WorldWideScience

Sample records for tripanossomicide benznidazole rochagan

  1. Effect of tripanossomicide benznidazole (Rochagan) on the biodistribution of sodium pertechnetate (Na{sup 99m}TcO4) in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Vanessa Santos de Arruda; Holanda, Cecilia Maria de Carvalho Xavier; Silva, Roseane Pereira da; Medeiros, Aldo Cunha [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Centro de Ciencias da Saude]. E-mail: vambio@oi.com.br; Oliveira, Daniel Pereira de; Silva Junior, Mauricio Ferreira da; Oliveira, Elias Herculano de [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Centro de Biociencias. Dept. de Microbiologia e Parasitologia; Spyrides, Maria Helena Constantino [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Estatistica

    2008-12-15

    Benznidazole, a drug with specific anti-Trypanosoma cruzi activity, is used in the treatment of Chagas' disease. The radiopharmaceutical sodium pertechnetate (Na{sup 99m}TcO{sub 4}) is used to obtain diagnostic images of the stomach, thyroid, parathyroids, salivary glands, brain and in the study of esophageal reflux and blood flow. This study aimed at evaluating in vivo the influence of benznidazole treatment on the sodium pertechnetate biodistribution in Wistar rats. The percentage of radioactivity per gram (%ATI/g) of various organs (brain, heart, esophagus, stomach, small intestine, large intestine, spleen, liver, muscle and blood) was determined. Comparing the treated rats with the controls, we observed that sodium pertechnetate biodistribution did not change when administered to rats treated for thirty days with benznidazole. (author)

  2. Development and in vitro evaluation of tablets based on the antichagasic benznidazole Desenvolvimento e avaliação in vitro de comprimidos a base do antichagásico benznidazol

    Directory of Open Access Journals (Sweden)

    José Lamartine Soares Sobrinho

    2008-09-01

    Full Text Available This work aimed to verify the interferences caused by the use of excipients for immediate release tablets based on benznidazole obtained by direct compression and the accomplishment of a comparative study between the tablets developed and the reference medicine RochaganTM, obtained by wet granulation. Seven small-scale batches (SSB were developed and aspects such as compressibility, powder flow, mean weight, friability, disintegration, hardness, assay, content uniformity, kinetic of release in vitro (dissolution and drug/excipients physical-chemical compatibility were evaluated. Based on the obtained results it can be verified that the analyzed powders presented adequated characteristics for the direct compression process, beyond the inexistent evidence of a physical-chemical interaction between the drug and the tested excipients. The tablets obtained from SSB I and III were chosen for the comparative study with the reference medicine, demonstrating similarity with the statistically treated obtained results, becoming an alternative option of a medicine product for the treatment of Chagas' disease with reduced cost and satisfactory quality.O trabalho teve como objetivo a verificação das possíveis interferências dos excipientes utilizados na obtenção do comprimido de liberação imediata à base de benznidazol por meio do processo de compressão direta e realização de estudo comparativo entre os comprimidos obtidos e o medicamento de referência Rochagan®, obtido por meio da granulação por via úmida. Sete lotes de bancada (LB foram produzidos e aspectos, tais como compressibilidade, fluxo do pós, peso médio, friabilidade, desintegração, dureza, teor, dissolução, uniformidade de conteúdo, cinética de liberação in vitro (dissolução e compatibilidade físico-química fármaco/excipiente foram avaliados. Diante dos resultados obtidos pode-se verificar que os pós analisados apresentaram características adequadas para o

  3. Prevention of congenital Chagas disease by Benznidazole treatment in reproductive-age women. An observational study.

    Science.gov (United States)

    Álvarez, María G; Vigliano, Carlos; Lococo, Bruno; Bertocchi, Graciela; Viotti, Rodolfo

    2017-10-01

    Since the decline in new cases of infection by insect/vector, congenital Chagas disease has become more relevant in the transmission of Chagas disease. Treatment with benznidazole significantly reduces the parasitemia, which constitutes an important factor linked to vertical transmission. The objective of this study was to evaluate whether treatment with benznidazole previously administered to women of childbearing age can prevent or reduce the incidence of new cases of congenital Chagas disease. An historical cohort study that included all women in reproductive age (15-45 years) assisted in our center was designed. We included 67 mothers with chronic Chagas disease; 35 women had not been treated prior to pregnancy, 15 had been treated prior to pregnancy and 17 gave birth prior and after treatment with benznidazole. Eight mothers gave birth to 16 children with congenital Chagas disease (8/67, 12%). The prevalence of congenital Chagas was 16/114 (14%) children born to untreated mothers and 0/42 (0%) children born to benznidazole- treated mothers, p=0.01. No significant differences were observed in clinical, serologic, epidemiological or socioeconomic baseline variables between mothers with and without children born with congenital Chagas. A 32% conversion rate to negative serology was observed in benznidazole-treated women after long-term follow up. Antiparasitic treatment administered to women in reproductive age can prevent the occurrence of congenital Chagas disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Access to benznidazole for Chagas disease in the United States-Cautious optimism?

    Directory of Open Access Journals (Sweden)

    Jonathan D Alpern

    2017-09-01

    Full Text Available Drugs for neglected tropical diseases (NTD are being excessively priced in the United States. Benznidazole, the first-line drug for Chagas disease, may become approved by the Food and Drug Administration (FDA and manufactured by a private company in the US, thus placing it at risk of similar pricing. Chagas disease is an NTD caused by Trypanosoma cruzi; it is endemic to Latin America, infecting 8 million individuals. Human migration has changed the epidemiology causing nonendemic countries to face increased challenges in diagnosing and managing patients with Chagas disease. Only 2 drugs exist with proven efficacy: benznidazole and nifurtimox. Benznidazole has historically faced supply problems and drug shortages, limiting accessibility. In the US, it is currently only available under an investigational new drug (IND protocol from the CDC and is provided free of charge to patients. However, 2 companies have stated that they intend to submit a New Drug Application (NDA for FDA approval. Based on recent history of companies acquiring licensing rights for NTD drugs in the US with limited availability, it is likely that benznidazole will become excessively priced by the manufacturer-paradoxically making it less accessible. However, if the companies can be taken at their word, there may be reason for optimism.

  5. Access to benznidazole for Chagas disease in the United States-Cautious optimism?

    Science.gov (United States)

    Alpern, Jonathan D; Lopez-Velez, Rogelio; Stauffer, William M

    2017-09-01

    Drugs for neglected tropical diseases (NTD) are being excessively priced in the United States. Benznidazole, the first-line drug for Chagas disease, may become approved by the Food and Drug Administration (FDA) and manufactured by a private company in the US, thus placing it at risk of similar pricing. Chagas disease is an NTD caused by Trypanosoma cruzi; it is endemic to Latin America, infecting 8 million individuals. Human migration has changed the epidemiology causing nonendemic countries to face increased challenges in diagnosing and managing patients with Chagas disease. Only 2 drugs exist with proven efficacy: benznidazole and nifurtimox. Benznidazole has historically faced supply problems and drug shortages, limiting accessibility. In the US, it is currently only available under an investigational new drug (IND) protocol from the CDC and is provided free of charge to patients. However, 2 companies have stated that they intend to submit a New Drug Application (NDA) for FDA approval. Based on recent history of companies acquiring licensing rights for NTD drugs in the US with limited availability, it is likely that benznidazole will become excessively priced by the manufacturer-paradoxically making it less accessible. However, if the companies can be taken at their word, there may be reason for optimism.

  6. Aldo-keto reductase and alcohol dehydrogenase contribute to benznidazole natural resistance in Trypanosoma cruzi.

    Science.gov (United States)

    González, Laura; García-Huertas, Paola; Triana-Chávez, Omar; García, Gabriela Andrea; Murta, Silvane Maria Fonseca; Mejía-Jaramillo, Ana M

    2017-12-01

    The improvement of Chagas disease treatment is focused not only on the development of new drugs but also in understanding mechanisms of action and resistance to drugs conventionally used. Thus, some strategies aim to detect specific changes in proteins between sensitive and resistant parasites and to evaluate the role played in these processes by functional genomics. In this work, we used a natural Trypanosoma cruzi population resistant to benznidazole, which has clones with different susceptibilities to this drug without alterations in the NTR I gene. Using 2DE-gel electrophoresis, the aldo-keto reductase and the alcohol dehydrogenase proteins were found up regulated in the natural resistant clone and therefore their possible role in the resistance to benznidazole and glyoxal was investigated. Both genes were overexpressed in a drug sensitive T. cruzi clone and the biological changes in response to these compounds were evaluated. The results showed that the overexpression of these proteins enhances resistance to benznidazole and glyoxal in T. cruzi. Moreover, a decrease in mitochondrial and cell membrane damage was observed, accompanied by a drop in the intracellular concentration of reactive oxygen species after treatment. Our results suggest that these proteins are involved in the mechanism of action of benznidazole. © 2017 John Wiley & Sons Ltd.

  7. Genome-wide mutagenesis and multi-drug resistance in American trypanosomes induced by the front-line drug benznidazole

    KAUST Repository

    Campos, Mô nica C.; Phelan, Jody; Francisco, Amanda F.; Taylor, Martin C.; Lewis, Michael D.; Pain, Arnab; Clark, Taane G.; Kelly, John M.

    2017-01-01

    Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and affects 5–8 million people in Latin America. Although the nitroheterocyclic compound benznidazole has been the front-line drug for several decades, treatment failures

  8. Genome-wide mutagenesis and multi-drug resistance in American trypanosomes induced by the front-line drug benznidazole

    KAUST Repository

    Campos, Mônica C.

    2017-10-25

    Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and affects 5–8 million people in Latin America. Although the nitroheterocyclic compound benznidazole has been the front-line drug for several decades, treatment failures are common. Benznidazole is a pro-drug and is bio-activated within the parasite by the mitochondrial nitroreductase TcNTR-1, leading to the generation of reactive metabolites that have trypanocidal activity. To better assess drug action and resistance, we sequenced the genomes of T. cruzi Y strain (35.5 Mb) and three benznidazole-resistant clones derived from a single drug-selected population. This revealed the genome-wide accumulation of mutations in the resistant parasites, in addition to variations in DNA copy-number. We observed mutations in DNA repair genes, linked with increased susceptibility to DNA alkylating and inter-strand cross-linking agents. Stop-codon-generating mutations in TcNTR-1 were associated with cross-resistance to other nitroheterocyclic drugs. Unexpectedly, the clones were also highly resistant to the ergosterol biosynthesis inhibitor posaconazole, a drug proposed for use against T. cruzi infections, in combination with benznidazole. Our findings therefore identify the highly mutagenic activity of benznidazole metabolites in T. cruzi, demonstrate that this can result in multi-drug resistance, and indicate that vigilance will be required if benznidazole is used in combination therapy.

  9. Outcome of E1224-Benznidazole Combination Treatment for Infection with a Multidrug-Resistant Trypanosoma cruzi Strain in Mice.

    Science.gov (United States)

    Diniz, Lívia de Figueiredo; Mazzeti, Ana Lia; Caldas, Ivo Santana; Ribeiro, Isabela; Bahia, Maria Terezinha

    2018-06-01

    Combination therapy has been proposed as an alternative therapeutic approach for the treatment of Chagas disease. In this study, we evaluated the effect of treatment with benznidazole combined with E1224 (ravuconazole prodrug) in an experimental murine model of acute infection. The first set of experiments assessed the range of E1224 doses required to induce parasitological cure using Trypanosoma cruzi strains with different susceptibilities to benznidazole (Y and Colombian). All E1224 doses were effective in suppressing the parasitemia and preventing death; however, parasitological cure was observed only in mice infected with Y strain. Considering these results, we evaluated the effect of combined treatment against Colombian, a multidrug-resistant T. cruzi strain. After exclusion of antagonistic effects using in vitro assays, infected mice were treated with E1224 and benznidazole in monotherapy or in combination at day 4 or 10 postinoculation. All treatments were well tolerated and effective in suppressing parasitemia; however, parasitological and PCR assays indicated no cure among mice treated with monotherapies. Intriguingly, the outcome of combination therapy was dependent on treatment onset. Early treatment using optimal doses of E1224-benznidazole induced a 100% cure rate, but this association could not eliminate a well-established infection. The beneficial effect of combination therapy was evidenced by further reductions of the patent parasitemia period in the group receiving combined therapy compared with monotherapies. Our results demonstrated a positive interaction between E1224 and benznidazole against murine T. cruzi infection using a multidrug-resistant strain and highlighted the importance of a stringent experimental model in the evaluation of new therapies. Copyright © 2018 Diniz et al.

  10. Treatment with Fenofibrate plus a low dose of Benznidazole attenuates cardiac dysfunction in experimental Chagas disease

    Directory of Open Access Journals (Sweden)

    Ágata C. Cevey

    2017-12-01

    Full Text Available Trypanosoma cruzi induces serious cardiac alterations during the chronic infection. Intense inflammatory response observed from the beginning of infection, is critical for the control of parasite proliferation and evolution of Chagas disease. Peroxisome proliferator-activated receptors (PPAR-α, are known to modulate inflammation.In this study we investigated whether a PPAR-α agonist, Fenofibrate, improves cardiac function and inflammatory parameters in a murine model of T. cruzi infection. BALB/c mice were sequentially infected with two T. cruzi strains of different genetic background. Benznidazole, commonly used as trypanocidal drug, cleared parasites but did not preclude cardiac pathology, resembling what is found in human chronic chagasic cardiomyopathy. Fenofibrate treatment restored to normal values the ejection and shortening fractions, left ventricular end-diastolic, left ventricular end-systolic diameter, and isovolumic relaxation time. Moreover, it reduced cardiac inflammation and fibrosis, decreased the expression of pro-inflammatory (IL-6, TNF-α and NOS2 and heart remodeling mediators (MMP-9 and CTGF, and reduced serum creatine kinase activity. The fact that Fenofibrate partially inhibited NOS2 expression and NO release in the presence of a PPAR-α non-competitive inhibitor, suggested it also acted through PPAR-α-independent pathways. Since IκBα cytosolic degradation was inhibited by Fenofibrate, it can be concluded that the NFκB pathway has a role in its effects. Thus, we demonstrate that Fenofibrate acts through PPAR-α-dependent and -independent pathways.Our study shows that combined treatment with Fenofibrate plus Benznidazole is able both to reverse the cardiac dysfunction associated with the ongoing inflammatory response and fibrosis and to attain parasite clearance in an experimental model of Chagas disease. Keywords: Trypanosoma cruzi, Heart dysfunction, PPAR-α, Fenofibrate treatment, Inflammatory mediators

  11. Population pharmacokinetic study of benznidazole in pediatric Chagas disease suggests efficacy despite lower plasma concentrations than in adults.

    Directory of Open Access Journals (Sweden)

    Jaime Altcheh

    2014-05-01

    Full Text Available Chagas disease, caused by the parasite Trypanosoma cruzi, can lead to long term cardiac morbidity. Treatment of children with benznidazole is effective, but no pediatric pharmacokinetics data are available and clinical pharmacology information on the drug is scarce.Prospective population pharmacokinetic (PK cohort study in children 2-12 years old with Chagas disease treated with oral benznidazole 5-8 mg/kg/day BID for 60 days. (clinicaltrials.gov #NCT00699387.Forty children were enrolled in the study. Mean age was 7.3 years. A total of 117 samples were obtained from 38 patients for PK analysis. A one compartment model best fit the data. Weight-corrected clearance rate (CL/F showed a good correlation with age, with younger patients having a significantly higher CL/F than older children and adults. Simulated median steady-state benznidazole concentrations, based on model parameters, were lower for children in our study than for adults and lowest for children under 7 years of age. Treatment was efficacious in the 37 patients who completed the treatment course, and well tolerated, with few, and mild, adverse drug reactions (ADRs.Observed benznidazole plasma concentrations in children were markedly lower than those previously reported in adults (treated with comparable mg/kg doses, possibly due to a higher CL/F in smaller children. These lower blood concentrations were nevertheless associated to a high therapeutic response in our cohort. Unlike adults, children have few adverse reactions to the drug, suggesting that there may be a direct correlation between drug concentrations and incidence of ADRs. Our results suggest that studies with lower doses in adults may be warranted.ClinicalTrials.gov NCT00699387.

  12. Elucidating the impact of low doses of nano-formulated benznidazole in acute experimental Chagas disease.

    Directory of Open Access Journals (Sweden)

    Marcela S Rial

    2017-12-01

    Full Text Available Chagas disease is a neglected parasitic infection caused by the protozoan Trypanosoma cruzi (T. cruzi that affects more than 6 million people, mainly in Latin America. Benznidazole is still the drug of choice in many countries to treat it in spite of its dosage regimen and adverse side effects such as such as allergic dermatitis, peripheral neuropathy and anorexia. Thus, novel, safer, and more efficacious treatments for such neglected infection are urgently required.In this study, the efficacy of orally administered low doses of benznidazole (BNZ nanoparticles was evaluated during the acute phase in mice infected with T. cruzi Nicaragua (TcN that were immunosuppressed during the chronic stage of the disease. Moreover, the production of T. cruzi-specific antibodies, cardiac tissue inflammation and reactive oxygen species generation by Vero cells treated with both BNZ nanoparticles (BNZ-nps and raw BNZ (R-BNZ were also evaluated.T. cruzi infected mice treated with 10, 25 or 50 mg/kg/day of BNZ-nps survived until euthanasia (92 days post infection (dpi, while only 15% of infected untreated mice survived until the end of the experiment. PCR analysis of blood samples taken after induction of immunosuppression showed that a dosage of 25 mg/kg/day rendered 40% of the mice PCR-negative. The histological analysis of heart tissue showed a significant decrease in inflammation after treatments with 25 and 50 mg/kg/day, while a similar inflammatory damage was observed in both infected mice treated with R-BNZ (50 mg/kg/day and untreated mice. In addition, only BNZ-nps treated mice led to lower levels of T. cruzi-specific antibodies to 50-100%. Finally, mammalian Vero cells treated with BNZ-nps or R-BNZ lead to a significant increase in ROS production.Based on these findings, this research highlights the in-vitro/in-vivo efficacy of nanoformulated BNZ against T. cruzi acute infections in immunosuppressed and non-immunosuppressed mice and provides further

  13. Genotoxicity Revaluation of Three Commercial Nitroheterocyclic Drugs: Nifurtimox, Benznidazole, and Metronidazole

    Directory of Open Access Journals (Sweden)

    Annamaria Buschini

    2009-01-01

    Full Text Available Nitroheterocyclic compounds are widely used as therapeutic agents against a variety of protozoan and bacterial infections. However, the literature on these compounds, suspected of being carcinogens, is widely controversial. In this study, cytotoxic and genotoxic potential of three drugs, Nifurtimox (NFX, Benznidazole (BNZ, and Metronidazole (MTZ was re-evaluated by different assays. Only NFX reduces survival rate in actively proliferating cells. The compounds are more active for base-pair substitution than frameshift induction in Salmonella; NFX and BNZ are more mutagenic than MTZ; they are widely dependent from nitroreduction whereas microsomal fraction S9 weakly affects the mutagenic potential. Comet assay detects BNZ- and NFX-induced DNA damage at doses in the range of therapeutically treated patient plasma concentration; BNZ seems to mainly act through ROS generation whereas a dose-dependent mechanism of DNA damaging is suggested for NFX. The lack of effects on mammalian cells for MTZ is confirmed also in MN assay whereas MN induction is observed for NFX and BNZ. The effects of MTZ, that shows comparatively low reduction potential, seem to be strictly dependent on anaerobic/hypoxic conditions. Both NFX and BNZ may not only lead to cellular damage of the infective agent but also interact with the DNA of mammalian cells.

  14. Benznidazole biotransformation and multiple targets in Trypanosoma cruzi revealed by metabolomics.

    Directory of Open Access Journals (Sweden)

    Andrea Trochine

    2014-05-01

    Full Text Available The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn. Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn.Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols trypanothione, homotrypanothione and cysteine were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment. These metabolites included reduction products, fragments and covalent adducts of reduced Bzn linked to each of the major low molecular weight thiols: trypanothione, glutathione, γ-glutamylcysteine, glutathionylspermidine, cysteine and ovothiol A. Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI, were found within the parasites, but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected.Our data is indicative of a major role of the thiol binding capacity of Bzn reduction products in the mechanism of Bzn toxicity against T. cruzi.

  15. Effects of buthionine sulfoximine nifurtimox and benznidazole upon trypanothione and metallothionein proteins in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    JUAN DIEGO MAYA

    2004-01-01

    Full Text Available Proteins rich in sulfhydryl groups, such as metallothionein, are present in several strains of the parasite Trypanosoma cruzi, the etiological agent of Chagas' disease. Metallothionein-like protein concentrations ranged from 5.1 to 13.2 pmol/mg protein depending on the parasite strain and growth phase. Nifurtimox and benznidazole, used in the treatment of Chagas' disease, decreased metallothionein activity by approximately 70%. T. cruzi metallothionein was induced by ZnCl2. Metallothionein from T. cruzi was partially purified and its monobromobimane derivative showed a molecular weight of approximately 10,000 Da by SDS-PAGE analysis. The concentration of trypanothione, the major glutathione conjugate in T. cruzi, ranged from 3.8 to 10.8 nmol/mg protein, depending on the culture phase. The addition of buthionine sulfoximine to the protozoal culture considerably reduced the concentration of trypanothione and had no effect upon the metallothionein concentration. The possible contribution of metallothionein-like proteins to drug resistance in T. cruzi is discussed.

  16. Trypanosoma cruzi benznidazole susceptibility in vitro does not predict the therapeutic outcome of human Chagas disease

    Directory of Open Access Journals (Sweden)

    Margoth Moreno

    2010-11-01

    Full Text Available Therapeutic failure of benznidazole (BZ is widely documented in Chagas disease and has been primarily associated with variations in the drug susceptibility of Trypanosoma cruzi strains. In humans, therapeutic success has been assessed by the negativation of anti-T. cruzi antibodies, a process that may take up to 10 years. A protocol for early screening of the drug resistance of infective strains would be valuable for orienting physicians towards alternative therapies, with a combination of existing drugs or new anti-T. cruzi agents. We developed a procedure that couples the isolation of parasites by haemoculture with quantification of BZ susceptibility in the resultant epimastigote forms. BZ activity was standardized with reference strains, which showed IC50 to BZ between 7.6-32 µM. The assay was then applied to isolates from seven chronic patients prior to administration of BZ therapy. The IC50 of the strains varied from 15.6 ± 3-51.4 ± 1 µM. Comparison of BZ susceptibility of the pre-treatment isolates of patients considered cured by several criteria and of non-cured patients indicates that the assay does not predict therapeutic outcome. A two-fold increase in BZ resistance in the post-treatment isolates of two patients was verified. Based on the profile of nine microsatellite loci, sub-population selection in non-cured patients was ruled out.

  17. A novel ABCG-like transporter of Trypanosoma cruzi is involved in natural resistance to benznidazole

    Directory of Open Access Journals (Sweden)

    Bianca Zingales

    2015-05-01

    Full Text Available Benznidazole (BZ is one of the two drugs used for Chagas disease treatment. Nevertheless therapeutic failures of BZ have been reported, which were mostly attributed to variable drug susceptibility among Trypanosoma cruzi strains. ATP-binding cassette (ABC transporters are involved in a variety of translocation processes and some members have been implicated in drug resistance. Here we report the characterisation of the first T. cruzi ABCG transporter gene, named TcABCG1, which is over-expressed in parasite strains naturally resistant to BZ. Comparison of TcABCG1 gene sequence of two TcI BZ-resistant strains with CL Brener BZ-susceptible strain showed several single nucleotide polymorphisms, which determined 11 amino acid changes. CL Brener transfected with TcI transporter genes showed 40-47% increased resistance to BZ, whereas no statistical significant increment in drug resistance was observed when CL Brener was transfected with the homologous gene. Only in the parasites transfected with TcI genes there was 2-2.6-fold increased abundance of TcABCG1 transporter protein. The analysis in wild type strains also suggests that the level of TcABCG1 transporter is related to BZ natural resistance. The characteristics of untranslated regions of TcABCG1 genes of BZ-susceptible and resistant strains were investigated by computational tools.

  18. Phase I study of the combination of benznidazole and CCNU in man

    International Nuclear Information System (INIS)

    Roberts, J.T.; Bleehen, N.M.; Lee, F.Y.F.; Workman, P.; Walton, M.I.

    1984-01-01

    The 2-nitroimidazole benznidazole (BENZO) has previously been shown to be an effective potentiator of the cytotoxicity of CCNU in mice, at levels which are achievable in man. In this study BENZO has been given to 46 patients in oral doses of 4 mg/kg to 30 mg/kg, and drug concentrations measured in plasma, urine, tumor and normal brain by HPLC. Approximately 60% of the drug was bound to plasma proteins and 6% excreted unchanged in urine. Mean tumor/plasma ratios of 88% for 11 gliomas and 72% for 6 superficially accessible non-brain tumors were obtained while that for normal brain was 69%. Doses of more than 17 mg/kg BENZO produce changes in the plasma pharmacokinetics of CCNU, increasing the half life of active hydroxylated metabolites. In addition, CCNU parent compound is present. This is not seen when CCNU is given alone. Such changes may result in improved response rates as it is possible to achieve in man, plasma and tumor levels of BENZO, which in the mouse model produce effective enhancement of the response to CCNU

  19. Development of parenteral formulations and evaluation of the biological activity of the trypanocide drug benznidazole.

    Science.gov (United States)

    Lamas, María C; Villaggi, Luciano; Nocito, Isabel; Bassani, Georgina; Leonardi, Darío; Pascutti, Fernanda; Serra, Esteban; Salomón, Claudio J

    2006-01-13

    Chagas disease, caused by Trypanosoma cruzi, is a major public health problem in Latin America. According to the World Health Organization, around 20 million people are infected and another 40 million are at risk of acquiring the disease. One of the drugs most frequently used for the treatment of Chagas disease is benznidazole (BZL). It is practically insoluble in water (0.4 mg/ml), which precludes the preparation of liquid dosage forms, in particular, parenteral formulations. Thus, the aim of this work was to investigate the solubilization of BZL at two pH values using various cosolvents such as ethyl alcohol, propylene glycol, polyethylene glycol 400, benzyl alcohol, diethylene glycol monoethyl ether (Transcutol) and surfactants such as polysorbates (Tween) 40 and 80, and sodium dioctyl sulfosuccinate (AOT). Solvent systems based on PEG 400, with the addition ethyl alcohol and/or potassium biphthalate buffer solution, increased the BZL solubility up to 10 mg/ml. These alcoholic vehicles showed no toxicity against parasite when assayed at 1%. Physical and chemical stability studies showed that the formulations were stable for at least 1.5 years. In agreement with the biological activity results, the selected formulations are suitable for further clinical studies. Moreover, increasing the aqueous solubility of BZL reduced the problems in vitro testing techniques and bioassays leading to more reliable results and/or reproducibility.

  20. Success of benznidazole chemotherapy in chronic Trypanosoma cruzi-infected patients with a sustained negative PCR result.

    Science.gov (United States)

    Murcia, L; Carrilero, B; Ferrer, F; Roig, M; Franco, F; Segovia, M

    2016-11-01

    Cure assessment in chronic Trypanosoma cruzi infection is controversial, mainly because of the lack of reliable tests to ensure parasite elimination. Here, we assess the impact of benznidazole therapy on the conventional serology and parasitaemia in chronic Chagas disease. A total of 455 patients with long-term Trypanosoma cruzi infection underwent specific chemotherapy with benznidazole. Their parasitological status was assessed by polymerase chain reaction (PCR) detection of T. cruzi DNA. Drops in the titres of antibody levels were serially measured by indirect immunofluorescence assay (IFI) and chemiluminescent microparticle immunoassay (CMIA). Patients were monitored during the treatment period and for a further 90, 150 and 240 days. Controls were repeated yearly during the 7-year follow-up. The PCR result was negative in all patients between 60-day (n = 22) and 90-day (n = 294) controls. Treatment failure was detected in 45 patients and was significantly more frequent in those who did not complete the therapy [12 out of 13 (92 %) vs. 33 out of 442 (7 %)] (p = 0.0001). A significant drop in serum titres was detected after the first follow-up year in patients with sustained negative PCR results: 2nd year (p = 0.029 by IFI; p = 0.002 by CMIA), 5th year (p = 0.036 by IFI; p = 0.039 by CMIA) and 6th year (p = 0.028 by IFI; p = 0.019 by CMIA). The results point to a beneficial effect of benznidazole and may be the cure of chronic patients who had a consistently negative PCR result throughout the follow-up period.

  1. Designing structural features of novel benznidazole-loaded cationic nanoparticles for inducing slow drug release and improvement of biological efficacy.

    Science.gov (United States)

    Dos Santos-Silva, Alaine M; de Caland, Lilia B; de S L Oliveira, Ana Luíza C; de Araújo-Júnior, Raimundo F; Fernandes-Pedrosa, Matheus F; Cornélio, Alianda Maira; da Silva-Júnior, Arnóbio A

    2017-09-01

    Several polymers have been investigated for producing cationic nanocarriers due to their ability to cross biological barriers. Polycations such as copolymers of polymethylmethacrylate are highlighted due to their biocompatibility and low toxicity. The purpose of this study was to produce small and narrow-sized cationic nanoparticles able to overcome cell membranes and improve the biological activity of benznidazole (BNZ) in normal and cancer cells. The effect of composition and procedure parameters of the used emulsification-solvent evaporation method were controlled for this purpose. The experimental approach included particle size, polydispersity index, zeta potential, atomic force microscopy (AFM), attenuated total reflectance Fourier transforms infrared spectroscopy (ATR- FTIR), drug loading efficiency, and physical stability assays. Spherical and stable (over six weeks) sub 150nm cationic nanoparticles were optimized, with the encapsulation efficiency >80%. The used drug/copolymer ratio modulated the slow drug release, which was adjusted by the parabolic diffusion mathematical model. In addition, the ability of the cationic nanoparticles improve the BNZ uptake in the normal kidney cells (HEK 293) and the human colorectal cancer cells (HT 29) demonstrate that this novel BNZ-loaded cationic has great potential as a chemotherapeutic application of benznidazole. Copyright © 2017. Published by Elsevier B.V.

  2. Ruthenium complex with benznidazole and nitric oxide as a new candidate for the treatment of chagas disease.

    Directory of Open Access Journals (Sweden)

    Renata Sesti-Costa

    2014-10-01

    Full Text Available Chagas disease remains a serious medical and social problem in Latin America and is an emerging concern in nonendemic countries as a result of population movement, transfusion of infected blood or organs and congenital transmission. The current treatment of infected patients is unsatisfactory due to strain-specific drug resistance and the side effects of the current medications. For this reason, the discovery of safer and more effective chemotherapy is mandatory for the successful treatment and future eradication of Chagas disease.We investigated the effect of a ruthenium complex with benznidazole and nitric oxide (RuBzNO2 against Trypanosoma cruzi both in vitro and in vivo. Our results demonstrated that RuBzNO2 was more effective than the same concentrations of benznidazole (Bz in eliminating both the extracellular trypomastigote and the intracellular amastigote forms of the parasite, with no cytotoxic effect in mouse cells. In vivo treatment with the compound improved the survival of infected mice, inhibiting heart damage more efficiently than Bz alone. Accordingly, tissue inflammation and parasitism was significantly diminished after treatment with RuBzNO2 in a more effective manner than that with the same concentrations of Bz.The complexation of Bz with ruthenium and nitric oxide (RuBzNO2 increases its effectiveness against T. cruzi and enables treatment with lower concentrations of the compound, which may reduce the side effects of Bz. Our findings provide a new potential candidate for the treatment of Chagas disease.

  3. Technological innovation strategies for the specific treatment of Chagas disease based on Benznidazole.

    Science.gov (United States)

    Ferraz, Leslie Raphael de Moura; Alves, Alinne Élida Gonçalves; Nascimento, Débora Dolores Souza da Silva; Amariz, Isabela Araújo E; Ferreira, Aline Silva; Costa, Salvana Priscylla Manso; Rolim, Larissa Araújo; Lima, Ádley Antonini Neves de; Rolim Neto, Pedro José

    2018-02-13

    Caused by Trypanosoma cruzi, Chagas disease is responsible for public health problems greater in magnitude than those attributed to malaria, schistosomiasis, or leishmaniasis. A factor in the socioeconomic development of poor countries, Chagas disease can cause death due to a high parasitic burden during its acute phase due and irreversible damage in organs such as the heart, esophagus, and colon during its chronic phase, even when the number of parasites is minimal. For treating Chagas disease, benznidazole (BNZ) remains the drug of choice and, in Latin America, the only drug on the market for treating the disease. However, BNZ has exhibited insufficient activity in the chronic phase of Chagas disease, required administration in large doses, prolonged treatment, and shown a high incidence of adverse reactions (vomiting, rash, peripheral neuropathy, and spinal cord depression), toxicity, and low solubility in water. As an antidote, pharmaceutical technologies have been introduced that can improve BNZ's solubility and dissolution, as well as reduce side effects in light of its bioavailability, all of which can enhance therapy for Chagas disease. In response to that trend, by conducting a literature review, we sought to identify current pharmaceutical technologies used in tandem with BNZ to improve therapy for Chagas disease. Documented techniques include emulsion and microemulsion formation, solutions, parenteral formulas, micronization, and drug delivery systems supported by the development of nanoparticles and cyclodextrins, solid dispersions, and the use of metal-organic frameworks as innovative excipients. Such technologies increase the water solubility of BNZ by 4-25-fold on dissolution and an 85% release with efficacy in only a few minutes, as recorded during a viability experiment with nanoparticle suspensions. That experiment demonstrated the need for a lower concentration of BNZ to kill 50% of trypomastigote forms of T. cruzi, described in terms of the

  4. Phase Transitions of Isotropic to Anisotropic Biocompatible Lipid-Based Drug Delivery Systems Overcoming Insoluble Benznidazole Loading

    Science.gov (United States)

    Streck, Letícia; Sarmento, Víctor H. V.; Machado, Paula R. L.; Farias, Kleber J. S.; Fernandes-Pedrosa, Matheus F.; da Silva-Júnior, Arnóbio Antônio

    2016-01-01

    Previous studies reported low benznidazole (BNZ) loading in conventional emulsions due to the weak interaction of the drug with the most common oils used to produce foods or pharmaceuticals. In this study, we focused on how the type of surfactant, surfactant-to-oil ratio w/w (SOR) and oil-to-water ratio w/w (OWR) change the phase behavior of different lipid-based drug delivery systems (LBDDS) produced by emulsion phase inversion. The surfactant mixture composed of soy phosphatidylcholine and sodium oleate (1:7, w/w, hydrophilic lipophilic balance = 16) stabilized medium chain triglyceride in water. Ten formulations with the clear aspect or less turbid dispersions (five with the SOR ranging from 0.5 to 2.5 and five with the OWR from 0.06 to 0.4) were selected from the phase behavior diagram to assess structural features and drug-loading capacity. The rise in the SOR induced the formation of distinct lipid-based drug delivery systems (nanoemulsions and liquid crystal lamellar type) that were identified using rheological measurements and cross-polarized light microscopy images. Clear dispersions of small and narrow droplet-sized liquid-like nanoemulsions, Newtonian flow-type, were produced at SOR from 0.5 to 1.5 and OWR from 0.12 to 0.4, while clear liquid or gel-like liquid crystals were produced at SOR from 1.5 to 2.5. The BNZ loading was improved according to the composition and type of LBDDS produced, suggesting possible drug location among surfactant layers. The cell viability assays proved the biocompatibility for all of the prepared nanoemulsions at SOR less than 1.5 and liquid crystals at SOR less than 2.5, demonstrating their promising features for the oral or parenteral colloidal delivery systems containing benznidazole for Chagas disease treatment. PMID:27376278

  5. Phase Transitions of Isotropic to Anisotropic Biocompatible Lipid-Based Drug Delivery Systems Overcoming Insoluble Benznidazole Loading

    Directory of Open Access Journals (Sweden)

    Letícia Streck

    2016-06-01

    Full Text Available Previous studies reported low benznidazole (BNZ loading in conventional emulsions due to the weak interaction of the drug with the most common oils used to produce foods or pharmaceuticals. In this study, we focused on how the type of surfactant, surfactant-to-oil ratio w/w (SOR and oil-to-water ratio w/w (OWR change the phase behavior of different lipid-based drug delivery systems (LBDDS produced by emulsion phase inversion. The surfactant mixture composed of soy phosphatidylcholine and sodium oleate (1:7, w/w, hydrophilic lipophilic balance = 16 stabilized medium chain triglyceride in water. Ten formulations with the clear aspect or less turbid dispersions (five with the SOR ranging from 0.5 to 2.5 and five with the OWR from 0.06 to 0.4 were selected from the phase behavior diagram to assess structural features and drug-loading capacity. The rise in the SOR induced the formation of distinct lipid-based drug delivery systems (nanoemulsions and liquid crystal lamellar type that were identified using rheological measurements and cross-polarized light microscopy images. Clear dispersions of small and narrow droplet-sized liquid-like nanoemulsions, Newtonian flow-type, were produced at SOR from 0.5 to 1.5 and OWR from 0.12 to 0.4, while clear liquid or gel-like liquid crystals were produced at SOR from 1.5 to 2.5. The BNZ loading was improved according to the composition and type of LBDDS produced, suggesting possible drug location among surfactant layers. The cell viability assays proved the biocompatibility for all of the prepared nanoemulsions at SOR less than 1.5 and liquid crystals at SOR less than 2.5, demonstrating their promising features for the oral or parenteral colloidal delivery systems containing benznidazole for Chagas disease treatment.

  6. Modulation of oxidative and inflammatory cardiac response by nonselective 1- and 2-cyclooxygenase inhibitor and benznidazole in mice.

    Science.gov (United States)

    Santos, Eliziária C; Novaes, Rômulo D; Bastos, Daniel S S; Oliveira, Jerusa M; Penitente, Arlete R; Gonçalves, Wagner G; Cardoso, Silvia A; Talvani, André; Oliveira, Leandro L

    2015-11-01

    This study investigated the combined effects of benznidazole (BZ) and ibuprofen (IB) on the oxidative and inflammatory status of the cardiac tissue in vivo. Swiss mice were randomized in groups receiving BZ (100 mg/kg) and IB (400 mg/kg) alone or combined (BZ + IB 200 or 400 mg/kg). Control animals were concurrently treated with 1% carboxymethyl cellulose. All treatments were administered orally for 7 days. BZ treatment increased cardiac production of nitrogen/oxygen-reactive species, malondialdeyde, carbonyl proteins, prostaglandins as well as the activities of catalase, superoxide dismutase and glutathione peroxidase. These parameters were attenuated by IB, with the best results at higher dose. Individually, BZ and IB significantly reduced the tissue levels of chemokine ligand 2, tumour necrosis factor-α and IL-10, but no reduction was observed when the treatments were combined. BZ triggers an oxidative and nitrosative route, which is associated with increased prostaglandin synthesis and marked damages to the lipids and proteins of the cardiac tissue. IB treatment attenuated reactive stresses triggered by BZ, which was an independent effects of this drug on the endogenous antioxidant enzymes. Individually, but not together, BZ and IB reduced the cardiac inflammatory status, indicating a beneficial and complex drug interaction. © 2015 Royal Pharmaceutical Society.

  7. Desenvolvimento de método analítico por CLAE em comprimidos de Benznidazol para a Doença de Chagas

    OpenAIRE

    Silva,Ana Luiza Maurer da; Soares Sobrinho,José Lamartine; Rolim Neto,Pedro José; Silva,Rosali Maria Ferreira da; Medeiros,Flávia Patrícia Morais de; Lima,Leduar Guedes de

    2007-01-01

    The analytical method of high performance liquid chromatography (HPLC) for the assay of benznidazole in tablets was developed and validated following the requirements of regulatory agencies. The method used as mobile phase acetonitrile:wather 1:1, a C18 column of 12.5 cm length x 4 mm id, 5 mm particles and lambda=316 nm. The statistical analysis of the results demonstrated that the method satisfies all parameters so as to be considered a safe and efficient analytical alternative of low cost ...

  8. In vivo potentiation of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea by the radiation sensitizer benznidazole

    International Nuclear Information System (INIS)

    Siemann, D.W.; Morrissey, S.; Wolf, K.

    1983-01-01

    Recent studies in mouse tumor systems have indicated a potential therapeutic advantage in combining the radiosensitizer misonidazole (MISO) with cancer chemotherapy drugs. One agent the antitumor activity of which has been enhanced to a greater extent than its hematological or gastrointestinal toxicities is the nitrosourea, 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU). Recently, sensitizers more lipophylic than MISO have been reported to give greater tumor response enhancement when combined with CCNU. The present studies compared the potential therapeutic benefit of combining MISO (partition coefficient, 0.43) or benznidazole (BENZO) (partition coefficient, 8.5) in KHT sarcoma or RIF-1 tumor-bearing C3H mice. Both sensitizers were administered i.p. and given either 30 min before (BENZO) or simultaneously with (MISO) the chemotherapeutic agent. Survival of clonogenic tumor cells assessed 22 to 24 hr after treatment or in situ tumor growth delay were used as assays of tumor response. Normal tissue toxicity was determined using the drug dose yielding 50% animal lethality in 30 days end point. When combined with CCNU, doses of MISO (5.0 mmol/kg) or BENZO (0.3 mmol/kg) were found to yield approximately equivalent increases in both the tumor effect (enhancement ratio, approximately 1.8 to 2.0) and normal tissue toxicity (enhancement ratio approximately 1.3 to 1.4). Both sensitizers therefore led to a therapeutic benefit. However, although a approximately 10-fold lower dose of the more lipophylic sensitizer BENZO proved to be as effective as MISO at enhancing the tumoricidal effects of CCNU, this dose reduction did not result in a greater therapeutic gain for BENZO

  9. Clinical follow-up of responses to treatment with benznidazol in Amazon: a cohort study of acute Chagas disease.

    Directory of Open Access Journals (Sweden)

    Ana Yecê das Neves Pinto

    Full Text Available A total of 179 individuals with acute Chagas disease mainly transmitted by oral source, from Pará and Amapá State, Amazonian, Brazil were included during the period from 1988 to 2005. Blood samples were used to survey peripheral blood for T. cruzi hemoparasites by quantitative buffy coat (QBC, indirect xenodiagnosis, blood culture and serology to detection of total IgM and anti-T. cruzi IgG antibodies by indirect immunofluorescence assay (IFA and indirect hemagglutination assay (HA. All assays were performed pre-treatment (0 days and repeated 35 (±7 and 68 (±6 days after the initiation of treatment with benznidazol and every 6 months while remained seropositive. The endpoint of collection was performed in 2005. Total medium period of follow-up per person was 5.6 years. Also, a blood sample was collected from 72 randomly chosen treated patients to perform polimerase chain reaction (PCR method. Proportions of subjects with negative or positive serology according to the number of years after treatment were compared. In the endpoint of follow-up we found 47 patients (26.7% serologically negative, therefore considered cured and 5 (2.7% exhibited mild cardiac Chagas disease. Other 132 patients had persistent positive serologic tests. The PCR carried out in 72 individuals was positive in 9.8%. Added, there was evidence of therapeutic failure immediately following treatment, as demonstrated by xenodiagnosis and blood culture methods in 2.3% and 3.5% of cases, respectively. There was a strong evidence of antibody clearing in the fourth year after treatment and continuous decrease of antibody titers. Authors suggest that control programs should apply operational researches with new drug interventions four years after the acute phase for those treated patients with persistently positive serology.

  10. Clinical Follow-Up of Responses to Treatment with Benznidazol in Amazon: A Cohort Study of Acute Chagas Disease

    Science.gov (United States)

    Pinto, Ana Yecê das Neves; Valente, Vera da Costa; Coura, José Rodrigues; Valente, Sebastião Aldo da Silva; Junqueira, Angela Cristina Veríssimo; Santos, Laura Cristina; Ferreira, Alberto Gomes; de Macedo, Roberto Cavalleiro

    2013-01-01

    A total of 179 individuals with acute Chagas disease mainly transmitted by oral source, from Pará and Amapá State, Amazonian, Brazil were included during the period from 1988 to 2005. Blood samples were used to survey peripheral blood for T. cruzi hemoparasites by quantitative buffy coat (QBC), indirect xenodiagnosis, blood culture and serology to detection of total IgM and anti-T. cruzi IgG antibodies by indirect immunofluorescence assay (IFA) and indirect hemagglutination assay (HA). All assays were performed pre-treatment (0 days) and repeated 35 (±7) and 68 (±6) days after the initiation of treatment with benznidazol and every 6 months while remained seropositive. The endpoint of collection was performed in 2005. Total medium period of follow-up per person was 5.6 years. Also, a blood sample was collected from 72 randomly chosen treated patients to perform polimerase chain reaction (PCR) method. Proportions of subjects with negative or positive serology according to the number of years after treatment were compared. In the endpoint of follow-up we found 47 patients (26.7%) serologically negative, therefore considered cured and 5 (2.7%) exhibited mild cardiac Chagas disease. Other 132 patients had persistent positive serologic tests. The PCR carried out in 72 individuals was positive in 9.8%. Added, there was evidence of therapeutic failure immediately following treatment, as demonstrated by xenodiagnosis and blood culture methods in 2.3% and 3.5% of cases, respectively. There was a strong evidence of antibody clearing in the fourth year after treatment and continuous decrease of antibody titers. Authors suggest that control programs should apply operational researches with new drug interventions four years after the acute phase for those treated patients with persistently positive serology. PMID:23724050

  11. A serological, parasitological and clinical evaluation of untreated Chagas disease patients and those treated with benznidazole before and thirteen years after intervention

    Science.gov (United States)

    Machado-de-Assis, Girley Francisco; Diniz, Glaucia Alessio; Montoya, Roberto Araújo; Dias, João Carlos Pinto; Coura, José Rodrigues; Machado-Coelho, George Luiz Lins; Albajar-Viñas, Pedro; Torres, Rosália Morais; de Lana, Marta

    2013-01-01

    The etiological treatment of Chagas disease is recommended for all patients with acute or recent chronic infection, but controversies remain regarding the benefit of chemotherapy and interpretations of the parasitological cure after etiological treatment. This study compares the laboratory and clinical evaluations of Chagas disease patients who were diagnosed 13 years earlier. Fifty-eight Chagas disease patients (29 treated with benznidazole and 29 untreated) were matched at the time of treatment based on several variables. Conventional serology revealed the absence of seroconversion in all patients. However, lower serological titres were verified in the treated group, primarily among patients who had the indeterminate form of the disease. Haemoculture performed 13 years after the intervention was positive for 6.9% and 27.6% of the treated and untreated patients, respectively. Polymerase chain reaction tests were positive for 44.8% and 13.8% of the treated and untreated patients, respectively. Patients who presented with the indeterminate form of the disease at the beginning of the study exhibited less clinical progression (17.4%) compared with the untreated group (56.5%). Therefore, this global analysis revealed that etiological treatment with benznidazole may benefit patients with respect to the clinical progression of Chagas disease and the prognosis, particularly when administered to patients with the indeterminate form of the disease. PMID:24037109

  12. Simultaneous determination of benznidazole and itraconazole using spectrophotometry applied to the analysis of mixture: A tool for quality control in the development of formulations.

    Science.gov (United States)

    Pinho, Ludmila A G; Sá-Barreto, Lívia C L; Infante, Carlos M C; Cunha-Filho, Marcílio S S

    2016-04-15

    The aim of this work was the development of an analytical procedure using spectrophotometry for simultaneous determination of benznidazole (BNZ) and itraconazole (ITZ) in a medicine used for the treatment of Chagas disease. In order to achieve this goal, the analysis of mixtures was performed applying the Lambert-Beer law through the absorbances of BNZ and ITZ in the wavelengths 259 and 321 nm, respectively. Diverse tests were carried out for development and validation of the method, which proved to be selective, robust, linear, and precise. The lower limits of detection and quantification demonstrate its sensitivity to quantify small amounts of analytes, enabling its application for various analytical purposes, such as dissolution test and routine assays. In short, the quantification of BNZ and ITZ by analysis of mixtures had shown to be efficient and cost-effective alternative for determination of these drugs in a pharmaceutical dosage form. Copyright © 2016. Published by Elsevier B.V.

  13. Simultaneous determination of benznidazole and itraconazole using spectrophotometry applied to the analysis of mixture: A tool for quality control in the development of formulations

    Science.gov (United States)

    Pinho, Ludmila A. G.; Sá-Barreto, Lívia C. L.; Infante, Carlos M. C.; Cunha-Filho, Marcílio S. S.

    2016-04-01

    The aim of this work was the development of an analytical procedure using spectrophotometry for simultaneous determination of benznidazole (BNZ) and itraconazole (ITZ) in a medicine used for the treatment of Chagas disease. In order to achieve this goal, the analysis of mixtures was performed applying the Lambert-Beer law through the absorbances of BNZ and ITZ in the wavelengths 259 and 321 nm, respectively. Diverse tests were carried out for development and validation of the method, which proved to be selective, robust, linear, and precise. The lower limits of detection and quantification demonstrate its sensitivity to quantify small amounts of analytes, enabling its application for various analytical purposes, such as dissolution test and routine assays. In short, the quantification of BNZ and ITZ by analysis of mixtures had shown to be efficient and cost-effective alternative for determination of these drugs in a pharmaceutical dosage form.

  14. Experimental benznidazole treatment of Trypanosoma cruzi II strains isolated from children of the Jequitinhonha Valley, Minas Gerais, Brazil, with Chagas disease

    Directory of Open Access Journals (Sweden)

    Jaquelline Carla Valamiel de Oliveira-Silva

    2015-02-01

    Full Text Available Trypanosoma cruzi strains from distinct geographic areas show differences in drug resistance and association between parasites genetic and treatment response has been observed. Considering that benznidazole (BZ can reduce the parasite burden and tissues damage, even in not cured animals and individuals, the goal is to assess the drug response to BZ of T. cruzi II strains isolated from children of the Jequitinhonha Valley, state of Minas Gerais, Brazil, before treatment. Mice infected and treated with BZ in both phases of infection were compared with the untreated and evaluated by fresh blood examination, haemoculture, polymerase chain reaction, conventional (ELISA and non-conventional (FC-ALTA serologies. In mice treated in the acute phase, a significant decrease in parasitaemia was observed for all strains. Positive parasitological and/or serological tests in animals treated during the acute and chronic (95.1-100% phases showed that most of the strains were BZ resistant. However, beneficial effect was demonstrated because significant reduction (p < 0.05% and/or suppression of parasitaemia was observed in mice infected with all strains (acute phase, associated to reduction/elimination of inflammation and fibrosis for two/eight strains. BZ offered some benefit, even in not cured animals, what suggest that BZ use may be recommended at least for recent chronic infection of the studied region.

  15. Benznidazole, the trypanocidal drug used for Chagas disease, induces hepatic NRF2 activation and attenuates the inflammatory response in a murine model of sepsis

    International Nuclear Information System (INIS)

    Lambertucci, Flavia; Motiño, Omar; Villar, Silvina; Rigalli, Juan Pablo; Luján Alvarez, María de; Catania, Viviana A; Martín-Sanz, Paloma; Carnovale, Cristina Ester; Quiroga, Ariel Darío; Francés, Daniel Eleazar; Ronco, María Teresa

    2017-01-01

    Molecular mechanisms on sepsis progression are linked to the imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity. Previous studies demonstrated that benznidazole (BZL), known for its antiparasitic action on Trypanosoma cruzi, has immunomodulatory effects, increasing survival in C57BL/6 mice in a model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). The mechanism by which BZL inhibits inflammatory response in sepsis is poorly understood. Also, our group recently reported that BZL is able to activate the nuclear factor erytroide-derived 2-Like 2 (NRF2) in vitro. The aim of the present work was to delineate the beneficial role of BZL during sepsis, analyzing its effects on the cellular redox status and the possible link to the innate immunity receptor TLR4. Specifically, we analyzed the effect of BZL on Nrf2 regulation and TLR4 expression in liver of mice 24 hours post-CLP. BZL was able to induce NRF2 nuclear protein localization in CLP mice. Also, we found that protein kinase C (PKC) is involved in the NRF2 nuclear accumulation and induction of its target genes. In addition, BZL prompted a reduction in hepatic CLP-induced TLR4 protein membrane localization, evidencing its immunomodulatory effects. Together, our results demonstrate that BZL induces hepatic NRF2 activation with the concomitant increase in the antioxidant defenses, and the attenuation of inflammatory response, in part, by inhibiting TLR4 expression in a murine model of sepsis. - Highlights: • BZL improves survival rate after polymicrobial sepsis • BZL enhances hepatic NRF2 nuclear accumulation in a model of sepsis, in part, by a mechanism dependent on PKC activation • BZL-enhanced NRF2 induction regulates antioxidant enzymes and increases antioxidant cellular defenses in sepsis • BZL blocks liver ROS production and ROS-induced TLR4 plasma membrane expression in septic mice

  16. Benznidazole, the trypanocidal drug used for Chagas disease, induces hepatic NRF2 activation and attenuates the inflammatory response in a murine model of sepsis

    Energy Technology Data Exchange (ETDEWEB)

    Lambertucci, Flavia [Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina); Motiño, Omar [Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid (Spain); Villar, Silvina [Instituto de Inmunología, Facultad de Ciencias Médicas, UNR, Suipacha 531, 2000 Rosario (Argentina); Rigalli, Juan Pablo; Luján Alvarez, María de; Catania, Viviana A [Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina); Martín-Sanz, Paloma [Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid (Spain); Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid (Spain); Carnovale, Cristina Ester; Quiroga, Ariel Darío; Francés, Daniel Eleazar [Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina); Ronco, María Teresa, E-mail: ronco@ifise-conicet.gov.ar [Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina)

    2017-01-15

    Molecular mechanisms on sepsis progression are linked to the imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity. Previous studies demonstrated that benznidazole (BZL), known for its antiparasitic action on Trypanosoma cruzi, has immunomodulatory effects, increasing survival in C57BL/6 mice in a model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). The mechanism by which BZL inhibits inflammatory response in sepsis is poorly understood. Also, our group recently reported that BZL is able to activate the nuclear factor erytroide-derived 2-Like 2 (NRF2) in vitro. The aim of the present work was to delineate the beneficial role of BZL during sepsis, analyzing its effects on the cellular redox status and the possible link to the innate immunity receptor TLR4. Specifically, we analyzed the effect of BZL on Nrf2 regulation and TLR4 expression in liver of mice 24 hours post-CLP. BZL was able to induce NRF2 nuclear protein localization in CLP mice. Also, we found that protein kinase C (PKC) is involved in the NRF2 nuclear accumulation and induction of its target genes. In addition, BZL prompted a reduction in hepatic CLP-induced TLR4 protein membrane localization, evidencing its immunomodulatory effects. Together, our results demonstrate that BZL induces hepatic NRF2 activation with the concomitant increase in the antioxidant defenses, and the attenuation of inflammatory response, in part, by inhibiting TLR4 expression in a murine model of sepsis. - Highlights: • BZL improves survival rate after polymicrobial sepsis • BZL enhances hepatic NRF2 nuclear accumulation in a model of sepsis, in part, by a mechanism dependent on PKC activation • BZL-enhanced NRF2 induction regulates antioxidant enzymes and increases antioxidant cellular defenses in sepsis • BZL blocks liver ROS production and ROS-induced TLR4 plasma membrane expression in septic mice.

  17. Efeito protetor do benznidazol contra a reativação parasitária em pacientes cronicamente infectados pelo Trypanosoma cruzi e tratados com corticóide em virtude de afecções associadas

    Directory of Open Access Journals (Sweden)

    Rassi Anis

    1999-01-01

    Full Text Available Pacientes na fase crônica da doença de Chagas foram tratados com corticóide em virtude de afecções associadas e, a fim de tentar coibir reativação da infecção pelo Trypanosoma cruzi, houve administração do benznidazol, iniciada concomitantemente em um grupo de 12 pacientes, ou 15 dias após o começo do uso daquele medicamento em outro grupo de 6. Levando em conta o verificado em pesquisa anterior, quando corticóide de fato promoveu aumento da parasitemia, como ainda valorizando os resultados de xenodiagnóstico, pôde ser notado que o benznidazol mostrou-se apto a evitar a citada acentuação parasitária, podendo tal constatação ser útil em procedimentos assistenciais, quando estiverem presentes doença de Chagas e imunodepressão.

  18. Trypanocidal activity of genotoxic concentration of benznidazole on epimastigote forms of Trypanosoma cruzi = Atividade tripanocida da concentração genotóxica do benzonidazol em formas epimastigotas de Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Edilson Nobuyoshi Kaneshima

    2012-10-01

    Full Text Available The genotoxicity of benznidazole at a concentration of 75 µM, used in the treatment of Chagas’ disease, has been recently reported. The present study evaluated the inhibitory effect of benznidazole on the growth of epimastigote forms of T. cruzi I and II by using genotoxic (75 µM and non-genotoxic (50 µM concentrations. To assess the growth rates of T. cruzi strains G2, A2.1A, CL, Y, and 2052, parasites in the epimastigote form were cultured in LIT medium for 192 h at 28ºC, with (50 and 75 µM and without (negative control benznidazole. Benznidazole at both concentrations inhibited all the strains, regardless of genetic group. In the 75 µM concentration, there was a significant decrease in the number of parasites inoculated at T0 after 96 h incubation. The results showed that although genotoxic and non-genotoxic doses of benznidazole inhibit the growth of the epimastigote forms of T. cruzi I and II, only the 75 µM dose seem to indicate a possible trypanocidal effect.O benzonidazol é um medicamento utilizado no tratamento da doença de Chagas, cuja genotoxicidade foi recentemente observada em concentrações a partir de 75 µM. O efeito inibitório do benzonidazol sobre o crescimento de formas epimastigotas de T. cruzi I e II foi avaliado no presente trabalho, utilizando-se concentrações genotóxica (75 µM e não genotóxica (50 µM deste medicamento. Para avaliação da taxa de crescimento das cepas G2, A2.1A, CL, Y e 2052, os parasitos na forma epimastigota foram cultivados em meio LIT, durante 192 horas, à 28 o C, tanto em presença de benzonidazol (50 e 75 µM, quanto em sua ausência (controle negativo. O efeito inibitório do benzonidazol, em ambas concentrações, foi observado para todas as cepas analisadas, independentemente do grupo genético a que pertençam. Na concentração de 75 µM, observou-se após 96 horas de incubação, redução significativa do número de parasitos inoculados no tempo zero (T0. Os resultados

  19. The trypanocidal benznidazole promotes adaptive response to oxidative injury: Involvement of the nuclear factor-erythroid 2-related factor-2 (Nrf2) and multidrug resistance associated protein 2 (MRP2)

    International Nuclear Information System (INIS)

    Rigalli, Juan Pablo; Perdomo, Virginia Gabriela; Ciriaci, Nadia; Francés, Daniel Eleazar Antonio; Ronco, María Teresa; Bataille, Amy Michele; Ghanem, Carolina Inés; Ruiz, María Laura; Manautou, José Enrique; Catania, Viviana Alicia

    2016-01-01

    Oxidative stress is a frequent cause underlying drug-induced hepatotoxicity. Benznidazole (BZL) is the only trypanocidal agent available for treatment of Chagas disease in endemic areas. Its use is associated with side effects, including increases in biomarkers of hepatotoxicity. However, BZL potential to cause oxidative stress has been poorly investigated. Here, we evaluated the effect of a pharmacologically relevant BZL concentration (200 μM) at different time points on redox status and the counteracting mechanisms in the human hepatic cell line HepG2. BZL increased reactive oxygen species (ROS) after 1 and 3 h of exposure, returning to normality at 24 h. Additionally, BZL increased glutathione peroxidase activity at 12 h and the oxidized glutathione/total glutathione (GSSG/GSSG + GSH) ratio that reached a peak at 24 h. Thus, an enhanced detoxification of peroxide and GSSG formation could account for ROS normalization. GSSG/GSSG + GSH returned to control values at 48 h. Expression of the multidrug resistance-associated protein 2 (MRP2) and GSSG efflux via MRP2 were induced by BZL at 24 and 48 h, explaining normalization of GSSG/GSSG + GSH. BZL activated the nuclear erythroid 2-related factor 2 (Nrf2), already shown to modulate MRP2 expression in response to oxidative stress. Nrf2 participation was confirmed using Nrf2-knockout mice in which MRP2 mRNA expression was not affected by BZL. In summary, we demonstrated a ROS increase by BZL in HepG2 cells and a glutathione peroxidase- and MRP2 driven counteracting mechanism, being Nrf2 a key modulator of this response. Our results could explain hepatic alterations associated with BZL therapy. - Highlights: • BZL triggers a redox imbalance in the human hepatic cell line HepG2. • Concomitantly BZL triggers compensatory mechanisms to alleviate the redox injury. • Response mechanisms comprise an enhanced glutathione peroxidase and MRP2 activity. • Transcription factor Nrf2 plays a key role orchestrating

  20. Absence of CD4+ T lymphocytes, CD8+ T lymphocytes, or B lymphocytes has different effects on the efficacy of posaconazole and benznidazole in treatment of experimental acute Trypanosoma cruzi infection.

    Science.gov (United States)

    Ferraz, Marcela L; Gazzinelli, Ricardo T; Alves, Rosana O; Urbina, Julio A; Romanha, Alvaro J

    2009-01-01

    We investigated the influence of CD4(+) T lymphocytes, CD8(+) T lymphocytes, and B lymphocytes on the efficacy of posaconazole (POS) and the reference drug benznidazole (BZ) during treatment of acute Trypanosoma cruzi infection in a murine model. Wild-type mice infected with T. cruzi and treated with POS or BZ presented no parasitemia, 100% survival, and 86 to 89% cure rates, defined as the percentages of animals with negative hemocultures at the end of the observation period. CD4(+)-T-lymphocyte-knockout (KO) mice infected with T. cruzi and treated with BZ or POS controlled parasitemia during treatment, although circulating parasites reappeared after drug pressure cessation, leading to only a 6% survival rate and no cure. CD8(+)-T-lymphocyte-KO mice infected with T. cruzi and treated with POS or BZ had intermediate results, displaying discrete parasitemia after the treatment was ended, 81 and 86% survival, and cure rates of 31 and 66%, respectively. B-lymphocyte-KO mice infected with T. cruzi and treated with BZ relapsed with parasitemia 1 week after the end of treatment and had a 67% survival rate and only a 22% cure rate. In contrast, the activity of POS was much less affected in these animals, with permanent suppression of parasitemia, 100% survival, and a 71% cure rate. Our results demonstrate that abrogation of different lymphocytes' activities has distinct effects on the efficacy of POS and BZ in this experimental model, probably reflecting different parasite stages preferentially targeted by the two drugs and distinct cooperation patterns with the host immune system.

  1. The trypanocidal benznidazole promotes adaptive response to oxidative injury: Involvement of the nuclear factor-erythroid 2-related factor-2 (Nrf2) and multidrug resistance associated protein 2 (MRP2)

    Energy Technology Data Exchange (ETDEWEB)

    Rigalli, Juan Pablo [Institute of Experimental Physiology (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina); Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg (Germany); Perdomo, Virginia Gabriela; Ciriaci, Nadia; Francés, Daniel Eleazar Antonio; Ronco, María Teresa [Institute of Experimental Physiology (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina); Bataille, Amy Michele [University of Connecticut, School of Pharmacy, Department of Pharmaceutical Sciences, Storrs, CT (United States); Ghanem, Carolina Inés [Institute of Pharmacological Investigations (ININFA-CONICET), University of Buenos Aires, Buenos Aires (Argentina); Ruiz, María Laura [Institute of Experimental Physiology (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina); Manautou, José Enrique [University of Connecticut, School of Pharmacy, Department of Pharmaceutical Sciences, Storrs, CT (United States); Catania, Viviana Alicia, E-mail: vcatania@fbioyf.unr.edu.ar [Institute of Experimental Physiology (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina)

    2016-08-01

    Oxidative stress is a frequent cause underlying drug-induced hepatotoxicity. Benznidazole (BZL) is the only trypanocidal agent available for treatment of Chagas disease in endemic areas. Its use is associated with side effects, including increases in biomarkers of hepatotoxicity. However, BZL potential to cause oxidative stress has been poorly investigated. Here, we evaluated the effect of a pharmacologically relevant BZL concentration (200 μM) at different time points on redox status and the counteracting mechanisms in the human hepatic cell line HepG2. BZL increased reactive oxygen species (ROS) after 1 and 3 h of exposure, returning to normality at 24 h. Additionally, BZL increased glutathione peroxidase activity at 12 h and the oxidized glutathione/total glutathione (GSSG/GSSG + GSH) ratio that reached a peak at 24 h. Thus, an enhanced detoxification of peroxide and GSSG formation could account for ROS normalization. GSSG/GSSG + GSH returned to control values at 48 h. Expression of the multidrug resistance-associated protein 2 (MRP2) and GSSG efflux via MRP2 were induced by BZL at 24 and 48 h, explaining normalization of GSSG/GSSG + GSH. BZL activated the nuclear erythroid 2-related factor 2 (Nrf2), already shown to modulate MRP2 expression in response to oxidative stress. Nrf2 participation was confirmed using Nrf2-knockout mice in which MRP2 mRNA expression was not affected by BZL. In summary, we demonstrated a ROS increase by BZL in HepG2 cells and a glutathione peroxidase- and MRP2 driven counteracting mechanism, being Nrf2 a key modulator of this response. Our results could explain hepatic alterations associated with BZL therapy. - Highlights: • BZL triggers a redox imbalance in the human hepatic cell line HepG2. • Concomitantly BZL triggers compensatory mechanisms to alleviate the redox injury. • Response mechanisms comprise an enhanced glutathione peroxidase and MRP2 activity. • Transcription factor Nrf2 plays a key role orchestrating

  2. Estudo de degradação do fármaco benznidazol utilizado no combate a doença de chagas por hidrólise, oxidação, fotólise e termodegradação

    OpenAIRE

    Araújo Rolim, Larissa

    2010-01-01

    O benznidazol (BNZ) é o único medicamento com ação tripanocida empregado clinicamente no Brasil, sendo o fármaco de escolha para o tratamento da doença de Chagas, doença crônica que leva o paciente à utilização da medicação com o BNZ por longos períodos de tempo. A ingestão prolongada deste fármaco pode levar ao seu acúmulo no organismo, podendo esse sofrer uma série de reações inesperadas em condições orgânicas como oxidações, hidrólises ácidas, básicas ou neutras, podendo ainda em condições...

  3. Benznidazole induces in vitro anaerobic metabolism in Trypanosoma cruzi epimastigotes

    Directory of Open Access Journals (Sweden)

    Marina Clare Vinaud

    2017-11-01

    Full Text Available Objective: To determine the biochemical alterations of the energetic metabolism of Trypanosoma cruzi epimastigotes in vitro exposed to different concentrations of benzinidazole. Methods: Biochemical analyses were performed at 3, 6 (log phase, 9 and 12 (stationary phase days of culture. Parasites were exposed to five concentrations of benzinidazole. Glycolysis, tricarboxilic acid cycle and fatty acids oxidation pathways were quantified through chromatography. Glucose, urea and creatinine were quantified through spectrophotometric analysis. Results: Anaerobic fermentation and fatty acids oxidation were increased in the stationary phase of the culture. Benzinidazole at high concentrations induced anaerobic metabolism in the log phase of the culture while the parasites exposed to the lower concentrations preferred the citric acid cycle as energy production pathway. Benzinidazole did not influence on the proteins catabolism. Conclusions: It is possible to conclude that there are metabolic differences between evolutive forms of Trypanosoma cruzi and the main drug used for its treatment induces the anaerobic metabolism in the parasite, possibly impairing the mitochondrial pathways.

  4. Susceptibilidad in vitro a hexadecilfosfocolina (miltefosina, nifurtimox y benznidazole de cepas de Trypanosoma cruzi aisladas en Santander, Colombia

    Directory of Open Access Journals (Sweden)

    Patricia Escobar

    2009-09-01

    Conclusiones. Los resultados obtenidos de la actividad in vitro de miltefosina y de los medicamentos de referencia contra aislamientos de T. cruzi son satisfactorios y serán considerados en estudios posteriores in vivo.

  5. MECHANISMS OF RESISTANCE TO ANTIPARASITIC DRUGS IN TRYPANOSOMA CRUZI. CORRELATIONS BETWEEN GENOTYPE AND RESISTANCE

    Directory of Open Access Journals (Sweden)

    John M Kelly

    2013-01-01

    Full Text Available El benznidazol y el nifurtimux conpuestos nitroheterocilicos son los medicamentos aprobados para el tratamiento de las infecciones por Trypanosoma cruzi. Ambos son profármacos y no tienen importantes propiedades tripanocidas hasta su activación intraparasitaria. La enzima responsable es una nitroreductasa (TcNTR , que inicia una cascada reductora que conduce a la generación de los metabolitos tóxicos que matan al parásito. Los procesos que actúan para regular a esta enzima conducen a la resis- tencia cruzada contra ambos fármacos. Estos incluyen la pérdida de uno de los cromosomas que contienen el gen TcNTR o mutaciones puntuales que inactivan la enzima. Los parásitos TcNTR heterocigotos son infecciosos, no muestran un fenotipo nocivo obvio y son hasta 5 veces más resistente a benznidazol y el nifurtimox. Sin embargo, la pérdida completa de la actividad TcNTR hace que T. cruzi no sea infeccioso, lo que sugiere que puede haber un límite para el nivel de resistencia por este mecanismo. En las poblaciones naturales de T. cruzi no se encontraron pruebas de que las amplias variaciones en la sensibilidad al benznidazol estén vinculadas a las mutaciones en TcNTR lo que, junto con la evidencia de que la resistencia a benznidazol y nifurtimox no siempre es conjunta, indica que existen otros mecanismos independientes de TcNTR. Los nuevos avances en tecnología ofrecen la oportunidad de explorar más a fondo esta cuestión.

  6. New oxirane derivatives of 1,4-naphthoquinones and their evaluation against T. cruzi epimastigote forms.

    Science.gov (United States)

    Carneiro, Paula F; do Nascimento, Samara B; Pinto, Antonio V; Pinto, Maria do Carmo F R; Lechuga, Guilherme C; Santos, Dilvani O; dos Santos Júnior, Helvécio M; Resende, Jackson A L C; Bourguignon, Saulo C; Ferreira, Vitor F

    2012-08-15

    New oxirane derivatives were synthesized using six naphthoquinones as the starting materials. Our biological results showed that these oxiranes acted as trypanocidal agents against Trypanosoma cruzi with minimal cytotoxicity in the VERO cell line compared to naphthoquinones. In particular, oxirane derivative 14 showed low cytotoxicity in a mammalian cell line and exhibited better activity against epimastigote forms of T.cruzi than the current drug used to treat Chagas disease, benznidazole. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Present situation and new strategies for Chagas disease chemotherapy: a proposal

    Directory of Open Access Journals (Sweden)

    José Rodrigues Coura

    2009-07-01

    Full Text Available Treatments for Chagas disease have been administered since the first attempts by Mayer & Rocha Lima (1912, 1914 and up to the drugs currently in use (nifurtimox and benznidazole, along with potential drugs such as allopurinol and first, second and third-generation antifungal agents (imidazoles and triazoles, in separate form. Several diseases such as tuberculosis, leprosy and AIDS only came under control after they were treated with associations of drugs with different mechanisms of action. This not only boosts the action of the different compounds, but also may avoid the development of parasite resistance .To this end, over the short term, we propose experimental studies on laboratory animals and clinical trials with the following associations: (i nifurtimox (8 mg/kg/day + benznidazole (5 mg/kg/day x 60 consecutive days; (ii nifurtimox (8 mg/kg/day or benznidazole (5 mg/kg/day + allopurinol (8-10 mg/kg/day x 60 days and (iii nifurtimox (8 mg/kg/day or benznidazole (5 mg/kg/day + ketoconazole, fluconazole or itraconazole (5-6 mg/kg/day x 60 consecutive days. The doses of the drugs and the treatment schedules for the clinical trials must be adapted according to the side effects. From these, other double or triple associations could be made, using drugs with different mechanisms of action. This proposal does not exclude investigations on new drugs over the median and long terms, targeting other aspects of the metabolism of Trypanosoma cruzi. Until such time as the ideal drug for specific treatment of Chagas disease might be discovered, we need to develop new strategies for achieving greater efficacy with the old drugs in associations and to develop rational experimentation with new drugs.

  8. Design, Synthesis and Biological Evaluation of 2-(2-Amino-5(6-nitro-1H-benzimidazol-1-yl-N-arylacetamides as Antiprotozoal Agents

    Directory of Open Access Journals (Sweden)

    Emanuel Hernández-Núñez

    2017-04-01

    Full Text Available Parasitic diseases are a public health problem affecting millions of people worldwide. One of the scaffolds used in several drugs for the treatment of parasitic diseases is the benzimidazole moiety, a heterocyclic aromatic compound. This compound is a crucial pharmacophore group and is considered a privileged structure in medicinal chemistry. In this study, the benzimidazole core served as a model for the synthesis of a series of 2-(2-amino-5(6-nitro-1H-benzimidazol-1-yl-N-arylacetamides 1–8 as benznidazole analogues. The in silico pharmacological results calculated with PASS platform exhibited chemical structures highly similar to known antiprotozoal drugs. Compounds 1–8 when evaluated in silico for acute toxicity by oral dosing, were less toxic than benznidazole. The synthesis of compounds 1–8 were carried out through reaction of 5(6-nitro-1H-benzimidazol-2-amine (12 with 2-chlroactemides 10a–h, in the presence of K2CO3 and acetonitrile as solvent, showing an inseparable mixture of two regioisomers with the -NO2 group in position 5 or 6 with chemical yields of 60 to 94%. The prediction of the NMR spectra of molecule 1 coincided with the experimental chemical displacements of the regioisomers. Comparisons between the NMR prediction and the experimental data revealed that the regioisomer endo-1,6-NO2 predominated in the reaction. The in vitro antiparasitic activity of these compounds on intestinal unicellular parasites (Giardia intestinalis and Entamoeba histolytica and a urogenital tract parasite (Trichomonas vaginalis were tested. Compound 7 showed an IC50 of 3.95 μM and was 7 time more active against G. intestinalis than benznidazole. Compounds 7 and 8 showed 4 times more activity against T. vaginalis compared with benznidazole.

  9. Poly-epsilon-caprolactone nanoparticles enhance ursolic acid in vivo efficacy against Trypanosoma cruzi infection.

    Science.gov (United States)

    Abriata, Juliana Palma; Eloy, Josimar O; Riul, Thalita Bachelli; Campos, Patricia Mazureki; Baruffi, Marcelo Dias; Marchetti, Juliana Maldonado

    2017-08-01

    Despite affecting millions of people worldwide, Chagas disease is still neglected by the academia and industry and the therapeutic option available, benznidazole, presents limited efficacy and side effects. Within this context, ursolic acid may serve as an option for treatment, however has low bioavailability, which can be enhanced through the encapsulation in polymeric nanoparticles. Therefore, herein we developed ursolic acid-loaded nanoparticles with poly-ε-caprolactone by the nanoprecipitation method and characterized them for particle size, zeta potential, polydispersity, encapsulation efficiency, morphology by scanning electron microscopy and thermal behavior by differential scanning calorimetry. Results indicated that an appropriate ratio of organic phase/aqueous phase and polymer/drug is necessary to produce smaller particles, with low polydispersity, negative zeta potential and high drug encapsulation efficiency. In vitro studies indicated the safety of the formulation against fibroblast culture and its efficacy in killing T. cruzi. Very importantly, the in vivo study revealed that the ursolic acid-loaded nanoparticle is as potent as the benznidazole group to control parasitemia, which could be attributed to improved bioavailability of the encapsulated drug. Finally, the toxicity evaluation showed that while benznidazole group caused liver toxicity, the nanoparticles were safe, indicating that this formulation is promising for future evaluation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Repositioning FDA Drugs as Potential Cruzain Inhibitors from Trypanosoma cruzi: Virtual Screening, In Vitro and In Vivo Studies

    Directory of Open Access Journals (Sweden)

    Isidro Palos

    2017-06-01

    Full Text Available Chagas disease (CD is a neglected disease caused by the parasite Trypanosoma cruzi, which affects underdeveloped countries. The current drugs of choice are nifurtimox and benznidazole, but both have severe adverse effects and less effectivity in chronic infections; therefore, the need to discover new drugs is essential. A computer-guided drug repositioning method was applied to identify potential FDA drugs (approved and withdrawn as cruzain (Cz inhibitors and trypanocidal effects were confirmed by in vitro and in vivo studies. 3180 FDA drugs were virtually screened using a structure-based approach. From a first molecular docking analysis, a set of 33 compounds with the best binding energies were selected. Subsequent consensus affinity binding, ligand amino acid contact clustering analysis, and ranked position were used to choose four known pharmacological compounds to be tested in vitro. Mouse blood samples infected with trypomastigotes from INC-5 and NINOA strains were used to test the trypanocidal effect of four selected compounds. Among these drugs, one fibrate antilipemic (etofyllin clofibrate and three β-lactam antibiotics (piperacillin, cefoperazone, and flucloxacillin showed better trypanocidal effects (LC50 range 15.8–26.1 μg/mL in comparison with benznidazole and nifurtimox (LC50 range 33.1–46.7 μg/mL. A short-term in vivo evaluation of these compounds showed a reduction of parasitemia in infected mice (range 90–60% at 6 h, but this was low compared to benznidazole (50%. This work suggests that four known FDA drugs could be used to design and obtain new trypanocidal agents.

  11. Chemotherapy of Leishmaniasis.

    Science.gov (United States)

    1979-09-01

    active at a high dose in vivo against the two parasites against which it has been tested, i.e. L. donovani s.1. and L. major. i(i) Nystatin is highly...possess trypanocidal action (nifurti-ox, benznidazole), two metronidazole analogues (LIV/1319 and 1320), and two compounds with activity against...sion1ficantly blocked by certain dihydrofolate reductase inhibitors. A-3 S. *-h.." . "’" V" W2. Nitroreductase-linked pathways. Metronidazole has been shown

  12. The anticancer drug tamoxifen is active against Trypanosoma cruzi in vitro but ineffective in the treatment of the acute phase of Chagas disease in mice

    Directory of Open Access Journals (Sweden)

    Danilo Ciccone Miguel

    2010-11-01

    Full Text Available The activity of the antineoplastic drug tamoxifen was evaluated against Trypanosoma cruzi. In vitro activity was determined against epimastigote, trypomastigote and amastigote forms of CL14, Y and Y benznidazole resistant T. cruzi strains. Regardless of the strain used, the drug was active against all life-cycle stages of the parasite with a half maximal effective concentration ranging from 0.7-17.9 µM. Two experimental models of acute Chagas disease were used to evaluate the in vivo efficacy of treatment with tamoxifen. No differences in parasitemia and mortality were observed between control mock-treated and tamoxifen-treated mice.

  13. Studies on high grade cerebral gliomas

    International Nuclear Information System (INIS)

    Bleehen, N.M.

    1990-01-01

    A brief review of attempts in the United Kingdom to improve the results of treatment of high grade (grade 3, 4) supra-tentorial astrocytomas is presented. The radiosensitizer misonidazole failed to improve the results of post-surgical radiotherapy, however, multivariate analysis of data from these patients has provided a prognostic index of use in defining good and poor prognosis patients. An overview study of adjuvant nitrosourea therapy trials has shown a small significant advantage for the chemotherapy. A study of chemosensitization by benznidazole of CCNU treatment of patients in relapse failed to demonstrate any effect. 13 references

  14. Advanced megaesophagus (Group III secondary to vector-borne Chagas disease in a 20-month-old infant

    Directory of Open Access Journals (Sweden)

    Anis Rassi

    2012-04-01

    Full Text Available The authors report the case of a female infant with Group III (or Grade III megaesophagus secondary to vector-borne Chagas disease, resulting in severe malnutrition that reversed after surgery (Heller technique. The infant was then treated with the antiparasitic drug benznidazole, and the infection was cured, as demonstrated serologically and parasitologically. After follow-up of several years without evidence of disease, with satisfactory weight and height development, the patient had her first child at age 23, in whom serological tests for Chagas disease yielded negative results. Thirty years after the initial examination, the patient's electrocardiogram, echocardiogram, and chest radiography remained normal.

  15. In vitro and in vivo trypanocidal activity of flavonoids from Delphinium staphisagria against Chagas disease.

    Science.gov (United States)

    Marín, Clotilde; Ramírez-Macías, Inmaculada; López-Céspedes, Angeles; Olmo, Francisco; Villegas, Noelia; Díaz, Jesús G; Rosales, María José; Gutiérrez-Sánchez, Ramón; Sánchez-Moreno, Manuel

    2011-04-25

    The in vitro and in vivo trypanocidal activities of nine flavonoids (1-9) isolated from the aerial parts of Delphinium staphisagria have been studied in both the acute and chronic phases of Chagas disease. The antiproliferative activity of these substances against Trypanosoma cruzi (epimastigote, amastigote, and trypomastigote forms) in some cases exhibited more potent antitrypanosomatid activity and lower toxicity than the reference drug, benznidazole. Studies in vitro using ultrastructural analysis together with metabolism-excretion studies were also performed in order to identify the possible action mechanism of the compounds tested. Alterations mainly at the level of the mitochondria may explain metabolic changes in succinate and acetate production, perhaps due to the disturbance of the enzymes involved in sugar metabolism within the mitochondrion. In vivo studies provided results consistent with those observed in vitro. No signs of toxicity were detected in mice treated with the flavonoids tested, and the parasitic charge was significantly lower than in the control assay with benznidazole. The effects of these compounds were also demonstrated with the change in the anti-T. cruzi antibody levels during the chronic stage.

  16. Development of an ionic-liquid-based dispersive liquid-liquid microextraction method for the determination of antichagasic drugs in human breast milk: Optimization by central composite design.

    Science.gov (United States)

    Padró, Juan M; Pellegrino Vidal, Rocío B; Echevarria, Romina N; Califano, Alicia N; Reta, Mario R

    2015-05-01

    Chagas disease constitutes a major public health problem in Latin America. Human breast milk is a biological sample of great importance for the analysis of therapeutic drugs, as unwanted exposure through breast milk could result in pharmacological effects in the nursing infant. Thus, the goal of breast milk drug analysis is to inquire to which extent a neonate may be exposed to a drug during lactation. In this work, we developed an analytical technique to quantify benznidazole and nifurtimox (the two antichagasic drugs currently available for medical treatment) in human breast milk, with a simple sample pretreatment followed by an ionic-liquid-based dispersive liquid-liquid microextraction combined with high-performance liquid chromatography and UV detection. For this technique, the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate has been used as the "extraction solvent." A central composite design was used to find the optimum values for the significant variables affecting the extraction process: volume of ionic liquid, volume of dispersant solvent, ionic strength, and pH. At the optimum working conditions, the average recoveries were 77.5 and 89.7%, the limits of detection were 0.06 and 0.09 μg/mL and the interday reproducibilities were 6.25 and 5.77% for benznidazole and nifurtimox, respectively. The proposed methodology can be considered sensitive, simple, robust, accurate, and green. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Current and developing therapeutic agents in the treatment of Chagas disease

    Directory of Open Access Journals (Sweden)

    Werner Apt

    2010-09-01

    Full Text Available Werner AptUniversity of Chile, Faculty of Medicine, Santiago, ChileAbstract: Chagas disease must be treated in all its stages: acute, indeterminate, chronic, and initial and middle determinant chronic, due to the fact that DNA of the parasite can be demonstrated by PCR in chronic cases, where optical microscopy does not detect parasites. Nifurtimox (NF and benznidazole (BNZ are the drugs accepted to treat humans based upon ethical considerations and efficiency. However, both the drugs produce secondary effects in 30% of the cases, and the treatment must be given for at least 30–60 days. Other useful drugs are itraconazole and posaconazole. The latter may be the drug to treat Chagas disease in the future when all the investigations related to it are finished. At present, there is no criterion of cure for chronic cases since in the majority, the serology remains positive, although it may decrease. In acute cases, 70% cure with NF and 75% with BNZ is achieved. In congenital cases, 100% cure is obtained if the treatment is performed during the first year of life. In chronic acquired cases, 20% cure and 50% improvement of the electrocardiographic changes are obtained with itraconazole.Keywords: Chagas disease, treatment, nifurtimox, benznidazole, allopurinol, itraconazole, posaconazole

  18. Chronic phase of Chagas disease: why should it be treated? A comprehensive review

    Directory of Open Access Journals (Sweden)

    José Rodrigues Coura

    2011-09-01

    Full Text Available The pathogenesis and evolutive pattern of Chagas disease suggests that the chronic phase should be more widely treated in order to (i eliminate Trypanosoma cruzi and prevent new inflammatory foci and the extension of tissue lesions, (ii promote tissue regeneration to prevent fibrosis, (iii reverse existing fibrosis, (iv prevent cardiomyopathy, megaoesophagus and megacolon and (v reduce or eliminate cardiac block and arrhythmia. All cases of the indeterminate chronic form of Chagas disease without contraindications due to other concomitant diseases or pregnancy should be treated and not only cases involving children or recently infected cases. Patients with chronic Chagas cardiomyopathy grade II of the New York Heart Association classification should be treated with specific chemotherapy and grade III can be treated according to medical-patient decisions. We are proposing the following new strategies for chemotherapeutic treatment of the chronic phase of Chagas disease: (i repeated short-term treatments for 30 consecutive days and interval of 30-60 days for six months to one year and (ii combinations of drugs with different mechanisms of action, such as benznidazole + nifurtimox, benznidazole or nifurtimox + allopurinol or triazole antifungal agents, inhibition of sterol synthesis.

  19. Characterization and Trypanocidal Activity of a Novel Pyranaphthoquinone

    Directory of Open Access Journals (Sweden)

    Elen Diana Dantas

    2017-09-01

    Full Text Available Chagas disease is an endemic parasitic infection that occurs in 21 Latin American countries. New therapies for this disease are urgently needed, as the only two drugs available (nifurtimox and benznidazol have high toxicity and variable efficacy in the disease’s chronic phase. Recently, a new chemical entity (NCE named Pyranaphthoquinone (IVS320 was synthesized from lawsone. We report herein, a detailed study of the physicochemical properties and in vitro trypanocidal activity of IVS320. A series of assays were performed for characterization, where thermal, diffractometric, and morphological analysis were performed. In addition, the solubility, permeability, and hygroscopicity of IVS320 were determined. The results show that its poor solubility and low permeability may be due to its high degree of crystallinity (99.19%, which might require the use of proper techniques to increase the IVS320’s aqueous solubility and permeability. The trypanocidal activity study demonstrated that IVS320 is more potent than the reference drug benznidazole, with IC50/24 h of 1.49 ± 0.1 μM, which indicates that IVS320 has potential as a new drug candidate for the treatment of Chagas disease.

  20. In vitro trypanocidal evaluation of pinane derivatives from essential oils of ripe fruits from Schinus terebinthifolius Raddi (Anacardiaceae)

    International Nuclear Information System (INIS)

    Sartorelli, Patricia; Santana, Jefferson S.; Guadagnin, Rafael C.; Lago, Joao Henrique G.; Pinto, Erika G.; Tempone, Andre G.; Stefani, Helio A.; Soares, Marisi G.; Silva, Adalberto M. da

    2012-01-01

    Essential oils of ripe fruits from Schinus terebinthifolius (Anacardiaceae), obtained using a pilot extractor and a Clevenger apparatus were chemically characterized. Due the high amount of (-)-α-pinene in both oils, this monoterpene was tested against the protozoan parasite Trypanosoma cruzi, showing a moderate potential (IC 50 63.56 μg/mL) when compared to benznidazole (IC 50 43.14 μg/mL). Otherwise, (-)-α-pinene oxide did not showed anti-trypanosomal activity (IC 50 > 400 μg/mL) while (-)-pinane showed an IC 50 of 56.50 mg/mL. The obtained results indicated that the epoxidation of α-pinene results to the loss of the anti-parasitic activity while its hydrogenation product, contributed slightly to the increased activity. (author)

  1. In vitro and in vivo trypanocidal evaluation of nickel complexes with an azapurine derivative against Trypanosoma cruzi.

    Science.gov (United States)

    Maldonado, Carmen R; Marín, Clotilde; Olmo, Francisco; Huertas, Oscar; Quirós, Miguel; Sánchez-Moreno, Manuel; Rosales, María J; Salas, Juan M

    2010-10-14

    Seven ternary nickel(II) complexes (three previously described and four firstly described here) with an azapurine derivative (the anionic form of 4,6-dimethyl-1,2,3-triazolo[4,5-d]pyrimidin-5,7-dione) have been synthesized and spectroscopically characterized, and the crystal structures of three of them have been solved by X-ray diffraction. Studies in vitro and in vivo on the antiproliferative activity of these complexes against Trypanosoma cruzi (epimastigote, amastigote, and trypomastigote forms) have been carried out, displaying in some cases significantly higher antitrypanosomatid activity and lower toxicity than the reference drug for Chagas' disease, benznidazole (N-benzyl-2-(2-nitro-1H-imidazol-1-yl)acetamide). Ultrastructural analysis and metabolism excretion studies were also executed in order to propose a possible mechanism of action for the assayed drugs.

  2. Benzoic Acid Derivatives with Trypanocidal Activity: Enzymatic Analysis and Molecular Docking Studies toward Trans-Sialidase

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif

    2017-10-01

    Full Text Available Chagas, or American trypanosomiasis, remains an important public health problem in developing countries. In the last decade, trans-sialidase has become a pharmacological target for new anti-Chagas drugs. In this work, the aims were to design and find a new series of benzoic acid derivatives as trans-sialidase (TS inhibitors and anti-trypanosomal agents. Three compounds (14, 18, and 19 sharing a para-aminobenzoic acid moiety showed more potent trypanocidal activity than the commercially available drugs nifurtimox and benznidazole in both strains: the lysis concentration of 50% of the population (LC50 was <0.15 µM on the NINOA strain, and LC50 < 0.22 µM on the INC-5 strain. Additionally, compound 18 showed a moderate inhibition (47% on the trans-sialidase enzyme and a binding model similar to DANA (pattern A.

  3. Anti-trypanosomal activity of 1,2,3,4,6-penta-O-galloyl-? -D-glucose isolated from Plectranthus barbatus Andrews (Lamiaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Roberta T. dos; Hiramoto, Liliane L.; Lago, Joao Henrique G.; Sartorelli, Patricia [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil). Inst. de Ciencias Ambientais, Quimicas e Farmaceuticas; Tempone, Andre G.; Pinto, Erika G. [Instituto Adolfo Lutz, Sao Paulo, SP (Brazil). Dept. de Parasitologia; Lorenzi, Harri, E-mail: psartorelli@unifesp.br [Instituto Plantarum de Estudos da Flora, Nova Odessa, SP (Brazil)

    2012-07-01

    MeOH extract from the leaves of Plectranthus barbatus Andrews (Lamiaceae), showed in vitro anti-trypanosomal activity. The bioassay-guided fractionation resulted in the isolation of a gallic acid derivative, identified as 1,2,3,4,6-penta-O-galloyl-{beta}-D-glucose (PGG), after thorough NMR and MS spectral analysis. Finally, this compound was tested against trypomastigote forms of T. cruzi and displayed an EC{sub 50} value of 67 {mu}M, at least 6.6-fold more effective than the standard drug benznidazole. This is the first occurrence of PGG in the Plectranthus genus and the first anti-parasitic activity described for PGG in the literature (author)

  4. [What is not searched, it is difficult to find: Chagas' disease].

    Science.gov (United States)

    Briceno, Luis; Mosca, Walter

    2016-05-01

    A conservative estimation indicates that more than 400 000 Latin American immigrants are living in Italy. Several studies have shown that among these, the prevalence of Chagas disease is between 3.9% and 17%, so it is not unlikely to find a patient with this disease during a cardiology visit. How many patients from Latin America are diagnosed with heart failure in Italy and no one has ever thought about a possible Chagas disease? This brief review describes the situation of the disease in Italy, its characteristics, the etiology of this disease and its treatment. The latter aspect will be discussed considering the recent published results of the BENEFIT study, where it was found that treatment with benznidazole in patients with Chagas' cardiomyopathy is able to reduce significantly the detection of parasites in the blood, but it is not able to prevent clinical deterioration during 5 years of follow-up. The possible implications of these results will be discussed.

  5. New Class of Antitrypanosomal Agents Based on Imidazopyridines.

    Science.gov (United States)

    Silva, Daniel G; Gillespie, J Robert; Ranade, Ranae M; Herbst, Zackary M; Nguyen, Uyen T T; Buckner, Frederick S; Montanari, Carlos A; Gelb, Michael H

    2017-07-13

    The present work describes the synthesis of 22 new imidazopyridine analogues arising from medicinal chemistry optimization at different sites on the molecule. Seven and 12 compounds exhibited an in vitro EC 50 ≤ 1 μM against Trypanosoma cruzi ( T. cruzi ) and Trypanosoma brucei ( T. brucei ) parasites, respectively. Based on promising results of in vitro activity (EC 50 < 100 nM), cytotoxicity, metabolic stability, protein binding, and pharmacokinetics (PK) properties, compound 20 was selected as a candidate for in vivo efficacy studies. This compound was screened in an acute mouse model against T.cruzi ( Tulahuen strain). After established infection, mice were dosed twice a day for 5 days, and then monitored for 6 weeks using an in vivo imaging system (IVIS). Compound 20 demonstrated parasite inhibition comparable to the benznidazole treatment group. Compound 20 represents a potential lead for the development of drugs to treat trypanosomiasis.

  6. In vitro trypanocidal evaluation of pinane derivatives from essential oils of ripe fruits from Schinus terebinthifolius Raddi (Anacardiaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Sartorelli, Patricia; Santana, Jefferson S.; Guadagnin, Rafael C.; Lago, Joao Henrique G., E-mail: joao.lago@unifesp.br [Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas, Universidade Federal de Sao Paulo, Diadema - SP (Brazil); Pinto, Erika G. [Departamento de Parasitologia, Instituto Adolfo Lutz, Sao Paulo - SP (Brazil); Instituto de Medicina Tropical de Sao Paulo, Universidade de Sao Paulo, SP (Brazil); Tempone, Andre G. [Departamento de Parasitologia, Instituto Adolfo Lutz, Sao Paulo - SP (Brazil); Stefani, Helio A. [Departamento de Farmacia, Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, SP (Brazil); Soares, Marisi G. [Instituto de Quimica, Universidade Federal de Alfenas, Alfenas - MG (Brazil); Silva, Adalberto M. da [Departamento de Quimica, Universidade Federal de Vicosa, MG (Brazil)

    2012-07-01

    Essential oils of ripe fruits from Schinus terebinthifolius (Anacardiaceae), obtained using a pilot extractor and a Clevenger apparatus were chemically characterized. Due the high amount of (-)-{alpha}-pinene in both oils, this monoterpene was tested against the protozoan parasite Trypanosoma cruzi, showing a moderate potential (IC{sub 50} 63.56 {mu}g/mL) when compared to benznidazole (IC{sub 50} 43.14 {mu}g/mL). Otherwise, (-)-{alpha}-pinene oxide did not showed anti-trypanosomal activity (IC{sub 50} > 400 {mu}g/mL) while (-)-pinane showed an IC{sub 50} of 56.50 mg/mL. The obtained results indicated that the epoxidation of {alpha}-pinene results to the loss of the anti-parasitic activity while its hydrogenation product, contributed slightly to the increased activity. (author)

  7. Synthesis and biological evaluation of some novel 1-indanone thiazolylhydrazone derivatives as anti-Trypanosoma cruzi agents.

    Science.gov (United States)

    Caputto, María E; Ciccarelli, Alejandra; Frank, Fernanda; Moglioni, Albertina G; Moltrasio, Graciela Y; Vega, Daniel; Lombardo, Elisa; Finkielsztein, Liliana M

    2012-09-01

    A series of novel 4-arylthiazolylhydrazones (TZHs) derived from 1-indanones were synthesized in good yields (66-92%) in a simple procedure using microwave irradiation and then characterized by spectroscopy studies. The compounds were evaluated for their in vitro anti-Trypanosoma cruzi activity against the epimastigote, trypomastigote and amastigote forms of the parasite. Most TZHs displayed excellent activity, and were more potent and selective than the reference drug Benznidazole, used in the current chemotherapy. Analysis of the free sterols from parasite incubated with the compounds showed that inhibition of ergosterol biosynthesis is a possible target for the action of these new TZHs. In particular, TZH 9 emerged as a promising antichagasic compound to be evaluated in animal models. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. Helietta apiculata: a tropical weapon against Chagas disease.

    Science.gov (United States)

    Elena Ferreira, Maria; Rojas de Arias, Antonieta; Yaluff, Gloria; Vera de Bilbao, Ninfa; Nakayama, Hector; Torres, Susana; Schinini, Alicia; Torres, Susana; Serna, Elva; Torrecilhas, Ana Claudia; Fournet, Alain; Cebrián-Torrejón, Gerardo

    2018-05-10

    The present study pretends to evaluate the in vivo efficacy of the crude chloroform bark extract of Helietta apiculata, then the activity will be compared with the reference drug, benznidazole, in acute Trypanosoma cruzi infected mice when administered by oral route. The chloroformic extract of Helieta apiculata was administered by oral route at 5, 10 and 50 mg/kg daily for two weeks. This study has shown a moderate efficacy of the H. apiculata bark extract in reducing T. cruzi parasitaemia in 42 to 54% after a monitoring of 60 days post-infection and when compared with control groups. Concerning mice mortality, only two only two mice died, one from the control group and the other one from the group threated with 10 mg of the chlorofom extract of H. apiculata, suggesting the potential of H. apiculta extracts as a safe and inexpensive treatment of Chagas disease.

  9. 3-H-[1,2]Dithiole as a New Anti-Trypanosoma cruzi Chemotype: Biological and Mechanism of Action Studies

    Directory of Open Access Journals (Sweden)

    Marcos Couto

    2015-08-01

    Full Text Available The current pharmacological Chagas disease treatments, using Nifurtimox or Benznidazole, show limited therapeutic results and are associated with potential side effects, like mutagenicity. Using random screening we have identified new chemotypes that were able to inhibit relevant targets of the Trypanosoma cruzi. We found 3H-[1,2]dithioles with the ability to inhibit Trypanosoma cruzi triosephosphate isomerase (TcTIM. Herein, we studied the structural modifications of this chemotype to analyze the influence of volume, lipophilicity and electronic properties in the anti-T. cruzi activity. Their selectivity to parasites vs. mammalian cells was also examined. To get insights into a possible mechanism of action, the inhibition of the enzymatic activity of TcTIM and cruzipain, using the isolated enzymes, and the inhibition of membrane sterol biosynthesis and excreted metabolites, using the whole parasite, were achieved. We found that this structural framework is interesting for the generation of innovative drugs for the treatment of Chagas disease.

  10. Discovery and Optimization of 5-Amino-1,2,3-triazole-4-carboxamide Series against Trypanosoma cruzi.

    Science.gov (United States)

    Brand, Stephen; Ko, Eun Jung; Viayna, Elisabet; Thompson, Stephen; Spinks, Daniel; Thomas, Michael; Sandberg, Lars; Francisco, Amanda F; Jayawardhana, Shiromani; Smith, Victoria C; Jansen, Chimed; De Rycker, Manu; Thomas, John; MacLean, Lorna; Osuna-Cabello, Maria; Riley, Jennifer; Scullion, Paul; Stojanovski, Laste; Simeons, Frederick R C; Epemolu, Ola; Shishikura, Yoko; Crouch, Sabrinia D; Bakshi, Tania S; Nixon, Christopher J; Reid, Iain H; Hill, Alan P; Underwood, Tim Z; Hindley, Sean J; Robinson, Sharon A; Kelly, John M; Fiandor, Jose M; Wyatt, Paul G; Marco, Maria; Miles, Timothy J; Read, Kevin D; Gilbert, Ian H

    2017-09-14

    Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi, is the most common cause of cardiac-related deaths in endemic regions of Latin America. There is an urgent need for new safer treatments because current standard therapeutic options, benznidazole and nifurtimox, have significant side effects and are only effective in the acute phase of the infection with limited efficacy in the chronic phase. Phenotypic high content screening against the intracellular parasite in infected VERO cells was used to identify a novel hit series of 5-amino-1,2,3-triazole-4-carboxamides (ATC). Optimization of the ATC series gave improvements in potency, aqueous solubility, and metabolic stability, which combined to give significant improvements in oral exposure. Mitigation of a potential Ames and hERG liability ultimately led to two promising compounds, one of which demonstrated significant suppression of parasite burden in a mouse model of Chagas' disease.

  11. An experimental and clinical assay with ketoconazole in the treatment of Chagas disease

    Directory of Open Access Journals (Sweden)

    Zigman Brener

    1993-03-01

    Full Text Available Ketoconazole an azole antifungic drug which is already in the market has also been demonstrated to be active against Trypanossoma cruzi experimental infections. In this paper we confirmed the drug effect and investigated its range of activity against different T. cruzi strains naturally resistant or susceptible to both standard drugs Nifurtimox and Benznidazole used clinically in Chagas disease. Moreover, we have shown that the association of Ketoconazole plus Lovastatin (an inhibitor of sterol synthesis, which has an antiproliferative effect against T. cruzi in vitro, failed to enhance the supressive effect of Ketoconazole displayed when administered alone to infected mice. Finally, administration in chronic chagasic patients of Ketoconazole at doses used in the treatment of deep mycosis also failed to induce cure as demonstrated by parasitological and serological tests. The strategy of identify and test drugs which are already in the market and fortuitously are active against T. cruzi has been discussed.

  12. Rhodium-catalyzed C-H bond activation for the synthesis of quinonoid compounds: Significant Anti-Trypanosoma cruzi activities and electrochemical studies of functionalized quinones.

    Science.gov (United States)

    Jardim, Guilherme A M; Silva, Thaissa L; Goulart, Marilia O F; de Simone, Carlos A; Barbosa, Juliana M C; Salomão, Kelly; de Castro, Solange L; Bower, John F; da Silva Júnior, Eufrânio N

    2017-08-18

    Thirty four halogen and selenium-containing quinones, synthesized by rhodium-catalyzed C-H bond activation and palladium-catalyzed cross-coupling reactions, were evaluated against bloodstream trypomastigotes of T. cruzi. We have identified fifteen compounds with IC 50 /24 h values of less than 2 μM. Electrochemical studies on A-ring functionalized naphthoquinones were also performed aiming to correlate redox properties with trypanocidal activity. For instance, (E)-5-styryl-1,4-naphthoquinone 59 and 5,8-diiodo-1,4-naphthoquinone 3, which are around fifty fold more active than the standard drug benznidazole, are potential derivatives for further investigation. These compounds represent powerful new agents useful in Chagas disease therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Novel 3-Nitro-1H-1,2,4-triazole-based Amides and Sulfonamides as Potential anti-Trypanosomal Agents

    Science.gov (United States)

    Papadopoulou, Maria V.; Bloomer, William D.; Rosenzweig, Howard S.; Chatelain, Eric; Kaiser, Marcel; Wilkinson, Shane R.; McKenzie, Caroline; Ioset, Jean-Robert

    2012-01-01

    A series of novel 3-nitro-1H-1,2,4-triazole-(and in some cases 2-nitro-1H-imidazole)-based amides and sulfonamides were characterized for their in vitro anti-trypanosomal and antileishmanial activities as well as mammalian toxicity. Out of 36 compounds tested, 29 (mostly 3-nitro-1H-1,2,4-triazoles) displayed significant activity against T. cruzi intracellular amastigotes (IC50 ranging from 28 nM to 3.72 μM) without concomitant toxicity to L6 host cells (selectivity 66 to 2782). Twenty three of these active compounds were more potent (up to 58 fold) than the reference drug benznidazole, tested in parallel. In addition, 9 nitrotriazoles which were moderately active (0.5 μM ≤ IC50 amides and sulfonamides are potent anti-trypanosomal agents. PMID:22550999

  14. Biological Parameters and Molecular Markers of Clone CL Brener - The Reference Organism of the Trypanosoma cruzi Genome Project

    Directory of Open Access Journals (Sweden)

    Bianca Zingales

    1997-11-01

    Full Text Available Clone CL Brener is the reference organism used in the Trypanosoma cruzi Genome Project. Some biological parameters of CL Brener were determined: (a the doubling time of epimastigote forms cultured in liver infusion-tryptose (LIT medium at 28oC is 58±13 hr; (b differentiation of epimastigotes to metacyclic trypomastigotes is obtained by incubation in LIT-20% Grace´s medium; (c trypomastigotes infect mammalian cultured cells and perform the complete intracellular cycle at 33 and 37oC; (d blood forms are highly infective to mice; (e blood forms are susceptible to nifurtimox and benznidazole. The molecular typing of CL Brener has been determined: (a isoenzymatic profiles are characteristic of zymodeme ZB; (b PCR amplification of a 24Sa ribosomal RNA sequence indicates it belongs to T. cruzi lineage 1; (c schizodeme, randomly amplified polymorphic DNA (RAPD and DNA fingerprinting analyses were performed

  15. Improved Completion Rates and Characterization of Drug Reactions with an Intensive Chagas Disease Treatment Program in Rural Bolivia

    Science.gov (United States)

    Tornheim, Jeffrey A.; Lozano Beltran, Daniel F.; Gilman, Robert H.; Castellon, Mario; Solano Mercado, Marco A.; Sullca, Walter; Torrico, Faustino; Bern, Caryn

    2013-01-01

    Background Chagas disease treatment is limited by drug availability, adverse side effect profiles of available medications, and poor adherence. Methods Adult Chagas disease patients initiating 60-days of benznidazole were randomized to weekly or twice-weekly evaluations of medication adherence and screening for adverse drug events (ADEs). Mid-week evaluations employed phone-based evaluations. Adherence was measured by self-report, pill counts with intentional over-distribution, and Medication Event Monitoring Systems (MEMS). Prospective data were compared to historical controls treated with benznidazole at the same hospital. Results 162 prospective patients were compared to 172 historical patients. Pill counts correlated well with MEMS data (R = 0.498 for 7-day intervals, R = 0.872 for intervals >7 days). Treatment completion rates were higher among prospective than historical patients (82.1% vs. 65.1%), primarily due to lower abandonment rates. Rates of ADEs were lower among prospective than historical patients (56.8% vs. 66.9%). Twice-weekly evaluations increased identification of mild ADEs, prompting higher suspension rates than weekly evaluations. While twice-weekly evaluations identified ADEs earlier, they did not reduce incidence of moderate or severe ADEs. Many dermatologic ADEs were moderately severe upon presentation (35.6%), were not reduced by use of antihistamines, occurred among adult patients of all ages, and occurred throughout treatment, rather than the first few weeks alone. Conclusions Intensive management improved completion and identified more ADEs, but did not reduce moderate or severe ADEs. Risk of dermatologic ADEs cannot be reduced by selecting younger adults or monitoring only during the first few weeks of treatment. Pill counts and phone-based encounters are reliable tools for treatment programming in rural Bolivia. PMID:24069472

  16. [Acute Chagas' disease: transmission routes, clinical aspects and response to specific therapy in diagnosed cases in an urban center].

    Science.gov (United States)

    Shikanai-Yasuda, M A; Lopes, M H; Tolezano, J E; Umezawa, E; Amato Neto, V; Barreto, A C; Higaki, Y; Moreira, A A; Funayama, G; Barone, A A

    1990-01-01

    The authors report clinical features and therapeutic response of 24 outpatients with acute Chagas' disease, and 3 in the initial chronic phase, referred to the Clinic for Infectious and Parasitic Diseases of the FMUSP "Clínicas" Hospital between 1974 and 1987. The following transmission routes were involved: triatominae in 7 cases, blood transfusion in 9, kidney transplantation and/or blood transfusion in 4, accidental in 1, oral route in 3, probably breast feeding in 1, congenital or breast feeding in 1, and congenital or blood transfusion in 1. Six patients infected by triatominac acquired the disease between 1974 and 1980 and one in 1987. The blood transfusion infected patients acquired the disease in Greater São Paulo, seven of whom after 1983. The acute phase Chagas' disease was oligosymptomatic in 4 patients: three of such patients being immunocompromised by drugs or other diseases. Another two adult immunocompromised patients developed myocarditis and congestive heart failure. Clinical features were severe in 5 from 6 children under two years, irrespective of the transmission route. Evaluation of the acute phase patients treated with benznidazol (4-10 mg/kg/day) showed: therapeutic failure in 4/16 (25.0%); possible cure in 9/16 (53.2%) and inconclusive results in 3/16 (18.8%). The antibody and complement-mediated lysis reaction was in keeping with the xenodiagnosis in 18/22 cases, having shown negative results after treatment earlier than classical serological reactions. One aplastic anaemia patient receiving corticosteroid presented lymphoproliferative disease 6 years after being treated with benznidazol for acute Chagas' disease.

  17. The Trypanosoma cruzi vitamin C dependent peroxidase confers protection against oxidative stress but is not a determinant of virulence.

    Directory of Open Access Journals (Sweden)

    Martin C Taylor

    2015-04-01

    Full Text Available The neglected parasitic infection Chagas disease is rapidly becoming a globalised public health issue due to migration. There are only two anti-parasitic drugs available to treat this disease, benznidazole and nifurtimox. Thus it is important to identify and validate new drug targets in Trypanosoma cruzi, the causative agent. T. cruzi expresses an ER-localised ascorbate-dependent peroxidase (TcAPx. This parasite-specific enzyme has attracted interest from the perspective of targeted chemotherapy.To assess the importance of TcAPx in protecting T. cruzi from oxidative stress and to determine if it is essential for virulence, we generated null mutants by targeted gene disruption. Loss of activity was associated with increased sensitivity to exogenous hydrogen peroxide, but had no effect on susceptibility to the front-line Chagas disease drug benznidazole. This suggests that increased oxidative stress in the ER does not play a significant role in its mechanism of action. Homozygous knockouts could proceed through the entire life-cycle in vitro, although they exhibited a significant decrease in their ability to infect mammalian cells. To investigate virulence, we exploited a highly sensitive bioluminescence imaging system which allows parasites to be monitored in real-time in the chronic stage of murine infections. This showed that depletion of enzyme activity had no effect on T. cruzi replication, dissemination or tissue tropism in vivo.TcAPx is not essential for parasite viability within the mammalian host, does not have a significant role in establishment or maintenance of chronic infections, and should therefore not be considered a priority for drug design.

  18. Cerebral trypanosomiasis and AIDS

    Directory of Open Access Journals (Sweden)

    Antunes Apio Claudio Martins

    2002-01-01

    Full Text Available A 36 year-old black female, complaining of headache of one month's duration presented with nausea, vomiting, somnolence, short memory problems, loss of weight, and no fever history. Smoker, intravenous drugs abuser, promiscuous lifestyle. Physical examination: left homonimous hemianopsia, left hemiparesis, no papilledema, diffuse hyperreflexia, slowness of movements. Brain CT scan: tumor-like lesion in the splenium of the corpus calosum, measuring 3.5 x 1.4 cm, with heterogeneous enhancing pattern, sugesting a primary CNS tumor. Due to the possibility of CNS infection, a lumbar puncture disclosed an opening pressure of 380 mmH(20; 11 white cells (lymphocytes; glucose 18 mg/dl (serum glucose 73 mg/dl; proteins 139 mg/dl; presence of Trypanosoma parasites. Serum Elisa-HIV tests turned out to be positive. Treatment with benznidazole dramatically improved clinical and radiographic picture, but the patient died 6 weeks later because of respiratory failure. T. cruzi infection of the CNS is a rare disease, but we have an increasing number of cases in HIV immunecompromised patients. Diagnosis by direct observation of CSF is uncommon, and most of the cases are diagnosed by pathological examination. It is a highly lethal disease, even when properly diagnosed and treated. This article intends to include cerebral trypanosomiasis in the differential diagnosis of intracranial space-occupying lesions, especially in immunecompromised patients from endemic regions.

  19. An in vitro iron superoxide dismutase inhibitor decreases the parasitemia levels of Trypanosoma cruzi in BALB/c mouse model during acute phase.

    Science.gov (United States)

    Olmo, Francisco; Urbanová, Kristína; Rosales, Maria Jose; Martín-Escolano, Ruben; Sánchez-Moreno, Manuel; Marín, Clotilde

    2015-12-01

    In order to identify new compounds to treat Chagas disease during the acute phase with higher activity and lower toxicity than the reference drug benznidazole (Bz), two hydroxyphthalazine derivative compounds were prepared and their trypanocidal effects against Trypanosoma cruzi were evaluated by light microscopy through the determination of IC50 values. Cytotoxicity was determined by flow cytometry assays against Vero cells. In vivo assays were performed in BALB/c mice, in which the parasitemia levels were quantified by fresh blood examination; the assignment of a cure was determined by reactivation of blood parasitemia levels after immunosuppression. The mechanism of action was elucidated at metabolic and ultra-structural levels, by (1)H NMR and TEM studies. Finally, as these compounds are potentially capable of causing oxidative damage in the parasites, the study was completed, by assessing their activity as potential iron superoxide dismutase (Fe-SOD) inhibitors. High-selectivity indices observed in vitro were the basis of promoting one of the tested compounds to in vivo assays. The tests on the murine model for the acute phase of Chagas disease showed better parasitemia inhibition values than those found for Bz. Compound 2 induced a remarkable decrease in the reactivation of parasitemia after immunosuppression. Compound 2 turned out to be a great inhibitor of Fe-SOD. The high antiparasitic activity and low toxicity together with the modest costs for the starting materials render this compound an appropriate molecule for the development of an affordable anti-Chagas agent.

  20. Old Yellow Enzyme from Trypanosoma cruzi Exhibits In Vivo Prostaglandin F2α Synthase Activity and Has a Key Role in Parasite Infection and Drug Susceptibility

    Directory of Open Access Journals (Sweden)

    Florencia Díaz-Viraqué

    2018-03-01

    Full Text Available The discovery that trypanosomatids, unicellular organisms of the order Kinetoplastida, are capable of synthesizing prostaglandins raised questions about the role of these molecules during parasitic infections. Multiple studies indicate that prostaglandins could be related to the infection processes and pathogenesis in trypanosomatids. This work aimed to unveil the role of the prostaglandin F2α synthase TcOYE in the establishment of Trypanosoma cruzi infection, the causative agent of Chagas disease. This chronic disease affects several million people in Latin America causing high morbidity and mortality. Here, we propose a prokaryotic evolutionary origin for TcOYE, and then we used in vitro and in vivo experiments to show that T. cruzi prostaglandin F2α synthase plays an important role in modulating the infection process. TcOYE overexpressing parasites were less able to complete the infective cycle in cell culture infections and increased cardiac tissue parasitic load in infected mice. Additionally, parasites overexpressing the enzyme increased PGF2α synthesis from arachidonic acid. Finally, an increase in benznidazole and nifurtimox susceptibility in TcOYE overexpressing parasites showed its participation in activating the currently anti-chagasic drugs, which added to its observed ability to confer resistance to hydrogen peroxide, highlights the relevance of this enzyme in multiple events including host–parasite interaction.

  1. Approach to Drug Latentiation as a Tool for Discovery of New Antichagasic

    Directory of Open Access Journals (Sweden)

    Eliana Ometto Pavan Serafim

    2011-06-01

    Full Text Available Chagas disease, discovered more than one century ago by Carlos Chagas, is still a serious Public Health problem. It is considered an extremely neglected disease, for it affects specially the population of developing countries. The patients with this disease have, in the great majority, low income and, for not representing market, they are excluded from the aims and efforts of research and development of pharmaceutical industries. About 8 to 11 million people may be infected with Trypanosoma cruzi, the etiological agent of the disease and about 100 million people are in risk in Latin America. The treatment of the disease is still a challenge, for only two nytroheterociclic drugs are commercialized in the world: nifurtimox and benznidazole, being this last one, the only available drug in the Brazilian market. However, these drugs are active only in the acute phase of the disease, and the treatment is not efficient in patients in the chronic phase. Consequently it is relevant to develop efficient anti-chagas compounds, particularly for the chronic phase of the disease. This paper discusses the importance of latency for the development of new pro-drugs. The literature describes several methodological techniques that have enabled significant advances in the planning and development of new anti-chagas agents, with emphasis on the search for pro-drugs that allow the enhancement of drug matrices.

  2. Trypanocidal activity of Brazilian plants against epimastigote forms from Y and Bolivia strains of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Renata Tomé Alves

    2012-01-01

    Full Text Available Chagas disease is one of the main public health problems in Latin America. Since the available treatments for this disease are not effective in providing cure, the screening of potential antiprotozoal agents is essential, mainly of those obtained from natural sources. This study aimed to provide an evaluation of the trypanocidal activity of 92 ethanol extracts from species belonging to the families Annonaceae, Apiaceae, Cucurbitaceae, Lamiaceae, Lauraceae, Moraceae, Nyctaginaceae, and Verbenaceae against the Y and Bolivia strains of Trypanosoma cruzi. Additionally, cytotoxic activity on LLCMK2 fibroblasts was evaluated. Both the trypanocidal activity and cytotoxicity were evaluated using the MTT method, in the following concentrations: 500, 350, 250, and 100 µg/mL. Benznidazole was used for positive control. The best results among the 92 samples evaluated were obtained with ethanol extracts of Ocotea paranapiacabensis (Am93 and Aegiphila lhotzkiana (Am160. Am93 showed trypanocidal activity against epimastigote forms of the Bolivia strain and was moderately toxic to LLCMK2 cells, its Selectivity Index (SI being 14.56, while Am160 showed moderate trypanocidal activity against the Bolivia strain and moderate toxicicity, its SI being equal to 1.15. The screening of Brazilian plants has indicated the potential effect of ethanol extracts obtained from Ocotea paranapiacabensis and Aegiphila lhotzkiana against Chagas disease.

  3. Modulation of Trypanosoma cruzi-specific T-cell responses after chemotherapy for chronic Chagas disease

    Directory of Open Access Journals (Sweden)

    María Cecilia Albareda

    2015-05-01

    Full Text Available The aim of this review is to describe the contributions of the knowledge of T-cell responses to the understanding of the physiopathology and the responsiveness to etiological treatment during the chronic phase of Chagas disease. T-helper (Th1 and interleukin (IL-10 Trypanosoma cruzi-specific T-cells have been linked to the asymptomatic phase or to severe clinical forms of the disease, respectively or vice versa, depending on the T. cruzi antigen source, the patient’s location and the performed immunological assays. Parasite-specific T-cell responses are modulated after benznidazole (BZ treatment in chronically T. cruzi-infected subjects in association with a significant decrease in T. cruzi-specific antibodies. Accumulating evidence has indicated that treatment efficacy during experimental infection with T. cruzi results from the combined action of BZ and the activation of appropriate immune responses in the host. However, strong support of this interaction in T. cruzi-infected humans remains lacking. Overall, the quality of T-cell responses might be a key factor in not only disease evolution, but also chemotherapy responsiveness. Immunological parameters are potential indicators of treatment response regardless of achievement of cure. Providing tools to monitor and provide early predictions of treatment success will allow the development of new therapeutic options.

  4. Bioactivity-guided isolation of laevicarpin, an antitrypanosomal and anticryptococcal lactam from Piper laevicarpu (Piperaceae).

    Science.gov (United States)

    da Silva A Maciel, Dayany; Freitas, Viviane P; Conserva, Geanne A Alves; Alexandre, Tatiana R; Purisco, Sonia U; Tempone, Andre G; Melhem, Márcia Souza C; Kato, Massuo J; Guimarães, Elsie F; Lago, João Henrique G

    2016-06-01

    Crude CH2Cl2 extract from leaves of Piper laevicarpu (Piperaceae) displayed antitrypanosomal activity against trypomastigote forms of Trypanosoma cruzi (Y strain) and antimicrobial potential against Cryptococcus gattii (strain-type WM 178). Bioactivity-guided fractionation of crude extract afforded one new natural bioactive lactam derivative, named laevicarpin. The structure of isolated compound, which displayed a very rare ring system, was elucidated based on NMR, IR and MS spectral analysis. Using MTT assay, the trypomastigotes of T. cruzi demonstrated susceptibility to laevicarpin displaying IC50 value of 14.7μg/mL (49.6μM), about 10-fold more potent than the standard drug benznidazole. The mammalian cytotoxicity of laevicarpin was verified against murine fibroblasts (NCTC cells) and demonstrated a CC50 value of 100.3μg/mL (337.7μM-SI=7). When tested against Cryptococcus gattii, laevicarpin showed an IC50 value of 2.3μg/mL (7.9μM) and a MIC value of 7.4μg/mL (25μM). Based in the obtained results, laevicarpin could be used as a scaffold for future drug design studies against the Chagas disease and anti-cryptococosis agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effect of medicinal plants on the parasitaemia of Trypanosoma cruzi and on the biodistribution of sodium pertechnetate (Na99mTcO4)

    International Nuclear Information System (INIS)

    Silva, Roseane Pereira da; Barbosa, Vanessa Santos de Arruda; Medeiros, Aldo da Cunha; Holanda, Cecilia Maria de Carvalho Xavier; Oliveira, Daniel Pereira de; Lima, Natalia Alves; Camara, Antonia Claudia Jacome da; Constantino, Maria Helena Spyrides

    2008-01-01

    Artemisia vulgaris (AV) is an antihelmintic and antimalarial drug; Aloe vera(babosa) acts as antidiabetic, laxative and anti-inflammatory; Benznidazole (BZ) is a trypanocidal of Trypanosoma cruzi (TC). Technetium-99m ( 99m Tc) has been used in nuclear medicine to obtain diagnostic images. This study evaluated the plant effects in TC parasitaemia and on the biodistribution of 99m Tc in mice. Twenty mice were infected by TC. At the peak of parasitaemia, 5 mice received babosa; 5 received AV and 5 received BZ. The parasitaemia was determined at 0, 2, 4 and 6 h of drugs administration. Five infected mice without drugs, 5 mice without TC and the group treated with AV, received 99m Tc. The radioactivity was calculated. Infected mice that received babosa reduced significantly (p<0.05) the TC parasitaemia. The percentage of activity per gram (%ATI/g) decreased significantly on the AV group. These results indicate that babosa possibly is an anti-TC drug and AV reduces the %ATI/g probably due to its biological effects. (author)

  6. Effect of medicinal plants on the parasitaemia of Trypanosoma cruzi and on the biodistribution of sodium pertechnetate (Na{sup 99m}TcO{sub 4})

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Roseane Pereira da; Barbosa, Vanessa Santos de Arruda; Medeiros, Aldo da Cunha [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Centro de Ciencias da Saude; Holanda, Cecilia Maria de Carvalho Xavier; Oliveira, Daniel Pereira de; Lima, Natalia Alves; Camara, Antonia Claudia Jacome da [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Centro de Biociencias. Dept. de Microbiologia e Parasitologia; Constantino, Maria Helena Spyrides [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Estatistica

    2008-12-15

    Artemisia vulgaris (AV) is an antihelmintic and antimalarial drug; Aloe vera(babosa) acts as antidiabetic, laxative and anti-inflammatory; Benznidazole (BZ) is a trypanocidal of Trypanosoma cruzi (TC). Technetium-99m ({sup 99m}Tc) has been used in nuclear medicine to obtain diagnostic images. This study evaluated the plant effects in TC parasitaemia and on the biodistribution of {sup 99m}Tc in mice. Twenty mice were infected by TC. At the peak of parasitaemia, 5 mice received babosa; 5 received AV and 5 received BZ. The parasitaemia was determined at 0, 2, 4 and 6 h of drugs administration. Five infected mice without drugs, 5 mice without TC and the group treated with AV, received {sup 99m}Tc. The radioactivity was calculated. Infected mice that received babosa reduced significantly (p<0.05) the TC parasitaemia. The percentage of activity per gram (%ATI/g) decreased significantly on the AV group. These results indicate that babosa possibly is an anti-TC drug and AV reduces the %ATI/g probably due to its biological effects. (author)

  7. Mitochondrial dysfunction in Trypanosoma cruzi: the role of Serratia marcescens prodigiosin in the alternative treatment of Chagas disease

    Directory of Open Access Journals (Sweden)

    Triana Omar

    2011-05-01

    Full Text Available Abstract Background Chagas disease is a health threat for many people, mostly those living in Latin America. One of the most important problems in treatment is the limitation of existing drugs. Prodigiosin, produced by Serratia marcescens (Rhodnius prolixus endosymbiont, belongs to the red-pigmented bacterial prodiginine family, which displays numerous biological activities, including antibacterial, antifungal, antiprotozoal, antimalarial, immunosuppressive, and anticancer properties. Here we describe its effects on Trypanosoma cruzi mitochondria belonging to Tc I and Tc II. Results Parasites exposed to prodigiosin altered the mitochondrial function and oxidative phosphorylation could not have a normal course, probably by inhibition of complex III. Prodigiosin did not produce cytotoxic effects in lymphocytes and Vero cells and has better effects than benznidazole. Our data suggest that the action of prodigiosin on the parasites is mediated by mitochondrial structural and functional disruptions that could lead the parasites to an apoptotic-like cell death process. Conclusions Here, we propose a potentially useful trypanocidal agent derived from knowledge of an important aspect of the natural life cycle of the parasite: the vector-parasite interaction. Our results indicate that prodigiosin could be a good candidate for the treatment of Chagas disease.

  8. The current screening programme for congenital transmission of Chagas disease in Catalonia, Spain.

    Science.gov (United States)

    Basile, L; Oliveira, I; Ciruela, P; Plasencia, A

    2011-09-22

    Due to considerable numbers of migrants from Chagas disease-endemic countries living in Catalonia, the Catalonian Health Department has recently implemented a screening programme for preventing congenital transmission, targeting Latin American pregnant women who attend antenatal consultations. Diagnosis of Trypanosoma cruzi infection in women is based on two positive serological tests. Screening of newborns from mothers with positive serology is based on a parasitological test during the first 48 hours of life and/or conventional serological analysis at the age of nine months. If either of these tests is positive, treatment with benznidazole is started following the World Health Organization's recommendations. The epidemiological surveillance of the programme is based on the Microbiological Reporting System of Catalonia, a well established network of laboratories. Once a positive case is reported, the responsible physician is asked to complete a structured epidemiological questionnaire. Clinical and demographic data are registered in the Voluntary Case Registry of Chagas Disease, a database administered by the Catalonian Health Department. It is expected that this programme will improve the understanding of the real burden of Chagas disease in the region. Furthermore, this initiative could encourage the implementation of similar programmes in other regions of Spain and even in other European countries.

  9. In vitro trypanocidal activity of solamargine and extracts from Solanum palinacanthum and Solanum lycocarpum of brazilian cerrado

    Directory of Open Access Journals (Sweden)

    RAQUEL R.D. MOREIRA

    2013-09-01

    Full Text Available The present investigation was to evaluate the potential trypanocidal activity of crude ethanolic extract of the fruits of Solanum palinacanthum, Solanum lycocarpum and the glycoalcaloid, solamargine. S. palinacanthum and S. lycocarpum fruit powders were submitted to exhaustively extraction with 96% ethanol and solamargine were isolated from the extract of S. palinacanthum. Both extracts and solamargine were analysed for trypanocidal activity by using MTT colorimetric assay. Extracts of S. palinacanthum showed to be more active (IC50 = 175.9 µg.ml–1 than S. lycocarpum (IC50 = 194.7 µg.ml–1. Solamargine presented a strong activity (IC50 = 15.3 µg.ml–1, which can explain the better activity of the both extracts. Benznidazol (IC50 = 9.0 µg.ml–1 is the only drug used to treat Chagas' disease. These findings demonstrate for the first time that ethanol extracts obtained from both fruits of S. palinacanthum and S. lycocarpum and also solamargine have a potential anti-trypanosomal activity.

  10. Memantine, an antagonist of the NMDA glutamate receptor, affects cell proliferation, differentiation and the intracellular cycle and induces apoptosis in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Flávia Silva Damasceno

    2014-02-01

    Full Text Available Chagas' disease is caused by the protozoan parasite Trypanosoma cruzi and affects approximately 10 million people in endemic areas of Mexico and Central and South America. Currently available chemotherapies are limited to two compounds: Nifurtimox and Benznidazole. Both drugs reduce the symptoms of the disease and mortality among infected individuals when used during the acute phase, but their efficacy during the chronic phase (during which the majority of cases are diagnosed remains controversial. Moreover, these drugs have several side effects. The aim of this study was to evaluate the effect of Memantine, an antagonist of the glutamate receptor in the CNS of mammals, on the life cycle of T. cruzi. Memantine exhibited a trypanocidal effect, inhibiting the proliferation of epimastigotes (IC50 172.6 µM. Furthermore, this compound interfered with metacyclogenesis (approximately 30% reduction and affected the energy metabolism of the parasite. In addition, Memantine triggered mechanisms that led to the apoptosis-like cell death of epimastigotes, with extracellular exposure of phosphatidylserine, increased production of reactive oxygen species, decreased ATP levels, increased intracellular Ca(2+ and morphological changes. Moreover, Memantine interfered with the intracellular cycle of the parasite, specifically the amastigote stage (IC50 31 µM. Interestingly, the stages of the parasite life cycle that require more energy (epimastigote and amastigote were more affected as were the processes of differentiation and cell invasion.

  11. Abietane-Type Diterpenoid Amides with Highly Potent and Selective Activity against Leishmania donovani and Trypanosoma cruzi.

    Science.gov (United States)

    Pirttimaa, Minni; Nasereddin, Abedelmajeed; Kopelyanskiy, Dmitry; Kaiser, Marcel; Yli-Kauhaluoma, Jari; Oksman-Caldentey, Kirsi-Marja; Brun, Reto; Jaffe, Charles L; Moreira, Vânia M; Alakurtti, Sami

    2016-02-26

    Dehydroabietylamine (1) was used as a starting material to synthesize a small library of dehydroabietyl amides by simple and facile methods, and their activities against two disease-causing trypanosomatids, namely, Leishmania donovani and Trypanosoma cruzi, were assayed. The most potent compound, 10, an amide of dehydroabietylamine and acrylic acid, was found to be highly potent against these parasites, displaying an IC50 value of 0.37 μM against L. donovani axenic amastigotes and an outstanding selectivity index of 63. Moreover, compound 10 fully inhibited the growth of intracellular amastigotes in Leishmania donovani-infected human macrophages with a low IC50 value of 0.06 μM. This compound was also highly effective against T. cruzi amastigotes residing in L6 cells with an IC50 value of 0.6 μM and high selectivity index of 58, being 3.5 times more potent than the reference compound benznidazole. The potent activity of this compound and its relatively low cytotoxicity make it attractive for further development in pursuit of better drugs for patients suffering from leishmaniasis and Chagas disease.

  12. Biochemical behavior of Trypanosoma cruzi strains isolated from mice submitted to specific chemotherapy

    Directory of Open Access Journals (Sweden)

    Jesila Pinto M. Marretto

    1994-12-01

    Full Text Available To investigate the influence of chemotherapy on the biochemical beha vior of Trypanosoma cruzi strains, three groups of mice were infected with one of three strains of T. cruzi of different biological and isoenzymic patterns (Peruvian, 21 SF and Colombian strains. Each group was subdivided into subgroups: 1 - treated with nifurtimox; 2 - treated with benznidazole and 3 - untreated infected controls. At the end of treatment, that lasted for 90 days, xenodiagnosis, sub inoculation of blood into new born mice and haemoculture were performed as tests of cure. From the positive tests, 22 samples of T. cruzi were isolated from all subgroups. Electrophoretic analysis of the isoenzymes PGM, GP1, ALAT and AS AT failed to show any difference between parasite strains isolated from treated and untreated mice, which indicates that no detectable clonal selection or parasite genetic markers alterations concerning the isoenzymes analysed have been determined by treatment with drugs of recognized antiparasitic effect, suggesting stability of the phenotypic characteristics of the three biological types of T. cruzi strains.

  13. Total Artificial Heart as Bridge to Heart Transplantation in Chagas Cardiomyopathy: Case Report.

    Science.gov (United States)

    Ruzza, A; Czer, L S C; De Robertis, M; Luthringer, D; Moriguchi, J; Kobashigawa, J; Trento, A; Arabia, F

    2016-01-01

    Chagas disease (CD) is becoming an increasingly recognized cause of dilated cardiomyopathy outside of Latin America, where it is endemic, due to population shifts and migration. Heart transplantation (HTx) is a therapeutic option for end-stage cardiomyopathy due to CD, but may be considered a relative contraindication due to potential reactivation of the causative organism with immunosuppression therapy. The total artificial heart (TAH) can provide mechanical circulatory support in decompensated patients with severe biventricular dysfunction until the time of HTx, while avoiding immunosuppressive therapy and removing the organ most affected by the causative organism. We report herein a patient with CD and severe biventricular dysfunction, who had mechanical circulatory support with a TAH for more than 6 months, followed by successful orthotopic HTx and treatment with benznidazole for 3 months. The patient had no evidence of recurrent disease in the transplanted heart based on endomyocardial biopsy up to 1 year post-transplantation, and remains alive more than 30 months after insertion of a TAH and 24 months after HTx. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Biomarkers of therapeutic responses in chronic Chagas disease: state of the art and future perspectives

    Directory of Open Access Journals (Sweden)

    Maria-Jesus Pinazo

    2015-05-01

    Full Text Available The definition of a biomarker provided by the World Health Organization is any substance, structure, or process that can be measured in the body, or its products and influence, or predict the incidence or outcome of disease. Currently, the lack of prognosis and progression markers for chronic Chagas disease has posed limitations for testing new drugs to treat this neglected disease. Several molecules and techniques to detect biomarkers in Trypanosoma cruzi-infected patients have been proposed to assess whether specific treatment with benznidazole or nifurtimox is effective. Isolated proteins or protein groups from different T. cruzi stages and parasite-derived glycoproteins and synthetic neoglycoconjugates have been demonstrated to be useful for this purpose, as have nucleic acid amplification techniques. The amplification of T. cruzi DNA using the real-time polymerase chain reaction method is the leading test for assessing responses to treatment in a short period of time. Biochemical biomarkers have been tested early after specific treatment. Cytokines and surface markers represent promising molecules for the characterisation of host cellular responses, but need to be further assessed.

  15. Plants of Brazilian restingas with tripanocide activity against Trypanosoma cruzi strains.

    Science.gov (United States)

    Faria, Robson Xavier; Souza, André Luis Almeida; Lima, Barbara; Tietbohl, Luis Armando Candido; Fernandes, Caio Pinho; Amaral, Raquel Rodrigues; Ruppelt, Bettina Monika; Santos, Marcelo Guerra; Rocha, Leandro

    2017-12-01

    Chagas disease is caused by the Trypanosoma cruzi affecting millions of people, and widespread throughout Latin America. This disease exhibits a problematic chemotherapy. Benznidazole, which is the drug currently used as standard treatment, lamentably evokes several adverse reactions. Among other options, natural products have been tested to discover a novel therapeutic drug for this disease. A lot of plants from the Brazilian flora did not contain studies about their biological effects. Restinga de Jurubatiba from Brazil is a sandbank ecosystem poorly studied in relation to plant biological activity. Thus, three plant species from Restinga de Jurubatiba were tested against in vitro antiprotozoal activity. Among six extracts obtained from leaves and stem parts and 2 essential oils derived from leave parts, only 3 extracts inhibited epimastigote proliferation. Substances present in the extracts with activity were isolated (quercetin, myricetin, and ursolic acid), and evaluated in relation to antiprotozoal activity against epimastigote Y and Dm28 Trypanosoma cruzi strains. All isolated substances were effective to reduce protozoal proliferation. Essentially, quercetin and myricetin did not cause mammalian cell toxicity. In summary, myricetin and quercetin molecule can be used as a scaffold to develop new effective drugs against Chagas's disease.

  16. Efecto del aceite esencial de Aloysia triphylla britton (cedrón sobre el Trypanosoma cruzi en ratones The effect of the essential oil from Aloysia triphylla britton (lemon verbena on Trypanosoma cruzi in mice

    Directory of Open Access Journals (Sweden)

    Juan Rojas

    2012-03-01

    Full Text Available Objetivos. Determinar la actividad anti-Trypanosoma cruzi in vivo del aceite esencial de Aloysia triphylla en ratones. Materiales y Métodos. Los animales fueron asignados aleatoriamente a los siguientes grupos (n = 15 por grupo: infectados y no tratados (G1, infectados y tratados con benznidazol 100 mg/kg (G2, infectados y tratados con aceite esencial de Aloysia triphylla 100 mg/kg (G3, infectados y tratados con aceite esencial de Aloysia triphylla 250 mg/kg (G4; no infectados y no tratados (G5, y no infectados y tratados con 250 mg/kg de Aloysia triphyla (G6. La infección con T. cruzi se realizó con 104 tripomastigotes sanguíneos y el tratamiento empezó en el octavo día postinfección (dpi hasta el 28 dpi. La parasitemia se determinó con microscopía óptica cada dos días en 5 μL de sangre extraída de la cola. En el 14, 21 y 28 dpi se obtuvo sangre de la cola para el ensayo de creatina kinasa-MB (CK-MB, alanina aminotransferasa y creatinina; después, los animales fueron sacrificados y se extrajo el corazón para el estudio histopatológico. Resultados. El aceite esencial de cedrón produjo una reducción significativa de 85,4% del pico de parasitemia con la dosis de 250 mg/kg; también produjo reducción del número de amastigotes e infiltrados inflamatorios en el corazón. El nivel plasmático de CK-MB también disminuyó en el 28 dpi por efecto de dicho tratamiento. Conclusiones. En condiciones experimentales, el aceite esencial de Aloysia triphylla tiene efecto anti-Trypanosoma cruzi in vivo en ratones.Objectives. To determine the in-vivo anti-Trypanosoma cruzi activity of the essential oil from Aloysia triphylla in mice. Materials and methods. The mice (n = 15 in the study were randomly assigned to the following groups: infected and untreated (G1, infected and treated with benznidazole 100 mg/kg (G2, infected and treated with of Aloysia triphylla essential oil 100 mg/kg (G3, infected and treated with of Aloysia triphylla

  17. Composición química y actividad anti- tripanosomal de aceites esenciales obtenidos de Tagetes (Fam. Asteraceae, recolectados en Colombia Chemical composition and anti-tripanosomal activity of essential oils from Tagetes (Asteraceae Fam. grown in Colombia.

    Directory of Open Access Journals (Sweden)

    Patricia Escobar

    2009-12-01

    Full Text Available Introducción: La quimioterapia actual para enfermedad de Chagas es precaria con solo dos opciones de tratamiento: nifurtimox y benznidazol. Las plantas representan una fuente inmensa de moléculas potencialmente activas contra agentes infecciosos. Objetivo: Determinar la composición química y evaluar la actividad de aceites esenciales de Tagetes, recolectados en Colombia, contra Trypanosoma cruzi y su célula de mamífero hospedera. Materiales y métodos: Los aceites esenciales se obtuvieron de plantas colectadas en diversas regiones de Colombia; se extrajeron por hidrodestilación asistida por la radiación de microondas y se caracterizaron por cromatografía de gases acoplada a espectrometría de masas. La actividad de siete (7 aceites esenciales se determinó en epimastigotes, amastigotes intracelulares de T. cruzi y células Vero. Los resultados fueron expresados como la concentración que inhibe (CI50, CI90 o destruye (CC50, CC90 50 ó 90 % de parásitos o células. Resultados: Los componentes mayoritarios de los aceites fueron estragol, dihidrotagetona y cis-tagetona con diferencias de composición entre las especies de Tagetes evaluadas. Todos los aceites esenciales fueron activos en epimastigotes de T. cruzi. El aceite de T. heterocarpha fue activo contra amastigotes intracelulares (CI(5041,35 μg/mL. Los aceites de T. caracasana y T. heterocarpha fueron tóxicos para las células Vero. Conclusiones: Los aceites esenciales obtenidos de T. heterocarpha, T. caracasana y T. zipaquirensis mostraron capacidad para inhibir el crecimiento de T. cruzi. Estudios complementarios de la actividad sus componentes mayoritarios se realizan actualmente. Salud UIS 2009; 41: 280-286Introduction: The current chemotheraphy of Chagas diseases is poor, with only two treatment options: nifurtimox and benznidazole. The plants represent an immense source of potentially active molecules against infectious agents. Aim: To determine the chemical composition and

  18. Programa ACHEI: Atenção ao Chagásico com Educação Integral no Município de Maringá e Região Noroeste do Paraná, Brasil The ACHEI Program: Chagas' Disease Awareness through Comprehensive Education in the Municipality of Maringá, Northwest Paraná, Brasil

    Directory of Open Access Journals (Sweden)

    Silvana Marques de Araújo

    2000-12-01

    Full Text Available Participaram deste trabalho 131 pacientes chagásicos procedentes de diferentes áreas endêmicas atendidos pelo Laboratório de Doença de Chagas da Universidade Estadual de Maringá (UEM. Estes pacientes descobriram que estavam infectados principalmente porque apresentaram sintomatologia (58,1% ou porque se dispuseram a doar sangue (29,4%. Durante o tratamento etiológico contra o Trypanosoma cruzi,45,2% apresentaram queixas relacionadas a efeitos colaterais do benznidazol. Com base nestes dados foi criado o Programa ACHEI: Atenção ao Chagásico com Educação Integral. Implantado como um projeto de extensão, tem caráter multiprofissional/interdisciplinar. Foi programado com uma reunião mensal composta de uma primeira parte informativa específica, quando é também distribuído um folder explicando transmissão, sintomatologia e tratamento da doença de Chagas. Na segunda parte é trabalhado o apoio psico-social, enfocando auto-estima e cidadania. É um espaço onde pacientes chagásicos podem compartilhar com seus iguais a dúvida sobre a sua qualidade de vida após o diagnóstico, o medo, a ansiedade, o estigma, o diagnóstico positivo e a convivência com a família/grupo social criando a oportunidade e ambiente para que cada paciente reflita sobre sua própria história e ações frente ao processo da doença.This study analyzes 131 chagasic patients from different endemic areas that came to the Chagas' disease laboratory at the Maringa State University. The subjects discovered they were infected principally because they presented symptoms (58% or donated blood (29.4%. During etiologic treatment for Trypanosoma cruzi, 45.2% of benznidazole users complained of side effects. Based on these data, the ACHEI program (Chagas' Disease Awareness through Comprehensive Education was developed, which is a multiprofessional/interdisciplinary extension project. Monthly meetings are held that are divided into two parts: The first half of the

  19. Prospects of an alternative treatment against Trypanosoma cruzi based on abietic acid derivatives show promising results in Balb/c mouse model.

    Science.gov (United States)

    Olmo, F; Guardia, J J; Marin, C; Messouri, I; Rosales, M J; Urbanová, K; Chayboun, I; Chahboun, R; Alvarez-Manzaneda, E J; Sánchez-Moreno, M

    2015-01-07

    Chagas disease, caused by the protozoa parasite Trypanosoma cruzi, is an example of extended parasitaemia with unmet medical needs. Current treatments based on old-featured benznidazole (Bz) and nifurtimox are expensive and do not fulfil the criteria of effectiveness, and a lack of toxicity devoid to modern drugs. In this work, a group of abietic acid derivatives that are chemically stable and well characterised were introduced as candidates for the treatment of Chagas disease. In vitro and in vivo assays were performed in order to test the effectiveness of these compounds. Finally, those which showed the best activity underwent additional studies in order to elucidate the possible mechanism of action. In vitro results indicated that some compounds have low toxicity (i.e. >150 μM, against Vero cell) combined with high efficacy (i.e. <20 μM) against some forms of T. cruzi. Further in vivo studies on mice models confirmed the expectations of improvements in infected mice. In vivo tests on the acute phase gave parasitaemia inhibition values higher those of Bz, and a remarkable decrease in the reactivation of parasitaemia was found in the chronic phase after immunosuppression of the mice treated with one of the compounds. The morphological alterations found in treated parasites with our derivatives confirmed extensive damage; energetic metabolism disturbances were also registered by (1)H NMR. The demonstrated in vivo activity and low toxicity, together with the use of affordable starting products and the lack of synthetic complexity, put these abietic acid derivatives in a remarkable position toward the development of an anti-Chagasic agent. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. An in vitro iron superoxide dismutase inhibitor decreases the parasitemia levels of Trypanosoma cruzi in BALB/c mouse model during acute phase

    Directory of Open Access Journals (Sweden)

    Francisco Olmo

    2015-12-01

    Full Text Available In order to identify new compounds to treat Chagas disease during the acute phase with higher activity and lower toxicity than the reference drug benznidazole (Bz, two hydroxyphthalazine derivative compounds were prepared and their trypanocidal effects against Trypanosoma cruzi were evaluated by light microscopy through the determination of IC50 values. Cytotoxicity was determined by flow cytometry assays against Vero cells. In vivo assays were performed in BALB/c mice, in which the parasitemia levels were quantified by fresh blood examination; the assignment of a cure was determined by reactivation of blood parasitemia levels after immunosuppression. The mechanism of action was elucidated at metabolic and ultra-structural levels, by 1H NMR and TEM studies. Finally, as these compounds are potentially capable of causing oxidative damage in the parasites, the study was completed, by assessing their activity as potential iron superoxide dismutase (Fe-SOD inhibitors. High-selectivity indices observed in vitro were the basis of promoting one of the tested compounds to in vivo assays. The tests on the murine model for the acute phase of Chagas disease showed better parasitemia inhibition values than those found for Bz. Compound 2 induced a remarkable decrease in the reactivation of parasitemia after immunosuppression. Compound 2 turned out to be a great inhibitor of Fe-SOD. The high antiparasitic activity and low toxicity together with the modest costs for the starting materials render this compound an appropriate molecule for the development of an affordable anti-Chagas agent.

  1. In vitro and in vivo identification of tetradentated polyamine complexes as highly efficient metallodrugs against Trypanosoma cruzi.

    Science.gov (United States)

    Olmo, Francisco; Cussó, Olaf; Marín, Clotilde; Rosales, Maria José; Urbanová, Kristína; Krauth-Siegel, R Luise; Costas, Miquel; Ribas, Xavi; Sánchez-Moreno, Manuel

    2016-05-01

    In order to identify new compounds to treat Chagas disease during the acute phase with higher activity and lower toxicity than the reference drug benznidazole (Bz), a series of tetraamine-based compounds was prepared and their trypanocidal effects against Trypanosoma cruzi were evaluated by light microscopy through the determination of IC50 values. Cytotoxicity was determined by flow cytometry assays against Vero cells. In vivo assays were performed in BALB/c mice, in which the parasitemia levels were quantified by fresh blood examination; the assignment of a cure was determined by PCR and reactivation of blood parasitemia levels after immunosuppression. The mechanism of action was elucidated at metabolic and ultra-structural levels by (1)H NMR and TEM studies. Finally, as tetraamines are potentially capable of casuing oxidative damage in the parasites, the study was completed by assessing their activity as potential iron superoxide dismutase (Fe-SOD) and trypanothione reductase (TR) inhibitors. High-selectivity indexes observed in vitro were the basis of promoting three of the tested compounds to in vivo assays. The tests on the murine model for the acute phase of Chagas disease showed better parasitemia inhibition values than those found for Bz. Tetraamines 2 and 3 induced a remarkable decrease in the reactivation of parasitemia after immunosuppression and curative rates of 33 and 50%, respectively. Tetraamine 3 turned out to be a great inhibitor of Fe-SOD and TR. The high anti-parasitic activity and low toxicity render these tetraamines appropriate molecules for the development of an affordable anti-Chagas agent. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Automated high-content assay for compounds selectively toxic to Trypanosoma cruzi in a myoblastic cell line.

    Directory of Open Access Journals (Sweden)

    Julio Alonso-Padilla

    2015-01-01

    Full Text Available Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, represents a very important public health problem in Latin America where it is endemic. Although mostly asymptomatic at its initial stage, after the disease becomes chronic, about a third of the infected patients progress to a potentially fatal outcome due to severe damage of heart and gut tissues. There is an urgent need for new drugs against Chagas disease since there are only two drugs available, benznidazole and nifurtimox, and both show toxic side effects and variable efficacy against the chronic stage of the disease.Genetically engineered parasitic strains are used for high throughput screening (HTS of large chemical collections in the search for new anti-parasitic compounds. These assays, although successful, are limited to reporter transgenic parasites and do not cover the wide T. cruzi genetic background. With the aim to contribute to the early drug discovery process against Chagas disease we have developed an automated image-based 384-well plate HTS assay for T. cruzi amastigote replication in a rat myoblast host cell line. An image analysis script was designed to inform on three outputs: total number of host cells, ratio of T. cruzi amastigotes per cell and percentage of infected cells, which respectively provides one host cell toxicity and two T. cruzi toxicity readouts. The assay was statistically robust (Z´ values >0.6 and was validated against a series of known anti-trypanosomatid drugs.We have established a highly reproducible, high content HTS assay for screening of chemical compounds against T. cruzi infection of myoblasts that is amenable for use with any T. cruzi strain capable of in vitro infection. Our visual assay informs on both anti-parasitic and host cell toxicity readouts in a single experiment, allowing the direct identification of compounds selectively targeted to the parasite.

  3. First external quality assurance program for bloodstream Real-Time PCR monitoring of treatment response in clinical trials of Chagas disease.

    Directory of Open Access Journals (Sweden)

    Juan C Ramírez

    Full Text Available Real-Time PCR (qPCR testing is recommended as both a diagnostic and outcome measurement of etiological treatment in clinical practice and clinical trials of Chagas disease (CD, but no external quality assurance (EQA program provides performance assessment of the assays in use. We implemented an EQA system to evaluate the performance of molecular biology laboratories involved in qPCR based follow-up in clinical trials of CD. An EQA program was devised for three clinical trials of CD: the E1224 (NCT01489228, a pro-drug of ravuconazole; the Sampling Study (NCT01678599, that used benznidazole, both conducted in Bolivia; and the CHAGASAZOL (NCT01162967, that tested posaconazole, conducted in Spain. Four proficiency testing panels containing negative controls and seronegative blood samples spiked with 1, 10 and 100 parasite equivalents (par. eq./mL of four Trypanosoma cruzi stocks, were sent from the Core Lab in Argentina to the participating laboratories located in Bolivia and Spain. Panels were analyzed simultaneously, blinded to sample allocation, at 4-month intervals. In addition, 302 random blood samples from both trials carried out in Bolivia were sent to Core Lab for retesting analysis. The analysis of proficiency testing panels gave 100% of accordance (within laboratory agreement and concordance (between laboratory agreement for all T. cruzi stocks at 100 par. eq./mL; whereas their values ranged from 71 to 100% and from 62 to 100% at 1 and 10 par. eq./mL, respectively, depending on the T. cruzi stock. The results obtained after twelve months of preparation confirmed the stability of blood samples in guanidine-EDTA buffer. No significant differences were found between qPCR results from Bolivian laboratory and Core Lab for retested clinical samples. This EQA program for qPCR analysis of CD patient samples may significantly contribute to ensuring the quality of laboratory data generated in clinical trials and molecular diagnostics laboratories of

  4. How universal is coverage and access to diagnosis and treatment for Chagas disease in Colombia? A health systems analysis.

    Science.gov (United States)

    Cucunubá, Zulma M; Manne-Goehler, Jennifer M; Díaz, Diana; Nouvellet, Pierre; Bernal, Oscar; Marchiol, Andrea; Basáñez, María-Gloria; Conteh, Lesong

    2017-02-01

    Limited access to Chagas disease diagnosis and treatment is a major obstacle to reaching the 2020 World Health Organization milestones of delivering care to all infected and ill patients. Colombia has been identified as a health system in transition, reporting one of the highest levels of health insurance coverage in Latin America. We explore if and how this high level of coverage extends to those with Chagas disease, a traditionally marginalised population. Using a mixed methods approach, we calculate coverage for screening, diagnosis and treatment of Chagas. We then identify supply-side constraints both quantitatively and qualitatively. A review of official registries of tests and treatments for Chagas disease delivered between 2008 and 2014 is compared to estimates of infected people. Using the Flagship Framework, we explore barriers limiting access to care. Screening coverage is estimated at 1.2% of the population at risk. Aetiological treatment with either benznidazol or nifurtimox covered 0.3-0.4% of the infected population. Barriers to accessing screening, diagnosis and treatment are identified for each of the Flagship Framework's five dimensions of interest: financing, payment, regulation, organization and persuasion. The main challenges identified were: a lack of clarity in terms of financial responsibilities in a segmented health system, claims of limited resources for undertaking activities particularly in primary care, non-inclusion of confirmatory test(s) in the basic package of diagnosis and care, poor logistics in the distribution and supply chain of medicines, and lack of awareness of medical personnel. Very low screening coverage emerges as a key obstacle hindering access to care for Chagas disease. Findings suggest serious shortcomings in this health system for Chagas disease, despite the success of universal health insurance scale-up in Colombia. Whether these shortcomings exist in relation to other neglected tropical diseases needs investigating

  5. Interactions between 4-aminoquinoline and heme: Promising mechanism against Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Guilherme Curty Lechuga

    2016-12-01

    Full Text Available Chagas disease is a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. The current drugs used to treat this disease have limited efficacy and produce severe side effects. Quinolines, nitrogen heterocycle compounds that form complexes with heme, have a broad spectrum of antiprotozoal activity and are a promising class of new compounds for Chagas disease chemotherapy. In this study, we evaluated the activity of a series of 4-arylaminoquinoline-3-carbonitrile derivatives against all forms of Trypanosoma cruzi in vitro. Compound 1g showed promising activity against epimastigote forms when combined with hemin (IC50<1 μM, with better performance than benznidazole, the reference drug. This compound also inhibited the viability of trypomastigotes and intracellular amastigotes. The potency of 1g in combination with heme was enhanced against epimastigotes and trypomastigotes, suggesting a similar mechanism of action that occurs in Plasmodium spp. The addition of hemin to the culture medium increased trypanocidal activity of analog 1g without changing the cytotoxicity of the host cell, reaching an IC50 of 11.7 μM for trypomastigotes. The mechanism of action was demonstrated by the interaction of compound 1g with hemin in solution and prevention of heme peroxidation. Compound 1g and heme treatment induced alterations of the mitochondrion-kinetoplast complex in epimastigotes and trypomastigotes and also, accumulation of electron-dense deposits in amastigotes as visualized by transmission electron microscopy. The trypanocidal activity of 4-aminoquinolines and the elucidation of the mechanism involving interaction with heme is a neglected field of research, given the parasite's lack of heme biosynthetic pathway and the importance of this cofactor for parasite survival and growth. The results of this study can improve and guide rational drug development and combination treatment strategies.

  6. Efficacy of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinone derivatives against different Trypanosoma cruzi discrete type units: Identification of a promising hit compound.

    Science.gov (United States)

    Lara, L S; Moreira, C S; Calvet, C M; Lechuga, G C; Souza, R S; Bourguignon, S C; Ferreira, V F; Rocha, D; Pereira, M C S

    2018-01-20

    The limited efficacy of benznidazole (Bz) indicated by failures of current Phase II clinical trials emphasizes the urgent need to identify new drugs with improved safety and efficacy for treatment of Chagas disease (CD). Herein, we analyzed the efficacy of a series of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones against different Trypanosoma cruzi discrete type units (DTUs) of relevant clinical forms of CD. Cytotoxic and trypanocidal effect of naphthoquinone derivatives were assessed in mammalian cells, trypomastigotes and intracellular amastigotes using, luminescent assays (CellTiter-Glo and T. cruzi Dm28c-luciferase) and/or counting with a light microscope. Reactive oxygen species (ROS) production and intracellular targets of promising compounds were assessed with 2',7'-dichlorodihydrofluorescein diacetate (H 2 DCFDA) probe and ultrastructural analysis, respectively. ADMET properties were analyzed by in silico modeling. Most of the compounds showed low cytotoxic effect. Only two compounds (Compounds 2 and 11) had IC 50 values lower than Bz, showing higher susceptibility of bloodstream trypomastigotes. Compound 2 exhibited greater efficacy against trypomastigotes from different T. cruzi DTUs, even better than Bz against Brazil and CL strains. Ultrastructural analysis revealed changes in intracellular compartments, suggesting autophagy as one possible mechanism of action. Oxidative stress, induced by Compound 2, resulted in elevated level of ROS, leading to parasite death. Compound 2 was also effective against intracellular amastigotes, showing high selectivity index. ADMET analysis predicted good oral bioavailability, reduced drug metabolism and no carcinogenic potential for Compound 2. The data highlight Compound 2 as a hit compound and stimulate further structural and pharmacological optimization to potentiate its trypanocidal activity and selectivity. Copyright © 2017. Published by Elsevier Masson SAS.

  7. Mode of action of nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: is oxidative stress involved?

    Science.gov (United States)

    Boiani, Mariana; Piacenza, Lucia; Hernández, Paola; Boiani, Lucia; Cerecetto, Hugo; González, Mercedes; Denicola, Ana

    2010-06-15

    Chagas disease is caused by the trypanosomatid parasite Trypanosoma cruzi and threatens millions of lives in South America. As other neglected diseases there is almost no research and development effort by the pharmaceutical industry and the treatment relies on two drugs, Nifurtimox and Benznidazole, discovered empirically more than three decades ago. Nifurtimox, a nitrofurane derivative, is believed to exert its biological activity through the bioreduction of the nitro-group to a nitro-anion radical which undergoes redox-cycling with molecular oxygen. This hypothesis is generally accepted, although arguments against it have been presented. In the present work we studied the ability of Nifurtimox and five N-oxide-containing heterocycles to induce oxidative stress in T. cruzi. N-Oxide-containing heterocycles represent a promising group of new trypanosomicidal agents and their mode of action is not completely elucidated. The results here obtained argue against the oxidative stress hypothesis almost for all the studied compounds, including Nifurtimox. A significant reduction in the level of parasitic low-molecular-weight thiols was observed after Nifurtimox treatment; however, it was not linked to the production of reactive oxidant species. Besides, redox-cycling is only observed at high Nifurtimox concentrations (>400microM), two orders of magnitude higher than the concentration required for anti-proliferative activity (5microM). Our results indicate that an increase in oxidative stress is not the main mechanism of action of Nifurtimox. Among the studied N-oxide-containing heterocycles, benzofuroxan derivatives strongly inhibited parasite dehydrogenase activity and affected mitochondrial membrane potential. The indazole derivative raised intracellular oxidants production, but it was the least effective as anti-T. cruzi. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Activity in vitro and in vivo against Trypanosoma cruzi of a furofuran lignan isolated from Piper jericoense.

    Science.gov (United States)

    García-Huertas, Paola; Olmo, Francisco; Sánchez-Moreno, Manuel; Dominguez, Jorge; Chahboun, Rachid; Triana-Chávez, Omar

    2018-06-01

    Piperaceae species are abundant in the tropics and are important components of secondary vegetation. Many of these plants have received considerable attention due to their wide range of biological activities. Here, the trypanocidal activity of extracts and fractions with different polarities obtained from Colombian Piper jericoense plant was evaluated. A furofuran lignan, (1S,3aS,4S,6aS)-1-(3',4'-dimethoxyphenyl)-4-(3″,4″-methylendioxyphenyl)hexahydrofuro[3,4-c]furan, (1), was isolated from Colombian Piper jericoense leaves ethyl acetate extract. Its relative configuration at the stereogenic centers was established on the basis of various spectroscopic analyses, including 1D- (1H, 13C, and DEPT) and 2D-NMR (COSY, NOESY, HMQC and HMBC) and a 2D INADEQUATE NMR experiment as well as by comparison of their spectral data with those of related compounds such as (+)-Kobusin (2). The activity against Trypanosoma cruzi indicated that compound 1 was active against all parasite forms (epimastigote, amastigote and trypomastigote) and presented lower toxicity than the reference drug, benznidazole (Bz), evidenced by a selective index of 18.4 compared to that of Bz, which was 6.7. Moreover, this compound inhibited the infectious process, and it was active in infected mice in the acute phase. This compound significantly inhibited the T. cruzi Fe-SOD enzyme, whereas Cu/Zn-SOD from human cells was not affected. Ultrastructural analyses, together with metabolism-excretion studies in the parasite, were also performed to identify the possible mechanism of action of the tested compound. Interestingly, the lignan affected the parasite structure, but it did not alter the energetic metabolism. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Zoonotic trypanosomes in South East Asia: Attempts to control Trypanosoma lewisi using human and animal trypanocidal drugs.

    Science.gov (United States)

    Desquesnes, Marc; Yangtara, Sarawut; Kunphukhieo, Pawinee; Jittapalapong, Sathaporn; Herder, Stéphane

    2016-10-01

    Beside typical human trypanosomes responsible of sleeping sickness in Africa and Chagas disease in Latin America, there is a growing number of reported atypical human infections due to Trypanosoma evansi, a livestock parasite, or Trypanosoma lewisi, a rat parasite, especially in Asia. Drugs available for the treatment of T. brucei ssp. in humans are obviously of choice for the control of T. evansi because it is derived from T. brucei. However, concerning T. lewisi, there is an urgent need to determine the efficacy of trypanocidal drugs for the treatment in humans. In a recent study, pentamidine and fexinidazole were shown to have the best efficacy against one stock of T. lewisi in rats. In the present study suramin, pentamidine, eflornitine, nifurtimox, benznidazole and fexinidazole, were evaluated at low and high doses, in single day administration to normal rats experimentally infected with a stock of T. lewisi recently isolated in Thailand. Because none of these treatments was efficient, a trial was made with the most promising trypanocide identified in a previous study, fexinidazole 100mg/kg, in 5 daily administrations. Results observed were unclear. To confirm the efficacy of fexinidazole, a mixed infection protocol was set up in cyclophosphamide immunosuppressed rats. Animals were infected successively by T. lewisi and T. evansi, and received 10 daily PO administrations of 200mg/kg fexinidazole. Drastic effects were observed against T. evansi which was cleared from the rat's blood within 24 to 48h; however, the treatment did not affect T. lewisi which remained in high number in the blood until the end of the experiment. This mixed infection/treatment protocol clearly demonstrated the efficacy of fexinidazole against T. evansi and its inefficacy against T. lewisi. Since animal trypanocides were also recently shown to be inefficient, other protocols as well as other T. lewisi stocks should be investigated in further studies. Copyright © 2016. Published by

  10. Interactions between 4-aminoquinoline and heme: Promising mechanism against Trypanosoma cruzi.

    Science.gov (United States)

    Lechuga, Guilherme Curty; Borges, Júlio Cesar; Calvet, Claudia Magalhães; de Araújo, Humberto Pinheiro; Zuma, Aline Araujo; do Nascimento, Samara Braga; Motta, Maria Cristina Machado; Bernardino, Alice Maria Rolim; Pereira, Mirian Claudia de Souza; Bourguignon, Saulo Cabral

    2016-12-01

    Chagas disease is a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. The current drugs used to treat this disease have limited efficacy and produce severe side effects. Quinolines, nitrogen heterocycle compounds that form complexes with heme, have a broad spectrum of antiprotozoal activity and are a promising class of new compounds for Chagas disease chemotherapy. In this study, we evaluated the activity of a series of 4-arylaminoquinoline-3-carbonitrile derivatives against all forms of Trypanosoma cruzi in vitro. Compound 1g showed promising activity against epimastigote forms when combined with hemin (IC50<1 μM), with better performance than benznidazole, the reference drug. This compound also inhibited the viability of trypomastigotes and intracellular amastigotes. The potency of 1g in combination with heme was enhanced against epimastigotes and trypomastigotes, suggesting a similar mechanism of action that occurs in Plasmodium spp. The addition of hemin to the culture medium increased trypanocidal activity of analog 1g without changing the cytotoxicity of the host cell, reaching an IC50 of 11.7 μM for trypomastigotes. The mechanism of action was demonstrated by the interaction of compound 1g with hemin in solution and prevention of heme peroxidation. Compound 1g and heme treatment induced alterations of the mitochondrion-kinetoplast complex in epimastigotes and trypomastigotes and also, accumulation of electron-dense deposits in amastigotes as visualized by transmission electron microscopy. The trypanocidal activity of 4-aminoquinolines and the elucidation of the mechanism involving interaction with heme is a neglected field of research, given the parasite's lack of heme biosynthetic pathway and the importance of this cofactor for parasite survival and growth. The results of this study can improve and guide rational drug development and combination treatment strategies. Copyright © 2016 The Authors. Published by Elsevier

  11. Differential Gel Electrophoresis (DIGE Evaluation of Naphthoimidazoles Mode of Action: A Study in Trypanosoma cruzi Bloodstream Trypomastigotes.

    Directory of Open Access Journals (Sweden)

    Giselle Villa Flor Brunoro

    2016-08-01

    Full Text Available The obligate intracellular protozoan Trypanosoma cruzi is the causative agent of Chagas disease, a neglected illness affecting millions of people in Latin America that recently entered non-endemic countries through immigration, as a consequence of globalization. The chemotherapy for this disease is based mainly on benznidazole and nifurtimox, which are very efficient nitroderivatives against the acute stage but present limited efficacy during the chronic phase. Our group has been studying the trypanocidal effects of naturally occurring quinones and their derivatives, and naphthoimidazoles derived from β-lapachone N1, N2 and N3 were the most active. To assess the molecular mechanisms of action of these compounds, we applied proteomic techniques to analyze treated bloodstream trypomastigotes, which are the clinically relevant stage of the parasite.The approach consisted of quantification by 2D-DIGE followed by MALDI-TOF/TOF protein identification. A total of 61 differentially abundant protein spots were detected when comparing the control with each N1, N2 or N3 treatment, for 34 identified spots. Among the differentially abundant proteins were activated protein kinase C receptor, tubulin isoforms, asparagine synthetase, arginine kinase, elongation factor 2, enolase, guanine deaminase, heat shock proteins, hypothetical proteins, paraflagellar rod components, RAB GDP dissociation inhibitor, succinyl-CoA ligase, ATP synthase subunit B and methionine sulfoxide reductase.Our results point to different modes of action for N1, N2 and N3, which indicate a great variety of metabolic pathways involved and allow for novel perspectives on the development of trypanocidal agents.

  12. Parasitic loads in tissues of mice infected with Trypanosoma cruzi and treated with AmBisome.

    Directory of Open Access Journals (Sweden)

    Sabrina Cencig

    2011-06-01

    Full Text Available BACKGROUND: Chagas disease is one of the most important public health problems and a leading cause of cardiac failure in Latin America. The currently available drugs to treat T. cruzi infection (benznidazole and nifurtimox are effective in humans when administered during months. AmBisome (liposomal amphotericin B, already shown efficient after administration for some days in human and experimental infection with Leishmania, has been scarcely studied in T. cruzi infection. AIMS: This work investigates the effect of AmBisome treatment, administered in 6 intraperitoneal injections at various times during acute and/or chronic phases of mouse T. cruzi infection, comparing survival rates and parasitic loads in several tissues. METHODOLOGY: Quantitative PCR was used to determine parasitic DNA amounts in tissues. Immunosuppressive treatment with cyclophosphamide was used to investigate residual infection in tissues. FINDINGS: Administration of AmBisome during the acute phase of infection prevented mice from fatal issue. Parasitaemias (microscopic examination were reduced in acute phase and undetectable in chronic infection. Quantitative PCR analyses showed significant parasite load reductions in heart, liver, spleen, skeletal muscle and adipose tissues in acute as well as in chronic infection. An earlier administration of AmBisome (one day after parasite inoculation had a better effect in reducing parasite loads in spleen and liver, whereas repetition of treatment in chronic phase enhanced the parasite load reduction in heart and liver. However, whatever the treatment schedule, cyclophosphamide injections boosted infection to parasite amounts comparable to those observed in acutely infected and untreated mice. CONCLUSIONS: Though AmBisome treatment fails to completely cure mice from T. cruzi infection, it impedes mortality and reduces significantly the parasitic loads in most tissues. Such a beneficial effect, obtained by administrating it over a short

  13. Assessing anti-T. cruzi candidates in vitro for sterile cidality

    Directory of Open Access Journals (Sweden)

    Monica Cal

    2016-12-01

    Full Text Available Total clearance of the T. cruzi infection – referred to herein as “sterile cure” – seems to be a critical prerequisite for new drug candidates for Chagas disease, ensuring long-term beneficial effects for patients in the chronic indeterminate stage. This requirement is notably supported by the recent findings of clinical studies involving posaconazole and fosravuconazole, where the majority of patients treated eventually relapsed after an apparent clearance of parasitaemia at the end of treatment. We have adapted an in vitro system to predict the ability of a compound to deliver sterile cure. It relies on mouse peritoneal macrophages as host cells for Trypanosoma cruzi amastigotes. The macrophages do not proliferate, allowing for long-term testing and wash-out experiments. Giemsa staining followed by microscopy provides a highly sensitive and specific tool to quantify the numbers of infected host cells. Combining macrophages as host cells and Giemsa staining as the read-out, we demonstrate that posaconazole and other CYP51 inhibitors are unable to achieve complete clearance of an established T. cruzi infection in vitro in spite of the fact that these compounds are active at significantly lower concentrations than the reference drugs benznidazole and nifurtimox. Indeed, a few macrophages remained infected after 96 h of drug incubation in the presence of CYP51 inhibitors–albeit at a very low parasite load. These residual T. cruzi amastigotes were shown to be viable and infective, as demonstrated by wash-out experiments. We advocate characterizing any new anti-T. cruzi early stage candidates for sterile cidality early in the discovery cascade, as a surrogate for delivery of sterile cure in vivo.

  14. Reversible Cysteine Protease Inhibitors Show Promise for a Chagas Disease Cure

    Science.gov (United States)

    Beaulieu, Christian; Black, W. Cameron; Isabel, Elise; Vasquez-Camargo, Fabio; Nath-Chowdhury, Milli; Massé, Frédéric; Mellon, Christophe; Methot, Nathalie

    2014-01-01

    The cysteine protease cruzipain is essential for the viability, infectivity, and virulence of Trypanosoma cruzi, the causative agent of Chagas disease. Thus, inhibitors of cruzipain are considered promising anti-T. cruzi chemotherapeutic agents. Reversible cruzipain inhibitors containing a nitrile “warhead” were prepared and demonstrated 50% inhibitory concentrations (IC50s) as potent as 1 nM in baculovirus-generated cruzipain enzyme assays. In epimastigote and intracellular amastigote in vitro assays, the most potent compounds demonstrated antiparasitic behavior in the 5 to 10 μM IC50 range; however, trypomastigote production from the amastigote form was ∼90 to 95% inhibited at 2 μM. Two key compounds, Cz007 and Cz008, with IC50s of 1.1 and 1.8 nM, respectively, against the recombinant enzyme were tested in a murine model of acute T. cruzi infection, with oral dosing in chow for 28 days at doses from 3 to 50 mg/kg of body weight. At 3 mg/kg of Cz007 and 3 mg/kg of Cz008, the blood parasitemia areas under the concentration-time curves were 16% and 25% of the untreated group, respectively. At sacrifice, 24 days after immunosuppression with cyclophosphamide, parasite presence in blood, heart, and esophagus was evaluated. Based on negative quantitative PCR results in all three tissues, cure rates in surviving animals were 90% for Cz007 at 3 mg/kg, 78% for Cz008 at 3 mg/kg, and 71% for benznidazole, the control compound, at 50 mg/kg. PMID:24323474

  15. Enteric Neuronal Damage, Intramuscular Denervation and Smooth Muscle Phenotype Changes as Mechanisms of Chagasic Megacolon: Evidence from a Long-Term Murine Model of Trypanosoma cruzi Infection.

    Directory of Open Access Journals (Sweden)

    Camila França Campos

    Full Text Available We developed a novel murine model of long-term infection with Trypanosoma cruzi with the aim to elucidate the pathogenesis of megacolon and the associated adaptive and neuromuscular intestinal disorders. Our intent was to produce a chronic stage of the disease since the early treatment should avoid 100% mortality of untreated animals at acute phase. Treatment allowed animals to be kept infected and alive in order to develop the chronic phase of infection with low parasitism as in human disease. A group of Swiss mice was infected with the Y strain of T. cruzi. At the 11th day after infection, a sub-group was euthanized (acute-phase group and another sub-group was treated with benznidazole and euthanized 15 months after infection (chronic-phase group. Whole colon samples were harvested and used for studying the histopathology of the intestinal smooth muscle and the plasticity of the enteric nerves. In the acute phase, all animals presented inflammatory lesions associated with intense and diffuse parasitism of the muscular and submucosa layers, which were enlarged when compared with the controls. The occurrence of intense degenerative inflammatory changes and increased reticular fibers suggests inflammatory-induced necrosis of muscle cells. In the chronic phase, parasitism was insignificant; however, the architecture of Aüerbach plexuses was focally affected in the inflamed areas, and a significant decrease in the number of neurons and in the density of intramuscular nerve bundles was detected. Other changes observed included increased thickness of the colon wall, diffuse muscle cell hypertrophy, and increased collagen deposition, indicating early fibrosis in the damaged areas. Mast cell count significantly increased in the muscular layers. We propose a model for studying the long-term (15 months pathogenesis of Chagasic megacolon in mice that mimics the human disease, which persists for several years and has not been fully elucidated. We

  16. 4-aminopyridyl-based lead compounds targeting CYP51 prevent spontaneous parasite relapse in a chronic model and improve cardiac pathology in an acute model of Trypanosoma cruzi infection.

    Science.gov (United States)

    Calvet, Claudia Magalhaes; Choi, Jun Yong; Thomas, Diane; Suzuki, Brian; Hirata, Ken; Lostracco-Johnson, Sharon; de Mesquita, Liliane Batista; Nogueira, Alanderson; Meuser-Batista, Marcelo; Silva, Tatiana Araujo; Siqueira-Neto, Jair Lage; Roush, William R; de Souza Pereira, Mirian Claudia; McKerrow, James H; Podust, Larissa M

    2017-12-01

    Chagas disease, caused by the protozoan Trypanosoma cruzi, is the leading cause of heart failure in Latin America. The clinical treatment of Chagas disease is limited to two 60 year-old drugs, nifurtimox and benznidazole, that have variable efficacy against different strains of the parasite and may lead to severe side effects. CYP51 is an enzyme in the sterol biosynthesis pathway that has been exploited for the development of therapeutics for fungal and parasitic infections. In a target-based drug discovery program guided by x-ray crystallography, we identified the 4-aminopyridyl-based series of CYP51 inhibitors as being efficacious versus T.cruzi in vitro; two of the most potent leads, 9 and 12, have now been evaluated for toxicity and efficacy in mice. Both acute and chronic animal models infected with wild type or transgenic T. cruzi strains were evaluated. There was no evidence of toxicity in the 28-day dosing study of uninfected animals, as judged by the monitoring of multiple serum and histological parameters. In two acute models of Chagas disease, 9 and 12 drastically reduced parasitemia, increased survival of mice, and prevented liver and heart injury. None of the compounds produced long term sterile cure. In the less severe acute model using the transgenic CL-Brenner strain of T.cruzi, parasitemia relapsed upon drug withdrawal. In the chronic model, parasitemia fell to a background level and, as evidenced by the bioluminescence detection of T. cruzi expressing the red-shifted luciferase marker, mice remained negative for 4 weeks after drug withdrawal. Two immunosuppression cycles with cyclophosphamide were required to re-activate the parasites. Although no sterile cure was achieved, the suppression of parasitemia in acutely infected mice resulted in drastically reduced inflammation in the heart. The positive outcomes achieved in the absence of sterile cure suggest that the target product profile in anti-Chagasic drug discovery should be revised in favor of

  17. Evaluación de la toxicidad del aceite esencial de Aloysia triphylla Britton (cedrón y de la actividad anti-Trypanosoma cruzi del citral, in vivo

    Directory of Open Access Journals (Sweden)

    Juan Rojas Armas

    2015-04-01

    Full Text Available Introducción: Existe escasa investigación en enfermedades olvidadas. Las plantas medicinales son una potencial fuente de compuestos antimicrobianos. Objetivos: Determinar la toxicidad del aceite esencial de Aloysia triphylla y la actividad del citral contra Trypanosoma cruzi en ratones. Diseño: Estudio experimental preclínico in vivo. Institución: Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú. Material: Ratones albinos. Intervenciones: La toxicidad aguda oral a dosis única fue evaluada en ratas albinas. Para la actividad tripanocida se utilizaron ratones asignados a los siguientes grupos: infectados y no tratados (G1, infectados y tratados con citral en dosis de 50, 150 y 300 mg/kg/día (G2, G3 y G4, respectivamente, infectados y tratados con benznidazol 100 mg/kg (G5 y no infectados y no tratados (G6. La parasitemia fue determinada individualmente cada 2 días por microscopia directa. En los días 14, 21 y 28 post infección, cinco ratones de cada grupo fueron sacrificados y los corazones procesados para análisis histopatológico. Principales medidas de resultados: Signos de toxicidad y mortalidad, y parasitemia. Resultados: La dosis límite de 2 000 mg/kg no provocó signos ni síntomas de toxicidad y los estudios anatomopatológicos macroscópicos y microscópicos no mostraron alteración de los órganos estudiados. La parasitemia fue reducida significativamente con la dosis de 300 mg/kg en los días 16° 18° y 20° post infección (p < 0,05. El número de nidos de amastigotes y de infiltrados inflamatorios en corazón fueron reducidos en 67,7% y 51,7%, respectivamente, con 300 mg/kg en el día 28°. Conclusiones: El aceite esencial de Aloysia triphylla es calificado como no tóxico y el citral en dosis de 300 mg/kg tuvo actividad contra Trypanosoma cruzi en ratones.

  18. Trypanosoma cruzi I and IV stocks from Brazilian Amazon are divergent in terms of biological and medical properties in mice.

    Directory of Open Access Journals (Sweden)

    Wuelton Marcelo Monteiro

    Full Text Available In the Brazilian Amazon, clinical and epidemiological frameworks of Chagas disease are very dissimilar in relation to the endemic classical areas of transmission, possibly due to genetic and biological characteristics of the circulating Trypanosoma cruzi stocks. Twenty six T. cruzi stocks from Western Amazon Region attributed to the TcI and TcIV DTUs were comparatively studied in Swiss mice to test the hypothesis that T. cruzi clonal structure has a major impact on its biological and medical properties.Seventeen parameters were assayed in mice infected with 14 T. cruzi strains belonging to DTU TcI and 11 strains typed as TcIV. In comparison with TcI, TcIV stocks promoted a significantly shorter pre-patent period (p<0.001, a longer patent period (p<0.001, higher values of mean daily parasitemia (p = 0.009 and maximum of parasitemia (p = 0.015, earlier days of maximum parasitemia (p<0.001 and mortality (p = 0.018, higher mortality rates in the acute phase (p = 0.047, higher infectivity rates (p = 0.002, higher positivity in the fresh blood examination (p<0.001, higher positivity in the ELISA at the early chronic phase (p = 0.022, and a higher positivity in the ELISA at the late chronic phase (p = 0.003. On the other hand TcI showed higher values of mortality rates in the early chronic phase (p = 0.014, higher frequency of mice with inflammatory process in any organ (p = 0.005, higher frequency of mice with tissue parasitism in any organ (p = 0.027 and a higher susceptibility to benznidazole (p = 0.002 than TcIV. Survival analysis showing the time elapsed from the day of inoculation to the beginning of the patent period was significantly shorter for TcIV strains and the death episodes triggered following the infection with TcI occurred significantly later in relation to TcIV. The notable exceptions come from positivity in the hemocultures and PCR, for which the results were similar.T. cruzi stocks

  19. Efecto anti-Trypanosoma cruzi del aceite esencial de Cymbopogon citratus (DC Stapf (hierba luisa en ratones Balb/c

    Directory of Open Access Journals (Sweden)

    Juan Rojas

    2012-01-01

    Full Text Available Objetivo: Determinar la actividad anti-Trypanosoma cruzi in vivo del aceite esencial de Cymbopogon citratus en ratones Balb/c. Diseño: Estudio experimental, prospectivo. Institución: Instituto de Investigaciones Clínicas e Instituto de Medicina Tropical de la Facultad de Medicina de la Universidad Nacional Mayor de San Marcos, Lima, Perú. Material biológico: Aceite esencial de Cymbopogon citratus; ratones albinos Balb/c. Intervenciones: Los animales fueron asignados aleatoriamente a seis grupos de 15 ratones cada uno: infectados y no tratados (G1, infectados y tratados con benznidazol 100 mg/kg (G2, infectados y tratados con aceite esencial de Cymbopogon citratus 100 mg/kg y 250 mg/kg (G3 y G4, respectivamente, no infectados y no tratados (G5, y no infectados y tratados con 250 mg de Cymbopogon citratus (G6. La infección con T. cruzi se realizó con 10(4 trypomastigotes sanguíneos y el tratamiento empezó en el 8º día post infección (dpi hasta el 28° dpi. La parasitemia se determinó con microscopia óptica cada dos días en 5 µL de sangre de la cola. En el 14°, 21° y 28° dpi, cinco animales de cada grupo fueron sacrificados y se removió el corazón para estudio histopatológico. Principales medidas de resultados: Parasitemia, número de nidos de amastigotes e infiltrados inflamatorios. Resultados: El aceite esencial de Cymbopogon citratus 250 mg/kg/día produjo una reducción significativa en el pico de parasitemia desde 113,92 ± 25,66 hasta 74,60 ± 12,37 tripomastigotes/mL (p < 0,05. Con 100 mg/kg/día se produjo una reducción hasta 77,40 ± 14,93 tripomastigotes/ mL (p < 0,05. También redujo el número de amastigotes y de infiltrados inflamatorios en el corazón. Conclusiones: El aceite esencial de Cymbopogon citratus tuvo efecto anti-Trypanosoma cruzi en ratones Balb/c en lo referente a la disminución de la parasitemia, el número de nidos de amastigotes y los resultados inflamatorios.

  20. In vitro activity of 2-pyridinecarboxylic acid against trypanosomes of the subgenus Schizotrypanum isolated from the bat Phyllostomus hastatus = Atividade in vitro do ácido 2-piridinocarboxílico em tripanossoma do subgênero Schizotrypanum isolado do morcego Phyllostomus hastatus

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Ceridóreo Corrêa

    2011-09-01

    Full Text Available The effect of 2-pyridinecarboxylic acid (picolinic acid on trypanosomes of the subgenus Schizotrypanum isolated from the bat Phyllostomus hastatus was determined in this study. Picolinic acid, at 50 ƒÊg mL-1, inhibited epimastigote growth by 99% after 12 days incubation. In addition, trypomastigote motility decreased by 50% after 6h and completely after 24h in the presence of 50 ƒÊg mL-1 picolinic acid. The 50% cytotoxic concentration on HEp-2 cell line was275 ƒÊg mL-1 after 4 days incubation. Altogether, these results indicate higher toxicity against trypanosomes. The inhibitory effect of picolinic acid on epimastigote growth can be partially reversed by nicotinic acid and L-tryptophan, suggesting a competitive inhibition. Furthermore, two anti-Trypanosoma (Schizotrypanum cruzi drugs were also evaluated with regard to bat trypanosome growth. Benznidazole, at 50 ƒÊg mL-1, inhibited epimastigote growth by 90% after 12 days incubation. Nifurtimox, at the same concentration, caused 96% growth inhibition after four days incubation. Corroborating a previous study, bat trypanosomes are a good model for screening new trypanocidal compounds. Moreover, they can be used to study many biological processes common to human pathogenic trypanosomatids.O efeito do acido 2- piridinocarboxilico (acido picolinico sobre um tripanossoma do subgenero Schizotrypanum isolado do morcego Phyllostomus hastatus foi determinado neste estudo. O acido picolinico, na concentracao de 50 ƒÊg mL-1, inibiu 99% do crescimento de epimastigotas apos 12 dias de incubacao. Alem disso, houve um decrescimo de 50 e 100% na mobilidade dos tripomastigotas apos 6 e 24h, respectivamente, em presenca de acido picolinico na concentracao de 50 ƒÊg mL-1. A concentracao citotoxica 50% para celulas HEp-2 foi de 275 ƒÊg mL-1 apos quatro dias de incubacao. Esses resultados indicam maior toxicidade contra os tripanossomas. O efeito inibitoriodo acido picolinico sobre o crescimento de

  1. Non-peptidic cruzain inhibitors with trypanocidal activity discovered by virtual screening and in vitro assay.

    Directory of Open Access Journals (Sweden)

    Helton J Wiggers

    Full Text Available A multi-step cascade strategy using integrated ligand- and target-based virtual screening methods was developed to select a small number of compounds from the ZINC database to be evaluated for trypanocidal activity. Winnowing the database to 23 selected compounds, 12 non-covalent binding cruzain inhibitors with affinity values (K i in the low micromolar range (3-60 µM acting through a competitive inhibition mechanism were identified. This mechanism has been confirmed by determining the binding mode of the cruzain inhibitor Nequimed176 through X-ray crystallographic studies. Cruzain, a validated therapeutic target for new chemotherapy for Chagas disease, also shares high similarity with the mammalian homolog cathepsin L. Because increased activity of cathepsin L is related to invasive properties and has been linked to metastatic cancer cells, cruzain inhibitors from the same library were assayed against it. Affinity values were in a similar range (4-80 µM, yielding poor selectivity towards cruzain but raising the possibility of investigating such inhibitors for their effect on cell proliferation. In order to select the most promising enzyme inhibitors retaining trypanocidal activity for structure-activity relationship (SAR studies, the most potent cruzain inhibitors were assayed against T. cruzi-infected cells. Two compounds were found to have trypanocidal activity. Using compound Nequimed42 as precursor, an SAR was established in which the 2-acetamidothiophene-3-carboxamide group was identified as essential for enzyme and parasite inhibition activities. The IC50 value for compound Nequimed42 acting against the trypomastigote form of the Tulahuen lacZ strain was found to be 10.6±0.1 µM, tenfold lower than that obtained for benznidazole, which was taken as positive control. In addition, by employing the strategy of molecular simplification, a smaller compound derived from Nequimed42 with a ligand efficiency (LE of 0.33 kcal mol(-1 atom(-1

  2. Non-peptidic cruzain inhibitors with trypanocidal activity discovered by virtual screening and in vitro assay.

    Science.gov (United States)

    Wiggers, Helton J; Rocha, Josmar R; Fernandes, William B; Sesti-Costa, Renata; Carneiro, Zumira A; Cheleski, Juliana; da Silva, Albérico B F; Juliano, Luiz; Cezari, Maria H S; Silva, João S; McKerrow, James H; Montanari, Carlos A

    2013-01-01

    A multi-step cascade strategy using integrated ligand- and target-based virtual screening methods was developed to select a small number of compounds from the ZINC database to be evaluated for trypanocidal activity. Winnowing the database to 23 selected compounds, 12 non-covalent binding cruzain inhibitors with affinity values (K i) in the low micromolar range (3-60 µM) acting through a competitive inhibition mechanism were identified. This mechanism has been confirmed by determining the binding mode of the cruzain inhibitor Nequimed176 through X-ray crystallographic studies. Cruzain, a validated therapeutic target for new chemotherapy for Chagas disease, also shares high similarity with the mammalian homolog cathepsin L. Because increased activity of cathepsin L is related to invasive properties and has been linked to metastatic cancer cells, cruzain inhibitors from the same library were assayed against it. Affinity values were in a similar range (4-80 µM), yielding poor selectivity towards cruzain but raising the possibility of investigating such inhibitors for their effect on cell proliferation. In order to select the most promising enzyme inhibitors retaining trypanocidal activity for structure-activity relationship (SAR) studies, the most potent cruzain inhibitors were assayed against T. cruzi-infected cells. Two compounds were found to have trypanocidal activity. Using compound Nequimed42 as precursor, an SAR was established in which the 2-acetamidothiophene-3-carboxamide group was identified as essential for enzyme and parasite inhibition activities. The IC50 value for compound Nequimed42 acting against the trypomastigote form of the Tulahuen lacZ strain was found to be 10.6±0.1 µM, tenfold lower than that obtained for benznidazole, which was taken as positive control. In addition, by employing the strategy of molecular simplification, a smaller compound derived from Nequimed42 with a ligand efficiency (LE) of 0.33 kcal mol(-1) atom(-1) (compound

  3. Biochemical behavior of Trypanosoma cruzi strains isolated from mice submitted to specific chemotherapy

    Directory of Open Access Journals (Sweden)

    Jesila Pinto M. Marretto

    1994-12-01

    Full Text Available To investigate the influence of chemotherapy on the biochemical beha vior of Trypanosoma cruzi strains, three groups of mice were infected with one of three strains of T. cruzi of different biological and isoenzymic patterns (Peruvian, 21 SF and Colombian strains. Each group was subdivided into subgroups: 1 - treated with nifurtimox; 2 - treated with benznidazole and 3 - untreated infected controls. At the end of treatment, that lasted for 90 days, xenodiagnosis, sub inoculation of blood into new born mice and haemoculture were performed as tests of cure. From the positive tests, 22 samples of T. cruzi were isolated from all subgroups. Electrophoretic analysis of the isoenzymes PGM, GP1, ALAT and AS AT failed to show any difference between parasite strains isolated from treated and untreated mice, which indicates that no detectable clonal selection or parasite genetic markers alterations concerning the isoenzymes analysed have been determined by treatment with drugs of recognized antiparasitic effect, suggesting stability of the phenotypic characteristics of the three biological types of T. cruzi strains.Com o objetivo de investigar a influência da quimioterapia no padrão bioquímico de diferentes cepas do Trypanosoma cruzi, três grupos de camundongos foram infectados respectivamente com as cepas Peruana, 21 SF e Colombiana, que correspondem a diferentes padrões biológicos e isoenzimáticos. Cada grupo foi subdividido em subgrupos: 1 - tratados com nifurtimox; 2 - tratados com benzonidazol; 3- controles infectados não tratados. Ao final do tratamento que durou 90 dias, os animais foram submetidos a testes parasitológicos de cura: xenodiagnóstico, subinoculação do sangue em camundongos recém-nascidos e hemocultura em meio Warren. A partir da positivação destes testes, foram isoladas 22 amostras do T. cruzi dos três subgrupos. A análise eletroforética dos extratos enzimáticos obtidos após cultura para as enzimas PGM, GPI, ALAT e

  4. Enfermedad de Chagas congenita en la Ciudad de Salta, Argentina Congenital Chagas' disease in Salta, Argentina

    Directory of Open Access Journals (Sweden)

    Mario Zaidenberg

    1993-02-01

    presence of T. cruzi in blood, explored in fresh smears by serial micro-hematocrite and/or by xenodiagnosis, was the only criterion to define infection in NB. All NB were followed up by direct agglutination (DA with or without 2 mercaptoethanol (DA-w2ME, DA-wo2ME and IIF in order to establish the specific antibody kinetics. Clinical studies on NB with T. cruzi infection include routine laboratory tests. Benznidazole (3 to 7 mg/kg/day and, in 1 case, nifurtimox (15 mg/kg/day were employed as therapeutic agents. T. cruzi infection was confirmed in 149 PW (15.9%, table I. These chagasic mothers delivered 6 chagasic NB (CCHD-NB, (4%. Diagnosis of congenital Chagas' disease accounted for a total of 12 NB out of the 968 studied. 4 out of them were positive by both micro-hematocrite and blood smears and 7 by micro-hematocrite alone. Xenodiagnosis was performed in 2 NB resulting positive in both cases, table II. The most usual clinical findings included hepatomegaly (present in all cases, splenomegaly 8/12, jaundice 10/12 and prematurity 5/12, table 3. Laboratory findings showed anemia to be of hypochromic microcytic type in all cases. Other laboratory findings included lymphocytosis, normal erythrosedimentation, slight to moderate increase of transaminases in all cases, and elevated indirect bilirrubin in cases with jaundice, table 4. Analysis of cerebro spinal fluid in 6 CCh-NB revealed the presence of T. cruzi in 2 cases, plus abnormal cytochemical content in one of them, table 4. The serological reactions of infected and treated NB became negative between 4th and 8th month in all but 1 case that remained positive until 14th, fig. 1. A close correlation was found between DA and IIF. DA-w2ME liter showed a significant drop during the initial phase of the controls. Benznidazole was successful in 11 out of the 12 CCh-NB. The remaining NB was effectively treated with nifurtimox. Therapeutic tolerance was satisfactory for both agents. These observations showed that congenital Chagas

  5. Doença de Chagas aguda: vias de transmissão, aspectos clínicos e resposta à terapêutica específica em casos diagnosticados em um centro urbano Acute Chagas' disease: transmission mechanisms, clinical features and specific therapeutic response in cases diagnosed in an urban center

    Directory of Open Access Journals (Sweden)

    M.A. Shikanai-Yasuda

    1990-02-01

    . The following transmission routes were involved: triatominae in 7 cases, blood transfusion in 9, kidney transplantation and/or blood transfusion in 4, accidental in 1, oral route in 3, probably breast feeding in 1, congenital or breast feeding in 1, and congenital or blood transfusion in 1. Six patients infected by triatominae acquired the disease between 1974 and 1980 and one in 1987. The blood transfusion infected patients acquired the disease in Greater São Paulo, seven of whom after 1983. The acute phase Chagas' disease was oligosymptomatic in 4 patients: three of such patients being immunocompromised by drugs or other diseases. Another two adult immunocompromised patients developed myocarditis and congestive heart failure. Clinical features were severe in 5 from 6 children under two years, irrespective of the transmission route. Evaluation of the acute phase patients treated with benznidazol (4-10 mg/kg/day showed: therapeutic failure in 4/16 (25.0%; possible cure in 9/16 (53.2% and inconclusive results in 3/16 (18.8%. The antibody and complement-mediated lysis reaction was in keeping with the xenodiagnosis in 18/22 cases, having shown negative results after treatment earlier than classical serological reactions. One aplastic anaemia patient receiving corticosteroid presented lymphoproliferative disease 6 years after being treated with benznidazol for acute Chagas' disease.

  6. Course of Chronic Trypanosoma cruzi Infection after Treatment Based on Parasitological and Serological Tests: A Systematic Review of Follow-Up Studies.

    Directory of Open Access Journals (Sweden)

    Yanina Sguassero

    Full Text Available Chagas disease is caused by the flagellate protozoan Trypanosoma cruzi (T. cruzi. It is endemic in Latin American countries outside the Caribbean. The current criterion for cure in the chronic phase of the disease is the negativization of at least two serological tests such as enzyme-linked immunosorbent assay (ELISA, indirect immunofluorescence assay (IIF and indirect hemagglutination assay (IHA. The serological evolution of treated subjects with chronic T. cruzi infection is variable. Treatment failure is indicated by a positive parasitological and/or molecular test (persistence of parasitemia.To summarize the pattern of response to treatment of parasitological, molecular and serological tests performed during the follow-up of subjects with chronic T. cruzi infection.Electronic searches in relevant databases and screening of citations of potentially eligible articles were accomplished. Organizations focusing on neglected infectious diseases were asked for help in identifying relevant studies. Included studies were randomized controlled trials (RCTs, quasi-RCTs, and cohort studies involving adults and children with chronic infection who received trypanocidal treatment (benznidazole or nifurtimox and were followed over time. The assessment of risk of bias was performed separately for each study design. The Cochrane Collaboration's tool and the guidelines developed by Hayden et al. were used. Two reviewers extracted all data independently. A third review author was consulted in case of discordant opinion. Additional analyses were defined in ad-hoc basis. Scatter plots for percentage of positive parasitological and molecular tests and for negative serological tests were developed by using the lowess curve technique. Heterogeneity was measured by I2. The protocol was registered in PROSPERO, an international prospective register of systematic review protocols (Registration Number CRD42012002162.Out of 2,136 citations screened, 54 studies (six RCTs

  7. Trypanocidal drugs for chronic asymptomatic Trypanosoma cruzi infection.

    Science.gov (United States)

    Villar, Juan Carlos; Perez, Juan Guillermo; Cortes, Olga Lucia; Riarte, Adelina; Pepper, Micah; Marin-Neto, Jose Antonio; Guyatt, Gordon H

    2014-05-27

    pooled outcome data as Mantel-Haenszel odds ratios (OR) or standardised mean differences (SMD) along with 95% confidence intervals (CI), using a random-effects model. I(2) statistics provided an estimate of heterogeneity across studies. We conducted an exploratory meta-regression analysis of the relationship between positive-serology and progression of CCC or mortality. We included 13 studies involving 4229 participants (six RCTs, n = 1096, five RCTs of intermediate risk of bias, one RCT of high risk of bias; four non-randomised experiments, n = 1639 and three observational studies, n = 1494). Ten studies tested nitroderivative drugs nifurtimox or benznidazole (three exposed participants to allopurinol, one to itraconazole). Five studies were conducted in Brazil, five in Argentina, one in Bolivia, one in Chile and one in Venezuela.TT was associated with substantial, but heterogeneous reductions on parasite-related outcomes such as positive serology (9 studies, OR 0.21, 95% CI 0.10 to 0.44, I(2) = 76%), positive PCR (2 studies, OR 0.50, 95% CI 0.27 to 0.92, I(2) = 0%), positive xenodiagnosis after treatment (6 studies, OR 0.35, 95% CI 0.14 to 0.86, I(2) = 79%), or reduction on antibody titres (3 studies, SMD -0.56, 95% CI -0.89 to -0.23, I(2) = 28%). Efficacy data on patient-related outcomes was largely from non-RCTs. TT with nitroderivatives was associated with potentially important, but imprecise and inconsistent reductions in progression of CCC (4 studies, 106 events, OR 0.74, 95% CI 0.32 to 1.73, I(2) = 66%) and mortality after TT (6 studies, 99 events, OR 0.55, 95% CI 0.26 to 1.14, I(2) = 48%). The overall median incidence of any severe side effects among 1475 individuals from five studies exposed to TT was 2.7%, and the overall discontinuation of this two-month therapy in RCTs (5 studies, 134 events) was 20.5% (versus 4.3% among controls) and 10.4% in other five studies (125 events). Despite the evidence that TT reduced parasite-related outcomes, the low quality and