivities of the hydrogen isotopes with, and their solubilities in, liquid lithium

    International Nuclear Information System (INIS)

    Pulham, R.J.; Adams, P.F.; Hubberstey, P.; Parry, G.; Thunder, A.E.

    1976-01-01

    The rate of reaction, k, of hydrogen and of deuterium with liquid lithium have been determined up to pressures of 20kNm -2 and at temperatures between 230 and 270 0 C. The reaction is first order with an apparent activation energy of 52.8 and 55.2 kJmol -1 for hydrogen and deuterium, respectively. The deuterium isotope effect, k/sub H/k/sub D/, decreases from 2.95 at 230 to 2.83 at 270 0 C. Tritium is predicted to react even more slowly than deuterium. The freezing point of lithium is depressed by 0.082 and 0.075 0 C, respectively, by dissolved hydride and deuteride giving eutectics at 0.016 mol percent H and 0.012 mol percent D in the metal-salt phase diagrams. The depression and eutectic concentration are expected to be less for tritium. The increase in the resistivity of liquid lithium caused by dissolved hydrogen isotopes is linear and relatively large, 5 x 10 -8 Ωm (mol percent H or D) -1 . The solubility of lithium hydride and deuteride was determined from the marked change in resistivity on saturation. The liquidus of the metal-salt phase diagram rises steeply from the eutectic point to meet the two-immiscible liquid region. Tritium is expected to be less soluble than deuterium. The partial molar enthalpies of solution are 44.2 and 55.0 kJmol -1 for hydrogen and deuterium, respectively. These values are used to calculate the solvation enthalpies of the isotope anions in the metal

  19. Influence of changing particle structure on the rate of gas-solid gasification reactions. Final report, July 1981-March 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-04-04

    The objetive of this work is to determine the changes in the particle structure of coal as it undergoes the carbon/carbon dioxide reaction (C + CO/sub 2/ ..-->.. 2CO). Char was produced by heating the coal at a rate of 25/sup 0/C/min to the reaction temperatures of 800/sup 0/C, 900/sup 0/C, 1000/sup 0/C and 1100/sup 0/C. The changes in surface area and effective diffusivity as a result of devolitization were determined. Changes in effective diffusivity and surface area as a function of conversion have been measured for reactions conducted at 800, 900, 1000 and 1100/sup 0/C for Wyodak coal char. The surface areas exhibit a maximum as a function of conversion in all cases. For the reaction at 1000/sup 0/C the maximum in surface area is greater than the maxima determined at all other reaction temperatures. Thermogravimetric rate data were obtained for five coal chars; Wyodak, Wilcox, Cimmeron, Illinois number 6 and Pittsburgh number 6 over the temperature range 800-1100/sup 0/C. All coal chars exhibit a maximum in reaction rate. Five different models for gas-solid reactions were evaluated. The Bhatia/Perlmutter model seems to best represent the data. 129 references, 67 figures, 37 tables.

  20. Control rod effects on reaction rate distributions in tight pitched PuO2-UO2 fuel assembly

    International Nuclear Information System (INIS)

    Gil, Choong-Sup; Okumura, Keisuke; Ishiguro, Yukio

    1991-11-01

    Investigations were made for the heterogeneity effects caused by insertion or withdrawal of a B 4 C control rod on fine structure of reaction rates distributions in a tight pitched PuO 2 -UO 2 fuel assembly. Analysis was carried out by using the VIM and SRAC codes with the libraries based on JENDL-2 for the hexagonal fuel assembly basically corresponding to the PROTEUS-LWHCR experimental core. The reaction rates are affected more remarkably by the withdrawal of the control rod rather than its insertion. The changes of the reaction rates were decomposed into three terms of spectrum shifts, the changes of effective cross sections with fine groups, and their higher order components. From the analysis, it is concluded that most changes of reaction rates are caused by spectral shifts. The SRAC code with fine group constants can predict the distribution of reaction rates and their ratios with the accuracy of about 5 % except for the values related to Pu-242 capture rate, as compared with the VIM results. To increase the accuracy, it is necessary to generate the effective cross sections of the fuel near control rods with consideration of the heterogeneities in the fuel assembly. (author)

  1. Generalized Temporal Acceleration Scheme for Kinetic Monte Carlo Simulations of Surface Catalytic Processes by Scaling the Rates of Fast Reactions.

    Science.gov (United States)

    Dybeck, Eric C; Plaisance, Craig P; Neurock, Matthew

    2017-04-11

    A novel algorithm is presented that achieves temporal acceleration during kinetic Monte Carlo (KMC) simulations of surface catalytic processes. This algorithm allows for the direct simulation of reaction networks containing kinetic processes occurring on vastly disparate time scales which computationally overburden standard KMC methods. Previously developed methods for temporal acceleration in KMC were designed for specific systems and often require a priori information from the user such as identifying the fast and slow processes. In the approach presented herein, quasi-equilibrated processes are identified automatically based on previous executions of the forward and reverse reactions. Temporal acceleration is achieved by automatically scaling the intrinsic rate constants of the quasi-equilibrated processes, bringing their rates closer to the time scales of the slow kinetically relevant nonequilibrated processes. All reactions are still simulated directly, although with modified rate constants. Abrupt changes in the underlying dynamics of the reaction network are identified during the simulation, and the reaction rate constants are rescaled accordingly. The algorithm was utilized here to model the Fischer-Tropsch synthesis reaction over ruthenium nanoparticles. This reaction network has multiple time-scale-disparate processes which would be intractable to simulate without the aid of temporal acceleration. The accelerated simulations are found to give reaction rates and selectivities indistinguishable from those calculated by an equivalent mean-field kinetic model. The computational savings of the algorithm can span many orders of magnitude in realistic systems, and the computational cost is not limited by the magnitude of the time scale disparity in the system processes. Furthermore, the algorithm has been designed in a generic fashion and can easily be applied to other surface catalytic processes of interest.

  2. Increase of 10% in the Rate of Adverse Drug Reactions for Each Drug Administered in Hospitalized Patients.

    Science.gov (United States)

    Ribeiro, Marisa Rosimeire; Motta, Antonio Abílio; Marcondes-Fonseca, Luiz Augusto; Kalil-Filho, Jorge; Giavina-Bianchi, Pedro

    2018-01-01

    To assess the risk factors, incidence and severity of adverse drug reactions in in-patients. This prospective study evaluated 472 patients treated at a teaching hospital in Brazil between 2010 and 2013 by five medical specialties: Internal Medicine, General Surgery, Geriatrics, Neurology, and Clinical Immunology and Allergy. The following variables were assessed: patient age, gender, comorbidities, family history of hypersensitivity, personal and family history of atopy, number of prescribed drugs before and during hospitalization, hospital diagnoses, days of hospitalization. The patients were visited every other day, and medical records were reviewed by the investigators to detect adverse drug reactions. There were a total of 94 adverse drug reactions in 75 patients. Most reactions were predictable and of moderate severity. The incidence of adverse drug reactions was 16.2%, and the incidence varied, according to the medical specialty; it was higher in Internal Medicine (30%). Antibiotics were the most commonly involved medication. Chronic renal failure, longer hospital stay, greater number of diagnoses and greater number of medications upon admission were risk factors. For each medication introduced during hospitalization, there was a 10% increase in the rate of adverse drug reaction. In the present study, the probability of observing an adverse drug reaction was 1 in 104 patients per day. Adverse drug reactions are frequent and potentially serious and should be better monitored in patients with chronic renal failure or prolonged hospitalization and especially in those on 'polypharmacy' regimens. The rational use of medications plays an important role in preventing adverse drug reactions.

  3. Verification of dosimetry cross sections above 10 MeV based on measurement of activation reaction rates in fission neutron field

    International Nuclear Information System (INIS)

    Odano, Naoteru; Miura, Toshimasa; Yamaji, Akio.

    1996-01-01

    To validate the dosimetry cross sections in fast neutron energy range, activation reaction rates were measured for 5 types of dosimetry cross sections which have sensitivity in the energy rage above 10 MeV utilizing JRR-4 reactor of JAERI. The measured reaction rates were compared with the calculations reaction rates by a continuous energy monte carlo code MVP. The calculated reaction rates were based on two dosimetry files, JENDL Dosimetry File and IRDF-90.2. (author)

  4. [Impact of sperm DNA and acrosome integrity and acrosome reaction rate on outcomes of rescue intracytoplasmic sperm injection].

    Science.gov (United States)

    He, Yongzhi; Li, Dawen; Cheng, Junping; Huo, Zhongchao; Huang, Hongyi; Xiao, Xin

    2016-01-01

    Objective To explore the effects of sperm DNA integrity rate, acrosome integrity rate and acrosome reaction rate on the outcomes of rescue intracytoplasmic sperm injection (ICSI). This retrospective analysis was conducted among 97 infertile couples receiving rescue ICSI due to failure of in vitro fertilization procedures in our Reproductive Medicine Center. Of these 97 women, 41 had clinical pregnancy and 56 did not, and the effects of sperm DNA integrity rate (estimated by DNA fragmentation index, DFI), acrosome integrity rate and acrosome reaction rate on rescue ICSI outcomes were analyzed. No significant difference was found in paternal age, testosterone value, testicular volume, FSH, female patient' age or the number of eggs retrieved between the two groups (P>0.05), but the infertility years was significantly shorter in the pregnancy group than in the non-pregnancy group (Prate and cleavage rate were similar between the two groups (P>0.05), but the good embryo rate was significantly higher in the pregnancy group (Preaction rate did not differ significantly between the two groups (P>0.05), but the acrosome integrity rate was significantly higher in the pregnancy group (Prate, acrosome integrity or acrosome reaction rate were not correlated with the fertilization rate, cleavage rate or good embryo rate (P>0.05). The pregnancy rate, twin and single fetus rates were 42.3%, 10.3% and 32.0% in this cohort after recue ICSI, respectively. Rescue ICSI is an effective treatment after failed in vitro fertilization procedure, and sperm acrosome integrity rate is associated with the outcome of rescue ICSI.

  5. Astrophysical reaction rate for the neutron-generator reaction 13C(alpha,n)16O in asymptotic giant branch stars.

    Science.gov (United States)

    Johnson, E D; Rogachev, G V; Mukhamedzhanov, A M; Baby, L T; Brown, S; Cluff, W T; Crisp, A M; Diffenderfer, E; Goldberg, V Z; Green, B W; Hinners, T; Hoffman, C R; Kemper, K W; Momotyuk, O; Peplowski, P; Pipidis, A; Reynolds, R; Roeder, B T

    2006-11-10

    The reaction 13C(alpha,n) is considered to be the main source of neutrons for the s process in asymptotic giant branch stars. At low energies, the cross section is dominated by the 1/2+ 6.356 MeV subthreshold resonance in (17)O whose contribution at stellar temperatures is uncertain by a factor of 10. In this work, we performed the most precise determination of the low-energy astrophysical S factor using the indirect asymptotic normalization (ANC) technique. The alpha-particle ANC for the subthreshold state has been measured using the sub-Coulomb alpha-transfer reaction ((6)Li,d). Using the determined ANC, we calculated S(0), which turns out to be an order of magnitude smaller than in the nuclear astrophysics compilation of reaction rates.

  6. Reaction rate between 1D migrating self-interstitial atoms: an examination by kinetic Monte Carlo simulation

    Science.gov (United States)

    Amino, T.; Arakawa, K.; Mori, H.

    2011-08-01

    The rate equation approach is useful for semi-quantitatively simulating long-term processes of accumulation or recovery of lattice defects in crystalline materials upon irradiation or annealing. This approach has been developed and applied to a large number of systems, including 3D or 1D migrating self-interstitial atoms (SIAs) and 1D migrating SIA clusters. The dimensionality of the migration of mobile species significantly affects the forms of the reaction rate. For reactions related to 1D migrating SIAs and clusters, only their reactions with stationary traps have been considered. However, the reactions between 1D migrating SIAs (or clusters) cannot be ignored, especially for processes in metals, in which the most stable configuration of an SIA is the crowdion, under electron and ion irradiations at comparatively high dose rate. In the present study, we use the object kinetic Monte Carlo (KMC) method to find the approximate form of the reaction rate between 1D migrating SIAs. For this purpose, we examine the average time for one SIA to encounter another SIA, in systems where the spatial distribution of SIAs is kept homogeneous, as a function of the concentration of SIAs. The approximate form of the reaction rate between 1D migrating SIAs primarily and effectively reflects the 2D migration process. In addition, it is shown that, in the systems composed of all reactive SIAs under annealing, the absolute value of the reaction rate by KMC becomes slightly lower than the solution of the derived form after longer times, due to the spatial correlation among SIAs.

  7. Rate Coefficients of the Reaction of OH with Allene and Propyne at High Temperatures

    KAUST Repository

    Es-sebbar, Et-touhami

    2016-09-28

    Allene (H2C═C═CH2; a-C3H4) and propyne (CH3C≡CH; p-C3H4) are important species in various chemical environments. In combustion processes, the reactions of hydroxyl radicals with a-C3H4 and p-C3H4 are critical in the overall fuel oxidation system. In this work, rate coefficients of OH radicals with allene (OH + H2C═C═CH2 → products) and propyne (OH + CH3C≡CH → products) were measured behind reflected shock waves over the temperature range of 843–1352 K and pressures near 1.5 atm. Hydroxyl radicals were generated by rapid thermal decomposition of tert-butyl hydroperoxide ((CH3)3–CO–OH), and monitored by narrow line width laser absorption of the well-characterized R1(5) electronic transition of the OH A–X (0,0) electronic system near 306.7 nm. Results show that allene reacts faster with OH radicals than propyne over the temperature range of this study. Measured rate coefficients can be expressed in Arrhenius form as follows: kallene+OH(T) = 8.51(±0.03) × 10–22T3.05 exp(2215(±3)/T), T = 843–1352 K; kpropyne+OH(T) = 1.30(±0.07) × 10–21T3.01 exp(1140(±6)/T), T = 846–1335 K.

  8. NMR-based screening method for transglutaminases: rapid analysis of their substrate specificities and reaction rates.

    Science.gov (United States)

    Shimba, Nobuhisa; Yokoyama, Kei-ichi; Suzuki, Ei-ichiro

    2002-03-13

    Incorporation of inter- or intramolecular covalent cross-links into food proteins with microbial transglutaminase (MTG) improves the physical and textural properties of many food proteins such as tofu, boiled fish paste, and sausage. Other transglutaminases (TGases) are expected to be used in the same way, and also to extend the scope of industrial applications to materials, drugs, and so on. The TGases have great diversity, not only in amino acid sequence and size, but also in their substrate specificities and catalytic activities, and therefore, it is quite difficult to estimate their reactivity. We have developed an NMR-based method using the enzymatic labeling technique (ELT) for simultaneous analysis of the substrate specificities and reaction rates of TGases. It is quite useful for comparing the existing TGases and for screening new TGases or TGases variants. This method has shown that MTG is superior for industrial use because of its lower substrate specificity compared with those of guinea pig liver transglutaminase (GTG) and red sea bream liver transglutaminase (FTG). We have also found that an MTG variant lacking an N-terminal aspartic acid residue has higher activity than that of the native enzyme.

  9. Reaction rates, depositional history and sources of indium in sediments from Appalachian and Canadian Shield lakes

    Science.gov (United States)

    Tessier, André; Gobeil, Charles; Laforte, Lucie

    2014-07-01

    Sediment cores were collected at the deepest site of twelve headwater lakes from the Province of Québec, Canada that receive contaminants only from atmospheric deposition, either directly to the lake surface or indirectly from the watershed. Several of the lakes are located within relatively short distance (In2S3(s) do not precipitate in the sediments and that adsorption of In onto sedimentary FeS(s) does not occur. However, similarities in the In and Fe porewater profiles, and the presence of In in the authigenic Fe-rich solids, reveal that part of the In becomes associated with authigenic Fe oxyhydroxides in the perennially oxic lake and is coupled to the Fe redox cycling. Comparison of the In/Corg and In/Fe molar ratios in the authigenic Fe-rich material and in surface sediments (0-0.5 cm) of this lake suggests that most non-lithogenic In was bound to humic substances. From the magnitude of the net In reaction rates, we infer that the post-depositional redistribution of this element is quantitatively not important and that the In sedimentary record represents accurately In deposition at the sampling sites. Reconstructed chronologies of the anthropogenic In deposition and comparison of In inventories among lakes point to non-ferrous metal smelters as a past significant source of atmospheric In contamination and to a significant reduction of industrial In emissions into the North American atmosphere in recent decades.

  10. The effect of inquiry-flipped classroom model toward students' achievement on chemical reaction rate

    Science.gov (United States)

    Paristiowati, Maria; Fitriani, Ella; Aldi, Nurul Hanifah

    2017-08-01

    The aim of this research is to find out the effect of Inquiry-Flipped Classroom Models toward Students' Achievement on Chemical Reaction Rate topic. This study was conducted at SMA Negeri 3 Tangerang in Eleventh Graders. The Quasi Experimental Method with Non-equivalent Control Group design was implemented in this study. 72 students as the sample was selected by purposive sampling. Students in experimental group were learned through inquiry-flipped classroom model. Meanwhile, in control group, students were learned through guided inquiry learning model. Based on the data analysis, it can be seen that there is significant difference in the result of the average achievement of the students. The average achievement of the students in inquiry-flipped classroom model was 83,44 and the average achievement of the students in guided inquiry learning model was 74,06. It can be concluded that the students' achievement with inquiry-flipped classroom better than guided inquiry. The difference of students' achievement were significant through t-test which is tobs 3.056 > ttable 1.994 (α = 0.005).

  11. Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity.

    Science.gov (United States)

    Dickey, Seth W; Baker, Rosanna P; Cho, Sangwoo; Urban, Siniša

    2013-12-05

    Enzymatic cleavage of transmembrane anchors to release proteins from the membrane controls diverse signaling pathways and is implicated in more than a dozen diseases. How catalysis works within the viscous, water-excluding, two-dimensional membrane is unknown. We developed an inducible reconstitution system to interrogate rhomboid proteolysis quantitatively within the membrane in real time. Remarkably, rhomboid proteases displayed no physiological affinity for substrates (K(d) ~190 μM/0.1 mol%). Instead, ~10,000-fold differences in proteolytic efficiency with substrate mutants and diverse rhomboid proteases were reflected in k(cat) values alone. Analysis of gate-open mutant and solvent isotope effects revealed that substrate gating, not hydrolysis, is rate limiting. Ultimately, a single proteolytic event within the membrane normally takes minutes. Rhomboid intramembrane proteolysis is thus a slow, kinetically controlled reaction not driven by transmembrane protein-protein affinity. These properties are unlike those of other studied proteases or membrane proteins but are strikingly reminiscent of one subset of DNA-repair enzymes, raising important mechanistic and drug-design implications. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Determination of the astrophysical 12N(p,γ)13O reaction rate from the 2H(12N,13O)n reaction and its astrophysical implications

    Science.gov (United States)

    Guo, B.; Su, J.; Li, Z. H.; Wang, Y. B.; Yan, S. Q.; Li, Y. J.; Shu, N. C.; Han, Y. L.; Bai, X. X.; Chen, Y. S.; Liu, W. P.; Yamaguchi, H.; Binh, D. N.; Hashimoto, T.; Hayakawa, S.; Kahl, D.; Kubono, S.; He, J. J.; Hu, J.; Xu, S. W.; Iwasa, N.; Kume, N.; Li, Z. H.

    2013-01-01

    The evolution of massive stars with very low-metallicities depends critically on the amount of CNO nuclides which they produce. The 12N(p,γ)13O reaction is an important branching point in the rap processes, which are believed to be alternative paths to the slow 3α process for producing CNO seed nuclei and thus could change the fate of massive stars. In the present work, the angular distribution of the 2H(12N, 13O)n proton transfer reaction at Ec.m.=8.4 MeV has been measured for the first time. Based on the Johnson-Soper approach, the square of the asymptotic normalization coefficient (ANC) for the virtual decay of 13Og.s. → 12N+p was extracted to be 3.92±1.47 fm-1 from the measured angular distribution and utilized to compute the direct component in the 12N(p,γ)13O reaction. The direct astrophysical S factor at zero energy was then found to be 0.39±0.15 keV b. By considering the direct capture into the ground state of 13O, the resonant capture via the first excited state of 13O and their interference, we determined the total astrophysical S factors and rates of the 12N(p,γ)13O reaction. The new rate is two orders of magnitude slower than that from the REACLIB compilation. Our reaction network calculations with the present rate imply that 12N(p,γ)13O will only compete successfully with the β+ decay of 12N at higher (˜2 orders of magnitude) densities than initially predicted.

  13. Reaction F + C2H4: Rate Constant and Yields of the Reaction Products as a Function of Temperature over 298-950 K.

    Science.gov (United States)

    Bedjanian, Yuri

    2018-03-29

    The kinetics and products of the reaction of F + C 2 H 4 have been studied in a discharge flow reactor combined with an electron impact ionization mass spectrometer at nearly 2 Torr total pressure of helium in the temperature range 298-950 K. The total rate constant of the reaction, k 1 = (1.78 ± 0.30) × 10 -10 cm 3 molecule -1 s -1 , determined under pseudo-first-order conditions, monitoring the kinetics of F atom consumption in excess of C 2 H 4 , was found to be temperature independent in the temperature range used. H, C 2 H 3 F, and HF were identified as the reaction products. Absolute measurements of the yields of these species allowed to determine the branching ratios, k 1b / k 1 = (0.73 ± 0.07) exp(-(425 ± 45)/ T) and k 1a / k 1 = 1 - (0.73 ± 0.07) exp(-(425 ± 45)/ T) and partial rate constants for addition-elimination (H + C 2 H 3 F) and H atom abstraction (HF + C 2 H 3 ) pathways of the title reaction: k 1a = (0.80 ± 0.07) × 10 -10 exp(189 ± 37/ T) and k 1b = (1.26 ± 0.13) × 10 -10 exp(-414 ± 45/ T) cm 3 molecule -1 s -1 , respectively, at T = 298-950 K and with 2σ quoted uncertainties. The overall reaction rate constant can be adequately described by both the temperature independent value and as a sum of k 1a and k 1b . The kinetic and mechanistic data from the present study are discussed in comparison with previous absolute and relative measurements and theoretical calculations.

  14. Kinetic study of the Diels-Alder reaction of Li⁺@C₆₀ with cyclohexadiene: greatly increased reaction rate by encapsulated Li⁺.

    Science.gov (United States)

    Ueno, Hiroshi; Kawakami, Hiroki; Nakagawa, Koji; Okada, Hiroshi; Ikuma, Naohiko; Aoyagi, Shinobu; Kokubo, Ken; Matsuo, Yutaka; Oshima, Takumi

    2014-08-06

    We studied the kinetics of the Diels-Alder reaction of Li(+)-encapsulated [60]fullerene with 1,3-cyclohexadiene and characterized the obtained product, [Li(+)@C60(C6H8)](PF6(-)). Compared with empty C60, Li(+)@C60 reacted 2400-fold faster at 303 K, a rate enhancement that corresponds to lowering the activation energy by 24.2 kJ mol(-1). The enhanced Diels-Alder reaction rate was well explained by DFT calculation at the M06-2X/6-31G(d) level of theory considering the reactant complex with dispersion corrections. The calculated activation energies for empty C60 and Li(+)@C60 (65.2 and 43.6 kJ mol(-1), respectively) agreed fairly well with the experimentally obtained values (67.4 and 44.0 kJ mol(-1), respectively). According to the calculation, the lowering of the transition state energy by Li(+) encapsulation was associated with stabilization of the reactant complex (by 14.1 kJ mol(-1)) and the [4 + 2] product (by 5.9 kJ mol(-1)) through favorable frontier molecular orbital interactions. The encapsulated Li(+) ion catalyzed the Diels-Alder reaction by lowering the LUMO of Li(+)@C60. This is the first detailed report on the kinetics of a Diels-Alder reaction catalyzed by an encapsulated Lewis acid catalyst rather than one coordinated to a heteroatom in the dienophile.

  15. Temperature dependence of the rate constant for reactions of hydrated electrons with H, OH and H2O2

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, K.; Løgager, T.

    1994-01-01

    The temperature dependence of the rate constants, for the reactions of hydrated electrons with H atoms, OH radicals and H2O2 has been determined. The reaction with H atoms, studied in the temperature range 20-250-degrees-C gives k(20-degrees-C) = 2.4 x 10(10) M-1 s-1 and the activation energy E......-1 and E(A) = 15.6 kJ mol-1 (3.7 kcal mol-1) measured from 5-150-degrees-C. Thus, the activation energy for all three fast reactions is close to that expected for diffusion controlled reactions. As phosphates were used as buffer system, the rate constant and activation energy for the reaction......(A) = 14.0 kJ mol-1 (3.3 kcal mol-1). For reaction with OH radicals the corresponding values are, k(20-degrees-C) = 3.1 x 10(10) M-1 s-1 and E(A) = 14.7 kJ mol-1 (3.5 kcal mol-1) determined in the temperature range 5-175-degrees-C. For reaction with H2O2 the values are, k(20-degrees-C) = 1.2 x 10(10) M-1 s...

  16. Constraining astrophysical reaction rates: using the storage rings at FAIR/GSI

    Science.gov (United States)

    Langer, Christoph; Glorius, Jan; Slavkovská, Zuzana; Litvinov, Sergey; Litvinov, Yuri A.; Reifarth, René

    2018-01-01

    Ion optical calculations for a storage ring at the present GSI facility for direct proton-induced reactions relevant for different astrophysical processes are presented. As an example case, the 59Cu(p,γ) and 59Cu(p,α) reactions are shown. The branching of these two reactions is important in X-ray burst scenarios, since it determines the breakout out of the major 56Ni waiting point.

  17. The Calculation of Thermal Rate Constants for Gas-Phase and Heterogeneous Reactions in Combustion Processes.

    Science.gov (United States)

    1987-07-28

    34Dynamical Bottlenecks and Semiclassical Tunneling Paths for Chemical Reactions", J. de Chimie Physique, in press. B. C. Garrett, M. J. Redmon, R. Steckler...the angle between the bottom of the reactant valley and the bottom of the product valley in a mass weighted coordinate systems is small. A consequence...along the reaction coordinate . Another concern in the use of RPH interpolation techniques is how accurate the reaction path (the minimum energy path in a

  18. Influence of the medium on the reaction rate of the t-butoxyl radical with iron(II)

    International Nuclear Information System (INIS)

    Mihaljevic, B.; Razem, D.

    2002-01-01

    Complete text of publication follows. Tert-butoxyl radicals (t-BuO.) were generated by homolytic photodecomposition of di-tert-butylperoxide using ruby laser flashes at 347 nm. The reaction of t-BuO. radicals with Fe 2+ was studied under pseudo-first order conditions. The quantum yield Φ(Fe 3+ ) was determined by measuring the absorbance of Fe 3+ ion as [FeCl] 2+ complex at 360 nm 2 μs after the flash. According to the equation derived from the reaction scheme, the rate constant k 3 was obtained from the relative rate constant k r (k r =k 0 /k 3 ) and the value of k 0 ; the latter refers to the overall rate of the competing disappearance of t-BuO. radicals from the system (reaction 2), including the highest contribution of β-cleavage. The rate constant k 0 was determined using diphenylmethanol instead of Fe 2+ . The known rate constant of the reaction of t-BuO. radical with diphenylmethanol giving ketyl radicals (6.9 x 10 6 dm 3 mol -1 s -1 ) was applied. The quantum yield of ketyl radicals was determined by measuring the maximum of absorbance at 535 nm. At acid concentration of 0.023 mol dm -3 HCl the rate constant k 3 = 3.4 x 10 8 dm 3 mol -1 s -1 was determined. The relative rate constant increased with an increase of the hydrochloric acid concentration which has been ascribed to the lower stability of t-BuO. radical at higher acidity of the medium. The effect of polarity of the medium on the reaction rate was also determined. Decreasing k 3 in media of increasing polarity were explained by increasing of the β-scission rate of t-BuO. radical with increasing polarity of the medium

  19. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.

    Science.gov (United States)

    Grima, R

    2010-07-21

    Chemical master equations provide a mathematical description of stochastic reaction kinetics in well-mixed conditions. They are a valid description over length scales that are larger than the reactive mean free path and thus describe kinetics in compartments of mesoscopic and macroscopic dimensions. The trajectories of the stochastic chemical processes described by the master equation can be ensemble-averaged to obtain the average number density of chemical species, i.e., the true concentration, at any spatial scale of interest. For macroscopic volumes, the true concentration is very well approximated by the solution of the corresponding deterministic and macroscopic rate equations, i.e., the macroscopic concentration. However, this equivalence breaks down for mesoscopic volumes. These deviations are particularly significant for open systems and cannot be calculated via the Fokker-Planck or linear-noise approximations of the master equation. We utilize the system-size expansion including terms of the order of Omega(-1/2) to derive a set of differential equations whose solution approximates the true concentration as given by the master equation. These equations are valid in any open or closed chemical reaction network and at both the mesoscopic and macroscopic scales. In the limit of large volumes, the effective mesoscopic rate equations become precisely equal to the conventional macroscopic rate equations. We compare the three formalisms of effective mesoscopic rate equations, conventional rate equations, and chemical master equations by applying them to several biochemical reaction systems (homodimeric and heterodimeric protein-protein interactions, series of sequential enzyme reactions, and positive feedback loops) in nonequilibrium steady-state conditions. In all cases, we find that the effective mesoscopic rate equations can predict very well the true concentration of a chemical species. This provides a useful method by which one can quickly determine the

  20. Asn-150 of Murine Erythroid 5-Aminolevulinate Synthase Modulates the Catalytic Balance between the Rates of the Reversible Reaction.

    Science.gov (United States)

    Stojanovski, Bosko M; Ferreira, Gloria C

    2015-12-25

    5-Aminolevulinate synthase (ALAS) catalyzes the first step in mammalian heme biosynthesis, the pyridoxal 5'-phosphate (PLP)-dependent and reversible reaction between glycine and succinyl-CoA to generate CoA, CO2, and 5-aminolevulinate (ALA). Apart from coordinating the positioning of succinyl-CoA, Rhodobacter capsulatus ALAS Asn-85 has a proposed role in regulating the opening of an active site channel. Here, we constructed a library of murine erythroid ALAS variants with substitutions at the position occupied by the analogous bacterial asparagine, screened for ALAS function, and characterized the catalytic properties of the N150H and N150F variants. Quinonoid intermediate formation occurred with a significantly reduced rate for either the N150H- or N150F-catalyzed condensation of glycine with succinyl-CoA during a single turnover. The introduced mutations caused modifications in the ALAS active site such that the resulting variants tipped the balance between the forward- and reverse-catalyzed reactions. Although wild-type ALAS catalyzes the conversion of ALA into the quinonoid intermediate at a rate 6.3-fold slower than the formation of the same quinonoid intermediate from glycine and succinyl-CoA, the N150F variant catalyzes the forward reaction at a mere 1.2-fold faster rate than that of the reverse reaction, and the N150H variant reverses the rate values with a 1.7-fold faster rate for the reverse reaction than that for the forward reaction. We conclude that the evolutionary selection of Asn-150 was significant for optimizing the forward enzymatic reaction at the expense of the reverse, thus ensuring that ALA is predominantly available for heme biosynthesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Development, improvement and calibration of neutronic reaction rates measurements: elaboration of a standard techniques basis

    International Nuclear Information System (INIS)

    Hudelot, J.P.

    1998-06-01

    In order to improve and to validate the neutronics calculation schemes, perfecting integral measurements of neutronics parameters is necessary. This thesis focuses on the conception, the improvement and the development of neutronics reaction rates measurements, and aims at building a base of standard techniques. Two subjects are discussed. The first one deals with direct measurements by fission chambers. A short presentation of the different usual techniques is given. Then, those last ones are applied through the example of doubling time measurements on the EOLE facility during the MISTRAL 1 experimental programme. Two calibration devices of fission chambers are developed: a thermal column located in the central part of the MINERVE facility, and a calibration cell using a pulsed high flux neutron generator and based on the discrimination of the energy of the neutrons with a time-of-flight method. This second device will soon allow to measure the mass of fission chambers with a precision of about 1 %. Finally, the necessity of those calibrations will be shown through spectral indices measurements in core MISTRAL 1 (UO 2 ) and MISTRAL 2 (MOX) of the EOLE facility. In each case, the associated calculation schemes, performed using the Monte Carlo MCNP code with the ENDF-BV library, will be validated. Concerning the second one, the goal is to develop a method for measuring the modified conversion ratio of 238 U (defined as the ratio of 238 U capture rate to total fission rate) by gamma-ray spectrometry of fuel rods. Within the framework of the MISTRAL 1 and MISTRAL 2 programmes, the measurement device, the experimental results and the spectrometer calibration are described. Furthermore, the MCNP calculations of neutron self-shielding and gamma self-absorption are validated. It is finally shown that measurement uncertainties are better than 1 %. The extension of this technique to future modified conversion ratio measurements for 242 Pu (on MOX rods) and 232 Th (on

  2. Variational RRKM calculation of thermal rate constant for C–H bond fission reaction of nitro methane

    Directory of Open Access Journals (Sweden)

    Afshin Taghva Manesh

    2017-02-01

    Full Text Available The present work provides quantitative results for the rate constants of unimolecular C–H bond fission reactions in the nitro methane at elevated temperatures up to 2000 K. In fact, there are three different hydrogen atoms in the nitro methane. The potential energy surface for each C–H bond fission reaction of nitro methane was investigated by ab initio calculations. The geometry and vibrational frequencies of the species involved in this process were optimized at the MP2 level of theory, using the cc-pvdz basis set. Since C–H bond fission channel is a barrierless reaction, we have used variational RRKM theory to predict rate coefficients. By means of calculated rate coefficients at different temperatures, the Arrhenius expression of the channel over the temperature range of 100–2000 K is k(T = 5.9E19∗exp(−56274.6/T.

  3. Methods for quantifying the influences of pressure and temperature variation on metal hydride reaction rates measured under isochoric conditions.

    Science.gov (United States)

    Voskuilen, Tyler G; Pourpoint, Timothée L

    2013-11-01

    Analysis techniques for determining gas-solid reaction rates from gas sorption measurements obtained under non-constant pressure and temperature conditions often neglect temporal variations in these quantities. Depending on the materials in question, this can lead to significant variations in the measured reaction rates. In this work, we present two new analysis techniques for comparison between various kinetic models and isochoric gas measurement data obtained under varying temperature and pressure conditions in a high pressure Sievert system. We introduce the integral pressure dependence method and the temperature dependence factor as means of correcting for experimental variations, improving model-measurement fidelity, and quantifying the effect that such variations can have on measured reaction rates. We use measurements of hydrogen absorption in LaNi5 and TiCrMn to demonstrate the effect of each of these methods and show that their use can provide quantitative improvements in interpretation of kinetics measurements.

  4. Charge effect on the diffusion coefficient and the bimolecular reaction rate of diiodide anion radical in room temperature ionic liquids.

    Science.gov (United States)

    Nishiyama, Yoshio; Terazima, Masahide; Kimura, Yoshifumi

    2009-04-16

    The diffusion coefficients of diiodide anion radical, I(2)(-), in room temperature ionic liquids (RTILs) were determined by the transient grating (TG) method using the photochemical reaction of iodide. The diffusion coefficients we obtained were larger in RTILs than the theoretical predictions by the Stokes-Einstein relation, whereas both values are similar in conventional solvents. By comparison with the diffusion coefficients of neutral molecules, it was suggested that the Coulomb interaction between I(2)(-) and constituent ions of RTILs strongly affects the diffusion coefficients. The bimolecular reaction rates between I(2)(-) were calculated by the Debye-Smoluchowski equation using the experimentally determined diffusion coefficients. These calculated reaction rate were much smaller than the experimentally determined rates (Takahashi, K.; et al. J. Phys. Chem. B 2007, 111, 4807), indicating the charge screening effect of RTILs.

  5. Measurements of activation reaction rate distributions on a mercury target bombarded with high-energy protons at AGS

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Hiroshi; Kasugai, Yoshimi; Nakashima, Hiroshi; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ino, Takashi; Kawai, Masayoshi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Jerde, Eric; Glasgow, David [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2000-02-01

    A neutronics experiment was carried out using a thick mercury target at the Alternating Gradient Synchrotron (AGS) facility of Brookhaven National Laboratory in a framework of the ASTE (AGS Spallation Target Experiment) collaboration. Reaction rate distributions around the target were measured by the activation technique at incident proton energies of 1.6, 12 and 24 GeV. Various activation detectors such as the {sup 115}In(n,n'){sup 115m}In, {sup 93}Nb(n,2n){sup 92m}Nb, and {sup 209}Bi(n,xn) reactions with threshold energies ranging from 0.3 to 70.5 MeV were employed to obtain the reaction rate data for estimating spallation source neutron characteristics of the mercury target. It was found from the measured {sup 115}In(n,n'){sup 115m}In reaction rate distribution that the number of leakage neutrons becomes maximum at about 11 cm from the top of hemisphere of the mercury target for the 1.6-GeV proton incidence and the peak position moves towards forward direction with increase of the incident proton energy. The similar result was observed in the reaction rate distributions of other activation detectors. The experimental procedures and a full set of experimental data in numerical form are summarized in this report. (author)

  6. Measurements of activation reaction rate distributions on a mercury target bombarded with high-energy protons at AGS

    International Nuclear Information System (INIS)

    Takada, Hiroshi; Kasugai, Yoshimi; Nakashima, Hiroshi; Ikeda, Yujiro; Jerde, Eric; Glasgow, David

    2000-02-01

    A neutronics experiment was carried out using a thick mercury target at the Alternating Gradient Synchrotron (AGS) facility of Brookhaven National Laboratory in a framework of the ASTE (AGS Spallation Target Experiment) collaboration. Reaction rate distributions around the target were measured by the activation technique at incident proton energies of 1.6, 12 and 24 GeV. Various activation detectors such as the 115 In(n,n') 115m In, 93 Nb(n,2n) 92m Nb, and 209 Bi(n,xn) reactions with threshold energies ranging from 0.3 to 70.5 MeV were employed to obtain the reaction rate data for estimating spallation source neutron characteristics of the mercury target. It was found from the measured 115 In(n,n') 115m In reaction rate distribution that the number of leakage neutrons becomes maximum at about 11 cm from the top of hemisphere of the mercury target for the 1.6-GeV proton incidence and the peak position moves towards forward direction with increase of the incident proton energy. The similar result was observed in the reaction rate distributions of other activation detectors. The experimental procedures and a full set of experimental data in numerical form are summarized in this report. (author)

  7. Combined effect of whole-body vibration and ambient lighting on human discomfort, heart rate, and reaction time.

    Science.gov (United States)

    Monazzam, Mohammad Reza; Shoja, Esmaeil; Zakerian, Seyed Abolfazl; Foroushani, Abbas Rahimi; Shoja, Mohsen; Gharaee, Masoumeh; Asgari, Amin

    2018-03-12

    This study aimed to investigate the effect of whole-body vibration and ambient lighting, as well as their combined effect on human discomfort, heart rate, and reaction time in laboratory conditions. 44 men were recruited with an average age of 25.4 ± 1.9 years. Each participant was subjected to 12 experimental steps, each step lasting five minutes for four different vibration accelerations in X, Y, and Z axes at a fixed frequency; three different lighting intensities of 50, 500, and 1000 lx were also considered. At each step, a visual computerized reaction test was taken from subjects and their heart rate recorded by pulse oximeter. In addition, the discomfort rate of subjects was measured using Borg scale. Increasing vibration acceleration significantly increased the discomfort rate and heart beat but not the reaction time. Lack of lighting caused more discomfort in the subjects, but there was no significant correlation between lighting intensity with heart rate and reaction time. The results also showed that the combined effect of vibration and lighting had no significant effect on any of the discomfort, heart rate, and reaction time variables. Whole-body vibration is an important factor in the development of human subjective and physiological reactions compared to lighting. Therefore, consideration of the level of vibration to which an individual is exposed in workplaces subject to vibration plays an important role in reducing the level of human discomfort, but its interaction with ambient lighting does not have a significant effect on human subjective and physiological responses.

  8. Rate Constants and Activation Energies for Gas-Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical.

    Science.gov (United States)

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie; Macleod, Matthew

    2015-07-01

    Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second-order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D 4 ), decamethylcyclopentasiloxane (D 5 ), and dodecamethylcyclohexasiloxane (D 6 ) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140-mL gas-phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D 4 and D 5 with the OH radical are 1.9 × 10 -12 (95% confidence interval (CI): (1.7-2.2) × 10 -12 ) and 2.6 × 10 -12 (CI: (2.3-2.9) × 10 -12 ) cm 3 molecule -1 s -1 , respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D 6 is 2.8 × 10 -12 (CI: (2.5-3.2) × 10 -12 ) cm 3 molecule -1 s -1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D 5 were 33% higher than for D 4 (CI: 30-37%), whereas the rates for D 6 were only 8% higher than for D 5 (CI: 5-10%). The activation energies of the reactions of D 4 , D 5 , and D 6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol.

  9. Rate Constants and Activation Energies for Gas‐Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical

    Science.gov (United States)

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie

    2015-01-01

    ABSTRACT Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second‐order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140‐mL gas‐phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D4 and D5 with the OH radical are 1.9 × 10−12 (95% confidence interval (CI): (1.7–2.2) × 10−12) and 2.6 × 10−12 (CI: (2.3–2.9) × 10−12) cm3 molecule−1 s−1, respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D6 is 2.8 × 10−12 (CI: (2.5–3.2) × 10−12) cm3 molecule−1 s−1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D5 were 33% higher than for D4 (CI: 30–37%), whereas the rates for D6 were only 8% higher than for D5 (CI: 5–10%). The activation energies of the reactions of D4, D5, and D6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol. PMID:27708500

  10. Rate constant measurements for the overall reaction of OH + 1-butanol → products from 900 to 1200 K.

    Science.gov (United States)

    Pang, Genny A; Hanson, Ronald K; Golden, David M; Bowman, Craig T

    2012-03-15

    The rate constant for the overall reaction OH + 1-butanol → products was determined in the temperature range 900 to 1200 K from measurements of OH concentration time histories in reflected shock wave experiments of tert-butyl hydroperoxide (TBHP) as a fast source of OH radicals with 1-butanol in excess. Narrow-linewidth laser absorption was employed for the quantitative OH concentration measurement. A detailed kinetic mechanism was constructed that includes updated rate constants for 1-butanol and TBHP kinetics that influence the near-first-order OH concentration decay under the present experimental conditions, and this mechanism was used to facilitate the rate constant determination. The current work improves upon previous experimental studies of the title rate constant by utilizing a rigorously generated kinetic model to describe secondary reactions. Additionally, the current work extends the temperature range of experimental data in the literature for the title reaction under combustion-relevant conditions, presenting the first measurements from 900 to 1000 K. Over the entire temperature range studied, the overall rate constant can be expressed in Arrhenius form as 3.24 × 10(-10) exp(-2505/T [K]) cm(3) molecule(-1) s(-1). The influence of secondary reactions on the overall OH decay rate is discussed, and a detailed uncertainty analysis is performed yielding an overall uncertainty in the measured rate constant of ±20% at 1197 K and ±23% at 925 K. The results are compared with previous experimental and theoretical studies on the rate constant for the title reaction and reasonable agreement is found when the earlier experimental data were reinterpreted.

  11. APPLE-2: an improved version of APPLE code for plotting neutron and gamma ray spectra and reaction rates

    International Nuclear Information System (INIS)

    Kawasaki, Hiromitsu; Seki, Yasushi.

    1982-07-01

    A computer code APPLE-2 which plots the spatial distribution of energy spectra of multi-group neutron and/or gamma ray fluxes, and reaction rates has been developed. This code is an improved version of the previously developed APPLE code and has the following features: (1) It plots energy spectra of neutron and/or gamma ray fluxes calculated by ANISN, DOT and MORSE. (2) It calculates and plots the spatial distribution of neutron and gamma ray fluxes and various types of reaction rates such as nuclear heating rates, operational dose rates, displacement damage rates. (3) Input data specification is greatly simplified by the use of standard, response libraries and by close coupling with radiation transport calculation codes. (4) Plotting outputs are given in camera ready form. (author)

  12. Charting an Alternate Pathway to Reaction Orders and Rate Laws in Introductory Chemistry Courses

    Science.gov (United States)

    Rushton, Gregory T.; Criswell, Brett A.; McAllister, Nicole D.; Polizzi, Samuel J.; Moore, Lamesha A.; Pierre, Michelle S.

    2014-01-01

    Reaction kinetics is an axiomatic topic in chemistry that is often addressed as early as the high school course and serves as the foundation for more sophisticated conversations in college-level organic, physical, and biological chemistry courses. Despite the fundamental nature of reaction kinetics, students can struggle with transforming their…

  13. Kinetics analysis for development of a rate constant estimation model for ultrasonic degradation reaction of methylene blue.

    Science.gov (United States)

    Kobayashi, Daisuke; Honma, Chiemi; Matsumoto, Hideyuki; Takahashi, Tomoki; Kuroda, Chiaki; Otake, Katsuto; Shono, Atsushi

    2014-07-01

    Ultrasound has been used as an advanced oxidation method for wastewater treatment. Sonochemical degradation of organic compounds in aqueous solution occurs by pyrolysis and/or reaction with hydroxyl radicals. Moreover, kinetics of sonochemical degradation has been proposed. However, the effect of ultrasonic frequency on degradation rate has not been investigated. In our previous study, a simple model for estimating the apparent degradation rate of methylene blue was proposed. In this study, sonochemical degradation of methylene blue was performed at various frequencies. Apparent degradation rate constant was evaluated assuming that sonochemical degradation of methylene blue was a first-order reaction. Specifically, we focused on effects of ultrasonic frequency and power on rate constant, and the applicability of our proposed model was demonstrated. Using this approach, maximum sonochemical degradation rate was observed at 490 kHz, which agrees with a previous investigation into the effect of frequency on the sonochemical efficiency value evaluated by KI oxidation dosimetry. Degradation rate increased with ultrasonic power at every frequency. It was also observed that threshold power must be reached for the degradation reaction to progress. The initial methylene blue concentration and the apparent degradation rate constant have a relation of an inverse proportion. Our proposed model for estimating the apparent degradation rate constant using ultrasonic power and sonochemical efficiency value can apply to this study which extended the frequency and initial concentration range. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Phosphorus-31 NMR magnetization transfer measurements of metabolic reaction rates in the rat heart and kidney in vivo

    International Nuclear Information System (INIS)

    Koretsky, A.P.

    1984-01-01

    31 P NMR is a unique tool to study bioenergetics in living cells. The application of magnetization transfer techniques to the measurement of steady-state enzyme reaction rates provides a new approach to understanding the regulation of high energy phosphate metabolism. This dissertation is concerned with the measurement of the rates of ATP synthesis in the rat kidney and of the creatine kinase catalyzed reaction in the rat heart in situ. The theoretical considerations of applying magnetization transfer techniques to intact organs are discussed with emphasis on the problems associated with multiple exchange reactions and compartmentation of reactants. Experimental measurements of the ATP synthesis rate were compared to whole kidney oxygen consumption and Na + reabsorption rates to derive ATP/O values. The problems associated with ATP synthesis rate measurements in kidney, e.g. the heterogeneity of the inorganic phosphate resonance, are discussed and experiments to overcome these problems proposed. In heart, the forward rate through creatine kinase was measured to be larger than the reverse rate. To account for the difference in forward and reverse rates a model is proposed based on the compartmentation of a small pool of ATP

  15. Determination of astrophysical thermonuclear rates with a bubble chamber: The 12C(αγ)16O reaction case

    International Nuclear Information System (INIS)

    DiGiovine, B.; Henderson, D.; Holt, R. J.; Rehm, K. E.; Grames, J.; Meekins, D.; Poelker, M.; Suleiman, R.; Robinson, A.; Ugalde, C.; Sonnenschein, A.

    2013-01-01

    The 12 C(αγ) 16 O reaction rate is considered one of the most important unknown parameters in the physics of structure and evolution of massive stars. While extensive experimental campaigns have been performed trying to improve the quality of the measurements, the rate still holds very large uncertainties. Here we discuss a new experimantal scheme to measure the cross section of this reaction with a bubble chamber and a bremsstrahlung beam. The main advantage of the technique is a gain in the luminosity of several orders of magnitude when compared to other ongoing experiments

  16. Spectacular Rate Enhancement of the Diels-Alder Reaction at the Ionic Liquid/n-Hexane Interface.

    Science.gov (United States)

    Beniwal, Vijay; Manna, Arpan; Kumar, Anil

    2016-07-04

    The use of the ionic liquid/n-hexane interface as a new class of reaction medium for the Diels-Alder reaction gives large rate enhancements of the order of 10(6) to 10(8) times and high stereoselectivity, as compared to homogeneous media. The rate enhancement is attributed to the H-bonding abilities and polarities of the ionic liquids, whereas the hydrophobicity of ionic liquids was considered to be the factor in controlling stereoselectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. SISGR - In situ characterization and modeling of formation reactions under extreme heating rates in nanostructured multilayer foils

    Energy Technology Data Exchange (ETDEWEB)

    Hufnagel, Todd C.

    2014-06-09

    Materials subjected to extreme conditions, such as very rapid heating, behave differently than materials under more ordinary conditions. In this program we examined the effect of rapid heating on solid-state chemical reactions in metallic materials. One primary goal was to develop experimental techniques capable of observing these reactions, which can occur at heating rates in excess of one million degrees Celsius per second. One approach that we used is x-ray diffraction performed using microfocused x-ray beams and very fast x-ray detectors. A second approach is the use of a pulsed electron source for dynamic transmission electron microscopy. With these techniques we were able to observe how the heating rate affects the chemical reaction, from which we were able to discern general principles about how these reactions proceed. A second thrust of this program was to develop computational tools to help us understand and predict the reactions. From atomic-scale simulations were learned about the interdiffusion between different metals at high heating rates, and about how new crystalline phases form. A second class of computational models allow us to predict the shape of the reaction front that occurs in these materials, and to connect our understanding of interdiffusion from the atomistic simulations to measurements made in the laboratory. Both the experimental and computational techniques developed in this program are expected to be broadly applicable to a wider range of scientific problems than the intermetallic solid-state reactions studied here. For example, we have already begun using the x-ray techniques to study how materials respond to mechanical deformation at very high rates.

  18. From cutting-edge pointwise cross-section to groupwise reaction rate: A primer

    Science.gov (United States)

    Sublet, Jean-Christophe; Fleming, Michael; Gilbert, Mark R.

    2017-09-01

    The nuclear research and development community has a history of using both integral and differential experiments to support accurate lattice-reactor, nuclear reactor criticality and shielding simulations, as well as verification and validation efforts of cross sections and emitted particle spectra. An important aspect to this type of analysis is the proper consideration of the contribution of the neutron spectrum in its entirety, with correct propagation of uncertainties and standard deviations derived from Monte Carlo simulations, to the local and total uncertainty in the simulated reactions rates (RRs), which usually only apply to one application at a time. This paper identifies deficiencies in the traditional treatment, and discusses correct handling of the RR uncertainty quantification and propagation, including details of the cross section components in the RR uncertainty estimates, which are verified for relevant applications. The methodology that rigorously captures the spectral shift and cross section contributions to the uncertainty in the RR are discussed with quantified examples that demonstrate the importance of the proper treatment of the spectrum profile and cross section contributions to the uncertainty in the RR and subsequent response functions. The recently developed inventory code FISPACT-II, when connected to the processed nuclear data libraries TENDL-2015, ENDF/B-VII.1, JENDL-4.0u or JEFF-3.2, forms an enhanced multi-physics platform providing a wide variety of advanced simulation methods for modelling activation, transmutation, burnup protocols and simulating radiation damage sources terms. The system has extended cutting-edge nuclear data forms, uncertainty quantification and propagation methods, which have been the subject of recent integral and differential, fission, fusion and accelerators validation efforts. The simulation system is used to accurately and predictively probe, understand and underpin a modern and sustainable understanding

  19. Effect of low and high heating rates on reaction path of Ni(V)/Al multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Łukasz, E-mail: l.maj@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków (Poland); Morgiel, Jerzy; Szlezynger, Maciej [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków (Poland); Bała, Piotr; Cios, Grzegorz [AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, 30 Kawiory St., 30-055 Kraków (Poland)

    2017-06-01

    The effect of heating rates of Ni(V)/Al NanoFoils{sup ®} was investigated with transmission electron microscopy (TEM). The Ni(V)/Al were subjected to heating by using differential scanning calorimetry (DSC), in-situ TEM or electric pulse. Local chemical analysis was carried out using energy dispersive X-ray spectroscopy (EDS). Phase analysis was done with X-ray diffractions (XRD) and selected area electron diffractions (SAED). The experiments showed that slow heating in DSC results in development of separate exothermic effects at ∼230 °C, ∼280 °C and ∼390 °C, corresponding to precipitation of Al{sub 3}Ni, Al{sub 3}Ni{sub 2} and NiAl phases, respectively, i.e. like in vanadium free Ni/Al multilayers. Further heating to 700 °C allowed to obtain a single phase NiAl foil. The average grain size (g.s.) of NiAl phase produced in the DSC heat treated foil was comparable with the Ni(V)/Al multilayer period (∼50 nm), whereas in the case of reaction initiated with electric pulse the g.s. was in the micrometer range. Upon slow heating vanadium tends to segregate to zones parallel to the original multilayer internal interfaces, while in SHS process vanadium-rich phases precipitates at grain boundaries of the NiAl phase. - Highlights: • Peaks in DSC heating of Ni(V)/Al were explained by in-situ TEM observations. • Nucleation of Al{sub 3}Ni, Al{sub 3}Ni{sub 2} and NiAl at slow heating of Ni(V)/Al was documented. • Near surface NiAl obtained from NanoFoil show Ag precipitates at grain boundaries.

  20. QSARs for phenols and phenolates: oxidation potential as a predictor of reaction rate constants with photochemically produced oxidants.

    Science.gov (United States)

    Arnold, William A; Oueis, Yan; O'Connor, Meghan; Rinaman, Johanna E; Taggart, Miranda G; McCarthy, Rachel E; Foster, Kimberley A; Latch, Douglas E

    2017-03-22

    Quantitative structure-activity relationships (QSARs) for prediction of the reaction rate constants of phenols and phenolates with three photochemically produced oxidants, singlet oxygen, carbonate radical, and triplet excited state sensitizers/organic matter, are developed. The predictive variable is the one-electron oxidation potential (E 1 ), which is calculated for each species using density functional theory. The reaction rate constants are obtained from the literature, and for singlet oxygen, are augmented with new experimental data. Calculated E 1 values have a mean unsigned error compared to literature values of 0.04-0.06 V. For singlet oxygen, a single linear QSAR that includes both phenols and phenolates is developed that predicts experimental rate constants, on average, to within a factor of three. Predictions for only 6 out of 87 compounds are off by more than a factor of 10. A more limited data set for carbonate radical reactions with phenols and phenolates also gives a single linear QSAR with prediction of rate constant being accurate to within a factor of three. The data for the reactions of phenols with triplet state sensitizers demonstrate that two sensitizers, 2-acetonaphthone and methylene blue, most closely predict the reactivity trend of triplet excited state organic matter with phenols. Using sensitizers with stronger reduction potentials could lead to overestimation of rate constants and thus underestimation of phenolic pollutant persistence.

  1. Reactor dosimetry integral reaction rate data in LMFBR Benchmark and standard neutron fields: status, accuracy and implications

    International Nuclear Information System (INIS)

    Fabry, A.; Ceulemans, H.; Vandeplas, P.; McElroy, W.N.; Lippincott, E.P.

    1977-01-01

    This paper provides conclusions that may be drawn regarding the consistency and accuracy of dosimetry cross-section files on the basis of integral reaction rate data measured in U.S. and European benchmark and standard neutron fields. In a discussion of the major experimental facilities CFRMF (Idaho Falls), BIGTEN (Los Alamos), ΣΣ (Mol, Bucharest), NISUS (London), TAPIRO (Roma), FISSION SPECTRA (NBS, Mol, PTB), attention is paid to quantifying the sensitivity of computed integral data relative to the presently evaluated accuracy of the various neutron spectral distributions. The status of available integral data is reviewed and the assigned uncertainties are appraised, including experience gained by interlaboratory comparisons. For all reactions studied and for the various neutron fields, the measured integral data are compared to the ones computed from the ENDF/B-IV and the SAND-II dosimetry cross-section libraries as well as to some other differential data in relevant cases. This comparison, together with the proposed sensitivity and accuracy assessments, is used, whenever possible, to establish how well the best cross-sections evaluated on the basis of differential measurements (category I dosimetry reactions) are reliable in terms of integral reaction rates prediction and, for those reactions for which discrepancies are indicated, in which energy range it is presumed that additional differential measurements might help. For the other reactions (category II), the inconsistencies and trends are examined. The need for further integral measurements and interlaboratory comparisons is also considered

  2. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California

    Energy Technology Data Exchange (ETDEWEB)

    Maher, K.; Steefel, C. I.; White, A.F.; Stonestrom, D.A.

    2009-02-25

    In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka marine terrace chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized (White et al., 2008, GCA) and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisser and [2006] or the aluminum inhibition model proposed by Oelkers et al. [1994], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO{sub 2}(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and thus total

  3. Electrochemical reaction rates in a dye-sensitised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, L.; West, K.; Winther-Jensen, B.

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide/tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide....../tri-iodide couple should be fast at the counter electrode, i.e. this electrode must have a high catalytic activity towards the redox couple, and the same reaction must be slow on the photo electrode. The catalytic activity is investigated for platinum, poly(3,4-ethylenedioxythiophene) (PEDOT), polypyrrole (PPy......), and polyaniline (PANI)-all deposited onto fluorine-doped tin oxide (FTO) glass. Both Pt and PEDOT are found to have sufficiently high catalytic activities for practical use as counter electrodes in DSSC. The reaction resistance on FTO and anatase confirmed the beneficial effect of a compact anatase layer on top...

  4. Effect of Alkyl Group on MxOy(-) + ROH (M = Mo, W; R = Me, Et) Reaction Rates.

    Science.gov (United States)

    Ray, Manisha; Waller, Sarah E; Jarrold, Caroline Chick

    2016-03-10

    A systematic comparison of MxOy(-) + ROH (M = Mo vs W; R = Me vs Et) reaction rate coefficients and product distributions combined with results of calculations on weakly bound MxOy(-)·ROH complexes suggest that the overall reaction mechanism has three distinct steps, consistent with recently reported results on analogous MxOy(-) + H2O reactivity studies. MxOy(-) + ROH → MxOy+1(-) + RH oxidation reactions are observed for the least oxidized clusters, and MxOy(-) + ROH → MxOyROH(-) addition reactions are observed for clusters in intermediate oxidation states, as observed previously in MxOy(-) + H2O reactions. The first step is weakly bound complex formation, the rate of which is governed by the relative stability of the MxOy(-)·ROH charge-dipole complexes and the Lewis acid-base complexes. Calculations predict that MoxOy(-) clusters form more stable Lewis acid-base complexes than WxOy(-), and the stability of EtOH complexes is enhanced relative to MeOH. Consistent with this result, MoxOy(-) + ROH rate coefficients are higher than analogous WxOy(-) clusters. Rate coefficients range from 2.7 × 10(-13) cm(3) s(-1) for W3O8(-) + MeOH to 3.4 × 10(-11) cm(3) s(-1) for Mo2O4(-) + EtOH. Second, a covalently bound complex is formed, and anion photoelectron spectra of the several MxOyROH(-) addition products observed are consistent with hydroxyl-alkoxy structures that are formed readily from the Lewis acid-base complexes. Calculations indicate that addition products are trapped intermediates in the MxOy(-) + ROH → MxOy+1(-) + RH reaction, and the third step is rearrangement of the hydroxyl group to a metal hydride group to facilitate RH release. Trapped intermediates are more prevalent in MoxOy(-) reaction product distributions, indicating that the rate of this step is higher for WxOy+1RH(-) than for MoxOy+1RH(-). This result is consistent with previous computational studies on analogous MxOy(-) + H2O reactions predicting that barriers along the pathway in the

  5. Determination of reaction rate constants for alkylation of 4-(p-nitrobenzyl) pyridine by different alkylating agents.

    Science.gov (United States)

    Walles, S A

    1980-02-01

    The rate constants have been determined for the reaction between some different alkylating agents and 4-(p-nitrobenzyl) pyridine (NBP) in methanol. These constants have been compared with those for alkylation of aniline in water. All the constants were lower in methanol than in water but in different degrees. The rate constants of the different alkylating agents have been calculated at a nucleophilic strength n=2. The genetic risk defined as the degree of alkylation of a nucleophile (n=2) is equivalent to the rate constant kn=2 and the target dose. The dependence of the genetic risk on the rate constant (kn=2) is discussed.

  6. Strong screening by lattice confinement and resultant fusion reaction rates in fcc metals

    Science.gov (United States)

    Prados-Estévez, F. M.; Subashiev, A. V.; Nee, H. H.

    2017-09-01

    The effects of electronic screening on the cross sections and reactivities for the nuclear reactions between light nuclei in Pd and Ni is studied. We consider the applicability of the theory of thermonuclear burning in stars to the D-D nuclear reaction in metals. The screening model based on the mean field potential of the electron cloud in the metal plasma is used. We discuss the specifics of the screening for the H (D) atoms embedded in vacancies and divacancies. High concentration of hydrogen isotopes segregated to monovacancies and divacancies in face-centered cubic (fcc) metals such as Ni and Pd with densities of ∼ 6 ×1023atom /cm3 , makes the hydrogen cluster a favorable active site for the fusion reaction. Still the observation of a nuclear reaction requires an accumulation of energy in D nuclei of at least several eV, which is far above what can be achieved in the thermal heating experiments.

  7. The role of high temperature heterogeneous reaction kinetics in the rate of radionuclide vaporisation during core-concrete interactions

    International Nuclear Information System (INIS)

    Raymond, D.P.; Clough, P.N.

    1989-09-01

    Heterogeneous reactions may cause enhanced release of radionuclides during the core-concrete interaction (CCl) stage of a PWR severe accident. The VANESA computer code models these CCI releases using chemical equilibrium assumptions; however, the possibility that chemical kinetics could prevent equilibrium from being achieved is considered in this report. Direct experimental evidence is lacking on these reactions. Therefore, some analogues studies are reviewed, including examples of Eyring's surface reaction rate theory; sequential vaporisation-oxidation processes; iron and steelmaking chemistry; radionuclide evaporation from solid UO 2 . This circumstantial evidence appeared to agree with the current assumptions, in VANESA and some UK modelling studies, that mass transfer, rather than chemical kinetics will limit the rate at which equilibrium is attained. (author)

  8. Rate coefficients for the reaction of OH radicals with cis-3-hexene: an experimental and theoretical study.

    Science.gov (United States)

    Barbosa, Thaís da Silva; Peirone, Silvina; Barrera, Javier A; Abrate, Juan P A; Lane, Silvia I; Arbilla, Graciela; Bauerfeldt, Glauco Favilla

    2015-04-14

    The kinetics of the cis-3-hexene + OH reaction were investigated by an experimental relative rate method and at the density functional theory level. The experimental set-up consisted of a 200 L Teflon bag, operated at atmospheric pressure and 298 K. OH radicals were produced by the photolysis of H2O2 at 254 nm. Relative rate coefficients were determined by comparing the decays of the cis-3-hexene and reference compounds (cyclohexene, 2-buten-1-ol and allyl ether). The mean second-order rate coefficient value found was (6.27 ± 0.66) × 10(-11) cm(3) molecule(-1) s(-1), the uncertainty being estimated by propagation of errors. Theoretical calculations for the addition reaction of OH to cis-3-hexene have also been performed, at the BHandHLYP/aug-cc-pVDZ level, in order to investigate the reaction mechanism, to clarify the experimental observations and to model the reaction kinetics. Different conformations of the reactants, pre-barrier complexes and saddle points were considered in our calculations. The individual rate coefficients, calculated for each conformer of the reactant, at 298 K, using a microcanonical variational transition state method, are 4.19 × 10(-11) and 1.23 × 10(-10) cm(3) molecule(-1) s(-1). The global rate coefficient was estimated from the Boltzmann distribution of the conformers to be 8.10 × 10(-11) cm(3) molecule(-1) s(-1), which is in agreement with the experimental value. Rate coefficients calculated over the temperature range from 200-500 K are also given. Our results suggest that the complex mechanism, explicitly considering different conformations for the stationary points, must be taken into account for a proper description of the reaction kinetics.

  9. Experimental determination of the high-temperature rate constant for the reaction of OH with sec-butanol.

    Science.gov (United States)

    Pang, Genny A; Hanson, Ronald K; Golden, David M; Bowman, Craig T

    2012-10-04

    The overall rate constant for the reaction of OH with sec-butanol [CH(3)CH(OH)CH(2)CH(3)] was determined from measurements of the near-first-order OH decay in shock-heated mixtures of tert-butylhydroperoxide (as a fast source of OH) with sec-butanol in excess. Three kinetic mechanisms from the literature describing sec-butanol combustion were used to examine the sensitivity of the rate constant determination to secondary kinetics. The overall rate constant determined can be described by the Arrhenius expression 6.97 × 10(-11) exp(-1550/T[K]) cm(3) molecule(-1) s(-1), valid over the temperature range of 888-1178 K. Uncertainty bounds of ±30% were found to adequately account for the uncertainty in secondary kinetics. To our knowledge, the current data represent the first efforts toward an experimentally determined rate constant for the overall reaction of OH with sec-butanol at combustion-relevant temperatures. A rate constant predicted using a structure-activity relationship from the literature was compared to the current data and previous rate constant measurements for the title reaction at atmospheric-relevant temperatures. The structure-activity relationship was found to be unable to correctly predict the measured rate constant at all temperatures where experimental data exist. We found that the three-parameter fit of 4.95 × 10(-20)T(2.66) exp(+1123/T[K]) cm(3) molecule(-1) s(-1) better describes the overall rate constant for the reaction of OH with sec-butanol from 263 to 1178 K.

  10. Absolute rate constants for the reaction of NO3 radicals with a series of dienes at 295 K

    DEFF Research Database (Denmark)

    Ellermann, T.; Nielsen, O.J.; Skov, H.

    1992-01-01

    The rate constants for the reaction of NO3 radicals with a series of 7 dienes, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, trans-1,3-pentadiene, cis-1,3-pentadiene, trans,trans-2,4-hexadiene, and 1,3-cyclohexadiene, were measured at 295 K and at a total pressure of 1 atm. The rate constant...

  11. Measurement of the rates of reaction of the ground and metastable excited states of 02+, N0+ and 0+ with atmospheric gases at thermal energy

    International Nuclear Information System (INIS)

    Glosik, J.; Rakshit, A.B.; Twiddy, N.D.; Adams, N.G.; Smith, D.

    1978-01-01

    Thermal-energy reaction rate coefficients and product ion distributions have been measured for reactions of both the ground state and metastable electronic states of 0 2 + , N0 + and 0 + with several neutral species, using a selected-ion flow tube. In general the excited-ion reaction rates are fast, frequently approaching the Langevin limit. Collisional quenching occurs for the reactions of N0 + sup(star) with N 2 ,0 2 and H 2 and the quenching rates have been determined. The ion source also provided a substantial yield of doubly charged 0 2 permitting some measurements of reaction rates of 0 2 2+ . (author)

  12. Reaction-induced cluster ripening and initial size-dependent reaction rates for CO oxidation on Pt(n)/TiO2(110)-(1×1).

    Science.gov (United States)

    Bonanni, Simon; Aït-Mansour, Kamel; Harbich, Wolfgang; Brune, Harald

    2014-06-18

    We determined the CO oxidation rates for size-selected Ptn (n ∈ {3,7,10}) clusters deposited onto TiO2(110). In addition, we investigated the cluster morphologies and their mean sizes before and after the reaction. While the clusters are fairly stable upon annealing in ultrahigh vacuum up to 600 K, increasing the temperature while adsorbing either one of the two reactants leads to ripening already from 430 K on. This coarsening is even more pronounced when both reactants are dosed simultaneously, i.e., running the CO oxidation reaction. Since the ripening depends on the size initially deposited, there is nevertheless a size effect; the catalytic activity decreases monotonically with increasing initial cluster size.

  13. The rate-limiting reaction in phosphatidylcholine synthesis by alveolar type II cells isolated from fetal rat lung

    NARCIS (Netherlands)

    Post, M.; Batenburg, J.J.; Golde, L.M.G. van; Smith, B.T.

    1984-01-01

    1. 1. The rate-limiting reaction in the formation of phosphatidylcholine by type II cells isolated from fetal rat lung was examined. 2. 2. Studies on the uptake of [Me-3H]choline and its incorporation into its metabolites indicated that in these cells the choline phosphate pool was much larger

  14. Experimental determination of nuclear reaction rates (n,γ) by the gamma-rays capture spectrometry technique

    International Nuclear Information System (INIS)

    Lucatero, M.A.

    1976-01-01

    The technique of the gamma-rays capture spectrometry was used in the experimental determination of nuclear reaction rates of the type (n,γ). This technique consists in the incidence of a thermal neutrons collimated beam upon a sample, detecting the capture spectrum of gamma rays emitted at a solid fixed angle. In the determination of the efficiency curve intrinsic to the detection electronic system the reactions 199 Hg(n,γ) 200 Hg, 56 Fe(n,γ) 57 Fe and 63 Cu(n,γ) 64 Cu were used with the energy of the gamma rays capture of 5.976, 7.635 and 7.915 Mev respectively, through the irradiation of standard samples of Hg(175.3g), Fe(110.4g) and Cu(108.5g) of cylindrical geometry the two former and parallelepiped the latter. The problem concerning the corrections due to the thermal neutrons flux depression, the gammas auto-attenuation, and the geometric factor due to the cylindrical and parallelepiped geometry are involved in the data process. The experimental determination of the reaction 35 Cl(n,γ) 36 Cl rate was made through the observation of the gamma caputre of 6.111 Mev when a sample of CaCl 2 of cylindrical geometry was irradiated. This rate can be favorably compared with the reaction rate determined theoretically. (author)

  15. Analyzing General Chemistry Texts' Treatment of Rates of Change Concepts in Reaction Kinetics Reveals Missing Conceptual Links

    Science.gov (United States)

    Seethaler, Sherry; Czworkowski, John; Wynn, Lynda

    2018-01-01

    Change over time is a crosscutting theme in the sciences that is pivotal to reaction kinetics, an anchoring concept in undergraduate chemistry, and students' struggles with rates of change are well-documented. Informed by the education scholarship in chemistry, physics, and mathematics, a research team with members from complementary disciplinary…

  16. Absorption of carbon dioxide and isotope exchange rate of carbon in a reaction system between carbon dioxide and carbamic acid

    International Nuclear Information System (INIS)

    Takeshita, Kenji; Kitamoto, Asashi

    1985-01-01

    The performance of isotope separation of carbon-13 by chemical exchange between carbon dioxide and carbamic acid was studied. The working fluid used in the study was a solution of DNBA, (C 4 H 9 ) 2 NH and n-octane mixture. Factors related to the isotope exchange rate were measured, such as the absorption rate of carbon dioxide into the solution of DNBA and n-octane, the isotope exchange rate and the separation factor in the reaction between CO 2 and carbamic acid. The absorption of CO 2 into the working fluid was the sum of chemical absorption by DNBA and physical absorption by n-octane. The absorption of carbon dioxide into the working fluid was negligible at temperatures over 90 0 C, but increased gradually at lower temperatures. Carbon dioxide was absorbed into DNBA by chemical absorption, and DNBA was converted to carbamic acid by the reaction. The reaction for synthesis and decomposition of carbamic acid was reversible. The separation factor in equilibrium reached a large value at lower temperatures. The isotope exchange rate between gas and liquid was proportional to the product of the concentration of carbamic acid and the concentration of CO 2 by physical absorption. The isotope separation of carbon by chemical exchange reaction is better operated under the conditions of lower temperature and higher pressure. (author)

  17. From cutting-edge pointwise cross-section to groupwise reaction rate: A primer

    Directory of Open Access Journals (Sweden)

    Sublet Jean-Christophe

    2017-01-01

    Full Text Available The nuclear research and development community has a history of using both integral and differential experiments to support accurate lattice-reactor, nuclear reactor criticality and shielding simulations, as well as verification and validation efforts of cross sections and emitted particle spectra. An important aspect to this type of analysis is the proper consideration of the contribution of the neutron spectrum in its entirety, with correct propagation of uncertainties and standard deviations derived from Monte Carlo simulations, to the local and total uncertainty in the simulated reactions rates (RRs, which usually only apply to one application at a time. This paper identifies deficiencies in the traditional treatment, and discusses correct handling of the RR uncertainty quantification and propagation, including details of the cross section components in the RR uncertainty estimates, which are verified for relevant applications. The methodology that rigorously captures the spectral shift and cross section contributions to the uncertainty in the RR are discussed with quantified examples that demonstrate the importance of the proper treatment of the spectrum profile and cross section contributions to the uncertainty in the RR and subsequent response functions. The recently developed inventory code FISPACT-II, when connected to the processed nuclear data libraries TENDL-2015, ENDF/B-VII.1, JENDL-4.0u or JEFF-3.2, forms an enhanced multi-physics platform providing a wide variety of advanced simulation methods for modelling activation, transmutation, burnup protocols and simulating radiation damage sources terms. The system has extended cutting-edge nuclear data forms, uncertainty quantification and propagation methods, which have been the subject of recent integral and differential, fission, fusion and accelerators validation efforts. The simulation system is used to accurately and predictively probe, understand and underpin a modern and

  18. First measurement of 30S+α resonant elastic scattering for the 30S(α ,p ) reaction rate

    Science.gov (United States)

    Kahl, D.; Yamaguchi, H.; Kubono, S.; Chen, A. A.; Parikh, A.; Binh, D. N.; Chen, J.; Cherubini, S.; Duy, N. N.; Hashimoto, T.; Hayakawa, S.; Iwasa, N.; Jung, H. S.; Kato, S.; Kwon, Y. K.; Nishimura, S.; Ota, S.; Setoodehnia, K.; Teranishi, T.; Tokieda, H.; Yamada, T.; Yun, C. C.; Zhang, L. Y.

    2018-01-01

    Background: Type I x-ray bursts are the most frequently observed thermonuclear explosions in the galaxy, resulting from thermonuclear runaway on the surface of an accreting neutron star. The 30S(α ,p ) reaction plays a critical role in burst models, yet insufficient experimental information is available to calculate a reliable, precise rate for this reaction. Purpose: Our measurement was conducted to search for states in 34Ar and determine their quantum properties. In particular, natural-parity states with large α -decay partial widths should dominate the stellar reaction rate. Method: We performed the first measurement of 30S+α resonant elastic scattering up to a center-of-mass energy of 5.5 MeV using a radioactive ion beam. The experiment utilized a thick gaseous active target system and silicon detector array in inverse kinematics. Results: We obtained an excitation function for 30S(α ,α ) near 150∘ in the center-of-mass frame. The experimental data were analyzed with R -matrix calculations, and we observed three new resonant patterns between 11.1 and 12.1 MeV, extracting their properties of resonance energy, widths, spin, and parity. Conclusions: We calculated the resonant thermonuclear reaction rate of 30S(α ,p ) based on all available experimental data of 34Ar and found an upper limit about one order of magnitude larger than a rate determined using a statistical model. The astrophysical impact of these two rates has been investigated through one-zone postprocessing type I x-ray burst calculations. We find that our new upper limit for the 30S(α ,p )33Cl rate significantly affects the predicted nuclear energy generation rate during the burst.

  19. Application of an Artificial Neural Network to the Prediction of OH Radical Reaction Rate Constants for Evaluating Global Warming Potential.

    Science.gov (United States)

    Allison, Thomas C

    2016-03-03

    Rate constants for reactions of chemical compounds with hydroxyl radical are a key quantity used in evaluating the global warming potential of a substance. Experimental determination of these rate constants is essential, but it can also be difficult and time-consuming to produce. High-level quantum chemistry predictions of the rate constant can suffer from the same issues. Therefore, it is valuable to devise estimation schemes that can give reasonable results on a variety of chemical compounds. In this article, the construction and training of an artificial neural network (ANN) for the prediction of rate constants at 298 K for reactions of hydroxyl radical with a diverse set of molecules is described. Input to the ANN consists of counts of the chemical bonds and bends present in the target molecule. The ANN is trained using 792 (•)OH reaction rate constants taken from the NIST Chemical Kinetics Database. The mean unsigned percent error (MUPE) for the training set is 12%, and the MUPE of the testing set is 51%. It is shown that the present methodology yields rate constants of reasonable accuracy for a diverse set of inputs. The results are compared to high-quality literature values and to another estimation scheme. This ANN methodology is expected to be of use in a wide range of applications for which (•)OH reaction rate constants are required. The model uses only information that can be gathered from a 2D representation of the molecule, making the present approach particularly appealing, especially for screening applications.

  20. Gas-Phase Reaction Pathways and Rate Coefficients for the Dichlorosilane-Hydrogen and Trichlorosilane-Hydrogen Systems

    Science.gov (United States)

    Dateo, Christopher E.; Walch, Stephen P.

    2002-01-01

    As part of NASA Ames Research Center's Integrated Process Team on Device/Process Modeling and Nanotechnology our goal is to create/contribute to a gas-phase chemical database for use in modeling microelectronics devices. In particular, we use ab initio methods to determine chemical reaction pathways and to evaluate reaction rate coefficients. Our initial studies concern reactions involved in the dichlorosilane-hydrogen (SiCl2H2--H2) and trichlorosilane-hydrogen (SiCl2H-H2) systems. Reactant, saddle point (transition state), and product geometries and their vibrational harmonic frequencies are determined using the complete-active-space self-consistent-field (CASSCF) electronic structure method with the correlation consistent polarized valence double-zeta basis set (cc-pVDZ). Reaction pathways are constructed by following the imaginary frequency mode of the saddle point to both the reactant and product. Accurate energetics are determined using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations (CCSD(T)) extrapolated to the complete basis set limit. Using the data from the electronic structure calculations, reaction rate coefficients are obtained using conventional and variational transition state and RRKM theories.

  1. Standard Test Method for Determining Thermal Neutron Reaction Rates and Thermal Neutron Fluence Rates by Radioactivation Techniques

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 The purpose of this test method is to define a general procedure for determining an unknown thermal-neutron fluence rate by neutron activation techniques. It is not practicable to describe completely a technique applicable to the large number of experimental situations that require the measurement of a thermal-neutron fluence rate. Therefore, this method is presented so that the user may adapt to his particular situation the fundamental procedures of the following techniques. 1.1.1 Radiometric counting technique using pure cobalt, pure gold, pure indium, cobalt-aluminum, alloy, gold-aluminum alloy, or indium-aluminum alloy. 1.1.2 Standard comparison technique using pure gold, or gold-aluminum alloy, and 1.1.3 Secondary standard comparison techniques using pure indium, indium-aluminum alloy, pure dysprosium, or dysprosium-aluminum alloy. 1.2 The techniques presented are limited to measurements at room temperatures. However, special problems when making thermal-neutron fluence rate measurements in high-...

  2. Rate Coefficient Measurements and Theoretical Analysis of the OH + ( E) CF3CH=CHCF3 Reaction.

    Science.gov (United States)

    Baasandorj, Munkhbayar; Marshall, Paul; Waterland, Robert L; Ravishankara, Akkihebbal R; Burkholder, James B

    2018-04-25

    Rate coefficients, k, for the gas-phase reaction of the OH radical with (E) CF3CH=CHCF3 ((E)-1,1,14,4,4-hexafluoro-2-butene, HFO-1336mzz(E)) were measured over a range of temperature (211-374 K) and bath gas pressure (20-300 Torr; He, N2) using a pulsed laser photolysis-laser induced fluorescence (PLP-LIF) technique. k1(T) was independent of pressure over this range of conditions with k1(296 K) = (1.31 ± 0.15) × 10 13 cm3 molecule 1 s 1 and k1(T) = (6.94 ± 0.80) × 10 13 exp[ (496 ± 10)/T] cm3 molecule 1 s 1, where the uncertainties are 2 and the pre-exponential term includes estimated systematic error. Rate coefficients for the OD reaction were also determined over a range of temperature (262-374 K) at 100 Torr (He). The OD rate coefficients were ~15% greater than the OH values and showed similar temperature dependent behavior with k2(T) = (7.52 ± 0.44) × 10 13 exp[ (476 ± 20)/T] and k2(296 K) = (1.53 ± 0.15) × 10 13 cm3 molecule 1 s 1. The rate coefficients for reaction 1 were also measured using a relative rate technique between 296 and 375 K with k1(296 K) measured to be (1.22 ± 0.1) × 10 13 cm3 molecule 1 s 1 in agreement with the PLP-LIF results. In addition, the 296 K rate coefficient for the O3 + (E) CF3CH=CHCF3 reaction was determined to be reaction and the significant decrease in OH reactivity compared to the (Z) CF3CH=CHCF3 stereoisomer reaction. The estimated atmospheric lifetime of (E) CF3CH=CHCF3, due to loss by reaction with OH, is estimated to be ~90 days, while the actual lifetime will depend on the location and season of its emission. Infrared absorption spectra of (E) CF3CH=CHCF3 were measured and used to estimate the 100-year time horizon global warming potentials (GWP) of 32 (atmospherically well-mixed) and 14 (lifetime-adjusted).

  3. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California

    Science.gov (United States)

    Maher, K.; Steefel, Carl; White, A.F.; Stonestrom, David A.

    2009-01-01

    In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation, and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka Marine Terrace Chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized [White A. F., Schulz M. S., Vivit D. V., Blum A., Stonestrom D. A. and Anderson S. P. (2008) Chemical weathering of a Marine Terrace Chronosequence, Santa Cruz, California. I: interpreting the long-term controls on chemical weathering based on spatial and temporal element and mineral distributions. Geochim. Cosmochim. Acta 72 (1), 36-68] and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisserand [Hellmann R. and Tisserand D. (2006) Dissolution kinetics as a function of the Gibbs free energy of reaction: An experimental study based on albite feldspar. Geochim. Cosmochim. Acta 70 (2), 364-383] or the aluminum inhibition model proposed by Oelkers et al. [Oelkers E. H., Schott J. and Devidal J. L. (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim. Cosmochim. Acta 58 (9), 2011-2024], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Additionally, observed maximum clay abundances in the argillic horizons occur at

  4. Reaction-Induced Cluster Ripening and Initial Size-Dependent Reaction Rates for CO Oxidation on Pt-n/TiO2(110)-(1x1)

    OpenAIRE

    Bonanni Simon; Ait-Mansour Kamel; Harbich Wolfgang; Brune Harald

    2014-01-01

    We determined the CO oxidation rates for size-selected Pt-n (n is an element of {3,7,10}) clusters deposited onto TiO2(110). In addition, we investigated the cluster morphologies and their mean sizes before and after the reaction. While the clusters are fairly stable upon annealing in ultrahigh vacuum up to 600 K, increasing the temperature while adsorbing either one of the two reactants leads to ripening already from 430 K on. This coarsening is even more pronounced when both reactants are d...

  5. Direct Dynamics Simulation of the Thermal 3CH2 + 3O2 Reaction. Rate Constant and Product Branching Ratios.

    Science.gov (United States)

    Lakshmanan, Sandhiya; Pratihar, Subha; Machado, Francisco Bolivar Correto; Hase, William Louis

    2018-04-26

    The reaction of 3CH2 with 3O2 is of fundamental importance in combustion and the reaction is complex as a result of multiple extremely exothermic product channels. In the present study, direct dynamics simulations were performed to study the reaction on both the singlet and triplet potential energy surfaces (PESs). The simulations were performed at the UM06/6-311++G(d,p) level of theory. Trajectories were calculated at a temperature of 300 K and all reactive trajectories proceeded through the carbonyl oxide Criegee intermediate, CH2OO, on both the singlet and triplet PESs. The triplet surface leads to only one product channel, H2CO + O(3P), while the singlet surface leads to 8 product channels with their relative importance as: CO + H2O > CO + OH + H ~ H2CO + O(1D) > HCO + OH ~ CO2 + H2 ~ CO + H2 + O(1D) > CO2 + H + H > HCO + O(1D) + H. Reaction on the singlet PES is barrierless, consistent with experiment and the total rate constant on the singlet surface is 0.93 ± 0.22 x 10-12 cm3molecule-1s-1 in comparison to the recommended experimental rate constant of 3.3 x 10-12 cm3molecule-1s-1. The simulation product yields for the singlet PES are compared with experiment and the most significant differences are for H, CO2, and H2O. Reaction on the triplet surface is also barrierless, inconsistent with experiment. A discussion is given of the need for future calculations to address the: (1) barrier on the triplet PES for 3CH2 + 3O2 → 3CH2OO; (2) temperature dependence of the 3CH2 + 3O2 reaction rate constant and product branching ratios; and (3) possible non-RRKM dynamics of the 1CH2OO Criegee intermediate.

  6. Pressure dependence of the absolute rate constant for the reaction OH + C2H2 from 228 to 413 K

    Science.gov (United States)

    Michael, J. V.; Nava, D. F.; Payne, W. A.; Stief, L. J.; Borkowski, R. P.

    1980-01-01

    The pressure dependence of the absolute rate constant for the reaction of the hydroxyl radical with acetylene, important in both atmospheric and combustion chemistry, is determined for temperatures between 228 and 413 K. The flash photolysis-resonance fluorescence technique was employed at five temperatures over wide ranges of pressure and acetylene concentrations, with the OH produced by water photolysis and hydroxyl resonance fluorescent photons measured by multiscaling techniques. Results indicate that, except at the lowest temperature, the bimolecular rate constant for the reaction depends strongly on total pressure, with the pressure effect becoming more pronounced with increasing temperature. At limiting high pressures, the rate constant is found to be equal to 6.83 + or - 1.19 x 10 to the -12th exp (-646 + or - 47/T) cu cm/molecule per sec, where T is the temperature. Results thus demonstrate the importance of environmental conditions in theoretical studies of atmospheric and combustion product compositions

  7. Sum over Histories Representation for Kinetic Sensitivity Analysis: How Chemical Pathways Change When Reaction Rate Coefficients Are Varied.

    Science.gov (United States)

    Bai, Shirong; Davis, Michael J; Skodje, Rex T

    2015-11-12

    The sensitivity of kinetic observables is analyzed using a newly developed sum over histories representation of chemical kinetics. In the sum over histories representation, the concentrations of the chemical species are decomposed into the sum of probabilities for chemical pathways that follow molecules from reactants to products or intermediates. Unlike static flux methods for reaction path analysis, the sum over histories approach includes the explicit time dependence of the pathway probabilities. Using the sum over histories representation, the sensitivity of an observable with respect to a kinetic parameter such as a rate coefficient is then analyzed in terms of how that parameter affects the chemical pathway probabilities. The method is illustrated for species concentration target functions in H2 combustion where the rate coefficients are allowed to vary over their associated uncertainty ranges. It is found that large sensitivities are often associated with rate limiting steps along important chemical pathways or by reactions that control the branching of reactive flux.

  8. Diagnostic technique for measuring fusion reaction rate for inertial confinement fusion experiments at Shen Guang-III prototype laser facility

    International Nuclear Information System (INIS)

    Wang Feng; Peng Xiao-Shi; Liu Shen-Ye; Xu Tao; Kang Dong-Guo

    2013-01-01

    A study is conducted using a two-dimensional simulation program (Lared-s) with the goal of developing a technique to evaluate the effect of Rayleigh-Taylor growth in a neutron fusion reaction region. Two peaks of fusion reaction rate are simulated by using a two-dimensional simulation program (Lared-s) and confirmed by the experimental results. A neutron temporal diagnostic (NTD) system is developed with a high temporal resolution of ∼ 30 ps at the Shen Guang-III (SG-III) prototype laser facility in China, to measure the fusion reaction rate history. With the shape of neutron reaction rate curve and the spherical harmonic function in this paper, the degree of Rayleigh-Taylor growth and the main source of the neutron yield in our experiment can be estimated qualitatively. This technique, including the diagnostic system and the simulation program, may provide important information for obtaining a higher neutron yield in implosion experiments of inertial confinement fusion

  9. Non-steady state mass action dynamics without rate constants: dynamics of coupled reactions using chemical potentials

    Science.gov (United States)

    Cannon, William R.; Baker, Scott E.

    2017-10-01

    Comprehensive and predictive simulation of coupled reaction networks has long been a goal of biology and other fields. Currently, metabolic network models that utilize enzyme mass action kinetics have predictive power but are limited in scope and application by the fact that the determination of enzyme rate constants is laborious and low throughput. We present a statistical thermodynamic formulation of the law of mass action for coupled reactions at both steady states and non-stationary states. The formulation uses chemical potentials instead of rate constants. When used to model deterministic systems, the method corresponds to a rescaling of the time dependent reactions in such a way that steady states can be reached on the same time scale but with significantly fewer computational steps. The relationships between reaction affinities, free energy changes and generalized detailed balance are central to the discussion. The significance for applications in systems biology are discussed as is the concept and assumption of maximum entropy production rate as a biological principle that links thermodynamics to natural selection.

  10. The D(+) + H2 reaction: differential and integral cross sections at low energy and rate constants at low temperature.

    Science.gov (United States)

    González-Lezana, Tomás; Scribano, Yohann; Honvault, Pascal

    2014-08-21

    The D(+) + H2 reaction is investigated by means of a time independent quantum mechanical (TIQM) and statistical quantum mechanical (SQM) methods. Differential cross sections and product rotational distributions obtained with these two theoretical approaches for collision energies between 1 meV and 0.1 eV are compared to analyze the dynamics of the process. The agreement observed between the TIQM differential cross sections and the SQM predictions as the energy increases revealed the role played by the complex-forming mechanism. The importance of a good description of the asymptotic regions is also investigated by calculating rate constants for the title reaction at low temperature.

  11. The Effect of Nuclear Reaction Rates & Convective Mixing on the Evolution of a 6M$_{\\odot}$ Star

    OpenAIRE

    Halabi, Ghina M.

    2014-01-01

    We present the evolution of a 6M$_{\\odot}$ star, of solar-like initial metallicity, and investigate the effects of key nuclear reaction rates, as well as the treatment of the convective mixing on its evolution along the Cepheid instability strip. In particular, we study the effect of recent estimates of the $^{14}$N(p,{\\gamma})$^{15}$O reaction on the formation and extension of the blue loop during core helium burning. We also investigate the effects induced on this blue loop by the adoption ...

  12. Manganese reduction/oxidation reaction on graphene composites as a reversible process for storing enormous energy at a fast rate

    OpenAIRE

    Chen, Yanyi; Xu, Chengjun; Shi, Shan; Li, Jia; Kang, Feiyu; Wei, Chunguang

    2014-01-01

    Oxygen reduction/evolution reaction (ORR/OER) is a basic process for fuel cells or metal air batteries. However, ORR/OER generally requires noble metal catalysts and suffers from low solubility (10-3 molar per liter) of O2, low kinetics rate (10-6 cm2/s) and low reversibility. We report a manganese reduction/oxidation reaction (MRR/MOR) on graphene/MnO2 composites, delivering a high capacity (4200 mAh/g), fast kinetics (0.0024 cm2/s, three orders higher than ORR/OER), high solubility (three o...

  13. A survey of the reaction rate constants for the thermal dissociation and recombination of nitrogen and oxygen

    Science.gov (United States)

    Marraffa, Lionel; Dulikravich, George S.; Keeney, Timothy C.; Deiwert, George S.

    1988-01-01

    The objective of the present report is to survey the various values of forward and backward reaction rate constants used by investigators in the field of high-temperature (T greater than 2000 K) gas reactions involving nitrogen and oxygen only. The objective is to find those values that correlate well so that they can be used for the studies of hypersonic flow and supersonic combustion with reasonable confidence. Relatively good agreement among these various values is observed for temperatures lower than 10,000 K.

  14. Dual mode cobaloxime crystals: Acceleration of trans-cis photochromic reaction rate by photoisomerization

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, Akiko, E-mail: asekine@chem.titech.ac.jp [Department of Chemistry and Materials Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2016-08-26

    Our recent results on the photochromic reactions in dual mode cobaloxime crystals containing azobenzene derivatives are briefly reviewed. This work represents the first step toward the design of functional materials which can be controlled by two independent external stimuli, one by visible light and the other by UV radiation.

  15. Pyrite oxidation in unsaturated aquifer sediments. Reaction stoichiometry and rate of oxidation

    DEFF Research Database (Denmark)

    Andersen, Martin Søgaard; Larsen, Flemming; Postma, Diederik Jan

    2001-01-01

    . The reaction scheme predicts the volume of O2 gas consumed to be larger than of CO2 produced. In addition the solubility of CO2 in water is about 30 times larger than of O2 causing a further decrease in total gas volume. The change in total gas volume therefore also depends on the gas/water volume ratio...

  16. Allylmagnesium Halides Do Not React Chemoselectively Because Reaction Rates Approach the Diffusion Limit.

    Science.gov (United States)

    Read, Jacquelyne A; Woerpel, K A

    2017-02-17

    Competition experiments demonstrate that additions of allylmagnesium halides to carbonyl compounds, unlike additions of other organomagnesium reagents, occur at rates approaching the diffusion rate limit. Whereas alkylmagnesium and alkyllithium reagents could differentiate between electronically or sterically different carbonyl compounds, allylmagnesium reagents reacted with most carbonyl compounds at similar rates. Even additions to esters occurred at rates competitive with additions to aldehydes. Only in the case of particularly sterically hindered substrates, such as those bearing tertiary alkyl groups, were additions slower.

  17. Improved free-energy interpolation scheme for obtaining gas-phase reaction rates from ring-polymer molecular dynamics

    Science.gov (United States)

    Stecher, Thomas; Althorpe, Stuart C.

    2012-05-01

    Quantum reaction rates for bimolecular gas-phase reactions can be computed efficiently and to a realistic degree of approximation by applying ring-polymer molecular dynamics within a free-energy interpolation scheme [R. Collepardo-Guevara, Y.V. Suleimanov, and D.E. Manolopoulos, J. Chem. Phys. 130, 174713 (2009)]. Here, we present modifications to this scheme which simplify the implementation of the method, and have the advantage of yielding directly the free-energy as a function of the interpolation coordinate. We also take the opportunity to verify the benchmark results obtained for the H + H2 and Cl + HCl reactions by Collepardo-Guevara et al., obtaining excellent agreement for H + H2 and reasonable agreement for Cl + HCl.

  18. Atmospheric reactions of methylcyclohexanes with Cl atoms and OH radicals: determination of rate coefficients and degradation products.

    Science.gov (United States)

    Ballesteros, Bernabé; Ceacero-Vega, Antonio A; Jiménez, Elena; Albaladejo, José

    2015-04-01

    As the result of biogenic and anthropogenic activities, large quantities of chemical compounds are emitted into the troposphere. Alkanes, in general, and cycloalkanes are an important chemical class of hydrocarbons found in diesel, jet and gasoline, vehicle exhaust emissions, and ambient air in urban areas. In general, the primary atmospheric fate of organic compounds in the gas phase is the reaction with hydroxyl radicals (OH). The oxidation by Cl atoms has gained importance in the study of atmospheric reactions because they may exert some influence in the boundary layer, particularly in marine and coastal environments, and in the Arctic troposphere. The aim of this paper is to study of the atmospheric reactivity of methylcylohexanes with Cl atoms and OH radicals under atmospheric conditions (in air at room temperature and pressure). Relative kinetic techniques have been used to determine the rate coefficients for the reaction of Cl atoms and OH radicals with methylcyclohexane, cis-1,4-dimethylcyclohexane, trans-1,4-dimethylcyclohexane, and 1,3,5-trimethylcyclohexane at 298 ± 2 K and 720 ± 5 Torr of air by Fourier transform infrared) spectroscopy and gas chromatography-mass spectrometry (GC-MS) in two atmospheric simulation chambers. The products formed in the reaction under atmospheric conditions were investigated using a 200-L Teflon bag and employing the technique of solid-phase microextraction coupled to a GC-MS. The rate coefficients obtained for the reaction of Cl atoms with the studied compounds are the following ones (in units of 10(-10) cm(3) molecule(-1) s(-1)): (3.11 ± 0.16), (2.89 ± 0.16), (2.89 ± 0.26), and (2.61 ± 0.42), respectively. For the reactions with OH radicals the determined rate coefficients are (in units of 10(-11) cm(3) molecule(-1) s(-1)): (1.18 ± 0.12), (1.49 ± 0.16), (1.41 ± 0.15), and (1.77 ± 0.23), respectively. The reported error is twice the standard deviation. A detailed

  19. Reaction kinetics aspect of U3O8 kernel with gas H2 on the characteristics of activation energy, reaction rate constant and O/U ratio of UO2 kernel

    International Nuclear Information System (INIS)

    Damunir

    2007-01-01

    The reaction kinetics aspect of U 3 O 8 kernel with gas H 2 on the characteristics of activation energy, reaction rate constant and O/U ratio of UO 2 kernel had been studied. U 3 O 8 kernel was reacted with gas H 2 in a reduction furnace at varied reaction time and temperature. The reaction temperature was varied at 600, 700, 750 and 850 °C with a pressure of 50 mmHg for 3 hours in gas N 2 atmosphere. The reation time was varied at 1, 2, 3 and 4 hours at a temperature of 750 °C using similar conditions. The reaction product was UO 2 kernel. The reaction kinetic aspect between U 3 O 8 and gas H 2 comprised the minimum activation energy (ΔE), the reaction rate constant and the O/U ratio of UO 2 kernel. The minimum activation energy was determined from a straight line slope of equation ln [{D b . R o {(1 - (1 - X b ) ⅓ } / (b.t.Cg)] = -3.9406 x 10 3 / T + 4.044. By multiplying with the straight line slope -3.9406 x 10 3 , the ideal gas constant (R) 1.985 cal/mol and the molarity difference of reaction coefficient 2, a minimum activation energy of 15.644 kcal/mol was obtained. The reaction rate constant was determined from first-order chemical reaction control and Arrhenius equation. The O/U ratio of UO 2 kernel was obtained using gravimetric method. The analysis result of reaction rate constant with chemical reaction control equation yielded reaction rate constants of 0.745 - 1.671 s -1 and the Arrhenius equation at temperatures of 650 - 850 °C yielded reaction rate constants of 0.637 - 2.914 s -1 . The O/U ratios of UO 2 kernel at the respective reaction rate constants were 2.013 - 2.014 and the O/U ratios at reaction time 1 - 4 hours were 2.04 - 2.011. The experiment results indicated that the minimum activation energy influenced the rate constant of first-order reaction and the O/U ratio of UO 2 kernel. The optimum condition was obtained at reaction rate constant of 1.43 s -1 , O/U ratio of UO 2 kernel of 2.01 at temperature of 750 °C and reaction time of 3

  20. Rate constants and hydrogen isotope substitution effects in the CH3 + HCl and CH3 + Cl2 reactions.

    Science.gov (United States)

    Eskola, Arkke J; Timonen, Raimo S; Marshall, Paul; Chesnokov, Evgeni N; Krasnoperov, Lev N

    2008-08-14

    The kinetics of the CH3 + Cl2 (k2a) and CD3 + Cl2 (k2b) reactions were studied over the temperature range 188-500 K using laser photolysis-photoionization mass spectrometry. The rate constants of these reactions are independent of the bath gas pressure within the experimental range, 0.6-5.1 Torr (He). The rate constants were fitted by the modified Arrhenius expression, k2a = 1.7 x 10(-13)(T/300 K)(2.52)exp(5520 J mol(-1)/RT) and k2b = 2.9 x 10(-13)(T/300 K)(1.84)exp(4770 J mol(-1)/RT) cm(3) molecule(-1) s(-1). The results for reaction 2a are in good agreement with the previous determinations performed at and above ambient temperature. Rate constants of the CH3 + Cl2 and CD3 + Cl2 reactions obtained in this work exhibit minima at about 270-300 K. The rate constants have positive temperature dependences above the minima, and negative below. Deuterium substitution increases the rate constant, in particular at low temperatures, where the effect reaches ca. 45% at 188 K. These observations are quantitatively rationalized in terms of stationary points on a potential energy surface based on QCISD/6-311G(d,p) geometries and frequencies, combined with CCSD(T) energies extrapolated to the complete basis set limit. 1D tunneling as well as the possibility of the negative energies of the transition state are incorporated into a transition state theory analysis, an approach which also accounts for prior experiments on the CH3 + HCl system and its various deuterated isotopic substitutions [Eskola, A. J.; Seetula, J. A.; Timonen, R. S. Chem. Phys. 2006, 331, 26].