WorldWideScience

Sample records for triggered whistler emissions

  1. On the observations of unique low latitude whistler-triggered VLF/ELF emissions

    Science.gov (United States)

    Altaf, M.; Singh, K. K.; Singh, A. K.; Lalmani

    A detailed analysis of the VLF/ELF wave data obtained during a whistler campaign under All India Coordinated Program of Ionosphere Thermosphere Studies (AICPITS) at our low latitude Indian ground station Jammu (geomag. lat. = 22° 26‧ N, L = 1.17) has yielded two types of unusual and unique whistler-triggered VLF/ELF emissions. These include (1) whistler-triggered hook emissions and (2) whistler-triggered long enduring discrete chorus riser emissions in VLF/ELF frequency range during night time. Such types of whistler-triggered emissions have not been reported earlier from any of the ground observations at low latitudes. In the present study, the observed characteristics of these emissions are described and interpreted. Dispersion analysis of these emissions show that the whistlers as well as emissions have propagated along a higher geomagnetic field line path with L-values lying ∼L = 4, suggesting that these triggered emissions are to be regarded as mid-latitude emissions. These waves could have propagated along the geomagnetic field lines either in a ducted mode or in a pro-longitudinal (PL) mode. The measured intensity of the triggered emissions is almost equal to that of the source waves and does not vary throughout the period of observation on that day. It is speculated that these emissions may have been generated through a process of resonant interaction of the whistler waves with energetic electrons. Parameters related to this interaction are computed for different values of L and wave amplitude. The proposed mechanism explains some aspects of the dynamic spectra.

  2. Numerical simulation of whistler-triggered VLF emissions observed in Antartica

    Energy Technology Data Exchange (ETDEWEB)

    Nunn, D. [Southhampton Univ., Southhampton (United Kingdom); Smith, A.J. [British Antarctic Survey, Cambridge (United Kingdom)

    1996-03-01

    The authors have extracted from VLF databases from British Antarctica Survey data taken at Halley and Faraday stations, examples of whistler-triggered emissions (WTE). The WTE are relatively narrow band emissions triggered by natural background whistlers undergoing nonlinear wave particle interactions generally in the equatorial regions. They occur with either rising or falling frequency relative to the triggering waves. Using a Vlasov type code the authors are able to simulate the types of emissions which are observed. 24 refs., 8 figs., 3 tabs.

  3. Whistler-triggered chorus emissions observed during daytime at low latitude ground station Jammu

    Science.gov (United States)

    Pratap Patel, Ravindra; Singh, K. K.; Singh, A. K.; Singh, R. P.

    In this paper, we present whistler-triggered chorus emission recorded during daytime at low latitude ground station Jammu (geomag. Lat. = 22 degree 26 minute N; L = 1.17) during the period from 1996 to 2003. After analysis of the eight years collected data, we found out 29 events, which are definitely identified as chorus emission triggered by whistlers. During the observation period the magnetic activity is high. Analysis shows that the whistlers have propagated along the geomagnetic field line having L-values lying between L = 1.9 and 4.4. These waves could have propagated along the geomagnetic field lines either in ducted mode or pro-longitudinal mode. The measured relative intensity of the triggered emission and whistler wave is approximately the same and also varies from one event to another. It is proposed that these waves are generated through a process of wave-particle interaction and wave-wave interactions. Related parameters of this interaction are computed for different L-value and wave amplitude. With the help of dynamic spectra of these emissions, the proposed mechanisms are explained.

  4. Whistler Triggered Upper Band Chorus Observed in Alaska

    Science.gov (United States)

    Hosseini, P.; Golkowski, M.

    2017-12-01

    VLF radiation from lightning discharges is one of several sources of energy injection into the inner magnetosphere from the Earth. Lightning discharges initially produce a broadband impulse or `sferic' but after propagation in the dispersive magnetosphere this waveform soon becomes quasi narrow band with the characteristic spectrographic form of the whistler. Most of the lightning induced VLF wave energy injected into the magnetosphere will be unducted with a k-vector which becomes increasingly oblique. Although unducted radiation is ubiquitous throughout the inner magnetosphere, it is generally of a low amplitude due to Landau damping and is not expected to produce strong nonlinear phenomena such as triggered emissions and chorus waves. However, VLF wave energy ducted or trapped in field-aligned plasma density enhancements can have relatively large amplitudes due to focusing and also linear cyclotron resonance growth. Therefore high amplitude ducted whistler waves can trigger a number of complex nonlinear phenomena. These include the triggering of VLF emissions and triggering of VLF hiss or chorus. Such phenomena are generally considered to result from nonlinear electron cyclotron phase trapping. Observation of such VLF emissions triggered by natural whistlers have been reported since the 1970s in Antarctica. We present observations of whistlers triggered upper band chorus emission from Alaska. Dispersion analyze of whistlers determine the L-shell range to be 4.5 clear frequency band gap between upper and lower band of the observed chorus emissions. The observations point to ducted chorus generation in the vicinity of the plasmapause boundary.

  5. VLF emissions and whistlers observed during geomagnetic storms

    Science.gov (United States)

    Ondoh, T.; Tanaka, Y.; Nishizaki, R.; Nagayama, M.

    1974-01-01

    Whistler-triggered emissions and a narrowband hiss are described which were observed over Japan by ISIS 2 during the main phase of the geomagnetic storm of August 9, 1972. The characteristics of the narrowband hiss and increases in the whistler rate during the storm are discussed, and the ISIS-2 data are compared with data on whistler cutoffs and VLF noise breakups obtained by OGO 4 and Alouette I. Since the whistlers and narrowband hiss are usually observed inside and outside the plasmapause, it is thought that the plasmapause may have been located near the low-latitude end of the narrowband hiss during the main phase of the storm. It is suggested that the increases in the whistler rate may have been caused by the formation of whistler ducts in the disturbed plasmapause.

  6. Whistlers and audio-frequency emissions monthly summaries of whistlers and emissions for the period July 1957 - December 1958

    CERN Document Server

    Morgan, M G

    1965-01-01

    Annals of the International Geophysical Year, Volume 37: Whistlers and Audio-Frequency Emissions presents the principal results obtained in Whistlers-East synoptic program publications. Although whistlers can be observed at any time of day, it is found that they occur primarily at night. The greatest incidence of whistlers during the International Geophysical Year (IGY) period occurred in both hemispheres in the geomagnetic latitude range 50-60ʻ. The day-to-day correlation of whistler activity at geomagnetically conjugate stations was sometimes very low and sometimes remarkably high. This book

  7. Bursty emission of whistler waves in association with plasmoid collision

    Directory of Open Access Journals (Sweden)

    K. Fujimoto

    2017-07-01

    Full Text Available A new mechanism to generate whistler waves in the course of collisionless magnetic reconnection is proposed. It is found that intense whistler emissions occur in association with plasmoid collisions. The key processes are strong perpendicular heating of the electrons through a secondary magnetic reconnection during plasmoid collision and the subsequent compression of the ambient magnetic field, leading to whistler instability due to the electron temperature anisotropy. The emissions have a bursty nature, completing in a short time within the ion timescales, as has often been observed in the Earth's magnetosphere. The whistler waves can accelerate the electrons in the parallel direction, contributing to the generation of high-energy electrons. The present study suggests that the bursty emission of whistler waves could be an indicator of plasmoid collisions and the associated particle energization during collisionless magnetic reconnection.

  8. New results of investigations of whistler-mode chorus emissions

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej

    2008-01-01

    Roč. 15, č. 4 (2008), s. 621-630 ISSN 1023-5809 R&D Projects: GA AV ČR IAA301120601 Grant - others: NASA (US) NNX07AI24G; ESA PECS(XE) 98025 Institutional research plan: CEZ:AV0Z30420517 Keywords : chorus emissions * whistler-mode * Earth's magnetosphere Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.022, year: 2008 http://www.nonlin-processes-geophys.net/15/621/2008/

  9. EMIC triggered chorus emissions in Cluster data

    Science.gov (United States)

    Grison, B.; SantolíK, O.; Cornilleau-Wehrlin, N.; Masson, A.; Engebretson, M. J.; Pickett, J. S.; Omura, Y.; Robert, P.; Nomura, R.

    2013-03-01

    Electromagnetic ion cyclotron (EMIC) triggered chorus emissions have recently been a subject of several experimental, theoretical and simulation case studies, noting their similarities with whistler-mode chorus. We perform a survey of 8 years of Cluster data in order to increase the database of EMIC triggered emissions. The results of this is that EMIC triggered emissions have been unambiguously observed for only three different days. These three events are studied in detail. All cases have been observed at the plasmapause between 22 and 24 magnetic local time (MLT) and between - 15° and 15° magnetic latitude (λm). Triggered emissions are also observed for the first time below the local He+ gyrofrequency (fHe+). The number of events is too low to produce statistical results, nevertheless we point out a variety of common properties of those waves. The rising tones have a high level of coherence and the waves propagate away from the equatorial region. The propagation angle and degree of polarization are related to the distance from the equator, whereas the slope and the frequency extent vary from one event to the other. From the various spacecraft separations, we determine that the triggering process is a localized phenomenon in space and time. However, we are unable to determine the occurrence rates of these waves. Small frequency extent rising tones are more common than large ones. The newly reported EMIC triggered events are generally observed during periods of large AE index values and in time periods close to solar maximum.

  10. Overview of Emic Triggered Chorus Emissions in Cluster Data

    Science.gov (United States)

    Grison, B.; Pickett, J. S.; Omura, Y.; Santolik, O.; Engebretson, M. J.; Dandouras, I. S.; Masson, A.; Decreau, P. M.; Adrian, M. L.; Cornilleau Wehrlin, N.

    2010-12-01

    Electromagnetic ion cyclotron (EMIC) triggered emissions have been recently observed onboard the Cluster spacecraft close to the plasmapause in the equatorial region of the magnetosphere (Pickett et al., 2010). The nonlinear mechanism of the wave amplification is the same as for the well known whistler-mode chorus emissions (Omura et al., 2010). The EMIC triggered emissions appear as risers: electromagnetic structures that have a positive frequency drift with time. They can thus be considered as the EMIC analogue of rising frequency whistler-mode chorus emissions. In addition, they propagate away from the magnetic equator. These EMIC risers are not common in Cluster data. We present an overview of the properties of all the identified cases. Risers can be sorted out in two groups: in the first one the starting frequency of EMIC emissions is close to one half of the local proton gyrofrequency and the risers have a clear left-hand polarization. In the second group the risers have an opposite polarization with a starting frequency close to one half of the He+ gyrofrequency. Most of the cases have been detected close to 22 MLT (magnetic local time). This dependence will be investigated to determine if it is linked to the orbit effects or if there is a physical cause.

  11. Cluster observations and simulations of He+ EMIC triggered emissions

    Science.gov (United States)

    Grison, B.; Shoji, M.; Santolik, O.; Omura, Y.

    2012-12-01

    EMIC triggered emissions have been reported in the inner magnetosphere at the edge of the plasmapause nightside [Pickett et al., 2010]. The generation mechanism proposed by Omura et al. [2010] is very similar to the one of the whistler chorus emissions and simulation results agree with observations and theory [Shoji et Omura, 2011]. The main characteristics of these emissions generated in the magnetic equatorial plane region are a frequency with time dispersion and a high level of coherence. The start frequency of previously mentioned observations is above half of the proton gyrofrequency. It means that the emissions are generated on the proton branch. On the He+ branch, generation of triggered emissions, in the same region, requests more energetic protons and the triggering process starts below the He+ gyrofrequency. It makes their identification in Cluster data rather difficult. Recent simulation results confirm the possibility of EMIC triggered emission on the He+ branch. In the present contribution we propose to compare a Cluster event to simulation results in order to investigate the possibility to identify observations to a He+ triggered emission. The impact of the observed waves on particle precipitation is also investigated.

  12. Propagation of EMIC triggered emissions toward the magnetic equatorial plane

    Science.gov (United States)

    Grison, B.; Santolik, O.; Pickett, J. S.; Omura, Y.; Engebretson, M. J.; Dandouras, I. S.; Masson, A.; Decreau, P.; Cornilleau-Wehrlin, N.

    2011-12-01

    EMIC triggered emissions are observed close to the equatorial plane of the magnetosphere at locations where EMIC waves are commonly observed: close to the plasmapause region and in the dayside magnetosphere close to the magnetopause. Their overall characteristics (frequency with time dispersion, generation mechanism) make those waves the EMIC analogue of rising frequency whistler-mode chorus emissions. In our observations the Poynting flux of these emissions is usually clearly arriving from the equatorial region direction, especially when observations take place at more than 5 degrees of magnetic latitude. Simulations have also confirmed that the conditions of generation by interaction with energetic ions are at a maximum at the magnetic equator (lowest value of the background magnetic field along the field line). However in the Cluster case study presented here the Poynting flux of EMIC triggered emissions is propagating toward the equatorial region. The large angle between the wave vector and the background magnetic field is also unusual for this kind of emission. The rising tone starts just above half of the He+ gyrofrequency (Fhe+) and it disappears close to Fhe+. At the time of detection, the spacecraft magnetic latitude is larger than 10 degrees and L shell is about 4. The propagation sense of the emissions has been established using two independent methods: 1) sense of the parallel component of the Poynting flux for a single spacecraft and 2) timing of the emission detections at each of the four Cluster spacecraft which were in a relatively close configuration. We propose here to discuss this unexpected result considering a reflection of this emission at higher latitude.

  13. Systematic analysis of whistler-mode emissions below the lower hybrid frequency based on the data of the Cluster project.

    Science.gov (United States)

    Nemec, F.; Santolik, O.; Gereova, K.; Macusova, E.; Cornilleau-Wehrlin, N.

    2003-12-01

    We report results of a systematic analysis of equatorial noise below the local lower hybrid frequency. Our analysis is based on the entire data set collected by the STAFF-SA instruments on board the Cluster spacecraft during the first two years of operation (2001 - 2002). We compare intensities of equatorial noise with other whistler-mode emissions, for example with chorus or hiss. The results indicate that these emissions can play a significant role in the dynamics of the inner magnetosphere. Using the multipoint measurement we show considerable spatio-temporal variations of the wave intensity.

  14. High-frequency and time resolution rocket observations of structured low- and medium-frequency whistler mode emissions in the auroral ionosphere

    Science.gov (United States)

    LaBelle, J.; McAdams, K. L.; Trimpi, M. L.

    High bandwidth electric field waveform measurements on a recent auroral sounding rocket reveal structured whistler mode signals at 400-800 kHz. These are observed intermittently between 300 and 500 km with spectral densities 0-10 dB above the detection threshold of 1.5×10-11V2/m2Hz. The lack of correlation with local particle measurements suggests a remote source. The signals are composed of discrete structures, in one case having bandwidths of about 10 kHz and exhibiting rapid frequency variations of the order of 200 kHz per 100 ms. In one case, emissions near the harmonic of the whistler mode signals are detected simultaneously. Current theories of auroral zone whistler mode emissions have not been applied to explain quantitatively the fine structure of these signals, which resemble auroral kilometric radiation (AKR) rather than auroral hiss.

  15. On the conditions for nonlinear growth in magnetospheric chorus and triggered emissions

    Science.gov (United States)

    Gołkowski, Mark; Gibby, Andrew R.

    2017-09-01

    The nonlinear whistler mode instability associated with magnetospheric chorus and VLF triggered emissions continues to be poorly understood. Following up on formulations of other authors, an analytical exploration of the stability of the phenomenon from a new vantage point is given. This exploration derives an additional requirement on the anisotropy of the energetic electron distribution relative to the linear treatment of the instability, and shows that the nonlinear instability is most favorable to increasing growth rate when electrons become initially trapped in the wave potential of a constant frequency wave. These results imply that the initiation of the nonlinear instability at the equator requires a positive frequency sweep rate, while the initiation of the instability by a constant frequency triggering wave must occur at a location downstream of the geomagnetic equator.

  16. Cyclotron Acceleration of Relativistic Electrons through Landau Resonance with Obliquely Propagating Whistler Mode Chorus Emissions

    Science.gov (United States)

    Omura, Y.; Hsieh, Y. K.; Foster, J. C.; Erickson, P. J.; Kletzing, C.; Baker, D. N.

    2017-12-01

    A recent test particle simulation of obliquely propagating whistler mode wave-particle interaction [Hsieh and Omura, 2017] shows that the perpendicular wave electric field can play a significant role in trapping and accelerating relativistic electrons through Landau resonance. A further theoretical and numerical investigation verifies that there occurs nonlinear wave trapping of relativistic electrons by the nonlinear Lorentz force of the perpendicular wave magnetic field. An electron moving with a parallel velocity equal to the parallel phase velocity of an obliquely propagating wave basically see a stationary wave phase. Since the electron position is displaced from its gyrocenter by a distance ρ*sin(φ), where ρ is the gyroradius and φ is the gyrophase, the wave phase is modulated with the gyromotion, and the stationary wave fields as seen by the electron are expanded as series of Bessel functions Jn with phase variations n*φ. The J1 components of the wave electric and magnetic fields rotate in the right-hand direction with the gyrofrequency, and they can be in resonance with the electron undergoing the gyromotion, resulting in effective electron acceleration and pitch angle scattering. We have performed a subpacket analysis of chorus waveforms observed by the Van Allen Probes [Foster et al., 2017], and calculated the energy gain by the cyclotron acceleration through Landau resonance. We compare the efficiencies of accelerations by cyclotron and Landau resonances in typical events of rapid electron acceleration observed by the Van Allen Probes.References:[1] Hsieh, Y.-K., and Y. Omura (2017), Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere, J. Geophys. Res. Space Physics, 122, 675-694, doi:10.1002/2016JA023255.[2] Foster, J. C., P. J. Erickson, Y. Omura, D. N. Baker, C. A. Kletzing, and S. G. Claudepierre (2017), Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear

  17. EMIC triggered chorus emissions in Cluster data

    Czech Academy of Sciences Publication Activity Database

    Grison, Benjamin; Santolík, Ondřej; Cornilleau-Wehrlin, N.; Masson, A.; Engebretson, M. J.; Pickett, J. S.; Omura, Y.; Robert, P.; Nomura, R.

    2013-01-01

    Roč. 118, č. 3 (2013), s. 1159-1169 ISSN 2169-9380 R&D Projects: GA MŠk 7E12026; GA ČR(CZ) GPP209/11/P848; GA ČR GAP205/10/2279; GA MŠk(CZ) LH11122 EU Projects: European Commission(XE) 284520 - MAARBLE Program:FP7 Institutional support: RVO:68378289 Keywords : EMIC wave * triggered emission * plasmapause Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50178/abstract

  18. Mapping lightning discharges on Earth with lightning-generated whistlers wave emission in space and their effects on radiation belt electrons

    Science.gov (United States)

    Farges, T.; Ripoll, J. F.; Santolik, O.; Kolmasova, I.; Kurth, W. S.; Hospodarsky, G. B.; Kletzing, C.

    2017-12-01

    It is widely accepted that the slot region of the Van Allen radiation belts is sculpted by the presence of whistler mode waves especially by plasmaspheric hiss emissions. In this work, we investigate the role of lightning-generated whistler waves (LGW), which also contribute to scatter electrons trapped in the plasmaphere but, in general, to a lesser extent due to their low mean amplitude and occurrence rate. Our goal is to revisit the characterization of LGW occurrence in the Earth's atmosphere and in space as well as the computation of LGW effects by looking at a series of particular events, among which intense events, in order to characterize maximal scattering effects. We use multicomponent measurements of whistler mode waves by the Waves instrument of Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard the Van Allen Probes spacecraft as our primary data source. We combine this data set with local measurements of the plasma density. We also use the data of the World Wide Lightning Location Network in order to localize the source of lightning discharges on Earth and their radiated energy, both locally at the footprint of the spacecraft and, globally, along the drift path. We discuss how to relate the signal measured in space with the estimation of the power emitted in the atmosphere and the associated complexity. Using these unique data sets we model the coefficients of quasi-linear pitch angle diffusion and we estimate effects of these waves on radiation belt electrons. We show evidence that lightning generated whistlers can, at least in some cases, influence the radiation belt dynamics.

  19. Nonlinear electron magnetohydrodynamics physics. IV. Whistler instabilities

    International Nuclear Information System (INIS)

    Urrutia, J. M.; Stenzel, R. L.; Strohmaier, K. D.

    2008-01-01

    A very large low-frequency whistler mode is excited with magnetic loop antennas in a uniform laboratory plasma. The wave magnetic field exceeds the ambient field causing in one polarity a field reversal, and a magnetic topology resembling that of spheromaks in the other polarity. These propagating ''whistler spheromaks'' strongly accelerate the electrons and create non-Maxwellian distributions in their toroidal current ring. It is observed that the locally energized electrons in the current ring excite new electromagnetic instabilities and emit whistler modes with frequencies unrelated to the applied frequency. Emissions are also observed from electrons excited in X-type neutral lines around the antenna. The properties of the excited waves such as amplitudes, frequency spectra, field topologies, propagation, polarization, growth, and damping have been investigated. The waves remain linear (B wave 0 ) and convert a small part of the electron kinetic energy into wave magnetic energy (B wave 2 /2μ 0 e )

  20. Ray tracing study of rising tone EMIC-triggered emissions

    Science.gov (United States)

    Hanzelka, Miroslav; Santolík, Ondřej; Grison, Benjamin; Cornilleau-Wehrlin, Nicole

    2017-04-01

    ElectroMagnetic Ion Cyclotron (EMIC) triggered emissions have been subject of extensive theoretical and experimental research in last years. These emissions are characterized by high coherence values and a frequency range of 0.5 - 2.0 Hz, close to local helium gyrofrequency. We perform ray tracing case studies of rising tone EMIC-triggered emissions observed by the Cluster spacecraft in both nightside and dayside regions off the equatorial plane. By comparison of simulated and measured wave properties, namely wave vector orientation, group velocity, dispersion and ellipticity of polarization, we determine possible source locations. Diffusive equilibrium density model and other, semi-empirical models are used with ion composition inferred from cross-over frequencies. Ray tracing simulations are done in cold plasma approximation with inclusion of Landau and cyclotron damping. Various widths, locations and profiles of plasmapause are tested.

  1. Observations of EMIC Triggered Emissions off the Magnetic Equatorial Plane

    Science.gov (United States)

    Grison, B.; Breuillard, H.; Santolik, O.; Cornilleau-Wehrlin, N.

    2016-12-01

    On 19/08/2005 Cluster spacecraft had their perigee close to the dayside of the Earth magnetic equatorial plane, at about 14 hours Magnetic Local Time. The spacecraft crossed the equator from the southern hemisphere toward the northern hemisphere. In the Southern hemisphere, at about -23° magnetic latitude (MLAT) and at distance of 5.25 Earth Radii from Earth, Cluster 3 observes an EMIC triggered emission between the He+ and the proton local gyrofrequencies. The magnetic waveform (STAFF instrument data) is transformed into the Fourier space for a study based on single value decomposition (SVD) analysis. The emission lasts about 30s. The emission frequency rises from 1Hz up to 1.9Hz. The emission polarization is left-hand, its coherence value is high and the propagation angle is field aligned (lower than 30º). The Poynting flux orientation could not be established. Based on previous study results, these properties are indicative of an observation in vicinity of the source region of the triggered emission. From our knowledge this is the first time that EMIC triggered emission are observed off the magnetic equator. In order to identify the source region we study two possibilities: a source region at higher latitudes than the observations (and particles orbiting in "Shabansky" orbits) and a source region close to the magnetic equatorial plane, as reported in previous studies. We propose to identify the source region from ray tracing analysis and to compare the observed propagation angle in several frequency ranges to the ray tracing results.

  2. New aspects of whistler waves driven by an electron beam studied by a 3-D electromagnetic code

    Science.gov (United States)

    Nishikawa, Ken-Ichi; Buneman, Oscar; Neubert, Torsten

    1994-01-01

    We have restudied electron beam driven whistler waves with a 3-D electromagnetic particle code. The simulation results show electromagnetic whistler wave emissions and electrostatic beam modes like those observed in the Spacelab 2 electron beam experiment. It has been suggested in the past that the spatial bunching of beam electrons associated with the beam mode may directly generate whistler waves. However, the simulation results indicate several inconsistencies with this picture: (1) whistler waves continue to be generated even after the beam mode space charge modulation looses its coherence, (2) the parallel (to the background magnetic field) wavelength of the whistler wave is longer than that of the beam instability, and (3) the parallel phase velocity of the whistler wave is smaller than that of the beam mode. The complex structure of the whistler waves in the vicinity of the beam suggest that the transverse motion (gyration) of the beam and background electrons is also involved in the generation of whistler waves.

  3. Cluster observations of reflected EMIC-triggered emission

    Czech Academy of Sciences Publication Activity Database

    Grison, Benjamin; Darrouzet, F.; Santolík, Ondřej; Cornilleau-Wehrlin, N.; Masson, A.

    2016-01-01

    Roč. 43, č. 9 (2016), s. 4164-4171 ISSN 0094-8276 R&D Projects: GA ČR(CZ) GAP209/12/2394; GA MŠk(CZ) LH15304 Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : EMIC * triggered emission * wave reflection * plasmapause Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.253, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2016GL069096/full

  4. Cluster observations of reflected EMIC-triggered emission

    Science.gov (United States)

    Grison, B.; Darrouzet, F.; Santolík, O.; Cornilleau-Wehrlin, N.; Masson, A.

    2016-05-01

    On 19 March 2001, the Cluster fleet recorded an electromagnetic rising tone on the nightside of the plasmasphere. The emission was found to propagate toward the Earth and toward the magnetic equator at a group velocity of about 200 km/s. The Poynting vector is mainly oblique to the background magnetic field and directed toward the Earth. The propagation angle θk,B0 becomes more oblique with increasing magnetic latitude. Inside each rising tone θk,B0 is more field aligned for higher frequencies. Comparing our results to previous ray tracing analysis we conclude that this emission is a triggered electromagnetic ion cyclotron (EMIC) wave generated at the nightside plasmapause. We detect the wave just after its reflection in the plasmasphere. The reflection makes the tone slope shallower. This process can contribute to the formation of pearl pulsations.

  5. Multiflash whistlers in ELF-band observed at low latitude

    Directory of Open Access Journals (Sweden)

    A. K. Singh

    2011-01-01

    Full Text Available Multiflash whistler-like event in the ELF-band, observed during March 1998 at low latitude station Jammu, is reported. The most prominent feature of these events is the multiflash nature along with the decrease in frequency within a very short span of time resembling similar to terrestrial whistlers. The events have a significantly smaller time duration (0.5–3.5 s than those reported earlier from high, mid and low latitudes and also display a diurnal maximum occurring around 09:30 h (IST. There have been similar reportings from other latitudes, but whistlers in the ELF-band with a multiflash nature along with a precursor emission have never been reported. Lightning seems to be the dominant source for the ELF whistlers reported here.

  6. Whistlers and related ionospheric phenomena

    CERN Document Server

    Helliwell, Robert A

    2006-01-01

    The investigation of whistlers and related phenomena is a key element in studies of very-low-frequency propagation, satellite communication, the outer ionosphere, and solar-terrestrial relationships. This comprehensive text presents a history of the study of the phenomena and includes all the elements necessary for the calculation of the characteristics of whistlers and whistler-mode signals.An introduction and brief history are followed by a summary of the theory of whistlers and a detailed explanation of the calculation of their characteristics. Succeeding chapters offer a complete atlas of

  7. On the gyro resonance electron-whistler interaction in transition layers of near-earth plasma

    International Nuclear Information System (INIS)

    Erokhin, N.S.; Zol'nikova, N.N.; Mikhajlovskaya, L.A.

    1996-01-01

    Gyro resonance interaction of electrons with low amplitude triggered whistler in the transition layers of the ionospheric and magnetospheric plasma that correspond to the blurred jumps of the magnetic field and plasma concentration was studied

  8. Resonant scattering of energetic electrons in the plasmasphere by monotonic whistler-mode waves artificially generated by ionospheric modification

    Directory of Open Access Journals (Sweden)

    S. S. Chang

    2014-05-01

    Full Text Available Modulated high-frequency (HF heating of the ionosphere provides a feasible means of artificially generating extremely low-frequency (ELF/very low-frequency (VLF whistler waves, which can leak into the inner magnetosphere and contribute to resonant interactions with high-energy electrons in the plasmasphere. By ray tracing the magnetospheric propagation of ELF/VLF emissions artificially generated at low-invariant latitudes, we evaluate the relativistic electron resonant energies along the ray paths and show that propagating artificial ELF/VLF waves can resonate with electrons from ~ 100 keV to ~ 10 MeV. We further implement test particle simulations to investigate the effects of resonant scattering of energetic electrons due to triggered monotonic/single-frequency ELF/VLF waves. The results indicate that within the period of a resonance timescale, changes in electron pitch angle and kinetic energy are stochastic, and the overall effect is cumulative, that is, the changes averaged over all test electrons increase monotonically with time. The localized rates of wave-induced pitch-angle scattering and momentum diffusion in the plasmasphere are analyzed in detail for artificially generated ELF/VLF whistlers with an observable in situ amplitude of ~ 10 pT. While the local momentum diffusion of relativistic electrons is small, with a rate of −7 s−1, the local pitch-angle scattering can be intense near the loss cone with a rate of ~ 10−4 s−1. Our investigation further supports the feasibility of artificial triggering of ELF/VLF whistler waves for removal of high-energy electrons at lower L shells within the plasmasphere. Moreover, our test particle simulation results show quantitatively good agreement with quasi-linear diffusion coefficients, confirming the applicability of both methods to evaluate the resonant diffusion effect of artificial generated ELF/VLF whistlers.

  9. Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations

    Science.gov (United States)

    Le Contel, O.; Roux, A.; Jacquey, C.; Robert, P.; Berthomier, M.; Chust, T.; Grison, B.; Angelopoulos, V.; Sibeck, D.; Chaston, C. C.; Cully, C. M.; Ergun, B.; Glassmeier, K.-H.; Auster, U.; McFadden, J.; Carlson, C.; Larson, D.; Bonnell, J. W.; Mende, S.; Russell, C. T.; Donovan, E.; Mann, I.; Singer, H.

    2009-06-01

    We report on quasi-parallel whistler emissions detected by the near-earth satellites of the THEMIS mission before, during, and after local dipolarization. These emissions are associated with an electron temperature anisotropy α=T⊥e/T||e>1 consistent with the linear theory of whistler mode anisotropy instability. When the whistler mode emissions are observed the measured electron anisotropy varies inversely with β||e (the ratio of the electron parallel pressure to the magnetic pressure) as predicted by Gary and Wang (1996). Narrow band whistler emissions correspond to the small α existing before dipolarization whereas the broad band emissions correspond to large α observed during and after dipolarization. The energy in the whistler mode is leaving the current sheet and is propagating along the background magnetic field, towards the Earth. A simple time-independent description based on the Liouville's theorem indicates that the electron temperature anisotropy decreases with the distance along the magnetic field from the equator. Once this variation of α is taken into account, the linear theory predicts an equatorial origin for the whistler mode. The linear theory is also consistent with the observed bandwidth of wave emissions. Yet, the anisotropy required to be fully consistent with the observations is somewhat larger than the measured one. Although the discrepancy remains within the instrumental error bars, this could be due to time-dependent effects which have been neglected. The possible role of the whistler waves in the substorm process is discussed.

  10. Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations

    Directory of Open Access Journals (Sweden)

    O. Le Contel

    2009-06-01

    Full Text Available We report on quasi-parallel whistler emissions detected by the near-earth satellites of the THEMIS mission before, during, and after local dipolarization. These emissions are associated with an electron temperature anisotropy α=T⊥e/T||e>1 consistent with the linear theory of whistler mode anisotropy instability. When the whistler mode emissions are observed the measured electron anisotropy varies inversely with β||e (the ratio of the electron parallel pressure to the magnetic pressure as predicted by Gary and Wang (1996. Narrow band whistler emissions correspond to the small α existing before dipolarization whereas the broad band emissions correspond to large α observed during and after dipolarization. The energy in the whistler mode is leaving the current sheet and is propagating along the background magnetic field, towards the Earth. A simple time-independent description based on the Liouville's theorem indicates that the electron temperature anisotropy decreases with the distance along the magnetic field from the equator. Once this variation of α is taken into account, the linear theory predicts an equatorial origin for the whistler mode. The linear theory is also consistent with the observed bandwidth of wave emissions. Yet, the anisotropy required to be fully consistent with the observations is somewhat larger than the measured one. Although the discrepancy remains within the instrumental error bars, this could be due to time-dependent effects which have been neglected. The possible role of the whistler waves in the substorm process is discussed.

  11. First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks

    Science.gov (United States)

    Spong, D. A.; Heidbrink, W. W.; Paz-Soldan, C.; Du, X. D.; Thome, K. E.; Van Zeeland, M. A.; Collins, C.; Lvovskiy, A.; Moyer, R. A.; Austin, M. E.; Brennan, D. P.; Liu, C.; Jaeger, E. F.; Lau, C.

    2018-04-01

    DIII-D experiments at low density (ne˜1019 m-3 ) have directly measured whistler waves in the 100-200 MHz range excited by multi-MeV runaway electrons. Whistler activity is correlated with runaway intensity (hard x-ray emission level), occurs in novel discrete frequency bands, and exhibits nonlinear limit-cycle-like behavior. The measured frequencies scale with the magnetic field strength and electron density as expected from the whistler dispersion relation. The modes are stabilized with increasing magnetic field, which is consistent with wave-particle resonance mechanisms. The mode amplitudes show intermittent time variations correlated with changes in the electron cyclotron emission that follow predator-prey cycles. These can be interpreted as wave-induced pitch angle scattering of moderate energy runaways. The tokamak runaway-whistler mechanisms have parallels to whistler phenomena in ionospheric plasmas. The observations also open new directions for the modeling and active control of runaway electrons in tokamaks.

  12. TRIGGER

    CERN Multimedia

    Wesley Smith

    Level-1 Trigger Hardware and Software The hardware of the trigger components has been mostly finished. The ECAL Endcap Trigger Concentrator Cards (TCC) are in production while Barrel TCC firmware has been upgraded, and the Trigger Primitives can now be stored by the Data Concentrator Card for readout by the DAQ. The Regional Calorimeter Trigger (RCT) system is complete, and the timing is being finalized. All 502 HCAL trigger links to RCT run without error. The HCAL muon trigger timing has been equalized with DT, RPC, CSC and ECAL. The hardware and firmware for the Global Calorimeter Trigger (GCT) jet triggers are being commissioned and data from these triggers is available for readout. The GCT energy sums from rings of trigger towers around the beam pipe beam have been changed to include two rings from both sides. The firmware for Drift Tube Track Finder, Barrel Sorter and Wedge Sorter has been upgraded, and the synchronization of the DT trigger is satisfactory. The CSC local trigger has operated flawlessly u...

  13. TRIGGER

    CERN Multimedia

    Roberta Arcidiacono

    2013-01-01

    Trigger Studies Group (TSG) The Trigger Studies Group has just concluded its third 2013 workshop, where all POGs presented the improvements to the physics object reconstruction, and all PAGs have shown their plans for Trigger development aimed at the 2015 High Level Trigger (HLT) menu. The Strategy for Trigger Evolution And Monitoring (STEAM) group is responsible for Trigger menu development, path timing, Trigger performance studies coordination, HLT offline DQM as well as HLT release, menu and conditions validation – this last task in collaboration with PdmV (Physics Data and Monte Carlo Validation group). In the last months the group has delivered several HLT rate estimates and comparisons, using the available data and Monte Carlo samples. The studies were presented at the Trigger workshops in September and December, and STEAM has contacted POGs and PAGs to understand the origin of the discrepancies observed between 8 TeV data and Monte Carlo simulations. The most recent results show what the...

  14. TRIGGER

    CERN Multimedia

    Wesley Smith

    Level-1 Trigger Hardware and Software The trigger synchronization procedures for running with cosmic muons and operating with the LHC were reviewed during the May electronics week. Firmware maintenance issues were also reviewed. Link tests between the new ECAL endcap trigger concentrator cards (TCC48) and the Regional Calorimeter Trigger have been performed. Firmware for the energy sum triggers and an upgraded tau trigger of the Global Calorimeter Triggers has been developed and is under test. The optical fiber receiver boards for the Track-Finder trigger theta links of the DT chambers are now all installed. The RPC trigger is being made more robust by additional chamber and cable shielding and also by firmware upgrades. For the CSC’s the front-end and trigger motherboard firmware have been updated. New RPC patterns and DT/CSC lookup tables taking into account phi asymmetries in the magnetic field configuration are under study. The motherboard for the new pipeline synchronizer of the Global Trigg...

  15. TRIGGER

    CERN Multimedia

    W. Smith

    2012-01-01

      Level-1 Trigger The Level-1 Trigger group is ready to deploy improvements to the L1 Trigger algorithms for 2012. These include new high-PT patterns for the RPC endcap, an improved CSC PT assignment, a new PT-matching algorithm for the Global Muon Trigger, and new calibrations for ECAL, HCAL, and the Regional Calorimeter Trigger. These should improve the efficiency, rate, and stability of the L1 Trigger. The L1 Trigger group also is migrating the online systems to SLC5. To make the data transfer from the Global Calorimeter Trigger to the Global Trigger more reliable and also to allow checking the data integrity online, a new optical link system has been developed by the GCT and GT groups and successfully tested at the CMS electronics integration facility in building 904. This new system is now undergoing further tests at Point 5 before being deployed for data-taking this year. New L1 trigger menus have recently been studied and proposed by Emmanuelle Perez and the L1 Detector Performance Group...

  16. TRIGGER

    CERN Multimedia

    W. Smith

    At the March meeting, the CMS trigger group reported on progress in production, tests in the Electronics Integration Center (EIC) in Prevessin 904, progress on trigger installation in the underground counting room at point 5, USC55, the program of trigger pattern tests and vertical slice tests and planning for the Global Runs starting this summer. The trigger group is engaged in the final stages of production testing, systems integration, and software and firmware development. Most systems are delivering final tested electronics to CERN. The installation in USC55 is underway and integration testing is in full swing. A program of orderly connection and checkout with subsystems and central systems has been developed. This program includes a series of vertical subsystem slice tests providing validation of a portion of each subsystem from front-end electronics through the trigger and DAQ to data captured and stored. After full checkout, trigger subsystems will be then operated in the CMS Global Runs. Continuous...

  17. TRIGGER

    CERN Multimedia

    Wesley Smith

    Level-1 Trigger Hardware and Software The production of the trigger hardware is now basically finished, and in time for the turn-on of the LHC. The last boards produced are the Trigger Concentrator Cards for the ECAL Endcaps (TCC-EE). After the recent installation of the four EE Dees, the TCC-EE prototypes were used for their commissioning. Production boards are arriving and are being tested continuously, with the last ones expected in November. The Regional Calorimeter Trigger hardware is fully integrated after installation of the last EE cables. Pattern tests from the HCAL up to the GCT have been performed successfully. The HCAL triggers are fully operational, including the connection of the HCAL-outer and forward-HCAL (HO/HF) technical triggers to the Global Trigger. The HCAL Trigger and Readout (HTR) board firmware has been updated to permit recording of the tower “feature bit” in the data. The Global Calorimeter Trigger hardware is installed, but some firmware developments are still n...

  18. TRIGGER

    CERN Multimedia

    by Wesley Smith

    2010-01-01

    Level-1 Trigger Hardware and Software The overall status of the L1 trigger has been excellent and the running efficiency has been high during physics fills. The timing is good to about 1%. The fine-tuning of the time synchronization of muon triggers is ongoing and will be completed after more than 10 nb-1 of data have been recorded. The CSC trigger primitive and RPC trigger timing have been refined. A new configuration for the CSC Track Finder featured modified beam halo cuts and improved ghost cancellation logic. More direct control was provided for the DT opto-receivers. New RPC Cosmic Trigger (RBC/TTU) trigger algorithms were enabled for collision runs. There is further work planned during the next technical stop to investigate a few of the links from the ECAL to the Regional Calorimeter Trigger (RCT). New firmware and a new configuration to handle trigger rate spikes in the ECAL barrel are also being tested. A board newly developed by the tracker group (ReTRI) has been installed and activated to block re...

  19. TRIGGER

    CERN Multimedia

    W. Smith

    2010-01-01

    Level-1 Trigger Hardware and Software The Level-1 Trigger hardware has performed well during both the recent proton-proton and heavy ion running. Efforts were made to improve the visibility and handling of alarms and warnings. The tracker ReTRI boards that prevent fixed frequencies of Level-1 Triggers are now configured through the Trigger Supervisor. The Global Calorimeter Trigger (GCT) team has introduced a buffer cleanup procedure at stops and a reset of the QPLL during configuring to ensure recalibration in case of a switch from the LHC clock to the local clock. A device to test the cables between the Regional Calorimeter Trigger and the GCT has been manufactured. A wrong charge bit was fixed in the CSC Trigger. The ECAL group is improving crystal masking and spike suppression in the trigger primitives. New firmware for the Drift Tube Track Finder (DTTF) sorters was developed to improve fake track tagging and sorting. Zero suppression was implemented in the DT Sector Collector readout. The track finder b...

  20. TRIGGER

    CERN Multimedia

    Wesley Smith

    Trigger Hardware The status of the trigger components was presented during the September CMS Week and Annual Review and at the monthly trigger meetings in October and November. Procedures for cold and warm starts (e.g. refreshing of trigger parameters stored in registers) of the trigger subsystems have been studied. Reviews of parts of the Global Calorimeter Trigger (GCT) and the Global Trigger (GT) have taken place in October and November. The CERN group summarized the status of the Trigger Timing and Control (TTC) system. All TTC crates and boards are installed in the underground counting room, USC55. The central clock system will be upgraded in December (after the Global Run at the end of November GREN) to the new RF2TTC LHC machine interface timing module. Migration of subsystem's TTC PCs to SLC4/ XDAQ 3.12 is being prepared. Work is on going to unify the access to Local Timing Control (LTC) and TTC CMS interface module (TTCci) via SOAP (Simple Object Access Protocol, a lightweight XML-based messaging ...

  1. TRIGGER

    CERN Multimedia

    W. Smith from contributions of C. Leonidopoulos

    2010-01-01

    Level-1 Trigger Hardware and Software Since nearly all of the Level-1 (L1) Trigger hardware at Point 5 has been commissioned, activities during the past months focused on the fine-tuning of synchronization, particularly for the ECAL and the CSC systems, on firmware upgrades and on improving trigger operation and monitoring. Periodic resynchronizations or hard resets and a shortened luminosity section interval of 23 seconds were implemented. For the DT sector collectors, an automatic power-off was installed in case of high temperatures, and the monitoring capabilities of the opto-receivers and the mini-crates were enhanced. The DTTF and the CSCTF now have improved memory lookup tables. The HCAL trigger primitive logic implemented a new algorithm providing better stability of the energy measurement in the presence of any phase misalignment. For the Global Calorimeter Trigger, additional Source Cards have been manufactured and tested. Testing of the new tau, missing ET and missing HT algorithms is underw...

  2. TRIGGER

    CERN Multimedia

    Wesley Smith

    Level-1 Trigger Hardware and Software The final parts of the Level-1 trigger hardware are now being put in place. For the ECAL endcaps, more than half of the Trigger Concentrator Cards for the ECAL Endcap (TCC-EE) are now available at CERN, such that one complete endcap can be covered. The Global Trigger now correctly handles ECAL calibration sequences, without being influenced by backpressure. The Regional Calorimeter Trigger (RCT) hardware is complete and working in USC55. Intra-crate tests of all 18 RCT crates and the Global Calorimeter Trigger (GCT) are regularly taking place. Pattern tests have successfully captured data from HCAL through RCT to the GCT Source Cards. HB/HE trigger data are being compared with emulator results to track down the very few remaining hardware problems. The treatment of hot and dead cells, including their recording in the database, has been defined. For the GCT, excellent agreement between the emulator and data has been achieved for jets and HF ET sums. There is still som...

  3. TRIGGER

    CERN Multimedia

    W. Smith

    Level-1 Trigger Hardware and Software The trigger system has been constantly in use in cosmic and commissioning data taking periods. During CRAFT running it delivered 300 million muon and calorimeter triggers to CMS. It has performed stably and reliably. During the abort gaps it has also provided laser and other calibration triggers. Timing issues, namely synchronization and latency issues, have been solved. About half of the Trigger Concentrator Cards for the ECAL Endcap (TCC-EE) are installed, and the firmware is being worked on. The production of the other half has started. The HCAL Trigger and Readout (HTR) card firmware has been updated, and new features such as fast parallel zero-suppression have been included. Repairs of drift tube (DT) trigger mini-crates, optical links and receivers of sector collectors are under way and have been completed on YB0. New firmware for the optical receivers of the theta links to the drift tube track finder is being installed. In parallel, tests with new eta track finde...

  4. TRIGGER

    CERN Multimedia

    R. Carlin with contributions from D. Acosta

    2012-01-01

    Level-1 Trigger Data-taking continues at cruising speed, with high availability of all components of the Level-1 trigger. We have operated the trigger up to a luminosity of 7.6E33, where we approached 100 kHz using the 7E33 prescale column.  Recently, the pause without triggers in case of an automatic "RESYNC" signal (the "settle" and "recover" time) was reduced in order to minimise the overall dead-time. This may become very important when the LHC comes back with higher energy and luminosity after LS1. We are also preparing for data-taking in the proton-lead run in early 2013. The CASTOR detector will make its comeback into CMS and triggering capabilities are being prepared for this. Steps to be taken include improved cooperation with the TOTEM trigger system and using the LHC clock during the injection and ramp phases of LHC. Studies are being finalised that will have a bearing on the Trigger Technical Design Report (TDR), which is to be rea...

  5. TRIGGER

    CERN Multimedia

    W. Smith

    At the December meeting, the CMS trigger group reported on progress in production, tests in the Electronics Integration Center (EIC) in Prevessin 904, progress on trigger installation in the underground counting room at point 5, USC55, and results from the Magnet Test and Cosmic Challenge (MTCC) phase II. The trigger group is engaged in the final stages of production testing, systems integration, and software and firmware development. Most systems are delivering final tested electronics to CERN. The installation in USC55 is underway and moving towards integration testing. A program of orderly connection and checkout with subsystems and central systems has been developed. This program includes a series of vertical subsystem slice tests providing validation of a portion of each subsystem from front-end electronics through the trigger and DAQ to data captured and stored. This is combined with operations and testing without beam that will continue until startup. The plans for start-up, pilot and early running tri...

  6. TRIGGER

    CERN Multimedia

    Wesley Smith

    2011-01-01

    Level-1 Trigger Hardware and Software New Forward Scintillating Counters (FSC) for rapidity gap measurements have been installed and integrated into the Trigger recently. For the Global Muon Trigger, tuning of quality criteria has led to improvements in muon trigger efficiencies. Several subsystems have started campaigns to increase spares by recovering boards or producing new ones. The barrel muon sector collector test system has been reactivated, new η track finder boards are in production, and φ track finder boards are under revision. In the CSC track finder, an η asymmetry problem has been corrected. New pT look-up tables have also improved efficiency. RPC patterns were changed from four out of six coincident layers to three out of six in the barrel, which led to a significant increase in efficiency. A new PAC firmware to trigger on heavy stable charged particles allows looking for chamber hit coincidences in two consecutive bunch-crossings. The redesign of the L1 Trigger Emulator...

  7. TRIGGER

    CERN Multimedia

    W. Smith, from contributions of D. Acosta

    2012-01-01

      The L1 Trigger group deployed several major improvements this year. Compared to 2011, the single-muon trigger rate has been reduced by a factor of 2 and the η coverage has been restored to 2.4, with high efficiency. During the current technical stop, a higher jet seed threshold will be applied in the Global Calorimeter Trigger in order to significantly reduce the strong pile-up dependence of the HT and multi-jet triggers. The currently deployed L1 menu, with the “6E33” prescales, has a total rate of less than 100 kHz and operates with detector readout dead time of less than 3% for luminosities up to 6.5 × 1033 cm–2s–1. Further prescale sets have been created for 7 and 8 × 1033 cm–2s–1 luminosities. The L1 DPG is evaluating the performance of the Trigger for upcoming conferences and publication. Progress on the Trigger upgrade was reviewed during the May Upgrade Week. We are investigating scenarios for stagin...

  8. TRIGGER

    CERN Multimedia

    W. Smith from contributions of C. Leonidopoulos, I. Mikulec, J. Varela and C. Wulz.

    Level-1 Trigger Hardware and Software Over the past few months, the Level-1 trigger has successfully recorded data with cosmic rays over long continuous stretches as well as LHC splash events, beam halo, and collision events. The L1 trigger hardware, firmware, synchronization, performance and readiness for beam operation were reviewed in October. All L1 trigger hardware is now installed at Point 5, and most of it is completely commissioned. While the barrel ECAL Trigger Concentrator Cards are fully operational, the recently delivered endcap ECAL TCC system is still being commissioned. For most systems there is a sufficient number of spares available, but for a few systems additional reserve modules are needed. It was decided to increase the overall L1 latency by three bunch crossings to increase the safety margin for trigger timing adjustments. In order for CMS to continue data taking during LHC frequency ramps, the clock distribution tree needs to be reset. The procedures for this have been tested. A repl...

  9. TRIGGER

    CERN Multimedia

    R. Arcidiacono

    2013-01-01

      In 2013 the Trigger Studies Group (TSG) has been restructured in three sub-groups: STEAM, for the development of new HLT menus and monitoring their performance; STORM, for the development of HLT tools, code and actual configurations; and FOG, responsible for the online operations of the High Level Trigger. The Strategy for Trigger Evolution And Monitoring (STEAM) group is responsible for Trigger Menu development, path timing, trigger performance studies coordination, HLT offline DQM as well as HLT release, menu and conditions validation – in collaboration and with the technical support of the PdmV group. Since the end of proton-proton data taking, the group has started preparing for 2015 data taking, with collisions at 13 TeV and 25 ns bunch spacing. The reliability of the extrapolation to higher energy is being evaluated comparing the trigger rates on 7 and 8 TeV Monte Carlo samples with the data taken in the past two years. The effect of 25 ns bunch spacing is being studied on the d...

  10. TRIGGER

    CERN Multimedia

    W. Smith

    Level-1 Trigger Hardware and Software The road map for the final commissioning of the level-1 trigger system has been set. The software for the trigger subsystems is being upgraded to run under CERN Scientific Linux 4 (SLC4). There is also a new release for the Trigger Supervisor (TS 1.4), which implies upgrade work by the subsystems. As reported by the CERN group, a campaign to tidy the Trigger Timing and Control (TTC) racks has begun. The machine interface was upgraded by installing the new RF2TTC module, which receives RF signals from LHC Point 4. Two Beam Synchronous Timing (BST) signals, one for each beam, can now be received in CMS. The machine group will define the exact format of the information content shortly. The margin on the locking range of the CMS QPLL is planned for study for different subsystems in the next Global Runs, using a function generator. The TTC software has been successfully tested on SLC4. Some TTC subsystems have already been upgraded to SLC4. The TTCci Trigger Supervisor ...

  11. Overall whistler observation by RTWA

    International Nuclear Information System (INIS)

    Okada, Toshimi; Iwai, Akira; Otsu, Jinsuke; Hayakawa, Masashi

    1978-01-01

    Both time- and space-wise characteristics of occurrence of whistlers were studied by general ground observations, i.e. routine observation and combined RTWA (real time whistler analyzer) and direction search. Thereby the basic data of the position, move and lifetime of duct were obtained in an attempt to look into the processes of duct formation and disappearance. Observations were made for six months from November, 1977, to April, 1978, at the Moshiri Observatory at magnetic latitude of 34.5 deg. N, Hokkaido. The apparatus operated well as expected, providing useful data. During the period, a relatively large magnetic storm of ΣK = 40 occurred on January 3, so that intriguing whistler phenomena were able to be observed. The lifetime of ducts permitting effective whistler trap differs widely. Considering duct construction, the enhancement factor of each duct is excited to different value in the formation process. The formation process is followed by decay process, and the duration falling to minimum enhancement for whistler trapping differs individually. (J.P.N.)

  12. TRIGGER

    CERN Multimedia

    by Wesley Smith

    2011-01-01

    Level-1 Trigger Hardware and Software After the winter shutdown minor hardware problems in several subsystems appeared and were corrected. A reassessment of the overall latency has been made. In the TTC system shorter cables between TTCci and TTCex have been installed, which saved one bunch crossing, but which may have required an adjustment of the RPC timing. In order to tackle Pixel out-of-syncs without influencing other subsystems, a special hardware/firmware re-sync protocol has been introduced in the Global Trigger. The link between the Global Calorimeter Trigger and the Global Trigger with the new optical Global Trigger Interface and optical receiver daughterboards has been successfully tested in the Electronics Integration Centre in building 904. New firmware in the GCT now allows a setting to remove the HF towers from energy sums. The HF sleeves have been replaced, which should lead to reduced rates of anomalous signals, which may allow their inclusion after this is validated. For ECAL, improvements i...

  13. TRIGGER

    CERN Multimedia

    W. Smith

    2011-01-01

    Level-1 Trigger Hardware and Software Overall the L1 trigger hardware has been running very smoothly during the last months of proton running. Modifications for the heavy-ion run have been made where necessary. The maximal design rate of 100 kHz can be sustained without problems. All L1 latencies have been rechecked. The recently installed Forward Scintillating Counters (FSC) are being used in the heavy ion run. The ZDC scintillators have been dismantled, but the calorimeter itself remains. We now send the L1 accept signal and other control signals to TOTEM. Trigger cables from TOTEM to CMS will be installed during the Christmas shutdown, so that the TOTEM data can be fully integrated within the CMS readout. New beam gas triggers have been developed, since the BSC-based trigger is no longer usable at high luminosities. In particular, a special BPTX signal is used after a quiet period with no collisions. There is an ongoing campaign to provide enough spare modules for the different subsystems. For example...

  14. TRIGGER

    CERN Multimedia

    J. Alimena

    2013-01-01

    Trigger Strategy Group The Strategy for Trigger Evolution And Monitoring (STEAM) group is responsible for the development of future High-Level Trigger menus, as well as of its DQM and validation, in collaboration and with the technical support of the PdmV group. Taking into account the beam energy and luminosity expected in 2015, a rough estimate of the trigger rates indicates a factor four increase with respect to 2012 conditions. Assuming that a factor two can be tolerated thanks to the increase in offline storage and processing capabilities, a toy menu has been developed using the new OpenHLT workflow to estimate the transverse energy/momentum thresholds that would halve the current trigger rates. The CPU time needed to run the HLT has been compared between data taken with 25 ns and 50 ns bunch spacing, for equivalent pile-up: no significant difference was observed on the global time per event distribution at the only available data point, corresponding to a pile-up of about 10 interactions. Using th...

  15. TRIGGER

    CERN Multimedia

    W. Smith

    Level-1 Trigger Hardware The CERN group is working on the TTC system. Seven out of nine sub-detector TTC VME crates with all fibers cabled are installed in USC55. 17 Local Trigger Controller (LTC) boards have been received from production and are in the process of being tested. The RF2TTC module replacing the TTCmi machine interface has been delivered and will replace the TTCci module used to mimic the LHC clock. 11 out of 12 crates housing the barrel ECAL off-detector electronics have been installed in USC55 after commissioning at the Electronics Integration Centre in building 904. The cabling to the Regional Calorimeter Trigger (RCT) is terminated. The Lisbon group has completed the Synchronization and Link mezzanine board (SLB) production. The Palaiseau group has fully tested and installed 33 out of 40 Trigger Concentrator Cards (TCC). The seven remaining boards are being remade. The barrel TCC boards have been tested at the H4 test beam, and good agreement with emulator predictions were found. The cons...

  16. Synchronized whistlers recorded at Varanasi

    Indian Academy of Sciences (India)

    [10] M J Rycroft, A review of whistlers and energetic electron precipitations, Review of Radio. Sciences edited by W R Stone, 1990-1992 URSI (Oxford University Press, Oxford, 1993) p. 631. [11] V Y Trakhtengertz and M J Rycroft, J. Atmos. Solar Terr. Phys. 62 (2000). [12] W C Armstrong, Nature (London) 327, 405 (1987).

  17. Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations

    Directory of Open Access Journals (Sweden)

    O. Le Contel

    2009-06-01

    Full Text Available We report on quasi-parallel whistler emissions detected by the near-earth satellites of the THEMIS mission before, during, and after local dipolarization. These emissions are associated with an electron temperature anisotropy α=Te/T||e>1 consistent with the linear theory of whistler mode anisotropy instability. When the whistler mode emissions are observed the measured electron anisotropy varies inversely with β||e (the ratio of the electron parallel pressure to the magnetic pressure as predicted by Gary and Wang (1996. Narrow band whistler emissions correspond to the small α existing before dipolarization whereas the broad band emissions correspond to large α observed during and after dipolarization. The energy in the whistler mode is leaving the current sheet and is propagating along the background magnetic field, towards the Earth. A simple time-independent description based on the Liouville's theorem indicates that the electron temperature anisotropy decreases with the distance along the magnetic field from the equator. Once this variation of α is taken into account, the linear theory predicts an equatorial origin for the whistler mode. The linear theory is also consistent with the observed bandwidth of wave emissions. Yet, the anisotropy required to be fully consistent with the observations is somewhat larger than the measured one. Although the discrepancy remains within the instrumental error bars, this could be due to time-dependent effects which have been neglected. The possible role of the whistler waves in the substorm process is discussed.

  18. Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves

    Science.gov (United States)

    Elliott, S. S.; Gurnett, D. A.; Kurth, W. S.; Clark, G.; Mauk, B. H.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.

    2018-02-01

    The Juno spacecraft's Jupiter Energetic-particle Detector Instrument has observed field-aligned, unidirectional (upgoing) electron beams throughout most of Jupiter's entire polar cap region. The Waves instrument detected intense broadband whistler mode emissions occurring in the same region. In this paper, we investigate the pitch angle scattering of the upgoing electron beams due to interactions with the whistler mode waves. Profiles of intensity versus pitch angle for electron beams ranging from 2.53 to 7.22 Jovian radii show inconsistencies with the expected adiabatic invariant motion of the electrons. It is believed that the observed whistler mode waves perturb the electron motion and scatter them away from the magnetic field line. The diffusion equation has been solved by using diffusion coefficients which depend on the magnetic intensity of the whistler mode waves.

  19. Affirmation of triggered Jovian radio emissions and their attribution to corotating radio lasers

    Science.gov (United States)

    Calvert, W.

    1985-01-01

    It is argued that the original statistical evidence for the existence of triggered radio emissions and corotating radio lasers on Jupiter remains valid notwithstanding the critique of Desch and Kaiser (1985). The Voyager radio spectrograms used to identify the triggered emissions are analyzed and the results are discussed. It is shown that the critique by Desch and Kaiser is unjustified because it is not based on the original event criteria, i.e., the correlation between the occurrence of Jovian auroral kilometric radiation and fast-drift type III solar bursts in the same frequency.

  20. Initial search for triggered gamma emission from Hf-178(m2) using the YSU miniball array

    Czech Academy of Sciences Publication Activity Database

    Carroll, J. J.; Burnett, J.; Drummond, T.; Lepak, J.; Propri, R.; Smith, D.; Karamian, S. A.; Adam, Jindřich; Stedile, F.; Agee, FJ.

    2002-01-01

    Roč. 143, 1, 2, 3, 4 (2002), s. 37-54 ISSN 0304-3843 Institutional research plan: CEZ:AV0Z1048901 Keywords : triggered gamma emission * Hf-178(m2) * nuclear batteries Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.533, year: 2002

  1. Electron acceleration during the decay of nonlinear Whistler waves in low-beta electron-ion plasma

    International Nuclear Information System (INIS)

    Umeda, Takayuki; Saito, Shinji; Nariyuki, Yasuhiro

    2014-01-01

    Relativistic electron acceleration through dissipation of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave in low-beta plasma is investigated by utilizing a one-dimensional fully relativistic electromagnetic particle-in-cell code. The nonlinear (large-amplitude) parent whistler wave decays through the parametric instability which enhances electrostatic ion acoustic waves and electromagnetic whistler waves. These waves satisfy the condition of three-wave coupling. Through the decay instability, the energy of electron bulk velocity supporting the parent wave is converted to the thermal energy perpendicular to the background magnetic field. Increase of the perpendicular temperature triggers the electron temperature anisotropy instability which generates broadband whistler waves and heats electrons in the parallel direction. The broadband whistler waves are inverse-cascaded during the relaxation of the electron temperature anisotropy. In lower-beta conditions, electrons with a pitch angle of about 90° are successively accelerated by inverse-cascaded whistler waves, and selected electrons are accelerated to over a Lorentz factor of 10. The result implies that the nonlinear dissipation of a finite-amplitude and short-wavelength whistler wave plays an important role in producing relativistic nonthermal electrons over a few MeV especially at lower beta plasmas.

  2. Electromagnetic Ion Cyclotron Waves in the Helium Branch Induced by Multiple Electromagnetic Ion Cyclotron Triggered Emissions

    Science.gov (United States)

    Shoji, M.; Omura, Y.; Grison, B.; Pickett, J. S.; Dandouras, I. S.; Engebretson, M. J.

    2011-12-01

    Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.

  3. Cluster observations of EMIC triggered emissions in association with Pc1 waves near Earth's plasmapause

    Science.gov (United States)

    Pickett, J. S.; Grison, B.; Omura, Y.; Engebretson, M. J.; Dandouras, I.; Masson, A.; Adrian, M. L.; Santolík, O.; Décréau, P. M. E.; Cornilleau-Wehrlin, N.; Constantinescu, D.

    2010-05-01

    The Cluster spacecraft were favorably positioned on the nightside near the equatorial plasmapause of Earth at L ˜ 4.3 on 30 March 2002 to observe electromagnetic ion cyclotron (EMIC) rising tone emissions in association with Pc1 waves at 1.5 Hz. The EMIC rising tone emissions were found to be left-hand, circularly polarized, dispersive, and propagating away from the equator. Their burstiness and dispersion of ˜30s/Hz rising out of the 1.5 Hz Pc1 waves are consistent with their identification as EMIC triggered chorus emissions, the first to be reported through in situ observations near the plasmapause. Along with the expected H+ ring current ions seen at higher energies (>300 eV), lower energy ions (300 eV and less) were observed during the most intense EMIC triggered emission events. Nonlinear wave-particle interactions via cyclotron resonance between the ˜2-10 keV H+ ions with temperature anisotropy and the linearly-amplified Pc1 waves are suggested as a possible generation mechanism for the EMIC triggered emissions.

  4. Observations of unusual whistlers during daytime at Jammu

    Indian Academy of Sciences (India)

    1999-03-08

    spectra of these events is briefly presented. 1. Introduction. Whistler ... tude whistlers and the determination of various plasma parameters in .... (Date of whistler recording March 8, 1999). Total. Time of. Equatorial electron observation. Nose electron content NT hours. Dispersion frequency density. 10. 13 el/(cm. 2. Whistler.

  5. EBW and Whistler propagation and damping in a linear device

    Science.gov (United States)

    Diem, S. J.; Caughman, J. B. O.; Harvey, R. W.; Petrov, Yu.

    2011-10-01

    Linear plasma devices are an economic method to study plasma-material interactions under high heat and particle fluxes. ORNL is developing a large cross section, high-density helicon plasma generator with additional resonant electron heating to study plasma-material interactions in ITER like conditions. The device will produce a heat flux of 10-20 MW/m2 and particle flux of 1024 /m2/s in a high recycling plasma near a target plate with a magnetic field of ~1 T. As part of this effort, heating of overdense plasma is being studied using a microwave-based plasma experiment. The plasma is initiated with a high-field launch of 18 GHz whistler waves producing a moderate-density plasma of ne ~1018 m-3. Electron heating of the overdense plasma can be provided by either whistler waves or EBW at 6 and 18 GHz. A modified GENRAY (GENRAY-C) ray-tracing code has been used to determine EBW and ECH whistler wave accessibility for these overdense plasmas. These results combined with emission measurements will be used to determine launcher designs and their placement. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  6. Photometric evidence of electron precipitation induced by first hop whistlers

    International Nuclear Information System (INIS)

    Doolittle, J.H.; Carpenter, D.L.

    1983-01-01

    Electron precipitation events induced by discrete VLF whistler mode waves have previously been detected by photometers at Siple Station, Antarctica. This paper presents the first observations of ionospheric optical emissions correlated with VLF waves at the conjugate location, near Roberval, Quebec. Since most whistlers recorded at Siple or Roberval originate in the north, Roberval affords a clear perspective on the direct precipitation induced during the first pass of the wave as it propagates southward. For such a wave the direct precipitation and that induced in the ''mirrored mode'' by the returning two-hop wave should differ in arrival time by roughly twice the wave propagation time between hemispheres, while at Siple the effects of the direct and mirrored modes may overlap in time. A well defined series of observations of structured lambda4278 optical emissions was observed on August 30, 1979 in the aftermath of an intense magnetic storm. The optical emissions were found to lead the arrival time of the two-hop waves by about 0.7 s instead of lagging the local waves by about 1--2 s as had been previously observed for whistler driven events at Siple. The observed arrival time relationships are consistent with the predictions of a cyclotron resonance interaction model, and thus support previous observations of x-rays at Roberval. The importance of the first pass of the wave is further emphasized by an approximate proportionality between the amplitude of the VLF waves recorded at Siple and the intensity of the optical emission bursts at Roberval. Although structured optical emissions correlated with wave bursts can clearly be detected at Roberval, relatively large magnetospheric particle fluxes may be required to produce such events

  7. Simulation of electromagnetic ion cyclotron triggered emissions in the Earth's inner magnetosphere

    Science.gov (United States)

    Shoji, Masafumi; Omura, Yoshiharu

    2011-05-01

    In a recent observation by the Cluster spacecraft, emissions triggered by electromagnetic ion cyclotron (EMIC) waves were discovered in the inner magnetosphere. We perform hybrid simulations to reproduce the EMIC triggered emissions. We develop a self-consistent one-dimensional hybrid code with a cylindrical geometry of the background magnetic field. We assume a parabolic magnetic field to model the dipole magnetic field in the equatorial region of the inner magnetosphere. Triggering EMIC waves are driven by a left-handed polarized external current assumed at the magnetic equator in the simulation model. Cold proton, helium, and oxygen ions, which form branches of the dispersion relation of the EMIC waves, are uniformly distributed in the simulation space. Energetic protons with a loss cone distribution function are also assumed as resonant particles. We reproduce rising tone emissions in the simulation space, finding a good agreement with the nonlinear wave growth theory. In the energetic proton velocity distribution we find formation of a proton hole, which is assumed in the nonlinear wave growth theory. A substantial amount of the energetic protons are scattered into the loss cone, while some of the resonant protons are accelerated to higher pitch angles, forming a pancake velocity distribution.

  8. Chasing Lightning: Sferics, Tweeks and Whistlers

    Science.gov (United States)

    Webb, P. A.; Franzen, K.; Garcia, L.; Schou, P.; Rous, P.

    2008-12-01

    We all know what lightning looks like during a thunderstorm, but the visible flash we see is only part of the story. This is because lightning also generates light with other frequencies that we cannot perceive with our eyes, but which are just as real as visible light. Unlike the visible light from lightning, these other frequencies can carry the lightning's energy hundreds or thousands of miles across the surface of the Earth in the form of special signals called "tweeks" and "sferics". Some of these emissions can even travel tens of thousands of miles out into space before returning to the Earth as "whistlers". The INSPIRE Project, Inc is a non-profit scientific and educational corporation whose beginning mission was to bring the excitement of observing these very low frequency (VLF) natural radio waves emissions from lightning to high school students. Since 1989, INSPIRE has provided specially designed radio receiver kits to over 2,600 participants around the world to make observations of signals in the VLF frequency range. Many of these participants are using the VLF data they collect in very creative projects that include fiction, music and art exhibitions. During the Fall 2008 semester, the first INSPIRE based university-level course was taught at University of Maryland Baltimore County (UMBC) as part of its First-Year Seminar (FYS) series. The FYS classes are limited to 20 first-year students per class and are designed to create an active-learning environment that encourages student participation and discussion that might not otherwise occur in larger first-year classes. This presentation will cover the experiences gained from using the INSPIRE kits as the basis of a university course. This will include the lecture material that covers the basic physics of lightning, thunderstorms and the Earth's atmosphere, as well as the electronics required to understand the basic workings of the VLF kit. It will also cover the students assembly of the kit in an

  9. Theory and observation of electromagnetic ion cyclotron triggered emissions in the magnetosphere

    Science.gov (United States)

    Omura, Yoshiharu; Pickett, Jolene; Grison, Benjamin; Santolik, Ondrej; Dandouras, Iannis; Engebretson, Mark; Décréau, Pierrette M. E.; Masson, Arnaud

    2010-07-01

    We develop a nonlinear wave growth theory of electromagnetic ion cyclotron (EMIC) triggered emissions observed in the inner magnetosphere. We first derive the basic wave equations from Maxwell's equations and the momentum equations for the electrons and ions. We then obtain equations that describe the nonlinear dynamics of resonant protons interacting with an EMIC wave. The frequency sweep rate of the wave plays an important role in forming the resonant current that controls the wave growth. Assuming an optimum condition for the maximum growth rate as an absolute instability at the magnetic equator and a self-sustaining growth condition for the wave propagating from the magnetic equator, we obtain a set of ordinary differential equations that describe the nonlinear evolution of a rising tone emission generated at the magnetic equator. Using the physical parameters inferred from the wave, particle, and magnetic field data measured by the Cluster spacecraft, we determine the dispersion relation for the EMIC waves. Integrating the differential equations numerically, we obtain a solution for the time variation of the amplitude and frequency of a rising tone emission at the equator. Assuming saturation of the wave amplitude, as is found in the observations, we find good agreement between the numerical solutions and the wave spectrum of the EMIC triggered emissions.

  10. Whistler mode startup in the Michigan Mirror Machine

    International Nuclear Information System (INIS)

    Booske, J.; Getty, W.D.; Gilgenbach, R.M.; Goodman, T.; Whaley, D.; Olivieri, R.; Pitcher, E.; Simonetti, L.

    1985-01-01

    Results of investigations of whistler mode ECRH plasma startup in the Michigan Mirror Machine are presented. Electron-velocity-distribution and plasma-spatial-distribution time evolution are characterized by measurements from axially and radially moveable Langmuir probes, an endloss current detector, an electron cyclotron emission radiometer, a foil-filtered X-ray detector, and a diamagnetic loop at the mirror midplane. Measurements of the buildup of both electron density and perpendicular pressure (nkT/sub perpendicular/) are compared to predictions from various numerical models. Both modeling and data suggest the creation of a highly anisotropic electron velocity distribution function with a ''sloshing electron'' axial density profile

  11. Self-focusing of whistler waves

    Science.gov (United States)

    Karpman, V. I.; Kaufman, R. N.; Shagalov, A. G.

    1992-01-01

    The theory of axially symmetric self-focusing of whistler waves, based on the full system of Maxwell equations, is developed. The plasma is described by the magnetohydrodynamic equations including the ponderomotive force from RF field. The nonlinear Schrodinger equations (NSE) for arbitrary azimuthal modes of whistler waves are derived. It is shown that they differ from the NSE for a scalar field; this is connected with an intrinsic angular momentum due to the rotating polarization of whistlers. It is shown that the self-focusing, as described by the NSE, differs in its final stage from the results following the full set of Maxwell equations. The latter gives defocusing after sufficient narrowing of the initial wave beam, due to transformation of the trapped wave into a nontrapped branch which is not contained in the NSE description. The oscillatory character of the defocusing is demonstrated.

  12. Inertial-range spectrum of whistler turbulence

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2010-02-01

    Full Text Available We develop a theoretical model of an inertial-range energy spectrum for homogeneous whistler turbulence. The theory is a generalization of the Iroshnikov-Kraichnan concept of the inertial-range magnetohydrodynamic turbulence. In the model the dispersion relation is used to derive scaling laws for whistler waves at highly oblique propagation with respect to the mean magnetic field. The model predicts an energy spectrum for such whistler waves with a spectral index −2.5 in the perpendicular component of the wave vector and thus provides an interpretation about recent discoveries of the second inertial-range of magnetic energy spectra at high frequencies in the solar wind.

  13. Whistler wave trapping in a density crest

    International Nuclear Information System (INIS)

    Sugai, H.; Niki, H.; Inutake, M.; Takeda, S.

    1979-11-01

    The linear trapping process of whistler waves in a field-aligned density crest is investigated theoretically and experimentally below ω = ωsub(c)/2 (half gyrofrequency). The conditions of the crest trapping are derived in terms of the frequency ω/ωsub(c), the incident wave-normal angle theta sub(i), and the density ratio n sub(i)/n sub(o), where n sub(i) and n sub(o) denote the density at the incident point and that at the ridge, respectively. The oscillation length of the trapped ray path is calculated for a parabolic density profile. The experiment on antenna-excited whistler wave has been performed in a large magnetized plasma with the density crest. The phase and amplitude profile of the whistler wave is measured along and across the crest. The measurement has verified characteristic behaviors of the crest trapping. (author)

  14. Oblique whistler instability in the earth's foreshock

    International Nuclear Information System (INIS)

    Sentman, D.D.; Thomsen, M.F.; Gary, S.P.; Feldman, W.C.; Hoppe, M.M.

    1983-01-01

    The linear Vlasov stability properties of electron velocity distributions, similar to those observed in the upstream foreshock region in association with obliquely propagating whistler waves at approximately 1 Hz, are studied. These distributions are modeled by a sum of bi-Maxwellians with drift speeds parallel to the magnetic field B. We find such distributions to be stable to modes with wavevectors k parallel to B but unstable to whistler waves propagating obliquely to the magnetic field. The frequencies and wavelengths of these unstable modes agree well with those of whistlers observed upstream of the earth's bow shock. The free energy source driving the instability is a region of positive parallel slope partialf/sub e//partialv/sub parallel/>0 at large pitch angles (about 85 0 ) and intermediate energies (about 20 eV), probably corresponding to the solar wind electrons magnetostatically reflected from the magnetic ramp of the bow shock. The whistlers grow via electromagnetic Landau resonance with this free energy source

  15. Whistler instability in a magnetospheric duct

    International Nuclear Information System (INIS)

    Talukdar, I.; Tripathi, V.K.; Jain, V.K.

    1989-01-01

    A whistler wave propagating through a preformed magnetospheric duct is susceptible to growth/amplification by an electron beam. The interaction is non-local and could be of Cerenkov or slow-cyclotron type. First-order perturbation theory is employed to obtain the growth rate for flat and Gaussian beam densities. (author)

  16. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.

    Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  17. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    2003-07-01

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  18. Efficient trigger signal generation from wasted backward amplified stimulated emission at optical amplifiers for optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Kim Seung Taek

    2015-01-01

    Full Text Available This paper propose an optical structure to generate trigger signals for optical coherence tomography (OCT using backward light which is usually disposed. The backward light is called backward amplified stimulated emission generated from semiconductor optical amplifier (SOA when using swept wavelength tunable laser (SWTL. A circulator is applied to block undesirable lights in the SWTL instead of an isolator in common SWTL. The circulator also diverts backward amplified spontaneous lights, which finally bring out trigger signals for a high speed digitizer. The spectra of the forward lights at SOA and the waveform of the backward lights were measured to check the procedure of the trigger formation in the experiment. The results showed that the trigger signals from the proposed SWTL with the circulator was quite usable in OCT.

  19. Heat Flux Inhibition by Whistlers: Experimental Confirmation

    International Nuclear Information System (INIS)

    Eichler, D.

    2002-01-01

    Heat flux in weakly magnetized collisionless plasma is, according to theoretical predictions, limited by whistler turbulence that is generated by heat flux instabilities near threshold. Observations of solar wind electrons by Gary and coworkers appear to confirm the limit on heat flux as being roughly the product of the magnetic energy density and the electron thermal velocity, in agreement with prediction (Pistinner and Eichler 1998)

  20. Solar wind heat flux regulation by the whistler instability

    International Nuclear Information System (INIS)

    Gary, S.P.; Feldman, W.C.

    1977-01-01

    This paper studies the role of the whistler instability in the regulation of the solar wind heat flux near 1 AU. A comparison of linear and second-order theory with experimental results provides strong evidence that the whistler may at times contribute to the limitation of this heat flux

  1. Hook whistlers observed at low latitude ground station Varanasi

    International Nuclear Information System (INIS)

    Khosa, P.N.; Lalmani; Ahmed, M.M.; Singh, B.D.

    1983-01-01

    Employing the Haselgrove ray tracing equations and a diffusive equilibrium model of the ionosphere, the propagation characteristics of hook whistlers recorded at low-latitude ground station Varanasi (geomag. lat., 16 0 6'N) are discussed. It is shown that the two traces of the hook whistlers are caused by the VLF waves radiated from the return stroke of a lightning discharge which after penetrating the ionosphere at two different entry points, propagated to the opposite hemisphere in the whistler mode and were received at 16 geomagnetic latitude. Further the crossing of ray paths for the same frequency leads to the explanation of the hook whistler. The lower and higher cut-off frequencies are explained in terms of their deviating away from the bunch of the recorded whistler waves and crossing of ray paths for the same frequency. (Auth.)

  2. On whistler-mode group velocity

    International Nuclear Information System (INIS)

    Sazhin, S.S.

    1986-01-01

    An analytical of the group velocity of whistler-mode waves propagating parallel to the magnetic field in a hot anisotropic plasma is presented. Some simple approximate formulae, which can be used for the magnetospheric applications, are derived. These formulae can predict some properties of this group velocity which were not previously recognized or were obtained by numerical methods. In particular, it is pointed out that the anisotropy tends to compensate for the influence of the electron temperature on the value of the group velocity when the wave frequency is well below the electron gyrofrequency. It is predicted, that under conditions at frequencies near the electron gyrofrequency, this velocity tends towards zero

  3. Lightning, whistlers, and hiss - A possible relationship

    International Nuclear Information System (INIS)

    Sonwalkar, V.S.

    1990-01-01

    While it has been established that whistlers originate in terrestrial lightning, the generation mechanism remains unclear and is intractable by means of quasi-linear theory, which does not account for the generation of hiss from the background thermal noise. Observational data are presently discussed which indicate that the wave energy introduced in the magnetosphere by atmospheric lightning discharges may play an important role both in the loss of particles through wave-induced precipitation and in the embrionic generation of hiss. 13 refs

  4. Frequency-time behavior of artificially stimulated vlf emissions

    International Nuclear Information System (INIS)

    Stiles, G.S.; Helliwell, R.A.

    1975-01-01

    Artificially stimulated VLF emissions (ASE's) are emissions triggered in the magnetosphere by the whistler mode signals from VLF transmitters. These emissions may be separated into two classes, rising and falling, depending on whether the final value of df/dt is positive or negative. Several hundred ASE's triggered by three transmitters have been analyzed using the fast Fourier transform with a filter spacing of 25 Hz and an effective filter width of about 45 Hz. The study was limited to the initial frequency-time behavior of ASE's. Averages taken over many events reveal that both rising and falling tones show the same initial behavior. The emissions begin at the frequency of the triggering signal. Both tones initially rise in frequency, falling tones reversing slope at a point 25--300 Hz above the triggering signal. The slope of rising tones, particularly those triggered by NAA, often abruptly levels off in this same frequency range; as a result, a short (approximately 40 ms) plateau is formed that precedes the final rising phase. The initial frequency offset commonly observed in individual events appears to result from the frequent coincidence with this plateau of a peak in amplitude. Emissions stimulated by all three transmitters show essentially the same features; this finding indicates that their frequency behavior does not depend strongly on transmitter power. The process appears to be asymmetric in frequency; no evidence of initial growth below the triggering frequency has been found. (U.S.)

  5. Competing processes of whistler and electrostatic instabilities in the magnetosphere

    International Nuclear Information System (INIS)

    Omura, Y.; Matsumoto, H.

    1987-01-01

    Competing processes of whistler mode and electrostatic mode instabilities induced by an electron beam are studied by a linear growth rate analysis and by an electromagnetic particle simulation. In addition to a background cold plasma we assumed an electron beam drifting along a static magnetic field. We studied excitation of whistler and electrostatic mode waves in the direction of the static magnetic field. We first calculated linear growth rates for the whistler mode and electrostatic mode instabilities, assuming various possible parameters in the equatorial magnetosphere. We found that the growth rate for the electrostatic instability is always larger than that of the whistler mode instability. A short simulation run with a monoenergetic electron beam demonstrates that a monoenergetic beam can hardly give energy to whistler mode waves as a result of competition with faster growing electrostatic waves, because the beam electrons are trapped and diffused by the electrostatic waves, and hence the growth rates for whistler mode waves become very small. A long simulation run starting with a warm electron beam demonstrates that whistler mode waves are excited in spite of the small growth rates and the coexisting quasi-linear electrostatic diffusion process

  6. Study of Oblique Propagating Whistler Mode Waves in Presence of Parallel DC Electric Field in Magnetosphere of Saturn

    Directory of Open Access Journals (Sweden)

    R. Kaur

    2017-03-01

    Full Text Available In this paper whistler mode waves have been investigated in magnetosphere of Saturn. The derivation for perturbed distribution function, dispersion relation and growth rate have been determined by using the method of characteristic and kinetic approach. Analytical expressions for growth rate and real frequency of whistlers propagating oblique to magnetic field direction are attained. Calculations have been performed at 6 radial distances in plasma sheet region of Saturn’s magnetosphere as per data provided by Cassini. Work has been extended for bi-Maxwellian as well as Loss-cone distribution function. Parametric analysis show that temperature anisotropy, increase in number density, energy density and angle of propagation increases the growth rate of whistler waves along with significant shift in wave number. In case of Loss-cone distribution, increase in growth rate of whistlers is significantly more than for bi-Maxwellian distribution function. Generation of second harmonics can also be seen in the graphs plotted. It is concluded that parallel DC field stabilizes the wave and temperature anisotropy, angle of propagation, number density and energy density of electrons enhances the growth rate. Thus the results are of importance in analyzing observed VLF emissions over wide spectrum of frequency range in Saturnian magnetosphere. The analytical model developed can also be used to study various types of instabilities in planetary magnetospheres.

  7. Accelerated Reduction in \\(SO_2\\) Emissions from the U.S. Power Sector Triggered by Changing Prices of Natural Gas

    OpenAIRE

    Wu, Gang; McElroy, Michael Brendon; Lu, Xi; Nielsen, Chris

    2012-01-01

    Emissions of sulfur dioxide (\\(SO_2\\)) from the U.S. power sector decreased by 24% in 2009 relative to 2008. The Logarithmic Mean Divisia Index (LMDI) approach was applied to isolate the factors responsible for this decrease. It is concluded that 15% of the decrease can be attributed to the drop in demand for electricity triggered by the economic recession, and 28% can be attributed to switching of fuel from coal to gas responding to the decrease in prices for the latter. The largest factor i...

  8. Accelerated reduction in SO₂ emissions from the U.S. power sector triggered by changing prices of natural gas.

    Science.gov (United States)

    Lu, Xi; McElroy, Michael B; Wu, Gang; Nielsen, Chris P

    2012-07-17

    Emissions of sulfur dioxide (SO(2)) from the U.S. power sector decreased by 24% in 2009 relative to 2008. The Logarithmic Mean Divisia Index (LMDI) approach was applied to isolate the factors responsible for this decrease. It is concluded that 15% of the decrease can be attributed to the drop in demand for electricity triggered by the economic recession, and 28% can be attributed to switching of fuel from coal to gas responding to the decrease in prices for the latter. The largest factor in the decrease, close to 57%, resulted from an overall decline in emissions per unit of power generated from coal. This is attributed in part to selective idling of older, less efficient coal plants that generally do not incorporate technology for sulfur removal, and in part to continued investments by the power sector in removal equipment in response to the requirements limiting emissions imposed by the U.S. Environmental Protection Agency (U.S. EPA). The paper argues further that imposition of a modest tax on emissions of carbon would have ancillary benefits in terms of emissions of SO(2).

  9. Dispersion properties of ducted whistlers, generated by lightning discharge

    Directory of Open Access Journals (Sweden)

    D. L. Pasmanik

    2005-06-01

    Full Text Available Whistler-mode wave propagation in magnetospheric ducts of enhanced cold plasma density is studied. The case of the arbitrary ratio of the duct radius to the whistler wavelength is considered, where the ray-tracing method is not applicable. The set of duct eigenmodes and their spatial structure are analysed and dependencies of eigenmode propagation properties on the duct characteristics are studied. Special attention is paid to the analysis of the group delay time of one-hop propagation of the whistler wave packet along the duct. We found that, in contrast to the case of a wide duct, the group delay time in a rather narrow duct decreases as the eigenmode number increases. The results obtained are suggested for an explanation of some types of multi-component whistler signals.

  10. Wavenumber spectrum of whistler turbulence: Particle-in-cell simulation

    International Nuclear Information System (INIS)

    Saito, S.; Gary, S. Peter; Narita, Y.

    2010-01-01

    The forward cascade of decaying whistler turbulence is studied in low beta plasma to understand essential properties of the energy spectrum at electron scales, by using a two-dimensional electromagnetic particle-in-cell (PIC) simulation. This simulation demonstrates turbulence in which the energy cascade rate is greater than the dissipation rate at the electron inertial length. The PIC simulation shows that the magnetic energy spectrum of forward-cascaded whistler turbulence at electron inertial scales is anisotropic and develops a very steep power-law spectrum which is consistent with recent solar wind observations. A comparison of the simulated spectrum with that predicted by a phenomenological turbulence scaling model suggests that the energy cascade at the electron inertial scale depends on both magnetic fluctuations and electron velocity fluctuations, as well as on the whistler dispersion relation. Thus, not only kinetic Alfven turbulence but also whistler turbulence may explain recent solar wind observations of very steep magnetic spectra at short scales.

  11. Whistler dominated quasi-collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    Biskamp, D.; Drake, J.F.

    1995-05-01

    A theory of fast quasi-collisionless reconnection is presented. For spatial scales smaller than the ion inertia length the electrons decouple from the ions and the dynamics is described by electron magnetohydrodynamics (EMHD). A qualitative analysis of the reconnection region is obtained, which is corroborated by numerical simulations. The main results are that in contrast to resistive reconnection no macroscopic current sheet is generated, and the reconnection rate is independent of the smallness parameters of the system, i.e. the electron inertia length and the dissipation coefficients. At larger scales the coupling to the ions is important, which, however, does not change the small-scale dynamics. The reconnection rate is only limited by ion inertia being independent of the electron inertia scale and the dissipation coefficients. Reconnection is much faster than in the absence of the whistler mode. (orig.)

  12. Analytic properties of the whistler dispersion function

    International Nuclear Information System (INIS)

    Daniell, G.J.

    1986-01-01

    The analytic properties of the dispersion function of a whistler are investigated in the complex frequency plane. It possesses a pole and a branch point at a frequency equal to the minimum value of the electron gyrofrequency along the path of propagation. An integral equation relates the dispersion function to the distribution of magnetospheric electrons along the path and the solution of this equation is obtained. It is found that the electron density in the equatorial plane is very simply related to the dispersion function. A discussion of approximate formulae to represent the dispersion shows how particular terms can be related to attributes of the electron density distribution, and a new approximate formula is proposed. (author)

  13. Enhanced Plasma Confinement in a Magnetic Well by Whistler Waves

    DEFF Research Database (Denmark)

    Balmashnov, A. A.; Juul Rasmussen, Jens

    1981-01-01

    The propagation of whistler waves in a magnetic field of mirror configuration is investigated experimentally. The strong interaction between waves and particles at the electron-cyclotron resonance leads to enhanced confinement in the magnetic well.......The propagation of whistler waves in a magnetic field of mirror configuration is investigated experimentally. The strong interaction between waves and particles at the electron-cyclotron resonance leads to enhanced confinement in the magnetic well....

  14. Decay instability of a whistler in a plasma

    International Nuclear Information System (INIS)

    Tewari, D.P.; Sharma, R.R.

    1982-01-01

    The parametric instabilities of a high power whistler in a high density plasma possess large growth rate when the scattered sideband is an electrostatic lower hybrid mode. The efficient channels of decay include oscillating two stream instability, nonlinear Landau damping and resonant decay involving ion acoustic and ion cyclotron modes. The processes of nonlinear scattering, i.e., the ones possessing whistler sidebands are relatively less significant. (author)

  15. On low-frequency whistler propagation in ionosphere

    International Nuclear Information System (INIS)

    Mazur, V.A.

    1988-01-01

    The propagation along the Earth surface of an electromagnetic wave with frequency below the ion gyrofrequency is theoretically investigated. In Hall layer of the ionosphere this wave is the whistler mode. It is shown that - contrary to previous works - Ohmic dissipation makes impossible the long-distance propagation of low-frequency whistlers. A many-layer model of the medium is used. The geomagnetic field is considered inclined. The eigen modes and evolution of the initial perturbation are considered

  16. Whistler Observations on DEMETER Compared with Full Electromagnetic Wave Simulations

    Science.gov (United States)

    Compston, A. J.; Cohen, M.; Lehtinen, N. G.; Inan, U.; Linscott, I.; Said, R.; Parrot, M.

    2014-12-01

    Terrestrial Very Low Frequency (VLF) electromagnetic radiation, which strongly impacts the Van Allen radiation belt electron dynamics, is injected across the ionosphere into the Earth's plasmasphere from two primary sources: man-made VLF transmitters and lightning discharges. Numerical models of trans-ionospheric propagation of such waves remain unvalidated, and early models may have overestimated the absorption, hindering a comprehensive understanding of the global impact of VLF waves in the loss of radiation belt electrons. In an attempt to remedy the problem of a lack of accurate trans-ionospheric propagation models, we have used a full electromagnetic wave method (FWM) numerical code to simulate the propagation of lightning-generated whistlers into the magnetosphere and compared the results with whistlers observed on the DEMETER satellite and paired with lightning stroke data from the National Lightning Detection Network (NLDN). We have identified over 20,000 whistlers occuring in 14 different passes of DEMETER over the central United States during the summer of 2009, and 14,000 of those occured within the 2000 km x 2000 km simulation grid we used. As shown in the attached figure, which shows a histogram of the ratio of the simulated whistler energy to the measured whistler energy for the 14,000 whistlers we compared, the simulation tends to slightly underestimate the total whistler energy injected by about 5 dB. However, the simulation underestimates the DEMETER measurements more as one gets further from the source lightning stroke, so since the signal to noise ratio of more distant whistlers will be smaller, possibly additive noise in the DEMETER measurements (which of course is not accounted for in the model) may explain some of the observed discrepancy.

  17. Outlying plasmasphere structure detected by whistlers

    International Nuclear Information System (INIS)

    Ho, D.; Carpenter, D.L.

    1976-01-01

    Whistlers recorded at Eights (L approximately equal to 4) and Byrd (L approximately equal to 7), Antarctica have been used to study large-scale structure in equatorial plasma density at geocentric distances approximately equal to 3 to 6 Rsub(E). The observations were made during conditions of magnetic quieting following moderate disturbance. The structures were detected by a 'scanning' process involving relative motion, at about one tenth of the Earth's angular velocity or greater, between the observed density features and the observing whistler station or stations. Three case studies are described, from 26 March 1965, 11 May 1965 and 29 August 1966. The cases support satellite results by showing outlying high density regions at approximately equal to 4 to 6 Rsub(E) that are separated from the main plasmasphere by trough-like depressions ranging in width from 0.2 to 1 Rsub(E). The structures evidently endured for periods of 12 hr or more. In the cases of deepest quieting their slow east-west motions with respect to the Earth are probably of dynamo origin. The cases observed during deep quieting (11 May 1965 and 29 August 1966) suggest the approximate rotation with the Earth of structure formed during previous moderate disturbance activity in the dusk sector. The third case, from 26 March 1965, may represent a structure formed near local midnight. The reported structures appear to be closely related to the bulge phenomenon. The present work supports other experimental and theoretical evidence that the dusk sector is one of major importance in the generation of outlying density structure. (author)

  18. Wave-Particle Interactions Involving Correlated Electron Bursts and Whistler Chorus in Earth's Radiation Belts

    Science.gov (United States)

    Echterling, N.; Schriver, D.; Roeder, J. L.; Fennell, J. F.

    2017-12-01

    During the recovery phase of substorm plasma injections, the Van Allen Probes commonly observe events of quasi-periodic energetic electron bursts correlating with simultaneously detected upper-band, whistler-mode chorus emissions. These electron bursts exhibit narrow ranges of pitch angles (75-80° and 100-105°) and energies (20-40 keV). Electron cyclotron harmonic (ECH) emissions are also commonly detected, but typically do not display correlation with the electron bursts. To examine sources of free energy and the generation of these wave emissions, an observed electron velocity distribution on January 13, 2013 is used as the starting condition for a particle in cell (PIC) simulation. Effects of temperature anisotropy (perpendicular temperature greater than parallel temperature), the presence of a loss cone and a cold electron population on the generation of whistler and ECH waves are examined to understand wave generation and nonlinear interactions with the particle population. These nonlinear interactions produce energy diffusion along with strong pitch angle scattering into the loss cone on the order of milliseconds, which is faster than a typical bounce period of seconds. To examine the quasi-periodic nature of the electron bursts, a loss-cone recycling technique is implemented to model the effects of the periodic emptying of the loss cone and electron injection on the growth of whistler and ECH waves. The results of the simulations are compared to the Van Allen Probe observations to determine electron acceleration, heating and transport in Earth's radiation belts due to wave-particle interactions.

  19. Propagation of a whistler wave incident from above on the lower nighttime ionosphere

    Directory of Open Access Journals (Sweden)

    P. Bespalov

    2017-05-01

    Full Text Available The problems of reflection and transmission of a whistler wave incident in the nighttime ionosphere from above are considered. Numerical solution of the wave equations for a typical condition of the lower ionosphere is found. The solution area comprises both the region of strong wave refraction and a sharp boundary of the nighttime ionosphere (∼ 100 km. The energy reflection coefficient and horizontal wave magnetic field on the ground surface are calculated. The results obtained are important for analysis of the extremely low-frequency and very low-frequency (ELF–VLF emission phenomena observed from both the satellites and the ground-based observatories.

  20. Interactions between microbial-feeding and predatory soil fauna trigger N2O emissions

    NARCIS (Netherlands)

    Thakur, M.P.; Groenigen, van J.W.; Kuiper, I.; Deyn, de G.B.

    2014-01-01

    Recent research has shown that microbial-feeding invertebrate soil fauna species can significantly contribute to N2O emissions. However, in soil food webs microbial-feeding soil fauna interact with each other and with their predators, which affects microbial activity. To date we lack empirical tests

  1. Nonlinear Whistler Wave Physics in the Radiation Belts

    Science.gov (United States)

    Crabtree, Chris

    2016-10-01

    Wave particle interactions between electrons and whistler waves are a dominant mechanism for controlling the dynamics of energetic electrons in the radiation belts. They are responsible for loss, via pitch-angle scattering of electrons into the loss cone, and energization to millions of electron volts. It has previously been theorized that large amplitude waves on the whistler branch may scatter their wave-vector nonlinearly via nonlinear Landau damping leading to important consequences for the global distribution of whistler wave energy density and hence the energetic electrons. It can dramatically reduce the lifetime of energetic electrons in the radiation belts by increasing the pitch angle scattering rate. The fundamental building block of this theory has now been confirmed through laboratory experiments. Here we report on in situ observations of wave electro-magnetic fields from the EMFISIS instrument on board NASA's Van Allen Probes that show the signatures of nonlinear scattering of whistler waves in the inner radiation belts. In the outer radiation belts, whistler mode chorus is believed to be responsible for the energization of electrons from 10s of Kev to MeV energies. Chorus is characterized by bursty large amplitude whistler mode waves with frequencies that change as a function of time on timescales corresponding to their growth. Theories explaining the chirping have been developed for decades based on electron trapping dynamics in a coherent wave. New high time resolution wave data from the Van Allen probes and advanced spectral techniques are revealing that the wave dynamics is highly structured, with sub-elements consisting of multiple chirping waves with discrete frequency hops between sub-elements. Laboratory experiments with energetic electron beams are currently reproducing the complex frequency vs time dynamics of whistler waves and in addition revealing signatures of wave-wave and beat-wave nonlinear wave-particle interactions. These new data

  2. Initial Search for Triggered Gamma Emission from {sup 178}Hf{sup m2} Using the YSU Miniball Array

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, J. J.; Burnett, J.; Drummond, T.; Lepak, J.; Propri, R.; Smith, D. [Youngstown State University, Department of Physics and Astronomy, Center for Photon-Induced Processes (United States); Karamian, S. A.; Adam, J. [Joint Institute for Nuclear Research (Russian Federation); Stedile, F. [Universitaet Stuttgart, Institut fuer Strahlenphysik (Germany); Agee, F. J. [Air Force Office of Scientific Research, AFOSR/NE (United States)

    2002-11-15

    Experiments with the long-lived, high-K isomer {sup 178}Hf{sup m2} have been recognized as intriguing tests of multi-quasiparticle state structures and their interactions with external radiation. A triggered release of the energy stored by this isomer, 2.5 MeV per nucleus or 1.2 GJ/gram, in the form of a gamma-ray burst might prove valuable for numerous applications. The observation of 'accelerated' decay of {sup 178}Hf{sup m2} during irradiation by 90-keV bremsstrahlung has already been reported, but with poor statistical accuracy due to the experimental approach. That approach employed single Ge detectors to seek increases in the areas of peaks at energies corresponding to transitions in the spontaneous decay of the isomer. The need for better quality data to confirm those results has motivated the development of improved detection concepts. One such concept was utilized here to perform an initial search for low-energy (<20 keV) triggered gamma emission from {sup 178}Hf{sup m2} using the YSU miniball detector array.

  3. Upconversion of whistler waves by gyrating ion beams in a plasma

    Indian Academy of Sciences (India)

    It is shown that a gyrating ion-beam frequency upconverts the whistler waves separated by harmonics of beam gyro-frequency. The expression for the growth rate of whistler mode waves has been derived. In Case 1, a high-amplitude whistler wave decays into two lower frequency waves, called a low-frequency mode and a ...

  4. Hot times in Whistler : energy saving hybrid systems in area hotels

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2008-01-15

    The resort of Whistler in British Columbia is to host the 2010 Winter Olympics, and the town of Whistler has committed to reducing energy consumption and emissions output in the community's 9500 dwelling units. Commercial hotels and mountain operations in the region are facing higher costs associated with tanked propane supply systems and higher infrastructure costs for some of the proposed alternatives. This article described a hybrid heating system designed by Sempa Power Systems. The systems have now been installed in conference centres and on all large mountain lodge complexes in the region. The hybrid heating system is a patent-pending system that automatically load-balances fossil fuel sources with electricity consumption to reduce energy costs, decrease GHG emissions, and increase efficiencies. Clients at the complexes are monitored online in real time and analyses of empirical data are compared with actual consumption to historical baseline averages. It was concluded that complexes in which the systems have been installed are averaging 28 per cent energy savings, a 39 per cent reduction in greenhouse gases (GHGs), and a 13 per cent reduction in energy consumption. 2 figs.

  5. Nonlinear damping of oblique whistler mode waves through Landau resonance

    Science.gov (United States)

    Hsieh, Y.; Omura, Y.

    2017-12-01

    Nonlinear trapping of electrons through Landau resonance is a characteristic dynamics in oblique whistler-mode wave particle interactions. The resonance velocity of the Landau resonance at quasi-parallel propagation becomes very close to the parallel group velocity of whistler-mode wave at frequency around 0.5 Ωe, causing a long distance of resonant interaction and strong acceleration of resonant electrons [1]. We demonstrate these effective accelerations for electrons with high equatorial pitch angle ( > 60°) by test particle simulations with parameters for the Earth's inner magnetosphere at L=5. In the simulations, we focus on slightly oblique whistler mode waves with wave normal angle 10.1002/2016JA023255.

  6. The characteristic response of whistler mode waves to interplanetary shocks

    Science.gov (United States)

    Yue, C.; Chen, L.; Bortnik, J.; Ma, Q.; Thorne, R. M.; Angelopoulos, V.; Li, J.; An, X.; Zhou, C.

    2017-12-01

    Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at dawn, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude that chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron flux enhancement caused by the IP shock. On the other hand, the solar wind dynamic pressure increase changes the magnetic field configuration to favor ray penetration into the nightside and promote ray refraction away from the dayside, explaining the magnetic local time (MLT) dependent responses of plasmaspheric hiss waves following IP shock arrivals.

  7. Modeling whistler wave generation regimes in magnetospheric cyclotron maser

    Directory of Open Access Journals (Sweden)

    D. L. Pasmanik

    2004-11-01

    quasi-periodic whistler wave emissions is verified.

  8. Proton beam generation of whistler waves in the earth's foreshock

    Science.gov (United States)

    Wong, H. K.; Goldstein, M. L.

    1987-01-01

    It is shown that proton beams, often observed upstream of the earth's bow shock and associated with the generation of low-frequency hydromagnetic fluctuations, are also capable of generating whistler waves. The waves can be excited by an instability driven by two-temperature streaming Maxwellian proton distributions which have T (perpendicular)/T(parallel) much greater than 1. It can also be excited by gyrating proton beam distributions. These distributions generate whistler waves with frequencies ranging from 10 to 100 times the proton cyclotron frequency (in the solar wind reference frame) and provide another mechanism for generating the '1-Hz' waves often seen in the earth's foreshock.

  9. Proton beam generation of whistler waves in the Earth's foreshock

    International Nuclear Information System (INIS)

    Wong, H.K.; Goldstein, M.L.

    1987-01-01

    We show that proton beams, often observed upstream of the Earth's bow shock and associated with the generation of low-frequency hydromagnetic fluctuations, are also capable of generating whistler waves. The waves can be excited by an instability driven by two-temperature streaming Maxwellian proton distributions which have T/sub perpendicular//T/sub parallel/>>1. It can also be excited by gyrating proton beam distributions. These distributions generate whistler waves with frequencies ranging from 10 to 100 times the proton cyclotron frequency (in the solar wind reference frame) and provide another mechanism for generating the ''1-Hz'' waves often seen in the Earth's foreshock

  10. Whistler-mode signals: Group delay by cross correlation

    International Nuclear Information System (INIS)

    Thomson, N.R.

    1975-01-01

    Group travel times of 18.6 kHz whistler-mode signals from NLK, Seattle, to Wellington, New Zealand, are now being measured using the normal FSK transmissions. This is done using a mini-computer programmed to perform real-time cross correlations between two receivers: one receiver gets its signal from a whip aerial on which the ground wave (subionospheric mode) dominates, while the other gets its signal from a loop oriented for minimum ground wave. Group travel time can thus be measured continuously while there are whistler-mode signals present. Delays of 0.2--0.8 seconds have been found

  11. Redox-Triggered Bonding-Induced Emission of Thiol-Functionalized Gold Nanoclusters for Luminescence Turn-On Detection of Molecular Oxygen.

    Science.gov (United States)

    Ao, Hang; Feng, Hui; Zhao, Mengting; Zhao, Meizhi; Chen, Jianrong; Qian, Zhaosheng

    2017-11-22

    Most optical sensors for molecular oxygen were developed based on the quenching effect of the luminescence of oxygen-sensitive probes; however, the signal turn-off mode of these probes is undesirable to quantify and visualize molecular oxygen. Herein, we report a novel luminescence turn-on detection strategy for molecular oxygen via the specific oxygen-triggered bonding-induced emission of thiol-functionalized gold nanoclusters. Thiol-functionalized gold nanoclusters were prepared by a facile one-step synthesis, and as-prepared gold nanoclusters possess significant aggregation-induced emission (AIE) property. It is the first time to discover the oxygen-triggered bonding-induced emission (BIE) behavior of gold nanoclusters, which results in disulfide-linked covalent bonding assemblies with intensely red luminescence. This specific redox-triggered BIE is capable of quantitatively detecting dissolved oxygen in aqueous solution in a light-up manner, and trace amount of dissolved oxygen at ppb level is achieved based on this detection method. A facile and convenient test strip for oxygen detection was also developed to monitor molecular oxygen in a gas matrix. Covalent bonding-induced emission is proven to be a more efficient way to attain high brightness of AIEgens than a physical aggregation-induced emission process, and provides a more convenient and desirable detection method for molecular oxygen than the previous sensors.

  12. Propagation Spectrograms of Whistler-Mode Radiation from Lightning

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Parrot, M.; Chum, Jaroslav

    2008-01-01

    Roč. 36, č. 4 (2008), s. 1166-1167 ISSN 0093-3813 Institutional research plan: CEZ:AV0Z30420517 Keywords : propagation spectrograms * whistlers Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.447, year: 2008

  13. Influence of power line harmonic radiation on the VLF wave activity in the upper ionosphere: Is it capable to trigger new emissions?

    Czech Academy of Sciences Publication Activity Database

    Němec, František; Parrot, M.; Santolík, Ondřej

    2010-01-01

    Roč. 115, - (2010), A11301/1-A11301/9 ISSN 0148-0227 R&D Projects: GA ČR GA205/09/1253; GA MŠk ME09107 Institutional research plan: CEZ:AV0Z30420517 Keywords : PLHR events * triggered emissions * DEMETER satellite Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.303, year: 2010

  14. Stimulated ion Compton scattering instability of whistlers in plasmas

    International Nuclear Information System (INIS)

    Shukla, P. K.; Shukla, Nitin; Stenflo, L.

    2006-01-01

    The nonlinear interactions between magnetic field-aligned broadband whistler wave packets (hereafter referred to as whistlerons) and ion quasimodes in magnetized plasmas are considered. By treating the whistlerons as quasiparticles, their nonlinear propagation in a slowly varying medium supported by ion quasimode density perturbations is studied. A nonlinear dispersion relation within the framework of the wave-kinetic (for the whistlerons) and Vlasov (for the ion quasimodes) descriptions is derived. The dispersion relation admits a kinetic modulational instability. The growth rate of the latter is presented. The present result can improve our understanding of the nonlinear propagation of incoherent whistlers, which have been frequently observed in the Earth's magnetosphere as well as in laboratory plasmas

  15. Millimeter wave scattering off a whistler wave in a tokamak

    International Nuclear Information System (INIS)

    Sawhney, B.K.; Singh, S.V.; Tripathi, V.K.

    1994-01-01

    Obliquely propagating whistler waves through a plasma cause density perturbations. A high frequency electromagnetic wave sent into such a perturbed region suffers scattering. The process can be used as a diagnostics for whistler. We have developed a theory of electromagnetic wave scattering in a tokamak where density profile is taken a parabolic. Numerical calculations have been carried out to evaluate the ratio of the power of the scattered electromagnetic wave to that of the incident electromagnetic wave. The scattered power decreases with the frequency of the incident electromagnetic wave. For typical parameters, the ratio of the power of the scattered to the incident electromagnetic wave comes out to be of the order of 10 -4 at a scattering angle of 3 which can be detected. (author). 2 refs, 1 fig

  16. Rare observation of daytime whistlers at very low latitude (L = 1.08)

    Science.gov (United States)

    Gokani, Sneha A.; Singh, Rajesh; Tulasi Ram, S.; Venkatesham, K.; Veenadhari, B.; Kumar, Sandeep; Selvakumaran, R.

    2018-04-01

    The source region and propagation mechanism of low latitude whistlers (Geomag. lat. point. But the plausible conditions of ionospheric medium through which they travel are still uncertain. In addition to that, the whistlers in daytime are never observed at geomagnetic latitudes less than 20°. Here, for the first time, we present a rare observations of whistlers during sunlit hours from a very low-latitude station Allahabad (Geomag. Lat: 16.79°N, L = 1.08) in India on 04 February 2011. More than 90 whistlers are recorded during 1200-1300 UT during which the whole propagation path from lightning source region to whistler observation site is under sunlit. The favorable factors that facilitated the whistlers prior to the sunset are investigated in terms of source lightning characteristics, geomagnetic and background ionospheric medium conditions. The whistler activity period was found to be geomagnetically quiet. However, a significant suppression in ionospheric total electron content (TEC) compared to its quiet day average is found. This shows that background ionospheric conditions may play a key role in low latitude whistler propagation. This study reveals that whistlers can occur under sunlit hours at latitudes as low as L = 1.08 when the source lightning and ionospheric medium characteristics are optimally favorable.

  17. Nonlinear whistler wave model for lion roars in the Earth’s magnetosheath

    DEFF Research Database (Denmark)

    Dwivedi, N. K.; Singh, S.

    2017-01-01

    In the present study, we construct a nonlinear whistler wave model to explain the magnetic field spectra observed for lion roars in the Earth’s magnetosheath region. We use two-fluid theory and semi-analytical approach to derive the dynamical equation of whistler wave propagating along the ambient...... magnetic field. We examine the magnetic field localization of parallel propagating whistler wave in the intermediate beta plasma applicable to the Earth’s magnetosheath. In addition, we investigate spectral features of the magnetic field fluctuations and the spectral slope value. The magnetic field...... semi-analytical model provides exposure to the whistler wave turbulence in the Earth’s magnetosheath....

  18. Delayed storm-time increases in the whistler rate at mid-latitudes

    International Nuclear Information System (INIS)

    Andrews, M.K.

    1975-01-01

    The occurrence of whistlers during 105 magnetic storms in the period 1963 to 1968 is studied. Evidence that more whistlers occur during the storm recovery period is presented. Assuming that the increased whistler rate implies the presence of more ducts, similarities are noted between the storm-time duct population and the incidence of mid-latitude spread-F in both time and space. It is suggested that a fresh examination of the physical processes involved in spread-F may aid understanding of the formation of whistler ducts. (author)

  19. Effect of boundary conditions on radial mode structure of whistlers

    International Nuclear Information System (INIS)

    Boswell, R.W.

    1983-01-01

    The dispersion of the radical eigen modes of a cylindrical m=1 whistler wave with Ωsub(i) << ω << Ωsub(e) << ωsub(pe) are investigated for both conducting and insulating boundaries, where Ωsub(e) and Ωsub(i) are the electron and ion gyro frequencies, Ωsub(pe) is the electron plasma frequency. The effects of electron inertia and resistivity on the modes are discussed

  20. On Electron-Scale Whistler Turbulence in the Solar Wind

    Science.gov (United States)

    Narita, Y.; Nakamura, R.; Baumjohann, W.; Glassmeier, K.-H.; Motschmann, U.; Giles, B.; Magnes, W.; Fischer, D.; Torbert, R. B.; Russell, C. T.

    2016-01-01

    For the first time, the dispersion relation for turbulence magnetic field fluctuations in the solar wind is determined directly on small scales of the order of the electron inertial length, using four-point magnetometer observations from the Magnetospheric Multiscale mission. The data are analyzed using the high-resolution adaptive wave telescope technique. Small-scale solar wind turbulence is primarily composed of highly obliquely propagating waves, with dispersion consistent with that of the whistler mode.

  1. Cloud-Resolving Model Simulations of Aerosol-Cloud Interactions Triggered by Strong Aerosol Emissions in the Arctic

    Science.gov (United States)

    Wang, H.; Kravitz, B.; Rasch, P. J.; Morrison, H.; Solomon, A.

    2014-12-01

    Previous process-oriented modeling studies have highlighted the dependence of effectiveness of cloud brightening by aerosols on cloud regimes in warm marine boundary layer. Cloud microphysical processes in clouds that contain ice, and hence the mechanisms that drive aerosol-cloud interactions, are more complicated than in warm clouds. Interactions between ice particles and liquid drops add additional levels of complexity to aerosol effects. A cloud-resolving model is used to study aerosol-cloud interactions in the Arctic triggered by strong aerosol emissions, through either geoengineering injection or concentrated sources such as shipping and fires. An updated cloud microphysical scheme with prognostic aerosol and cloud particle numbers is employed. Model simulations are performed in pure super-cooled liquid and mixed-phase clouds, separately, with or without an injection of aerosols into either a clean or a more polluted Arctic boundary layer. Vertical mixing and cloud scavenging of particles injected from the surface is still quite efficient in the less turbulent cold environment. Overall, the injection of aerosols into the Arctic boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. The pure liquid clouds are more susceptible to the increase in aerosol number concentration than the mixed-phase clouds. Rain production processes are more effectively suppressed by aerosol injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. Aerosol injection into a clean boundary layer results in a greater cloud albedo increase than injection into a polluted one, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, the impact of dynamical feedback due to precipitation changes is small. According to these results, which are dependent upon the representation of ice nucleation

  2. Fiber fine structure during solar type IV radio bursts: Observations and theory of radiation in presence of localized whistler turbulence

    International Nuclear Information System (INIS)

    Bernold, T.E.X.; Treumann, R.A.

    1983-01-01

    Observations with a digital spectrometer within the frequency band between 250 and 273 MHz of fiber fine structures during the type IV solar radio burst of 1978 October 1 are presented and analyzed. The results are summarized in histograms. Typical values for drift rates are in the range between -2.3 and -9.9 MHz s -1 . Frequency intervals between absorption and emission within the spectrum were measured to be within 0.9 and 2.7 MHz. Several types of spectra are discussed. A theoretical interpretation is based upon the model of a population of electrons trapped within a magnetic-mirror loop-configuration. It is shown that the fiber emission can be explained assuming an interaction between spatially localized strong whistler turbulence (solitons) and a broad-band Langmuir wave spectrum. Estimates using the observed flux values indicate that a fiber is composed of some 10 11 --10 14 solitons occupying a volume of about 10 5 --10 8 km 3 . Ducting of whistler solitons in low-density magnetic loops provides a plausible explanation for coherent behavior during the lifetime of an individual fiber. The magnetic field strength is found to be 6.2< or =B< or =35 gauss at the radio source and 15.3< or =B< or =76 gauss at the lower hybrid wave level respectively. The quasi-periodicity of the fiber occurrence is interpreted as periodically switched-on soliton production

  3. Effect of parallel electric fields on the whistler mode wave propagation in the magnetosphere

    International Nuclear Information System (INIS)

    Gupta, G.P.; Singh, R.N.

    1975-01-01

    The effect of parallel electric fields on whistler mode wave propagation has been studied. To account for the parallel electric fields, the dispersion equation has been analyzed, and refractive index surfaces for magnetospheric plasma have been constructed. The presence of parallel electric fields deforms the refractive index surfaces which diffuse the energy flow and produce defocusing of the whistler mode waves. The parallel electric field induces an instability in the whistler mode waves propagating through the magnetosphere. The growth or decay of whistler mode instability depends on the direction of parallel electric fields. It is concluded that the analyses of whistler wave records received on the ground should account for the role of parallel electric fields

  4. Excitation of an ion-acoustic wave by two whistlers in a collisionless magnetoplasma

    International Nuclear Information System (INIS)

    Sodha, M.S.; Singh, T.; Singh, D.P.; Sharma, R.P.

    1981-01-01

    An investigation is made into the excitation of an ion-acoustic wave in a collisionless hot magnetoplasma by two whistlers. On account of the interaction of the two whistlers, of frequencies ω 1 and ω 2 , ponderomotive force at frequency Δω(=ω 1 -ω 2 ) leads to the generation of an ion-acoustic wave. When the two whistlers have initially Gaussian intensity distributions, a d.c. component of the ponderomotive force leads to the redistribution of the background electron/ion density, and cross-focusing of the whistlers occurs. The power of the generated ion-acoustic wave, being dependent on the background ion density and powers of the whistlers, is further modified. The ion-acoustic wave power also changes drastically with the strength of the static magnetic field. (author)

  5. On the Self-Focusing of Whistler Waves in a Radial Inhomogeneous Plasma

    DEFF Research Database (Denmark)

    Balmashnov, A. A.

    1980-01-01

    The process of whistler wave self-focusing is experimentally investigated. It was found that a whistler wave propagating along the plasma column with a density crest excites a longitudinal wave of the same frequency propagating across the external magnetic field. The amplitude modulation of the l......The process of whistler wave self-focusing is experimentally investigated. It was found that a whistler wave propagating along the plasma column with a density crest excites a longitudinal wave of the same frequency propagating across the external magnetic field. The amplitude modulation...... of the latter wave is accompanied by a density modification, which leads to trapping of the whistler wave in a density trough in the center of the plasma column....

  6. The effect of subionospheric propagation on whistlers recorded by the DEMETER satellite – observation and modelling

    Directory of Open Access Journals (Sweden)

    O. E. Ferencz

    2007-06-01

    Full Text Available During a routine analysis of whistlers on the wide-band VLF recording of the DEMETER satellite, a specific signal structure of numerous fractional-hop whistlers, termed the "Spiky Whistler" (SpW was identified. These signals appear to be composed of a conventional whistler combined by the compound mode-patterns of guided wave propagation, suggesting a whistler excited by a lightning "tweek" spheric. Rigorous, full-wave modelling of tweeks, formed by the long subionospheric guided spheric propagation and of the impulse propagation across an arbitrarily inhomogeneous ionosphere, gave an accurate description of the SpW signals. The electromagnetic impulses excited by vertical, preferably CG lightning discharge, exhibited the effects of guided behaviour and of the dispersive ionospheric plasma along their paths. This modelling and interpretation provides a consistent way to determine the generation and propagation characteristics of the recorded SpW signals, as well as to describe the traversed medium.

  7. Interannual variation in methane emissions from tropical wetlands triggered by repeated El Niño Southern Oscillation

    Science.gov (United States)

    Zhu, Qiuan; Peng, Changhui; Ciais, Philippe; Jiang, Hong; Liu, Jinxun; Bousquet, Philippe; Li, Shiqin; Chang, Jie; Fang, Xiuqin; Zhou, Xiaolu; Chen, Huai; Liu, Shirong; Lin, Guanghui; Gong, Peng; Wang, Meng; Wang, Han; Xiang, Wenhua; Chen, Jing

    2017-01-01

    Methane (CH4) emissions from tropical wetlands contribute 60%–80% of global natural wetland CH4 emissions. Decreased wetland CH4 emissions can act as a negative feedback mechanism for future climate warming and vice versa. The impact of the El Niño–Southern Oscillation (ENSO) on CH4 emissions from wetlands remains poorly quantified at both regional and global scales, and El Niño events are expected to become more severe based on climate models’ projections. We use a process-based model of global wetland CH4 emissions to investigate the impacts of the ENSO on CH4 emissions in tropical wetlands for the period from 1950 to 2012. The results show that CH4 emissions from tropical wetlands respond strongly to repeated ENSO events, with negative anomalies occurring during El Niño periods and with positive anomalies occurring during La Niña periods. An approximately 8-month time lag was detected between tropical wetland CH4 emissions and ENSO events, which was caused by the combined time lag effects of ENSO events on precipitation and temperature over tropical wetlands. The ENSO can explain 49% of interannual variations for tropical wetland CH4 emissions. Furthermore, relative to neutral years, changes in temperature have much stronger effects on tropical wetland CH4 emissions than the changes in precipitation during ENSO periods. The occurrence of several El Niño events contributed to a lower decadal mean growth rate in atmospheric CH4 concentrations throughout the 1980s and 1990s and to stable atmospheric CH4 concentrations from 1999 to 2006, resulting in negative feedback to global warming.

  8. Particle-in-cell Simulation of Dipolarization Front Associated Whistlers

    Science.gov (United States)

    Lin, D.; Scales, W.; Ganguli, G.; Crabtree, C. E.

    2017-12-01

    Dipolarization fronts (DFs) are dipolarized magnetic field embedded in the Earthward propagating bursty bulk flows (BBFs), which separates the hot, tenuous high-speed flow from the cold, dense, and slowly convecting surrounding plasma [Runov et al. 2011]. Broadband fluctuations have been observed at DFs including the electromagnetic whistler waves and electrostatic lower hybrid waves in the Very Low Frequency (VLF) range [e.g., Zhou et al. 2009, Deng et al. 2010]. There waves are suggested to be able heat electrons and play a critical role in the plasma sheet dynamics [Chaston et al., 2012, Angelopoulos et al., 2013]. However, their generation mechanism and role in the energy conversion are still under debate. The gradient scale of magnetic field, plasma density at DFs in the near-Earth magnetotail is comparable to or lower than the ion gyro radius [Runov et al., 2011, Fu et al., 2012, Breuillard et al., 2016]. Such strongly inhomogeneous configuration could be unstable to the electron-ion hybrid (EIH) instability, which arises from strongly sheared transverse flow and is in the VLF range [Ganguli et al. 1988, Ganguli et al. 2014]. The equilibrium of the EIH theory implies an anisotropy of electron temperature, which are likely to drive the whistler waves observed in DFs [Deng et al., 2010, Gary et al., 2011]. In order to better understand how the whistler waves are generated in DFs and whether the EIH theory is applicable, a fully electromagnetic particle-in-cell (EMPIC) model is used to simulate the EIH instability with similar equilibrium configurations in DF observations. The EMPIC model deals with three dimensions in the velocity space and two dimensions in the configuration space, which is quite ready to include the third configuration dimension. Simulation results will be shown in this presentation.

  9. TRANS-TEXTUALIZATION AND CARNIVALIZATION IN "WHISTLER," BY ONDJAKI

    Directory of Open Access Journals (Sweden)

    Karine Miranda Campos

    2013-04-01

    Full Text Available This article aims to observe the phenomenon of carnivalization and trans­textuality the novel The Whistler, the Angolan writer Ondjaki. Comprise the theoretical analysis of Bakhtin’s theory on carnivalization and its im­portance for social subversion of monologic discourse established by of­ficial bodies, the theory of Gérard Genette on transtextuality pointing five possible textual relationships. An understanding of the theories and car­nivalization transtextuality pervades the concepts of animism and taboo presented the theory of Sigmund Freud.

  10. Analysis of subprotonospheric whistlers observed by DEMETER: A case study

    Czech Academy of Sciences Publication Activity Database

    Chum, Jaroslav; Santolík, Ondřej; Parrot, M.

    2009-01-01

    Roč. 114, A02 (2009), A02307/1-A02307/17 ISSN 0148-0227 R&D Projects: GA ČR GA205/06/1267; GA ČR GA205/06/0875; GA AV ČR IAA300420603; GA AV ČR IAA301120601 Grant - others:Lapland Atmosphere-Biosphere Facility - 2 (LAPBIAT-2)(XE) RITA -CT-2006-025969 Institutional research plan: CEZ:AV0Z30420517 Keywords : waves in plasma * propagation and reflection of lightning induced whistlers * ion composition in the upper ionosphere Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.082, year: 2009

  11. Evaluation of process conditions triggering emissions of green-house gases from a biological wastewater treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Caballero, A.; Aymerich, I. [Catalan Institute for Water Research (ICRA), Emili Grahit Street, 101, H_2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona (Spain); Poch, M. [Laboratory of Chemical and Environmental Engineering (LEQUIA-UdG), Institute of the Environment, University of Girona, Campus Montilivi s/n, E-17071 Girona (Spain); Pijuan, M., E-mail: mpijuan@icra.cat [Catalan Institute for Water Research (ICRA), Emili Grahit Street, 101, H_2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona (Spain)

    2014-09-15

    In this study, methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) emission dynamics of a plug–flow bioreactor located in a municipal full-scale wastewater treatment plant were monitored during a period of 10 weeks. In general, CH{sub 4} and N{sub 2}O gas emissions from the bioreactor accounted for 0.016% of the influent chemical oxygen demand (COD) and 0.116% of the influent total Kjeldahl nitrogen (TKN) respectively. In order to identify the emission patterns in the different zones, the bioreactor was divided in six different sampling sites and the gas collection hood was placed for a period of 2–3 days in each of these sites. This sampling strategy also allowed the identification of different process perturbations leading to CH{sub 4} or N{sub 2}O peak emissions. CH{sub 4} emissions mainly occurred in the first aerated site, and were mostly related with the influent and reject wastewater flows entering the bioreactor. On the other hand, N{sub 2}O emissions were given along all the aerated parts of the bioreactor and were strongly dependant on the occurrence of process disturbances such as periods of no aeration or nitrification instability. Dissolved CH{sub 4} and N{sub 2}O concentrations were monitored in the bioreactor and in other parts of the plant, as a contribution for the better understanding of the transport of these greenhouse gases across the different stages of the treatment system. - Highlights: • Monitoring of CH{sub 4} and N{sub 2}O emissions from a full-scale activated sludge bioreactor • Process perturbations leading to CH{sub 4} and N{sub 2}O peak emissions were identified. • Peak emissions increased severely the overall emission account of the bioreactor. • CH{sub 4} emissions were related with the inflow of influent and reject wastewater. • N{sub 2}O was generated as consequence of nitrification imbalances.

  12. Solar Wind Electron Scattering by Kinetic Instabilities and Whistler Turbulence

    Science.gov (United States)

    Gary, S. P.

    2015-12-01

    The expansion of the solar wind away from the Sun drives electron velocity distributions away from the thermal Maxwellian form, yielding distributions near 1 AU which typically can be characterized as consisting of three anisotropic components: a more dense, relatively cool core, a relatively tenuous , relatively warm halo and a similarly tenuous, warm strahl. Each of these nonthermal components are potential sources of kinetic plasma instabilities; the enhanced waves from each instability can scatter the electrons, acting to reduce the various anisotropies and making their overall velocity distribution more nearly (but not completely) thermal. In contrast, simulations are demonstrating that the forward decay of whistler turbulence can lead to the development of a T||> T_perp electron anisotropy. This presentation will review linear theories of electron-driven kinetic instabilities (following the presentation by Daniel Verscharen at the 2015 SHINE Workshop), and will further consider the modification of electron velocity distributions as obtained from particle-in-cell simulations of such instabilities as well as from the decay of whistler turbulence.

  13. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, Terhi; Nerg, Anne-Marja; Holopainen, Jarmo K

    2004-09-01

    We evaluated the similarities between ozone-induced and mite-induced emission of volatile organic compounds (VOCs) from lima beans, and tested the response of the natural enemies of herbivores to these emissions using trophic system of two-spotted spider mites and predatory mites. The acute ozone-exposure and spider mite-infestation induced the emission of two homoterpenes, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (Z)-3-hexenyl acetate. Only plants with spider mite-infestation emitted the monoterpene (E)-{beta}-ocimene. Predatory mites were equally attracted to ozone-exposed and unexposed plants, but discriminated between spider mite-infested and uninfested plants, when both were exposed to ozone. The similarities between ozone and herbivore-induced VOCs suggest that plant defence against phytotoxic ozone and the production of VOCs for attraction of the natural enemies of herbivores may have adaptive coevolution. However, the expected elevated ozone concentrations in future may not disturb tritrophic signalling, unless herbivore-induced VOCs are lost in the process of aerosol formation.

  14. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling

    International Nuclear Information System (INIS)

    Vuorinen, Terhi; Nerg, Anne-Marja; Holopainen, Jarmo K.

    2004-01-01

    We evaluated the similarities between ozone-induced and mite-induced emission of volatile organic compounds (VOCs) from lima beans, and tested the response of the natural enemies of herbivores to these emissions using trophic system of two-spotted spider mites and predatory mites. The acute ozone-exposure and spider mite-infestation induced the emission of two homoterpenes, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (Z)-3-hexenyl acetate. Only plants with spider mite-infestation emitted the monoterpene (E)-β-ocimene. Predatory mites were equally attracted to ozone-exposed and unexposed plants, but discriminated between spider mite-infested and uninfested plants, when both were exposed to ozone. The similarities between ozone and herbivore-induced VOCs suggest that plant defence against phytotoxic ozone and the production of VOCs for attraction of the natural enemies of herbivores may have adaptive coevolution. However, the expected elevated ozone concentrations in future may not disturb tritrophic signalling, unless herbivore-induced VOCs are lost in the process of aerosol formation

  15. Trigger finger

    Science.gov (United States)

    ... digit; Trigger finger release; Locked finger; Digital flexor tenosynovitis ... cut or hand Yellow or green drainage from the cut Hand pain or discomfort Fever If your trigger finger returns, call your surgeon. You may need another surgery.

  16. An analysis of whistler mode radiation from a 100 mA electron beam

    International Nuclear Information System (INIS)

    Goerke, R.T.; Kellogg, P.J.; Monson, S.J.

    1990-01-01

    Observations of whistler mode radiation generated by 2-, 4-, and 8-keV electron beams with a current of 100 mA, are analyzed. The electron accelerator was carried to ionospheric heights by a Nike Black Brant V rocket (National Research Council of Canada NVB-06). The instability causing the whistler mode radiation is investigated. Spectral measurements (0.1-13.0 MHz), from a sweeping receiver located on the ejected forward payload, are used to determine the nature of the instability. The sweeping receiver was connected alternatively to an electric or a magnetic dipole antenna. Most of the whistler mode radiation detected was consistent with Cerenkov radiation. The radiation fields observed were too large (cB ∼ 0.1 μV/m Hz 1/2 ) to be explained by incoherent processes. If electrostatic bunching in the beam at the plasma frequency is responsible for the whistler radiation, there would be a correlation between the plasma frequency radiation, and the whistler mode radiation for electron beams that are fired toward the detector. The observed correlation is minimal. Hence no evidence was found to support the hypothesis that electrostatic bunching at the plasma frequency was responsible for the enhancement of the whistler mode radiation produced by the NVB-06 electron beam

  17. Whistler waves with electron temperature anisotropy and non-Maxwellian distribution functions

    Directory of Open Access Journals (Sweden)

    M. Usman Malik

    2018-05-01

    Full Text Available The previous works on whistler waves with electron temperature anisotropy narrated the dependence on plasma parameters, however, they did not explore the reasons behind the observed differences. A comparative analysis of the whistler waves with different electron distributions has not been made to date. This paper attempts to address both these issues in detail by making a detailed comparison of the dispersion relations and growth rates of whistler waves with electron temperature anisotropy for Maxwellian, Cairns, kappa and generalized (r, q distributions by varying the key plasma parameters for the problem under consideration. It has been found that the growth rate of whistler instability is maximum for flat-topped distribution whereas it is minimum for the Maxwellian distribution. This work not only summarizes and complements the previous work done on the whistler waves with electron temperature anisotropy but also provides a general framework to understand the linear propagation of whistler waves with electron temperature anisotropy that is applicable in all regions of space plasmas where the satellite missions have indicated their presence.

  18. The producing of an ECR plasma using 2450MHz Whistler Wave and the investigating of its parameters

    International Nuclear Information System (INIS)

    Fang Yude; Zhang Jiande; Fu Keming; Lu Xiangyu; Liu Dengcheng; Wang Xianyu; Xie Weidong; Bao Dinghua; Yin Xiejin

    1988-12-01

    A stable ECR plasma was produced and sustained in HER mirror using 2450MHz Whistler wave. The parameters of the ECR plasma and their chaining characters were studied in detail and were compared with those of the DC discharge plasmas. The conclusion is that the ECR plasma is a high ionizability, low temperature, middle density plasma, its peak density may much exceed the cutoff density of the pump wave (when ω = ω pe ) and arrive at the order of 10 12 cm -3 . The ECR plasma includes some high energy hot electrons (20Kev-200Kev) and middle energy warm electrons (< 20Kev). Those two kinds of electron created some strong X-ray emissions in a wide frequency range. The ECR plasma has higher edge density and can strongly interact with the wall. (author). 9 refs, 17 figs

  19. Label-Free and Ultrasensitive Biomolecule Detection Based on Aggregation Induced Emission Fluorogen via Target-Triggered Hemin/G-Quadruplex-Catalyzed Oxidation Reaction.

    Science.gov (United States)

    Li, Haiyin; Chang, Jiafu; Gai, Panpan; Li, Feng

    2018-02-07

    Fluorescence biosensing strategy has drawn substantial attention due to their advantages of simplicity, convenience, sensitivity, and selectivity, but unsatisfactory structure stability, low fluorescence quantum yield, high cost of labeling, and strict reaction conditions associated with current fluorescence methods severely prohibit their potential application. To address these challenges, we herein propose an ultrasensitive label-free fluorescence biosensor by integrating hemin/G-quadruplex-catalyzed oxidation reaction with aggregation induced emission (AIE) fluorogen-based system. l-Cysteine/TPE-M, which is carefully and elaborately designed and developed, obviously contributes to strong fluorescence emission. In the presence of G-rich DNA along with K + and hemin, efficient destruction of l-cysteine occurs due to hemin/G-quadruplex-catalyzed oxidation reactions. As a result, highly sensitive fluorescence detection of G-rich DNA is readily realized, with a detection limit down to 33 pM. As a validation for the further development of the proposed strategy, we also successfully construct ultrasensitive platforms for microRNA by incorporating the l-cysteine/TPE-M system with target-triggered cyclic amplification reaction. Thus, this proposed strategy is anticipated to find use in basic biochemical research and clinical diagnosis.

  20. Whistlers in space plasma, their role for particle populations in the inner magnetosphere

    Science.gov (United States)

    Shklyar, David

    Of many wave modes, which propagate in the plasmaspheric region of the magnetosphere, whistler waves play the most important role in the dynamics of energetic particles (chiefly elec-trons, but not excepting protons), as their resonant interactions are very efficient. There are three main sources of whistler mode waves in the magnetosphere, namely, lightning strokes, VLF transmitter signals, and far and away various kinds of kinetic instabilities leading to generation of whistler mode waves. Resonant interactions of energetic electrons with whistlers may lead to electron acceleration, scattering into loss-cone, and consequent precipitation into the iono-sphere and atmosphere. While electron resonant interaction with lightning-induced whistlers and VLF transmitter signals may, to a certain approximation, be considered as particle dy-namics in given electromagnetic fields, resonant wave-particle interaction in the case of plasma instability is intrinsically a self-consistent process. An important aspect of whistler-electron interactions (particularly in the case of plasma instability) is the possibility of energy exchange between different energetic electron populations. Thus, in many cases, whistler wave growth rate is determined by "competition" between the first cyclotron and Cerenkov resonances, one (depending on energetic electron distribution) leading to wave growth and the other one to wave damping. Since particles which give rise to wave growth loose their energy, while parti-cles which lead to wave damping gain energy at the expense of the wave, and since the first cyclotron and Cerenkov resonances correspond to different particle energies, wave generation as the result of plasma instability may lead, at the same time, to energy exchange between two populations of energetic particles. While the role of whistlers in dynamics of energetic electrons in the magnetosphere is gener-ally recognized, their role for protons seems to be underestimated. At the same

  1. Nonlinear Electrostatic Steepening of Whistler Waves: The Guiding Factors and Dynamics in Inhomogeneous Systems

    Science.gov (United States)

    Agapitov, O.; Drake, J. F.; Vasko, I.; Mozer, F. S.; Artemyev, A.; Krasnoselskikh, V.; Angelopoulos, V.; Wygant, J.; Reeves, G. D.

    2018-03-01

    Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The efficiency of wave-particle resonant interactions is defined by whistler wave properties which have been described by the approximation of plane linear waves propagating through the cold plasma of the inner magnetosphere. However, recent observations of extremely high-amplitude whistlers suggest the importance of nonlinear wave-particle interactions for the dynamics of the outer radiation belt. Oblique chorus waves observed in the inner magnetosphere often exhibit drastically nonsinusoidal (with significant power in the higher harmonics) waveforms of the parallel electric field, presumably due to the feedback from hot resonant electrons. We have considered the nature and properties of such nonlinear whistler waves observed by the Van Allen Probes and Time History of Events and Macroscale Interactions define during Substorms in the inner magnetosphere, and we show that the significant enhancement of the wave electrostatic component can result from whistler wave coupling with the beam-driven electrostatic mode through the resonant interaction with hot electron beams. Being modulated by a whistler wave, the electron beam generates a driven electrostatic mode significantly enhancing the parallel electric field of the initial whistler wave. We confirm this mechanism using a self-consistent particle-in-cell simulation. The nonlinear electrostatic component manifests properties of the beam-driven electron acoustic mode and can be responsible for effective electron acceleration in the inhomogeneous magnetic field.

  2. Anisotropic electron distribution functions and the transition between the Weibel and the whistler instabilities

    International Nuclear Information System (INIS)

    Pegoraro, F.; Palodhi, L.; Califano, F.

    2013-01-01

    Electron distribution functions that are anisotropic in phase space are a common feature of collisionless plasmas both in space and in the laboratory and the investigation of the processes through which these distributions relax is of primary interest. In fact, the free energy that is made available by the unbalance of the particle “temperatures” in the different directions can be transferred, depending on the plasma conditions, to quasistatic magnetic fields, to electromagnetic or electrostatic coherent structures or to particle acceleration. The anisotropy of the electron distribution function in an unmagnetized plasma can give rise to the onset of the well known Weibel instability which generates a quasistatic magnetic field. If a magnetic field is already present in the plasma, the Weibel instability driven by the anisotropy of the electron energy distribution turns into the so called whistler instability, in which case circularly polarized whistler waves are generated by the relaxation of the electron distribution function. Whistler waves are actually ubiquitous in plasmas and their generation has been extensively studied in recent years in the laboratory. Whistler instabilities have been reported in space where bursts of whistler mode magnetic noise are found to be present in the magnetosphere, close to the magnetopause and are also a likely source of several different magnetospheric fluctuations including plasmaspheric hiss and magnetospheric chorus. In this presentation the transition between non resonant (Weibel-type) and resonant (whistler) instabilities is investigated numerically in plasma configurations with an ambient magnetic field of increasing amplitudes. The Vlasov-Maxwell system is solved in a configuration where the fields have three components but depend only on one coordinate and on time. The nonlinear evolution of these instabilities is shown to lead to the excitation of electromagnetic and electrostatic modes at the first few harmonics

  3. Dynamics of Quasi-Electrostatic Whistler waves in Earth's Radiation belts

    Science.gov (United States)

    Goyal, R.; Sharma, R. P.; Gupta, D. N.

    2017-12-01

    A numerical model is proposed to study the dynamics of high amplitude quasi-electrostatic whistler waves propagating near resonance cone angle and their interaction with finite frequency kinetic Alfvén waves (KAWs) in Earth's radiation belts. The quasi-electrostatic character of whistlers is narrated by dynamics of wave propagating near resonance cone. A high amplitude whistler wave packet is obtained using the present analysis which has also been observed by S/WAVES instrument onboard STEREO. The numerical simulation technique employed to study the dynamics, leads to localization (channelling) of waves as well as turbulent spectrum suggesting the transfer of wave energy over a range of frequencies. The turbulent spectrum also indicates the presence of quasi-electrostatic whistlers and density fluctuations associated with KAW in radiation belts plasma. The ponderomotive force of pump quasi-electrostatic whistlers (high frequency) is used to excite relatively much lower frequency waves (KAWs). The wave localization and steeper spectra could be responsible for particle energization or heating in radiation belts.

  4. Systematic errors in VLF direction-finding of whistler ducts

    International Nuclear Information System (INIS)

    Strangeways, H.J.; Rycroft, M.J.

    1980-01-01

    In the previous paper it was shown that the systematic error in the azimuthal bearing due to multipath propagation and incident wave polarisation (when this also constitutes an error) was given by only three different forms for all VLF direction-finders currently used to investigate the position of whistler ducts. In this paper the magnitude of this error is investigated for different ionospheric and ground parameters for these three different systematic error types. By incorporating an ionosphere for which the refractive index is given by the full Appleton-Hartree formula, the variation of the systematic error with ionospheric electron density and latitude and direction of propagation is investigated in addition to the variation with wave frequency, ground conductivity and dielectric constant and distance of propagation. The systematic bearing error is also investigated for the three methods when the azimuthal bearing is averaged over a 2 kHz bandwidth. This is found to lead to a significantly smaller bearing error which, for the crossed-loops goniometer, approximates the bearing error calculated when phase-dependent terms in the receiver response are ignored. (author)

  5. Control of runaway electron energy using externally injected whistler waves

    Science.gov (United States)

    Guo, Zehua; McDevitt, Christopher J.; Tang, Xian-Zhu

    2018-03-01

    One way of mitigating runaway damage of the plasma-facing components in a tokamak fusion reactor is by limiting the runaway electron energy under a few MeV, while not necessarily reducing the runaway current appreciably. Here, we describe a physics mechanism by which such momentum space engineering of the runaway distribution can be facilitated by externally injected high-frequency electromagnetic waves such as whistler waves. The drastic impact that wave-induced scattering can have on the runaway energy distribution is fundamentally the result of its ability to control the runaway vortex in the momentum space. The runaway vortex, which is a local circulation of runaways in momentum space, is the outcome of the competition between Coulomb collisions, synchrotron radiation damping, and runaway acceleration by the parallel electric field. By introducing a wave that resonantly interacts with runaways in a particular range of energies which is mildly relativistic, the enhanced scattering would reshape the vortex by cutting off the part that is highly relativistic. The efficiency of resonant scattering accentuates the requirement that the wave amplitude can be small so the power requirement from external wave injection is practical for the mitigation scheme.

  6. Parameter spaces for linear and nonlinear whistler-mode waves

    International Nuclear Information System (INIS)

    Summers, Danny; Tang, Rongxin; Omura, Yoshiharu; Lee, Dong-Hun

    2013-01-01

    We examine the growth of magnetospheric whistler-mode waves which comprises a linear growth phase followed by a nonlinear growth phase. We construct time-profiles for the wave amplitude that smoothly match at the transition between linear and nonlinear wave growth. This matching procedure can only take place over a limited “matching region” in (N h /N 0 ,A T )-space, where A T is the electron thermal anisotropy, N h is the hot (energetic) electron number density, and N 0 is the cold (background) electron number density. We construct this matching region and determine how the matching wave amplitude varies throughout the region. Further, we specify a boundary in (N h /N 0 ,A T )-space that separates a region where only linear chorus wave growth can occur from the region in which fully nonlinear chorus growth is possible. We expect that this boundary should prove of practical use in performing computationally expensive full-scale particle simulations, and in interpreting experimental wave data

  7. The Role of Higher-Order Modes on the Electromagnetic Whistler-Cyclotron Wave Fluctuations of Thermal and Non-Thermal Plasmas

    Science.gov (United States)

    Vinas, Adolfo F.; Moya, Pablo S.; Navarro, Roberto; Araneda, Jamie A.

    2014-01-01

    Two fundamental challenging problems of laboratory and astrophysical plasmas are the understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution functions and the resultant state of nearly equipartition energy density with electromagnetic plasma turbulence. Here, we present the results of a study which shows the role that higher-order-modes play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma. Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions that are bounded by the least-damped higher order modes. We further show that the zone where the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer wavelengths as the beta(sub e) increases. This merging zone has been interpreted as the beginning of the region where the whistler-cyclotron waves losses their identity and become heavily damped while merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas, the higher-order modes do not confine the fluctuations due to the effective higher-temperature effects and the excess of suprathermal plasma particles. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electron-proton plasma. Our results indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these quasi modes suggesting that such modes play an important role in the emission and absorption of electromagnetic fluctuations in thermal or quasi-thermal plasmas.

  8. Trigger Finger

    Science.gov (United States)

    ... in a bent position. People whose work or hobbies require repetitive gripping actions are at higher risk ... developing trigger finger include: Repeated gripping. Occupations and hobbies that involve repetitive hand use and prolonged gripping ...

  9. Electron and ion heating by whistler turbulence: Three-dimensional particle-in-cell simulations

    International Nuclear Information System (INIS)

    Hughes, R. Scott; Gary, S. Peter; Wang, Joseph

    2014-01-01

    Three-dimensional particle-in-cell simulations of decaying whistler turbulence are carried out on a collisionless, homogeneous, magnetized, electron-ion plasma model. In addition, the simulations use an initial ensemble of relatively long wavelength whistler modes with a broad range of initial propagation directions with an initial electron beta β e = 0.05. The computations follow the temporal evolution of the fluctuations as they cascade into broadband turbulent spectra at shorter wavelengths. Three simulations correspond to successively larger simulation boxes and successively longer wavelengths of the initial fluctuations. The computations confirm previous results showing electron heating is preferentially parallel to the background magnetic field B o , and ion heating is preferentially perpendicular to B o . The new results here are that larger simulation boxes and longer initial whistler wavelengths yield weaker overall dissipation, consistent with linear dispersion theory predictions of decreased damping, stronger ion heating, consistent with a stronger ion Landau resonance, and weaker electron heating

  10. EXPERIMENTAL DETERMINATION OF WHISTLER WAVE DISPERSION RELATION IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Stansby, D.; Horbury, T. S.; Chen, C. H. K.; Matteini, L., E-mail: david.stansby14@imperial.ac.uk [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-09-20

    The origins and properties of large-amplitude whistler wavepackets in the solar wind are still unclear. In this Letter, we utilize single spacecraft electric and magnetic field waveform measurements from the ARTEMIS mission to calculate the plasma frame frequency and wavevector of individual wavepackets over multiple intervals. This allows direct comparison of experimental measurements with theoretical dispersion relations to identify the observed waves as whistler waves. The whistlers are right-hand circularly polarized, travel anti-sunward, and are aligned with the background magnetic field. Their dispersion is strongly affected by the local electron parallel beta in agreement with linear theory. The properties measured are consistent with the electron heat flux instability acting in the solar wind to generate these waves.

  11. Three-dimensional kinetic simulations of whistler turbulence in solar wind on parallel supercomputers

    Science.gov (United States)

    Chang, Ouliang

    The objective of this dissertation is to study the physics of whistler turbulence evolution and its role in energy transport and dissipation in the solar wind plasmas through computational and theoretical investigations. This dissertation presents the first fully three-dimensional (3D) particle-in-cell (PIC) simulations of whistler turbulence forward cascade in a homogeneous, collisionless plasma with a uniform background magnetic field B o, and the first 3D PIC simulation of whistler turbulence with both forward and inverse cascades. Such computationally demanding research is made possible through the use of massively parallel, high performance electromagnetic PIC simulations on state-of-the-art supercomputers. Simulations are carried out to study characteristic properties of whistler turbulence under variable solar wind fluctuation amplitude (epsilon e) and electron beta (betae), relative contributions to energy dissipation and electron heating in whistler turbulence from the quasilinear scenario and the intermittency scenario, and whistler turbulence preferential cascading direction and wavevector anisotropy. The 3D simulations of whistler turbulence exhibit a forward cascade of fluctuations into broadband, anisotropic, turbulent spectrum at shorter wavelengths with wavevectors preferentially quasi-perpendicular to B o. The overall electron heating yields T ∥ > T⊥ for all epsilone and betae values, indicating the primary linear wave-particle interaction is Landau damping. But linear wave-particle interactions play a minor role in shaping the wavevector spectrum, whereas nonlinear wave-wave interactions are overall stronger and faster processes, and ultimately determine the wavevector anisotropy. Simulated magnetic energy spectra as function of wavenumber show a spectral break to steeper slopes, which scales as k⊥lambda e ≃ 1 independent of betae values, where lambdae is electron inertial length, qualitatively similar to solar wind observations. Specific

  12. Examining Coherency Scales, Substructure, and Propagation of Whistler Mode Chorus Elements With Magnetospheric Multiscale (MMS)

    Science.gov (United States)

    Turner, D. L.; Lee, J. H.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.; Jaynes, A. N.; Leonard, T.; Wilder, F. D.; Ergun, R. E.; Baker, D. N.; Cohen, I. J.; Mauk, B. H.; Strangeway, R. J.; Hartley, D. P.; Kletzing, C. A.; Breuillard, H.; Le Contel, O.; Khotyaintsev, Yu. V.; Torbert, R. B.; Allen, R. C.; Burch, J. L.; Santolik, O.

    2017-11-01

    Whistler mode chorus waves are a naturally occurring electromagnetic emission observed in Earth's magnetosphere. Here, for the first time, data from NASA's Magnetospheric Multiscale (MMS) mission were used to analyze chorus waves in detail, including the calculation of chorus wave normal vectors, fi>k. A case study was examined from a period of substorm activity around the time of a conjunction between the MMS constellation and NASA's Van Allen Probes mission on 07 April 2016. Chorus wave activity was simultaneously observed by all six spacecraft over a broad range of L shells (5.5 flat or falling frequency following the peak, and all the elements exhibited complex and well-organized substructure observed consistently at all four MMS spacecraft at separations up to 70 km (60 km perpendicular and 38 km parallel to the background magnetic field). The waveforms in field-aligned coordinates also demonstrated that these waves were all phase coherent, allowing for the direct calculation of fi>k. Error estimates on calculated fi>k revealed that the plane wave approximation was valid for six of the eight elements and most of the subelements. The wave normal vectors were within 20-30° from the direction antiparallel to the background field for all elements and changed from subelement to subelement through at least two of the eight elements. The azimuthal angle of fi>k in the perpendicular plane was oriented earthward and was oblique to that of the Poynting vector, which has implications for the validity of cold plasma theory.

  13. Particle simulations of nonlinear whistler and Alfven wave instabilities - Amplitude modulation, decay, soliton and inverse cascading

    International Nuclear Information System (INIS)

    Omura, Yoshiharu; Matsumoto, Hiroshi.

    1989-01-01

    Past theoretical and numerical studies of the nonlinear evolution of electromagnetic cyclotron waves are reviewed. Such waves are commonly observed in space plasmas such as Alfven waves in the solar wind or VLF whistler mode waves in the magnetosphere. The use of an electromagnetic full-particle code to study an electron cyclotron wave and of an electromagnetic hybrid code to study an ion cyclotron wave is demonstrated. Recent achievements in the simulations of nonlinear revolution of electromagnetic cyclotron waves are discussed. The inverse cascading processes of finite-amplitude whistler and Alfven waves is interpreted in terms of physical elementary processes. 65 refs

  14. Modeling Whistler Wave Generation Regimes In Magnetospheric Cyclotron Maser

    Science.gov (United States)

    Pasmanik, D. L.; Demekhov, A. G.; Trakhtengerts, V. Y.; Parrot, M.

    Numerical analysis of the model for cyclotron instability development in the Earth magnetosphere is made.This model, based on the self-consistent set of equations of quasi-linear plasma theory, describes different regimes of wave generation and related energetic particle precipitation. As the source of free energy the injection of energetic electrons with transverse anisotropic distribution function to the interaction region is considered. Two different mechanisms of energetic electron loss from the interaction region are discussed. The first one is precipitation of energetic particles via the loss cone. The other mechanism is drift of particles away from the interaction region across the mag- netic field line. In the case of interaction in plasmasphere or rather large areas of cold plasma density enhancement the loss cone precipitation are dominant. For interaction in a subauroral duct losses due to drift are most effective. A parametric study of the model for both mechanisms of particle losses is made. The main attention is paid to the analysis of generation regimes for different characteristics of energetic electron source, such as the shape of pitch-angle distributions and elec- tron density. We show that in addition to the well-known stationary generation and periodic regime with successive spikes of similar shape, more complex forms of wave spectrum exist. In particular, we found a periodic regime, in which a single period in- cludes two separate spikes with different spectral shapes. In another regime, periodic generation of spikes at higher frequencies together with quasi-stationary generation at lower frequencies occurs. Quasi-periodic regime with spike overlapping, i.e. when generation of a new spike begins before the previous one is over is also found. Results obtained are compared with experimental data on quasi-periodic regimes of whistler wave generation.

  15. Generation of Nonlinear Electric Field Bursts in the Outer Radiation Belt through Electrons Trapping by Oblique Whistler Waves

    Science.gov (United States)

    Agapitov, Oleksiy; Drake, James; Mozer, Forrest

    2016-04-01

    Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. The parameters favorable for the generation of TDS were studied experimentally as well as making use of 2-D particle-in-cell (PIC) simulations for the system with inhomogeneous magnetic field. It is shown that an outward propagating front of whistlers and hot electrons amplifies oblique whistlers which collapse into regions of intense parallel electric field with properties consistent with recent observations of TDS from the Van Allen Probe satellites. Oblique whistlers seed the parallel electric fields that are driven by the beams. The resulting parallel electric fields trap and heat the precipitating electrons. These electrons drive spikes of intense parallel electric field with characteristics similar to the TDSs seen in the VAP data. The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system. These effects are observed by the Van Allen Probes in the radiation belts. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.

  16. Triggering Artefacts

    DEFF Research Database (Denmark)

    Mogensen, Preben Holst; Robinson, Mike

    1995-01-01

    and adapting them to specific situations need not be ad hoc.Triggering artefacts are a way of systematically challenging both designers' preunderstandings and the conservatism of work practice. Experiences from the Great Belt tunnel and bridge project are used to illustrate howtriggering artefacts change...

  17. Generation mechanism of the whistler-mode waves in the plasma sheet prior to magnetic reconnection

    Czech Academy of Sciences Publication Activity Database

    Wei, X. H.; Cao, J. B.; Zhou, G. C.; Fu, H. S.; Santolík, Ondřej; Reme, H.; Dandouras, I.; Cornilleau, N.; Fazakerley, A.

    2013-01-01

    Roč. 52, č. 1 (2013), s. 205-210 ISSN 0273-1177 Institutional support: RVO:68378289 Keywords : whistler-mode waves * electron temperature anisotropy * Reconnection * the plasma sheet Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.238, year: 2013 http://www.sciencedirect.com/science/article/pii/S0273117713001221

  18. A study of the effect of geomagnetic storms on low latitude whistlers

    International Nuclear Information System (INIS)

    Rao, Manoranjan; Somayajulu, V.V.; Dikshit, S.K.

    1974-01-01

    This paper presents the results of a detailed study of the influence of geomagnetic storms on low latitude whistlers recorded on ground. Studied in detail is the effect of the geomagnetic storm of March 6-10, 1970 on whistlers recorded at Gulmarg (Geomagnetic coordinates: 24 0 10'N; 147 0 24'E); results of analysis for the earlier storm of January 13-15, 1967 are included for comparison. Some of the important results of the present study are: (i) Both the whistler occurrence rate and dispersion increase simultaneously with Kp, (ii) During the decaying phase of the storm, changes in occurrence rate and in dispersion lag behind those in Kp, (iii) There is an indication of the existence of a cross-over latitude where tube contents may not change appreciably during storm periods, (iv) Multipath whistlers are observed only during disturbed conditions, (v) Duct life ranges between several hours to few days and (vi) Maximum number of ducts is observed during the main and recovery phases of the storm. (auth.)

  19. Propagation of unducted whistlers from their source lightning: a case study

    Czech Academy of Sciences Publication Activity Database

    Santolík, O.; Parrot, M.; Inan, U. S.; Burešová, Dalia; Gurnett, D. A.; Chum, Jaroslav

    2009-01-01

    Roč. 114, - (2009), A03212/1-A03212/11 ISSN 0148-0227 R&D Projects: GA AV ČR IAA301120601 Institutional research plan: CEZ:AV0Z30420517 Keywords : unducted whistler * DEMETER * ray-tracing Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.082, year: 2009

  20. Resonant and non-resonant whistlers-particle interaction in the radiation belts

    NARCIS (Netherlands)

    E. Camporeale (Enrico)

    2015-01-01

    htmlabstractWe study the wave-particle interactions between lower band chorus whistlers and an anisotropic tenuous population of relativistic electrons. We present the first direct comparison of first-principle Particle-in-Cell (PIC) simulations with a quasi-linear diffusion code. In the PIC

  1. Resonant and non-resonant whistlers-particle interaction in the radiation belts

    NARCIS (Netherlands)

    E. Camporeale (Enrico)

    2014-01-01

    htmlabstractWe study the wave-particle interactions between lower band chorus whistlers and an anisotropic tenuous population of relativistic electrons. We present the first direct comparison of first-principle Particle-in-Cell (PIC) simulations with a quasi-linear diffusion code, in this context.

  2. Nonlinear whistler wave model for lion roars in the Earth's magnetosheath

    Science.gov (United States)

    Dwivedi, N. K.; Singh, S.

    2017-09-01

    In the present study, we construct a nonlinear whistler wave model to explain the magnetic field spectra observed for lion roars in the Earth's magnetosheath region. We use two-fluid theory and semi-analytical approach to derive the dynamical equation of whistler wave propagating along the ambient magnetic field. We examine the magnetic field localization of parallel propagating whistler wave in the intermediate beta plasma applicable to the Earth's magnetosheath. In addition, we investigate spectral features of the magnetic field fluctuations and the spectral slope value. The magnetic field spectrum obtained by semi-analytical approach shows a spectral break point and becomes steeper at higher wave numbers. The observations of IMP 6 plasma waves and magnetometer experiment reveal the existence of short period magnetic field fluctuations in the magnetosheath. The observation shows the broadband spectrum with a spectral slope of -4.5 superimposed with a narrow band peak. The broadband fluctuations appear due to the energy cascades attributed by low-frequency magnetohydrodynamic modes, whereas, a narrow band peak is observed due to the short period lion roars bursts. The energy spectrum predicted by the present theoretical model shows a similar broadband spectrum in the wave number domain with a spectral slope of -3.2, however, it does not show any narrow band peak. Further, we present a comparison between theoretical energy spectrum and the observed spectral slope in the frequency domain. The present semi-analytical model provides exposure to the whistler wave turbulence in the Earth's magnetosheath.

  3. Characteristics of electron-ion whistlers and their application to ionospheric probing

    International Nuclear Information System (INIS)

    Singh, S.N.; Tiwari, S.; Tolpadi, S.K.

    1976-01-01

    In this communication the effect of ion temperature on the propagation of electron-ion whistlers in the ionosphere is investigated. A general expression including the effect of ion temperature is derived for the group travel time for the electron-ion whistler as it travels from the base of the ionosphere to the satellite. A study of the dependence of the group travel time for the proton whislters. Further, from the expression for the group travel time including the effect of the ion temperature in conjunction with the generalized dispersion relation a relation for the cyclotron damping rate (both temporal and spatial) has been obtained. A detailed study if the cyclotron damping rate with travel time and ion temperature leads to the conclusion that the observed amplitude cutoff characteristics for the proton whistler can be explained on the basis of the mechanism of cyclotron damping. It is also shown that the knowledge of the group travel time of an electron-ion whistler can be used to estimate the ion temperature at the satellite

  4. Ducted whistler-mode signals received at two widely spaced locations

    Directory of Open Access Journals (Sweden)

    M. A. Clilverd

    Full Text Available Whistler-mode signals from a single VLF transmitter that have propagated in the same duct, have been observed simultaneously at Faraday, Antarctica (65°S, 64°W and Dunedin, New Zealand (46°S, 171°E. The signals received have group-delay times that differ in the order of 10 ms, which can be explained by the differences in southern-hemisphere sub-ionospheric propagation time from duct exit region to receiver for the two sites. This difference has been used to determine the location of the duct exit region, with confirmation provided by arrival-bearing information from both sites. The whistler-mode signals typically occur one or two days after geomagnetic activity, with Kpgeq5. The sub-ionospheric-propagation model, LWPC, is used to estimate the whistler-mode power radiated from the duct exit region. These results are then combined with estimated loss values for ionospheric and ducted transmission to investigate the role of wave-particle amplification or absorption. On at least half of the events studied, plasmaspheric amplification of the signals appears to be needed to explain the observed whistler-mode signal strengths.

  5. Ducted whistler-mode signals received at two widely spaced locations

    Directory of Open Access Journals (Sweden)

    M. A. Clilverd

    1996-06-01

    Full Text Available Whistler-mode signals from a single VLF transmitter that have propagated in the same duct, have been observed simultaneously at Faraday, Antarctica (65°S, 64°W and Dunedin, New Zealand (46°S, 171°E. The signals received have group-delay times that differ in the order of 10 ms, which can be explained by the differences in southern-hemisphere sub-ionospheric propagation time from duct exit region to receiver for the two sites. This difference has been used to determine the location of the duct exit region, with confirmation provided by arrival-bearing information from both sites. The whistler-mode signals typically occur one or two days after geomagnetic activity, with Kp\\geq5. The sub-ionospheric-propagation model, LWPC, is used to estimate the whistler-mode power radiated from the duct exit region. These results are then combined with estimated loss values for ionospheric and ducted transmission to investigate the role of wave-particle amplification or absorption. On at least half of the events studied, plasmaspheric amplification of the signals appears to be needed to explain the observed whistler-mode signal strengths.

  6. A case study of lightning, whistlers, and associated ionospheric effects during a substorm particle injection event

    International Nuclear Information System (INIS)

    Rodriguez, J.V.; Inan, U.S.; Li, Y.Q.; Holzworth, R.H.; Smith, A.J.; Orville, R.E.; Rosenberg, T.J.

    1992-01-01

    Simultaneous ground-based observations of narrowband and broadband VLF radio waves and of cloud-to-ground lightning were made at widely spaced locations during the 1987 Wave-Induced Particle Precipitation (WIPP) campaign, conducted from Wallops Island, Virginia. Based on these observations, the first case study has been made of the relationships among located cloud-to-ground (CG) lightning flashes, whistlers, and associated ionospheric effects during a substorm particle injection event. This event took place 2 days after the strongest geomagnetic storm of 1987, during a reintensification in geomagnetic activity that did not affect the high rate of whistlers observed at Faraday Station, Antarctica. At the time of the injection event, several intense nighttime thunderstorms were located over Long Island and the coast of New England, between 400 km northwest and 600 km north of the region geomagnetically conjugate to Faraday. About two thirds of the CG flashes that were detected in these thunderstorms during the hour following the injection event onset were found to be causatively associated with whistlers received at Faraday. During the same period the amplitude of the 24.0-kHz signal from the NAA transmitter in Cutler, Maine, propagating over the thunderstorm centers toward Wallops Island was repeatedly perturbed in a manner characteristic of previously reported VLF signatures of transient and localized ionization enhancements at D region altitudes. Though such enhancements may have been caused by whistler-induced bursts electron precipitation from the magnetosphere, the data in this case are insufficient to establish a clear connection between the NAA amplitude perturbations and the Faraday Station whistlers. In view of the proximity of the NAA great circle path to the storm center, having the lower ionosphere by intense radiation from lightning may also have played a role in the observed VLF perturbations

  7. Generation of lower hybrid and whistler waves by an ion velocity ring distribution

    International Nuclear Information System (INIS)

    Winske, D.; Daughton, W.

    2012-01-01

    Using fully kinetic simulations in two and three spatial dimensions, we consider the generation and nonlinear evolution of lower hybrid waves produced by a cold ion ring velocity distribution in a low beta plasma. We show that the initial development of the instability is very similar in two and three dimensions and not significantly modified by electromagnetic effects, consistent with linear theory. At saturation, the level of electric field fluctuations is a small fraction of the background thermal energy; the electric field and corresponding density fluctuations consist of long, field-aligned striations. Energy extracted from the ring goes primarily into heating the background ions and the electrons at comparable rates. The initial growth and saturation of the magnetic components of the lower hybrid waves are related to the electric field components, consistent with linear theory. As the growing electric field fluctuations saturate, parallel propagating whistler waves develop by the interaction of two lower hybrid waves. At later times, these whistlers are replaced by longer wavelength, parallel propagating whistlers that grow through the decay of the lower hybrid fluctuations. Wave matching conditions demonstrate these conversion processes of lower hybrid waves to whistler waves. The conversion efficiency (=ratio of the whistler wave energy to the energy in the saturated lower hybrid waves) is computed and found to be significant (∼15%) for the parameters of the three-dimensional simulation (and even larger in the two-dimensional simulation), although when normalized in terms of the initial kinetic energy in the ring ions the overall efficiency is very small ( −4 ). The results are compared with relevant linear and nonlinear theory.

  8. Investigation of Io's auroral hiss emissions due to its motion in Jupiter's magnetosphere

    International Nuclear Information System (INIS)

    Moghimi, Mohsen H.

    2012-01-01

    The left-hand side of the auroral hiss emission observed by Galileo has a frequency time profile shaped very similar to the funnel shape observed in the Earth's auroral region. This close similarity indicates that we can use the theory of whistler-mode propagation near the resonance cone to locate the emission source. The general characteristics of the whistler mode are discussed. Then the position of the emission source is investigated using a geometrical method that takes into account the trajectory of Galileo. Initially a point source is assumed. Then the possibility of a sheet source aligned along the magnetic field lines which are tangent to the surface of Io is investigated. Both types of sources show that the whistler mode radiation originates very close to the surface of Io. (research papers)

  9. Refractory black carbon at the Whistler Peak High Elevation Research Site - Measurements and simulations

    Science.gov (United States)

    Hanna, Sarah J.; Xu, Jun-Wei; Schroder, Jason C.; Wang, Qiaoqiao; McMeeking, Gavin R.; Hayden, Katherine; Leaitch, W. Richard; Macdonald, AnneMarie; von Salzen, Knut; Martin, Randall V.; Bertram, Allan K.

    2018-05-01

    Measurements of black carbon at remote and high altitude locations provide an important constraint for models. Here we present six months of refractory black carbon (rBC) data collected in July-August of 2009, June-July of 2010, and April-May of 2012 using a single particle soot photometer (SP2) at the remote Whistler High Elevation Research Site in the Coast Mountains of British Columbia (50.06°N, 122.96°W, 2182 m a.m.s.l). In order to reduce regional boundary layer influences, only measurements collected during the night (2000-0800 PST) were considered. Times impacted by local biomass burning were removed from the data set, as were periods of in-cloud sampling. Back trajectories and back trajectory cluster analysis were used to classify the sampled air masses as Southern Pacific, Northern Pacific, Western Pacific/Asian, or Northern Canadian in origin. The largest rBC mass median diameter (182 nm) was seen for air masses in the Southern Pacific cluster, and the smallest (156 nm) was seen for air masses in the Western Pacific/Asian cluster. Considering all the clusters, the median mass concentration of rBC was 25.0 ± 7.6 ng/m3-STP. The Northern Pacific, Southern Pacific, Western Pacific/Asian, and Northern Canada clusters had median mass concentrations of 25.0 ± 7.6, 21.3 ± 6.9, 25.0 ± 7.9, and 40.6 ± 12.9 ng/m3-STP, respectively. We compared these measurements with simulations from the global chemical transport model GEOS-Chem. The default GEOS-Chem simulations overestimated the median rBC mass concentrations for the different clusters by a factor of 1.2-2.2. The largest difference was observed for the Northern Pacific cluster (factor of 2.2) and the smallest difference was observed for the Northern Canada cluster (factor of 1.2). A sensitivity simulation that excluded Vancouver emissions still overestimated the median rBC mass concentrations for the different clusters by a factor of 1.1-2.0. After implementation of a revised wet scavenging scheme, the

  10. On the interactions between energetic electrons and lightning whistler waves observed at high L-shells on Van Allen Probes

    Science.gov (United States)

    Zheng, H.; Holzworth, R. H., II; Brundell, J. B.; Hospodarsky, G. B.; Jacobson, A. R.; Fennell, J. F.; Li, J.

    2017-12-01

    Lightning produces strong broadband radio waves, called "sferics", which propagate in the Earth-ionosphere waveguide and are detected thousands of kilometers away from their source. Global real-time detection of lightning strokes including their time, location and energy, is conducted with the World Wide Lightning Location Network (WWLLN). In the ionosphere, these sferics couple into very low frequency (VLF) whistler waves which propagate obliquely to the Earth's magnetic field. A good match has previously been shown between WWLLN sferics and Van Allen Probes lightning whistler waves. It is well known that lightning whistler waves can modify the distribution of energetic electrons in the Van Allen belts by pitch angle scattering into the loss cone, especially at low L-Shells (referred to as LEP - Lightning-induced Electron Precipitation). It is an open question whether lightning whistler waves play an important role at high L-shells. The possible interactions between energetic electrons and lightning whistler waves at high L-shells are considered to be weak in the past. However, lightning is copious, and weak pitch angle scattering into the drift or bounce loss cone would have a significant influence on the radiation belt populations. In this work, we will analyze the continuous burst mode EMFISIS data from September 2012 to 2016, to find out lightning whistler waves above L = 3. Based on that, MAGEIS data are used to study the related possible wave-particle interactions. In this talk, both case study and statistical analysis results will be presented.

  11. Single-photon emission at a rate of 143 MHz from a deterministic quantum-dot microlens triggered by a mode-locked vertical-external-cavity surface-emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Schlehahn, A.; Gschrey, M.; Schnauber, P.; Schulze, J.-H.; Rodt, S.; Strittmatter, A.; Heindel, T., E-mail: tobias.heindel@tu-berlin.de; Reitzenstein, S. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin 10623 (Germany); Gaafar, M.; Vaupel, M.; Stolz, W.; Rahimi-Iman, A.; Koch, M. [Department of Physics and Materials Science Center, Philipps-Universität Marburg, 35032 Marburg (Germany)

    2015-07-27

    We report on the realization of a quantum dot (QD) based single-photon source with a record-high single-photon emission rate. The quantum light source consists of an InGaAs QD which is deterministically integrated within a monolithic microlens with a distributed Bragg reflector as back-side mirror, which is triggered using the frequency-doubled emission of a mode-locked vertical-external-cavity surface-emitting laser (ML-VECSEL). The utilized compact and stable laser system allows us to excite the single-QD microlens at a wavelength of 508 nm with a pulse repetition rate close to 500 MHz at a pulse width of 4.2 ps. Probing the photon statistics of the emission from a single QD state at saturation, we demonstrate single-photon emission of the QD-microlens chip with g{sup (2)}(0) < 0.03 at a record-high single-photon flux of (143 ± 16) MHz collected by the first lens of the detection system. Our approach is fully compatible with resonant excitation schemes using wavelength tunable ML-VECSELs, which will optimize the quantum optical properties of the single-photon emission in terms of photon indistinguishability.

  12. On the stability of whistler and 'pearl' type electromagnetic waves in the magnetosphere

    International Nuclear Information System (INIS)

    Buloshnikov, A.M.; Feodorov, E.E.

    1977-01-01

    Nonlinear evolution of 'whistlers' and pearls in magnetosphere has been considered. The analysis of the possibility of side-band generation in two particular cases (for the train with abrupt boundaries and for the wave train with the amplitude which is increasing gradually) has been studied. The theoretical results have been compared with the known experimental data to solve the problem. The investigation concerns mainly electron-cyclotron waves. The conclusions are the following: the stability of whistler depends on the steepness of wave train increase. It is possible that such effect was observed in the side-bands generation by the pearls. It is a positive argument in the application of nonlinear theory of side-bands with the ion-cyclotron waves propagating in the magnetosphere of the earth

  13. Correlated observations of intensified whistler waves and electron acceleration around the geostationary orbit

    International Nuclear Information System (INIS)

    Xiao Fuliang; He Zhaoguo; Tang Lijun; Zong Qiugang; Wang Chengrui; Su Zhenpeng

    2012-01-01

    We report correlated observations of enhanced whistler waves and energetic electron acceleration collected by multiple satellites specifically near the geostationary orbit during the 7–10 November 2004 superstorms, together with multi-site observations of ULF wave power measured on the ground. Energetic (>0.6 MeV) electron fluxes are found to increase significantly during the recovery phase, reaching a peak value by ∼100 higher than the prestorm level. In particular, such high electron flux corresponds to intensified whistler wave activities but to the weak ULF wave power. This result suggests that wave–particle interaction appears to be more important than inward radial diffusion in acceleration of outer radiation belt energetic electrons in this event, assisting to better understand the acceleration mechanism. (paper)

  14. Comparison of electric dipole and magnetic loop antennas for exciting whistler modes

    International Nuclear Information System (INIS)

    Stenzel, R. L.; Urrutia, J. M.

    2016-01-01

    The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B_0. The other antenna is an elongated loop with dipole moment parallel to B_0. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that of the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.

  15. Comparison of electric dipole and magnetic loop antennas for exciting whistler modes

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2016-08-15

    The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B{sub 0}. The other antenna is an elongated loop with dipole moment parallel to B{sub 0}. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that of the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.

  16. Radial plasma drifts deduced from VLF whistler mode signals - A modelling study

    Science.gov (United States)

    Poulter, E. M.; Andrews, M. K.; Bailey, G. J.; Moffett, R. J.

    1984-05-01

    VLF whistler mode signals have previously been used to infer radial plasma drifts in the equatorial plane of the plasmasphere and the field-aligned ionosphere-protonosphere coupling fluxes. Physical models of the plasmasphere consisting of O(+) adn H(+) ions along dipole magnetic field lines, and including radial E x B drifts, are applied to a mid-latitude flux tube appropriate to whistler mode signals received at Wellington, New Zealand, from the fixed frequency VLF transmitter NLK (18.6 kHz) in Seattle, U.S.A. These models are first shown to provide a good representation of the recorded Doppler shift and group delay data. They are then used to simulate the process of deducing the drifts and fluxes from the recorded data. Provided the initial whistler mode duct latitude and the ionospheric contributions are known, the drifts at the equatorial plane can be estimated to about + or - 20 m/s (approximately 10-15 percent), and the two hemisphere ionosphere-protonosphere coupling fluxes to about + or - 10 to the 12th/sq m-sec (approximately 40 percent).

  17. Discovery of rapid whistlers close to Jupiter implying lightning rates similar to those on Earth

    Science.gov (United States)

    Kolmašová, Ivana; Imai, Masafumi; Santolík, Ondřej; Kurth, William S.; Hospodarsky, George B.; Gurnett, Donald A.; Connerney, John E. P.; Bolton, Scott J.

    2018-06-01

    Electrical currents in atmospheric lightning strokes generate impulsive radio waves in a broad range of frequencies, called atmospherics. These waves can be modified by their passage through the plasma environment of a planet into the form of dispersed whistlers1. In the Io plasma torus around Jupiter, Voyager 1 detected whistlers as several-seconds-long slowly falling tones at audible frequencies2. These measurements were the first evidence of lightning at Jupiter. Subsequently, Jovian lightning was observed by optical cameras on board several spacecraft in the form of localized flashes of light3-7. Here, we show measurements by the Waves instrument8 on board the Juno spacecraft9-11 that indicate observations of Jovian rapid whistlers: a form of dispersed atmospherics at extremely short timescales of several milliseconds to several tens of milliseconds. On the basis of these measurements, we report over 1,600 lightning detections, the largest set obtained to date. The data were acquired during close approaches to Jupiter between August 2016 and September 2017, at radial distances below 5 Jovian radii. We detected up to four lightning strokes per second, similar to rates in thunderstorms on Earth12 and six times the peak rates from the Voyager 1 observations13.

  18. Pulsed currents carried by whistlers. IV. Electric fields and radiation excited by an electrode

    International Nuclear Information System (INIS)

    Stenzel, R.L.; Urrutia, J.M.; Rousculp, C.L.

    1995-01-01

    Electromagnetic properties of current pulses carried by whistler wave packets are obtained from a basic laboratory experiment. While the magnetic field and current density are described in the preceding companion paper (Part III), the present analysis starts with the electric field. The inductive and space charge electric field contributions are separately calculated in Fourier space from the measured magnetic field and Ohm's law along B 0 . Inverse Fourier transformation yields the total electric field in space and time, separated into rotational and divergent contributions. The space-charge density in whistler wave packets is obtained. The cross-field tensor conductivity is determined. The frozen-in condition is nearly satisfied, E+v e xB congruent 0. The dissipation is obtained from Poynting's theorem. The waves are collisionally damped; Landau damping is negligible. A radiation resistance for the electrode is determined. Analogous to Poynting's theorem, the transport of helicity is analyzed. Current helicity is generated by a flow of helicity between pulses traveling in opposite directions which carry opposite signs of helicity. Helicity is dissipated by collisions. These observations complete a detailed description of whistler/current pulses which can occur in various laboratory and space plasmas. copyright 1995 American Institute of Physics

  19. Generation of Electron Whistler Waves at the Mirror Mode Magnetic Holes: MMS Observations and PIC Simulation

    Science.gov (United States)

    Ahmadi, N.; Wilder, F. D.; Usanova, M.; Ergun, R.; Argall, M. R.; Goodrich, K.; Eriksson, S.; Germaschewski, K.; Torbert, R. B.; Lindqvist, P. A.; Le Contel, O.; Khotyaintsev, Y. V.; Strangeway, R. J.; Schwartz, S. J.; Giles, B. L.; Burch, J.

    2017-12-01

    The Magnetospheric Multiscale (MMS) mission observed electron whistler waves at the center and at the gradients of magnetic holes on the dayside magnetosheath. The magnetic holes are nonlinear mirror structures which are anti-correlated with particle density. We used expanding box Particle-in-cell simulations and produced the mirror instability magnetic holes. We show that the electron whistler waves can be generated at the gradients and the center of magnetic holes in our simulations which is in agreement with MMS observations. At the nonlinear regime of mirror instability, the proton and electron temperature anisotropy are anti-correlated with the magnetic hole. The plasma is unstable to electron whistler waves at the minimum of the magnetic field structures. In the saturation regime of mirror instability, when magnetic holes are dominant, electron temperature anisotropy develops at the edges of the magnetic holes and electrons become isotropic at the magnetic field minimum. We investigate the possible mechanism for enhancing the electron temperature anisotropy and analyze the electron pitch angle distributions and electron distribution functions in our simulations and compare it with MMS observations.

  20. Trigger circuit

    International Nuclear Information System (INIS)

    Verity, P.R.; Chaplain, M.D.; Turner, G.D.J.

    1984-01-01

    A monostable trigger circuit comprises transistors TR2 and TR3 arranged with their collectors and bases interconnected. The collector of the transistor TR2 is connected to the base of transistor TR3 via a capacitor C2 the main current path of a grounded base transistor TR1 and resistive means R2,R3. The collector of transistor TR3 is connected to the base of transistor TR2 via resistive means R6, R7. In the stable state all the transistors are OFF, the capacitor C2 is charged, and the output is LOW. A positive pulse input to the base of TR2 switches it ON, which in turn lowers the voltage at points A and B and so switches TR1 ON so that C2 can discharge via R2, R3, which in turn switches TR3 ON making the output high. Thus all three transistors are latched ON. When C2 has discharged sufficiently TR1 switches OFF, followed by TR3 (making the output low again) and TR2. The components C1, C3 and R4 serve to reduce noise, and the diode D1 is optional. (author)

  1. Ducting of the Whistler-Mode Waves by Magnetic Field-Aligned Density Enhancements in the Radiation Belt

    Science.gov (United States)

    Streltsov, A. V.; Bengtson, M.; English, D.; Miller, M.; Turco, L.

    2017-12-01

    Whistler-mode waves (or whistlers) are the right-hand polarized electromagnetic waves with a frequency in the range above the lower hybrid frequency and below the electron cyclotron frequency. They can efficiently interact with energetic electrons in the equatorial magnetosphere and remediate them from the earth's radiation belt. These interactions are non-linear, they depend on the wave amplitude, and for them to be efficient the wave power needs to be delivered from the transmitter to the interaction region without significant losses. The main physical mechanism which can solve this problem is ducting/guiding of whistlers by magnetic field-aligned density inhomogeneities or ducts. We present results from a modeling of whistler-mode waves observed by the NASA Van Allen Probes satellites inside the ducts formed by density enhancements (also known as, high-density ducts or HDD). Our previous studies suggest that HDD can confine without leakage only waves with some particular parameters (frequency, perpendicular and parallel wavelength) connected with the parameters of the duct (like duct's "width" and "depth"). Our numerical results confirm that 1) the high-density ducts with amplitudes and perpendicular sizes observed by the RBSP satellites can indeed guide whistlers over significant distances along the ambient magnetic field with small leakage, and 2) the quality of the ducting indeed depends on the wave perpendicular and parallel wavelengths and, therefore, the fact that the wave is ducted by HDD can be used to determine parameters of the wave.

  2. Parametric excitation of very low frequency (VLF) electromagnetic whistler waves and interaction with energetic electrons in radiation belt

    Science.gov (United States)

    Sotnikov, V.; Kim, T.; Caplinger, J.; Main, D.; Mishin, E.; Gershenzon, N.; Genoni, T.; Paraschiv, I.; Rose, D.

    2018-04-01

    The concept of a parametric antenna in ionospheric plasma is analyzed. Such antennas are capable of exciting electromagnetic radiation fields, specifically the creation of whistler waves generated at the very low frequency (VLF) range, which are also capable of propagating large distances away from the source region. The mechanism of whistler wave generation is considered a parametric interaction of quasi-electrostatic whistler waves (also known as low oblique resonance (LOR) oscillations) excited by a conventional loop antenna. The interaction of LOR waves with quasi-neutral density perturbations in the near field of an antenna gives rise to electromagnetic whistler waves on combination frequencies. It is shown in this work that the amplitude of these waves can considerably exceed the amplitude of whistler waves directly excited by a loop. Additionally, particle-in-cell simulations, which demonstrate the excitation and spatial structure of VLF waves excited by a loop antenna, are presented. Possible applications including the wave-particle interactions to mitigate performance anomalies of low Earth orbit satellites, active space experiments, communication via VLF waves, and modification experiments in the ionosphere will be discussed.

  3. Spatial distribution and temporal variations of occurrence frequency of lightning whistlers observed by VLF/WBA onboard Akebono

    Science.gov (United States)

    Oike, Yuta; Kasahara, Yoshiya; Goto, Yoshitaka

    2014-09-01

    We statistically analyzed lightning whistlers detected from the analog waveform data below 15 kHz observed by the VLF instruments onboard Akebono. We examined the large amount of data obtained at Uchinoura Space Center in Japan for 22 years from 1989 to 2010. The lightning whistlers were mainly observed inside the L shell region below 2. Seasonal dependence of the occurrence frequency of lightning whistlers has two peaks around July to August and December to January. As lightning is most active in summer, in general, these two peaks correspond to summer in the Northern and Southern Hemispheres, respectively. Diurnal variation of the occurrence frequency showed that lightning whistlers begin to increase in the early evening and remain at a high-occurrence level through the night with a peak around 21 in magnetic local time (MLT). This peak shifts toward nightside compared with lightning activity, which begins to rise around noon and peaks in the late afternoon. This trend is supposed to be caused by attenuation of VLF wave in the ionosphere in the daytime. Comparison study with the ground-based observation revealed consistent results, except that the peak of the ground-based observation appeared after midnight while our measurements obtained by Akebono was around 21 in MLT. This difference is explained qualitatively in terms that lightning whistlers measured at the ground station passed through the ionosphere twice above both source region and the ground station. These facts provide an important clue to evaluate quantitatively the absorption effect of lightning whistler in the ionosphere.

  4. Whistler wave propagation in the antenna near and far fields in the Naval Research Laboratory Space Physics Simulation Chamber

    International Nuclear Information System (INIS)

    Blackwell, David D.; Walker, David N.; Amatucci, William E.

    2010-01-01

    In previous papers, early whistler propagation measurements were presented [W. E. Amatucci et al., IEEE Trans. Plasma Sci. 33, 637 (2005)] as well as antenna impedance measurements [D. D. Blackwell et al., Phys. Plasmas 14, 092106 (2007)] performed in the Naval Research Laboratory Space Physics Simulation Chamber (SPSC). Since that time there have been major upgrades in the experimental capabilities of the laboratory in the form of improvement of both the plasma source and antennas. This has allowed access to plasma parameter space that was previously unattainable, and has resulted in measurements that provide a significantly clearer picture of whistler propagation in the laboratory environment. This paper presents some of the first whistler experimental results from the upgraded SPSC. Whereas previously measurements were limited to measuring the cyclotron resonance cutoff and elliptical polarization indicative of the whistler mode, now it is possible to experimentally plot the dispersion relation itself. The waves are driven and detected using balanced dipole and loop antennas connected to a network analyzer, which measures the amplitude and phase of the wave in two dimensions (r and z). In addition the frequency of the signals is also swept over a range of several hundreds of megahertz, providing a comprehensive picture of the near and far field antenna radiation patterns over a variety of plasma conditions. The magnetic field is varied from a few gauss to 200 G, with the density variable over at least 3 decades from 10 7 to 10 10 cm -3 . The waves are shown to lie on the dispersion surface for whistler waves, with observation of resonance cones in agreement with theoretical predictions. The waves are also observed to propagate without loss of amplitude at higher power, a result in agreement with previous experiments and the notion of ducted whistlers.

  5. Evidence for acceleration of outer zone electrons to relativistic energies by whistler mode chorus

    Directory of Open Access Journals (Sweden)

    N. P. Meredith

    2002-07-01

    Full Text Available We use plasma wave and electron data from the Combined Release and Radiation Effects Satellite (CRRES to investigate the viability of a local stochastic electron acceleration mechanism to relativistic energies driven by gyroresonant interactions with whistler mode chorus. In particular, we examine the temporal evolution of the spectral response of the electrons and the waves during the 9 October 1990 geomagnetic storm. The observed hardening of the electron energy spectra over about 3 days in the recovery phase is coincident with prolonged substorm activity, as monitored by the AE index and enhanced levels of whistler mode chorus waves. The observed spectral hardening is observed to take place over a range of energies appropriate to the resonant energies associated with Doppler-shifted cyclotron resonance, as supported by the construction of realistic resonance curves and resonant diffusion surfaces. Furthermore, we show that the observed spectral hardening is not consistent with energy-independent radial diffusion models. These results provide strong circumstantial evidence for a local stochastic acceleration mechanism, involving the energisation of a seed population of electrons with energies of the order of a few hundred keV to relativistic energies, driven by wave-particle interactions involving whistler mode chorus. The results suggest that this mechanism contributes to the reformation of the relativistic outer zone population during geomagnetic storms, and is most effective when the recovery phase is characterised by prolonged substorm activity. An additional significant result of this paper is that we demonstrate that the lower energy part of the storm-time electron distribution is in steady-state balance, in accordance with the Kennel and Petschek (1966 theory of limited stably-trapped particle fluxes.Key words. Magnetospheric physics (storms and substorms, energetic particles, trapped – Space plasma physics (wave-particle interactions

  6. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L., E-mail: stenzel@physics.ucla.edu; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2015-07-15

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B{sub 0}. Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. It is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B{sub 0}. The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B{sub 0} has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental

  7. Magnetic antenna excitation of whistler modes. IV. Receiving antennas and reciprocity

    International Nuclear Information System (INIS)

    Stenzel, R. L.; Urrutia, J. M.

    2015-01-01

    Antenna radiation patterns are an important property of antennas. Reciprocity holds in free space and the radiation patterns for exciting and receiving antennas are the same. In anisotropic plasmas, radiation patterns are complicated by the fact that group and phase velocities differ and certain wave properties like helicity depend on the direction of wave propagation with respect to the background magnetic field B 0 . Interference and wave focusing effects are different than in free space. Reciprocity does not necessarily hold in a magnetized plasma. The present work considers the properties of various magnetic antennas used for receiving whistler modes. It is based on experimental data from exciting low frequency whistler modes in a large uniform laboratory plasma. By superposition of linear waves from different antennas, the radiation patterns of antenna arrays are derived. Plane waves are generated and used to determine receiving radiation patterns of different receiving antennas. Antenna arrays have radiation patterns with narrow lobes, whose angular position can be varied by physical rotation or electronic phase shifting. Reciprocity applies to broadside antenna arrays but not to end fire arrays which can have asymmetric lobes with respect to B 0 . The effect of a relative motion between an antenna and the plasma has been modeled by the propagation of a short wave packet moving along a linear antenna array. An antenna moving across B 0 has a radiation pattern characterized by an oscillatory “whistler wing.” A receiving antenna in motion can detect any plane wave within the group velocity resonance cone. The radiation pattern also depends on loop size relative to the wavelength. Motional effects prevent reciprocity. The concept of the radiation pattern loses its significance for wave packets since the received signal does not only depend on the antenna but also on the properties of the wave packet. The present results are of fundamental interest and of

  8. Bidirectional Energy Cascades and the Origin of Kinetic Alfvenic and Whistler Turbulence in the Solar Wind

    Science.gov (United States)

    Che, H.; Goldstein, M. L.; Vinas, A. F.

    2014-01-01

    The observed steep kinetic scale turbulence spectrum in the solar wind raises the question of how that turbulence originates. Observations of keV energetic electrons during solar quiet time suggest them as a possible source of free energy to drive kinetic turbulence. Using particle-in-cell simulations, we explore how the free energy released by an electron two-stream instability drives Weibel-like electromagnetic waves that excite wave-wave interactions. Consequently, both kinetic Alfvénic and whistler turbulence are excited that evolve through inverse and forward magnetic energy cascades.

  9. Long-wavelength instability of periodic flows and whistler waves in electron magnetohydrodynamics

    International Nuclear Information System (INIS)

    Lakhin, V.P.; Levchenko, V.D.

    2003-01-01

    Stability analysis of periodic flows and whistlers with respect to long-wavelength perturbations within the framework of dissipative electron magnetohydrodynamics (EMHD) based on two-scale asymptotic expansion technique is presented. Several types of flows are considered: two-dimensional Kolmogorov-like flow, helical flow, and anisotropic helical flow. It is shown hat the destabilizing effect on the long-wavelength perturbations is due to either the negative resistivity effect related to flow anisotropy or α-like effect to its micro helicity. The criteria of the corresponding instabilities are obtained. Numerical simulations of EMHD equations with the initial conditions corresponding to two types of periodic flows are presented. (author)

  10. The LHCb trigger

    International Nuclear Information System (INIS)

    Korolko, I.

    1998-01-01

    This paper describes progress in the development of the LHCb trigger system since the letter of intent. The trigger philosophy has significantly changed, resulting in an increase of trigger efficiency for signal B events. It is proposed to implement a level-1 vertex topology trigger in specialised hardware. (orig.)

  11. Parametric validations of analytical lifetime estimates for radiation belt electron diffusion by whistler waves

    Directory of Open Access Journals (Sweden)

    A. V. Artemyev

    2013-04-01

    Full Text Available The lifetimes of electrons trapped in Earth's radiation belts can be calculated from quasi-linear pitch-angle diffusion by whistler-mode waves, provided that their frequency spectrum is broad enough and/or their average amplitude is not too large. Extensive comparisons between improved analytical lifetime estimates and full numerical calculations have been performed in a broad parameter range representative of a large part of the magnetosphere from L ~ 2 to 6. The effects of observed very oblique whistler waves are taken into account in both numerical and analytical calculations. Analytical lifetimes (and pitch-angle diffusion coefficients are found to be in good agreement with full numerical calculations based on CRRES and Cluster hiss and lightning-generated wave measurements inside the plasmasphere and Cluster lower-band chorus waves measurements in the outer belt for electron energies ranging from 100 keV to 5 MeV. Comparisons with lifetimes recently obtained from electron flux measurements on SAMPEX, SCATHA, SAC-C and DEMETER also show reasonable agreement.

  12. Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities

    International Nuclear Information System (INIS)

    Bell, T.F.; Ngo, H.D.

    1990-01-01

    Recent satellite observations demonstrate that high amplitude, short wavelength (5 m ≤ λ ≤ 100 m) electrostatic waves are commonly excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and topside ionosphere where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. A new theoretical model of this phenomenon is presented, based upon passive linear scattering in a cold magnetoplasma. In this model the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. The excited short wavelength waves are quasi-electrostatic whistler mode waves, a type of lower hybrid wave, whose wave normal lies near the whistler mode resonance cone where the wave refractive index becomes very large. The amplitude of the excited electrostatic lower hybrid waves is calculated for a wide range of values of input electromagnetic wave frequency, wave normal direction, electron plasma frequency, gyrofrequency, ion composition, and irregularity scale and density enhancement. Results indicate that high amplitude lower hybrid waves can be excited over a wide range of parameters for irregularity density enhancements as low as 5% whenever the scale of the irregularity is of the same order as the lower hybrid wavelength

  13. Remote sensing of electron density and ion composition using nonducted whistler observations on OGO 1 and Van Allen Probes

    Science.gov (United States)

    Sonwalkar, V. S.; Butler, J.; Reddy, A.

    2017-12-01

    We present a new method to remotely measure magnetospheric electron density and ion composition using lightning generated nonducted whistlers observed on a satellite. Electron and ion densities play important roles in magnetospheric processes such as wave-particle interactions in the equatorial region and ion-neutral dynamics in the ionosphere, and are important for calculating space weather effects such as particle precipitation, GPS scintillations, and satellite drag. The nonducted whistler resulting from a single lightning appears on a spectrogram as a series of magnetospherically reflected traces with characteristic dispersion (time delay versus frequency) and upper and lower cut off frequencies. Ray tracing simulations show that these observed characteristics depend on the magnetospheric electron density and ion composition. The cut off frequencies depend on both electron density and ion composition. The dispersion depends strongly on electron density, but weakly on ion composition. Using an iterative process to fit the measured dispersion and cutoff frequencies to those obtained from ray tracing simulations, it is possible to construct the electron and ion density profiles of the magnetosphere. We demonstrate our method by applying it to nonducted whistlers observed on OGO 1 and Van Allen probe satellites. In one instance (08 Nov 1965), whistler traces observed on OGO 1 (L = 2.4, λm = -6°) displayed a few seconds of dispersion and cutoff frequencies in the 1-10 kHz range. Ray tracing analysis showed that a diffusive equilibrium density model with the following parameters can reproduce the observed characteristics of the whistler traces: 1900 el/cc at L=2.4 and the equator, 358,000 el/cc at F2 peak (hmF2 = 220 km), the relative ion concentrations αH+ = 0.2, αHe+ = 0.2, and αO+ = 0.6 at 1000 km, and temperature 1600 K. The method developed here can be applied to whistlers observed on the past, current, and future magnetospheric satellite missions carrying

  14. ECG-triggered {sup 18}F-fluorodeoxyglucose positron emission tomography imaging of the rat heart is dramatically enhanced by acipimox

    Energy Technology Data Exchange (ETDEWEB)

    Poussier, Sylvain [Experimental Imaging Platform, Nancyclotep, Nancy (France); CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancy University, Faculty of Medicine, Nancy (France); Hopital de Brabois, Nancyclotep, Service de Medecine Nucleaire, Vandoeuvre-les-Nancy (France); Maskali, Fatiha [Experimental Imaging Platform, Nancyclotep, Nancy (France); CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Tran, Nguyen [Nancy University, Faculty of Medicine, Nancy (France); Surgery School, Faculty of Medicine, Nancy (France); INSERM U961, Nancy (France); Person, Christophe; Boutley, Henri; Karcher, Gilles [Experimental Imaging Platform, Nancyclotep, Nancy (France); CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancy University, Faculty of Medicine, Nancy (France); Maureira, Pablo [Nancy University, Faculty of Medicine, Nancy (France); Surgery School, Faculty of Medicine, Nancy (France); CHU-Nancy, Department of Cardiac Surgery, Nancy (France); Lacolley, Patrick; Regnault, Veronique [Nancy University, Faculty of Medicine, Nancy (France); INSERM U961, Nancy (France); Fay, Renaud [Centre d' Investigation Clinique, INSERM, U9501, Nancy (France); Marie, Pierre Yves [Experimental Imaging Platform, Nancyclotep, Nancy (France); CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancy University, Faculty of Medicine, Nancy (France); INSERM U961, Nancy (France)

    2010-09-15

    {sup 18}F-Fluorodeoxyglucose (FDG) imaging, provided by current positron emission tomography (PET) systems dedicated to small animals, might provide a precise functional assessment of the left ventricle (LV) in rats, although conventional metabolic conditioning by hyperinsulinaemic glucose clamping is not well adapted to this setting. This study was aimed at assessing cardiac FDG PET in rats pre-medicated with acipimox, a potent nicotinic acid derivative yielding comparable image quality to clamping in man. Metabolic conditioning was compared in Wistar rats between a conventional oral glucose loading (1.5 mg/kg) and acipimox, which was given at high but well tolerated doses subcutaneously (25 mg/kg) or orally (50 mg/kg). Myocardial to blood (M/B) activity ratio and myocardial signal to noise (S/N) ratio were analysed on gated FDG PET images. The S/N ratio of the gated cardiac images evolved in parallel with the M/B activity ratio and these two ratios were independently enhanced by glucose loading and acipimox. However, these enhancements were: (1) dramatic for acipimox, especially for the high oral dose of 50 mg/kg (from 2.85 {+-} 0.57 to 10.73 {+-} 0.54 for the M/B ratio of rats with or without glucose loading; p < 0.0001) and (2) much more limited for glucose loading (from 6.61 {+-} 0.49 to 7.89 {+-} 0.41 for the M/B ratio of rats with or without acipimox administration; p = 0.049). With the high oral dose of acipimox, the gated cardiac FDG PET images had very high S/N ratios, at least equivalent to those currently documented in man. Metabolic conditioning by oral doses of acipimox is highly efficient for experimental studies planned with cardiac FDG PET in rats. (orig.)

  15. The Central Trigger Processor (CTP)

    CERN Multimedia

    Franchini, Matteo

    2016-01-01

    The Central Trigger Processor (CTP) receives trigger information from the calorimeter and muon trigger processors, as well as from other sources of trigger. It makes the Level-1 decision (L1A) based on a trigger menu.

  16. Dependence of Whistler-mode Wave Induced Electron Precipitation on k-vector Direction.

    Science.gov (United States)

    Kulkarni, P.; Inan, U. S.; Bell, T. F.; Bortnik, J.

    2007-12-01

    Whistler-mode waves that are either spontaneously generated in-situ (i.e., chorus), or externally injected (lightning, VLF transmitters) are known to be responsible for the loss of radiation belt electrons. An important determinant in the quantification of this loss is the dependence of the cyclotron resonant pitch angle scattering on the initial wave normal angles of the driving waves. Inan et al. (U.S. Inan et al., Controlled precipitation of radiation belt electrons, Journal of Geophysical Research-Space Physics, 108 (A5), 1186, doi: 10.1029/2002JA009580, 2003.) suggested that the lifetime of > 1 MeV electrons in the inner radiation belts might be moderated by in situ injection of VLF whistler mode waves at frequencies of a few kHz. The formulation of Wang and Bell (T.N.C. Wang and T.F. Bell, Radiation resisitance of a short dipole immersed in a cold magnetoionic medium, Radio Science, 4(2), 167-177, February 1969) for an electric dipole antenna located in the inner magnetosphere established that most of the radiated power is concentrated in waves whose wave normal angles lie near the local resonance cone. Such waves, compared to those injected at less oblique initial wave normal angles, undergo several more magnetospheric reflections, persist in the magnetospheric cavity for longer periods of time, and resonate with electrons of higher energies. Accordingly, such waves may be highly effective in contributing to the loss of electrons from the inner belt and slot regions [Inan et al., 2006]. Nevertheless, it has been noted (Inan et al. [2006], Inan and Bell [1991] and Albert [1999]) that > 1 MeV electrons may not be effectively scattered by waves propagating with very high wave normal angles, due to the generally reduced gyroresonant diffusion coefficients for wave normals near the resonance cone. We use the Stanford 2D VLF raytracing program to determine the energetic electron pitch angle scattering and the precipitated flux signatures that would be detected for

  17. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus

    Science.gov (United States)

    Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H. E.; Reeves, G. D.; Baker, D. N.; Blake, J. B.; Funsten, H. O.

    2016-08-01

    Van Allen radiation belt electrons exhibit complex dynamics during geomagnetically active periods. Investigation of electron pitch angle distributions (PADs) can provide important information on the dominant physical mechanisms controlling radiation belt behaviors. Here we report a storm time radiation belt event where energetic electron PADs changed from butterfly distributions to normal or flattop distributions within several hours. Van Allen Probes observations showed that the flattening of butterfly PADs was closely related to the occurrence of whistler-mode chorus waves. Two-dimensional quasi-linear STEERB simulations demonstrate that the observed chorus can resonantly accelerate the near-equatorially trapped electrons and rapidly flatten the corresponding electron butterfly PADs. These results provide a new insight on how chorus waves affect the dynamic evolution of radiation belt electrons.

  18. Control of hydrocarbon radicals and film deposition by using an RF Whistler wave discharge

    International Nuclear Information System (INIS)

    Mieno, Tetsu; Shoji, Tatsuo; Kadota, Kiyoshi.

    1991-10-01

    Production of hydrocarbon radicals is controlled by using an RF Whistler wave discharge in a low pressure region (∼0.1 Pa). Plasma density of 10 10 - 10 13 cm -3 , electron temperature of 2-20 eV is obtained for the discharge of admixture of Ar and small content of source gases (CH 4 , C 2 H 2 , CO). Spectroscopic measurement indicates that densities of CH and H radicals and deposition rate of amorphous carbon:H film increase with electron density, electron temperature and source gas pressure. The etching effect of H atoms influences on the deposition rate and a high deposition rate (90 μm/hr for CO/Ar discharge) is obtained even in a low neutral pressure discharge. (author)

  19. Statistical analysis of monochromatic whistler waves near the Moon detected by Kaguya

    Directory of Open Access Journals (Sweden)

    Y. Tsugawa

    2011-05-01

    Full Text Available Observations are presented of monochromatic whistler waves near the Moon detected by the Lunar Magnetometer (LMAG on board Kaguya. The waves were observed as narrowband magnetic fluctuations with frequencies close to 1 Hz, and were mostly left-hand polarized in the spacecraft frame. We performed a statistical analysis of the waves to identify the distributions of their intensity and occurrence. The results indicate that the waves were generated by the solar wind interaction with lunar crustal magnetic anomalies. The conditions for observation of the waves strongly depend on the solar zenith angle (SZA, and a high occurrence rate is recognized in the region of SZA between 40° to 90° with remarkable north-south and dawn-dusk asymmetries. We suggest that ion beams reflected by the lunar magnetic anomalies are a possible source of the waves.

  20. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus

    International Nuclear Information System (INIS)

    Yang, Chang; Changsha University of Science and Technology, Changsha; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan

    2016-01-01

    Van Allen radiation belt electrons exhibit complex dynamics during geomagnetically active periods. Investigation of electron pitch angle distributions (PADs) can provide important information on the dominant physical mechanisms controlling radiation belt behaviors. In this paper, we report a storm time radiation belt event where energetic electron PADs changed from butterfly distributions to normal or flattop distributions within several hours. Van Allen Probes observations showed that the flattening of butterfly PADs was closely related to the occurrence of whistler-mode chorus waves. Two-dimensional quasi-linear STEERB simulations demonstrate that the observed chorus can resonantly accelerate the near-equatorially trapped electrons and rapidly flatten the corresponding electron butterfly PADs. Finally, these results provide a new insight on how chorus waves affect the dynamic evolution of radiation belt electrons.

  1. A global model of thunderstorm electricity and the prediction of whistler duct formation

    International Nuclear Information System (INIS)

    Stansbery, E.K.

    1989-01-01

    A two-dimensional numerical model is created to calculate the electric field and current that flow from a thunderstorm source into the global electrical circuit. The model includes a hemisphere in which the thunderstorm is located, an equalization layer, and a passive magnetic conjugate hemisphere. To maintain the fair weather electric field, the output current from the thunderstorm is allowed to spread out in the ionosphere or flow along the magnetic field lines into the conjugate hemisphere. The vertical current is constant up to approximately 65 km, decays and is redirected horizontally in the ionosphere. Approximately half of the current that reaches the ionosphere flows along magnetic field lines into the conjugate hemisphere while the rest is spread out in the ionosphere and redirected to the fair weather portion of the storm hemisphere. Our results show that it is important to include a realistic model of the equalization layer to evaluate the role of thunderstorm charging of the global circuit. The mapping of thunderstorm electric fields at middle and subauroral latitudes into the magnetic equatorial plane is studied. The geomagnetic field lines are assumed to be dipolar above approximately 150 km. The horizontal electric field computed in the ionosphere by our model is of sufficient size and shape for the formation of electron density irregularities in the magnetosphere. The mechanism involves a localized convection of ionization tubes by ExB drift. It is shown that the horizontal range of the electric field disturbance in the ionosphere must be within approximately 160 km to produce density irregularities necessary for the formation of whistler ducts. Although the electric field strength at ionospheric heights depends sensitively on the conductivity profile, the results presented show that whistler duct formation is possible by thunderstorm generated electric fields.*

  2. Evidence of more efficient whistler-mode transmission during periods of increased magnetic activity

    Directory of Open Access Journals (Sweden)

    N. R. Thomson

    Full Text Available In a previous study it was reported that whistler- mode signals received at Faraday, Antarctica (65°S,64°W and Dunedin, New Zealand (46°S,171°E with entry regions in Pacific longitudes (typically from the VLF transmitter NLK, Seattle, USA showed an increase in transmission of wave energy as magnetic activity increased. However, signals with entry regions in Atlantic longitudes (typically from the NSS transmitter, Annapolis, USA did not appear to show such a relationship. This paper reports the results of a study of the same two longitude ranges but with the opposite transmitter providing additional whistler-mode signal information, with L-values in the range 1.8–2.6. Transmissions from NLK once again indicate a relationship between the transmission of wave energy and magnetic activity even though the signals were propagating in Atlantic longitudes, not Pacific. Any trend in NSS events observed at Dunedin was obscured by a limited range of magnetic activity, and duct exit regions so close to the receiver that small-scale excitation effects appeared to be occurring. However, by combining data from both longitudes, i.e Pacific and Atlantic, and using only ducts with exit regions that were >500km from the receiver, NSS events were found to show the same trend as NLK events. No significant longitude-dependent or transmitter-dependent variations in duct efficiency could be detected. Duct efficiency increases by a factor of about 30 with Kp=2–8 and this result is discussed in terms of changes in wave-particle interactions and duct size.

  3. Evidence of more efficient whistler-mode transmission during periods of increased magnetic activity

    Directory of Open Access Journals (Sweden)

    N. R. Thomson

    1997-08-01

    Full Text Available In a previous study it was reported that whistler- mode signals received at Faraday, Antarctica (65°S,64°W and Dunedin, New Zealand (46°S,171°E with entry regions in Pacific longitudes (typically from the VLF transmitter NLK, Seattle, USA showed an increase in transmission of wave energy as magnetic activity increased. However, signals with entry regions in Atlantic longitudes (typically from the NSS transmitter, Annapolis, USA did not appear to show such a relationship. This paper reports the results of a study of the same two longitude ranges but with the opposite transmitter providing additional whistler-mode signal information, with L-values in the range 1.8–2.6. Transmissions from NLK once again indicate a relationship between the transmission of wave energy and magnetic activity even though the signals were propagating in Atlantic longitudes, not Pacific. Any trend in NSS events observed at Dunedin was obscured by a limited range of magnetic activity, and duct exit regions so close to the receiver that small-scale excitation effects appeared to be occurring. However, by combining data from both longitudes, i.e Pacific and Atlantic, and using only ducts with exit regions that were >500km from the receiver, NSS events were found to show the same trend as NLK events. No significant longitude-dependent or transmitter-dependent variations in duct efficiency could be detected. Duct efficiency increases by a factor of about 30 with Kp=2–8 and this result is discussed in terms of changes in wave-particle interactions and duct size.

  4. Lightning-generated whistler waves observed by probes on the Communication/Navigation Outage Forecast System satellite at low latitudes

    Science.gov (United States)

    Holzworth, R. H.; McCarthy, M. P.; Pfaff, R. F.; Jacobson, A. R.; Willcockson, W. L.; Rowland, D. E.

    2011-06-01

    Direct evidence is presented for a causal relationship between lightning and strong electric field transients inside equatorial ionospheric density depletions. In fact, these whistler mode plasma waves may be the dominant electric field signal within such depletions. Optical lightning data from the Communication/Navigation Outage Forecast System (C/NOFS) satellite and global lightning location information from the World Wide Lightning Location Network are presented as independent verification that these electric field transients are caused by lightning. The electric field instrument on C/NOFS routinely measures lightning-related electric field wave packets or sferics, associated with simultaneous measurements of optical flashes at all altitudes encountered by the satellite (401-867 km). Lightning-generated whistler waves have abundant access to the topside ionosphere, even close to the magnetic equator.

  5. BAT Triggering Performance

    Science.gov (United States)

    McLean, Kassandra M.; Fenimore, E. E.; Palmer, D. M.; BAT Team

    2006-09-01

    The Burst Alert Telescope (BAT) onboard Swift has detected and located about 160 gamma-ray bursts (GRBs) in its first twenty months of operation. BAT employs two triggering systems to find GRBs: image triggering, which looks for a new point source in the field of view, and rate triggering, which looks for a significant increase in the observed counts. The image triggering system looks at 1 minute, 5 minute, and full pointing accumulations of counts in the detector plane in the energy range of 15-50 keV, with about 50 evaluations per pointing (about 40 minutes). The rate triggering system looks through 13 different time scales (from 4ms to 32s), 4 overlapping energy bins (covering 15-350 keV), 9 regions of the detector plane (from the full plane to individual quarters), and two background sampling models to search for GRBs. It evaluates 27000 trigger criteria in a second, for close to 1000 criteria. The image triggering system looks at 1, 5, and 40 minute accumulations of counts in the detector plane in the energy range of 15-50 keV. Both triggering systems are working very well with the settings from before launch and after we turned on BAT. However, we now have more than a year and a half of data to evaluate these triggering systems and tweak them for optimal performance, as well as lessons learned from these triggering systems.

  6. Stay away from asthma triggers

    Science.gov (United States)

    Asthma triggers - stay away from; Asthma triggers - avoiding; Reactive airway disease - triggers; Bronchial asthma - triggers ... clothes. They should leave the coat outside or away from your child. Ask people who work at ...

  7. Long-term evolution of electron distribution function due to nonlinear resonant interaction with whistler mode waves

    Science.gov (United States)

    Artemyev, Anton V.; Neishtadt, Anatoly I.; Vasiliev, Alexei A.

    2018-04-01

    Accurately modelling and forecasting of the dynamics of the Earth's radiation belts with the available computer resources represents an important challenge that still requires significant advances in the theoretical plasma physics field of wave-particle resonant interaction. Energetic electron acceleration or scattering into the Earth's atmosphere are essentially controlled by their resonances with electromagnetic whistler mode waves. The quasi-linear diffusion equation describes well this resonant interaction for low intensity waves. During the last decade, however, spacecraft observations in the radiation belts have revealed a large number of whistler mode waves with sufficiently high intensity to interact with electrons in the nonlinear regime. A kinetic equation including such nonlinear wave-particle interactions and describing the long-term evolution of the electron distribution is the focus of the present paper. Using the Hamiltonian theory of resonant phenomena, we describe individual electron resonance with an intense coherent whistler mode wave. The derived characteristics of such a resonance are incorporated into a generalized kinetic equation which includes non-local transport in energy space. This transport is produced by resonant electron trapping and nonlinear acceleration. We describe the methods allowing the construction of nonlinear resonant terms in the kinetic equation and discuss possible applications of this equation.

  8. Nonlinear dynamical triggering of slow slip

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Paul A [Los Alamos National Laboratory; Knuth, Matthew W [WISCONSIN; Kaproth, Bryan M [PENN STATE; Carpenter, Brett [PENN STATE; Guyer, Robert A [Los Alamos National Laboratory; Le Bas, Pierre - Yves [Los Alamos National Laboratory; Daub, Eric G [Los Alamos National Laboratory; Marone, Chris [PENN STATE

    2010-12-10

    Among the most fascinating, recent discoveries in seismology have been the phenomena of triggered slip, including triggered earthquakes and triggered-tremor, as well as triggered slow, silent-slip during which no seismic energy is radiated. Because fault nucleation depths cannot be probed directly, the physical regimes in which these phenomena occur are poorly understood. Thus determining physical properties that control diverse types of triggered fault sliding and what frictional constitutive laws govern triggered faulting variability is challenging. We are characterizing the physical controls of triggered faulting with the goal of developing constitutive relations by conducting laboratory and numerical modeling experiments in sheared granular media at varying load conditions. In order to simulate granular fault zone gouge in the laboratory, glass beads are sheared in a double-direct configuration under constant normal stress, while subject to transient perturbation by acoustic waves. We find that triggered, slow, silent-slip occurs at very small confining loads ({approx}1-3 MPa) that are smaller than those where dynamic earthquake triggering takes place (4-7 MPa), and that triggered slow-slip is associated with bursts of LFE-like acoustic emission. Experimental evidence suggests that the nonlinear dynamical response of the gouge material induced by dynamic waves may be responsible for the triggered slip behavior: the slip-duration, stress-drop and along-strike slip displacement are proportional to the triggering wave amplitude. Further, we observe a shear-modulus decrease corresponding to dynamic-wave triggering relative to the shear modulus of stick-slips. Modulus decrease in response to dynamical wave amplitudes of roughly a microstrain and above is a hallmark of elastic nonlinear behavior. We believe that the dynamical waves increase the material non-affine elastic deformation during shearing, simultaneously leading to instability and slow-slip. The inferred

  9. Lessons from (triggered) tremor

    Science.gov (United States)

    Gomberg, Joan

    2010-01-01

    I test a “clock-advance” model that implies triggered tremor is ambient tremor that occurs at a sped-up rate as a result of loading from passing seismic waves. This proposed model predicts that triggering probability is proportional to the product of the ambient tremor rate and a function describing the efficacy of the triggering wave to initiate a tremor event. Using data mostly from Cascadia, I have compared qualitatively a suite of teleseismic waves that did and did not trigger tremor with ambient tremor rates. Many of the observations are consistent with the model if the efficacy of the triggering wave depends on wave amplitude. One triggered tremor observation clearly violates the clock-advance model. The model prediction that larger triggering waves result in larger triggered tremor signals also appears inconsistent with the measurements. I conclude that the tremor source process is a more complex system than that described by the clock-advance model predictions tested. Results of this and previous studies also demonstrate that (1) conditions suitable for tremor generation exist in many tectonic environments, but, within each, only occur at particular spots whose locations change with time; (2) any fluid flow must be restricted to less than a meter; (3) the degree to which delayed failure and secondary triggering occurs is likely insignificant; and 4) both shear and dilatational deformations may trigger tremor. Triggered and ambient tremor rates correlate more strongly with stress than stressing rate, suggesting tremor sources result from time-dependent weakening processes rather than simple Coulomb failure.

  10. Triggering trigeminal neuralgia

    DEFF Research Database (Denmark)

    Di Stefano, Giulia; Maarbjerg, Stine; Nurmikko, Turo

    2018-01-01

    Introduction Although it is widely accepted that facial pain paroxysms triggered by innocuous stimuli constitute a hallmark sign of trigeminal neuralgia, very few studies to date have systematically investigated the role of the triggers involved. In the recently published diagnostic classification...

  11. Triggering the GRANDE array

    International Nuclear Information System (INIS)

    Wilson, C.L.; Bratton, C.B.; Gurr, J.; Kropp, W.; Nelson, M.; Sobel, H.; Svoboda, R.; Yodh, G.; Burnett, T.; Chaloupka, V.; Wilkes, R.J.; Cherry, M.; Ellison, S.B.; Guzik, T.G.; Wefel, J.; Gaidos, J.; Loeffler, F.; Sembroski, G.; Goodman, J.; Haines, T.J.; Kielczewska, D.; Lane, C.; Steinberg, R.; Lieber, M.; Nagle, D.; Potter, M.; Tripp, R.

    1990-01-01

    A brief description of the Gamma Ray And Neutrino Detector Experiment (GRANDE) is presented. The detector elements and electronics are described. The trigger logic for the array is then examined. The triggers for the Gamma Ray and the Neutrino portions of the array are treated separately. (orig.)

  12. Trigger Menu in 2017

    CERN Document Server

    The ATLAS collaboration

    2018-01-01

    This document summarises the trigger menu deployed by the ATLAS experiment during 2017 data taking at proton-proton collision centre-of-mass energies of $\\sqrt{s}=13$ TeV and $\\sqrt{s}=5$ TeV at the LHC and describes the improvements with respect to the trigger system and menu used in 2016 data taking.

  13. Causality and headache triggers

    Science.gov (United States)

    Turner, Dana P.; Smitherman, Todd A.; Martin, Vincent T.; Penzien, Donald B.; Houle, Timothy T.

    2013-01-01

    Objective The objective of this study was to explore the conditions necessary to assign causal status to headache triggers. Background The term “headache trigger” is commonly used to label any stimulus that is assumed to cause headaches. However, the assumptions required for determining if a given stimulus in fact has a causal-type relationship in eliciting headaches have not been explicated. Methods A synthesis and application of Rubin’s Causal Model is applied to the context of headache causes. From this application the conditions necessary to infer that one event (trigger) causes another (headache) are outlined using basic assumptions and examples from relevant literature. Results Although many conditions must be satisfied for a causal attribution, three basic assumptions are identified for determining causality in headache triggers: 1) constancy of the sufferer; 2) constancy of the trigger effect; and 3) constancy of the trigger presentation. A valid evaluation of a potential trigger’s effect can only be undertaken once these three basic assumptions are satisfied during formal or informal studies of headache triggers. Conclusions Evaluating these assumptions is extremely difficult or infeasible in clinical practice, and satisfying them during natural experimentation is unlikely. Researchers, practitioners, and headache sufferers are encouraged to avoid natural experimentation to determine the causal effects of headache triggers. Instead, formal experimental designs or retrospective diary studies using advanced statistical modeling techniques provide the best approaches to satisfy the required assumptions and inform causal statements about headache triggers. PMID:23534872

  14. The LHCb trigger

    CERN Document Server

    Hernando Morata, Jose Angel

    2006-01-01

    The LHCb experiment relies on an efficient trigger to select a rate up to 2 kHz of events useful for physics analysis from an initial rate of 10 MHz of visible collisions. In this contribution, we describe the different LHCb trigger algorithms and present their expected performance.

  15. Fast hisslers: a form of magnetospheric radio emissions

    International Nuclear Information System (INIS)

    Siren, J.C.

    1974-01-01

    Auroral radio hiss bursts in the frequency range 2-18 kHz have been observed, with rise or turn-on-times of 20-50 ms, and fall or turn-off times of 20-80 ms. These time scales are too brief to reconcile with the Cerenkov radiation emission mechanism often proposed as the transducer that converts precipitating auroral electron kinetic energy into very-low-frequency radio wave energy. The auroral hiss bursts, called here ''fast hisslers,'' are observed to be ''dispersed,', that is, their arrival time at the receiving site is not simultaneous at all frequencies, but depends on frequency in a way that is consistent with propagation in the whistler mode of electromagnetic wave propagation. Since whistler mode wave propagation at these frequencies occurs only in the earth' magnetosphere, it is inferred that these fast hisslers are of magnetospheric origin. On the assumption that all the observed dispersion results from whistler mode dispersion at high latitudes, altitudes of origin of 1800 km to 30,000 km are calculated for these emissions. Fine details of some of the amplitude spectra of fast hisslers have been examined. Potential double layers have been investigated as a highly localized region of acceleration of the auroral electrons that are believed to be the source of energy of the fast hisslers. Evidence is strong that a plasma instability exists which rapidly converts electron kinetic energies into whistler-mode wave energy traveling in the same direction relative to the rest frame of the thermal magnetospheric plasma

  16. Electron precipitation and VLF emissions associated with cyclotron resonance interactions near the plasmapause

    International Nuclear Information System (INIS)

    Foster, J.C.; Rosenberg, T.J.

    1976-01-01

    Correlated bursts of bremsstrahlung X rays and VLF emissions were recorded for approx.25 min at Siple Station, Antarctica, on January 2, 1971. The burst occurred quasi-periodically with spectral power predominantly in the period range 4--12 s. A typical VLF burst consisted of 3--5 rising elements of approx.0.1-s duration separated by approx.0.15 s and was confined to the frequency range 1.5--3.8 kHz. Evidence is presented to show that the bursts were triggered by the low-frequency tail of whistlers propagating from the northern hemisphere. The interpretation of the observations in terms of an equatorial cyclotron resonance interaction occurring at the outer edge of the plasmapause on the L=4.2 field line, offered initially by Rosenberg et al. (1971), is given further support by the more extensive analysis presented here of the electron energy-wave frequency relationship in the bursts and the propagation times for the resonant waves and electrons. It is inferred from the X ray data that the equatorial flux of trapped electrons was probably anisotropic and near the stable trapping limit at the time of this event. It is suggested that an important effect of the trigger signal is the increase of the anisotropy of the resonant electrons. Wave growth rates calculated in the random phase approximation for electron pitch angle distributions that might apply in this event can explain certain features of the VLF and precipitation data during and between the bursts

  17. The NA27 trigger

    International Nuclear Information System (INIS)

    Bizzarri, R.; Di Capua, E.; Falciano, S.; Iori, M.; Marel, G.; Piredda, G.; Zanello, L.; Haupt, L.; Hellman, S.; Holmgren, S.O.; Johansson, K.E.

    1985-05-01

    We have designed and implemented a minimum bias trigger together with a fiducial volume trigger for the experiment NA27, performed at the CERN SPS. A total of more than 3 million bubble chamber pictures have been taken with a triggered cross section smaller than 75% of the total inelastic cross section. Events containing charm particles were triggered with an efficiency of 98 +2 sub(-3)%. With the fiducial volume trigger, the probability for a picture to contain an interaction in the visible hydrogen increased from 47.3% to 59.5%, reducing film cost and processing effort with about 20%. The improvement in data taking rate is shown to be negligible. (author)

  18. ELF whistler events with a reduced intensity observed by the DEMETER spacecraft

    Science.gov (United States)

    Zahlava, J.; Nemec, F.; Santolik, O.; Kolmasova, I.; Parrot, M.

    2017-12-01

    A survey of VLF frequency-time spectrograms obtained by the DEMETER spacecraft (2004-2010, altitude about 700 km) revealed that the intensity of fractional hop whistlers is sometimes significantly reduced at specific frequencies. These frequencies are typically above about 3.4 kHz (second cutoff frequency of the Earth-ionosphere waveguide), and they vary smoothly in time. The events were explained by the wave propagation in the Earth-ionosphere waveguide, and a resulting interference of the first few waveguide modes. We analyze the events whose frequency-time structure is rather similar, but at frequencies below 1 kHz. Altogether, 284 events are identified during the periods with active Burst mode, when high resolution data are measured by DEMETER. The vast majority of events (93%) occurs during the nighttime. All six electromagnetic field components are available, which allows us to perform a detailed wave analysis. An overview of the properties of these events is presented, and their possible origin is discussed.

  19. Ion sense of polarization of the electromagnetic wave field in the electron whistler frequency band

    Directory of Open Access Journals (Sweden)

    B. Lundin

    Full Text Available It is shown that the left-hand (or ion-type sense of polarization can appear in the field interference pattern of two plane electron whistler waves. Moreover, it is demonstrated that the ion-type polarized wave electric fields can be accompanied by the presence at the same observation point of electron-type polarized wave magnetic fields. The registration of ion-type polarized fields with frequencies between the highest ion gyrofrequency and the electron gyrofrequency in a cold, overdense plasma is a sufficient indication for the existence of an interference wave pattern, which can typically occur near artificial or natural reflecting magnetospheric plasma regions, inside waveguides (as in helicon discharges, for example, in fields resonantly emitted by beams of charged particles or, in principle, in some self-sustained, nonlinear wave field structures. A comparison with the conventional spectral matrix data processing approach is also presented in order to facilitate the calculations of the analyzed polarization parameters.

    Key words. Ionosphere (wave propagation Radio science (waves in plasma Space plasma physics (general or miscellaneous

  20. Space-time evolution of whistler mode wave growth in the magnetosphere

    International Nuclear Information System (INIS)

    Carlson, C.R.; Helliwell, R.A.; Inan, U.S.

    1990-01-01

    A new model is developed to simulate the space-time evolution of a propagating coherent whistler mode wave pulse in the magnetosphere. The model is applied to the case of single frequency (2-6 kHz) wave pulses injected into the magnetosphere near L ≅ 4, using the VLF transmitting facility at Siple Station, Antarctica. The mechanism for growth is cyclotron resonance between the circularly polarized waves and the gyrating energetic electrons of the radiation belts. Application of this model reproduces observed exponential wave growth up to a saturated level. Additionally, the model predicts the observed initial linear increase in the output frequency versus time. This is the first time these features have been reproduced using applied wave intensities small enough to be consistent with satellite measurements. The center velocities of the electrons entering the wave pulse are selected in a way which maximizes the growth rate. The results show the importance of the transient aspects in the wave growth process. The growth established as the wave propagates toward the geomagnetic equator results in a spatially advancing wave phase structure due mainly to the geomagnetic inhomogeneity. Through the feedback of this radiation upon other electrons, conditions are established which result in a linearly increasing output frequency with time

  1. Ion sense of polarization of the electromagnetic wave field in the electron whistler frequency band

    Directory of Open Access Journals (Sweden)

    B. Lundin

    2002-08-01

    Full Text Available It is shown that the left-hand (or ion-type sense of polarization can appear in the field interference pattern of two plane electron whistler waves. Moreover, it is demonstrated that the ion-type polarized wave electric fields can be accompanied by the presence at the same observation point of electron-type polarized wave magnetic fields. The registration of ion-type polarized fields with frequencies between the highest ion gyrofrequency and the electron gyrofrequency in a cold, overdense plasma is a sufficient indication for the existence of an interference wave pattern, which can typically occur near artificial or natural reflecting magnetospheric plasma regions, inside waveguides (as in helicon discharges, for example, in fields resonantly emitted by beams of charged particles or, in principle, in some self-sustained, nonlinear wave field structures. A comparison with the conventional spectral matrix data processing approach is also presented in order to facilitate the calculations of the analyzed polarization parameters.Key words. Ionosphere (wave propagation Radio science (waves in plasma Space plasma physics (general or miscellaneous

  2. LHCb Topological Trigger Reoptimization

    International Nuclear Information System (INIS)

    Likhomanenko, Tatiana; Khairullin, Egor; Rogozhnikov, Alex; Ustyuzhanin, Andrey; Ilten, Philip; Williams, Michael

    2015-01-01

    The main b-physics trigger algorithm used by the LHCb experiment is the so- called topological trigger. The topological trigger selects vertices which are a) detached from the primary proton-proton collision and b) compatible with coming from the decay of a b-hadron. In the LHC Run 1, this trigger, which utilized a custom boosted decision tree algorithm, selected a nearly 100% pure sample of b-hadrons with a typical efficiency of 60-70%; its output was used in about 60% of LHCb papers. This talk presents studies carried out to optimize the topological trigger for LHC Run 2. In particular, we have carried out a detailed comparison of various machine learning classifier algorithms, e.g., AdaBoost, MatrixNet and neural networks. The topological trigger algorithm is designed to select all ’interesting” decays of b-hadrons, but cannot be trained on every such decay. Studies have therefore been performed to determine how to optimize the performance of the classification algorithm on decays not used in the training. Methods studied include cascading, ensembling and blending techniques. Furthermore, novel boosting techniques have been implemented that will help reduce systematic uncertainties in Run 2 measurements. We demonstrate that the reoptimized topological trigger is expected to significantly improve on the Run 1 performance for a wide range of b-hadron decays. (paper)

  3. NOMAD Trigger Studies

    International Nuclear Information System (INIS)

    Varvell, K.

    1995-01-01

    The author reports on the status of an offline study of the NOMAD triggers, which has several motivations. Of primary importance is to demonstrate, using offline information recorded by the individual subdetectors comprising NOMAD, that the online trigger system is functioning as expected. Such an investigation serves to complement the extensive monitoring which is already carried out online. More specific to the needs of the offline software and analysis, the reconstruction of tracks and vertices in the detector requires some knowledge of the time at which the trigger has occurred, in order to locate relevant hits in the drift chambers and muon chambers in particular. The fact that the different triggers allowed by the MIOTRINO board take varying times to form complicates this task. An offline trigger algorithm may serve as a tool to shed light on situations where the online trigger status bits have not been recorded correctly, as happens in a small number of cases, or as an aid to studies with the aim of further refinement of the online triggers themselves

  4. Terms and conditions for Diesel Emissions Reduction Act Smartway financing projects where an eligible nonprofit grantee is implementing a loan program and loan Recipients will use the loan funds for activities that trigger Davis Bacon

    Science.gov (United States)

    Use this T&C for DERA Smartway financing projects where an eligible nonprofit grantee is implementing a loan program and loan Recipients will use the loan funds for activities that trigger Davis Bacon.

  5. Calo trigger acquisition system

    CERN Multimedia

    Franchini, Matteo

    2016-01-01

    Calo trigger acquisition system - Evolution of the acquisition system from a multiple boards system (upper, orange cables) to a single board one (below, light blue cables) where all the channels are collected in a single board.

  6. Calorimetry triggering in ATLAS

    CERN Document Server

    Igonkina, O; Adragna, P; Aharrouche, M; Alexandre, G; Andrei, V; Anduaga, X; Aracena, I; Backlund, S; Baines, J; Barnett, B M; Bauss, B; Bee, C; Behera, P; Bell, P; Bendel, M; Benslama, K; Berry, T; Bogaerts, A; Bohm, C; Bold, T; Booth, J R A; Bosman, M; Boyd, J; Bracinik, J; Brawn, I, P; Brelier, B; Brooks, W; Brunet, S; Bucci, F; Casadei, D; Casado, P; Cerri, A; Charlton, D G; Childers, J T; Collins, N J; Conde Muino, P; Coura Torres, R; Cranmer, K; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Davis, A O; De Santo, A; Degenhardt, J; Delsart, P A; Demers, S; Demirkoz, B; Di Mattia, A; Diaz, M; Djilkibaev, R; Dobson, E; Dova, M, T; Dufour, M A; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Faulkner, P J W; Ferland, J; Flacher, H; Fleckner, J E; Flowerdew, M; Fonseca-Martin, T; Fratina, S; Fhlisch, F; Gadomski, S; Gallacher, M P; Garitaonandia Elejabarrieta, H; Gee, C N P; George, S; Gillman, A R; Goncalo, R; Grabowska-Bold, I; Groll, M; Gringer, C; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hauser, R; Hellman, S; Hidvgi, A; Hillier, S J; Hryn'ova, T; Idarraga, J; Johansen, M; Johns, K; Kalinowski, A; Khoriauli, G; Kirk, J; Klous, S; Kluge, E-E; Koeneke, K; Konoplich, R; Konstantinidis, N; Kwee, R; Landon, M; LeCompte, T; Ledroit, F; Lei, X; Lendermann, V; Lilley, J N; Losada, M; Maettig, S; Mahboubi, K; Mahout, G; Maltrana, D; Marino, C; Masik, J; Meier, K; Middleton, R P; Mincer, A; Moa, T; Monticelli, F; Moreno, D; Morris, J D; Mller, F; Navarro, G A; Negri, A; Nemethy, P; Neusiedl, A; Oltmann, B; Olvito, D; Osuna, C; Padilla, C; Panes, B; Parodi, F; Perera, V J O; Perez, E; Perez Reale, V; Petersen, B; Pinzon, G; Potter, C; Prieur, D P F; Prokishin, F; Qian, W; Quinonez, F; Rajagopalan, S; Reinsch, A; Rieke, S; Riu, I; Robertson, S; Rodriguez, D; Rogriquez, Y; Rhr, F; Saavedra, A; Sankey, D P C; Santamarina, C; Santamarina Rios, C; Scannicchio, D; Schiavi, C; Schmitt, K; Schultz-Coulon, H C; Schfer, U; Segura, E; Silverstein, D; Silverstein, S; Sivoklokov, S; Sjlin, J; Staley, R J; Stamen, R; Stelzer, J; Stockton, M C; Straessner, A; Strom, D; Sushkov, S; Sutton, M; Tamsett, M; Tan, C L A; Tapprogge, S; Thomas, J P; Thompson, P D; Torrence, E; Tripiana, M; Urquijo, P; Urrejola, P; Vachon, B; Vercesi, V; Vorwerk, V; Wang, M; Watkins, P M; Watson, A; Weber, P; Weidberg, T; Werner, P; Wessels, M; Wheeler-Ellis, S; Whiteson, D; Wiedenmann, W; Wielers, M; Wildt, M; Winklmeier, F; Wu, X; Xella, S; Zhao, L; Zobernig, H; de Seixas, J M; dos Anjos, A; Asman, B; Özcan, E

    2009-01-01

    The ATLAS experiment is preparing for data taking at 14 TeV collision energy. A rich discovery physics program is being prepared in addition to the detailed study of Standard Model processes which will be produced in abundance. The ATLAS multi-level trigger system is designed to accept one event in 2 105 to enable the selection of rare and unusual physics events. The ATLAS calorimeter system is a precise instrument, which includes liquid Argon electro-magnetic and hadronic components as well as a scintillator-tile hadronic calorimeter. All these components are used in the various levels of the trigger system. A wide physics coverage is ensured by inclusively selecting events with candidate electrons, photons, taus, jets or those with large missing transverse energy. The commissioning of the trigger system is being performed with cosmic ray events and by replaying simulated Monte Carlo events through the trigger and data acquisition system.

  7. BTeV Trigger

    International Nuclear Information System (INIS)

    Gottschalk, Erik E.

    2006-01-01

    BTeV was designed to conduct precision studies of CP violation in BB-bar events using a forward-geometry detector in a hadron collider. The detector was optimized for high-rate detection of beauty and charm particles produced in collisions between protons and antiprotons. The trigger was designed to take advantage of the main difference between events with beauty and charm particles and more typical hadronic events-the presence of detached beauty and charm decay vertices. The first stage of the BTeV trigger was to receive data from a pixel vertex detector, reconstruct tracks and vertices for every beam crossing, reject at least 98% of beam crossings in which neither beauty nor charm particles were produced, and trigger on beauty events with high efficiency. An overview of the trigger design and its evolution to include commodity networking and computing components is presented

  8. Calorimetry triggering in ATLAS

    International Nuclear Information System (INIS)

    Igonkina, O; Achenbach, R; Andrei, V; Adragna, P; Aharrouche, M; Bauss, B; Bendel, M; Alexandre, G; Anduaga, X; Aracena, I; Backlund, S; Bogaerts, A; Baines, J; Barnett, B M; Bee, C; P, Behera; Bell, P; Benslama, K; Berry, T; Bohm, C

    2009-01-01

    The ATLAS experiment is preparing for data taking at 14 TeV collision energy. A rich discovery physics program is being prepared in addition to the detailed study of Standard Model processes which will be produced in abundance. The ATLAS multi-level trigger system is designed to accept one event in 2 | 10 5 to enable the selection of rare and unusual physics events. The ATLAS calorimeter system is a precise instrument, which includes liquid Argon electro-magnetic and hadronic components as well as a scintillator-tile hadronic calorimeter. All these components are used in the various levels of the trigger system. A wide physics coverage is ensured by inclusively selecting events with candidate electrons, photons, taus, jets or those with large missing transverse energy. The commissioning of the trigger system is being performed with cosmic ray events and by replaying simulated Monte Carlo events through the trigger and data acquisition system.

  9. Calorimetry Triggering in ATLAS

    International Nuclear Information System (INIS)

    Igonkina, O.; Achenbach, R.; Adragna, P.; Aharrouche, M.; Alexandre, G.; Andrei, V.; Anduaga, X.; Aracena, I.; Backlund, S.; Baines, J.; Barnett, B.M.; Bauss, B.; Bee, C.; Behera, P.; Bell, P.; Bendel, M.; Benslama, K.; Berry, T.; Bogaerts, A.; Bohm, C.; Bold, T.; Booth, J.R.A.; Bosman, M.; Boyd, J.; Bracinik, J.; Brawn, I.P.; Brelier, B.; Brooks, W.; Brunet, S.; Bucci, F.; Casadei, D.; Casado, P.; Cerri, A.; Charlton, D.G.; Childers, J.T.; Collins, N.J.; Conde Muino, P.; Coura Torres, R.; Cranmer, K.; Curtis, C.J.; Czyczula, Z.; Dam, M.; Damazio, D.; Davis, A.O.; De Santo, A.; Degenhardt, J.

    2011-01-01

    The ATLAS experiment is preparing for data taking at 14 TeV collision energy. A rich discovery physics program is being prepared in addition to the detailed study of Standard Model processes which will be produced in abundance. The ATLAS multi-level trigger system is designed to accept one event in 2/10 5 to enable the selection of rare and unusual physics events. The ATLAS calorimeter system is a precise instrument, which includes liquid Argon electro-magnetic and hadronic components as well as a scintillator-tile hadronic calorimeter. All these components are used in the various levels of the trigger system. A wide physics coverage is ensured by inclusively selecting events with candidate electrons, photons, taus, jets or those with large missing transverse energy. The commissioning of the trigger system is being performed with cosmic ray events and by replaying simulated Monte Carlo events through the trigger and data acquisition system.

  10. Calorimetry triggering in ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Igonkina, O [Nikhef National Institute for Subatomic Physics, Amsterdam (Netherlands); Achenbach, R; Andrei, V [Kirchhoff Institut fuer Physik, Universitaet Heidelberg, Heidelberg (Germany); Adragna, P [Physics Department, Queen Mary, University of London, London (United Kingdom); Aharrouche, M; Bauss, B; Bendel, M [Institut fr Physik, Universitt Mainz, Mainz (Germany); Alexandre, G [Section de Physique, Universite de Geneve, Geneva (Switzerland); Anduaga, X [Universidad Nacional de La Plata, La Plata (Argentina); Aracena, I [Stanford Linear Accelerator Center (SLAC), Stanford (United States); Backlund, S; Bogaerts, A [European Laboratory for Particle Physics (CERN), Geneva (Switzerland); Baines, J; Barnett, B M [STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon (United Kingdom); Bee, C [Centre de Physique des Particules de Marseille, IN2P3-CNRS, Marseille (France); P, Behera [Iowa State University, Ames, Iowa (United States); Bell, P [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Benslama, K [University of Regina, Regina (Canada); Berry, T [Department of Physics, Royal Holloway and Bedford New College, Egham (United Kingdom); Bohm, C [Fysikum, Stockholm University, Stockholm (Sweden)

    2009-04-01

    The ATLAS experiment is preparing for data taking at 14 TeV collision energy. A rich discovery physics program is being prepared in addition to the detailed study of Standard Model processes which will be produced in abundance. The ATLAS multi-level trigger system is designed to accept one event in 2 | 10{sup 5} to enable the selection of rare and unusual physics events. The ATLAS calorimeter system is a precise instrument, which includes liquid Argon electro-magnetic and hadronic components as well as a scintillator-tile hadronic calorimeter. All these components are used in the various levels of the trigger system. A wide physics coverage is ensured by inclusively selecting events with candidate electrons, photons, taus, jets or those with large missing transverse energy. The commissioning of the trigger system is being performed with cosmic ray events and by replaying simulated Monte Carlo events through the trigger and data acquisition system.

  11. LHCb Topological Trigger Reoptimization

    CERN Document Server

    INSPIRE-00400931; Ilten, Philip; Khairullin, Egor; Rogozhnikov, Alex; Ustyuzhanin, Andrey; Williams, Michael

    2015-12-23

    The main b-physics trigger algorithm used by the LHCb experiment is the so-called topological trigger. The topological trigger selects vertices which are a) detached from the primary proton-proton collision and b) compatible with coming from the decay of a b-hadron. In the LHC Run 1, this trigger, which utilized a custom boosted decision tree algorithm, selected a nearly 100% pure sample of b-hadrons with a typical efficiency of 60-70%; its output was used in about 60% of LHCb papers. This talk presents studies carried out to optimize the topological trigger for LHC Run 2. In particular, we have carried out a detailed comparison of various machine learning classifier algorithms, e.g., AdaBoost, MatrixNet and neural networks. The topological trigger algorithm is designed to select all "interesting" decays of b-hadrons, but cannot be trained on every such decay. Studies have therefore been performed to determine how to optimize the performance of the classification algorithm on decays not used in the training. ...

  12. Topological Trigger Developments

    CERN Multimedia

    Likhomanenko, Tatiana

    2015-01-01

    The main b-physics trigger algorithm used by the LHCb experiment is the so-called topological trigger. The topological trigger selects vertices which are a) detached from the primary proton-proton collision and b) compatible with coming from the decay of a b-hadron. In the LHC Run 1, this trigger utilized a custom boosted decision tree algorithm, selected an almost 100% pure sample of b-hadrons with a typical efficiency of 60-70%, and its output was used in about 60% of LHCb papers. This talk presents studies carried out to optimize the topological trigger for LHC Run 2. In particular, we have carried out a detailed comparison of various machine learning classifier algorithms, e.g., AdaBoost, MatrixNet and uBoost. The topological trigger algorithm is designed to select all "interesting" decays of b-hadrons, but cannot be trained on every such decay. Studies have therefore been performed to determine how to optimize the performance of the classification algorithm on decays not used in the training. These inclu...

  13. SUPRATHERMAL ELECTRON STRAHL WIDTHS IN THE PRESENCE OF NARROW-BAND WHISTLER WAVES IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Kajdič, P. [Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City (Mexico); Alexandrova, O.; Maksimovic, M.; Lacombe, C. [LESIA, Observatoire de Paris, PSL Research University, CNRS, UPMC UniversitéParis 06, Université Paris-Diderot, 5 Place Jules Janssen, F-92190 Meudon (France); Fazakerley, A. N., E-mail: primoz@geofisica.unam.mx [Mullard Space Science Laboratory, University College London (United Kingdom)

    2016-12-20

    We perform the first statistical study of the effects of the interaction of suprathermal electrons with narrow-band whistler mode waves in the solar wind (SW). We show that this interaction does occur and that it is associated with enhanced widths of the so-called strahl component. The latter is directed along the interplanetary magnetic field away from the Sun. We do the study by comparing the strahl pitch angle widths in the SW at 1 AU in the absence of large scale discontinuities and transient structures, such as interplanetary shocks, interplanetary coronal mass ejections, stream interaction regions, etc. during times when the whistler mode waves were present and when they were absent. This is done by using the data from two Cluster instruments: Spatio Temporal Analysis of Field Fluctuations experiment (STAFF) data in the frequency range between ∼0.1 and ∼200 Hz were used for determining the wave properties and Plasma Electron And Current Experiment (PEACE) data sets at 12 central energies between ∼57 eV (equivalent to ∼10 typical electron thermal energies in the SW, E{sub T}) and ∼676 eV (∼113 E{sub T}) for pitch angle measurements. Statistical analysis shows that, during the intervals with the whistler waves, the strahl component on average exhibits pitch angle widths between 2° and 12° larger than during the intervals when these waves are not present. The largest difference is obtained for the electron central energy of ∼344 eV (∼57 ET).

  14. SUPRATHERMAL ELECTRON STRAHL WIDTHS IN THE PRESENCE OF NARROW-BAND WHISTLER WAVES IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Kajdič, P.; Alexandrova, O.; Maksimovic, M.; Lacombe, C.; Fazakerley, A. N.

    2016-01-01

    We perform the first statistical study of the effects of the interaction of suprathermal electrons with narrow-band whistler mode waves in the solar wind (SW). We show that this interaction does occur and that it is associated with enhanced widths of the so-called strahl component. The latter is directed along the interplanetary magnetic field away from the Sun. We do the study by comparing the strahl pitch angle widths in the SW at 1 AU in the absence of large scale discontinuities and transient structures, such as interplanetary shocks, interplanetary coronal mass ejections, stream interaction regions, etc. during times when the whistler mode waves were present and when they were absent. This is done by using the data from two Cluster instruments: Spatio Temporal Analysis of Field Fluctuations experiment (STAFF) data in the frequency range between ∼0.1 and ∼200 Hz were used for determining the wave properties and Plasma Electron And Current Experiment (PEACE) data sets at 12 central energies between ∼57 eV (equivalent to ∼10 typical electron thermal energies in the SW, E T ) and ∼676 eV (∼113 E T ) for pitch angle measurements. Statistical analysis shows that, during the intervals with the whistler waves, the strahl component on average exhibits pitch angle widths between 2° and 12° larger than during the intervals when these waves are not present. The largest difference is obtained for the electron central energy of ∼344 eV (∼57 ET).

  15. Evidence for Asian dust effects from aerosol plume measurements during INTEX-B 2006 near Whistler, BC

    Directory of Open Access Journals (Sweden)

    W. R. Leaitch

    2009-06-01

    Full Text Available Several cases of aerosol plumes resulting from trans-Pacific transport were observed between 2 km and 5.3 km at Whistler, BC from 22 April 2006 to 15 May 2006. The fine particle (<1 μm chemical composition of most of the plumes was dominated by sulphate that ranged from 1–5 μg m−3 as measured with a Quadrapole Aerosol Mass Spectrometer (Q-AMS. Coarse particles (>1 μm were enhanced in all sulphate plumes. Fine particle organic mass concentrations were relatively low in most plumes and were nominally anti-correlated with the increases in the number concentrations of coarse particles. The ion chemistry of coarse particles sampled at Whistler Peak was dominated by calcium, sodium, nitrate, sulphate and formate. Scanning transmission X-ray microscopy of coarse particles sampled from the NCAR C-130 aircraft relatively close to Whistler indicated carbonate, potassium and organic functional groups, in particular the carboxyl group. Asian plumes reaching Whistler, BC during the INTEX-B study were not only significantly reduced of fine particle organic material, but organic compounds were attached to coarse particles in significant quantities. Suspension of dust with deposited organic material and scavenging of organic materials by dust near anthropogenic sources are suggested, and if any secondary organic aerosol (SOA was formed during transport from Asian source regions across the Pacific it was principally associated with the coarse particles. An average of profiles indicates that trans-Pacific transport between 2 and 5 km during this period increased ozone by about 10 ppbv and fine particle sulphate by 0.2–0.5 μg m−3. The mean sizes of the fine particles in the sulphate plumes were larger when dust particles were present and smaller when the fine particle organic mass concentration was larger and dust was absent. The coarse particles of dust act to accumulate sulphate, nitrate and organic material in larger particles

  16. Whistler mode resonance-cone transmissions at 100 kHz in the OEDIPUS-C experiment

    Czech Academy of Sciences Publication Activity Database

    Chugunov, Y. V.; Fiala, Vladimír; Hayosh, Mykhaylo; James, H. G.

    2012-01-01

    Roč. 47, č. 6 (2012), RS6002/1-RS6002/11 ISSN 0048-6604 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100420904 Program:M Institutional support: RVO:68378289 Keywords : OEDIPUS-C * dipole * pulse distortion * resonance cone * whistler mode Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.000, year: 2012 http://onlinelibrary.wiley.com/doi/10.1029/2012RS005054/abstract

  17. Precipitated Fluxes of Radiation Belt Electrons via Injection of Whistler-Mode Waves

    Science.gov (United States)

    Kulkarni, P.; Inan, U. S.; Bell, T. F.

    2005-12-01

    Inan et al. (U.S. Inan et al., Controlled precipitation of radiation belt electrons, Journal of Geophysical Research-Space Physics, 108 (A5), 1186, doi: 10.1029/2002JA009580, 2003.) suggested that the lifetime of energetic (a few MeV) electrons in the inner radiation belts may be moderated by in situ injection of whistler mode waves at frequencies of a few kHz. We use the Stanford 2D VLF raytracing program (along with an accurate estimation of the path-integrated Landau damping based on data from the HYDRA instrument on the POLAR spacecraft) to determine the distribution of wave energy throughout the inner radiation belts as a function of injection point, wave frequency and injection wave normal angle. To determine the total wave power injected and its initial distribution in k-space (i.e., wave-normal angle), we apply the formulation of Wang and Bell ( T.N.C. Wang and T.F. Bell, Radiation resistance of a short dipole immersed in a cold magnetoionic medium, Radio Science, 4 (2), 167-177, February 1969) for an electric dipole antenna placed at a variety of locations throughout the inner radiation belts. For many wave frequencies and wave normal angles the results establish that most of the radiated power is concentrated in waves whose wave normals are located near the resonance cone. The combined use of the radiation pattern and ray-tracing including Landau damping allows us to make quantitative estimates of the magnetospheric distribution of wave power density for different source injection points. We use these results to estimate the number of individual space-based transmitters needed to significantly impact the lifetimes of energetic electrons in the inner radiation belts. Using the wave power distribution, we finally determine the energetic electron pitch angle scattering and the precipitated flux signatures that would be detected.

  18. CMS Trigger Performance

    CERN Document Server

    Donato, Silvio

    2017-01-01

    During its second run of operation (Run 2) which started in 2015, the LHC will deliver a peak instantaneous luminosity that may reach $2 \\cdot 10^{34}$ cm$^{-2}$s$^{-1}$ with an average pile-up of about 55, far larger than the design value. Under these conditions, the online event selection is a very challenging task. In CMS, it is realized by a two-level trigger system the Level-1 (L1) Trigger, implemented in custom-designed electronics, and the High Level Trigger (HLT), a streamlined version of the offline reconstruction software running on a computer farm. In order to face this challenge, the L1 trigger has been through a major upgrade compared to Run 1, whereby all electronic boards of the system have been replaced, allowing more sophisticated algorithms to be run online. Its last stage, the global trigger, is now able to perform complex selections and to compute high-level quantities, like invariant masses. Likewise, the algorithms that run in the HLT go through big improvements; in particular, new appr...

  19. The ATLAS Tau Trigger

    CERN Document Server

    Dam, M; The ATLAS collaboration

    2009-01-01

    The ATLAS experiment at CERN’s LHC has implemented a dedicated tau trigger system to select hadronically decaying tau leptons from the enormous background of QCD jets. This promises a significant increase in the discovery potential to the Higgs boson and in searches for physics beyond the Standard Model. The three level trigger system has been optimised for effciency and good background rejection. The first level uses information from the calorimeters only, while the two higher levels include also information from the tracking detectors. Shower shape variables and the track multiplicity are important variables to distinguish taus from QCD jets. At the initial lumonosity of 10^31 cm^−2 s^−1, single tau triggers with a transverse energy threshold of 50 GeV or higher can be run standalone. Below this level, the tau signatures will be combined with other event signature

  20. The ATLAS Tau Trigger

    CERN Document Server

    Rados, PK; The ATLAS collaboration

    2014-01-01

    Physics processes involving tau leptons play a crucial role in understanding particle physics at the high energy frontier. The ability to efficiently trigger on events containing hadronic tau decays is therefore of particular importance to the ATLAS experiment. During the 2012 run, the Large Hadronic Collder (LHC) reached instantaneous luminosities of nearly $10^{34} cm^{-2}s^{-1}$ with bunch crossings occurring every $50 ns$. This resulted in a huge event rate and a high probability of overlapping interactions per bunch crossing (pile-up). With this in mind it was necessary to design an ATLAS tau trigger system that could reduce the event rate to a manageable level, while efficiently extracting the most interesting physics events in a pile-up robust manner. In this poster the ATLAS tau trigger is described, its performance during 2012 is presented, and the outlook for the LHC Run II is briefly summarized.

  1. ALICE High Level Trigger

    CERN Multimedia

    Alt, T

    2013-01-01

    The ALICE High Level Trigger (HLT) is a computing farm designed and build for the real-time, online processing of the raw data produced by the ALICE detectors. Events are fully reconstructed from the raw data, analyzed and compressed. The analysis summary together with the compressed data and a trigger decision is sent to the DAQ. In addition the reconstruction of the events allows for on-line monitoring of physical observables and this information is provided to the Data Quality Monitor (DQM). The HLT can process event rates of up to 2 kHz for proton-proton and 200 Hz for Pb-Pb central collisions.

  2. Trigger and decision processors

    International Nuclear Information System (INIS)

    Franke, G.

    1980-11-01

    In recent years there have been many attempts in high energy physics to make trigger and decision processes faster and more sophisticated. This became necessary due to a permanent increase of the number of sensitive detector elements in wire chambers and calorimeters, and in fact it was possible because of the fast developments in integrated circuits technique. In this paper the present situation will be reviewed. The discussion will be mainly focussed upon event filtering by pure software methods and - rather hardware related - microprogrammable processors as well as random access memory triggers. (orig.)

  3. Magnetic Field Control of the Entry into the Ionosphere of Whistler-Mode Waves Produced by Venus Lightning

    Science.gov (United States)

    Russell, Christopher; Wei, Hanying; Zhang, Tielong

    The sampling rate of the Venus Express fluxgate magnetometer was set so that it could register the 100 Hz signals previously reported by the electric antenna on the Pioneer Venus Orbiter. At least two minutes of each periapsis pass is devoted to recording at 128 Hz. Many of these passes do observe signals near 100 Hz, and these signals invariably have the properties expected for whistler-mode waves. They are nearly circularly polarized, and they propagate very closely to along the magnetic field. The waves are also only a fraction of a second in duration. They do not occur every orbit. The magnetic field is often nearly horizontal throughout the periapsis pass. When it is, no signals are seen. When the field deviates more than 15o from the horizontal, signals can reach the spacecraft but they again are not always present. The number 15o is quite similar to the size of the cone of non-propagation of the whistler-mode perpendicular to the magnetic field. Thus this observation, too, is consistent with a cloud level source of electric discharges whose electromagnetic radiation is refracted along the vertical upon entering the ionosphere. Only when and where this field is inclined to the horizontal can the signal enter the ionosphere. We continue to refine our estimate of the rate of lightning on Venus, but it is clear that the rate is very significant, comparable to activity in the terrestrial atmosphere.

  4. The STAR trigger

    International Nuclear Information System (INIS)

    Bieser, F.S.; Crawford, H.J.; Engelage, J.; Eppley, G.; Greiner, L.C.; Judd, E.G.; Klein, S.R.; Meissner, F.; Minor, R.; Milosevich, Z.; Mutchler, G.; Nelson, J.M.; Schambach, J.; VanderMolen, A.S.; Ward, H.; Yepes, P.

    2003-01-01

    We describe the trigger system that we designed and implemented for the STAR detector at RHIC. This is a 10 MHz pipelined system based on fast detector output that controls the event selection for the much slower tracking detectors. Results from the first run are presented and new detectors for the 2001 run are discussed

  5. Asthma Triggers: Gain Control

    Science.gov (United States)

    ... harm people too. Try to use pest management methods that pose less of a risk. Keep counters, sinks, tables and floors clean and ... with pest challenges in your home and other environments. [EPA ... pests while reducing pesticide risks; roaches are often asthma triggers and shouldn’t ...

  6. Physics issues on triggering

    Indian Academy of Sciences (India)

    The detectors at the ILC are planned to run without hardware trigger. The ... as not coming from the interaction point and not matching to the silicon detectors ... electrons so that additional dE/dx cuts can help, making also here a factor 10 or.

  7. AIDS radio triggers.

    Science.gov (United States)

    Elias, A M

    1991-07-01

    In April 1991, the Ethnic Communities' Council of NSW was granted funding under the Community AIDS Prevention and Education Program through the Department of Community Services and Health, to produce a series of 6x50 second AIDS radio triggers with a 10-second tag line for further information. The triggers are designed to disseminate culturally-sensitive information about HIV/AIDS in English, Italian, Greek, Spanish, Khmer, Turkish, Macedonian, Serbo-Croatian, Arabic, Cantonese, and Vietnamese, with the goal of increasing awareness and decreasing the degree of misinformation about HIV/AIDS among people of non-English-speaking backgrounds through radio and sound. The 6 triggers cover the denial that AIDS exists in the community, beliefs that words and feelings do not protect one from catching HIV, encouraging friends to be compassionate, compassion within the family, AIDS information for a young audience, and the provision of accurate and honest information on HIV/AIDS. The triggers are slated to be completed by the end of July 1991 and will be broadcast on all possible community, ethnic, and commercial radio networks across Australia. They will be available upon request in composite form with an information kit for use by health care professionals and community workers.

  8. Dealing with Asthma Triggers

    Science.gov (United States)

    ... one trigger that you shouldn't avoid because exercise is important for your health. Your doctor will want you to be active, so talk with him or her about what to do before playing ... or 15 minutes before you exercise or play sports. And, of course, you'll ...

  9. Trigger Finger (Stenosing Tenosynovitis)

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Trigger Finger Email to a friend * required fields ...

  10. Some unusual discrete VLF emissions observed at a low-latitude ground station at Agra

    Directory of Open Access Journals (Sweden)

    B. Singh

    Full Text Available A detailed analysis of the VLF emissions data obtained during occasional whistler campaigns at the low-latitude ground station Agra (geomagnetic latitude 17°1' N, L = 1.15 has yielded some unusual discrete VLF emissions of the rising type. These include (1 emissions occurring at time intervals increasing in ge ommetrical progression, (2 emissions occuring simulta neously in different frequency ranges and (3 emissions observed during daytime. In the present study, the observed characteristics of these emissions are described and interpreted. It is shown that the increasing time delay between different components of the emissions match closely with the propagation time delays between different hops of a whistler of dispersion 19 s1/2, the unusual occurrence of the emissions in two different frequency ranges approximately at the same time may possibly be linked with their generation at two different locations, and the occurrence of emissions during daytime may be due to propagation under the influence of equatorial anomaly.

  11. Some unusual discrete VLF emissions observed at a low-latitude ground station at Agra

    Directory of Open Access Journals (Sweden)

    B. Singh

    1997-08-01

    Full Text Available A detailed analysis of the VLF emissions data obtained during occasional whistler campaigns at the low-latitude ground station Agra (geomagnetic latitude 17°1' N, L = 1.15 has yielded some unusual discrete VLF emissions of the rising type. These include (1 emissions occurring at time intervals increasing in ge ommetrical progression, (2 emissions occuring simulta neously in different frequency ranges and (3 emissions observed during daytime. In the present study, the observed characteristics of these emissions are described and interpreted. It is shown that the increasing time delay between different components of the emissions match closely with the propagation time delays between different hops of a whistler of dispersion 19 s1/2, the unusual occurrence of the emissions in two different frequency ranges approximately at the same time may possibly be linked with their generation at two different locations, and the occurrence of emissions during daytime may be due to propagation under the influence of equatorial anomaly.

  12. Aftershocks and triggering processes in rock fracture

    Science.gov (United States)

    Davidsen, J.; Kwiatek, G.; Goebel, T.; Stanchits, S. A.; Dresen, G.

    2017-12-01

    One of the hallmarks of our understanding of seismicity in nature is the importance of triggering processes, which makes the forecasting of seismic activity feasible. These triggering processes by which one earthquake induces (dynamic or static) stress changes leading to potentially multiple other earthquakes are at the core relaxation processes. A specic example of triggering are aftershocks following a large earthquake, which have been observed to follow certain empirical relationships such as the Omori-Utsu relation. Such an empirical relation should arise from the underlying microscopic dynamics of the involved physical processes but the exact connection remains to be established. Simple explanations have been proposed but their general applicability is unclear. Many explanations involve the picture of an earthquake as a purely frictional sliding event. Here, we present experimental evidence that these empirical relationships are not limited to frictional processes but also arise in fracture zone formation and are mostly related to compaction-type events. Our analysis is based on tri-axial compression experiments under constant displacement rate on sandstone and granite samples using spatially located acoustic emission events and their focal mechanisms. More importantly, we show that event-event triggering plays an important role in the presence of large-scale or macrocopic imperfections while such triggering is basically absent if no signicant imperfections are present. We also show that spatial localization and an increase in activity rates close to failure do not necessarily imply triggering behavior associated with aftershocks. Only if a macroscopic crack is formed and its propagation remains subcritical do we observe significant triggering.

  13. The ATLAS Tau Trigger

    International Nuclear Information System (INIS)

    Rados, Petar Kevin

    2013-06-01

    The tau lepton plays a crucial role in understanding particle physics at the Tera scale. One of the most promising probes of the Higgs boson coupling to fermions is with detector signatures involving taus. In addition, many theories beyond the Standard Model, such as supersymmetry and exotic particles (W' and Z'), predict new physics with large couplings to taus. The ability to trigger on hadronic tau decays is therefore critical to achieving the physics goals of the ATLAS experiment. The higher instantaneous luminosities of proton-proton collisions achieved by the Large Hadron Collider (LHC) in 2012 resulted in a larger probability of overlap (pile-up) between bunch crossings, and so it was critical for ATLAS to have an effective tau trigger strategy. The details of this strategy are summarized in this paper, and the results of the latest performance measurements are presented. (authors)

  14. The LPS trigger system

    International Nuclear Information System (INIS)

    Benotto, F.; Costa, M.; Staiano, A.; Zampieri, A.; Bollito, M.; Isoardi, P.; Pernigotti, E.; Sacchi, R.; Trapani, P.P.; Larsen, H.; Massam, T.; Nemoz, C.

    1996-03-01

    The Leading Proton Spectrometer (LPS) has been equipped with microstrip silicon detectors specially designed to trigger events with high values of x L vertical stroke anti p' p vertical stroke / vertical stroke anti p p vertical stroke ≥0.95 where vertical stroke anti p' p vertical stroke and vertical stroke anti p p vertical stroke are respectively the momenta of outgoing and incoming protons. The LPS First Level Trigger can provide a clear tag for very high momentum protons in a kinematical region never explored before. In the following we discuss the physics motivation in tagging very forward protons and present a detailed description of the detector design, the front end electronics, the readout electronics, the Monte Carlo simulation and some preliminary results from 1995 data taking. (orig.)

  15. Minimum risk trigger indices

    International Nuclear Information System (INIS)

    Tingey, F.H.

    1979-01-01

    A viable safeguards system includes among other things the development and use of indices which trigger various courses of action. The usual limit of error calculation provides such an index. The classical approach is one of constructing tests which, under certain assumptions, make the likelihood of a false alarm small. Of concern also is the test's failure to indicate a loss (diversion) when in fact one has occurred. Since false alarms are usually costly and losses both costly and of extreme strategic sinificance, there remains the task of balancing the probability of false alarm and its consequences against the probability of undetected loss and its consequences. The application of other than classical hypothesis testing procedures are considered in this paper. Using various consequence models, trigger indices are derived which have certain optimum properties. Application of the techniques would enhance the material control function

  16. Neural networks for triggering

    International Nuclear Information System (INIS)

    Denby, B.; Campbell, M.; Bedeschi, F.; Chriss, N.; Bowers, C.; Nesti, F.

    1990-01-01

    Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab

  17. The ARGUS vertex trigger

    International Nuclear Information System (INIS)

    Koch, N.; Kolander, M.; Kolanoski, H.; Siegmund, T.; Bergter, J.; Eckstein, P.; Schubert, K.R.; Waldi, R.; Imhof, M.; Ressing, D.; Weiss, U.; Weseler, S.

    1995-09-01

    A fast second level trigger has been developed for the ARGUS experiment which recognizes tracks originating from the interaction region. The processor compares the hits in the ARGUS Micro Vertex Drift Chamber to 245760 masks stored in random access memories. The masks which are fully defined in three dimensions are able to reject tracks originating in the wall of the narrow beampipe of 10.5 mm radius. (orig.)

  18. Zinc triggers microglial activation.

    Science.gov (United States)

    Kauppinen, Tiina M; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A

    2008-05-28

    Microglia are resident immune cells of the CNS. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, "ameboid" morphology and release matrix metalloproteinases, reactive oxygen species, and other proinflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here, we show that zinc directly triggers microglial activation. Microglia transfected with a nuclear factor-kappaB (NF-kappaB) reporter gene showed a severalfold increase in NF-kappaB activity in response to 30 microm zinc. Cultured mouse microglia exposed to 15-30 microm zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-kappaB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-kappaB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders.

  19. ATLAS Tau Trigger

    CERN Document Server

    Belanger-Champagne, C; Bosman, M; Brenner, R; Casado, MP; Czyczula, Z; Dam, M; Demers, S; Farrington, S; Igonkina, O; Kalinowski, A; Kanaya, N; Osuna, C; Pérez, E; Ptacek, E; Reinsch, A; Saavedra, A; Sopczak, A; Strom, D; Torrence, E; Tsuno, S; Vorwerk, V; Watson, A; Xella, S

    2008-01-01

    Moving to the high energy scale of the LHC, the identification of tau leptons will become a necessary and very powerful tool, allowing a discovery of physics beyond Standard Model. Many models, among them light SM Higgs and various SUSY models, predict an abundant production of taus with respect to other leptons. The reconstruction of hadronic tau decays, although a very challenging task in hadronic enviroments, allows to increase a signal efficiency by at least of factor 2, and provides an independent control sample to disantangle lepton tau decays from prompt electrons and muons. Thanks to the advanced calorimetry and tracking, the ATLAS experiment has developed tools to efficiently identify hadronic taus at the trigger level. In this presentation we will review the characteristics of taus and the methods to suppress low-multiplicity, low-energy jets contributions as well as we will address the tau trigger chain which provide a rejection rate of 10^5. We will further present plans for commissioning the ATLA...

  20. The D0 calorimeter trigger

    International Nuclear Information System (INIS)

    Guida, J.

    1992-12-01

    The D0 calorimeter trigger system consists of many levels to make physics motivated trigger decisions. The Level-1 trigger uses hardware techniques to reduce the trigger rate from ∼ 100kHz to 200Hz. It forms sums of electromagnetic and hadronic energy, globally and in towers, along with finding the missing transverse energy. A minimum energy is set on these energy sums to pass the event. The Level-2 trigger is a set of software filters, operating in a parallel-processing microvax farm which further reduces the trigger rate to a few Hertz. These filters will reject events which lack electron candidates, jet candidates, or missing transverse energy in the event. The performance of these triggers during the early running of the D0 detector will also be discussed

  1. Surgery for trigger finger.

    Science.gov (United States)

    Fiorini, Haroldo Junior; Tamaoki, Marcel Jun; Lenza, Mário; Gomes Dos Santos, Joao Baptista; Faloppa, Flávio; Belloti, Joao Carlos

    2018-02-20

    Trigger finger is a common clinical disorder, characterised by pain and catching as the patient flexes and extends digits because of disproportion between the diameter of flexor tendons and the A1 pulley. The treatment approach may include non-surgical or surgical treatments. Currently there is no consensus about the best surgical treatment approach (open, percutaneous or endoscopic approaches). To evaluate the effectiveness and safety of different methods of surgical treatment for trigger finger (open, percutaneous or endoscopic approaches) in adults at any stage of the disease. We searched CENTRAL, MEDLINE, Embase and LILACS up to August 2017. We included randomised or quasi-randomised controlled trials that assessed adults with trigger finger and compared any type of surgical treatment with each other or with any other non-surgical intervention. The major outcomes were the resolution of trigger finger, pain, hand function, participant-reported treatment success or satisfaction, recurrence of triggering, adverse events and neurovascular injury. Two review authors independently selected the trial reports, extracted the data and assessed the risk of bias. Measures of treatment effect for dichotomous outcomes calculated risk ratios (RRs), and mean differences (MDs) or standardised mean differences (SMD) for continuous outcomes, with 95% confidence intervals (CIs). When possible, the data were pooled into meta-analysis using the random-effects model. GRADE was used to assess the quality of evidence for each outcome. Fourteen trials were included, totalling 1260 participants, with 1361 trigger fingers. The age of participants included in the studies ranged from 16 to 88 years; and the majority of participants were women (approximately 70%). The average duration of symptoms ranged from three to 15 months, and the follow-up after the procedure ranged from eight weeks to 23 months.The studies reported nine types of comparisons: open surgery versus steroid injections (two

  2. Triggering at high luminosity: fake triggers from pile-up

    International Nuclear Information System (INIS)

    Johnson, R.

    1983-01-01

    Triggers based on a cut in transverse momentum (p/sub t/) have proved to be useful in high energy physics both because they indicte that a hard constituent scattering has occurred and because they can be made quickly enough to gate electronics. These triggers will continue to be useful at high luminosities if overlapping events do not cause an excessive number of fake triggers. In this paper, I determine if this is indeed a problem at high luminosity machines

  3. Using the cold plasma dispersion relation and whistler mode waves to quantify the antenna sheath impedance of the Van Allen Probes EFW instrument

    Czech Academy of Sciences Publication Activity Database

    Hartley, D. P.; Kletzing, C. A.; Kurth, W. S.; Bounds, S. R.; Averkamp, T. F.; Hospodarsky, G. B.; Wygant, J. R.; Bonnell, J. W.; Santolík, Ondřej; Watt, C. E. J.

    2016-01-01

    Roč. 121, č. 5 (2016), s. 4590-4606 ISSN 2169-9380 R&D Projects: GA MŠk(CZ) LH15304 Institutional support: RVO:68378289 Keywords : EFW * EMFISIS * plasmaspheric hiss * sheath impedance * Van Allen Probes * whistler mode chorus Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.733, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2016JA022501/abstract

  4. Nostalgia: content, triggers, functions.

    Science.gov (United States)

    Wildschut, Tim; Sedikides, Constantine; Arndt, Jamie; Routledge, Clay

    2006-11-01

    Seven methodologically diverse studies addressed 3 fundamental questions about nostalgia. Studies 1 and 2 examined the content of nostalgic experiences. Descriptions of nostalgic experiences typically featured the self as a protagonist in interactions with close others (e.g., friends) or in momentous events (e.g., weddings). Also, the descriptions contained more expressions of positive than negative affect and often depicted the redemption of negative life scenes by subsequent triumphs. Studies 3 and 4 examined triggers of nostalgia and revealed that nostalgia occurs in response to negative mood and the discrete affective state of loneliness. Studies 5, 6, and 7 investigated the functional utility of nostalgia and established that nostalgia bolsters social bonds, increases positive self-regard, and generates positive affect. These findings demarcate key landmarks in the hitherto uncharted research domain of nostalgia.

  5. Acoustic emission intrusion detector

    International Nuclear Information System (INIS)

    Carver, D.W.; Whittaker, J.W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal

  6. Observations of whistler mode waves in the Jovian system and their consequences for the onboard processing within the RPWI instrument for JUICE

    Science.gov (United States)

    Santolik, O.; Soucek, J.; Kolmasova, I.; Grison, B.; Wahlund, J.-E.; Bergmann, J.

    2013-09-01

    Evidence for a magnetosphere at Ganymede has been found in 1996 using measurements of plasma waves onboard the Galileo spacecraft (fig. 1). This discovery demonstrates the importance of measurements of waves in plasmas around Jovian moons [1]. Galileo also observed whistler-mode waves in the magnetosphere of Ganymede similar to important classes of waves in the Earth magnetosphere: chorus and hiss [2]. Data from the Galileo spacecraft have therefore shown the importance of measurements of waves in plasmas around Jovian moons, especially in the light of recent advances in analysis of whistler-mode waves in the Earth magnetosphere and their importance for acceleration of radiation belt electrons to relativistic energies. Multicomponent measurements of the fluctuating magnetic and electric fields are needed for localization and characterization of source regions of these waves. Radio & Plasma Waves Investigation (RPWI) experiment will be implemented on the JUICE (JUpiter ICy moon Explorer) spacecraft. RPWI is a highly integrated instrument package that provides a comprehensive set of plasma and fields measurements. Proposed measurement modes for the low frequency receiver subsystem of RPWI include onboard processing which will be suitable for analysis of whistler-mode waves: (1) Polarization and propagation analysis based on phase relations to identify wave modes and propagation directions (2) Poynting vector to determine source regions (3) Detailed frequency-time structure, polarization, wave vector directions to identify linear or nonlinear source mechanisms

  7. The ATLAS hadronic tau trigger

    CERN Document Server

    Black, C; The ATLAS collaboration

    2012-01-01

    With the high luminosities of proton-proton collisions achieved at the LHC, the strategies for triggering have become more important than ever for physics analysis. The naive inclusive single tau lepton triggers now suffer from severe rate limitations. To allow for a large program of physics analyses with taus, the development of topological triggers that combine tau signatures with other measured quantities in the event is required. These combined triggers open many opportunities to study new physics beyond the Standard Model and to search for the Standard Model Higgs. We present the status and performance of the hadronic tau trigger in ATLAS. We demonstrate that the ATLAS tau trigger ran remarkably well over 2011, and how the lessons learned from 2011 led to numerous improvements in the preparation of the 2012 run. These improvements include the introduction of tau selection criteria that are robust against varying pileup scenarios, and the implementation of multivariate selection techniques in the tau trig...

  8. The ATLAS hadronic tau trigger

    CERN Document Server

    Black, C; The ATLAS collaboration

    2012-01-01

    With the high luminosities of proton-proton collisions achieved at the LHC, the strategies for triggering have become more important than ever for physics analysis. The naïve inclusive single tau lepton triggers now suffer from severe rate limitations. To allow for a large program of physics analyses with taus, the development of topological triggers that combine tau signatures with other measured quantities in the event is required. These combined triggers open many opportunities to study new physics beyond the Standard Model and to search for the Standard Model Higgs. We present the status and performance of the hadronic tau trigger in ATLAS. We demonstrate that the ATLAS tau trigger ran remarkably well over 2011, and how the lessons learned from 2011 led to numerous improvements in the preparation of the 2012 run. These improvements include the introduction of tau selection criteria that are robust against varying pileup scenarios, and the implementation of multivariate selection techniques in the tau tri...

  9. The ATLAS hadronic tau trigger

    International Nuclear Information System (INIS)

    Shamim, Mansoora

    2012-01-01

    The extensive tau physics programs of the ATLAS experiment relies heavily on trigger to select hadronic decays of tau lepton. Such a trigger is implemented in ATLAS to efficiently collect signal events, while keeping the rate of multi-jet background within the allowed bandwidth. This contribution summarizes the performance of the ATLAS hadronic tau trigger system during 2011 data taking period and improvements implemented for the 2012 data collection.

  10. Flexible trigger menu implementation on the Global Trigger for the CMS Level-1 trigger upgrade

    Science.gov (United States)

    MATSUSHITA, Takashi; CMS Collaboration

    2017-10-01

    The CMS experiment at the Large Hadron Collider (LHC) has continued to explore physics at the high-energy frontier in 2016. The integrated luminosity delivered by the LHC in 2016 was 41 fb-1 with a peak luminosity of 1.5 × 1034 cm-2s-1 and peak mean pile-up of about 50, all exceeding the initial estimations for 2016. The CMS experiment has upgraded its hardware-based Level-1 trigger system to maintain its performance for new physics searches and precision measurements at high luminosities. The Global Trigger is the final step of the CMS Level-1 trigger and implements a trigger menu, a set of selection requirements applied to the final list of objects from calorimeter and muon triggers, for reducing the 40 MHz collision rate to 100 kHz. The Global Trigger has been upgraded with state-of-the-art FPGA processors on Advanced Mezzanine Cards with optical links running at 10 GHz in a MicroTCA crate. The powerful processing resources of the upgraded system enable implementation of more algorithms at a time than previously possible, allowing CMS to be more flexible in how it handles the available trigger bandwidth. Algorithms for a trigger menu, including topological requirements on multi-objects, can be realised in the Global Trigger using the newly developed trigger menu specification grammar. Analysis-like trigger algorithms can be represented in an intuitive manner and the algorithms are translated to corresponding VHDL code blocks to build a firmware. The grammar can be extended in future as the needs arise. The experience of implementing trigger menus on the upgraded Global Trigger system will be presented.

  11. Trigger and data acquisition

    CERN Multimedia

    CERN. Geneva; Gaspar, C

    2001-01-01

    Past LEP experiments generate data at 0.5 MByte/s from particle detectors with over a quarter of a million readout channels. The process of reading out the electronic channels, treating them, and storing the date produced by each collision for further analysis by the physicists is called "Data Acquisition". Not all beam crossings produce interesting physics "events", picking the interesting ones is the task of the "Trigger" system. In order to make sure that the data is collected in good conditions the experiment's operation has to be constantly verified. In all, at LEP experiments over 100 000 parameters were monitored, controlled, and synchronized by the "Monotoring and control" system. In the future, LHC experiments will produce as much data in a single day as a LEP detector did in a full year's running with a raw data rate of 10 - 100 MBytes/s and will have to cope with some 800 million proton-proton collisions a second of these collisions only one in 100 million million is interesting for new particle se...

  12. The TOTEM modular trigger system

    Energy Technology Data Exchange (ETDEWEB)

    Bagliesi, M.G., E-mail: mg.bagliesi@pi.infn.i [University of Siena and INFN Pisa (Italy); Berretti, M.; Cecchi, R.; Greco, V.; Lami, S.; Latino, G.; Oliveri, E.; Pedreschi, E.; Scribano, A.; Spinella, F.; Turini, N. [University of Siena and INFN Pisa (Italy)

    2010-05-21

    The TOTEM experiment will measure the total cross-section with the luminosity independent method and study elastic and diffractive scattering at the LHC. We are developing a modular trigger system, based on programmable logic, that will select meaningful events within 2.5{mu}s. The trigger algorithm is based on a tree structure in order to obtain information compression. The trigger primitive is generated directly on the readout chip, VFAT, that has a specific fast output that gives low resolution hits information. In two of the TOTEM detectors, Roman Pots and T2, a coincidence chip will perform track recognition directly on the detector readout boards, while for T1 the hits are transferred from the VFATs to the trigger hardware. Starting from more than 2000 bits delivered by the detector electronics, we extract, in a first step, six trigger patterns of 32 LVDS signals each; we build, then, on a dedicated board, a 1-bit (L1) trigger signal for the TOTEM experiment and 16 trigger bits to the CMS experiment global trigger system for future common data taking.

  13. The TOTEM modular trigger system

    International Nuclear Information System (INIS)

    Bagliesi, M.G.; Berretti, M.; Cecchi, R.; Greco, V.; Lami, S.; Latino, G.; Oliveri, E.; Pedreschi, E.; Scribano, A.; Spinella, F.; Turini, N.

    2010-01-01

    The TOTEM experiment will measure the total cross-section with the luminosity independent method and study elastic and diffractive scattering at the LHC. We are developing a modular trigger system, based on programmable logic, that will select meaningful events within 2.5μs. The trigger algorithm is based on a tree structure in order to obtain information compression. The trigger primitive is generated directly on the readout chip, VFAT, that has a specific fast output that gives low resolution hits information. In two of the TOTEM detectors, Roman Pots and T2, a coincidence chip will perform track recognition directly on the detector readout boards, while for T1 the hits are transferred from the VFATs to the trigger hardware. Starting from more than 2000 bits delivered by the detector electronics, we extract, in a first step, six trigger patterns of 32 LVDS signals each; we build, then, on a dedicated board, a 1-bit (L1) trigger signal for the TOTEM experiment and 16 trigger bits to the CMS experiment global trigger system for future common data taking.

  14. Upgrade trigger: Biannual performance update

    CERN Document Server

    Aaij, Roel; Couturier, Ben; Esen, Sevda; De Cian, Michel; De Vries, Jacco Andreas; Dziurda, Agnieszka; Fitzpatrick, Conor; Fontana, Marianna; Grillo, Lucia; Hasse, Christoph; Jones, Christopher Rob; Le Gac, Renaud; Matev, Rosen; Neufeld, Niko; Nikodem, Thomas; Polci, Francesco; Del Buono, Luigi; Quagliani, Renato; Schwemmer, Rainer; Seyfert, Paul; Stahl, Sascha; Szumlak, Tomasz; Vesterinen, Mika Anton; Wanczyk, Joanna; Williams, Mark Richard James; Yin, Hang; Zacharjasz, Emilia Anna

    2017-01-01

    This document presents the performance of the LHCb Upgrade trigger reconstruction sequence, incorporating changes to the underlying reconstruction algorithms and detector description since the Trigger and Online Upgrade TDR. An updated extrapolation is presented using the most recent example of an Event Filter Farm node.

  15. Minimum Bias Trigger in ATLAS

    International Nuclear Information System (INIS)

    Kwee, Regina

    2010-01-01

    Since the restart of the LHC in November 2009, ATLAS has collected inelastic pp collisions to perform first measurements on charged particle densities. These measurements will help to constrain various models describing phenomenologically soft parton interactions. Understanding the trigger efficiencies for different event types are therefore crucial to minimize any possible bias in the event selection. ATLAS uses two main minimum bias triggers, featuring complementary detector components and trigger levels. While a hardware based first trigger level situated in the forward regions with 2.2 < |η| < 3.8 has been proven to select pp-collisions very efficiently, the Inner Detector based minimum bias trigger uses a random seed on filled bunches and central tracking detectors for the event selection. Both triggers were essential for the analysis of kinematic spectra of charged particles. Their performance and trigger efficiency measurements as well as studies on possible bias sources will be presented. We also highlight the advantage of these triggers for particle correlation analyses. (author)

  16. Classification of hydromagnetic emissions based on frequency--time spectra

    International Nuclear Information System (INIS)

    Fukunishi, H.; Toya, T.; Koike, K.; Kuwashima, M.; Kawamura, M.

    1981-01-01

    By using 3035 hydromagnetic emission events observed in the frequency range of 0.1--2.0 Hz at Syowa (Lapprox.6), HM emissions have been classified into eight subtypes based on their spectral structures, i.e., HM whistler, periodic HM emission, HM chorus, HM emission burst, IPDP, morning IPDP, Pc 1--2 band, and irregular HM emission. It is seen that each subtype has a preferential magnetic local time interval and also a frequency range for its occurrence. Morning IPDP events and irregular HM emissions occur in the magnetic morning hours, while dispersive periodic HM emissions and HM emission bursts occur around magnetic local noon, then HM chorus emissions occur in the afternoon hours and IPDP events occur in the evening hours. Furthermore, it is noticed that the mid-frequencies of these emissions vary from high frequencies in the morning hours to low frequencies in the afternoon hours. On the basis of these results, the generation mechanisms of each subtype are discussed

  17. Study of Wave-Particle Interactions for Whistler Mode Waves at Oblique Angles by Utilizing the Gyroaveraging Method

    Science.gov (United States)

    Hsieh, Yi-Kai; Omura, Yoshiharu

    2017-10-01

    We investigate the properties of whistler mode wave-particle interactions at oblique wave normal angles to the background magnetic field. We find that electromagnetic energy of waves at frequencies below half the electron cyclotron frequency can flow nearly parallel to the ambient magnetic field. We thereby confirm that the gyroaveraging method, which averages the cyclotron motion to the gyrocenter and reduces the simulation from two-dimensional to one-dimensional, is valid for oblique wave-particle interaction. Multiple resonances appear for oblique propagation but not for parallel propagation. We calculate the possible range of resonances with the first-order resonance condition as a function of electron kinetic energy and equatorial pitch angle. To reveal the physical process and the efficiency of electron acceleration by multiple resonances, we assume a simple uniform wave model with constant amplitude and frequency in space and time. We perform test particle simulations with electrons starting at specific equatorial pitch angles and kinetic energies. The simulation results show that multiple resonances contribute to acceleration and pitch angle scattering of energetic electrons. Especially, we find that electrons with energies of a few hundred keV can be accelerated efficiently to a few MeV through the n = 0 Landau resonance.

  18. Simulation and modeling of whistler-mode wave growth through cyclotron resonance with energetic electrons in the magnetosphere

    International Nuclear Information System (INIS)

    Carlson, C.R.

    1987-01-01

    New models and simulations of wave growth experienced by electromagnetic waves propagating through the magnetosphere in the whistler mode are presented. For these waves, which have frequencies below the electron gyro and plasma frequencies, the magnetospheric plasma acts like a natural amplifier often amplifying the waves by ∼ 30 dB. The mechanism for growth is cyclotron resonance between the circularly polarized waves and the gyrating energetic electrons which make up the Van Allen radiation belts. The main emphasis is to simulate single-frequency wave pulses, in the 2-6 kHz range, that have been injected into the magnetosphere, near L ∼ 4, by the Stanford transmitting facility at Siple station, Antarctica. However, the results can also be applied to naturally occurring signals, signals from other transmitters, non-CW signals, and signals in other parts of the magnetosphere not probed by the Siple Station transmitter. Results show the importance of the transient aspects in the wave-growth process. The wave growth established as the wave propagates toward the equator, is given a spatially advancing wave phase structure by the geomagnetic inhomogeneity. Through the feedback of this radiation upon other electrons, conditions are set up that results in the linearly increasing output frequency with time

  19. DUMAND data acquisition with triggering

    International Nuclear Information System (INIS)

    Brenner, A.E.; Theriot, D.; March, R.H.

    1980-01-01

    A data acquisition scheme for the standard DUMAND array that includes a simple triggering scheme as a fundamental part of the system is presented. Although there are a number of not yet fully understood parameters, it is assumed that thresholds can be set in such a manner as to give rise to a triggered signal that is not so dominated by randoms that it gives a substantial decrease in the data acquisition rate over that which would be required by a nontriggered system. It is also assumed that the triggering logic is relatively simple and does not need major computational capabilities for a trigger logic decision. With these assumptions, it is possible to generate the trigger at the array and restrict the data transfer to shore. However, with a not unreasonable delay of 200 microseconds, it is even possible to transmit the information for the trigger to shore and perform all that logic on the shore. The critical point is to send the minimum amount of information necessary to construct the trigger such that one need not send all the possible information in all detectors of the array continuously to shore. 1 figure

  20. Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II

    Czech Academy of Sciences Publication Activity Database

    Breneman, A. W.; Crew, A.; Sample, J.; Klumpar, D.; Johnson, A.; Agapitov, O.; Shumko, M.; Turner, D. L.; Santolík, Ondřej; Wygant, J. R.; Cattell, C. A.; Thaller, S. A.; Blake, B.; Spence, H.; Kletzing, C. A.

    2017-01-01

    Roč. 44, č. 22 (2017), s. 11265-11272 ISSN 0094-8276 R&D Projects: GA ČR GA17-07027S Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : VLF-CHORUS * RADIATION BELT * ZONE ELECTRONS * SOURCE REGION * AURORAL-ZONE * GEM STORMS * PRECIPITATION * ASSOCIATION * RESOLUTION * EMISSIONS Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 4.253, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/2017GL075001/epdf

  1. Triggered Release from Polymer Capsules

    Energy Technology Data Exchange (ETDEWEB)

    Esser-Kahn, Aaron P. [Univ. of Illinois, Urbana, IL (United States). Beckman Inst. for Advanced Science and Technology and Dept. of Chemistry; Odom, Susan A. [Univ. of Illinois, Urbana, IL (United States). Beckman Inst. for Advanced Science and Technology and Dept. of Chemistry; Sottos, Nancy R. [Univ. of Illinois, Urbana, IL (United States). Beckman Inst. for Advanced Science and Technology and Dept. of Materials Science and Engineering; White, Scott R. [Univ. of Illinois, Urbana, IL (United States). Beckman Inst. for Advanced Science and Technology and Dept. of Aerospace Engineering; Moore, Jeffrey S. [Univ. of Illinois, Urbana, IL (United States). Beckman Inst. for Advanced Science and Technology and Dept. of Chemistry

    2011-07-06

    Stimuli-responsive capsules are of interest in drug delivery, fragrance release, food preservation, and self-healing materials. Many methods are used to trigger the release of encapsulated contents. Here we highlight mechanisms for the controlled release of encapsulated cargo that utilize chemical reactions occurring in solid polymeric shell walls. Triggering mechanisms responsible for covalent bond cleavage that result in the release of capsule contents include chemical, biological, light, thermal, magnetic, and electrical stimuli. We present methods for encapsulation and release, triggering methods, and mechanisms and conclude with our opinions on interesting obstacles for chemically induced activation with relevance for controlled release.

  2. The CDF level-3 trigger

    International Nuclear Information System (INIS)

    Devlin, T.

    1993-01-01

    The Collider Detector at Fermilab (CDF) has been operating at the Tevatron and collecting data on proton-antiproton interactions with collision rates above 250,000 Hz. Three levels of filtering select events for data logging at a rate of about 4 Hz. The Level 3 trigger provides most of the capabilities of the offline production programs for event reconstruction and physics analysis. The type of physics triggers, application of cuts, and combinations of logical requirements for event selection are controlled at run time by a trigger table using a syntax fully integrated with the Level 1 and Level 2 hardware triggers. The level 3 software operates in 48 RISC/UNIX processors (over 1000 mips) served by four 20-MByte/sec data buses for input, output and control. The system architecture, debugging, code validation, error reporting, analysis capabilities and performance will be described

  3. An ultrafast nanotip electron gun triggered by grating-coupled surface plasmons

    Energy Technology Data Exchange (ETDEWEB)

    Schröder, Benjamin; Sivis, Murat; Bormann, Reiner; Schäfer, Sascha; Ropers, Claus, E-mail: cropers@gwdg.de [4th Physical Institute - Solids and Nanostructures, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2015-12-07

    We demonstrate multiphoton photoelectron emission from gold nanotips induced by nanofocusing surface plasmons, resonantly excited on the tip shaft by a grating coupler. The tip is integrated into an electron gun assembly, which facilitates control over the spatial emission sites and allows us to disentangle direct grating emission from plasmon-triggered apex emission. The nanoscale source size of this electron gun concept enables highly coherent electron pulses with applications in ultrafast electron imaging and diffraction.

  4. DO OBLIQUE ALFVÉN/ION-CYCLOTRON OR FAST-MODE/WHISTLER WAVES DOMINATE THE DISSIPATION OF SOLAR WIND TURBULENCE NEAR THE PROTON INERTIAL LENGTH?

    International Nuclear Information System (INIS)

    He Jiansen; Tu Chuanyi; Marsch, Eckart; Yao Shuo

    2012-01-01

    To determine the wave modes prevailing in solar wind turbulence at kinetic scales, we study the magnetic polarization of small-scale fluctuations in the plane perpendicular to the data sampling direction (namely, the solar wind flow direction, V SW ) and analyze its orientation with respect to the local background magnetic field B 0,local . As an example, we take only measurements made in an outward magnetic sector. When B 0,local is quasi-perpendicular to V SW , we find that the small-scale magnetic-field fluctuations, which have periods from about 1 to 3 s and are extracted from a wavelet decomposition of the original time series, show a polarization ellipse with right-handed orientation. This is consistent with a positive reduced magnetic helicity, as previously reported. Moreover, for the first time we find that the major axis of the ellipse is perpendicular to B 0,local , a property that is characteristic of an oblique Alfvén wave rather than oblique whistler wave. For an oblique whistler wave, the major axis of the magnetic ellipse is expected to be aligned with B 0,local , thus indicating significant magnetic compressibility, and the polarization turns from right to left handedness as the wave propagation angle (θ kB ) increases toward 90°. Therefore, we conclude that the observation of a right-handed polarization ellipse with orientation perpendicular to B 0,local seems to indicate that oblique Alfvén/ion-cyclotron waves rather than oblique fast-mode/whistler waves dominate in the 'dissipation' range near the break of solar wind turbulence spectra occurring around the proton inertial length.

  5. 55th Annual Canadian Society for Molecular Biosciences Conference on Epigenetics and Genomic Stability. Whistler, British Columbia, Canada, 14–18 March 2012.

    Science.gov (United States)

    Nelson, Christopher J; Ausió, Juan

    2012-06-01

    The 55th Annual Canadian Society for Molecular Biosciences Conference on Epigenetics and Genomic Stability in Whistler, Canada, 14-18 March 2012, brought together 31 speakers from different nationalities. The organizing committee, led by Jim Davie (Chair) at the University of Manitoba (Manitoba, Canada), consisted of several established researchers in the fields of chromatin and epigenetics from across Canada. The meeting was centered on the contribution of epigenetics to gene expression, DNA damage and repair, and the role of environmental factors. A few interesting talks on replication added some insightful information on the controversial issue of histone post-translational modifications as genuine epigenetic marks that are inherited through cell division.

  6. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    Science.gov (United States)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  7. Night-time radial plasma drifts and coupling fluxes at L = 2.3 from whistler mode measurements

    International Nuclear Information System (INIS)

    Andrews, M.K.

    1980-01-01

    A method recently reported for measuring radial drifts in the equatorial plane, and ionosphere-magnetosphere coupling fluxes from the Doppler shifts and group delays on whistler mode signals is applied to VLF transmissions from station NLK on 18.6kHz. Data from 22 nights, primarily during the months November to February, are analysed. When averaged over a time of about 90 min, drifts found are accurate to +-20ms -1 , corresponding to an equatorial electric field accuracy of +-0.05mVm -1 , and fluxes, to +-1.5 x 10 12 el m -2 s -1 (two hemisphere total). Given currently accepted values of coupling fluxes, the flux accuracy is of marginal value on individual nights, but useful information on average behaviour may be obtained. It is found that fluxes generally contribute less than 20% to the measured Doppler shift, most of which is therefore produced by cross-L drifts. To an accuracy of about 20% then, Doppler data alone may give information on these drifts. Doppler shift data previously accumulated over a number of years and relating to signals in ducts near L = 2.3 are re-examined. Dominating the nightly behaviour is an inward drift which reaches a maximum of approximately 100m s -1 as the duct ends cross the dusk terminator, and an outward drift at dawn of the same magnitude which is intitiated when the duct end crosses the terminator in the E or lower F-region. In some months, separate effects can be seen corresponding to sunrise at each end of the duct. (author)

  8. Flexible trigger menu implementation on the Global Trigger for the CMS Level-1 trigger upgrade

    CERN Document Server

    Matsushita, Takashi

    2017-01-01

    The CMS experiment at the Large Hadron Collider (LHC) has continued to explore physics at the high-energy frontier in 2016. The integrated luminosity delivered by the LHC in 2016 was 41~fb$^{-1}$ with a peak luminosity of 1.5 $\\times$ 10$^{34}$ cm$^{-2}$s$^{-1}$ and peak mean pile-up of about 50, all exceeding the initial estimations for 2016. The CMS experiment has upgraded its hardware-based Level-1 trigger system to maintain its performance for new physics searches and precision measurements at high luminosities. The Global Trigger is the final step of the CMS \\mbox{Level-1} trigger and implements a trigger menu, a set of selection requirements applied to the final list of objects from calorimeter and muon triggers, for reducing the 40 MHz collision rate to 100 kHz. The Global Trigger has been upgraded with state-of-the-art FPGA processors on Advanced Mezzanine Cards with optical links running at 10 GHz in a MicroTCA crate. The powerful processing resources of the upgraded system enable implemen...

  9. Self-triggering detectors for recoil nuclei

    International Nuclear Information System (INIS)

    Aleksanyan, A.S.; Asatiani, T.I.; Gasparyan, A.O.

    1975-01-01

    Hybrid α-detectors consisting of wide gap spark chambers and signal α detectors are described. The investigations have been carried out with γ-beams of Yerevan Electron Synchrotron. The possibility of using such detectors in the experiments on particle photoproduction on gas helium with the determination of the interaction point, emission angle of the recoil nucleus and its energy by means of range measurement has been shown. It has been shown that self - triggering wide gap spark chamber allows to detect and measure the range of the recoil nuclei α-particles with energies Esub(α) > or approximately (1 - 2) Mev which correspond to momentum transfers apprxomation (10 -2 - 10 -3 ) (GeV/c) 2

  10. Trigger processing using reconfigurable logic in the CMS calorimeter trigger

    Energy Technology Data Exchange (ETDEWEB)

    Brooke, J J; Cussans, D G; Heath, G P; Maddox, A J; Newbold, D M; Rabbetts, P D

    2001-04-01

    We present the design of the Global Calorimeter Trigger processor for the CMS detector at LHC. This is a fully pipelined processor system which collects data from all the CMS calorimeters and produces summary information used in forming the Level-1 trigger decision for each event. The design in based on the use of state-of-the-art reconfigurable logic devices (FPGAs) and fast data links. We present the results of device testing using a low-latency pipelined sort algorithm, which demonstrate that an FPGA can be used to perform processing previously foreseen to require custom ASICs. Our design approach results in a powerful, flexible and compact processor system.

  11. The DOe Silicon Track Trigger

    International Nuclear Information System (INIS)

    Steinbrueck, Georg

    2003-01-01

    We describe a trigger preprocessor to be used by the DOe experiment for selecting events with tracks from the decay of long-lived particles. This Level 2 impact parameter trigger utilizes information from the Silicon Microstrip Tracker to reconstruct tracks with improved spatial and momentum resolutions compared to those obtained by the Level 1 tracking trigger. It is constructed of VME boards with much of the logic existing in programmable processors. A common motherboard provides the I/O infrastructure and three different daughter boards perform the tasks of identifying the roads from the tracking trigger data, finding the clusters in the roads in the silicon detector, and fitting tracks to the clusters. This approach provides flexibility for the design, testing and maintenance phases of the project. The track parameters are provided to the trigger framework in 25 μs. The effective impact parameter resolution for high-momentum tracks is 35 μm, dominated by the size of the Tevatron beam

  12. Review Document: Full Software Trigger

    CERN Document Server

    Albrecht, J; Raven, G

    2014-01-01

    This document presents a trigger system for the upgraded LHCb detector, scheduled to begin operation in 2020. This document serves as input for the internal review towards the "DAQ, online and trigger TDR". The proposed trigger system is implemented entirely in software. In this document we show that track reconstruction of a similar quality to that available in the offline algorithms can be performed on the full inelastic $pp$-collision rate, without prior event selections implemented in custom hardware and without relying upon a partial event reconstruction. A track nding eciency of 98.8 % relative to oine can be achieved for tracks with $p_T >$ 500 MeV/$c$. The CPU time required for this reconstruction is about 40 % of the available budget. Proof-of-principle selections are presented which demonstrate that excellent performance is achievable using an inclusive beauty trigger, in addition to exclusive beauty and charm triggers. Finally, it is shown that exclusive beauty and charm selections that do not intr...

  13. First observation of lion roar-like emissions in Saturn's magnetosheath

    Science.gov (United States)

    Pisa, David; Sulaiman, Ali H.; Santolik, Ondrej; Hospodarsky, George B.; Kurth, William S.; Gurnett, Donald A.

    2017-04-01

    Electromagnetic whistler mode waves known as "lion roars" have been reported by many missions inside the terrestrial magnetosheath. We show the observation of similar intense emissions in Saturn's magnetosheath as detected by the Cassini spacecraft. The emissions were observed inside the dawn sector (MLT˜0730) of the magnetosheath over a time period of nine hours before the satellite crossed the bow shock and entered the solar wind. The emissions were narrow-banded with a typical frequency of about 15 Hz well below the local electron cyclotron frequency (fce ˜100 Hz). Using the minimum variance analysis method, we show that the waves are right hand circularly polarized and propagate at small wave normal angles with respect to the ambient magnetic field. Here, for the first time, we report the evidence of lion roar-like emissions in Saturn's magnetosheath which represents a new and unique parameter regime.

  14. ATLAS FTK Fast Track Trigger

    CERN Document Server

    Iizawa, T; The ATLAS collaboration

    2014-01-01

    The Fast TracKer (FTK) will perform global track reconstruction after each Level-1 trigger accept signal to enable the software-based higher level trigger to have early access to tracking information. FTK is a dedicated processor based on a mixture of advanced technologies. Modern, powerful Field Programmable Gate Arrays (FPGAs) form an important part of the system architecture, and the large level of computing power required for pattern recognition is provided by incorporating standard-cell ASICs named Associative Memory (AM). Motivation and the architecture of the FTK system will be presented, and the status of hardware and simulation will be following.

  15. RPC Trigger Robustness: Status Report

    CERN Document Server

    Di Mattia, A; Nisati, A; Pastore, F; Vari, R; Veneziano, Stefano; Aielli, G; Camarri, P; Cardarelli, R; Di Ciaccio, A; Di Simone, A; Liberti, B; Santonico, R

    2002-01-01

    The present paper describes the Level-1 Barrel Muon Trigger performance as expected with the current configuration of the RPC detectors designed for the Barrel Muon Spectrometer of ATLAS. Results of a beam test performed at the X5-GIF facility at CERN are presented in order to show the trigger efficiency with different conditions of RPC detection efficiency and several background rates. Small (50$\\times$50 cm$^2$) RPC chambers with final Front-end electronics and splitter boards are used in the test, while the coincidence logic is applied off-line using a detailed simulation of the coincidence matrix.

  16. Fast processor for dilepton triggers

    International Nuclear Information System (INIS)

    Katsanevas, S.; Kostarakis, P.; Baltrusaitis, R.

    1983-01-01

    We describe a fast trigger processor, developed for and used in Fermilab experiment E-537, for selecting high-mass dimuon events produced by negative pions and anti-protons. The processor finds candidate tracks by matching hit information received from drift chambers and scintillation counters, and determines their momenta. Invariant masses are calculated for all possible pairs of tracks and an event is accepted if any invariant mass is greater than some preselectable minimum mass. The whole process, accomplished within 5 to 10 microseconds, achieves up to a ten-fold reduction in trigger rate

  17. DT Local Trigger performance in 2015

    CERN Document Server

    CMS Collaboration

    2015-01-01

    The Local Trigger system of the CMS Drift Tube chambers (DT) was checked applying similar methods as in the LHC Run 1 (2012). The main variables shown in this note are the trigger efficiency, the trigger quality and the fraction of trigger ghosts. The performance was found to be comparable or better than in Run 1.

  18. Pitch Angle Scattering of Energetic Electrons by Plasmaspheric Hiss Emissions

    Science.gov (United States)

    Tobita, M.; Omura, Y.; Summers, D.

    2017-12-01

    We study scattering of energetic electrons in pitch angles and kinetic energies through their resonance with plasmaspheric hiss emissions consisting of many coherent discrete whistler-mode wave packets with rising and falling frequencies [1,2,3]. Using test particle simulations, we evaluate the efficiency of scattering, which depends on the inhomogeneity ratio S of whistler mode wave-particle interaction [4]. The value of S is determined by the wave amplitude, frequency sweep rate, and the gradient of the background magnetic field. We first modulate those parameters and observe variations of pitch angles and kinetic energies of electrons with a single wave under various S values so as to obtain basic understanding. We then include many waves into the system to simulate plasmaspheric hiss emissions. As the wave packets propagate away from the magnetic equator, the nonlinear trapping potential at the resonance velocity is deformed, making a channel of gyrophase for untrapped electrons to cross the resonance velocity, and causing modulations in their pitch angles and kinetic energies. We find efficient scattering of pitch angles and kinetic energies because of coherent nonlinear wave-particle interaction, resulting in electron precipitations into the polar atmosphere. We compare the results with the bounce averaged pitch angle diffusion coefficient based on quasi-linear theory, and show that the nonlinear wave model with many coherent packets can cause scattering of resonant electrons much faster than the quasi-linear diffusion process. [1] Summers, D., Omura, Y., Nakamura, S., and C. A. Kletzing (2014), Fine structure of plasmaspheric hiss, J. Geophys. Res., 119, 9134-9149. [2] Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562. [3] Nakamura, S., Y

  19. Triggered lightning spectroscopy: Part 1. A qualitative analysis

    Science.gov (United States)

    Walker, T. Daniel; Christian, Hugh J.

    2017-08-01

    The first high-speed spectra of triggered lightning have been obtained. During the summers of 2012 and 2013, spectra were recorded at the International Center for Lightning Research and Testing, Camp Blanding, FL. The spectra were recorded with a high-speed camera with a grism mounted in front of it. The triggered lightning channels observed were generally at low altitude in a region that included the copper wire. Spectral emissions were recorded at each phase: the initial stage, dart leader, return stroke, and continuing current. These spectra are separated into two major regions: soft ultraviolet to visible (3800-6200 Å) and visible to near infrared (6200-8700 Å). The emissions during the initial stage reflect those of a copper wire burn in air. The majority of the emissions are neutral copper. After the initial stage comes the first return stroke which contains no detected molecular emissions; however, it does contain neutral, singly, and doubly ionized nitrogen and oxygen, neutral argon, and neutral hydrogen. Occasionally, before a return stroke, the dart leader coming down the channel will be stepped. During these occasions the leader spectra resemble that of the return stroke but are dimmer and shorter lived. After the initial portion of the return stroke, there are often changes in the luminosity of the spectrum which corresponds with fluctuations in the continuing current. During these "reillumination phases" no singly or doubly ionized lines have been observed to reemerge over the detection threshold, only neutral emission features.

  20. A generalized two-fluid picture of non-driven collisionless reconnection and its relation to whistler waves

    Science.gov (United States)

    Yoon, Young Dae

    2017-10-01

    analyzing reconnection. A mechanism for whistler wave generation and propagation is also described, with comparisons to recent spacecraft observations. National Science Foundation under Award no. 1059519, Air Force Office of Scientific Research under Award No. FA9550-11-1-0184, U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award No. DE-FG02-04ER54755.

  1. The Trigger for Early Running

    CERN Document Server

    The ATLAS Collaboration

    2009-01-01

    The ATLAS trigger and data acquisition system is based on three levels of event selection designed to capture the physics of interest with high efficiency from an initial bunch crossing rate of 40 MHz. The selections in the three trigger levels must provide sufficient rejection to reduce the rate to 200 Hz, compatible with offline computing power and storage capacity. The LHC is expected to begin its operation with a peak luminosity of 10^31 with a relatively small number of bunches, but quickly ramp up to higher luminosities by increasing the number of bunches, and thus the overall interaction rate. Decisions must be taken every 25 ns during normal LHC operations at the design luminosity of 10^34, where the average bunch crossing will contain more than 20 interactions. Hence, trigger selections must be deployed that can adapt to the changing beam conditions while preserving the interesting physics and satisfying varying detector requirements. In this paper, we provide a menu of trigger selections that can be...

  2. The CDF Silicon Vertex Trigger

    International Nuclear Information System (INIS)

    Dell'Orso, Mauro

    2006-01-01

    Motivations, design, performance and ongoing upgrade of the CDF Silicon Vertex Trigger are presented. The system provides CDF with a powerful tool for online tracking with offline quality in order to enhance the reach on B-physics and large P t -physics coupled to b quarks

  3. Simultaneous observations of quasi-periodic ELF/VLF wave emissions and electron precipitation by DEMETER satellite: A case study

    Czech Academy of Sciences Publication Activity Database

    Hayosh, Mykhaylo; Pasmanik, D. L.; Demekhov, A. G.; Santolík, Ondřej; Parrot, M.; Titova, E. E.

    2013-01-01

    Roč. 118, č. 7 (2013), s. 4523-4533 ISSN 2169-9380 R&D Projects: GA ČR(CZ) GAP209/11/2280; GA MŠk LH12231 Institutional support: RVO:68378289 Keywords : quasi-periodic ELF/VLF emission s in the magnetosphere * wave-particle interactions * demeter spacecraft measurements * whistler-mode waves Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50179/abstract

  4. Bandwidths and amplitudes of chorus-like banded emissions measured by the TC-1 Double Star spacecraft

    Czech Academy of Sciences Publication Activity Database

    Macúšová, Eva; Santolík, Ondřej; Cornilleau-Wehrlin, N.; Yearby, K. H.

    2015-01-01

    Roč. 120, č. 2 (2015), s. 1057-1071 ISSN 2169-9380 R&D Projects: GA MŠk(CZ) LH11122; GA ČR GAP205/10/2279; GA ČR(CZ) GAP209/11/2280 EU Projects: European Commission(XE) 284520 - MAARBLE Program:FP7 Institutional support: RVO:68378289 Keywords : Earth's magnetosphere * geomagnetic activity * whistler-mode * chorus emissions Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.318, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/2014JA020440/abstract

  5. Triggers in UA2 and UA1

    International Nuclear Information System (INIS)

    Dorenbosch, J.

    1985-01-01

    The UA2 and UA1 trigger systems are described as they will be used after the upgrade of the CERN SPPS. The luminosity of the collider will increase to 3x10 30 . The bunch spacing is 4 microseconds, comparable to the time available for a second level trigger at the SSC. The first level triggers are very powerful and deliver trigger rates of about 100 Hz. The UA1 second level trigger operates on the final digitizings with a combination of special and general purpose processors. At the highest trigger levels a small farm of processors performs the final reduction. (orig.)

  6. Muon Trigger for Mobile Phones

    Science.gov (United States)

    Borisyak, M.; Usvyatsov, M.; Mulhearn, M.; Shimmin, C.; Ustyuzhanin, A.

    2017-10-01

    The CRAYFIS experiment proposes to use privately owned mobile phones as a ground detector array for Ultra High Energy Cosmic Rays. Upon interacting with Earth’s atmosphere, these events produce extensive particle showers which can be detected by cameras on mobile phones. A typical shower contains minimally-ionizing particles such as muons. As these particles interact with CMOS image sensors, they may leave tracks of faintly-activated pixels that are sometimes hard to distinguish from random detector noise. Triggers that rely on the presence of very bright pixels within an image frame are not efficient in this case. We present a trigger algorithm based on Convolutional Neural Networks which selects images containing such tracks and are evaluated in a lazy manner: the response of each successive layer is computed only if activation of the current layer satisfies a continuation criterion. Usage of neural networks increases the sensitivity considerably comparable with image thresholding, while the lazy evaluation allows for execution of the trigger under the limited computational power of mobile phones.

  7. Stimulus conflict triggers behavioral avoidance.

    Science.gov (United States)

    Dignath, David; Eder, Andreas B

    2015-12-01

    According to a recent extension of the conflict-monitoring theory, conflict between two competing response tendencies is registered as an aversive event and triggers a motivation to avoid the source of conflict. In the present study, we tested this assumption. Over five experiments, we examined whether conflict is associated with an avoidance motivation and whether stimulus conflict or response conflict triggers an avoidance tendency. Participants first performed a color Stroop task. In a subsequent motivation test, participants responded to Stroop stimuli with approach- and avoidance-related lever movements. These results showed that Stroop-conflict stimuli increased the frequency of avoidance responses in a free-choice motivation test, and also increased the speed of avoidance relative to approach responses in a forced-choice test. High and low proportions of response conflict in the Stroop task had no effect on avoidance in the motivation test. Avoidance of conflict was, however, obtained even with new conflict stimuli that had not been presented before in a Stroop task, and when the Stroop task was replaced with an unrelated filler task. Taken together, these results suggest that stimulus conflict is sufficient to trigger avoidance.

  8. Industrial accidents triggered by lightning.

    Science.gov (United States)

    Renni, Elisabetta; Krausmann, Elisabeth; Cozzani, Valerio

    2010-12-15

    Natural disasters can cause major accidents in chemical facilities where they can lead to the release of hazardous materials which in turn can result in fires, explosions or toxic dispersion. Lightning strikes are the most frequent cause of major accidents triggered by natural events. In order to contribute towards the development of a quantitative approach for assessing lightning risk at industrial facilities, lightning-triggered accident case histories were retrieved from the major industrial accident databases and analysed to extract information on types of vulnerable equipment, failure dynamics and damage states, as well as on the final consequences of the event. The most vulnerable category of equipment is storage tanks. Lightning damage is incurred by immediate ignition, electrical and electronic systems failure or structural damage with subsequent release. Toxic releases and tank fires tend to be the most common scenarios associated with lightning strikes. Oil, diesel and gasoline are the substances most frequently released during lightning-triggered Natech accidents. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. The UA1 trigger processor

    International Nuclear Information System (INIS)

    Grayer, G.H.

    1981-01-01

    Experiment UA1 is a large multi-purpose spectrometer at the CERN proton-antiproton collider, scheduled for late 1981. The principal trigger is formed on the basis of the energy deposition in calorimeters. A trigger decision taken in under 2.4 microseconds can avoid dead time losses due to the bunched nature of the beam. To achieve this we have built fast 8-bit charge to digital converters followed by two identical digital processors tailored to the experiment. The outputs of groups of the 2440 photomultipliers in the calorimeters are summed to form a total of 288 input channels to the ADCs. A look-up table in RAM is used to convert the digitised photomultiplier signals to energy in one processor, combinations of input channels, and also counts the number of clusters with electromagnetic or hadronic energy above pre-determined levels. Up to twelve combinations of these conditions, together with external information, may be combined in coincidence or in veto to form the final trigger. Provision has been made for testing using simulated data in an off-line mode, and sampling real data when on-line. (orig.)

  10. ATLAS Level-1 Topological Trigger

    CERN Document Server

    Zheng, Daniel; The ATLAS collaboration

    2018-01-01

    The ATLAS experiment has introduced and recently commissioned a completely new hardware sub-system of its first-level trigger: the topological processor (L1Topo). L1Topo consist of two AdvancedTCA blades mounting state-of-the-art FPGA processors, providing high input bandwidth (up to 4 Gb/s) and low latency data processing (200 ns). L1Topo is able to select collision events by applying kinematic and topological requirements on candidate objects (energy clusters, jets, and muons) measured by calorimeters and muon sub-detectors. Results from data recorded using the L1Topo trigger will be presented. These results demonstrate a significantly improved background event rejection, thus allowing for a rate reduction without efficiency loss. This improvement has been shown for several physics processes leading to low-pT leptons, including H->tau tau and J/Psi->mu mu. In addition to describing the L1Topo trigger system, we will discuss the use of an accurate L1Topo simulation as a powerful tool to validate and optimize...

  11. ATLAS FTK: Fast Track Trigger

    CERN Document Server

    Volpi, Guido; The ATLAS collaboration

    2015-01-01

    An overview of the ATLAS Fast Tracker processor is presented, reporting the design of the system, its expected performance, and the integration status. The next LHC runs, with a significant increase in instantaneous luminosity, will provide a big challenge to the trigger and data acquisition systems of all the experiments. An intensive use of the tracking information at the trigger level will be important to keep high efficiency in interesting events, despite the increase in multiple p-p collisions per bunch crossing (pile-up). In order to increase the use of tracks within the High Level Trigger (HLT), the ATLAS experiment planned the installation of an hardware processor dedicated to tracking: the Fast TracKer (FTK) processor. The FTK is designed to perform full scan track reconstruction at every Level-1 accept. To achieve this goal, the FTK uses a fully parallel architecture, with algorithms designed to exploit the computing power of custom VLSI chips, the Associative Memory, as well as modern FPGAs. The FT...

  12. Headache triggers in the US military.

    Science.gov (United States)

    Theeler, Brett J; Kenney, Kimbra; Prokhorenko, Olga A; Fideli, Ulgen S; Campbell, William; Erickson, Jay C

    2010-05-01

    Headaches can be triggered by a variety of factors. Military service members have a high prevalence of headache but the factors triggering headaches in military troops have not been identified. The objective of this study is to determine headache triggers in soldiers and military beneficiaries seeking specialty care for headaches. A total of 172 consecutive US Army soldiers and military dependents (civilians) evaluated at the headache clinics of 2 US Army Medical Centers completed a standardized questionnaire about their headache triggers. A total of 150 (87%) patients were active-duty military members and 22 (13%) patients were civilians. In total, 77% of subjects had migraine; 89% of patients reported at least one headache trigger with a mean of 8.3 triggers per patient. A wide variety of headache triggers was seen with the most common categories being environmental factors (74%), stress (67%), consumption-related factors (60%), and fatigue-related factors (57%). The types of headache triggers identified in active-duty service members were similar to those seen in civilians. Stress-related triggers were significantly more common in soldiers. There were no significant differences in trigger types between soldiers with and without a history of head trauma. Headaches in military service members are triggered mostly by the same factors as in civilians with stress being the most common trigger. Knowledge of headache triggers may be useful for developing strategies that reduce headache occurrence in the military.

  13. The Jefferson Lab Trigger Supervisor System

    International Nuclear Information System (INIS)

    Ed Jastrzembsi; David Abbott; Graham Heyes; R.W. MacLeod; Carl Timmer; Elliott Wolin

    2000-01-01

    We discuss the design and performance of a Trigger Supervisor System for use in nuclear physics experiments at Jefferson Lab. We also discuss the enhanced features of a new Trigger Supervisor Module now under construction

  14. The Jefferson Lab Trigger Supervisor System

    International Nuclear Information System (INIS)

    Jastrzembski, E.; Abbott, D.J.; Heyes, W.G.; MacLeod, R.W.; Timmer, C.; Wolin, E.

    1999-01-01

    The authors discuss the design and performance of a Trigger Supervisor System for use in nuclear physics experiments at Jefferson Lab. They also discuss the enhanced features of a new Trigger Supervisor Module now under construction

  15. Whistler intensities above thunderstorms

    Czech Academy of Sciences Publication Activity Database

    Fišer, Jiří; Chum, Jaroslav; Diendorfer, G.; Parrot, M.; Santolík, Ondřej

    2010-01-01

    Roč. 28, č. 1 (2010), s. 37-46 ISSN 0992-7689 R&D Projects: GA ČR GA205/09/1253 Institutional research plan: CEZ:AV0Z30420517 Keywords : Ionosphere (Wave propagation) * Meteorology and atmospheric dynamics ( Lightning ) * Radio science (Waves in plasma) Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.620, year: 2010 http://www.ann-geophys.net/28/37/2010/angeo-28-37-2010.pdf

  16. The Trigger System of the CMS Experiment

    OpenAIRE

    Felcini, Marta

    2008-01-01

    We give an overview of the main features of the CMS trigger and data acquisition (DAQ) system. Then, we illustrate the strategies and trigger configurations (trigger tables) developed for the detector calibration and physics program of the CMS experiment, at start-up of LHC operations, as well as their possible evolution with increasing luminosity. Finally, we discuss the expected CPU time performance of the trigger algorithms and the CPU requirements for the event filter farm at start-up.

  17. Triggers for a high sensitivity charm experiment

    International Nuclear Information System (INIS)

    Christian, D.C.

    1994-07-01

    Any future charm experiment clearly should implement an E T trigger and a μ trigger. In order to reach the 10 8 reconstructed charm level for hadronic final states, a high quality vertex trigger will almost certainly also be necessary. The best hope for the development of an offline quality vertex trigger lies in further development of the ideas of data-driven processing pioneered by the Nevis/U. Mass. group

  18. First level trigger of the DIRAC experiment

    International Nuclear Information System (INIS)

    Afanas'ev, L.G.; Karpukhin, V.V.; Kulikov, A.V.; Gallas, M.

    2001-01-01

    The logic of the first level trigger of the DIRAC experiment at CERN is described. A parallel running of different trigger modes with tagging of events and optional independent prescaling is realized. A CAMAC-based trigger system is completely computer controlled

  19. Photonuclear reactions triggered by lightning discharge.

    Science.gov (United States)

    Enoto, Teruaki; Wada, Yuuki; Furuta, Yoshihiro; Nakazawa, Kazuhiro; Yuasa, Takayuki; Okuda, Kazufumi; Makishima, Kazuo; Sato, Mitsuteru; Sato, Yousuke; Nakano, Toshio; Umemoto, Daigo; Tsuchiya, Harufumi

    2017-11-22

    Lightning and thunderclouds are natural particle accelerators. Avalanches of relativistic runaway electrons, which develop in electric fields within thunderclouds, emit bremsstrahlung γ-rays. These γ-rays have been detected by ground-based observatories, by airborne detectors and as terrestrial γ-ray flashes from space. The energy of the γ-rays is sufficiently high that they can trigger atmospheric photonuclear reactions that produce neutrons and eventually positrons via β + decay of the unstable radioactive isotopes, most notably 13 N, which is generated via 14 N + γ →  13 N + n, where γ denotes a photon and n a neutron. However, this reaction has hitherto not been observed conclusively, despite increasing observational evidence of neutrons and positrons that are presumably derived from such reactions. Here we report ground-based observations of neutron and positron signals after lightning. During a thunderstorm on 6 February 2017 in Japan, a γ-ray flash with a duration of less than one millisecond was detected at our monitoring sites 0.5-1.7 kilometres away from the lightning. The subsequent γ-ray afterglow subsided quickly, with an exponential decay constant of 40-60 milliseconds, and was followed by prolonged line emission at about 0.511 megaelectronvolts, which lasted for a minute. The observed decay timescale and spectral cutoff at about 10 megaelectronvolts of the γ-ray afterglow are well explained by de-excitation γ-rays from nuclei excited by neutron capture. The centre energy of the prolonged line emission corresponds to electron-positron annihilation, providing conclusive evidence of positrons being produced after the lightning.

  20. The D OE software trigger

    International Nuclear Information System (INIS)

    Linnemann, J.T.; Michigan State Univ., East Lansing, MI

    1992-10-01

    In the D OE experiment, the software filter operates in a processor farm with each node processing a single event. Processing is data-driven: the filter does local processing to verify the candidates from the hardware trigger. The filter code consists of independent pieces called ''tools''; processing for a given hardware bit is a ''script'' invoking one or more ''tools'' sequentially. An offline simulator drives the same code with the same configuration files, running on real or simulated data. Online tests use farm nodes parasiting on the data stream. We discuss the performance of the system and how we attempt to verify its correctness

  1. Calorimeter triggers for hard collisions

    International Nuclear Information System (INIS)

    Landshoff, P.V.; Polkinghorne, J.C.

    1978-01-01

    We discuss the use of a forward calorimeter to trigger on hard hadron-hadron collisions. We give a derivation in the covariant parton model of the Ochs-Stodolsky scaling law for single-hard-scattering processes, and investigate the conditions when instead a multiple- scattering mechanism might dominate. With a proton beam, this mechanism results in six transverse jets, with a total average multiplicity about twice that seen in ordinary events. We estimate that its cross section is likely to be experimentally accessible at avalues of the beam energy in the region of 100 GeV/c

  2. Triggering for charm, beauty, and truth

    International Nuclear Information System (INIS)

    Appel, J.A.

    1982-02-01

    As the search for more and more rare processes accelerates, the need for more and more effective event triggers also accelerates. In the earliest experiments, a simple coincidence often sufficed not only as the event trigger, but as the complete record of an event of interest. In today's experiments, not only has the fast trigger become more sophisticated, but one or more additional level of trigger processing precedes writing event data to magnetic tape for later analysis. Further search experiments will certainly require further expansion in the number of trigger levels required to filter those rare events of particular interest

  3. The Database Driven ATLAS Trigger Configuration System

    CERN Document Server

    Martyniuk, Alex; The ATLAS collaboration

    2015-01-01

    This contribution describes the trigger selection configuration system of the ATLAS low- and high-level trigger (HLT) and the upgrades it received in preparation for LHC Run 2. The ATLAS trigger configuration system is responsible for applying the physics selection parameters for the online data taking at both trigger levels and the proper connection of the trigger lines across those levels. Here the low-level trigger consists of the already existing central trigger (CT) and the new Level-1 Topological trigger (L1Topo), which has been added for Run 2. In detail the tasks of the configuration system during the online data taking are Application of the selection criteria, e.g. energy cuts, minimum multiplicities, trigger object correlation, at the three trigger components L1Topo, CT, and HLT On-the-fly, e.g. rate-dependent, generation and application of prescale factors to the CT and HLT to adjust the trigger rates to the data taking conditions, such as falling luminosity or rate spikes in the detector readout ...

  4. Hadronic Triggers and trigger-object level analysis at ATLAS

    CERN Document Server

    Zaripovas, Donatas Ramilas; The ATLAS collaboration

    2017-01-01

    Hadronic signatures are critical to the high energy physics analysis program, and are broadly used for both Standard Model measurements and searches for new physics. These signatures include generic quark and gluon jets, as well as jets originating from b-quarks or the decay of massive particles (such as electroweak bosons or top quarks). Additionally missing transverse momentum from non-interacting particles provides an interesting probe in the search for new physics beyond the Standard Model. Developing trigger selections that target these events is a huge challenge at the LHC due to the enormous rates associated with these signatures. This challenge is exacerbated by the amount of pile-up activity, which continues to grow. In order to address these challenges, several new techniques have been developed during the past year in order to significantly improve the potential of the 2017 dataset and overcome the limiting factors to more deeply probing for new physics, such as storage and computing requirements f...

  5. Hadronic triggers and trigger object-level analysis at ATLAS

    CERN Document Server

    Zaripovas, Donatas Ramilas; The ATLAS collaboration

    2017-01-01

    Hadronic signatures are critical to the high energy physics analysis program at the Large Hadron Collider (LHC), and are broadly used for both Standard Model measurements and searches for new physics. These signatures include generic quark and gluon jets, as well as jets originating from b-quarks or the decay of massive particles (such as electroweak bosons or top quarks). Additionally missing transverse momentum from non-interacting particles provides an interesting probe in the search for new physics beyond the Standard Model. Developing trigger selections that target these events is a huge challenge at the LHC due to the enormous event rates associated with these signatures. This challenge is exacerbated by the amount of pile-up activity, which continues to grow. In order to address these challenges, several new techniques have been developed during the past year in order to significantly improve the potential of the 2017 dataset and overcome the limiting factors, such as storage and computing requirements...

  6. Acoustic emission

    International Nuclear Information System (INIS)

    Nichols, R.W.

    1976-01-01

    The volume contains six papers which together provide an overall review of the inspection technique known as acoustic emission or stress wave emission. The titles are: a welder's introduction to acoustic emission technology; use of acoustic emission for detection of defects as they arise during fabrication; examples of laboratory application and assessment of acoustic emission in the United Kingdom; (Part I: acoustic emission behaviour of low alloy steels; Part II: fatigue crack assessment from proof testing and continuous monitoring); inspection of selected areas of engineering structures by acoustic emission; Japanese experience in laboratory and practical applications of acoustic emission to welded structures; and ASME acoustic emission code status. (U.K.)

  7. Propagation of lower-band whistler-mode waves in the outer Van Allen belt: Systematic analysis of 11 years of multi-component data from the Cluster spacecraft

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Macúšová, Eva; Kolmašová, Ivana; Cornilleau-Wehrlin, N.; De Conchy, Y.

    2014-01-01

    Roč. 41, č. 8 (2014), s. 2729-2737 ISSN 0094-8276 R&D Projects: GA MŠk 7E12026; GA ČR GAP205/10/2279 Institutional support: RVO:68378289 Keywords : whistler-mode chorus * wave vector directions * Van Allen radiation belts Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.456, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/2014GL059815/abstract

  8. Wired and Wireless Camera Triggering with Arduino

    Science.gov (United States)

    Kauhanen, H.; Rönnholm, P.

    2017-10-01

    Synchronous triggering is an important task that allows simultaneous data capture from multiple cameras. Accurate synchronization enables 3D measurements of moving objects or from a moving platform. In this paper, we describe one wired and four wireless variations of Arduino-based low-cost remote trigger systems designed to provide a synchronous trigger signal for industrial cameras. Our wireless systems utilize 315 MHz or 434 MHz frequencies with noise filtering capacitors. In order to validate the synchronization accuracy, we developed a prototype of a rotating trigger detection system (named RoTriDeS). This system is suitable to detect the triggering accuracy of global shutter cameras. As a result, the wired system indicated an 8.91 μs mean triggering time difference between two cameras. Corresponding mean values for the four wireless triggering systems varied between 7.92 and 9.42 μs. Presented values include both camera-based and trigger-based desynchronization. Arduino-based triggering systems appeared to be feasible, and they have the potential to be extended to more complicated triggering systems.

  9. Triggers of oral lichen planus flares and the potential role of trigger avoidance in disease management.

    Science.gov (United States)

    Chen, Hannah X; Blasiak, Rachel; Kim, Edwin; Padilla, Ricardo; Culton, Donna A

    2017-09-01

    Many patients with oral lichen planus (OLP) report triggers of flares, some of which overlap with triggers of other oral diseases, including oral allergy syndrome and oral contact dermatitis. The purpose of this study was to evaluate the prevalence of commonly reported triggers of OLP flares, their overlap with triggers of other oral diseases, and the potential role of trigger avoidance as a management strategy. Questionnaire-based survey of 51 patients with biopsy-proven lichen planus with oral involvement seen in an academic dermatology specialty clinic and/or oral pathology clinic between June 2014 and June 2015. Of the participants, 94% identified at least one trigger of their OLP flares. Approximately half of the participants (51%) reported at least one trigger that overlapped with known triggers of oral allergy syndrome, and 63% identified at least one trigger that overlapped with known triggers of oral contact dermatitis. Emotional stress was the most commonly reported trigger (77%). Regarding avoidance, 79% of the study participants reported avoiding their known triggers in daily life. Of those who actively avoided triggers, 89% reported an improvement in symptoms and 70% reported a decrease in the frequency of flares. Trigger identification and avoidance can play a potentially effective role in the management of OLP. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Application of Vector Triggering Random Decrement

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Ibrahim, S. R.; Brincker, Rune

    result is a Random Decrement function from each measurement. In traditional Random Decrement estimation the triggering condition is a scalar condition, which should only be fulfilled in a single measurement. In vector triggering Random Decrement the triggering condition is a vector condition......This paper deals with applications of the vector triggering Random Decrement technique. This technique is new and developed with the aim of minimizing estimation time and identification errors. The theory behind the technique is discussed in an accompanying paper. The results presented...... in this paper should be regarded as a further documentation of the technique. The key point in Random Decrement estimation is the formulation of a triggering condition. If the triggering condition is fulfilled a time segment from each measurement is picked out and averaged with previous time segments. The final...

  11. Application of Vector Triggering Random Decrement

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Ibrahim, S. R.; Brincker, Rune

    1997-01-01

    result is a Random Decrement function from each measurement. In traditional Random Decrement estimation the triggering condition is a scalar condition, which should only be fulfilled in a single measurement. In vector triggering Random Decrement the triggering condition is a vector condition......This paper deals with applications of the vector triggering Random Decrement technique. This technique is new and developed with the aim of minimizing estimation time and identification errors. The theory behind the technique is discussed in an accompanying paper. The results presented...... in this paper should be regarded as a further documentation of the technique. The key point in Random Decrement estimation is the formulation of a triggering condition. If the triggering condition is fulfilled a time segment from each measurement is picked out and averaged with previous time segments. The final...

  12. Smart trigger logic for focal plane arrays

    Science.gov (United States)

    Levy, James E; Campbell, David V; Holmes, Michael L; Lovejoy, Robert; Wojciechowski, Kenneth; Kay, Randolph R; Cavanaugh, William S; Gurrieri, Thomas M

    2014-03-25

    An electronic device includes a memory configured to receive data representing light intensity values from pixels in a focal plane array and a processor that analyzes the received data to determine which light values correspond to triggered pixels, where the triggered pixels are those pixels that meet a predefined set of criteria, and determines, for each triggered pixel, a set of neighbor pixels for which light intensity values are to be stored. The electronic device also includes a buffer that temporarily stores light intensity values for at least one previously processed row of pixels, so that when a triggered pixel is identified in a current row, light intensity values for the neighbor pixels in the previously processed row and for the triggered pixel are persistently stored, as well as a data transmitter that transmits the persistently stored light intensity values for the triggered and neighbor pixels to a data receiver.

  13. The STAR Level-3 trigger system

    International Nuclear Information System (INIS)

    Adler, C.; Berger, J.; Demello, M.; Dietel, T.; Flierl, D.; Landgraf, J.; Lange, J.S.; LeVine, M.J.; Ljubicic, A.; Nelson, J.; Roehrich, D.; Stock, R.; Struck, C.; Yepes, P.

    2003-01-01

    The STAR Level-3 trigger issues a trigger decision upon a complete online reconstruction of Au+Au collisions at relativistic heavy ion collider energies. Central interactions are processed up to a rate of 50 s -1 including a simple analysis of physics observables. The setup of the processor farm and the event reconstruction as well as experiences and the proposed trigger algorithms are described

  14. Upgrade trigger & reconstruction strategy: 2017 milestone

    CERN Document Server

    Albrecht, Johannes; Campora Perez, Daniel Hugo; Cattaneo, Marco; Marco, Clemencic; Couturier, Ben; Dziurda, Agnieszka; Fitzpatrick, Conor; Fontana, Marianna; Grillo, Lucia; Hasse, Christoph; Hill, Donal; Jones, Christopher Rob; Lemaitre, Florian; Lupton, Olli; Matev, Rosen; Pearce, Alex; Polci, Francesco; Promberger, Laura; Ponce, Sebastien; Quagliani, Renato; Raven, Gerhard; Sciascia, Barbara; Schiller, Manuel Tobias; Stahl, Sascha; Szymanski, Maciej Pawel; Chefdeville, Maximilien

    2018-01-01

    The LHCb collaboration is currently preparing an update of the experiment to take data in Run 3 of the LHC. The dominant feature of this upgrade is a trigger-less readout of the full detector followed by a full software trigger. To make optimal use of the collected data, the events are reconstructed at the inelastic collision rate of 30 MHz. This document presents the baseline trigger and reconstruction strategy as of the end of 2017.

  15. A muon trigger for the MACRO apparatus

    International Nuclear Information System (INIS)

    Barbarito, E.; Bellotti, R.; Calicchio, M.; Castellano, M.; DeCataldo, G.; DeMarzo, C.; Erriquez, O.; Favuzzi, C.; Giglietto, N.; Liuzzi, R.; Spinelli, P.

    1991-01-01

    A trigger circuit based on EPROM components, able to manage up to 30 lines from independent counters, is described. The circuit has been designed and used in the MACRO apparatus at the Gran Sasso Laboratory for triggering on fast particles. The circuit works with standard TTL positive logic and is assembled in a double standard CAMAC module. It has a high triggering capacity and a high flexibility. (orig.)

  16. The ATLAS Level-1 Calorimeter Trigger

    International Nuclear Information System (INIS)

    Achenbach, R; Andrei, V; Adragna, P; Apostologlou, P; Barnett, B M; Brawn, I P; Davis, A O; Edwards, J P; Asman, B; Bohm, C; Ay, C; Bauss, B; Bendel, M; Dahlhoff, A; Eckweiler, S; Booth, J R A; Thomas, P Bright; Charlton, D G; Collins, N J; Curtis, C J

    2008-01-01

    The ATLAS Level-1 Calorimeter Trigger uses reduced-granularity information from all the ATLAS calorimeters to search for high transverse-energy electrons, photons, τ leptons and jets, as well as high missing and total transverse energy. The calorimeter trigger electronics has a fixed latency of about 1 μs, using programmable custom-built digital electronics. This paper describes the Calorimeter Trigger hardware, as installed in the ATLAS electronics cavern

  17. The ATLAS Level-1 Calorimeter Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Achenbach, R; Andrei, V [Kirchhoff-Institut fuer Physik, University of Heidelberg, D-69120 Heidelberg (Germany); Adragna, P [Physics Department, Queen Mary, University of London, London E1 4NS (United Kingdom); Apostologlou, P; Barnett, B M; Brawn, I P; Davis, A O; Edwards, J P [STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX (United Kingdom); Asman, B; Bohm, C [Fysikum, Stockholm University, SE-106 91 Stockholm (Sweden); Ay, C; Bauss, B; Bendel, M; Dahlhoff, A; Eckweiler, S [Institut fuer Physik, University of Mainz, D-55099 Mainz (Germany); Booth, J R A; Thomas, P Bright; Charlton, D G; Collins, N J; Curtis, C J [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)], E-mail: e.eisenhandler@qmul.ac.uk (and others)

    2008-03-15

    The ATLAS Level-1 Calorimeter Trigger uses reduced-granularity information from all the ATLAS calorimeters to search for high transverse-energy electrons, photons, {tau} leptons and jets, as well as high missing and total transverse energy. The calorimeter trigger electronics has a fixed latency of about 1 {mu}s, using programmable custom-built digital electronics. This paper describes the Calorimeter Trigger hardware, as installed in the ATLAS electronics cavern.

  18. The ATLAS Trigger System Commissioning and Performance

    CERN Document Server

    Hamilton, A

    2010-01-01

    The ATLAS trigger has been used very successfully to collect collision data during 2009 and 2010 LHC running at centre of mass energies of 900 GeV, 2.36 TeV, and 7 TeV. This paper presents the ongoing work to commission the ATLAS trigger with proton collisions, including an overview of the performance of the trigger based on extensive online running. We describe how the trigger has evolved with increasing LHC luminosity and give a brief overview of plans for forthcoming LHC running.

  19. A Novel in situ Trigger Combination Method

    International Nuclear Information System (INIS)

    Buzatu, Adrian; Warburton, Andreas; Krumnack, Nils; Yao, Wei-Ming

    2012-01-01

    Searches for rare physics processes using particle detectors in high-luminosity colliding hadronic beam environments require the use of multi-level trigger systems to reject colossal background rates in real time. In analyses like the search for the Higgs boson, there is a need to maximize the signal acceptance by combining multiple different trigger chains when forming the offline data sample. In such statistically limited searches, datasets are often amassed over periods of several years, during which the trigger characteristics evolve and their performance can vary significantly. Reliable production cross-section measurements and upper limits must take into account a detailed understanding of the effective trigger inefficiency for every selected candidate event. We present as an example the complex situation of three trigger chains, based on missing energy and jet energy, to be combined in the context of the search for the Higgs (H) boson produced in association with a W boson at the Collider Detector at Fermilab (CDF). We briefly review the existing techniques for combining triggers, namely the inclusion, division, and exclusion methods. We introduce and describe a novel fourth in situ method whereby, for each candidate event, only the trigger chain with the highest a priori probability of selecting the event is considered. The in situ combination method has advantages of scalability to large numbers of differing trigger chains and of insensitivity to correlations between triggers. We compare the inclusion and in situ methods for signal event yields in the CDF WH search.

  20. The ATLAS Muon and Tau Trigger

    CERN Document Server

    Dell'Asta, L; The ATLAS collaboration

    2013-01-01

    [Muon] The ATLAS experiment at CERN's Large Hadron Collider (LHC) deploys a three-levels processing scheme for the trigger system. The level-1 muon trigger system gets its input from fast muon trigger detectors. Fast sector logic boards select muon candidates, which are passed via an interface board to the central trigger processor and then to the High Level Trigger (HLT). The muon HLT is purely software based and encompasses a level-2 (L2) trigger followed by an event filter (EF) for a staged trigger approach. It has access to the data of the precision muon detectors and other detector elements to refine the muon hypothesis. Trigger-specific algorithms were developed and are used for the L2 to increase processing speed for instance by making use of look-up tables and simpler algorithms, while the EF muon triggers mostly benefit from offline reconstruction software to obtain most precise determination of the track parameters. There are two algorithms with different approaches, namely inside-out and outside-in...

  1. Data analysis at Level-1 Trigger level

    CERN Document Server

    Wittmann, Johannes; Aradi, Gregor; Bergauer, Herbert; Jeitler, Manfred; Wulz, Claudia; Apanasevich, Leonard; Winer, Brian; Puigh, Darren Michael

    2017-01-01

    With ever increasing luminosity at the LHC, optimum online data selection is getting more and more important. While in the case of some experiments (LHCb and ALICE) this task is being completely transferred to computer farms, the others - ATLAS and CMS - will not be able to do this in the medium-term future for technological, detector-related reasons. Therefore, these experiments pursue the complementary approach of migrating more and more of the offline and High-Level Trigger intelligence into the trigger electronics. This paper illustrates how the Level-1 Trigger of the CMS experiment and in particular its concluding stage, the Global Trigger, take up this challenge.

  2. The Run-2 ATLAS Trigger System

    International Nuclear Information System (INIS)

    Martínez, A Ruiz

    2016-01-01

    The ATLAS trigger successfully collected collision data during the first run of the LHC between 2009-2013 at different centre-of-mass energies between 900 GeV and 8TeV. The trigger system consists of a hardware Level-1 and a software-based high level trigger (HLT) that reduces the event rate from the design bunch-crossing rate of 40 MHz to an average recording rate of a few hundred Hz. In Run-2, the LHC will operate at centre-of-mass energies of 13 and 14 TeV and higher luminosity, resulting in up to five times higher rates of processes of interest. A brief review of the ATLAS trigger system upgrades that were implemented between Run-1 and Run-2, allowing to cope with the increased trigger rates while maintaining or even improving the efficiency to select physics processes of interest, will be given. This includes changes to the Level-1 calorimeter and muon trigger systems, the introduction of a new Level-1 topological trigger module and the merging of the previously two-level HLT system into a single event processing farm. A few examples will be shown, such as the impressive performance improvements in the HLT trigger algorithms used to identify leptons, hadrons and global event quantities like missing transverse energy. Finally, the status of the commissioning of the trigger system and its performance during the 2015 run will be presented. (paper)

  3. Geometrical Acceptance Analysis for RPC PAC Trigger

    CERN Document Server

    Seo, Eunsung

    2010-01-01

    The CMS(Compact Muon Solenoid) is one of the four experiments that will analyze the collision results of the protons accelerated by the Large Hardron Collider(LHC) at CERN(Conseil Europen pour la Recherche Nuclaire). In case of the CMS experiment, the trigger system is divided into two stages : The Level-1 Trigger and High Level Trigger. The RPC(Resistive Plate Chamber) PAC(PAttern Comparator) Trigger system, which is a subject of this thesis, is a part of the Level-1 Muon Trigger System. Main task of the PAC Trigger is to identify muons, measures transverse momenta and select the best muon candidates for each proton bunch collision occurring every 25 ns. To calculate the value of PAC Trigger efficiency for triggerable muon, two terms of different efficiencies are needed ; acceptance efficiency and chamber efficiency. Main goal of the works described in this thesis is obtaining the acceptance efficiency of the PAC Trigger in each logical cone. Acceptance efficiency is a convolution of the chambers geometry an...

  4. Landslide triggering by rain infiltration

    Science.gov (United States)

    Iverson, Richard M.

    2000-01-01

    Landsliding in response to rainfall involves physical processes that operate on disparate timescales. Relationships between these timescales guide development of a mathematical model that uses reduced forms of Richards equation to evaluate effects of rainfall infiltration on landslide occurrence, timing, depth, and acceleration in diverse situations. The longest pertinent timescale is A/D0, where D0 is the maximum hydraulic diffusivity of the soil and A is the catchment area that potentially affects groundwater pressures at a prospective landslide slip surface location with areal coordinates x, y and depth H. Times greater than A/D0 are necessary for establishment of steady background water pressures that develop at (x, y, H) in response to rainfall averaged over periods that commonly range from days to many decades. These steady groundwater pressures influence the propensity for landsliding at (x, y, H), but they do not trigger slope failure. Failure results from rainfall over a typically shorter timescale H2/D0 associated with transient pore pressure transmission during and following storms. Commonly, this timescale ranges from minutes to months. The shortest timescale affecting landslide responses to rainfall is √(H/g), where g is the magnitude of gravitational acceleration. Postfailure landslide motion occurs on this timescale, which indicates that the thinnest landslides accelerate most quickly if all other factors are constant. Effects of hydrologic processes on landslide processes across these diverse timescales are encapsulated by a response function, R(t*) = √(t*/π) exp (-1/t*) - erfc (1/√t*), which depends only on normalized time, t*. Use of R(t*) in conjunction with topographic data, rainfall intensity and duration information, an infinite-slope failure criterion, and Newton's second law predicts the timing, depth, and acceleration of rainfall-triggered landslides. Data from contrasting landslides that exhibit rapid, shallow

  5. The trigger supervisor: Managing triggering conditions in a high energy physics experiment

    International Nuclear Information System (INIS)

    Wadsworth, B.; Lanza, R.; LeVine, M.J.; Scheetz, R.A.; Videbaek, F.

    1987-01-01

    A trigger supervisor, implemented in VME-bus hardware, is described, which enables the host computer to dynamically control and monitor the trigger configuration for acquiring data from multiple detector partitions in a complex experiment

  6. Tools for Trigger Aware Analyses in ATLAS

    CERN Document Server

    Krasznahorkay, A; The ATLAS collaboration; Stelzer, J

    2010-01-01

    In order to search for rare processes, all four LHC experiments have to use advanced triggering methods for selecting and recording the events of interest. At the expected nominal LHC operating conditions only about 0.0005% of the collision events can be kept for physics analysis in ATLAS. Therefore the understanding and evaluation of the trigger performance is one of the most crucial parts of any physics analysis. ATLAS’s first level trigger is composed of custom-built hardware, while the second and third levels are implemented using regular PCs running reconstruction and selection algorithms. Because of this split, accessing the results of the trigger execution for the two stages is different. The complexity of the software trigger presents further difficulties in accessing the trigger data. To make the job of the physicists easier when evaluating the trigger performance, multiple general-use tools are provided by the ATLAS Trigger Analysis Tools group. The TrigDecisionTool, a general tool, is provided to...

  7. The Run-2 ATLAS Trigger System

    CERN Document Server

    Ruiz-Martinez, Aranzazu; The ATLAS collaboration

    2016-01-01

    The ATLAS trigger has been successfully collecting collision data during the first run of the LHC between 2009-2013 at a centre-of-mass energy between 900 GeV and 8 TeV. The trigger system consists of a hardware Level-1 (L1) and a software based high-level trigger (HLT) that reduces the event rate from the design bunch-crossing rate of 40 MHz to an average recording rate of a few hundred Hz. In Run-2, the LHC will operate at centre-of-mass energies of 13 and 14 TeV resulting in roughly five times higher trigger rates. We will briefly review the ATLAS trigger system upgrades that were implemented during the shutdown, allowing us to cope with the increased trigger rates while maintaining or even improving our efficiency to select relevant physics processes. This includes changes to the L1 calorimeter and muon trigger systems, the introduction of a new L1 topological trigger module and the merging of the previously two-level HLT system into a single event filter farm. At hand of a few examples, we will show the ...

  8. The Run-2 ATLAS Trigger System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00222798; The ATLAS collaboration

    2016-01-01

    The ATLAS trigger successfully collected collision data during the first run of the LHC between 2009-2013 at different centre-of-mass energies between 900 GeV and 8 TeV. The trigger system consists of a hardware Level-1 and a software-based high level trigger (HLT) that reduces the event rate from the design bunch-crossing rate of 40 MHz to an average recording rate of a few hundred Hz. In Run-2, the LHC will operate at centre-of-mass energies of 13 and 14 TeV and higher luminosity, resulting in roughly five times higher trigger rates. A brief review of the ATLAS trigger system upgrades that were implemented between Run-1 and Run-2, allowing to cope with the increased trigger rates while maintaining or even improving the efficiency to select physics processes of interest, will be given. This includes changes to the Level-1 calorimeter and muon trigger systems, the introduction of a new Level-1 topological trigger module and the merging of the previously two-level HLT system into a single event filter farm. A ...

  9. Intelligent trigger processor for the crystal box

    International Nuclear Information System (INIS)

    Sanders, G.H.; Butler, H.S.; Cooper, M.D.

    1981-01-01

    A large solid angle modular NaI(Tl) detector with 432 phototubes and 88 trigger scintillators is being used to search simultaneously for three lepton flavor changing decays of muon. A beam of up to 10 6 muons stopping per second with a 6% duty factor would yield up to 1000 triggers per second from random triple coincidences. A reduction of the trigger rate to 10 Hz is required from a hardwired primary trigger processor described in this paper. Further reduction to < 1 Hz is achieved by a microprocessor based secondary trigger processor. The primary trigger hardware imposes voter coincidence logic, stringent timing requirements, and a non-adjacency requirement in the trigger scintillators defined by hardwired circuits. Sophisticated geometric requirements are imposed by a PROM-based matrix logic, and energy and vector-momentum cuts are imposed by a hardwired processor using LSI flash ADC's and digital arithmetic loci. The secondary trigger employs four satellite microprocessors to do a sparse data scan, multiplex the data acquisition channels and apply additional event filtering

  10. Trigger factors for familial hemiplegic migraine

    DEFF Research Database (Denmark)

    Hansen, Jakob Møller; Hauge, Anne Werner; Ashina, Messoud

    2011-01-01

    The aim was to identify and describe migraine trigger factors in patients with familial hemiplegic migraine (FHM) from a population-based sample.......The aim was to identify and describe migraine trigger factors in patients with familial hemiplegic migraine (FHM) from a population-based sample....

  11. The ATLAS Level-1 Topological Trigger Performance

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00371751; The ATLAS collaboration

    2016-01-01

    The LHC will collide protons in the ATLAS detector with increasing luminosity through 2016, placing stringent operational and physical requirements to the ATLAS trigger system in order to reduce the 40 MHz collision rate to a manageable event storage rate of 1 kHz, while not rejecting interesting physics events. The Level-1 trigger is the first rate-reducing step in the ATLAS trigger system with an output rate of 100 kHz and decision latency smaller than 2.5 μs. It consists of a calorimeter trigger, muon trigger and a central trigger processor. During the LHC shutdown after the Run 1 finished in 2013, the Level-1 trigger system was upgraded including hardware, firmware and software updates. In particular, new electronics modules were introduced in the real-time data processing path: the Topological Processor System (L1Topo). It consists of a single AdvancedCTA shelf equipped with two Level-1 topological processor blades. They receive real-time information from the Level-1 calorimeter and muon triggers, which...

  12. Do episodes of anger trigger myocardial infarction?

    DEFF Research Database (Denmark)

    Möller, J; Hallqvist, J; Diderichsen, Finn

    1999-01-01

    Our objectives were to study anger as a trigger of acute myocardial infarction (MI) and to explore potential effect modification by usual behavioral patterns related to hostility.......Our objectives were to study anger as a trigger of acute myocardial infarction (MI) and to explore potential effect modification by usual behavioral patterns related to hostility....

  13. Triggering soft bombs at the LHC

    Science.gov (United States)

    Knapen, Simon; Griso, Simone Pagan; Papucci, Michele; Robinson, Dean J.

    2017-08-01

    Very high multiplicity, spherically-symmetric distributions of soft particles, with p T ˜ few×100 MeV, may be a signature of strongly-coupled hidden valleys that exhibit long, efficient showering windows. With traditional triggers, such `soft bomb' events closely resemble pile-up and are therefore only recorded with minimum bias triggers at a very low efficiency. We demonstrate a proof-of-concept for a high-level triggering strategy that efficiently separates soft bombs from pile-up by searching for a `belt of fire': a high density band of hits on the innermost layer of the tracker. Seeding our proposed high-level trigger with existing jet, missing transverse energy or lepton hardware-level triggers, we show that net trigger efficiencies of order 10% are possible for bombs of mass several × 100 GeV. We also consider the special case that soft bombs are the result of an exotic decay of the 125 GeV Higgs. The fiducial rate for `Higgs bombs' triggered in this manner is marginally higher than the rate achievable by triggering directly on a hard muon from associated Higgs production.

  14. The LVL2 trigger goes online

    CERN Multimedia

    David Berge

    On Friday, the 9th of February, the ATLAS TDAQ community reached an important milestone. In a successful integration test, cosmic-ray muons were recorded with parts of the muon spectrometer, the central-trigger system and a second-level trigger algorithm. This was actually the first time that a full trigger slice all the way from the first-level trigger muon chambers up to event building after event selection by the second-level trigger ran online with cosmic rays. The ATLAS trigger and data acquisition system has a three-tier structure that is designed to cope with the enormous demands of proton-proton collisions at a bunch-crossing frequency of 40 MHz, with a typical event size of 1-2 MB. The online event selection has to reduce the incoming rate by a factor of roughly 200,000 to 200 Hz, a rate digestible by the archival-storage and offline-processing facilities. ATLAS has a mixed system: the first-level trigger (LVL1) is in hardware, while the other two consecutive levels, the second-level trigger (LVL2)...

  15. Reliability model analysis and primary experimental evaluation of laser triggered pulse trigger

    International Nuclear Information System (INIS)

    Chen Debiao; Yang Xinglin; Li Yuan; Li Jin

    2012-01-01

    High performance pulse trigger can enhance performance and stability of the PPS. It is necessary to evaluate the reliability of the LTGS pulse trigger, so we establish the reliability analysis model of this pulse trigger based on CARMES software, the reliability evaluation is accord with the statistical results. (authors)

  16. A general-purpose trigger processor system and its application to fast vertex trigger

    International Nuclear Information System (INIS)

    Hazumi, M.; Banas, E.; Natkaniec, Z.; Ostrowicz, W.

    1997-12-01

    A general-purpose hardware trigger system has been developed. The system comprises programmable trigger processors and pattern generator/samplers. The hardware design of the system is described. An application as a prototype of the very fast vertex trigger in an asymmetric B-factory at KEK is also explained. (author)

  17. MMS observations of the Earth bow shock during magnetosphere compression and expansion: comparison of whistler wave properties around the shock ramp

    Science.gov (United States)

    Russell, C. T.; Strangeway, R. J.; Schwartz, S. J.

    2017-12-01

    The Magnetospheric Multiscale (MMS) spacecraft, with their state-of-the-art plasma and field instruments onboard, allow us to investigate electromagnetic waves at the bow shock and their association with small-scale disturbances in the shocked plasmas. Understanding these waves could improve our knowledge on the heating of electrons and ions across the shock ramp and the energy dissipation of supercritical shocks. We have found broad-band and narrow band waves across the shock ramp and slightly downstream. The broad-band waves propagate obliquely to the magnetic field direction and have frequencies up to the electron cyclotron frequency, while the narrow-band waves have frequencies of a few hundred Hertz, durations under a second, and are right-handed circularly polarized and propagate along the magnetic field lines. Both wave types are likely to be whistler mode with different generation mechanisms. When the solar wind pressure changes, MMS occasionally observed a pair of bow shocks when the magnetosphere was compressed and then expanded. We compare the wave observations under these two situations to understand their roles in the shock ramp as well as the upstream and downstream plasmas.

  18. The ATLAS Level-1 Trigger Timing Setup

    CERN Document Server

    Spiwoks, R; Ellis, Nick; Farthouat, P; Gällnö, P; Haller, J; Krasznahorkay, A; Maeno, T; Pauly, T; Pessoa-Lima, H; Resurreccion-Arcas, I; Schuler, G; De Seixas, J M; Torga-Teixeira, R; Wengler, T

    2005-01-01

    The ATLAS detector at CERN's LHC will be exposed to proton-proton collisions at a bunch-crossing rate of 40 MHz. In order to reduce the data rate, a three-level trigger system selects potentially interesting physics. The first trigger level is implemented in electronics and firmware. It aims at reducing the output rate to less than 100 kHz. The Central Trigger Processor combines information from the calorimeter and muon trigger processors and makes the final Level-1-Accept decision. It is a central element in the timing setup of the experiment. Three aspects are considered in this article: the timing setup with respect to the Level-1 trigger, with respect to the expriment, and with respect to the world.

  19. MR imaging findings of trigger thumb

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Eric Y.; Chen, Karen C.; Chung, Christine B. [VA San Diego Healthcare System, Radiology Service, San Diego, CA (United States); University of California, San Diego Medical Center, Department of Radiology, San Diego, CA (United States)

    2015-08-15

    Trigger finger (or trigger thumb), also known as sclerosing tenosynovitis, is a common clinical diagnosis that rarely presents for imaging. Because of this selection bias, many radiologists may not be familiar with the process. Furthermore, patients who do present for imaging frequently have misleading examination indications. To our knowledge, magnetic resonance (MR) imaging findings of trigger thumb have not been previously reported in the literature. In this article, we review the entity of trigger thumb, the anatomy involved, and associated imaging findings, which include flexor pollicis longus tendinosis with a distinct nodule, A1 pulley thickening, and tenosynovitis. In addition, in some cases, an abnormal Av pulley is apparent. In the rare cases of trigger finger that present for MR imaging, accurate diagnosis by the radiologist can allow initiation of treatment and avoid further unnecessary workup. (orig.)

  20. MR imaging findings of trigger thumb

    International Nuclear Information System (INIS)

    Chang, Eric Y.; Chen, Karen C.; Chung, Christine B.

    2015-01-01

    Trigger finger (or trigger thumb), also known as sclerosing tenosynovitis, is a common clinical diagnosis that rarely presents for imaging. Because of this selection bias, many radiologists may not be familiar with the process. Furthermore, patients who do present for imaging frequently have misleading examination indications. To our knowledge, magnetic resonance (MR) imaging findings of trigger thumb have not been previously reported in the literature. In this article, we review the entity of trigger thumb, the anatomy involved, and associated imaging findings, which include flexor pollicis longus tendinosis with a distinct nodule, A1 pulley thickening, and tenosynovitis. In addition, in some cases, an abnormal Av pulley is apparent. In the rare cases of trigger finger that present for MR imaging, accurate diagnosis by the radiologist can allow initiation of treatment and avoid further unnecessary workup. (orig.)

  1. Pulse triggering mechanism of air proportional counters

    International Nuclear Information System (INIS)

    Aoyama, T.; Mori, T.; Watanabe, T.

    1983-01-01

    This paper describes the pulse triggering mechanism of a cylindrical proportional counter filled with air at atmospheric pressure for the incidence of β-rays. Experimental results indicate that primary electrons created distantly from the anode wire by a β-ray are transformed into negative ions, which then detach electrons close to the anode wire and generate electron avalanches thus triggering pulses, while electrons created near the anode wire by a β-ray directly trigger a pulse. Since a negative ion pulse is triggered by a single electron detached from a negative ion, multiple pulses are generated by a large number of ions produced by the incidence of a single β-ray. It is therefore necessary not to count pulses triggered by negative ions but to count those by primary electrons alone when use is made of air proportional counters for the detection of β-rays. (orig.)

  2. Concept of the CMS Trigger Supervisor

    CERN Document Server

    Magrans de Abril, Ildefons; Varela, Joao

    2006-01-01

    The Trigger Supervisor is an online software system designed for the CMS experiment at CERN. Its purpose is to provide a framework to set up, test, operate and monitor the trigger components on one hand and to manage their interplay and the information exchange with the run control part of the data acquisition system on the other. The Trigger Supervisor is conceived to provide a simple and homogeneous client interface to the online software infrastructure of the trigger subsystems. This document specifies the functional and non-functional requirements, design and operational details, and the components that will be delivered in order to facilitate a smooth integration of the trigger software in the context of CMS.

  3. Designing signal-enriched triggers for boosted jets.

    CERN Document Server

    Toumazou, Marina

    2017-01-01

    Triggers designed to favour the selection of hadronically decaying massive particles have been studied. Both triggers using solely ET and mass cuts (similar to new 2017 triggers) and triggers exploiting polarization information have been studied. The mass cut triggers show substantial gains in rate reduction, while the benefits of polarization triggers are less obvious. The final conclusion is that it is more useful to identify and trigger on generic boosted decays, irrespective of the polarization of the decaying particle

  4. The ATLAS Electron and Photon Trigger

    CERN Document Server

    Jones, Samuel David; The ATLAS collaboration

    2017-01-01

    Electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential for signal selection in a wide variety of ATLAS physics analyses to study Standard Model processes and to search for new phenomena. Final states including leptons and photons had, for example, an important role in the discovery and measurement of the Higgs boson. Dedicated triggers are also used to collect data for calibration, efficiency and fake rate measurements. The ATLAS trigger system is divided in a hardware-based Level-1 trigger and a software-based high-level trigger, both of which were upgraded during the LHC shutdown in preparation for Run-2 operation. To cope with the increasing luminosity and more challenging pile-up conditions at a center-of-mass energy of 13 TeV, the trigger selections at each level are optimized to control the rates and keep efficiencies high. To achieve this goal multivariate analysis techniques are used. The ATLAS electron and photon triggers and their performance with Run 2 dat...

  5. The ATLAS Electron and Photon Trigger

    CERN Document Server

    Jones, Samuel David; The ATLAS collaboration

    2018-01-01

    Electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential for signal selection in a wide variety of ATLAS physics analyses to study Standard Model processes and to search for new phenomena. Final states including leptons and photons had, for example, an important role in the discovery and measurement of the Higgs boson. Dedicated triggers are also used to collect data for calibration, efficiency and fake rate measurements. The ATLAS trigger system is divided in a hardware-based Level-1 trigger and a software-based high-level trigger, both of which were upgraded during the LHC shutdown in preparation for Run-2 operation. To cope with the increasing luminosity and more challenging pile-up conditions at a center-of-mass energy of 13 TeV, the trigger selections at each level are optimized to control the rates and keep efficiencies high. To achieve this goal multivariate analysis techniques are used. The ATLAS electron and photon triggers and their performance with Run 2 dat...

  6. Upgrade of the CMS Global Muon Trigger

    CERN Document Server

    Jeitler, Manfred; Rabady, Dinyar; Sakulin, Hannes; Stahl, Achim

    2015-01-01

    The increase in center-of-mass energy and luminosity for Run-II of the Large Hadron Collider poses new challenges for the trigger systems of the experiments. To keep triggering with a similar performance as in Run-I, the CMS muon trigger is currently being upgraded. The new algorithms will provide higher resolution, especially for the muon transverse momentum and will make use of isolation criteria that combine calorimeter with muon information already in the level-1 trigger. The demands of the new algorithms can only be met by upgrading the level-1 trigger system to new powerful FPGAs with high bandwidth I/O. The processing boards will be based on the new μTCA standard. We report on the planned algorithms for the upgraded Global Muon Trigger (μGMT) which sorts and removes duplicates from boundaries of the muon trigger sub-systems. Furthermore, it determines how isolated the muon candidates are based on calorimetric energy deposits. The μGMT will be implemented using a processing board that features a larg...

  7. Upgrade of the CMS Global Muon Trigger

    CERN Document Server

    Lingemann, Joschka; Sakulin, Hannes; Jeitler, Manfred; Stahl, Achim

    2015-01-01

    The increase in center-of-mass energy and luminosity for Run 2 of the Large Hadron Collider pose new challenges for the trigger systems of the experiments. To keep triggering with a similar performance as in Run 1, the CMS muon trigger is currently being upgraded. The new algorithms will provide higher resolution, especially for the muon transverse momentum and will make use of isolation criteria that combine calorimeter with muon information already in the level-1 trigger. The demands of the new algorithms can only be met by upgrading the level-1 trigger system to new powerful FPGAs with high bandwidth I/O. The processing boards will be based on the new microTCA standard. We report on the planned algorithms for the upgraded Global Muon Trigger (GMT) which combines information from the muon trigger sub-systems and assigns the isolation variable. The upgraded GMT will be implemented using a Master Processor 7 card, built by Imperial College, that features a large Xilinx Virtex 7 FPGA. Up to 72 optical links at...

  8. The ZEUS calorimeter first level trigger

    International Nuclear Information System (INIS)

    Smith, W.H.; Ali, I.; Behrens, B.; Fordham, C.; Foudas, C.; Goussiou, A.; Jaworski, M.; Kinnel, T.; Lackey, J.; Robl, P.; Silverstein, S.; Dawson, J.W.; Krakauer, D.A.; Talaga, R.L.; Schlereth, J.L.

    1994-10-01

    The design of the ZEUS Calorimeter First Level Trigger (CFLT) is presented. The CFLT utilizes a pipelined architecture to provide trigger data for a global first leel trigger decision 5 μsec after each beam crossing, occurring every 96 nsec. The charges from 13K phototubes are summed into 1792 trigger tower pulseheights which are digitized by flash ADC's. The digital values are linearized, stored and used for sums and pattern tests. Summary data is forwarded to the Global First Level Trigger for each crossing 2 μsec after the crossing occurred. The CFLT determines the total energy, the total transverse energy, the missing energy, and the energy and number of isolated electrons and muons. It also provides information on the electromagnetic and hadronic energy deposited in various regions of the calorimeter. The CFLT has kept the experimental trigger rate below ∼200 Hz at the highest luminosity experienced at HERA. Performance studies suggest that the CFLT will keep the trigger rate below 1 kHZ against a rate of proton-beam gas interactions on the order of the 100 kHz expected at design luminosity. (orig.)

  9. The D0 run II trigger system

    International Nuclear Information System (INIS)

    Schwienhorst, Reinhard; Michigan State U.

    2004-01-01

    The D0 detector at the Fermilab Tevatron was upgraded for Run II. This upgrade included improvements to the trigger system in order to be able to handle the increased Tevatron luminosity and higher bunch crossing rates compared to Run I. The D0 Run II trigger is a highly exible system to select events to be written to tape from an initial interaction rate of about 2.5 MHz. This is done in a three-tier pipelined, buffered system. The first tier (level 1) processes fast detector pick-off signals in a hardware/firmware based system to reduce the event rate to about 1. 5kHz. The second tier (level 2) uses information from level 1 and forms simple Physics objects to reduce the rate to about 850 Hz. The third tier (level 3) uses full detector readout and event reconstruction on a filter farm to reduce the rate to 20-30 Hz. The D0 trigger menu contains a wide variety of triggers. While the emphasis is on triggering on generic lepton and jet final states, there are also trigger terms for specific final state signatures. In this document we describe the D0 trigger system as it was implemented and is currently operating in Run II

  10. Magma degassing triggered by static decompression at Kīlauea Volcano, Hawai‘i

    Science.gov (United States)

    Poland, Michael P.; Jeff, Sutton A.; Gerlach, Terrence M.

    2009-01-01

    During mid-June 2007, the summit of Kīlauea Volcano, Hawai‘i, deflated rapidly as magma drained from the subsurface to feed an east rift zone intrusion and eruption. Coincident with the deflation, summit SO2 emission rates rose by a factor of four before decaying to background levels over several weeks. We propose that SO2 release was triggered by static decompression caused by magma withdrawal from Kīlauea's shallow summit reservoir. Models of the deflation suggest a pressure drop of 0.5–3 MPa, which is sufficient to trigger exsolution of the observed excess SO2 from a relatively small volume of magma at the modeled source depth beneath Kīlauea's summit. Static decompression may also explain other episodes of deflation accompanied by heightened gas emission, including the precursory phases of Kīlauea's 2008 summit eruption. Hazards associated with unexpected volcanic gas emission argue for increased awareness of magma reservoir pressure fluctuations.

  11. ATLAS: triggers for B-physics

    International Nuclear Information System (INIS)

    George, Simon

    2000-01-01

    The LHC will produce bb-bar events at an unprecedented rate. The number of events recorded by ATLAS will be limited by the rate at which they can be stored offline and subsequently analysed. Despite the huge number of events, the small branching ratios mean that analysis of many of the most interesting channels for CP violation and other measurements will be limited by statistics. The challenge for the Trigger and Data Acquisition (DAQ) system is therefore to maximise the fraction of interesting B decays in the B-physics data stream. The ATLAS Trigger/DAQ system is split into three levels. The initial B-physics selection is made in the first-level trigger by an inclusive low-p T muon trigger (∼6 GeV). The second-level trigger strategy is based on identifying classes of final states by their partial reconstruction. The muon trigger is confirmed before proceeding to a track search. Electron/hadron separation is given by the transition radiation tracking detector and the Electromagnetic calorimeter. Muon identification is possible using the muon detectors and the hadronic calorimeter. From silicon strips, pixels and straw tracking, precise track reconstruction is used to make selections based on invariant mass, momentum and impact parameter. The ATLAS trigger group is currently engaged in algorithm development and performance optimisation for the B-physics trigger. This is closely coupled to the R and D programme for the higher-level triggers. Together the two programmes of work will optimise the hardware, architecture and algorithms to meet the challenging requirements. This paper describes the current status and progress of this work

  12. Trigger tracking for the LHCb upgrade

    CERN Multimedia

    Dungs, K

    2014-01-01

    This poster presents a trigger system for the upgraded LHCb detector, scheduled to begin operation in 2020. The proposed trigger system is implemented entirely in software. We show that track reconstruction of a similar quality to that available in the offline algorithms can be performed on the full inelastic pp-collision rate. A track finding efficiency of 98.8% relative to offline can be achieved for good trigger tracks. The CPU time required for this reconstruction is less than 60% of the available budget.

  13. The CMS Barrel Muon trigger upgrade

    International Nuclear Information System (INIS)

    Triossi, A.; Sphicas, P.; Bellato, M.; Montecassiano, F.; Ventura, S.; Ruiz, J.M. Cela; Bedoya, C. Fernandez; Tobar, A. Navarro; Fernandez, I. Redondo; Ferrero, D. Redondo; Sastre, J.; Ero, J.; Wulz, C.; Flouris, G.; Foudas, C.; Loukas, N.; Mallios, S.; Paradas, E.; Guiducci, L.; Masetti, G.

    2017-01-01

    The increase of luminosity expected by LHC during Phase1 will impose tighter constraints for rate reduction in order to maintain high efficiency in the CMS Level1 trigger system. The TwinMux system is the early layer of the muon barrel region that concentrates the information from different subdetectors: Drift Tubes, Resistive Plate Chambers and Outer Hadron Calorimeter. It arranges the slow optical trigger links from the detector chambers into faster links (10 Gbps) that are sent in multiple copies to the track finders. Results from collision runs, that confirm the satisfactory operation of the trigger system up to the output of the barrel track finder, will be shown.

  14. Event-triggered attitude control of spacecraft

    Science.gov (United States)

    Wu, Baolin; Shen, Qiang; Cao, Xibin

    2018-02-01

    The problem of spacecraft attitude stabilization control system with limited communication and external disturbances is investigated based on an event-triggered control scheme. In the proposed scheme, information of attitude and control torque only need to be transmitted at some discrete triggered times when a defined measurement error exceeds a state-dependent threshold. The proposed control scheme not only guarantees that spacecraft attitude control errors converge toward a small invariant set containing the origin, but also ensures that there is no accumulation of triggering instants. The performance of the proposed control scheme is demonstrated through numerical simulation.

  15. Electronic trigger for the ASP experiment

    International Nuclear Information System (INIS)

    Wilson, R.J.

    1985-11-01

    The Anomalous Single Photon (ASP) electronic trigger is described. The experiments is based on an electromagnetic calorimeter composed of arrays of lead glass blocks, read out with photo-multiplier tubes, surrounding the interaction point at the PEP storage ring. The primary requirement of the trigger system is to be sensitive to low energy (approx. =0.5 GeV and above) photons whilst discriminating against high backgrounds at PEP. Analogue summing of the PMT signals and a sequence of programmable digital look-up tables produces a ''dead-timeless'' trigger for the beam collision rate of 408 kHz. 6 refs., 6 figs

  16. The LHCb trigger in Run II

    CERN Document Server

    Michielin, Emanuele

    2016-01-01

    The LHCb trigger system has been upgraded to allow alignment, calibration and physics analysis to be performed in real time. An increased CPU capacity and improvements in the software have allowed lifetime unbiased selections of beauty and charm decays in the high level trigger. Thanks to offline quality event reconstruction already available online, physics analyses can be performed directly on this information and for the majority of charm physics selections a reduced event format can be written out. Beauty hadron decays are more efficiently triggered by re-optimised inclusive selections, and the HLT2 output event rate is increased by a factor of three.

  17. Long-term survey of lion-roar emissions inside the terrestrial magnetosheath obtained from the STAFF-SA measurements onboard the Cluster spacecraft

    Science.gov (United States)

    Pisa, D.; Krupar, V.; Kruparova, O.; Santolik, O.

    2017-12-01

    Intense whistler-mode emissions known as 'lion-roars' are often observed inside the terrestrial magnetosheath, where the solar wind plasma flow slows down, and the local magnetic field increases ahead of a planetary magnetosphere. Plasma conditions in this transient region lead to the electron temperature anisotropy, which can result in the whistler-mode waves. The lion-roars are narrow-band emissions with typical frequencies between 0.1-0.5 Fce, where Fce is the electron cyclotron frequency. We present results of a long-term survey obtained by the Spatio Temporal Analysis Field Fluctuations - Spectral Analyzer (STAFF-SA) instruments on board the four Cluster spacecraft between 2001 and 2010. We have visually identified the time-frequency intervals with the intense lion-roar signature. Using the Singular Value Decomposition (SVD) method, we analyzed the wave propagation properties. We show the spatial, frequency and wave power distributions. Finally, the wave properties as a function of upstream solar wind conditions are discussed.

  18. Emissions Trading

    NARCIS (Netherlands)

    Woerdman, Edwin; Backhaus, Juergen

    2014-01-01

    Emissions trading is a market-based instrument to achieve environmental targets in a cost-effective way by allowing legal entities to buy and sell emission rights. The current international dissemination and intended linking of emissions trading schemes underlines the growing relevance of this

  19. The Trigger Processor and Trigger Processor Algorithms for the ATLAS New Small Wheel Upgrade

    CERN Document Server

    Lazovich, Tomo; The ATLAS collaboration

    2015-01-01

    The ATLAS New Small Wheel (NSW) is an upgrade to the ATLAS muon endcap detectors that will be installed during the next long shutdown of the LHC. Comprising both MicroMegas (MMs) and small-strip Thin Gap Chambers (sTGCs), this system will drastically improve the performance of the muon system in a high cavern background environment. The NSW trigger, in particular, will significantly reduce the rate of fake triggers coming from track segments in the endcap not originating from the interaction point. We will present an overview of the trigger, the proposed sTGC and MM trigger algorithms, and the hardware implementation of the trigger. In particular, we will discuss both the heart of the trigger, an ATCA system with FPGA-based trigger processors (using the same hardware platform for both MM and sTGC triggers), as well as the full trigger electronics chain, including dedicated cards for transmission of data via GBT optical links. Finally, we will detail the challenges of ensuring that the trigger electronics can ...

  20. Triggered creep as a possible mechanism for delayed dynamic triggering of tremor and earthquakes

    Science.gov (United States)

    Shelly, David R.; Peng, Zhigang; Hill, David P.; Aiken, Chastity

    2011-01-01

    The passage of radiating seismic waves generates transient stresses in the Earth's crust that can trigger slip on faults far away from the original earthquake source. The triggered fault slip is detectable in the form of earthquakes and seismic tremor. However, the significance of these triggered events remains controversial, in part because they often occur with some delay, long after the triggering stress has passed. Here we scrutinize the location and timing of tremor on the San Andreas fault between 2001 and 2010 in relation to distant earthquakes. We observe tremor on the San Andreas fault that is initiated by passing seismic waves, yet migrates along the fault at a much slower velocity than the radiating seismic waves. We suggest that the migrating tremor records triggered slow slip of the San Andreas fault as a propagating creep event. We find that the triggered tremor and fault creep can be initiated by distant earthquakes as small as magnitude 5.4 and can persist for several days after the seismic waves have passed. Our observations of prolonged tremor activity provide a clear example of the delayed dynamic triggering of seismic events. Fault creep has been shown to trigger earthquakes, and we therefore suggest that the dynamic triggering of prolonged fault creep could provide a mechanism for the delayed triggering of earthquakes. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  1. The second level trigger system of FAST

    CERN Document Server

    Martínez,G; Berdugo, J; Casaus, J; Casella, V; De Laere, D; Deiters, K; Dick, P; Kirkby, J; Malgeri, L; Mañá, C; Marín, J; Pohl, M; Petitjean, C; Sánchez, E; Willmott, C

    2009-01-01

    The Fibre Active Scintillator Target (FAST) experiment is a novel imaging particle detector currently operating in a high-intensity π+ beam at the Paul Scherrer Institute (PSI), Villigen, Switzerland. The detector is designed to perform a high precision measurement of the μ+ lifetime, in order to determine the Fermi constant, Gf, to 1 ppm precision. A dedicated second level (LV2) hardware trigger system has been developed for the experiment. It performs an online analysis of the π/μ decay chain by identifying the stopping position of each beam particle and detecting the subsequent appearance of the muon. The LV2 trigger then records the muon stop pixel and selectively triggers the Time-to-Digital Converters (TDCs) in the vicinity. A detailed description of the trigger system is presented in this paper.

  2. The second level trigger system of FAST

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, G. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)], E-mail: gustavo.martinez@ciemat.es; Barcyzk, A. [CERN, CH-1211 Geneva 23 (Switzerland); Berdugo, J.; Casaus, J. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Casella, C.; De Laere, S. [Universite de Geneve, 30 quai Ernest-Anserment, CH-1211 Geneva 4 (Switzerland); Deiters, K.; Dick, P. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Kirkby, J.; Malgeri, L. [CERN, CH-1211 Geneva 23 (Switzerland); Mana, C.; Marin, J. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Pohl, M. [Universite de Geneve, 30 quai Ernest-Anserment, CH-1211 Geneva 4 (Switzerland); Petitjean, C. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Sanchez, E.; Willmott, C. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)

    2009-10-11

    The Fibre Active Scintillator Target (FAST) experiment is a novel imaging particle detector currently operating in a high-intensity {pi}{sup +} beam at the Paul Scherrer Institute (PSI), Villigen, Switzerland. The detector is designed to perform a high precision measurement of the {mu}{sup +} lifetime, in order to determine the Fermi constant, G{sub f}, to 1 ppm precision. A dedicated second level (LV2) hardware trigger system has been developed for the experiment. It performs an online analysis of the {pi}/{mu} decay chain by identifying the stopping position of each beam particle and detecting the subsequent appearance of the muon. The LV2 trigger then records the muon stop pixel and selectively triggers the Time-to-Digital Converters (TDCs) in the vicinity. A detailed description of the trigger system is presented in this paper.

  3. SSC physics signatures and trigger requirements

    International Nuclear Information System (INIS)

    1985-01-01

    Strategies are considered for triggering on new physics processes on the environment of the SSC, where interaction rates will be very high and most new physics processes quite rare. The quantities available for use in the trigger at various levels are related to the signatures of possible new physics. Two examples were investigated in some detail using the ISAJET Monte Carlo program: Higgs decays to W pairs and a missing energy trigger applied to gluino pair production. In both of the examples studied in detail, it was found that workable strategies for reducing the trigger rate were obtainable which also produced acceptable efficiency for the processes of interest. In future work, it will be necessary to carry out such a program for the full spectrum of suggested new physics

  4. Graphics Processing Units for HEP trigger systems

    International Nuclear Information System (INIS)

    Ammendola, R.; Bauce, M.; Biagioni, A.; Chiozzi, S.; Cotta Ramusino, A.; Fantechi, R.; Fiorini, M.; Giagu, S.; Gianoli, A.; Lamanna, G.; Lonardo, A.; Messina, A.

    2016-01-01

    General-purpose computing on GPUs (Graphics Processing Units) is emerging as a new paradigm in several fields of science, although so far applications have been tailored to the specific strengths of such devices as accelerator in offline computation. With the steady reduction of GPU latencies, and the increase in link and memory throughput, the use of such devices for real-time applications in high-energy physics data acquisition and trigger systems is becoming ripe. We will discuss the use of online parallel computing on GPU for synchronous low level trigger, focusing on CERN NA62 experiment trigger system. The use of GPU in higher level trigger system is also briefly considered.

  5. Pulling the trigger on LHC electronics

    CERN Document Server

    CERN. Geneva

    2001-01-01

    The conditions at CERN's Large Hadron Collider pose severe challenges for the designers and builders of front-end, trigger and data acquisition electronics. A recent workshop reviewed the encouraging progress so far and discussed what remains to be done. The LHC experiments have addressed level one trigger systems with a variety of high-speed hardware. The CMS Calorimeter Level One Regional Trigger uses 160 MHz logic boards plugged into the front and back of a custom backplane, which provides point-to-point links between the cards. Much of the processing in this system is performed by five types of 160 MHz digital applications-specific integrated circuits designed using Vitesse submicron high-integration gallium arsenide gate array technology. The LHC experiments make extensive use of field programmable gate arrays (FPGAs). These offer programmable reconfigurable logic, which has the flexibility that trigger designers need to be able to alter algorithms so that they can follow the physics and detector perform...

  6. Boredom and Passion: Triggers of Habitual Entrepreneurship

    DEFF Research Database (Denmark)

    Müller, Sabine; Neergaard, Helle

    . The case based, the study identifies eight factors, which contribute to consecutive venture creation. The findings suggest that boredom and passion are necessary conditions triggering habitual entrepreneurship. Other important mechanisms included the joy of discovering and exploiting an opportunity...

  7. D0 triggering and data acquisition

    International Nuclear Information System (INIS)

    Gibbard, B.

    1992-10-01

    The trigger for D0 is a multi-tier system. Within the 3.5 μsec bunch crossing interval, custom electronics select interesting event candidates based on electromagnetic and hadronic energy deposits in the calorimeter and on indications of tracks in the muon system. Subsequent hardware decisions use refined calculations of electron and muon characteristics. The highest level trigger occurs in one element of a farm of microprocessors, where fully developed algorithms for electrons, muons, jets, or missing E t are executed. This highest level trigger also provides the assembly of the event into its final data structure. Performance of this trigger and data acquisition system in collider operation is described

  8. Triggering and data acquisition general considerations

    International Nuclear Information System (INIS)

    Butler, Joel N.

    2003-01-01

    We provide a general introduction to trigger and data acquisition systems in High Energy Physics. We emphasize the new possibilities and new approaches that have been made possible by developments in computer technology and networking

  9. Session summary: Electronics, triggering and data acquisition

    International Nuclear Information System (INIS)

    Rescia, S.

    1991-12-01

    The session focused on the requirements for calorimetry at the SSC/LHC. Results on new readout techniques, calibration, radiation hard electronics and semiconductor devices, analog and digital front and electronics, and trigger strategies are presented

  10. Trigger factors in migraine with aura

    DEFF Research Database (Denmark)

    Hauge, A W; Kirchmann, M; Olesen, J

    2010-01-01

    The aim of the present study was to identify trigger factors in migraine with aura (MA). A total of 629 MA patients representative of the Danish population were sent a questionnaire listing 16 trigger factors thought to be relevant as well as space for free text. Distinction was made between...... attacks with or without aura within each patient. The questionnaire was returned by 522 patients of whom 347 had current MA attacks. In total 80% with current attacks (278/347) indicated that at least one factor triggered their migraine, and 67% (187/278) in this group indicated that they were aware...... of at least one factor often or always giving rise to an attack of MA. Forty-one per cent (113/278) had co-occurring attacks of migraine without aura (MO). Stress (following stress), bright light, intense emotional influences, stress (during stress) and sleeping too much or too little were the trigger factors...

  11. The Aurora accelerator's triggered oil switch

    International Nuclear Information System (INIS)

    Weidenheimer, D.M.; Pereira, N.R.; Judy, D.C.; Stricklett, K.L.

    1993-01-01

    Achieving a radiation pulse with 15 ns risetime using all four of the Aurora accelerator's Blumlein pulse-forming lines demands synchronization of the Blumleins to within 10 ns (in addition to a 15 ns risetime for a single line). Timing of each Blumlein is controlled by a triggered 12 MV oil switch. A smaller-than-customary trigger electrode makes the switching time more reproducible. Time-resolved photography of the oil arcs suggests that triggering occurs simultaneously around the sharp edge of the trigger electrode, perhaps with small deviations that grow into the most prominent arcs characteristically seen in open-shutter photographs. However, many smaller arcs that are usually overlooked in open-shutter pictures may contribute to current conduction in a closed switch

  12. Graphics Processing Units for HEP trigger systems

    Energy Technology Data Exchange (ETDEWEB)

    Ammendola, R. [INFN Sezione di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Bauce, M. [INFN Sezione di Roma “La Sapienza”, P.le A. Moro 2, 00185 Roma (Italy); University of Rome “La Sapienza”, P.lee A.Moro 2, 00185 Roma (Italy); Biagioni, A. [INFN Sezione di Roma “La Sapienza”, P.le A. Moro 2, 00185 Roma (Italy); Chiozzi, S.; Cotta Ramusino, A. [INFN Sezione di Ferrara, Via Saragat 1, 44122 Ferrara (Italy); University of Ferrara, Via Saragat 1, 44122 Ferrara (Italy); Fantechi, R. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); CERN, Geneve (Switzerland); Fiorini, M. [INFN Sezione di Ferrara, Via Saragat 1, 44122 Ferrara (Italy); University of Ferrara, Via Saragat 1, 44122 Ferrara (Italy); Giagu, S. [INFN Sezione di Roma “La Sapienza”, P.le A. Moro 2, 00185 Roma (Italy); University of Rome “La Sapienza”, P.lee A.Moro 2, 00185 Roma (Italy); Gianoli, A. [INFN Sezione di Ferrara, Via Saragat 1, 44122 Ferrara (Italy); University of Ferrara, Via Saragat 1, 44122 Ferrara (Italy); Lamanna, G., E-mail: gianluca.lamanna@cern.ch [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati (Roma) (Italy); Lonardo, A. [INFN Sezione di Roma “La Sapienza”, P.le A. Moro 2, 00185 Roma (Italy); Messina, A. [INFN Sezione di Roma “La Sapienza”, P.le A. Moro 2, 00185 Roma (Italy); University of Rome “La Sapienza”, P.lee A.Moro 2, 00185 Roma (Italy); and others

    2016-07-11

    General-purpose computing on GPUs (Graphics Processing Units) is emerging as a new paradigm in several fields of science, although so far applications have been tailored to the specific strengths of such devices as accelerator in offline computation. With the steady reduction of GPU latencies, and the increase in link and memory throughput, the use of such devices for real-time applications in high-energy physics data acquisition and trigger systems is becoming ripe. We will discuss the use of online parallel computing on GPU for synchronous low level trigger, focusing on CERN NA62 experiment trigger system. The use of GPU in higher level trigger system is also briefly considered.

  13. Trigger circuits for the PHENIX electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Frank, S.S.; Britton, C.L. Jr.; Winterberg, A.L.; Young, G.R.

    1997-11-01

    Monolithic and discrete circuits have been developed to provide trigger signals for the PHENIX electromagnetic calorimeter detector. These trigger circuits are deadtimeless and create overlapping 4 by 4 energy sums, a cosmic muon trigger, and a 144 channel energy sum. The front end electronics of the PHENIX system sample the energy and timing channels at each bunch crossing (BC) but it is not known immediately if this data is of interest. The information from the trigger circuits is used to determine if the data collected is of interest and should be digitized and stored or discarded. This paper presents details of the design, issues affecting circuit performance, characterization of prototypes fabricated in 1.2 microm Orbit CMOS, and integration of the circuits into the EMCal electronics system

  14. New Fast Interaction Trigger for ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Trzaska, Wladyslaw Henryk

    2017-02-11

    The LHC heavy-ion luminosity and collision rate from 2021 onwards will considerably exceed the design parameters of the present ALICE forward trigger detectors and the introduction of the Muon Forward Tracker (MFT) will significantly reduce the space available for the new trigger detectors. To comply with these conditions a new Fast Interaction Trigger (FIT) will be built. FIT will be the main forward trigger, luminometer, and interaction-time detector. It will also determine multiplicity, centrality, and reaction plane of heavy-ion collisions. FIT will consist of two arrays of Cherenkov quartz radiators with MCP-PMT sensors and of a plastic scintillator ring. By increasing the overall acceptance of FIT, the scintillator will improve centrality and event plane resolution. It will also add sensitivity for the detection of beam-gas events and provide some degree of redundancy. FIT is currently undergoing an intense R&D and prototyping period. It is scheduled for installation in ALICE during 2020.

  15. The new UA1 calorimeter trigger

    International Nuclear Information System (INIS)

    Eisenhandler, E.

    1988-01-01

    The new UA1 first-level calorimeter trigger processor is described, with emphasis on the fast two-dimensional electromagnetic cluster-finding that is its most novel feature. This processor is about five times more powerful than its predecessor, and makes extensive use of pipelining techniques. It allows multiple combinations of triggers on electromagnetic showers, hadronic jets and energy sums, including a total-energy veto of multiple interactions and a full vector sum of missing transverse energy. (author)

  16. The upgrade of the LHCb trigger system

    CERN Document Server

    INSPIRE-00259834; Fitzpatrick, C.; Gligorov, V.; Raven, G.

    2014-10-20

    The LHCb experiment will operate at a luminosity of $2\\times10^{33}$ cm$^{-2}$s$^{-1}$ during LHC Run 3. At this rate the present readout and hardware Level-0 trigger become a limitation, especially for fully hadronic final states. In order to maintain a high signal efficiency the upgraded LHCb detector will deploy two novel concepts: a triggerless readout and a full software trigger.

  17. Progress on the Level-1 Calorimeter Trigger

    CERN Multimedia

    Eric Eisenhandler

    The Level-1 Calorimeter Trigger (L1Calo) has recently passed a number of major hurdles. The various electronic modules that make up the trigger are either in full production or are about to be, and preparations in the ATLAS pit are well advanced. L1Calo has three main subsystems. The PreProcessor converts analogue calorimeter signals to digital, associates the rather broad trigger pulses with the correct proton-proton bunch crossing, and does a final calibration in transverse energy before sending digital data streams to the two algorithmic trigger processors. The Cluster Processor identifies and counts electrons, photons and taus, and the Jet/Energy-sum Processor looks for jets and also sums missing and total transverse energy. Readout drivers allow the performance of the trigger to be monitored online and offline, and also send region-of-interest information to the Level-2 Trigger. The PreProcessor (Heidelberg) is the L1Calo subsystem with the largest number of electronic modules (124), and most of its fu...

  18. Triggered tremor sweet spots in Alaska

    Science.gov (United States)

    Gomberg, Joan; Prejean, Stephanie

    2013-01-01

    To better understand what controls fault slip along plate boundaries, we have exploited the abundance of seismic and geodetic data available from the richly varied tectonic environments composing Alaska. A search for tremor triggered by 11 large earthquakes throughout all of seismically monitored Alaska reveals two tremor “sweet spots”—regions where large-amplitude seismic waves repeatedly triggered tremor between 2006 and 2012. The two sweet spots locate in very different tectonic environments—one just trenchward and between the Aleutian islands of Unalaska and Akutan and the other in central mainland Alaska. The Unalaska/Akutan spot corroborates previous evidence that the region is ripe for tremor, perhaps because it is located where plate-interface frictional properties transition between stick-slip and stably sliding in both the dip direction and laterally. The mainland sweet spot coincides with a region of complex and uncertain plate interactions, and where no slow slip events or major crustal faults have been noted previously. Analyses showed that larger triggering wave amplitudes, and perhaps lower frequencies (tremor. However, neither the maximum amplitude in the time domain or in a particular frequency band, nor the geometric relationship of the wavefield to the tremor source faults alone ensures a high probability of triggering. Triggered tremor at the two sweet spots also does not occur during slow slip events visually detectable in GPS data, although slow slip below the detection threshold may have facilitated tremor triggering.

  19. Hierarchical trigger of the ALICE calorimeters

    CERN Document Server

    Muller, Hans; Novitzky, Norbert; Kral, Jiri; Rak, Jan; Schambach, Joachim; Wang, Ya-Ping; Wang, Dong; Zhou, Daicui

    2010-01-01

    The trigger of the ALICE electromagnetic calorimeters is implemented in 2 hierarchically connected layers of electronics. In the lower layer, level-0 algorithms search shower energy above threshold in locally confined Trigger Region Units (TRU). The top layer is implemented as a single, global trigger unit that receives the trigger data from all TRUs as input to the level-1 algorithm. This architecture was first developed for the PHOS high pT photon trigger before it was adopted by EMCal also for the jet trigger. TRU units digitize up to 112 analogue input signals from the Front End Electronics (FEE) and concentrate their digital stream in a single FPGA. A charge and time summing algorithm is combined with a peakfinder that suppresses spurious noise and is precise to single LHC bunches. With a peak-to-peak noise level of 150 MeV the linear dynamic range above threshold spans from MIP energies at 215 up to 50 GeV. Local level-0 decisions take less than 600 ns after LHC collisions, upon which all TRUs transfer ...

  20. Level-1 Calorimeter Trigger starts firing

    CERN Multimedia

    Stephen Hillier

    2007-01-01

    L1Calo is one of the major components of ATLAS First Level trigger, along with the Muon Trigger and Central Trigger Processor. It forms all of the first-level calorimeter-based triggers, including electron, jet, tau and missing ET. The final system consists of over 250 custom designed 9U VME boards, most containing a dense array of FPGAs or ASICs. It is subdivided into a PreProcessor, which digitises the incoming trigger signals from the Liquid Argon and Tile calorimeters, and two separate processor systems, which perform the physics algorithms. All of these are highly flexible, allowing the possibility to adapt to beam conditions and luminosity. All parts of the system are read out through Read-Out Drivers, which provide monitoring data and Region of Interest (RoI) information for the Level-2 trigger. Production of the modules is now essentially complete, and enough modules exist to populate the full scale system in USA15. Installation is proceeding rapidly - approximately 90% of the final modules are insta...

  1. The LHCb trigger and data acquisition system

    CERN Document Server

    Dufey, J P; Harris, F; Harvey, J; Jost, B; Mato, P; Müller, E

    2000-01-01

    The LHCb experiment is the most recently approved of the 4 experiments under construction at CERNs LHC accelerator. It is a special purpose experiment designed to precisely measure the CP violation parameters in the B-B system. Triggering poses special problems since the interesting events containing B-mesons are immersed in a large background of inelastic p-p reactions. We therefore decided to implement a 4 level triggering scheme. The LHCb Data Acquisition (DAQ) system will have to cope with an average trigger rate of ~40 kHz, after two levels of hardware triggers, and an average event size of ~100 kB. Thus an event-building network which can sustain an average bandwidth of 4 GB/s is required. A powerful software trigger farm will have to be installed to reduce the rate from the 40 kHz to ~100 Hz of events written to permanent storage. In this paper we outline the general architecture of the Trigger and DAQ system and the readout protocols we plan to implement. First results of simulations of the behavior o...

  2. Galactic interaction as the trigger for the young radio galaxy MRC B1221-423

    OpenAIRE

    Anderson, Craig; Johnston, Helen; Hunstead, Richard

    2013-01-01

    Mergers between a massive galaxy and a small gas-rich companion (minor mergers) have been proposed as a viable mechanism for triggering radio emission in an active galaxy. Until now the problem has been catching this sequence of events as they occur. With MRC B1221$-$423 we have an active radio galaxy that has only recently been triggered, and a companion galaxy that provides the "smoking gun". Using spectroscopic data taken with the VIMOS Integral Field Unit detector on the European Southern...

  3. Emission Facilities - Air Emission Plants

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Represents the Primary Facility type Air Emission Plant (AEP) point features. Air Emissions Plant is a DEP primary facility type related to the Air Quality Program....

  4. VHF lightning mapping observations of a triggered lightning flash

    Science.gov (United States)

    Edens, H. E.; Eack, K. B.; Eastvedt, E. M.; Trueblood, J. J.; Winn, W. P.; Krehbiel, P. R.; Aulich, G. D.; Hunyady, S. J.; Murray, W. C.; Rison, W.; Behnke, S. A.; Thomas, R. J.

    2012-10-01

    On 3 August 2010 an extensive lightning flash was triggered over Langmuir Laboratory in New Mexico. The upward positive leader propagated into the storm's midlevel negative charge region, extending over a horizontal area of 13 × 13 km and 7.5 km altitude. The storm had a normal-polarity tripolar charge structure with upper positive charge over midlevel negative charge. Lightning Mapping Array (LMA) observations were used to estimate positive leader velocities along various branches, which were in the range of 1-3 × 104 m s-1, slower than in other studies. The upward positive leader initiated at 3.4 km altitude, but was mapped only above 4.0 km altitude after the onset of retrograde negative breakdown, indicating a change in leader propagation and VHF emissions. The observations suggest that both positive and negative breakdown produce VHF emissions that can be located by time-of-arrival systems, and that not all VHF emissions occurring along positive leader channels are associated with retrograde negative breakdown.

  5. Exploratory studies on a passively triggered vacuum spark

    Energy Technology Data Exchange (ETDEWEB)

    Rout, R.K. [High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai (India)]. E-mail: rkrout@apsara.barc.ernet.in; Auluck, S.K.H.; Kulkarni, L.V. [High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai, India (India); Nagpal, J.S. [Radiation Standards and Instrumentation Division, Bhabha Atomic Research Centre, Mumbai (India)

    1999-12-07

    The results of an experimental investigation on a passively triggered vacuum spark device are presented. The diagnostics include the current, x-ray and optical emission measurements. The sharp dips in the current derivative signal indicate the occurrence of pinching at an early stage of the discharge (at current {approx} 5 kA). A well-confined plasma with a central hot region was recorded using a streak camera. The pinched plasma was observed to undergo kink-type oscillations with a time period of 10-15 ns. Repeated plasma fronts were seen to move from the anode to the cathode with an average velocity of {approx}5x10{sup 6} cm s{sup -1}. Soft x-ray emission having a radiation intensity of a few hundred mR per discharge was observed. The x-ray signals obtained using photodiodes showed multiple bursts. A soft x-ray pinhole camera recorded micro-pinches of {approx}100 {mu}m. The x-ray emitting regions were confined to the inter-electrode gap. The x-ray emission characteristics were influenced by the electrolytic resistance, which was connected across the spark gap to initiate discharge. (author)

  6. Exploratory studies on a passively triggered vacuum spark

    Science.gov (United States)

    Rout, R. K.; Auluck, S. K. H.; Nagpal, J. S.; Kulkarni, L. V.

    1999-12-01

    The results of an experimental investigation on a passively triggered vacuum spark device are presented. The diagnostics include the current, x-ray and optical emission measurements. The sharp dips in the current derivative signal indicate the occurrence of pinching at an early stage of the discharge (at current icons/Journals/Common/approx" ALT="approx" ALIGN="TOP"/>5 kA). A well-confined plasma with a central hot region was recorded using a streak camera. The pinched plasma was observed to undergo kink-type oscillations with a time period of 10-15 ns. Repeated plasma fronts were seen to move from the anode to the cathode with an average velocity of icons/Journals/Common/approx" ALT="approx" ALIGN="TOP"/>5 × 106 cm s-1. Soft x-ray emission having a radiation intensity of a few hundred mR per discharge was observed. The x-ray signals obtained using photodiodes showed multiple bursts. A soft x-ray pinhole camera recorded micro-pinches of icons/Journals/Common/approx" ALT="approx" ALIGN="TOP"/>100 µm. The x-ray emitting regions were confined to the inter-electrode gap. The x-ray emission characteristics were influenced by the electrolytic resistance, which was connected across the spark gap to initiate discharge.

  7. Evolution of Field-Aligned Electron and Ion Densities From Whistler Mode Radio Soundings During Quiet to Moderately Active Period and Comparisons With SAMI2 Simulations

    Science.gov (United States)

    Reddy, A.; Sonwalkar, V. S.; Huba, J. D.

    2018-02-01

    Knowledge of field-aligned electron and ion distributions is necessary for understanding the physical processes causing variations in field-aligned electron and ion densities. Using whistler mode sounding by Radio Plasma Imager/Imager for Magnetopause-to-Aurora Global Exploration (RPI/IMAGE), we determined the evolution of dayside electron and ion densities along L ˜ 2 and L ˜ 3 (90-4,000 km) during a 7 day (21-27 November 2005) geomagnetically quiet to moderately active period. Over this period the O+/H+ transition height was ˜880 ± 60 km and ˜1000 ± 100 km, respectively, at L ˜ 2 and L ˜ 3. The electron density varied in a complex manner; it was different at L ˜ 2 and L ˜ 3 and below and above the O+/H+ transition height. The measured electron and ion densities are consistent with those from Challenging Minisatellite Payload (CHAMP) and Defense Meteorological Satellite Program (DMSP) and other past measurements, but they deviated from bottomside sounding and International Reference Ionosphere (IRI) 2012 empirical model results. Using SAMI2 (Naval Research Laboratory (NRL) ionosphere model) with reasonably adjusted values of inputs (neutral densities, winds, electric fields, and photoelectron heating), we simulated the evolution of O+/H+ transition height and field-aligned electron and ion densities so that a fair agreement was obtained between the simulation results and observations. Simulation studies indicated that reduced neutral densities (H and/or O) with time limited O+-H charge exchange process. This reduction in neutral densities combined with changes in neutral winds and plasma temperature led to the observed variations in the electron and ion densities. The observation/simulation method presented here can be extended to investigate the role of neutral densities and composition, disturbed winds, and prompt penetration electric fields in the storm time ionosphere/plasmasphere dynamics.

  8. Design studies for the Double Chooz trigger

    International Nuclear Information System (INIS)

    Cucoanes, Andi Sebastian

    2009-01-01

    The main characteristic of the neutrino mixing effect is assumed to be the coupling between the flavor and the mass eigenstates. Three mixing angles (θ 12 , θ 23 , θ 13 ) are describing the magnitude of this effect. Still unknown, θ 13 is considered very small, based on the measurement done by the CHOOZ experiment. A leading experiment will be Double Chooz, placed in the Ardennes region, on the same site as used by CHOOZ. The Double Chooz goal is the exploration of ∝80% from the currently allowed θ 13 region, by searching the disappearance of reactor antineutrinos. Double Chooz will use two similar detectors, located at different distances from the reactor cores: a near one at ∝150 m where no oscillations are expected and a far one at 1.05 km distance, close to the first minimum of the survival probability function. The measurement foresees a precise comparison of neutrino rates and spectra between both detectors. The detection mechanism is based on the inverse β-decay. The Double Chooz detectors have been designed to minimize the rate of random background. In a simplified view, two optically separated regions are considered. The target, filled with Gd-doped liquid scintillator, is the main antineutrino interaction volume. Surrounding the target, the inner veto region aims to tag the cosmogenic muon background which hits the detector. Both regions are viewed by photomultipliers. The Double Chooz trigger system has to be highly efficient for antineutrino events as well as for several types of background. The trigger analyzes discriminated signals from the central region and the inner veto photomultipliers. The trigger logic is fully programmable and can combine the input signals. The trigger conditions are based on the total energy released in event and on the PMT groups multiplicity. For redundancy, two independent trigger boards will be used for the central region, each of them receiving signals from half of the photomultipliers. A third trigger board

  9. Design studies for the Double Chooz trigger

    Energy Technology Data Exchange (ETDEWEB)

    Cucoanes, Andi Sebastian

    2009-07-24

    The main characteristic of the neutrino mixing effect is assumed to be the coupling between the flavor and the mass eigenstates. Three mixing angles ({theta}{sub 12}, {theta}{sub 23}, {theta}{sub 13}) are describing the magnitude of this effect. Still unknown, {theta}{sub 13} is considered very small, based on the measurement done by the CHOOZ experiment. A leading experiment will be Double Chooz, placed in the Ardennes region, on the same site as used by CHOOZ. The Double Chooz goal is the exploration of {proportional_to}80% from the currently allowed {theta}{sub 13} region, by searching the disappearance of reactor antineutrinos. Double Chooz will use two similar detectors, located at different distances from the reactor cores: a near one at {proportional_to}150 m where no oscillations are expected and a far one at 1.05 km distance, close to the first minimum of the survival probability function. The measurement foresees a precise comparison of neutrino rates and spectra between both detectors. The detection mechanism is based on the inverse {beta}-decay. The Double Chooz detectors have been designed to minimize the rate of random background. In a simplified view, two optically separated regions are considered. The target, filled with Gd-doped liquid scintillator, is the main antineutrino interaction volume. Surrounding the target, the inner veto region aims to tag the cosmogenic muon background which hits the detector. Both regions are viewed by photomultipliers. The Double Chooz trigger system has to be highly efficient for antineutrino events as well as for several types of background. The trigger analyzes discriminated signals from the central region and the inner veto photomultipliers. The trigger logic is fully programmable and can combine the input signals. The trigger conditions are based on the total energy released in event and on the PMT groups multiplicity. For redundancy, two independent trigger boards will be used for the central region, each of

  10. Emission inventory; Inventaire des emissions

    Energy Technology Data Exchange (ETDEWEB)

    Fontelle, J.P. [CITEPA, Centre Interprofessionnel Technique d`Etudes de la Pollution Atmospherique, 75 - Paris (France)

    1997-12-31

    Statistics on air pollutant (sulfur dioxide, nitrogen oxides and ammonium) emissions, acid equivalent emissions and their evolution since 1990 in the various countries of Europe and the USA, are presented. Emission data from the industrial, agricultural, transportation and power sectors are given, and comparisons are carried out between countries based on Gnp and population, pollution import/export fluxes and compliance to the previous emission reduction objectives

  11. Retrospective respiratory triggering renal perfusion MRI

    Energy Technology Data Exchange (ETDEWEB)

    Attenberger, Ulrike I.; Michaely, Henrik J.; Schoenberg, Stefan O. (Dept. of Clinical Radiology and Nuclear Medicine, Univ. Hospital Mannheim, Univ. of Heidelberg, Mannheim (Germany)), e-mail: ulrike.attenberger@medma.uni-heidelberg.de; Sourbron, Steven P. (Div. of Medical Physics, Univ. of Leeds, Leeds (United Kingdom)); Reiser, Maximilian F. (Dept. of Clinical Radiology, Univ. Hospitals Munich, Grosshadern, Ludwig-Maximilians-Univ., Munich (Germany))

    2010-12-15

    Background: Artifacts of respiratory motion are one of the well-known limitations of dynamic contrast-enhanced MRI (DCE-MRI) of the kidney. Purpose: To propose and evaluate a retrospective triggering approach to minimize the effect of respiratory motion in DCE-MRI of the kidney. Material and Methods: Nine consecutive patients underwent renal perfusion measurements. Data were acquired with a 2D saturation-recovery TurboFLASH sequence. In order to test the dependence of the results on size and location of the manually drawn triggering regions of interest (ROIs), three widely differing triggering regions were defined by one observer. Mean value, standard deviation, and variability of the renal function parameters plasma flow (FP), plasma volume (VP), plasma transit time (TP), tubular flow (FT), tubular volume (VT), and tubular transit time (TT) were calculated on a per-patient basis. Results: The results show that triggered data have adequate temporal resolution to measure blood flow. The overall average values of the function parameters were: 152.77 (FP), 15.18 (VP), 6,73 (TP), 18.50 (FT), 35.36 (VT), and 117.67 (TT). The variability (calculated in % SD from the mean value) for three different respiratory triggering regions defined on a per-patient basis was between 0.81% and 9.87% for FP, 1.45% and 8.19% for VP, 0% and 9.63% for TP, 2.15% and 12.23% for TF, 0.8% and 17.28% for VT, and 1.97% and 12.87% for TT. Conclusion: Triggering reduces the oscillations in the signal curves and produces sharper parametric maps. In contrast to numerically challenging approaches like registration and segmentation it can be applied in clinical routine, but a (semi)-automatic approach to select the triggering ROI is desirable to reduce user dependence.

  12. Relating triggering processes in lab experiments with earthquakes.

    Science.gov (United States)

    Baro Urbea, J.; Davidsen, J.; Kwiatek, G.; Charalampidou, E. M.; Goebel, T.; Stanchits, S. A.; Vives, E.; Dresen, G.

    2016-12-01

    Statistical relations such as Gutenberg-Richter's, Omori-Utsu's and the productivity of aftershocks were first observed in seismology, but are also common to other physical phenomena exhibiting avalanche dynamics such as solar flares, rock fracture, structural phase transitions and even stock market transactions. All these examples exhibit spatio-temporal correlations that can be explained as triggering processes: Instead of being activated as a response to external driving or fluctuations, some events are consequence of previous activity. Although different plausible explanations have been suggested in each system, the ubiquity of such statistical laws remains unknown. However, the case of rock fracture may exhibit a physical connection with seismology. It has been suggested that some features of seismology have a microscopic origin and are reproducible over a vast range of scales. This hypothesis has motivated mechanical experiments to generate artificial catalogues of earthquakes at a laboratory scale -so called labquakes- and under controlled conditions. Microscopic fractures in lab tests release elastic waves that are recorded as ultrasonic (kHz-MHz) acoustic emission (AE) events by means of piezoelectric transducers. Here, we analyse the statistics of labquakes recorded during the failure of small samples of natural rocks and artificial porous materials under different controlled compression regimes. Temporal and spatio-temporal correlations are identified in certain cases. Specifically, we distinguish between the background and triggered events, revealing some differences in the statistical properties. We fit the data to statistical models of seismicity. As a particular case, we explore the branching process approach simplified in the Epidemic Type Aftershock Sequence (ETAS) model. We evaluate the empirical spatio-temporal kernel of the model and investigate the physical origins of triggering. Our analysis of the focal mechanisms implies that the occurrence

  13. Rate Predictions and Trigger/DAQ Resource Monitoring in ATLAS

    CERN Document Server

    Schaefer, D M; The ATLAS collaboration

    2012-01-01

    Since starting in 2010, the Large Hadron Collider (LHC) has pro- duced collisions at an ever increasing rate. The ATLAS experiment successfully records the collision data with high eciency and excel- lent data quality. Events are selected using a three-level trigger system, where each level makes a more re ned selection. The level-1 trigger (L1) consists of a custom-designed hardware trigger which seeds two higher software based trigger levels. Over 300 triggers compose a trig- ger menu which selects physics signatures such as electrons, muons, particle jets, etc. Each trigger consumes computing resources of the ATLAS trigger system and oine storage. The LHC instantaneous luminosity conditions, desired physics goals of the collaboration, and the limits of the trigger infrastructure determine the composition of the ATLAS trigger menu. We describe a trigger monitoring frame- work for computing the costs of individual trigger algorithms such as data request rates and CPU consumption. This framework has been used...

  14. Upgrades of the ATLAS trigger system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00221618; The ATLAS collaboration

    2018-01-01

    In coming years the LHC is expected to undergo upgrades to increase both the energy of proton-proton collisions and the instantaneous luminosity. In order to cope with these more challenging LHC conditions, upgrades of the ATLAS trigger system will be required. This talk will focus on some of the key aspects of these upgrades. Firstly, the upgrade period between 2019-2021 will see an increase in instantaneous luminosity to $3\\times10^{34} \\rm{cm^{-2}s^{-1}}$. Upgrades to the Level 1 trigger system during this time will include improvements for both the muon and calorimeter triggers. These include the upgrade of the first-level Endcap Muon trigger, the calorimeter trigger electronics and the addition of new calorimeter feature extractor hardware, such as the Global Feature Extractor (gFEX). An overview will be given on the design and development status the aforementioned systems, along with the latest testing and validation results. \\\\ By 2026, the High Luminosity LHC will be able to deliver 14 TeV collisions ...

  15. Graphical processors for HEP trigger systems

    International Nuclear Information System (INIS)

    Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cotta Ramusino, A.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P.S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.

    2017-01-01

    General-purpose computing on GPUs is emerging as a new paradigm in several fields of science, although so far applications have been tailored to employ GPUs as accelerators in offline computations. With the steady decrease of GPU latencies and the increase in link and memory throughputs, time is ripe for real-time applications using GPUs in high-energy physics data acquisition and trigger systems. We will discuss the use of online parallel computing on GPUs for synchronous low level trigger systems, focusing on tests performed on the trigger of the CERN NA62 experiment. Latencies of all components need analysing, networking being the most critical. To keep it under control, we envisioned NaNet, an FPGA-based PCIe Network Interface Card (NIC) enabling GPUDirect connection. Moreover, we discuss how specific trigger algorithms can be parallelised and thus benefit from a GPU implementation, in terms of increased execution speed. Such improvements are particularly relevant for the foreseen LHC luminosity upgrade where highly selective algorithms will be crucial to maintain sustainable trigger rates with very high pileup.

  16. CMS Triggers for the LHC Startup

    CERN Document Server

    Nhan Nguyen, Chi

    2009-01-01

    The LHC will collide proton beams at a bunch-crossing rate of 40 MHz. At the design luminosity of $10^{34}$ cm$^{-2}$s$^{-1}$ each crossing results in an average of about 20 inelastic pp events. The CMS trigger system is designed to reduce the input rate to about 100 Hz. This task is carried out in two steps, namely the Level-1 (L1) and the High-Level trigger (HLT). The L1 trigger is built of customized fast electronics and is designed to reduce the rate to 100 kHz. The HLT is implemented in a filter farm running on hundreds of CPUs and is designed to reduce the rate by another factor of ~1000. It combines the traditional L2 and L3 trigger components in a novel way and allows the coherent tuning of the HLT algorithms to accommodate multiple physics channels. We will discuss the strategies for optimizing triggers covering the experiment`s early physics program.

  17. The Fast Interaction Trigger Upgrade for ALICE

    CERN Document Server

    Garcia-Solis, Edmundo

    2016-01-01

    The ALICE Collaboration is preparing a major detector upgrade for the second LHC long shutdown (2019–20). The LHC heavy-ion luminosity and collision rate from 2021 onwards will considerably exceed the design parameters of the present ALICE forward trigger detectors. Furthermore, the introduction of a new Muon Forward Tracker (MFT) will significantly reduce the space available for the upgraded trigger detectors. To comply with these conditions a Fast Interaction Trigger (FIT) has been designed. FIT will be the primary forward trigger, luminosity, and collision time measurement detector. The FIT will be capable of triggering at an interaction rate of 50 kHz, with a time resolution better than 30 ps, with 99% efficiency. It will also determine multiplicity, centrality, and reaction plane. FIT will consist of two arrays of Cherenkov radiators with MCP-PMT sensors and of a single, large-size scintillator ring. The arrays will be placed on both sides of the interaction point (IP). Because of the presence of the h...

  18. Tools for Trigger Rate Monitoring at CMS

    CERN Document Server

    Smith, Geoffrey; Wightman, Andrew Steven

    2017-01-01

    In 2017, we expect the LHC to deliver an instantaneous luminosity of roughly $2.0 \\times 10^{34}$~cm$^{-2}$s$^{-1}$ to the Compact Muon Solenoid (CMS) experiment, with about 60 simultaneous proton-proton collisions (pileup) per event. In these challenging conditions, it is important to be able to intelligently monitor the rate at which data are being collected (the trigger rate). It is not enough to simply look at the trigger rate; it is equally important to compare the trigger rate with expectations. We present a set of software tools that have been developed to accomplish this. The tools include a real-time component - a script that monitors the rates of individual triggers during data-taking, and activates an alarm if rates deviate significantly from expectation. Fits are made to previously collected data and extrapolated to higher pileup. The behavior of triggers as a function of pileup is then monitored as data are collected - plots are automatically produced on an hourly basis and uploaded to a web area...

  19. Tracking at High Level Trigger in CMS

    CERN Document Server

    Tosi, Mia

    2016-01-01

    The trigger systems of the LHC detectors play a crucial role in determining the physics capabili- ties of the experiments. A reduction of several orders of magnitude of the event rate is needed to reach values compatible with detector readout, offline storage and analysis capability. The CMS experiment has been designed with a two-level trigger system: the Level-1 Trigger (L1T), implemented on custom-designed electronics, and the High Level Trigger (HLT), a stream- lined version of the CMS offline reconstruction software running on a computer farm. A software trigger system requires a trade-off between the complexity of the algorithms, the sustainable out- put rate, and the selection efficiency. With the computing power available during the 2012 data taking the maximum reconstruction time at HLT was about 200 ms per event, at the nominal L1T rate of 100 kHz. Track reconstruction algorithms are widely used in the HLT, for the reconstruction of the physics objects as well as in the identification of b-jets and ...

  20. The D-Zero Run II Trigger

    International Nuclear Information System (INIS)

    Blazey, G. C.

    1997-01-01

    The general purpose D0 collider detector, located at Fermi National Accelerator Laboratory, requires significantly enhanced data acquisition and triggering to operate in the high luminosity (L = 2 x 10 32 cm -2 s -1 ), high rate environment (7 MHz or 132 ns beam crossings) of the upgraded TeVatron proton anti-proton accelerator. This article describes the three major levels and frameworks of the new trigger. Information from the first trigger stage (L1) which includes scintillating, tracking and calorimeter detectors will provide a deadtimeless, 4.2 (micro)s trigger decision with an accept rate of 10 kHz. The second stage (L2), comprised of hardware engines associated with specific detectors and a single global processor will test for correlations between L1 triggers. L2 will have an accept rate of 1 kHz at a maximum deadtime of 5% and require a 100 (micro)s decision time. The third and final stage (L3) will reconstruct events in a farm of processors for a final instantaneous accept rate of 50 Hz

  1. DZERO Level 3 DAQ/Trigger Closeout

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The Tevatron Collider, located at the Fermi National Accelerator Laboratory, delivered its last 1.96 TeV proton-antiproton collisions on September 30th, 2011. The DZERO experiment continues to take cosmic data for final alignment for several more months . Since Run 2 started, in March 2001, all DZERO data has been collected by the DZERO Level 3 Trigger/DAQ System. The system is a modern, networked, commodity hardware trigger and data acquisition system based around a large central switch with about 60 front ends and 200 trigger computers. DZERO front end crates are VME based. Single Board Computer interfaces between detector data on VME and the network transport for the DAQ system. Event flow is controlled by the Routing Master which can steer events to clusters of farm nodes based on the low level trigger bits that fired. The farm nodes are multi-core commodity computer boxes, without special hardware, that run isolated software to make the final Level 3 trigger decision. Passed events are transferred to th...

  2. Graphical processors for HEP trigger systems

    Energy Technology Data Exchange (ETDEWEB)

    Ammendola, R. [INFN Sezione di Roma Tor Vergata, Via della Ricerca Scientifica, 1, 00133 Roma (Italy); Biagioni, A. [INFN Sezione di Roma, P.le Aldo Moro, 2, 00185 Roma (Italy); Chiozzi, S.; Cotta Ramusino, A. [INFN Sezione di Ferrara, Via Saragat, 1, 44122 Ferrara (Italy); Di Lorenzo, S. [INFN Sezione di Pisa, L. Bruno Pontecorvo, 3, 56127 Pisa (Italy); Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa (Italy); Fantechi, R. [INFN Sezione di Pisa, L. Bruno Pontecorvo, 3, 56127 Pisa (Italy); Fiorini, M. [INFN Sezione di Ferrara, Via Saragat, 1, 44122 Ferrara (Italy); Università di Ferrara, Via Ludovico Ariosto 35, 44121 Ferrara (Italy); Frezza, O. [INFN Sezione di Roma, P.le Aldo Moro, 2, 00185 Roma (Italy); Lamanna, G. [INFN, Laboratori Nazionali di Frascati (Italy); Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P.S.; Pastorelli, E. [INFN Sezione di Roma, P.le Aldo Moro, 2, 00185 Roma (Italy); Piandani, R. [INFN Sezione di Pisa, L. Bruno Pontecorvo, 3, 56127 Pisa (Italy); Pontisso, L., E-mail: luca.pontisso@cern.ch [INFN Sezione di Pisa, L. Bruno Pontecorvo, 3, 56127 Pisa (Italy); Rossetti, D. [NVIDIA Corp., Santa Clara, CA (United States); Simula, F. [INFN Sezione di Roma, P.le Aldo Moro, 2, 00185 Roma (Italy); Sozzi, M. [INFN Sezione di Pisa, L. Bruno Pontecorvo, 3, 56127 Pisa (Italy); Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa (Italy); and others

    2017-02-11

    General-purpose computing on GPUs is emerging as a new paradigm in several fields of science, although so far applications have been tailored to employ GPUs as accelerators in offline computations. With the steady decrease of GPU latencies and the increase in link and memory throughputs, time is ripe for real-time applications using GPUs in high-energy physics data acquisition and trigger systems. We will discuss the use of online parallel computing on GPUs for synchronous low level trigger systems, focusing on tests performed on the trigger of the CERN NA62 experiment. Latencies of all components need analysing, networking being the most critical. To keep it under control, we envisioned NaNet, an FPGA-based PCIe Network Interface Card (NIC) enabling GPUDirect connection. Moreover, we discuss how specific trigger algorithms can be parallelised and thus benefit from a GPU implementation, in terms of increased execution speed. Such improvements are particularly relevant for the foreseen LHC luminosity upgrade where highly selective algorithms will be crucial to maintain sustainable trigger rates with very high pileup.

  3. Validation of ATLAS L1 Topological Triggers

    CERN Document Server

    Praderio, Marco

    2017-01-01

    The Topological trigger (L1Topo) is a new component of the ATLAS L1 (Level-1) trigger. Its purpose is that of reducing the otherwise too high rate of data collection from the LHC by rejecting those events considered “uninteresting” (meaning that they have already been studied). This event rate reduction is achieved by applying topological requirements to the physical objects present in each event. It is very important to make sure that this trigger does not reject any “interesting” event. Therefore we need to verify its correct functioning. The goal of this summer student project is to study the response of two L1Topo algorithms (concerning ∆R and invariant mass). To do so I will compare the trigger decisions produced by the L1Topo hardware with the ones produced by the “official” L1Topo simulation. This way I will be able to identify events that could be incorrectly rejected. Simultaneously I will produce an emulation of these triggers that will help me understand the cause of disagreements bet...

  4. Online software trigger at PANDA/FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Donghee; Kliemt, Ralf; Nerling, Frank [Helmholtz-Institut Mainz (Germany); Denig, Achim [Institut fuer Kernphysik, Universitaet Mainz (Germany); Goetzen, Klaus; Peters, Klaus [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Collaboration: PANDA-Collaboration

    2014-07-01

    The PANDA experiment at FAIR will employ a novel trigger-less read-out system. Since a conventional hardware trigger concept is not suitable for PANDA, a high level online event filter will be applied to perform fast event selection based on physics properties of the reconstructed events. A trigger-less data stream implies an event selection with track reconstruction and pattern recognition to be performed online, and thus analysing data under real time conditions at event rates of up to 40 MHz.The projected data rate reduction of about three orders of magnitude requires an effective background rejection, while retaining interesting signal events. Real time event selection in the environment of hadronic reactions is rather challenging and relies on sophisticated algorithms for the software trigger. The implementation and the performance of physics trigger algorithms presently studied with realistic Monte Carlo simulations is discussed. The impact of parameters such as momentum or mass resolution, PID probability, vertex reconstruction and a multivariate analysis using the TMVA package for event filtering is presented.

  5. The CMS trigger in Run 2

    CERN Document Server

    Tosi, Mia

    2018-01-01

    During its second period of operation (Run 2) which started in 2015, the LHC will reach a peak instantaneous luminosity of approximately 2$\\times 10^{34}$~cm$^{-2}s^{-1}$ with an average pile-up of about 55, far larger than the design value. Under these conditions, the online event selection is a very challenging task. In CMS, it is realised by a two-level trigger system: the Level-1 (L1) Trigger, implemented in custom-designed electronics, and the High Level Trigger (HLT), a streamlined version of the offline reconstruction software running on a computer farm.\\\\ In order to face this challenge, the L1 trigger has undergone a major upgrade compared to Run 1, whereby all electronic boards of the system have been replaced, allowing more sophisticated algorithms to be run online. Its last stage, the global trigger, is now able to perform complex selections and to compute high-level quantities, like invariant masses. Likewise, the algorithms that run in the HLT went through big improvements; in particular, new ap...

  6. The ZEUS calorimeter first level trigger

    Science.gov (United States)

    Silverstein, S.; Ali, I.; Behrens, B.; Foudas, C.; Fordham, C.; Goussiou, A.; Jaworski, M.; Lackey, J.; Reeder, D.; Robl, P.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Dawson, J.; Krakauer, D.; Talaga, R.; Schlereth, J.; Zhang, H.

    1995-02-01

    An overview of the ZEUS calorimeter first level trigger is presented. The CFLT uses a pipelined architecture to accept and analyze calorimeter data for every 96 ns beam crossing interval. PMT signals are combined by analog electronics into electromagnetic and hadronic sums for 896 trigger towers. The analog sums are then digitized and analyzed. The CFLT determines the total, transverse, and missing transverse energy, identifies isolated electrons and muons, and sums energies in programmable subregions. Calculations are performed in 96 ns steps, and new data are accepted for every beam crossing. Trigger data are forwarded to the global first level trigger (GFLT) after 2 μs, allowing a GFLT accept to be issued 5 μs after the beam crossing which produced the event. Important features of the CFLT include a 12-bit effective dynamic range, extensive use of memory lookup tables for trigger calculations, fast pattern searches for isolated leptons, and low electronics noise. During the 1993 HERA run, the CFLT reduced a 50 kHz background rate to around 100 Hz.

  7. Towards RTOS support for mixed time-triggered and event-triggered task sets

    NARCIS (Netherlands)

    Heuvel, van den M.M.H.P.; Bril, R.J.; Lukkien, J.J.; Isovic, D.; Sankar Ramachandran, G.

    2012-01-01

    Many embedded systems have complex timing constraints and, at the same time, have flexibility requirements which prohibit offline planning of the entire system. To support a mixture of time-triggered and event-triggered tasks, some industrial systems deploy a real-time operating system (RTOS) with a

  8. Limited preemptive scheduling of mixed time-triggered and event-triggered tasks

    NARCIS (Netherlands)

    Heuvel, van den M.M.H.P.; Bril, R.J.; Zhang, X.; Abdullah, S.M.J.; Isovic, D.

    2013-01-01

    Many embedded systems have complex timing constraints and, at the same time, have flexibility requirements which prohibit offline planning of the entire system. To support a mixture of time-triggered and event-triggered tasks, some industrial systems deploy a table-driven dispatcher for

  9. Performance of the ATLAS Muon Trigger and Phase-1 Upgrade of Level-1 Endcap Muon Trigger

    CERN Document Server

    Mizukami, Atsushi; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment utilises a trigger system to efficiently record interesting events. It consists of first-level and high-level triggers. The first-level trigger is implemented with custom-built hardware to reduce the event rate from 40 MHz to100 kHz. Then the software-based high-level triggers refine the trigger decisions reducing the output rate down to 1 kHz. Events with muons in the final state are an important signature for many physics topics at the LHC. An efficient trigger on muons and a detailed understanding of its performance are required. Trigger efficiencies are, for example, obtained from the muon decay of Z boson, with a Tag&Probe method, using proton-proton collision data collected in 2016 at a centre-of-mass energy of 13 TeV. The LHC is expected to increase its instantaneous luminosity to $3\\times10^{34} \\rm{cm^{-2}s^{-1}}$ after the phase-1 upgrade between 2018-2020. The upgrade of the ATLAS trigger system is mandatory to cope with this high-luminosity. In the phase-1 upgrade, new det...

  10. The BTeV trigger system

    International Nuclear Information System (INIS)

    Kaplan, D.M.

    2000-01-01

    BTeV is a dedicated beauty and charm experiment proposed for the Fermilab Tevatron. The broad physics program envisaged for BTeV requires a trigger that is efficient for a wide variety of heavy-quark decays, including those to all-hadronic final states. To achieve this, we plan to trigger on evidence of detached vertices at the very first trigger level, taking advantage of fast-readout pixel detectors to facilitate fast pattern recognition. Simulations show that 100-to-1 rejection of light-quark background events can be achieved at Level 1 using specialized trackfinding hardware, and that an additional factor of 10-100 in data reduction can be achieved using general purpose processor farms at Levels 2 and 3. This is adequate to allow data taking at luminosities in excess of 2x10 32 cm -2 s -1

  11. Use of GPUs in Trigger Systems

    Science.gov (United States)

    Lamanna, Gianluca

    In recent years the interest for using graphics processor (GPU) in general purpose high performance computing is constantly rising. In this paper we discuss the possible use of GPUs to construct a fast and effective real time trigger system, both in software and hardware levels. In particular, we study the integration of such a system in the NA62 trigger. The first application of GPUs for rings pattern recognition in the RICH will be presented. The results obtained show that there are not showstoppers in trigger systems with relatively low latency. Thanks to the use of off-the-shelf technology, in continous development for purposes related to video game and image processing market, the architecture described would be easily exported to other experiments, to build a versatile and fully customizable online selection.

  12. The ATLAS Electron and Photon Trigger

    CERN Document Server

    Jones, Samuel David; The ATLAS collaboration

    2018-01-01

    ATLAS electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential to record signals for a wide variety of physics: from Standard Model processes to searches for new phenomena. To cope with ever-increasing luminosity and more challenging pile-up conditions at a centre-of-mass energy of 13 TeV, the trigger selections need to be optimized to control the rates and keep efficiencies high. The ATLAS electron and photon trigger performance in Run 2 will be presented, including both the role of the ATLAS calorimeter in electron and photon identification and details of new techniques developed to maintain high performance even in high pile-up conditions.

  13. Combining triggers in HEP data analysis

    International Nuclear Information System (INIS)

    Lendermann, Victor; Herbst, Michael; Krueger, Katja; Schultz-Coulon, Hans-Christian; Stamen, Rainer; Haller, Johannes

    2009-01-01

    Modern high-energy physics experiments collect data using dedicated complex multi-level trigger systems which perform an online selection of potentially interesting events. In general, this selection suffers from inefficiencies. A further loss of statistics occurs when the rate of accepted events is artificially scaled down in order to meet bandwidth constraints. An offline analysis of the recorded data must correct for the resulting losses in order to determine the original statistics of the analysed data sample. This is particularly challenging when data samples recorded by several triggers are combined. In this paper we present methods for the calculation of the offline corrections and study their statistical performance. Implications on building and operating trigger systems are discussed. (orig.)

  14. Combining triggers in HEP data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lendermann, Victor; Herbst, Michael; Krueger, Katja; Schultz-Coulon, Hans-Christian; Stamen, Rainer [Heidelberg Univ. (Germany). Kirchhoff-Institut fuer Physik; Haller, Johannes [Hamburg Univ. (Germany). Institut fuer Experimentalphysik

    2009-01-15

    Modern high-energy physics experiments collect data using dedicated complex multi-level trigger systems which perform an online selection of potentially interesting events. In general, this selection suffers from inefficiencies. A further loss of statistics occurs when the rate of accepted events is artificially scaled down in order to meet bandwidth constraints. An offline analysis of the recorded data must correct for the resulting losses in order to determine the original statistics of the analysed data sample. This is particularly challenging when data samples recorded by several triggers are combined. In this paper we present methods for the calculation of the offline corrections and study their statistical performance. Implications on building and operating trigger systems are discussed. (orig.)

  15. A new fast and programmable trigger logic

    International Nuclear Information System (INIS)

    Fucci, A.; Amendolia, S.R.; Bertolucci, E.; Bottigli, U.; Bradaschia, C.; Foa, L.; Giazotto, A.; Giorgi, M.; Givoletti, M.; Lucardesi, P.; Menzione, A.; Passuello, D.; Quaglia, M.; Ristori, L.; Rolandi, L.; Salvadori, P.; Scribano, A.; Stanga, R.; Stefanini, A.; Vincelli, M.L.

    1977-01-01

    The NA1 (FRAMM) experiment, under construction for the CERN-SPS North Area, deals with more than 1000 counter signals which have to be combined together in order to build sophisticated and highly selective triggers. These requirements have led to the development of a low cost, combinatorial, fast electronics which can replace, in an advantageous way the standard NIM electronics at the trigger level. The essential performances of the basic circuit are: 1) programmability of any desired logical expression; 2) trigger time independent of the chosen expression; 3) reduced cost and compactness due to the use of commercial RAMs, PROMs, and PLAs; 4) short delay, less than 20 ns, between input and output pulses. (Auth.)

  16. FTK: a Fast Track Trigger for ATLAS

    International Nuclear Information System (INIS)

    Anderson, J; Auerbach, B; Blair, R; Andreani, A; Andreazza, A; Citterio, M; Annovi, A; Beretta, M; Castegnaro, A; Atkinson, M; Cavaliere, V; Chang, P; Bevacqua, V; Crescioli, F; Blazey, G; Bogdan, M; Boveia, A; Canelli, F; Cheng, Y; Cervigni, F

    2012-01-01

    We describe the design and expected performance of a the Fast Tracker Trigger (FTK) system for the ATLAS detector at the Large Hadron Collider. The FTK is a highly parallel hardware system designed to operate at the Level 1 trigger output rate. It is designed to provide global tracks reconstructed in the inner detector with resolution comparable to the full offline reconstruction as input of the Level 2 trigger processing. The hardware system is based on associative memories for pattern recognition and fast FPGAs for track reconstruction. The FTK is expected to dramatically improve the performance of track based isolation and b-tagging with little to no dependencies of pile-up interactions.

  17. A self triggered intensified Ccd (Stic)

    International Nuclear Information System (INIS)

    Charon, Y.; Laniece, P.; Bendali, M.

    1990-01-01

    We are developing a new device based on the results reported previously of the successfull coincidence detection of β- particles with a high spatial resolution [1]. The novelty of the device consists in triggering an intensified CCD, i.e. a CCD coupled to an image intensifier (II), by an electrical signal collected from the II itself. This is a suitable procedure for detecting with high efficiency and high resolution low light rare events. The trigger pulse is obtained from the secondary electrons produced by multiplication in a double microchannel plate (MCP) and collected on the aluminized layer protecting the phosphor screen in the II. Triggering efficiencies up to 80% has been already achieved

  18. The UA1 upgrade calorimeter trigger processor

    International Nuclear Information System (INIS)

    Bains, M.; Charleton, D.; Ellis, N.; Garvey, J.; Gregory, J.; Jimack, M.P.; Jovanovic, P.; Kenyon, I.R.; Baird, S.A.; Campbell, D.; Cawthraw, M.; Coughlan, J.; Flynn, P.; Galagedera, S.; Grayer, G.; Halsall, R.; Shah, T.P.; Stephens, R.; Biddulph, P.; Eisenhandler, E.; Fensome, I.F.; Landon, M.; Robinson, D.; Oliver, J.; Sumorok, K.

    1990-01-01

    The increased luminosity of the improved CERN Collider and the more subtle signals of second-generation collider physics demand increasingly sophisticated triggering. We have built a new first-level trigger processor designed to use the excellent granularity of the UA1 upgrade calorimeter. This device is entirely digital and handles events in 1.5 μs, thus introducing no dead time. Its most novel feature is fast two-dimensional electromagnetic cluster-finding with the possibility of demanding an isolated shower of limited penetration. The processor allows multiple combinations of triggers on electromagnetic showers, hadronic jets and energy sums, including a total-energy veto of multiple interactions and a full vector sum of missing transverse energy. This hard-wired processor is about five times more powerful than its predecessor, and makes extensive use of pipelining techniques. It was used extensively in the 1988 and 1989 runs of the CERN Collider. (orig.)

  19. The UA1 upgrade calorimeter trigger processor

    International Nuclear Information System (INIS)

    Bains, N.; Baird, S.A.; Biddulph, P.

    1990-01-01

    The increased luminosity of the improved CERN Collider and the more subtle signals of second-generation collider physics demand increasingly sophisticated triggering. We have built a new first-level trigger processor designed to use the excellent granularity of the UA1 upgrade calorimeter. This device is entirely digital and handles events in 1.5 μs, thus introducing no deadtime. Its most novel feature is fast two-dimensional electromagnetic cluster-finding with the possibility of demanding an isolated shower of limited penetration. The processor allows multiple combinations of triggers on electromagnetic showers, hadronic jets and energy sums, including a total-energy veto of multiple interactions and a full vector sum of missing transverse energy. This hard-wired processor is about five times more powerful than its predecessor, and makes extensive use of pipelining techniques. It was used extensively in the 1988 and 1989 runs of the CERN Collider. (author)

  20. The double Chooz hardware trigger system

    Energy Technology Data Exchange (ETDEWEB)

    Cucoanes, Andi; Beissel, Franz; Reinhold, Bernd; Roth, Stefan; Stahl, Achim; Wiebusch, Christopher [RWTH Aachen (Germany)

    2008-07-01

    The double Chooz neutrino experiment aims to improve the present knowledge on {theta}{sub 13} mixing angle using two similar detectors placed at {proportional_to}280 m and respectively 1 km from the Chooz power plant reactor cores. The detectors measure the disappearance of reactor antineutrinos. The hardware trigger has to be very efficient for antineutrinos as well as for various types of background events. The triggering condition is based on discriminated PMT sum signals and the multiplicity of groups of PMTs. The talk gives an outlook to the double Chooz experiment and explains the requirements of the trigger system. The resulting concept and its performance is shown as well as first results from a prototype system.

  1. Self-triggering superconducting fault current limiter

    Science.gov (United States)

    Yuan, Xing [Albany, NY; Tekletsadik, Kasegn [Rexford, NY

    2008-10-21

    A modular and scaleable Matrix Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. The matrix fault current limiter comprises a fault current limiter module that includes a superconductor which is electrically coupled in parallel with a trigger coil, wherein the trigger coil is magnetically coupled to the superconductor. The current surge doing a fault within the electrical power network will cause the superconductor to transition to its resistive state and also generate a uniform magnetic field in the trigger coil and simultaneously limit the voltage developed across the superconductor. This results in fast and uniform quenching of the superconductors, significantly reduces the burnout risk associated with non-uniformity often existing within the volume of superconductor materials. The fault current limiter modules may be electrically coupled together to form various "n" (rows).times."m" (columns) matrix configurations.

  2. Dendrite Injury Triggers DLK-Independent Regeneration

    Directory of Open Access Journals (Sweden)

    Michelle C. Stone

    2014-01-01

    Full Text Available Axon injury triggers regeneration through activation of a conserved kinase cascade, which includes the dual leucine zipper kinase (DLK. Although dendrites are damaged during stroke, traumatic brain injury, and seizure, it is not known whether mature neurons monitor dendrite injury and initiate regeneration. We probed the response to dendrite damage using model Drosophila neurons. Two larval neuron types regrew dendrites in distinct ways after all dendrites were removed. Dendrite regeneration was also triggered by injury in adults. Next, we tested whether dendrite injury was initiated with the same machinery as axon injury. Surprisingly, DLK, JNK, and fos were dispensable for dendrite regeneration. Moreover, this MAP kinase pathway was not activated by injury to dendrites. Thus, neurons respond to dendrite damage and initiate regeneration without using the conserved DLK cascade that triggers axon regeneration.

  3. The ZEUS second level calorimeter trigger

    International Nuclear Information System (INIS)

    Jong, S.J. de.

    1990-01-01

    ZEUS is a detector for the HERA ep collider, consisting of several large components. The most important being the inner tracking detectors, which are positioned nearest to the interaction point, the calorimeter surrounding the inner tracking detectors and the muon detectors on the outside of the experimental setup. Each component will deliver a vast amount of information. In order to keep this information manageable, data is preprocessed and condensed per component and then combined to obtain the final global trigger result. The main subject of this thesis is the second level calorimeter trigger processor of the ZEUS detector. In order to be able to reject the unwanted events passing the first level, the topological event signature will have to be used at the second level. The most demanding task of the second level is the recognition of local energy depositions corresponding to isolated electrons and hadron jets. Also part of the work performed by the first level will be repeated with a higher level of accuracy. Additional information not available to the first level trigger will be processed and will be made available to the global second level trigger decision module. For the second level calorimeter trigger processor a special VME module, containing two transputers, has been developed. The second level calorimeter trigger algorithm described in this thesis was tested with simulated events, that were tracked through a computer simulation of the ZEUS detector. A part of this thesis is therefore devoted to the description of the various Monte Carlo models and the justification of the way in which they were used. (author). 132 refs.; 76 figs.; 18 tabs

  4. The ATLAS trigger: high-level trigger commissioning and operation during early data taking

    International Nuclear Information System (INIS)

    Goncalo, R

    2008-01-01

    The ATLAS experiment is one of the two general-purpose experiments due to start operation soon at the Large Hadron Collider (LHC). The LHC will collide protons at a centre of mass energy of 14 TeV, with a bunch-crossing rate of 40 MHz. The ATLAS three-level trigger will reduce this input rate to match the foreseen offline storage capability of 100-200 Hz. This paper gives an overview of the ATLAS High Level Trigger focusing on the system design and its innovative features. We then present the ATLAS trigger strategy for the initial phase of LHC exploitation. Finally, we report on the valuable experience acquired through in-situ commissioning of the system where simulated events were used to exercise the trigger chain. In particular we show critical quantities such as event processing times, measured in a large-scale HLT farm using a complex trigger menu

  5. Self triggered single pulse beam position monitor

    International Nuclear Information System (INIS)

    Rothman, J.L.; Blum, E.B.

    1993-01-01

    A self triggered beam position monitor (BPM) has been developed for the NSLS injection system to provide single pulse orbit measurements in the booster synchrotron, linac, and transport lines. The BPM integrates the negative going portion of 3 nS wide bipolar pickup electrode signals. The gated, self triggering feature confines critical timing components to the front end, relaxing external timing specifications. The system features a low noise high speed FET sampler, a fiber optic gate for bunch and turn selection, and an inexpensive interface to a standard PC data acquisition system

  6. Run 2 ATLAS Trigger and Detector Performance

    CERN Document Server

    Solovyanov, Oleg; The ATLAS collaboration

    2018-01-01

    The 2nd LHC run has started in June 2015 with a proton-proton centre-of-mass collision energy of 13 TeV. During the years 2016 and 2017, LHC delivered an unprecedented amount of luminosity under the ever-increasing challenging conditions in terms of peak luminosity, pile-up and trigger rates. In this talk, the LHC running conditions and the improvements made to the ATLAS experiment in the course of Run 2 will be discussed, and the latest ATLAS detector and ATLAS trigger performance results from the Run 2 will be presented.

  7. Advances in tracking and trigger concepts

    International Nuclear Information System (INIS)

    Kisel, Ivan

    2014-01-01

    Increasing beam intensities and input data rates require to rethink the traditional approaches in trigger concepts. At the same time the advanced many-core computer architectures providing new dimensions in programming require to rework the standard methods or to develop new methods of track reconstruction in order to efficiently use parallelism of the computer hardware. As a results a new tendency appears to replace the standard (usually implemented in FPGA) hardware triggers by clusters of computers running software reconstruction and selection algorithms. In addition that makes possible unification of the offline and on-line data processing and analysis in one software package running on a heterogeneous computer farm

  8. The CMS High-Level Trigger

    International Nuclear Information System (INIS)

    Covarelli, R.

    2009-01-01

    At the startup of the LHC, the CMS data acquisition is expected to be able to sustain an event readout rate of up to 100 kHz from the Level-1 trigger. These events will be read into a large processor farm which will run the 'High-Level Trigger'(HLT) selection algorithms and will output a rate of about 150 Hz for permanent data storage. In this report HLT performances are shown for selections based on muons, electrons, photons, jets, missing transverse energy, τ leptons and b quarks: expected efficiencies, background rates and CPU time consumption are reported as well as relaxation criteria foreseen for a LHC startup instantaneous luminosity.

  9. The CMS High-Level Trigger

    CERN Document Server

    Covarelli, Roberto

    2009-01-01

    At the startup of the LHC, the CMS data acquisition is expected to be able to sustain an event readout rate of up to 100 kHz from the Level-1 trigger. These events will be read into a large processor farm which will run the "High-Level Trigger" (HLT) selection algorithms and will output a rate of about 150 Hz for permanent data storage. In this report HLT performances are shown for selections based on muons, electrons, photons, jets, missing transverse energy, tau leptons and b quarks: expected efficiencies, background rates and CPU time consumption are reported as well as relaxation criteria foreseen for a LHC startup instantaneous luminosity.

  10. The CMS High-Level Trigger

    Science.gov (United States)

    Covarelli, R.

    2009-12-01

    At the startup of the LHC, the CMS data acquisition is expected to be able to sustain an event readout rate of up to 100 kHz from the Level-1 trigger. These events will be read into a large processor farm which will run the "High-Level Trigger" (HLT) selection algorithms and will output a rate of about 150 Hz for permanent data storage. In this report HLT performances are shown for selections based on muons, electrons, photons, jets, missing transverse energy, τ leptons and b quarks: expected efficiencies, background rates and CPU time consumption are reported as well as relaxation criteria foreseen for a LHC startup instantaneous luminosity.

  11. Popular sweetner sucralose as a migraine trigger.

    Science.gov (United States)

    Patel, Rajendrakumar M; Sarma, Rakesh; Grimsley, Edwin

    2006-09-01

    Sucralose (trichlorogalactosucrose, or better known as Splenda) is an artificial sweetener from native sucrose that was approved by the FDA on April 1, 1998 (April Fool's Day). This observation of a potential causal relationship between sucralose and migraines may be important for physicians to remember this can be a possible trigger during dietary history taking. Identifying further triggers for migraine headaches, in this case sucralose, may help alleviate some of the cost burden (through expensive medical therapy or missed work opportunity) as well as provide relief to migraineurs.

  12. CMS Calorimeter Trigger Phase I upgrade

    International Nuclear Information System (INIS)

    Klabbers, P; Gorski, T; Bachtis, M; Dasu, S; Fobes, R; Grothe, M; Ross, I; Smith, W H; Compton, K; Farmahini-Farahani, A; Gregerson, A; Seemuth, D; Schulte, M

    2012-01-01

    We present a design for the Phase-1 upgrade of the Compact Muon Solenoid (CMS) calorimeter trigger system composed of FPGAs and Multi-GBit/sec links that adhere to the μTCA crate Telecom standard. The upgrade calorimeter trigger will implement algorithms that create collections of isolated and non-isolated electromagnetic objects, isolated and non-isolated tau objects and jet objects. The algorithms are organized in several steps with progressive data reduction. These include a particle cluster finder that reconstructs overlapping clusters of 2x2 calorimeter towers and applies electron identification, a cluster overlap filter, particle isolation determination, jet reconstruction, particle separation and sorting.

  13. Hardware trigger processor for the MDT system

    CERN Document Server

    AUTHOR|(SzGeCERN)757787; The ATLAS collaboration; Hazen, Eric; Butler, John; Black, Kevin; Gastler, Daniel Edward; Ntekas, Konstantinos; Taffard, Anyes; Martinez Outschoorn, Verena; Ishino, Masaya; Okumura, Yasuyuki

    2017-01-01

    We are developing a low-latency hardware trigger processor for the Monitored Drift Tube system in the Muon spectrometer. The processor will fit candidate Muon tracks in the drift tubes in real time, improving significantly the momentum resolution provided by the dedicated trigger chambers. We present a novel pure-FPGA implementation of a Legendre transform segment finder, an associative-memory alternative implementation, an ARM (Zynq) processor-based track fitter, and compact ATCA carrier board architecture. The ATCA architecture is designed to allow a modular, staged approach to deployment of the system and exploration of alternative technologies.

  14. Subduction zone earthquake probably triggered submarine hydrocarbon seepage offshore Pakistan

    Science.gov (United States)

    Fischer, David; José M., Mogollón; Michael, Strasser; Thomas, Pape; Gerhard, Bohrmann; Noemi, Fekete; Volkhard, Spiess; Sabine, Kasten

    2014-05-01

    Seepage of methane-dominated hydrocarbons is heterogeneous in space and time, and trigger mechanisms of episodic seep events are not well constrained. It is generally found that free hydrocarbon gas entering the local gas hydrate stability field in marine sediments is sequestered in gas hydrates. In this manner, gas hydrates can act as a buffer for carbon transport from the sediment into the ocean. However, the efficiency of gas hydrate-bearing sediments for retaining hydrocarbons may be corrupted: Hypothesized mechanisms include critical gas/fluid pressures beneath gas hydrate-bearing sediments, implying that these are susceptible to mechanical failure and subsequent gas release. Although gas hydrates often occur in seismically active regions, e.g., subduction zones, the role of earthquakes as potential triggers of hydrocarbon transport through gas hydrate-bearing sediments has hardly been explored. Based on a recent publication (Fischer et al., 2013), we present geochemical and transport/reaction-modelling data suggesting a substantial increase in upward gas flux and hydrocarbon emission into the water column following a major earthquake that occurred near the study sites in 1945. Calculating the formation time of authigenic barite enrichments identified in two sediment cores obtained from an anticlinal structure called "Nascent Ridge", we find they formed 38-91 years before sampling, which corresponds well to the time elapsed since the earthquake (62 years). Furthermore, applying a numerical model, we show that the local sulfate/methane transition zone shifted upward by several meters due to the increased methane flux and simulated sulfate profiles very closely match measured ones in a comparable time frame of 50-70 years. We thus propose a causal relation between the earthquake and the amplified gas flux and present reflection seismic data supporting our hypothesis that co-seismic ground shaking induced mechanical fracturing of gas hydrate-bearing sediments

  15. A trigger simulation framework for the ALICE experiment

    International Nuclear Information System (INIS)

    Antinori, F; Carminati, F; Gheata, A; Gheata, M

    2011-01-01

    A realistic simulation of the trigger system in a complex HEP experiment is essential for performing detailed trigger efficiency studies. The ALICE trigger simulation is evolving towards a framework capable of replaying the full trigger chain starting from the input to the individual trigger processors and ending with the decision mechanisms of the ALICE central trigger processor. This paper describes the new ALICE trigger simulation framework that is being tested and deployed. The framework handles details like trigger levels, signal delays and busy signals, implementing the trigger logic via customizable trigger device objects managed by a robust scheduling mechanism. A big advantage is the high flexibility of the framework, which is able to mix together components described with very different levels of detail. The framework is being gradually integrated within the ALICE simulation and reconstruction frameworks.

  16. Optical and EUV studies of laser triggered Z-pinch discharges

    OpenAIRE

    Tobin, Isaac

    2014-01-01

    This thesis describes the results of experiments with two geometries of laser assisted discharge plasma. Both devices are designed for fast Z-pinch discharge, triggered by laser produced plasma generated by ablation of one or both electrodes. The laser plasma parameters are adjusted to control the plasma load while the discharge parameters are adjusted to yield a rate of rise of current greater than 1010 A/s. The expansion dynamics and emission characteristics of the plasma were analysed, wit...

  17. Towards a Level-1 Tracking Trigger for the ATLAS Experiment

    CERN Document Server

    De Santo, A; The ATLAS collaboration

    2016-01-01

    In preparation for the high-luminosity phase of the Large Hadron Collider, ATLAS is planning a trigger upgrade that will enable the experiment to use tracking information already at the first trigger level. This will provide enhanced background rejection power at trigger level while preserving much needed flexibility for the trigger system. The status and current plans for the new ATLAS Level-1 tracking trigger are presented.

  18. UA1 upgrade first-level calorimeter trigger processor

    International Nuclear Information System (INIS)

    Bains, N.; Charlton, D.; Ellis, N.; Garvey, J.; Gregory, J.; Jimack, M.P.; Jovanovic, P.; Kenyon, I.R.; Baird, S.A.; Campbell, D.; Cawthraw, M.; Coughlan, J.; Flynn, P.; Galagedera, S.; Grayer, G.; Halsall, R.; Shah, T.P.; Stephens, R.; Eisenhandler, E.; Fensome, I.; Landon, M.

    1989-01-01

    A new first-level trigger processor has been built for the UA1 experiment on the Cern SppS Collider. The processor exploits the fine granularity of the new UA1 uranium-TMP calorimeter to improve the selectivity of the trigger. The new electron trigger has improved hadron jet rejection, achieved by requiring low energy deposition around the electromagnetic cluster. A missing transverse energy trigger and a total energy trigger have also been implemented. (orig.)

  19. Prostate cancer may trigger paraneoplastic limbic encephalitis

    DEFF Research Database (Denmark)

    Jakobsen, Jakob Kristian; Zakharia, Elias Raja; Boysen, Anders Kindberg Fossø

    2013-01-01

    -Hu antibody test the patient was diagnosed with paraneoplastic limbic encephalitis related to prostate cancer. The patient died within 6 months. We review the literature on prostate cancer-related paraneoplastic limbic encephalitis. High-risk prostate cancer can trigger paraneoplastic limbic encephalitis...

  20. Entity models for trigger-reaction documents

    NARCIS (Netherlands)

    Khalid, M.A.; Marx, M.; Makkes, M.X.

    2008-01-01

    We define the notion of an entity model for a special kind of document popular on the web: an article followed by a list of reactions on that article, usually by many authors, usually inverse chronologically ordered. We call these documents trigger-reactions pairs. The entity model describes which

  1. Hard scattering and a diffractive trigger

    International Nuclear Information System (INIS)

    Berger, E.L.; Collins, J.C.; Soper, D.E.; Sterman, G.

    1986-02-01

    Conclusions concerning the properties of hard scattering in diffractively produced systems are summarized. One motivation for studying diffractive hard scattering is to investigate the interface between Regge theory and perturbative QCD. Another is to see whether diffractive triggering can result in an improvement in the signal-to-background ratio of measurements of production of very heavy quarks. 5 refs

  2. 2017 B-Physics trigger efficiencies

    CERN Document Server

    CMS Collaboration

    2018-01-01

    The performance of the trigger used to select B-Physics decay channels in CMS is presented for data collected in 2017, corresponding to an integrated luminosity of $9.8\\,\\mathrm{fb}^{-1}$ at $13\\,\\mathrm{TeV}$.

  3. Self-triggered coordination with ternary controllers

    NARCIS (Netherlands)

    De Persis, Claudio; Frasca, Paolo

    2012-01-01

    This paper regards coordination of networked systems with ternary controllers. We develop a hybrid coordination system which implements a self-triggered communication policy, based on polling the neighbors upon need. We prove that the proposed scheme ensures finite-time convergence to a neighborhood

  4. BTeV trigger/DAQ innovations

    International Nuclear Information System (INIS)

    Votava, Margaret

    2005-01-01

    The BTeV experiment was a collider based high energy physics (HEP) B-physics experiment proposed at Fermilab. It included a large-scale, high speed trigger/data acquisition (DAQ) system, reading data off the detector at 500 Gbytes/sec and writing to mass storage at 200 Mbytes/sec. The online design was considered to be highly credible in terms of technical feasibility, schedule and cost. This paper will give an overview of the overall trigger/DAQ architecture, highlight some of the challenges, and describe the BTeV approach to solving some of the technical challenges. At the time of termination in early 2005, the experiment had just passed its baseline review. Although not fully implemented, many of the architecture choices, design, and prototype work for the online system (both trigger and DAQ) were well on their way to completion. Other large, high-speed online systems may have interest in the some of the design choices and directions of BTeV, including (a) a commodity-based tracking trigger running asynchronously at full rate, (b) the hierarchical control and fault tolerance in a large real time environment, (c) a partitioning model that supports offline processing on the online farms during idle periods with plans for dynamic load balancing, and (d) an independent parallel highway architecture

  5. Event Reconstruction Algorithms for the ATLAS Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca-Martin, T.; /CERN; Abolins, M.; /Michigan State U.; Adragna, P.; /Queen Mary, U. of London; Aleksandrov, E.; /Dubna, JINR; Aleksandrov, I.; /Dubna, JINR; Amorim, A.; /Lisbon, LIFEP; Anderson, K.; /Chicago U., EFI; Anduaga, X.; /La Plata U.; Aracena, I.; /SLAC; Asquith, L.; /University Coll. London; Avolio, G.; /CERN; Backlund, S.; /CERN; Badescu, E.; /Bucharest, IFIN-HH; Baines, J.; /Rutherford; Barria, P.; /Rome U. /INFN, Rome; Bartoldus, R.; /SLAC; Batreanu, S.; /Bucharest, IFIN-HH /CERN; Beck, H.P.; /Bern U.; Bee, C.; /Marseille, CPPM; Bell, P.; /Manchester U.; Bell, W.H.; /Glasgow U. /Pavia U. /INFN, Pavia /Regina U. /CERN /Annecy, LAPP /Paris, IN2P3 /Royal Holloway, U. of London /Napoli Seconda U. /INFN, Naples /Argonne /CERN /UC, Irvine /Barcelona, IFAE /Barcelona, Autonoma U. /CERN /Montreal U. /CERN /Glasgow U. /Michigan State U. /Bucharest, IFIN-HH /Napoli Seconda U. /INFN, Naples /New York U. /Barcelona, IFAE /Barcelona, Autonoma U. /Salento U. /INFN, Lecce /Pisa U. /INFN, Pisa /Bucharest, IFIN-HH /UC, Irvine /CERN /Glasgow U. /INFN, Genoa /Genoa U. /Lisbon, LIFEP /Napoli Seconda U. /INFN, Naples /UC, Irvine /Valencia U. /Rio de Janeiro Federal U. /University Coll. London /New York U.; /more authors..

    2011-11-09

    The ATLAS experiment under construction at CERN is due to begin operation at the end of 2007. The detector will record the results of proton-proton collisions at a center-of-mass energy of 14 TeV. The trigger is a three-tier system designed to identify in real-time potentially interesting events that are then saved for detailed offline analysis. The trigger system will select approximately 200 Hz of potentially interesting events out of the 40 MHz bunch-crossing rate (with 10{sup 9} interactions per second at the nominal luminosity). Algorithms used in the trigger system to identify different event features of interest will be described, as well as their expected performance in terms of selection efficiency, background rejection and computation time per event. The talk will concentrate on recent improvements and on performance studies, using a very detailed simulation of the ATLAS detector and electronics chain that emulates the raw data as it will appear at the input to the trigger system.

  6. Multiple output timing and trigger generator

    Energy Technology Data Exchange (ETDEWEB)

    Wheat, Robert M. [Los Alamos National Laboratory; Dale, Gregory E [Los Alamos National Laboratory

    2009-01-01

    In support of the development of a multiple stage pulse modulator at the Los Alamos National Laboratory, we have developed a first generation, multiple output timing and trigger generator. Exploiting Commercial Off The Shelf (COTS) Micro Controller Units (MCU's), the timing and trigger generator provides 32 independent outputs with a timing resolution of about 500 ns. The timing and trigger generator system is comprised of two MCU boards and a single PC. One of the MCU boards performs the functions of the timing and signal generation (the timing controller) while the second MCU board accepts commands from the PC and provides the timing instructions to the timing controller. The PC provides the user interface for adjusting the on and off timing for each of the output signals. This system provides 32 output or timing signals which can be pre-programmed to be in an on or off state for each of 64 time steps. The width or duration of each of the 64 time steps is programmable from 2 {micro}s to 2.5 ms with a minimum time resolution of 500 ns. The repetition rate of the programmed pulse train is only limited by the time duration of the programmed event. This paper describes the design and function of the timing and trigger generator system and software including test results and measurements.

  7. Performance of the CMS High Level Trigger

    CERN Document Server

    Perrotta, Andrea

    2015-01-01

    The CMS experiment has been designed with a 2-level trigger system. The first level is implemented using custom-designed electronics. The second level is the so-called High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. For Run II of the Large Hadron Collider, the increases in center-of-mass energy and luminosity will raise the event rate to a level challenging for the HLT algorithms. The increase in the number of interactions per bunch crossing, on average 25 in 2012, and expected to be around 40 in Run II, will be an additional complication. We present here the expected performance of the main triggers that will be used during the 2015 data taking campaign, paying particular attention to the new approaches that have been developed to cope with the challenges of the new run. This includes improvements in HLT electron and photon reconstruction as well as better performing muon triggers. We will also present the performance of the improved trac...

  8. ALICE Trigger and Event Selection QA

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    I will present the last nine weeks of work on building a class that efficiently produces trending physics selection of various trigger classes for the purposes of quality assurance. This class is easily generalizable and will be used for live monitoring via a webpage.

  9. Triggering on electrons and photons with CMS

    Directory of Open Access Journals (Sweden)

    Zabi Alexandre

    2012-06-01

    Full Text Available Throughout the year 2011, the Large Hadron Collider (LHC has operated with an instantaneous luminosity that has risen continually to around 4 × 1033cm−2s−1. With this prodigious high-energy proton collisions rate, efficient triggering on electrons and photons has become a major challenge for the LHC experiments. The Compact Muon Solenoid (CMS experiment implements a sophisticated two-level online selection system that achieves a rejection factor of nearly 106. The first level (L1 is based on coarse information coming from the calorimeters and the muon detectors while the High-Level Trigger (HLT combines fine-grain information from all sub-detectors. In this intense hadronic environment, the L1 electron/photon trigger provides a powerful tool to select interesting events. It is based upon information from the Electromagnetic Calorimeter (ECAL, a high-resolution detector comprising 75848 lead tungstate (PbWO4 crystals in a “barrel” and two “endcaps”. The performance as well as the optimization of the electron/photon trigger are presented.

  10. Reflex epilepsy: triggers and management strategies

    Directory of Open Access Journals (Sweden)

    Okudan ZV

    2018-01-01

    Full Text Available Zeynep Vildan Okudan,1 Çiğdem Özkara2 1Department of Neurology, Bakirkoy Dr Sadi Konuk Education and Research Hospital, 2Department of Neurology and Clinical Neurophysiology, Cerrahpasa Faculty of Medicine, University of Istanbul, Istanbul, Turkey Abstract: Reflex epilepsies (REs are identified as epileptic seizures that are consistently induced by identifiable and objective-specific triggers, which may be an afferent stimulus or by the patient’s own activity. RE may have different subtypes depending on the stimulus characteristic. There are significant clinical and electrophysiologic differences between different RE types. Visual stimuli-sensitive or photosensitive epilepsies constitute a large proportion of the RE and are mainly related to genetic causes. Reflex epilepsies may present with focal or generalized seizures due to specific triggers, and sometimes seizures may occur spontaneously. The stimuli can be external (light flashes, hot water, internal (emotion, thinking, or both and should be distinguished from triggering precipitants, which most epileptic patients could report such as emotional stress, sleep deprivation, alcohol, and menstrual cycle. Different genetic and acquired factors may play a role in etiology of RE. This review will provide a current overview of the triggering factors and management of reflex seizures. Keywords: seizure, reflex epilepsy, photosensitivity, hot water, reading, thinking

  11. Does heavy physical exertion trigger myocardial infarction?

    DEFF Research Database (Denmark)

    Hallqvist, J; Möller, J; Ahlbom, A

    2000-01-01

    To study possible triggering of first events of acute myocardial infarction by heavy physical exertion, the authors conducted a case-crossover analysis (1993-1994) within a population-based case-referent study in Stockholm County, Sweden (the Stockholm Heart Epidemiology Program). Interviews were...

  12. The CMS Barrel Muon Trigger Upgrade

    CERN Document Server

    Triossi, Andrea

    2017-01-01

    ABSTRACT: The increase of luminosity expected by LHC during Phase 1 will impose several constrains for rate reduction while maintaining high efficiency in the CMS Level 1 trigger system. The TwinMux system is the early layer of the muon barrel region that concentrates the information from different subdetectors DT, RPC and HO. It arranges and fan-out the slow optical trigger links from the detector chambers into faster links (10 Gbps) that are sent to the track finders. Results, from collision runs, that confirm the satisfactory operation of the trigger system up to the output of the barrel track finder, will be shown. SUMMARY: In view of the increase of luminosity during phase 1 upgrade of LHC, the muon trigger chain of the Compact Muon Solenoid (CMS) experiment underwent considerable improvements. The muon detector was designed for preserving the complementarity and redundancy of three separate muon detection systems, Cathode Strip Chambers (CSC), Drift Tubes (DT) and Resistive Plate Chambers (RPC), until ...

  13. Trigger factors and mechanisms in migraine

    NARCIS (Netherlands)

    Schoonman, Geurt Gerhard

    2008-01-01

    Migraine is a severe headache syndrome, affecting approximately 33% of females and 13% of males. Patients suffer from recurring headache episodes in combination with nausea, vomiting, phono and photophobia. It is a paroxysmal disorder for which several several trigger factors have been identified by

  14. BTeV detached vertex trigger

    International Nuclear Information System (INIS)

    Gottschalk, E.E.

    2001-01-01

    BTeV is a collider experiment that has been approved to run in the Tevatron at Fermilab. The experiment will conduct precision studies of CP violation using a forward-geometry detector. The detector will be optimized for high-rate detection of beauty and charm particles produced in collisions between protons and anti-protons. BTeV will trigger on beauty and charm events by taking advantage of the main difference between these heavy quark events and more typical hadronic events - the presence of detached beauty and charm decay vertices. The first stage of the BTeV trigger will receive data from a pixel vertex detector at a rate of 100 gb s -1 , reconstruct tracks and vertices for every beam crossing, reject 99% of beam crossings that do not produce beauty or charm particles, and trigger on beauty events with high efficiency. An overview of the trigger design and its influence on the design of the pixel vertex detector is presented

  15. Event reconstruction algorithms for the ATLAS trigger

    Energy Technology Data Exchange (ETDEWEB)

    F-Martin, T; Avolio, G; Backlund, S [European Laboratory for Particle Physics (CERN), Geneva (Switzerland); Abolins, M [Michigan State University, Department of Physics and Astronomy, East Lansing, Michigan (United States); Adragna, P [Department of Physics, Queen Mary and Westfield College, University of London, London (United Kingdom); Aleksandrov, E; Aleksandrov, I [Joint Institute for Nuclear Research, Dubna (Russian Federation); Amorim, A [Laboratorio de Instrumentacao e Fisica Experimental, Lisboa (Portugal); Anderson, K [University of Chicago, Enrico Fermi Institute, Chicago, Illinois (United States); Anduaga, X [National University of La Plata, La Plata (United States); Aracena, I; Bartoldus, R [Stanford Linear Accelerator Center (SLAC), Stanford (United States); Asquith, L [Department of Physics and Astronomy, University College London, London (United Kingdom); Badescu, E [National Institute for Physics and Nuclear Engineering, Institute of Atomic Physics, Bucharest (Romania); Baines, J [Rutherford Appleton Laboratory, Chilton, Didcot (United Kingdom); Beck, H P [Laboratory for High Energy Physics, University of Bern, Bern (Switzerland); Bee, C [Centre de Physique des Particules de Marseille, IN2P3-CNRS, Marseille (France); Bell, P [Department of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Barria, P; Batreanu, S [and others

    2008-07-01

    The ATLAS experiment under construction at CERN is due to begin operation at the end of 2007. The detector will record the results of proton-proton collisions at a center-of-mass energy of 14 TeV. The trigger is a three-tier system designed to identify in real-time potentially interesting events that are then saved for detailed offline analysis. The trigger system will select approximately 200 Hz of potentially interesting events out of the 40 MHz bunch-crossing rate (with 10{sup 9} interactions per second at the nominal luminosity). Algorithms used in the trigger system to identify different event features of interest will be described, as well as their expected performance in terms of selection efficiency, background rejection and computation time per event. The talk will concentrate on recent improvements and on performance studies, using a very detailed simulation of the ATLAS detector and electronics chain that emulates the raw data as it will appear at the input to the trigger system.

  16. Event reconstruction algorithms for the ATLAS trigger

    International Nuclear Information System (INIS)

    F-Martin, T; Avolio, G; Backlund, S; Abolins, M; Adragna, P; Aleksandrov, E; Aleksandrov, I; Amorim, A; Anderson, K; Anduaga, X; Aracena, I; Bartoldus, R; Asquith, L; Badescu, E; Baines, J; Beck, H P; Bee, C; Bell, P; Barria, P; Batreanu, S

    2008-01-01

    The ATLAS experiment under construction at CERN is due to begin operation at the end of 2007. The detector will record the results of proton-proton collisions at a center-of-mass energy of 14 TeV. The trigger is a three-tier system designed to identify in real-time potentially interesting events that are then saved for detailed offline analysis. The trigger system will select approximately 200 Hz of potentially interesting events out of the 40 MHz bunch-crossing rate (with 10 9 interactions per second at the nominal luminosity). Algorithms used in the trigger system to identify different event features of interest will be described, as well as their expected performance in terms of selection efficiency, background rejection and computation time per event. The talk will concentrate on recent improvements and on performance studies, using a very detailed simulation of the ATLAS detector and electronics chain that emulates the raw data as it will appear at the input to the trigger system

  17. Observation of very low frequency emissions at Indian Antarctic ...

    Indian Academy of Sciences (India)

    £Space Plasma Laboratory, Department of Physics, Barkatullah University, Bhopal 462 026, India. ££Geophysics ... Park and Helliwell .... [1] R A Helliwell, Whistler and related ionospheric phenomena (Stanford University Press, Stan-.

  18. CLUSTER FORMATION TRIGGERED BY FILAMENT COLLISIONS IN SERPENS SOUTH

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Fumitaka; Kawabe, Ryohei; Shinnaga, Hiroko [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Sugitani, Koji [Graduate School of Natural Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-8501 (Japan); Tanaka, Tomohiro; Kimura, Kimihiko; Tokuda, Kazuki; Kozu, Minato; Okada, Nozomi; Hasegawa, Yutaka; Ogawa, Hideo [Department of Physical Science, Osaka Prefecture University, Gakuen 1-1, Sakai, Osaka 599-8531 (Japan); Nishitani, Hiroyuki; Mizuno, Izumi [Nobeyama Radio Observatory, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Dobashi, Kazuhito; Shimoikura, Tomomi [Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Shimajiri, Yoshito [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service d' Astrophysique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Yonekura, Yoshinori [Center for Astronomy, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Kameno, Seiji [Joint ALMA Observatory, Alonso de Crdova 3107 Vitacura, Santiago (Chile); Momose, Munetake [Institute of Astrophysics and Planetary Sciences, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Nakajima, Taku, E-mail: fumitaka.nakamura@nao.ac.jp [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); and others

    2014-08-20

    The Serpens South infrared dark cloud consists of several filamentary ridges, some of which fragment into dense clumps. On the basis of CCS (J{sub N} = 4{sub 3}-3{sub 2}), HC{sub 3}N (J = 5-4), N{sub 2}H{sup +} (J = 1-0), and SiO (J = 2-1, v = 0) observations, we investigated the kinematics and chemical evolution of these filamentary ridges. We find that CCS is extremely abundant along the main filament in the protocluster clump. We emphasize that Serpens South is the first cluster-forming region where extremely strong CCS emission is detected. The CCS-to-N{sub 2}H{sup +} abundance ratio is estimated to be about 0.5 toward the protocluster clump, whereas it is about 3 in the other parts of the main filament. We identify six dense ridges with different V {sub LSR}. These ridges appear to converge toward the protocluster clump, suggesting that the collisions of these ridges may have triggered cluster formation. The collisions presumably happened within a few × 10{sup 5} yr because CCS is abundant only for a short time. The short lifetime agrees with the fact that the number fraction of Class I objects, whose typical lifetime is 0.4 × 10{sup 5} yr, is extremely high, about 70% in the protocluster clump. In the northern part, two ridges appear to have partially collided, forming a V-shape clump. In addition, we detected strong bipolar SiO emission that is due to the molecular outflow blowing out of the protostellar clump, as well as extended weak SiO emission that may originate from the filament collisions.

  19. The ATLAS online High Level Trigger framework experience reusing offline software components in the ATLAS trigger

    CERN Document Server

    Wiedenmann, W

    2009-01-01

    Event selection in the Atlas High Level Trigger is accomplished to a large extent by reusing software components and event selection algorithms developed and tested in an offline environment. Many of these offline software modules are not specifically designed to run in a heavily multi-threaded online data flow environment. The Atlas High Level Trigger (HLT) framework based on the Gaudi and Atlas Athena frameworks, forms the interface layer, which allows the execution of the HLT selection and monitoring code within the online run control and data flow software. While such an approach provides a unified environment for trigger event selection across all of Atlas, it also poses strict requirements on the reused software components in terms of performance, memory usage and stability. Experience of running the HLT selection software in the different environments and especially on large multi-node trigger farms has been gained in several commissioning periods using preloaded Monte Carlo events, in data taking peri...

  20. The ATLAS High Level Trigger Steering Framework and the Trigger 
Configuration System.

    CERN Document Server

    Pérez Cavalcanti, Tiago; The ATLAS collaboration

    2011-01-01

    The ATLAS High Level Trigger Steering Framework and the Trigger 
Configuration System.
 
The ATLAS detector system installed in the Large Hadron Collider (LHC) 
at CERN is designed to study proton-proton and nucleus-nucleus 
collisions with a maximum center of mass energy of 14 TeV at a bunch 
collision rate of 40MHz.  In March 2010 the four LHC experiments saw 
the first proton-proton collisions at 7 TeV. Still within the year a 
collision rate of nearly 10 MHz is expected. At ATLAS, events of 
potential interest for ATLAS physics are selected by a three-level 
trigger system, with a final recording rate of about 200 Hz. The first 
level (L1) is implemented in custom hardware; the two levels of 
the high level trigger (HLT) are software triggers, running on large 
farms of standard computers and network devices. 

Within the ATLAS physics program more than 500 trigger signatures are 
defined. The HLT tests each signature on each L1-accepted event; the 
test outcome is recor...

  1. Machine learning techniques for razor triggers

    CERN Document Server

    Kolosova, Marina

    2015-01-01

    My project was focused on the development of a neural network which can predict if an event passes or not a razor trigger. Using synthetic data containing jets and missing transverse energy we built and trained a razor network by supervised learning. We accomplished a ∼ 91% agreement between the output of the neural network and the target while the other 10% was due to the noise of the neural network. We could apply such networks during the L1 trigger using neuromorhic hardware. Neuromorphic chips are electronic systems that function in a way similar to an actual brain, they are faster than GPUs or CPUs, but they can only be used with spiking neural networks.

  2. Exogenously triggered response inhibition in developmental stuttering.

    Science.gov (United States)

    Eggers, Kurt; De Nil, Luc F; Van den Bergh, Bea R H

    2018-06-01

    The purpose of the present study was to examine relations between children's exogenously triggered response inhibition and stuttering. Participants were 18 children who stutter (CWS; mean age = 9;01 years) and 18 children who not stutter (CWNS; mean age = 9;01 years). Participants were matched on age (±3 months) and gender. Response inhibition was assessed by a stop signal task (Verbruggen, Logan, & Stevens, 2008). Results suggest that CWS, compared to CWNS, perform comparable to CWNS in a task where response control is externally triggered. Our findings seem to indicate that previous questionnaire-based findings (Eggers, De Nil, & Van den Bergh, 2010) of a decreased efficiency of response inhibition cannot be generalized to all types of response inhibition. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. The ALICE Central Trigger Processor (CTP) upgrade

    International Nuclear Information System (INIS)

    Krivda, M.; Alexandre, D.; Barnby, L.S.; Evans, D.; Jones, P.G.; Jusko, A.; Lietava, R.; Baillie, O. Villalobos; Pospíšil, J.

    2016-01-01

    The ALICE Central Trigger Processor (CTP) at the CERN LHC has been upgraded for LHC Run 2, to improve the Transition Radiation Detector (TRD) data-taking efficiency and to improve the physics performance of ALICE. There is a new additional CTP interaction record sent using a new second Detector Data Link (DDL), a 2 GB DDR3 memory and an extension of functionality for classes. The CTP switch has been incorporated directly onto the new LM0 board. A design proposal for an ALICE CTP upgrade for LHC Run 3 is also presented. Part of the development is a low latency high bandwidth interface whose purpose is to minimize an overall trigger latency

  4. CDF tau triggers, analysis and other developments

    International Nuclear Information System (INIS)

    J. R. Smith

    2003-01-01

    This note is a write-up of contribution made by the author to the HCP2002 conference. It has two principal subjects. The first subject concerns the CDF τ triggers, τ-cone algorithms and τ physics analysis. τ physics is going to be very important in Run II because τ's can extend SUSY searches at large tan β in particular, τ's will help in the searches for (tilde χ) 1 ± (tilde χ) 2 0 , MSSM Higgs and other non Standard Model (SM) processes. Also, τ events are important for various Standard Model processes including Precision Electroweak, t(bar t), and SM Higgs searches. τ triggers are installed and operating at CDF. The second subject of this contribution to the HCP2002 conference concerns the algorithms of backwards differentiation abstracted from their usual setting inside of Automatic Differentiation software packages. Backwards differentiation (reverse-mode differentiation) provides a useful means for optimizing many kinds of problems

  5. Particle combinations in the LHCb Upgrade trigger

    CERN Document Server

    Zhao, Fanyi

    2017-01-01

    The LHCb experiment will be upgraded during long shutdown II (2018-2020) to process inelastic proton-proton collisions at 30MHz in a software application and run at a higher instantaneous luminosity of $2\\times 10^{33}cm^{−2}s^{−1}$. Each of these collisions will contain substantially more proton-proton interactions and charged particles. It is important to identify the decay vertices of heavy-flavour hadrons produced by the primary proton-proton interaction in an efficient, CPU-performant manner. In this project, I will learn about the LHCb trigger and experimental programme and investigate alternative models for reconstructing these vertices, which may scale more efficiently to the upgraded trigger conditions than the current model.

  6. The ATLAS Trigger Simulation with Legacy Software

    CERN Document Server

    Bernius, Catrin; The ATLAS collaboration

    2017-01-01

    Physics analyses at the LHC which search for rare physics processes or measure Standard Model parameters with high precision require accurate simulations of the detector response and the event selection processes. The accurate simulation of the trigger response is crucial for determination of overall selection efficiencies and signal sensitivities. For the generation and the reconstruction of simulated event data, generally the most recent software releases are used to ensure the best agreement between simulated data and real data. For the simulation of the trigger selection process, however, the same software release with which real data were taken should be ideally used. This requires potentially running with software dating many years back, the so-called legacy software. Therefore having a strategy for running legacy software in a modern environment becomes essential when data simulated for past years start to present a sizeable fraction of the total. The requirements and possibilities for such a simulatio...

  7. Software trigger for the TOPAZ detector at TRISTAN

    International Nuclear Information System (INIS)

    Tsukamoto, T.; Yamauchi, M.; Enomoto, R.

    1990-01-01

    A new software trigger system was developed and installed at the TOPAZ detector to the trigger system for the TRISTAN e + e - collider to take data efficiently in the scheduled high luminosity experiment. This software trigger requires two or more charged tracks originated at the interaction point by examining the timing of signals from the time projection chamber. To execute the vertex finding very quickly, four microprocessors are used in parallel. By this new trigger the rate of the track trigger was reduced down to 30-40% with very small inefficiency. The additional dead time by this trigger is negligible. (orig.)

  8. The CLEO-III Trigger: Decision and gating

    International Nuclear Information System (INIS)

    Bergfeld, T.J.; Gollin, G.D.; Haney, M.J.

    1996-01-01

    The CLEO-III Trigger provides a trigger decision every 42ns, with a latency of approximately 2.5μs. This paper describes the free-running, pipelined trigger decision logic, the throttling mechanism whereby the data acquisition system can modulate the trigger rate to maximize throughput without buffer overrun, and the subsequent signal distribution mechanism for delivering the trigger decision to the front-end electronics. This paper also describes the multilevel simulation methods employed to allow detailed low-level models of trigger components to be co-simulated with more abstract system models, thus allowing full system modeling without incurring prohibitive computational overheads

  9. A multiplicity jump trigger using silicon planes

    International Nuclear Information System (INIS)

    Alexopoulos, T.; Erwin, A.R.

    1993-01-01

    Since silicon tracking planes are already present in a B decay experiment, it is an attractive idea to use these as part of a multiplicity jump detector. Two average B decays would produce a multiplicity jump of around 10 in the final state. Such a trigger has been tried for a fixed target Charm experiment with disappointing success. The failure was attributed to the difficulty in adequately controlling the gains of a large number of microstrip amplifies

  10. LHC detectors trigger/DAQ at LHC

    CERN Document Server

    Sphicas, Paris

    1998-01-01

    At its design luminosity, the LHC will deliver hundreds of millions of proton-proton interactions per second. Storage and computing limitations limit the number of physics events that can be recorded to about 100 per second. The selection will be carried out by the Trigger and data acquisition systems of the experiments. This lecture will review the requirements, architectures and various designs currently considered.

  11. A solar tornado triggered by flares?

    OpenAIRE

    Panesar, N. K.; Innes, D. E.; Tiwari, S. K.; Low, B. C.

    2013-01-01

    Context. Solar tornados are dynamical, conspicuously helical magnetic structures that are mainly observed as a prominence activity. Aims. We investigate and propose a triggering mechanism for the solar tornado observed in a prominence cavity by SDO/AIA on September 25, 2011. Methods. High-cadence EUV images from the SDO/AIA and the Ahead spacecraft of STEREO/EUVI are used to correlate three flares in the neighbouring active-region (NOAA 11303) and their EUV waves with the dynamical de...

  12. Storytelling as a trigger for sharing conversations

    OpenAIRE

    Emma Louise Parfitt

    2014-01-01

    This article explores whether traditional oral storytelling can be used to provide insights into the way in which young people of 12-14 years identify and understand the language of emotion and behaviour. Following the preliminary analysis, I propose that storytelling may trigger sharing conversations. My research attempts to extend the social and historical perspectives of Jack Zipes, on fairy tales, into a sociological analysis of young people’s lives today. I seek to investigate the extent...

  13. RF gun using laser-triggered photocathode

    International Nuclear Information System (INIS)

    Akiyama, H.; Otake, Y.; Naito, T.; Takeuchi, Y.; Yoshioka, M.

    1992-01-01

    An RF gun using laser-triggered photocathode has many advantages as an injector of the linear colliders since it can generate a low emittance and high current pulsed beam. The experimental facility for the RF gun, such as an RF system, a laser system and a photocathode have been fabricated to study the fundamental characteristics. The dynamics of the RF gun has also studied by the 1D sheet beam model. (author)

  14. Splint therapy for trigger finger in children.

    Science.gov (United States)

    Tsuyuguchi, Y; Tada, K; Kawaii, H

    1983-02-01

    During the last 9 years, 83 trigger digits in 65 children were treated using a modified coil spring splint which maintains the interphalangeal (IP) joint in neutral extension or hyperextension. Sixty-two digits (75%) were completely healed following splint therapy alone, after an average period of splinting for 9.4 months. Eight digits which did not improve with splinting were surgically treated. Splint therapy to maintain the IP joint in neutral extension or hyperextension proved markedly effective in our series.

  15. Earthquake-triggered landslides in southwest China

    OpenAIRE

    X. L. Chen; Q. Zhou; H. Ran; R. Dong

    2012-01-01

    Southwest China is located in the southeastern margin of the Tibetan Plateau and it is a region of high seismic activity. Historically, strong earthquakes that occurred here usually generated lots of landslides and brought destructive damages. This paper introduces several earthquake-triggered landslide events in this region and describes their characteristics. Also, the historical data of earthquakes with a magnitude of 7.0 or greater, having occurred in this region, is col...

  16. Diffraction in ALICE and trigger efficiencies

    CERN Document Server

    Navin, Sparsh; Lietava, Roman

    ALICE is built to measure the properties of strongly interacting matter created in heavy-ion collisions. In addition, taking advantage of the low pT acceptance in the central barrel, ALICE is playing an important role in understanding pp collisions with minimum bias triggers at LHC energies. The work presented in this thesis is based on pp data simulated by the ALICE collaboration and early data collected at a center-of-mass energy of 7 TeV. A procedure to calculate trigger efficiencies and an estimate of the systematic uncertainty due to the limited acceptance of the detector are shown. A kinematic comparison between Monte Carlo event generators, PYTHIA 6, PYTHIA 8 and PHOJET is also presented. To improve the description of diffraction in PYTHIA, a hard diffractive component was added to PYTHIA 8 in 2009, which is described. Finally a trigger with a high efficiency for picking diffractive events is used to select a sample with an enhanced diffractive component from pp data. These data are compared to Monte ...

  17. Trigger chemistries for better industrial formulations.

    Science.gov (United States)

    Wang, Hsuan-Chin; Zhang, Yanfeng; Possanza, Catherine M; Zimmerman, Steven C; Cheng, Jianjun; Moore, Jeffrey S; Harris, Keith; Katz, Joshua S

    2015-04-01

    In recent years, innovations and consumer demands have led to increasingly complex liquid formulations. These growing complexities have provided industrial players and their customers access to new markets through product differentiation, improved performance, and compatibility/stability with other products. One strategy for enabling more complex formulations is the use of active encapsulation. When encapsulation is employed, strategies are required to effect the release of the active at the desired location and time of action. One particular route that has received significant academic research effort is the employment of triggers to induce active release upon a specific stimulus, though little has translated for industrial use to date. To address emerging industrial formulation needs, in this review, we discuss areas of trigger release chemistries and their applications specifically as relevant to industrial use. We focus the discussion on the use of heat, light, shear, and pH triggers as applied in several model polymeric systems for inducing active release. The goal is that through this review trends will emerge for how technologies can be better developed to maximize their value through industrial adaptation.

  18. The ATLAS Level-2 Trigger Pilot Project

    CERN Document Server

    Wickens, F J

    2000-01-01

    The Level-2 Trigger Pilot Project of ATLAS, one of the two general purpose LHC experiments, is part of the on-going programme to develop the ATLAS High Level Triggers (HLT). The Level-2 Trigger will receive events at up to 100 kHz, which has to be reduced to a rate suitable for full event-building of the order of 1 kHz. To reduce the data collection bandwidth and processing power required for the challenging Level-2 task it is planned to use Region of Interest guidance (from Level-1) and sequential processing. The Pilot Project included the construction and use of testbeds of up to 48 processing nodes, development of optimised components and computer simulations of a full system. It has shown how the required performance can be achieved, using largely commodity components and operating systems, and validated an architecture for the Level-2 system. This paper describes the principal achievements and conclusions of this project. (28 refs).

  19. The ATLAS Level-2 Trigger Pilot Project

    CERN Document Server

    Blair, R; Haberichter, W N; Schlereth, J L; Bock, R; Bogaerts, A; Boosten, M; Dobinson, Robert W; Dobson, M; Ellis, Nick; Elsing, M; Giacomini, F; Knezo, E; Martin, B; Shears, T G; Tapprogge, Stefan; Werner, P; Hansen, J R; Wäänänen, A; Korcyl, K; Lokier, J; George, S; Green, B; Strong, J; Clarke, P; Cranfield, R; Crone, G J; Sherwood, P; Wheeler, S; Hughes-Jones, R E; Kolya, S; Mercer, D; Hinkelbein, C; Kornmesser, K; Kugel, A; Männer, R; Müller, M; Sessler, M; Simmler, H; Singpiel, H; Abolins, M; Ermoline, Y; González-Pineiro, B; Hauser, R; Pope, B; Sivoklokov, S Yu; Boterenbrood, H; Jansweijer, P; Kieft, G; Scholte, R; Slopsema, R; Vermeulen, J C; Baines, J T M; Belias, A; Botterill, David R; Middleton, R; Wickens, F J; Falciano, S; Bystrický, J; Calvet, D; Gachelin, O; Huet, M; Le Dû, P; Mandjavidze, I D; Levinson, L; González, S; Wiedenmann, W; Zobernig, H

    2002-01-01

    The Level-2 Trigger Pilot Project of ATLAS, one of the two general purpose LHC experiments, is part of the on-going program to develop the ATLAS high-level triggers (HLT). The Level-2 Trigger will receive events at up to 100 kHz, which has to be reduced to a rate suitable for full event-building of the order of 1 kHz. To reduce the data collection bandwidth and processing power required for the challenging Level-2 task it is planned to use Region of Interest guidance (from Level-1) and sequential processing. The Pilot Project included the construction and use of testbeds of up to 48 processing nodes, development of optimized components and computer simulations of a full system. It has shown how the required performance can be achieved, using largely commodity components and operating systems, and validated an architecture for the Level-2 system. This paper describes the principal achievements and conclusions of this project. (28 refs).

  20. The ALICE Dimuon Spectrometer High Level Trigger

    CERN Document Server

    Becker, B; Cicalo, Corrado; Das, Indranil; de Vaux, Gareth; Fearick, Roger; Lindenstruth, Volker; Marras, Davide; Sanyal, Abhijit; Siddhanta, Sabyasachi; Staley, Florent; Steinbeck, Timm; Szostak, Artur; Usai, Gianluca; Vilakazi, Zeblon

    2009-01-01

    The ALICE Dimuon Spectrometer High Level Trigger (dHLT) is an on-line processing stage whose primary function is to select interesting events that contain distinct physics signals from heavy resonance decays such as J/psi and Gamma particles, amidst unwanted background events. It forms part of the High Level Trigger of the ALICE experiment, whose goal is to reduce the large data rate of about 25 GB/s from the ALICE detectors by an order of magnitude, without loosing interesting physics events. The dHLT has been implemented as a software trigger within a high performance and fault tolerant data transportation framework, which is run on a large cluster of commodity compute nodes. To reach the required processing speeds, the system is built as a concurrent system with a hierarchy of processing steps. The main algorithms perform partial event reconstruction, starting with hit reconstruction on the level of the raw data received from the spectrometer. Then a tracking algorithm finds track candidates from the recon...