WorldWideScience

Sample records for triflate-catalyzed direct synthesis

  1. Synthesis of Quinuclidines by Intramolecular Silver-​Catalysed Amine Additions to Alkynes

    NARCIS (Netherlands)

    Breman, A.C.; Ruiz-Olalla, A.; van Maarseveen, J.H.; Ingemann, S.; Hiemstra, H.

    2014-01-01

    A new method has been developed for the synthesis of 2-​alkylidenequinuclidines based on a silver triflate catalyzed intramol. hydroamination of 4-​(prop-​2-​ynyl)​piperidines. Monosubstituted piperidines reacted less efficiently than cis-​disubstituted piperidines, and the reaction was selective

  2. Rate in template-directed polymer synthesis.

    Science.gov (United States)

    Saito, Takuya

    2014-06-01

    We discuss the temporal efficiency of template-directed polymer synthesis, such as DNA replication and transcription, under a given template string. To weigh the synthesis speed and accuracy on the same scale, we propose a template-directed synthesis (TDS) rate, which contains an expression analogous to that for the Shannon entropy. Increasing the synthesis speed accelerates the TDS rate, but the TDS rate is lowered if the produced sequences are diversified. We apply the TDS rate to some production system models and investigate how the balance between the speed and the accuracy is affected by changes in the system conditions.

  3. Two-directional synthesis as a tool for diversity-oriented synthesis: Synthesis of alkaloid scaffolds

    Directory of Open Access Journals (Sweden)

    Kieron M. G. O’Connell

    2012-06-01

    Full Text Available Two-directional synthesis represents an ideal strategy for the rapid elaboration of simple starting materials and their subsequent transformation into complex molecular architectures. As such, it is becoming recognised as an enabling technology for diversity-oriented synthesis. Herein, we provide a thorough account of our work combining two-directional synthesis with diversity-oriented synthesis, with particular reference to the synthesis of polycyclic alkaloid scaffolds.

  4. Direct synthesis of organic silicates

    International Nuclear Information System (INIS)

    Gismalla, Hana Hassan

    2000-06-01

    Tetraethoxysilane was prepared using the direct synthetic procedure in presence of magnesium ethoxide, tin tetrachloride and tin oxide as catalysts. Magnesium ethoxide was prepared firstly, identified by spectral analysis and then used in the preparation of tetraethoxysilane. The method adopted is reliable and significant as far as synthetic routes are concerned. The product obtained was analysed using infra-red spectroscopy and gas-liquid chromatography, these indicated that the final reaction product can be obtained in high yield and purity. Spectral analysis obtained are in good agreement with reported data for tetraethoxysilane. (Author)

  5. Synthesis of Siloxanes Directly from Amorphous Silica

    International Nuclear Information System (INIS)

    Myint Sandar Win

    2011-12-01

    A direct synthesis of oligomeric-siloxanes from amorphous silica has been achieved. The compound prepared was caedonal-siloxane. Cardonal is a mono hydroxyphenolic compound with a bulky group in the meta position. It was derived as a by-product from the renewable resources cashew nut shell liquid (CNSL). In the synthesis, one pot synthesis was carried out by using ethylene glycol (EG) as solvent. In the reaction ethylene glycol served as a primary precursor chelating ligand in the synthesised product. The one pot synthesis was enhanced by the strong base, triethylenetetramine (TETA) which served as the promoter catalyst. In the synthesis, optimal conditions were established on the basic of the yield percent of organo-siloxane compounds with respect to the variation of the weight fraction of TETA and to the variation of reaction time. Experimental runs were carried out at (ca 210 2c) which was nearly above the boiling point of the solvent. The substituted organo-silicon compounds obtained were characterized by FT- ir, Thermal analysis, XRD and SEM.

  6. Direct electrochemical synthesis of metal alcoholates

    International Nuclear Information System (INIS)

    Shrejder, V.A.; Turevskaya, E.P.; Kozlova, N.I.; Turova, N.Ya.

    1981-01-01

    Conditions of electrochemical synthesis of Ga, Sc, Y, Ge, Ti, Zr, Nb and Ta alcoholates during anodic metal dissolution in absolute alcohols in the presence of background electrolyte are studied. R 4 NBr and R 4 NBF 4 salts are optimum background electrolytes. Application limits of this synthetical method using different metals as anode are determined. It is supposed that alkoxyhalogenides the nature of which determines further direction of electrode process, are the primary products of anodic oxidation of metals [ru

  7. Synthesis of trifluoromethyl-substituted pyrazolo[4,3-c]pyridines – sequential versus multicomponent reaction approach

    Directory of Open Access Journals (Sweden)

    Barbara Palka

    2014-07-01

    Full Text Available A straightforward synthesis of 6-substituted 1-phenyl-3-trifluoromethyl-1H-pyrazolo[4,3-c]pyridines and the corresponding 5-oxides is presented. Hence, microwave-assisted treatment of 5-chloro-1-phenyl-3-trifluoromethylpyrazole-4-carbaldehyde with various terminal alkynes in the presence of tert-butylamine under Sonogashira-type cross-coupling conditions affords the former title compounds in a one-pot multicomponent procedure. Oximes derived from (intermediate 5-alkynyl-1-phenyl-3-trifluoromethyl-1H-pyrazole-4-carbaldehydes were transformed into the corresponding 1H-pyrazolo[4,3-c]pyridine 5-oxides by silver triflate-catalyzed cyclization. Detailed NMR spectroscopic investigations (1H, 13C, 15N and 19F were undertaken with all obtained products.

  8. Direct synthesis of some significant metal alkoxides

    International Nuclear Information System (INIS)

    Emilio, Gule Buyu

    1998-11-01

    Investigations were carried out with an attempt to study direct synthesis of metal alkoxides from elemental metals and appropriate alcohols. These were done by reacting representative metals of group I, II, III 7 IV (which are Na, Mg, Al and Sn respectively) directly with dry ethanol and dry isopropanol. The products were then analysed by infrared spectrophotometer to meter to identify metal alkoxides formed. Ethanol was found to have more acidic character in reactions with these metals than isopropanol, thus its reactions with the metals were faster. Reduction in the acidic character of isopropanol, a secondary alcohol, could be due to the existence off more alkyl groups in the molecule which displays +1 inductive effect. For the same alcohol the metals reactions were found to decrease with increase in electronegativity of the metals. Sodium being the least electronegative metal reacted fasted while tin the more electronegative metal reacted slowest. Mg, Al and Sn required a catalyst,, mercury (II) chloride and heat in order to initiate and drive the reactions completion. The alkoxides formed were found to be soluble to a certain extent in the tow alcohols and the order of solubility is such that Sn≥ Al ≥ Mg ≥ Na.(Author)

  9. Enzymatic synthesis of ß-lactam antibiotics via direct condensation

    NARCIS (Netherlands)

    Ulijn, R.V.; Martin, de L.; Halling, P.J.; Moore, B.D.; Janssen, A.E.M.

    2002-01-01

    In this paper, the feasibility of precipitation driven synthesis of acidic and zwitterionic -lactam antibiotics is studied. As an example of the first type, penicillin G was produced in good yield (160 mmol kg-1) directly from the free acid and amine aqueous substrate suspension, where the synthesis

  10. Direct synthesis of hydrogen peroxide in a microreactor

    NARCIS (Netherlands)

    Paunovic, V.; Schouten, J.C.; Nijhuis, T.A.

    2014-01-01

    The direct synthesis of hydrogen peroxide in a microreactor is a safe and efficient process. Conventionally, hydrogen peroxide is produced using the anthraquinone autooxidation process, which is rather complex and can only be performed cost-effectively on a large scale. As a result, hydrogen

  11. Synthesis of Directional Sources Using Wave Field Synthesis, Possibilities, and Limitations

    Directory of Open Access Journals (Sweden)

    Corteel E

    2007-01-01

    Full Text Available The synthesis of directional sources using wave field synthesis is described. The proposed formulation relies on an ensemble of elementary directivity functions based on a subset of spherical harmonics. These can be combined to create and manipulate directivity characteristics of the synthesized virtual sources. The WFS formulation introduces artifacts in the synthesized sound field for both ideal and real loudspeakers. These artifacts can be partly compensated for using dedicated equalization techniques. A multichannel equalization technique is shown to provide accurate results thus enabling for the manipulation of directional sources with limited reconstruction artifacts. Applications of directional sources to the control of the direct sound field and the interaction with the listening room are discussed.

  12. Towards room temperature, direct, solvent free synthesis of tetraborohydrides

    International Nuclear Information System (INIS)

    Remhof, A; Yan, Y; Friedrichs, O; Kim, J W; Mauron, Ph; Borgschulte, A; Züttel, A; Wallacher, D; Buchsteiner, A; Hoser, A; Oh, K H; Cho, Y W

    2012-01-01

    Due to their high hydrogen content, tetraborohydrides are discussed as potential synthetic energy carriers. On the example of lithium borohydride LiBH 4 , we discuss current approaches of direct, solvent free synthesis based on gas solid reactions of the elements or binary hydrides and/or borides with gaseous H 2 or B 2 H 6 . The direct synthesis from the elements requires high temperature and high pressure (700°C, 150bar D 2 ). Using LiB or AlB 2 as boron source reduces the required temperature by more than 300 K. Reactive milling of LiD with B 2 H 6 leads to the formation of LiBD 4 already at room temperature. The reactive milling technique can also be applied to synthesize other borohydrides from their respective metal hydrides.

  13. Effect of direction on loudness in individual binaural synthesis

    DEFF Research Database (Denmark)

    Sivonen, Ville Pekka; Minnaar, Pauli; Ellermeier, Wolfgang

    2005-01-01

    The effect of sound incidence angle on loudness is investigated in this study using binaural synthesis. Individual head-related transfer functions (HRTFs) and headphone equalization are used to present narrow-band noises from different directions to listeners. Their task is to match the loudness...... of these stimuli in an adaptive procedure to a reference noise in front of the listeners. The results are compared to an earlier investigation with the same experimental design in a real sound field. Based on the results the role of the individual HRTFs in loudness judgments is inspected, and finally, binaural...

  14. Hydrothermal Synthesis of Disulfide-Containing Uranyl Compounds. In Situ Ligand Synthesis versus Direct Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, Clare E. [George Washington Univ., Washington, DC (United States); Belai, Nebebech [George Washington Univ., Washington, DC (United States); Knope, Karah E. [George Washington Univ., Washington, DC (United States); Cahill, Christopher L. [George Washington Univ., Washington, DC (United States)

    2010-01-29

    Three disulfide-containing uranyl compounds, [UO2(C7H4O2S)3]·H2O (1), [UO2(C7H4O2S)2(C7H5O2S)] (2), and [UO2(C7H4O2S)4] (3) have been hydrothermally synthesized. Both in situ disulfide bond formation from 3- and 4-mercaptobenzoic acid (C7H5O2S, MBA) to yield 3,3'- and 4,4'-dithiobisbenzoic acid (C14H8O4S2, DTBA) and direct assembly with the presynthesized dimeric ligands have been explored. While the starting materials 4-MBA and 4,4'-DTBA both yield 2 via in situ ligand synthesis and direct assembly, respectively, we observe the formation of 1 from the starting material 3-MBA via in situ ligand synthesis and of 3 from the direct assembly of the uranyl cation with 3,3'-DTBA. Concurrently with the synthesis of 1 and 2, we have observed the in situ formation of the crystalline dimeric organic species, 3,3'-DTBA, [(C7H5O2S)2] (4) and 4,4'-DTBA, [(C7H5O2S)2] (5). Herein we report the synthesis and crystallographic characterization of 1-5, as well as observations regarding the utility of product formation via direct assembly and in situ ligand synthesis.

  15. Search Directions for Direct H2O2 Synthesis Catalysts Starting from Au-12 Nanoclusters

    DEFF Research Database (Denmark)

    Grabow, Lars; Larsen, Britt Hvolbæk; Falsig, Hanne

    2012-01-01

    that the rate of H2O2 and H2O formation can be determined from a single descriptor, namely, the binding energy of oxygen (E-O). Our model predicts the search direction starting from an Au-12 nanocluster for an optimal catalyst in terms of activity and selectivity for direct H2O2 synthesis. Taking also stability......We present density functional theory calculations on the direct synthesis of H2O2 from H-2 and O-2 over an Au-12 corner model of a gold nanoparticle. We first show a simple route for the direct formation of H2O2 over a gold nanocatalyst, by studying the energetics of 20 possible elementary...... reactions involved in the oxidation of H-2 by O-2. The unwanted side reaction to H2O is also considered. Next we evaluate the degree of catalyst control and address the factors controlling the activity and the selectivity. By combining well-known energy scaling relations with microkinetic modeling, we show...

  16. Analytical Devices Based on Direct Synthesis of DNA on Paper.

    Science.gov (United States)

    Glavan, Ana C; Niu, Jia; Chen, Zhen; Güder, Firat; Cheng, Chao-Min; Liu, David; Whitesides, George M

    2016-01-05

    This paper addresses a growing need in clinical diagnostics for parallel, multiplex analysis of biomarkers from small biological samples. It describes a new procedure for assembling arrays of ssDNA and proteins on paper. This method starts with the synthesis of DNA oligonucleotides covalently linked to paper and proceeds to assemble microzones of DNA-conjugated paper into arrays capable of simultaneously capturing DNA, DNA-conjugated protein antigens, and DNA-conjugated antibodies. The synthesis of ssDNA oligonucleotides on paper is convenient and effective with 32% of the oligonucleotides cleaved and eluted from the paper substrate being full-length by HPLC for a 32-mer. These ssDNA arrays can be used to detect fluorophore-linked DNA oligonucleotides in solution, and as the basis for DNA-directed assembly of arrays of DNA-conjugated capture antibodies on paper, detect protein antigens by sandwich ELISAs. Paper-anchored ssDNA arrays with different sequences can be used to assemble paper-based devices capable of detecting DNA and antibodies in the same device and enable simple microfluidic paper-based devices.

  17. A direct method for the synthesis of orthogonally protected furyl- and thienyl- amino acids.

    Science.gov (United States)

    Hudson, Alex S; Caron, Laurent; Colgin, Neil; Cobb, Steven L

    2015-04-01

    The synthesis of unnatural amino acids plays a key part in expanding the potential application of peptide-based drugs and in the total synthesis of peptide natural products. Herein, we report a direct method for the synthesis of orthogonally protected 5-membered heteroaromatic amino acids.

  18. Technologies for direct production of flexible H2/CO synthesis gas

    International Nuclear Information System (INIS)

    Song Xueping; Guo Zhancheng

    2006-01-01

    The use of synthesis gas offers the opportunity to furnish a broad range of environmentally clean fuels and high value chemicals. However, synthesis gas manufacturing systems based on natural gas are capital intensive, and hence, there is great interest in technologies for cost effective synthesis gas production. Direct production of synthesis gas with flexible H 2 /CO ratio, which is in agreement with the stoichiometric ratios required by major synthesis gas based petrochemicals, can decrease the capital investment as well as the operating cost. Although CO 2 reforming and catalytic partial oxidation can directly produce desirable H 2 /CO synthesis gas, they are complicated and continued studies are necessary. In fact, direct production of flexible H 2 /CO synthesis gas can be obtained by optimizing the process schemes based on steam reforming and autothermal reforming as well as partial oxidation. This paper reviews the state of the art of the technologies

  19. Electrochemical synthesis of nanosized hydroxyapatite by pulsed direct current method

    Energy Technology Data Exchange (ETDEWEB)

    Nur, Adrian; Rahmawati, Alifah; Ilmi, Noor Izzati; Affandi, Samsudin; Widjaja, Arief [Departement of Chemical Engineering, Faculty of Industrial Technology, Sepuluh Nopember Institute of Technology, Kampus ITS Sukolilo, Surabaya 60111 (Indonesia)

    2014-02-24

    Synthesis of nanosized of hydroxyapatite (HA) by electrochemical pulsed direct current (PDC) method has been studied. The aim of this work is to study the influence of various PDC parameters (pH initial, electrode distance, duty cycle, frequency, and amplitude) on particle surface area of HA powders. The electrochemical synthesis was prepared in solution Ca{sup 2+}/EDTA{sup 4−}/PO{sub 4}{sup 3+} at concentration 0.25/0.25/0.15 M for 24 h. The electrochemical cell was consisted of two carbon rectangular electrodes connected to a function generator to produce PDC. There were two treatments for particles after electrosynthesized, namely without aging and aged for 2 days at 40 °C. For both cases, the particles were filtered and washed by demineralized water to eliminate the impurities and unreacted reactants. Then, the particles were dried at 100 °C for 2 days. The dried particles were characterized by X-ray diffraction, surface area analyzer, scanning electron microscopy (SEM), Fourier transform infrared spectra and thermogravimetric and differential thermal analysis. HA particles can be produced when the initial pH > 6. The aging process has significant effect on the produced HA particles. SEM images of HA particles showed that the powders consisted of agglomerates composed of fine crystallites and have morphology plate-like and sphere. The surface area of HA particles is in the range of 25 – 91 m{sup 2}/g. The largest particle surface area of HA was produced at 4 cm electrode distance, 80% cycle duty, frequency 0.1 Hz, amplitude 9 V and with aging process.

  20. High pressure direct synthesis of adipic acid from cyclohexene and hydrogen peroxide via capillary microreactors

    NARCIS (Netherlands)

    Shang, M.; Noël, T.; Su, Y.; Hessel, V.

    2016-01-01

    The direct synthesis of adipic acid from hydrogen peroxide and cyclohexene was investigated in capillary microreactors at high temperature (up to 115°C ) and pressure (up to 70 bar). High temperature was already applied in micro-flow packed-bed reactors for the direct adipic acid synthesis. In our

  1. The selective generation of acetic acid directly from synthesis gas

    International Nuclear Information System (INIS)

    Knifton, J.F.

    1986-01-01

    The authors conclude that each of the ruthenium, cobalt and iodide-containing catalyst components have very specific roles to play in the ''melt'' catalyzed conversion of synthesis gas to acetic acid. C 1 -Oxygenate formation is only observed in the presence of ruthenium carbonyls - [Ru(CO) 3 I 3 ] - is here the dominant species - and there is a direct relationship between liquid yield, ΣOAc - productivity and [Ru(CO) 3 I 3 ] - content. Controlled quantities of iodide ensure that initially formed MeOH is rapidly converted to the more reactive methyl iodide. Subsequent cobalt-catalyzed carbonylation to acetic acid may be preparatively attractive (>80% selectivity, good yields) relative to competing syntheses, where the [Co(CO) 4 ] - concentration is maximized that is, where the Co/Ru ratio is >1, the syngas feedstock is rich in CO, and the initial iodide/cobalt ratios are ca. unity. Formation of cobalt-iodide species appears to be a competing, inhibitory step in this catalysis

  2. New approach for direct chemical synthesis of hexagonal Co nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Frank M., E-mail: fabel@udel.edu [Physics and Astronomy, University of Delaware (United States); Tzitzios, Vasilis [Institute of Nanoscience and Nanotechnology, NCSR, Demokritos (Greece); Hadjipanayis, George C. [Physics and Astronomy, University of Delaware (United States)

    2016-02-15

    In this paper, we explore the possibility of producing hexagonal Cobalt nanoparticles, with high saturation magnetization by direct chemical synthesis. The nanoparticles were synthesized by reduction of anhydrous cobalt (II) chloride by NaBH{sub 4} in tetraglyme at temperatures in the range of 200–270 °C under a nitrogen–hydrogen atmosphere. The reactions were done at high temperatures to allow for the formation of as-made hexagonal cobalt. The size of the particles was controlled by the addition of different surfactants. The best magnetic properties so far were obtained on spherical hexagonal Co nanoparticles with an average size of 45 nm, a saturation magnetization of 143 emu/g and coercivity of 500 Oe. the saturation magnetization and coercivity were further improved by annealing the Co nanoparticles leading to saturation magnetization of 160 emu/g and coercivity of 540 Oe. - Highlights: • We synthesized hexagonal cobalt nanoparticles by a new wet chemical method. • We considered the effects of different surfactants on particles magnetic properties. • The as-made Co nanoparticles had magnetic properties of 143 emu/g and 500 Oe. • After annealing magnetic properties of 160 emu/g and 540 Oe were obtained.

  3. The origin of polynucleotide-directed protein synthesis

    Science.gov (United States)

    Orgel, Leslie E.

    1989-01-01

    If protein synthesis evolved in an RNA world it was probably preceded by simpler processes by means of which interaction with amino acids conferred selective advantage on replicating RNA molecules. It is suggested that at first the simple attachment of amino acids to the 2'(3') termini of RNA templates favored initiation of replication at the end of the template rather than at internal positions. The second stage in the evolution of protein synthesis would probably have been the association of pairs of charged RNA adaptors in such a way as to favor noncoded formation of peptides. Only after this process had become efficient could coded synthesis have begun.

  4. Direct chemical synthesis of MnO2 nanowhiskers on MXene surfaces for supercapacitor applications

    KAUST Repository

    Baby, Rakhi Raghavan; Ahmed, Bilal; Anjum, Dalaver H.; Alshareef, Husam N.

    2016-01-01

    Transition metal carbides (MXenes) are an emerging class of two dimensional (2D) materials with promising electrochemical energy storage performance. Herein, for the first time, by direct chemical synthesis, nanocrystalline ε-MnO2 whiskers were

  5. Direct synthesis of dimethyl carbonate from CO2 and methanol over ...

    Indian Academy of Sciences (India)

    The direct synthesis of dimethyl carbonate (DMC) from carbon dioxide (CO2) and methanol is ... Zirconia and ceria-based catalysts were most effective ... construction of a validation plant for dialkyl carbonates .... (mmol of MeOH consumed/2).

  6. Direct synthesis of BiCuChO-type oxychalcogenides by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Pele, Vincent; Barreteau, Celine [Institut de Chimie Moléculaire et des Matériaux d’Orsay, Univ. Paris-Sud, UMR 8182, Orsay F-91405 (France); CNRS, Orsay F-91405 (France); Berardan, David, E-mail: david.berardan@u-psud.fr [Institut de Chimie Moléculaire et des Matériaux d’Orsay, Univ. Paris-Sud, UMR 8182, Orsay F-91405 (France); CNRS, Orsay F-91405 (France); Zhao, Lidong; Dragoe, Nita [Institut de Chimie Moléculaire et des Matériaux d’Orsay, Univ. Paris-Sud, UMR 8182, Orsay F-91405 (France); CNRS, Orsay F-91405 (France)

    2013-07-15

    We report on the direct synthesis of BiCuChO based materials by mechanical alloying (Ch=Se, Te). We show that contrary to the synthesis paths used in the previous reports dealing with this family of materials, which use costly annealings in closed silica tubes under controlled atmosphere, this new synthesis route enables the synthesis of pure phase materials at room temperature under air, with reasonable milling time. This synthesis procedure is easily scalable for large scale applications. - Highlights: • Phase pure BiCuSeO doped and undoped prepared by mechanical alloying. • Synthesis performed under air at room temperature. • Electrical properties similar to that of samples synthesized by a classical path.

  7. Direct and Versatile Synthesis of Red-Shifted Azobenzenes

    NARCIS (Netherlands)

    Hansen, Mickel J.; Lerch, Michael M.; Szymanski, Wiktor; Feringa, Ben L.

    2016-01-01

    A straightforward synthesis of azobenzenes with bathochromically-shifted absorption bands is presented. It employs an ortho-lithiation of aromatic substrates, followed by a coupling reaction with aryldiazonium salts. The products are obtained with good to excellent yields after simple purification.

  8. Nuclear transport factor directs localization of protein synthesis during mitosis

    NARCIS (Netherlands)

    Bogaart, Geert van den; Meinema, Anne C.; Krasnikov, Viktor; Veenhoff, Liesbeth M.; Poolman, Bert

    Export of messenger RNA from the transcription site in the nucleus and mRNA targeting to the translation site in the cytoplasm are key regulatory processes in protein synthesis. In yeast, the mRNA-binding proteins Nab2p and Nab4p/Hrp1p accompany transcripts to their translation site, where the

  9. Direct Synthesis of ESBO Derivatives-18O Labelled with Dioxirane

    Directory of Open Access Journals (Sweden)

    Stefano La Tegola

    2013-01-01

    Full Text Available This work addresses a new approach developed in our laboratory, consisting in the application of isolated dimethyldioxirane (DDO, 1a labelled with 18O for synthesis of epoxidized glyceryl linoleate (Gly-LLL, 2. We expect that this work could contribute in improving analytical methods for the determination of epoxidized soybean oil (ESBO in complex food matrices by adopting an 18O-labelled-epoxidized triacylglycerol as an internal standard.

  10. Direct Synthesis of ESBO Derivatives-18O Labelled with Dioxirane

    OpenAIRE

    La Tegola, Stefano; Annese, Cosimo; Suman, Michele; Tommasi, Immacolata; Fusco, Caterina; D'Accolti, Lucia

    2013-01-01

    This work addresses a new approach developed in our laboratory, consisting in the application of isolated dimethyldioxirane (DDO, 1a) labelled with 18O for synthesis of epoxidized glyceryl linoleate (Gly-LLL, 2). We expect that this work could contribute in improving analytical methods for the determination of epoxidized soybean oil (ESBO) in complex food matrices by adopting an 18O-labelled-epoxidized triacylglycerol as an internal standard.

  11. Directional resolution of head-related transfer functions required in binaural synthesis

    DEFF Research Database (Denmark)

    Minnaar, Pauli; Plogsties, Jan; Christensen, Flemming

    2005-01-01

    In binaural synthesis a virtual sound source is implemented by convolving an anechoic signal with a pair of head-related transfer functions (HRTFs). In order to represent all possible directions of the sound source with respect to the listener a discrete number of HRTFs are measured and interpola......In binaural synthesis a virtual sound source is implemented by convolving an anechoic signal with a pair of head-related transfer functions (HRTFs). In order to represent all possible directions of the sound source with respect to the listener a discrete number of HRTFs are measured...... and moving sound sources. A criterion was found that predicts the experimental results. This criterion was used to estimate the directional resolution required in binaural synthesis for all directions on the sphere around the head....

  12. Direct Synthesis of Co-doped Graphene on Dielectric Substrates Using Solid Carbon Sources

    Institute of Scientific and Technical Information of China (English)

    Qi Wang; Pingping Zhang; Qiqi Zhuo; Xiaoxin Lv; Jiwei Wang; Xuhui Sun

    2015-01-01

    Direct synthesis of high-quality doped graphene on dielectric substrates without transfer is highly desired for simplified device processing in electronic applications.However,graphene synthesis directly on substrates suitable for device applications,though highly demanded,remains unattainable and challenging.Here,a simple and transfer-free synthesis of high-quality doped graphene on the dielectric substrate has been developed using a thin Cu layer as the top catalyst and polycyclic aromatic hydrocarbons as both carbon precursors and doping sources.N-doped and N,F-co-doped graphene have been achieved using TPB and F16Cu Pc as solid carbon sources,respectively.The growth conditions were systematically optimized and the as-grown doped graphene were well characterized.The growth strategy provides a controllable transfer-free route for high-quality doped graphene synthesis,which will facilitate the practical applications of graphene.

  13. Direct synthesis of nanocrystalline oxide powders by wet-chemical techniques

    Directory of Open Access Journals (Sweden)

    Vladimir V. Srdić

    2010-09-01

    Full Text Available In a recent period there is a great need for increasing the knowledge of tailoring the innovative procedures for the synthesis of electroceramic nanopowders and materials with improved quality for specific application. In order to produce electroceramics with desirable microstructure and properties, synthesis of stoichiometric, ultra-fine and agglomerate free powders with narrow size distributions is one of the most important steps. Within this scope, in the present paper we summarize our recent results on direct synthesis of some important perovskites and ferrites nanopowders by wet-chemical techniques.

  14. Protein synthesis directed by cowpea mosaic virus RNAs

    International Nuclear Information System (INIS)

    Stuik, E.

    1979-01-01

    The thesis concerns the proteins synthesized under direction of Cowpea mosaic virus RNAs. Sufficient radioactive labelling of proteins was achieved when 35 S as sulphate was administered to intact Vigna plants, cultivated in Hoagland solution. The large polypeptides synthesized under direction of B- and M-RNA are probably precursor molecules from which the coat proteins are generated by a mechanism of posttranslational cleavage. (Auth.)

  15. Stereoselective Synthesis of Highly Functionalized α-Diazo-β-ketoalkanoates via Catalytic Onepot Mukaiyama-Aldol Reactions

    Science.gov (United States)

    Zhou, Lei; Doyle, Michael P.

    2010-01-01

    Methyl diazoacetoacetate undergoes zinc triflate catalyzed condensation with a broad selection of aldehydes to produce δ-siloxy-α-diazo-β-ketoalkanoates in good yield, and δ-hydroxy-α-diazo-β-ketoalkanoates are formed with high diastereoselectivity in reactions with α-diazo-β-ketopentanoate promoted by dibutylboron triflate. PMID:20102172

  16. An efficient and green synthesis of 1-indanone and 1-tetralone via intramolecular Friedel-Crafts acylation reaction

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Huynh, Vy Hieu; Hansen, Poul Erik

    2015-01-01

    Metal-triflate-catalyzed intramolecular Friedel–Crafts acylation of 3-arylpropanoic and 4-arylbutanoic acids in triflate-anion ionic liquids under monomodal microwave irradiation is reported. The environmentally benign synthetic procedure allows the formation of cyclic ketones in good yields with...

  17. Direct recovery of boiler residue by combustion synthesis.

    Science.gov (United States)

    Nourbaghaee, Homan; Ghaderi Hamidi, Ahmad; Pourabdoli, Mahdi

    2018-04-01

    Boiler residue (BR) of thermal power plants is one of the important secondary sources for vanadium production. In this research, the aluminothermic self-propagating high-temperature synthesis (SHS) was used for recovering the transition metals of BR for the first time. The effects of extra aluminum as reducing agent and flux to aluminum ratio (CaO/Al) were studied and the efficiency of recovery and presence of impurities were measured. Aluminothermic reduction of vanadium and other metals was carried out successfully by SHS without any foreign heat source. Vanadium, iron, and nickel principally were reduced and gone into metallic master alloy as SHS product. High levels of efficiency (>80%) were achieved and the results showed that SHS has a great potential to be an industrial process for BR recovery. SHS produced two useful products. Metallic master alloy and fused glass slag that is applicable for ceramic industries. SHS can also neutralize the environmental threats of BR by a one step process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. A decade of adaptive governance scholarship: synthesis and future directions

    Directory of Open Access Journals (Sweden)

    Brian C. Chaffin

    2014-09-01

    Full Text Available Adaptive governance is an emergent form of environmental governance that is increasingly called upon by scholars and practitioners to coordinate resource management regimes in the face of the complexity and uncertainty associated with rapid environmental change. Although the term "adaptive governance" is not exclusively applied to the governance of social-ecological systems, related research represents a significant outgrowth of literature on resilience, social-ecological systems, and environmental governance. We present a chronology of major scholarship on adaptive governance, synthesizing efforts to define the concept and identifying the array of governance concepts associated with transformation toward adaptive governance. Based on this synthesis, we define adaptive governance as a range of interactions between actors, networks, organizations, and institutions emerging in pursuit of a desired state for social-ecological systems. In addition, we identify and discuss ambiguities in adaptive governance scholarship such as the roles of adaptive management, crisis, and a desired state for governance of social-ecological systems. Finally, we outline a research agenda to examine whether an adaptive governance approach can become institutionalized under current legal frameworks and political contexts. We suggest a further investigation of the relationship between adaptive governance and the principles of good governance; the roles of power and politics in the emergence of adaptive governance; and potential interventions such as legal reform that may catalyze or enhance governance adaptations or transformation toward adaptive governance.

  19. Taxation and Foreign Direct Investment: A Synthesis of Empirical Research

    OpenAIRE

    Ruud A. de Mooij; Sjef Ederveen

    2001-01-01

    This paper reviews the empirical literature on the impact of company taxes on the allocation of foreign direct investment. We make the outcomes of 25 empirical studies comparable by computing the tax rate elasticity under a uniform definition. Read also the accompanying press release . The mean value of the tax rate elasticity in the literature is around 3.3, i.e. a 1%-point reduction in the host-country tax rate raises foreign direct investment in that country by 3.3%. There exists substanti...

  20. Direct dimethyl ether (DME) synthesis through a thermally coupled heat exchanger reactor

    International Nuclear Information System (INIS)

    Vakili, R.; Pourazadi, E.; Setoodeh, P.; Eslamloueyan, R.; Rahimpour, M.R.

    2011-01-01

    Compared to some of the alternative fuel candidates such as methane, methanol and Fischer-Tropsch fuels, dimethyl ether (DME) seems to be a superior candidate for high-quality diesel fuel in near future. The direct synthesis of DME from syngas would be more economical and beneficial in comparison with the indirect process via methanol synthesis. Multifunctional auto-thermal reactors are novel concepts in process intensification. A promising field of applications for these concepts could be the coupling of endothermic and exothermic reactions in heat exchanger reactors. Consequently, in this study, a double integrated reactor for DME synthesis (by direct synthesis from syngas) and hydrogen production (by the cyclohexane dehydrogenation) is modelled based on the heat exchanger reactors concept and a steady-state heterogeneous one-dimensional mathematical model is developed. The corresponding results are compared with the available data for a pipe-shell fixed bed reactor for direct DME synthesis which is operating at the same feed conditions. In this novel configuration, DME production increases about 600 Ton/year. Also, the effects of some operational parameters such as feed flow rates and the inlet temperatures of exothermic and endothermic sections on reactor behaviour are investigated. The performance of the reactor needs to be proven experimentally and tested over a range of parameters under practical operating conditions.

  1. Synthesis and characterization of Al-TON zeolite using a dialkylimizadolium as structure-directing agent

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Christian Wittee; Pergher, Sibele Berenice Castella, E-mail: chriswittee@gmail.com [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Villarroel-Rocha, Jhonny [Laboratorio de Solidos Porosos, Instituto de Fisica Aplicada, Universidad Nacional de San Luis, Chacabuco, San Luis (Argentina); Silva, Bernardo Araldi Da; Mignoni, Marcelo Luis [Universidade Regional Integrada, Erechim, RS (Brazil)

    2016-11-15

    In this work, the synthesis of zeolites using 1-butyl-3-methylimidazolium chloride [C{sub 4}MI]Cl as a structure-directing agent was investigated. The organic cation shows effectiveness and selectivity for the syntheses of TON zeolites under different reaction conditions compared to the traditional structure directing agent, 1,8-diaminooctane. The 1-butyl-3-methylimidazolium cation lead to highly crystalline materials and its role as OSDA in our synthesis conditions has been confirmed by characterization techniques. ICP-OES confirms the presence of Al in the samples and {sup 27}Al MAS NMR analysis indicated that aluminum atoms were incorporated in tetrahedral coordination. Scanning electron microscopy indicated that changing the crystallization condition (static or stirring), zeolites with different crystal size were obtained, which consequently affects the textural properties of the zeolites. Moreover, varying some synthesis parameters MFI zeolite can also be obtained. (author)

  2. Direct Synthesis of Telechelic Polyethylene by Selective Insertion Polymerization

    KAUST Repository

    Jian, Zhongbao

    2016-10-14

    A single-step route to telechelic polyethylene (PE) is enabled by selective insertion polymerization. PdII-catalyzed copolymerization of ethylene and 2-vinylfuran (VF) generates α,ω-di-furan telechelic polyethylene. Orthogonally reactive exclusively in-chain anhydride groups are formed by terpolymerization with carbic anhydride. Combined experimental and theoretical DFT studies reveal the key for this direct approach to telechelics to be a match of the comonomers’ different electronics and bulk. Identified essential features of the comonomer are that it is an electron-rich olefin that forms an insertion product stabilized by an additional interaction, namely a π–η3 interaction for the case of VF.

  3. Direct Regulation of Mitochondrial RNA Synthesis by Thyroid Hormone

    Science.gov (United States)

    Enríquez, José A.; Fernández-Silva, Patricio; Garrido-Pérez, Nuria; López-Pérez, Manuel J.; Pérez-Martos, Acisclo; Montoya, Julio

    1999-01-01

    We have analyzed the influence of in vivo treatment and in vitro addition of thyroid hormone on in organello mitochondrial DNA (mtDNA) transcription and, in parallel, on the in organello footprinting patterns at the mtDNA regions involved in the regulation of transcription. We found that thyroid hormone modulates mitochondrial RNA levels and the mRNA/rRNA ratio by influencing the transcriptional rate. In addition, we found conspicuous differences between the mtDNA dimethyl sulfate footprinting patterns of mitochondria derived from euthyroid and hypothyroid rats at the transcription initiation sites but not at the mitochondrial transcription termination factor (mTERF) binding region. Furthermore, direct addition of thyroid hormone to the incubation medium of mitochondria isolated from hypothyroid rats restored the mRNA/rRNA ratio found in euthyroid rats as well as the mtDNA footprinting patterns at the transcription initiation area. Therefore, we conclude that the regulatory effect of thyroid hormone on mitochondrial transcription is partially exerted by a direct influence of the hormone on the mitochondrial transcription machinery. Particularly, the influence on the mRNA/rRNA ratio is achieved by selective modulation of the alternative H-strand transcription initiation sites and does not require the previous activation of nuclear genes. These results provide the first functional demonstration that regulatory signals, such as thyroid hormone, that modify the expression of nuclear genes can also act as primary signals for the transcriptional apparatus of mitochondria. PMID:9858589

  4. Block copolymer directed synthesis of mesoporous TiO 2 for dye-sensitized solar cells

    KAUST Repository

    Nedelcu, Mihaela; Lee, Jinwoo; Crossland, Edward J. W.; Warren, Scott C.; Orilall, M. Christopher; Guldin, Stefan; Hü ttner, Sven; Ducati, Catarina; Eder, Dominik; Wiesner, Ulrich; Steiner, Ullrich; Snaith, Henry J.

    2009-01-01

    The morphology of TiO2 plays an important role in the operation of solid-state dye-sensitized solar cells. By using polyisoprene-block- ethyleneoxide (PI-b-PEO) copolymers as structure directing agents for a sol-gel based synthesis of mesoporous TiO

  5. Direct Synthesis of Microwave Waveforms for Quantum Computing

    Science.gov (United States)

    Raftery, James; Vrajitoarea, Andrei; Zhang, Gengyan; Leng, Zhaoqi; Srinivasan, Srikanth; Houck, Andrew

    Current state of the art quantum computing experiments in the microwave regime use control pulses generated by modulating microwave tones with baseband signals generated by an arbitrary waveform generator (AWG). Recent advances in digital analog conversion technology have made it possible to directly synthesize arbitrary microwave pulses with sampling rates of 65 gigasamples per second (GSa/s) or higher. These new ultra-wide bandwidth AWG's could dramatically simplify the classical control chain for quantum computing experiments, presenting potential cost savings and reducing the number of components that need to be carefully calibrated. Here we use a Keysight M8195A AWG to study the viability of such a simplified scheme, demonstrating randomized benchmarking of a superconducting qubit with high fidelity.

  6. Directional synthesis of ethylbenzene through catalytic transformation of lignin.

    Science.gov (United States)

    Fan, Minghui; Jiang, Peiwen; Bi, Peiyan; Deng, Shumei; Yan, Lifeng; Zhai, Qi; Wang, Tiejun; Li, Quanxin

    2013-09-01

    Transformation of lignin to ethylbenzene can provide an important bulk raw material for the petrochemical industry. This work explored the production of ethylbenzene from lignin through the directional catalytic depolymerization of lignin into the aromatic monomers followed by the selective alkylation of the aromatic monomers. For the first step, the aromatics selectivity of benzene derived from the catalytic depolymerization of lignin reached about 90.2 C-mol% over the composite catalyst of Re-Y/HZSM-5 (25). For the alkylation of the aromatic monomers in the second step, the highest selectivity of ethylbenzene was about 72.3 C-mol% over the HZSM-5 (25) catalyst. The reaction pathway for the transformation of lignin to ethylbenzene was also addressed. Present transformation potentially provides a useful approach for the production of the basic petrochemical material and development of high-end chemicals utilizing lignin as the abundant natural aromatic resource. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Direct dimethyl-ether (DME) synthesis by spatial patterned catalyst arrangement. A modeling and simulation study

    Energy Technology Data Exchange (ETDEWEB)

    McBride, K.; Turek, T.; Guettel, R. [Clausthal Univ. of Technology (Germany). Inst. of Chemical Process Engineering

    2011-07-01

    The effect of spatially patterned catalyst beds was investigated for direct DME synthesis from synthesis gas as an example. A layered arrangement of methanol synthesis and dehydration catalyst was chosen and studied by numerical simulation under typical operating conditions for single-step DME synthesis. It was revealed that catalyst layers significantly influence the DME productivity. With an increasing number of layers from 2 to 40, an increase in DME productivity was observed approaching the performance of a physical catalyst mixture for an infinite number of layers. The results prove that a physical mixture of methanol synthesis and dehydration catalyst achieves the highest DME productivity under operating conditions chosen in this study. This can be explained by the higher average methanol concentration for the layered catalyst arrangement and thus stronger equilibrium constraints for the methanol synthesis reaction. Essentially, the layered catalyst arrangement is comparable to a cascade model of the two-step process, which is less efficient in terms of DME yield than the single-step process. However, since a significant effect was found, the layered catalyst arrangement could be beneficial for other reaction systems. (orig.)

  8. Ecology man as an interdisciplsnary perspective directions synthesis and organization of scientific knowledge

    OpenAIRE

    Дуднікова, І. І.

    2015-01-01

    The paper analyzes the theoretical and methodological foundations of human ecology is an interdisciplinary perspective direction and synthesis of scientific knowledge in the context of which analyzes the problems of man and nature, man and society, global issues lyudstva. Meta research - to analyze human ecology as a new research direction for what roanalizovano conditions of human ecology and the problems that it rozlyadaye; The main problems of human ecology; uncover ways and ways to increa...

  9. Template-directed synthesis of oligoguanylic acids - Metal ion catalysis

    Science.gov (United States)

    Bridson, P. K.; Fakhrai, H.; Lohrmann, R.; Orgel, L. E.; Van Roode, M.

    1981-01-01

    The effects of Zn(2+), Pb(2+) and other metal ions on the efficiency and stereo-selectivity of the template-directed oligomerization of guanosine 5'-phosphorimidazolide are investigated. Reactions were run in the presence of a polyC template in a 2,6-lutidine buffer, and products analyzed by high-performance liquid chromatography on an RPC-5 column. The presence of the Pb(2+) ion is found to lead to the formation of 2'-5' linked oligomers up to the 40-mer, while Zn(2+) favors the formation of predominantly 3'-5' linked oligomers up to the 35-mer. When amounts of uracil, cytidine or adenosine 5'-phosphorimidazole equal to those of the guanosine derivative are included in the reaction mixture, the incorrect base is incorporated into the oligomer about 10% of the time with a Pb(2+) catalyst, but less than 0.5% of the time with Zn(2+). The Sn(2+), Sb(3+) and Bi(3+) ions are also found to promote the formation of 2'-5' oligomers, although not as effectively as Pb(2+), while no metal ions other than Zn(2+) promote the formation of the 3'-5' oligomers. The results may be important for the understanding of the evolution of nucleic acid replication in the absence of enzymes.

  10. Direct synthesis of silver nanoparticles in ionic liquid

    International Nuclear Information System (INIS)

    Corrêa, Cíntia M.; Bizeto, Marcos A.; Camilo, Fernanda F.

    2016-01-01

    Ionic liquids have structural organization at nanoscale that can trigger the spontaneous ordering of structures in nanoscopic range. Due to this characteristic, several metal nanoparticles have been prepared in this media. In this paper, we describe the direct preparation of silver nanoparticles in the following imidazolium ionic liquids: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1,2-dimethyl-3-butylimidazolium bis(trifluoromethanesulfonyl)imide, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-octyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, and in citrate tetrabutylammonium, that is an ionic liquid that acts as solvent and reducing agent at the same time. We also evaluated the morphology of the nanoparticles and the stability of the dispersions. Spherical silver nanoparticles with surface Plasmon bands in the range of 400–430 nm were produced in all the ionic liquids, with the only exception for the 1-octyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide that produced a black precipitate. The best results were obtained by using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide and citrate tetrabutylammonium ionic liquids. The former resulted in concentrated spherical silver nanoparticles dispersion (ca. 1.0 mM of Ag) with diameters ranging from 6 to 12 nm and by adding polyvinylpyrrolidone (PVP) to the dispersions they became stable for at least 1 month. The citrate tetrabutylammonium ionic liquid produced even more concentrated dispersion of spherical silver nanoparticles with diameters ranging from 2 to 6 nm. These dispersions were quite stable without the need of PVP, since the Plasmon band in the electronic absorption spectra remained unaltered for months after the preparation. The citrate tetrabutylammonium ionic liquid offers a slow kinetic for the silver nanoparticle formation as the citrate is a milder reducing agent than borohydride.Graphical Abstract

  11. Direct synthesis of silver nanoparticles in ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Corrêa, Cíntia M.; Bizeto, Marcos A.; Camilo, Fernanda F., E-mail: ffcamilo@unifesp.br [Universidade Federal de São Paulo, Laboratório de Materiais Híbridos, Departamento de Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas (Brazil)

    2016-05-15

    Ionic liquids have structural organization at nanoscale that can trigger the spontaneous ordering of structures in nanoscopic range. Due to this characteristic, several metal nanoparticles have been prepared in this media. In this paper, we describe the direct preparation of silver nanoparticles in the following imidazolium ionic liquids: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1,2-dimethyl-3-butylimidazolium bis(trifluoromethanesulfonyl)imide, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-octyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, and in citrate tetrabutylammonium, that is an ionic liquid that acts as solvent and reducing agent at the same time. We also evaluated the morphology of the nanoparticles and the stability of the dispersions. Spherical silver nanoparticles with surface Plasmon bands in the range of 400–430 nm were produced in all the ionic liquids, with the only exception for the 1-octyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide that produced a black precipitate. The best results were obtained by using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide and citrate tetrabutylammonium ionic liquids. The former resulted in concentrated spherical silver nanoparticles dispersion (ca. 1.0 mM of Ag) with diameters ranging from 6 to 12 nm and by adding polyvinylpyrrolidone (PVP) to the dispersions they became stable for at least 1 month. The citrate tetrabutylammonium ionic liquid produced even more concentrated dispersion of spherical silver nanoparticles with diameters ranging from 2 to 6 nm. These dispersions were quite stable without the need of PVP, since the Plasmon band in the electronic absorption spectra remained unaltered for months after the preparation. The citrate tetrabutylammonium ionic liquid offers a slow kinetic for the silver nanoparticle formation as the citrate is a milder reducing agent than borohydride.Graphical Abstract.

  12. Amine-catalyzed direct aldol reactions of hydroxy- and dihydroxyacetone: biomimetic synthesis of carbohydrates.

    Science.gov (United States)

    Popik, Oskar; Pasternak-Suder, Monika; Leśniak, Katarzyna; Jawiczuk, Magdalena; Górecki, Marcin; Frelek, Jadwiga; Mlynarski, Jacek

    2014-06-20

    This article presents comprehensive studies on the application of primary, secondary, and tertiary amines as efficient organocatalysts for the de novo synthesis of ketoses and deoxyketoses. Mimicking the actions of aldolase enzymes, the synthesis of selected carbohydrates was accomplished in aqueous media by using proline- and serine-based organocatalysts. The presented methodology also provides direct access to unnatural L-carbohydrates from the (S)-glyceraldehyde precursor. Determination of the absolute configuration of all obtained sugars was feasible using a methodology consisting of concerted ECD and VCD spectroscopy.

  13. Behavioral Synthesis of Asynchronous Circuits Using Syntax Directed Translation as Backend

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard; Sparsø, Jens; Madsen, Jan

    2009-01-01

    The current state-of-the art in high-level synthesis of asynchronous circuits is syntax directed translation, which performs a one-to-one mapping of a HDL-description into a corresponding circuit. This paper presents a method for behavioral synthesis of asynchronous circuits which builds on top...... description language Balsa [1]. This ”conventional” template architecture allows us to adapt traditional synchronous synthesis techniques for resource sharing, scheduling, binding etc, to the domain of asynchronous circuits. A prototype tool has been implemented on top of the Balsa framework, and the method...... is illustrated through the implementation of a set of example circuits. The main contributions of the paper are: the fundamental idea, the template architecture and its implementation using asynchronous handshake components, and the implementation of a prototype tool....

  14. Synthesis and characterization of Cu-MFI catalyst for the direct medium temperature range NO decomposition

    Directory of Open Access Journals (Sweden)

    Valkaj Karolina Maduna

    2016-03-01

    Full Text Available In this study the physico-chemical and catalytic properties of copper bearing MFI zeolites (Cu-MFI with different Si/Al and Si/Cu ratios were investigated. Two different methods for incorporation of metal ions into the zeolite framework were used: the ion exchange from the solution of copper acetate and the direct hydrothermal synthesis. Direct synthesis of a zeolite in the presence of copper-phosphate complexes was expected to generate more active copper species necessary for the desired reaction than the conventional ion exchange method. Direct decomposition of NO was used as a model reaction, because this reaction still offers a very attractive approach to NOX removal. The catalytic properties of zeolite samples were studied using techniques, such as XRD, SEM, EPR and nitrogen adsorption/desorption measurements at 77 K. Results of the kinetic investigation revealed that both methods are applicable for the preparation of the catalysts with active sites capable of catalyzing the NO decomposition. It was found out that Cu-MFI zeolites obtained through direct synthesis are promising catalysts for NO decomposition, especially at lower reaction temperatures. The efficiency of the catalysts prepared by both methods is compared and discussed.

  15. Directed Evolution of Proteins through In Vitro Protein Synthesis in Liposomes

    Directory of Open Access Journals (Sweden)

    Takehiro Nishikawa

    2012-01-01

    Full Text Available Directed evolution of proteins is a technique used to modify protein functions through “Darwinian selection.” In vitro compartmentalization (IVC is an in vitro gene screening system for directed evolution of proteins. IVC establishes the link between genetic information (genotype and the protein translated from the information (phenotype, which is essential for all directed evolution methods, by encapsulating both in a nonliving microcompartment. Herein, we introduce a new liposome-based IVC system consisting of a liposome, the protein synthesis using recombinant elements (PURE system and a fluorescence-activated cell sorter (FACS used as a microcompartment, in vitro protein synthesis system, and high-throughput screen, respectively. Liposome-based IVC is characterized by in vitro protein synthesis from a single copy of a gene in a cell-sized unilamellar liposome and quantitative functional evaluation of the synthesized proteins. Examples of liposome-based IVC for screening proteins such as GFP and β-glucuronidase are described. We discuss the future directions for this method and its applications.

  16. Porous Diatomite-Immobilized Cu–Ni Bimetallic Nanocatalysts for Direct Synthesis of Dimethyl Carbonate

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2012-01-01

    Full Text Available A series of diatomite-immobilized Cu–Ni bimetallic nanocatalysts was prepared under ultrasonication and evaluated for the direct synthesis of dimethyl carbonate under various conditions. Upon being fully characterized by TPR, TPD, BET, SEM, XRD, and XPS methodologies, it is found that the bimetallic composite is effectively alloyed and well immobilized inside or outside the pore of diatomite. Under the optimal conditions of 1.2 MPa and 120∘C, the prepared catalyst with loading of 15% exhibited the highest methanol conversion of 6.50% with DMC selectivity of 91.2% as well as more than 10-hour lifetime. The possible reaction mechanism was proposed and discussed in detail. To our knowledge, this is the first report to use diatomite as a catalyst support for direct DMC synthesis from methanol and CO2.

  17. Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Hu, A.; Rybachuk, M.; Lu, Q.-B.; Duley, W. W.

    2007-01-01

    Microscopic phase transformation from graphite to sp-bonded carbon chains (carbyne) and nanodiamond has been induced by femtosecond laser pulses on graphite surface. UV/surface enhanced Raman scattering spectra and x-ray photoelectron spectra displayed the local synthesis of carbyne in the melt zone while nanocrystalline diamond and trans-polyacetylene chains form in the edge area of gentle ablation. These results evidence possible direct 'writing' of variable chemical bonded carbons by femtosecond laser pulses for carbon-based applications

  18. Fabrication of spintronics device by direct synthesis of single-walled carbon nanotubes from ferromagnetic electrodes

    Directory of Open Access Journals (Sweden)

    Mohd Ambri Mohamed, Nobuhito Inami, Eiji Shikoh, Yoshiyuki Yamamoto, Hidenobu Hori and Akihiko Fujiwara

    2008-01-01

    Full Text Available We describe an alternative method for realizing a carbon nanotube spin field-effect transistor device by the direct synthesis of single-walled carbon nanotubes (SWNTs on substrates by alcohol catalytic chemical vapor deposition. We observed hysteretic magnetoresistance (MR at low temperatures due to spin-dependent transport. In these devices, the maximum ratio in resistance variation of MR was found to be 1.8%.

  19. Polymer-directed synthesis of metal oxide-containing nanomaterials for electrochemical energy storage

    Science.gov (United States)

    Mai, Yiyong; Zhang, Fan; Feng, Xinliang

    2013-12-01

    Metal oxide-containing nanomaterials (MOCNMs) of controllable structures at the nano-scale have attracted considerable interest because of their great potential applications in electrochemical energy storage devices, such as lithium-ion batteries (LIBs) and supercapacitors. Among many structure-directing agents, polymers and macromolecules, including block copolymers (BCPs) and graphene, exhibit distinct advantages in the template-assisted synthesis of MOCNMs. In this feature article, we introduce the controlled preparation of MOCNMs employing BCPs and graphene as structure-directing agents. Typical synthetic strategies are presented for the control of structures and sizes as well as the improvement of physical properties and electrochemical performance of MOCNMs in LIBs and supercapacitors.

  20. The direct oxidative diene cyclization and related reactions in natural product synthesis

    Directory of Open Access Journals (Sweden)

    Juliane Adrian

    2016-09-01

    Full Text Available The direct oxidative cyclization of 1,5-dienes is a valuable synthetic method for the (diastereoselective preparation of substituted tetrahydrofurans. Closely related reactions start from 5,6-dihydroxy or 5-hydroxyalkenes to generate similar products in a mechanistically analogous manner. After a brief overview on the history of this group of transformations and a survey on mechanistic and stereochemical aspects, this review article provides a summary on applications in natural product synthesis. Moreover, current limitations and future directions in this area of chemistry are discussed.

  1. Protein synthesis and the recovery of both survival and cytoplasmic "petite" mutation in ultraviolet-treated yeast cells. I. Nuclear-directed protein synthesis.

    Science.gov (United States)

    Heude, M; Chanet, R; Moustacchi, E

    1975-04-01

    The contribution of nuclear-directed protein synthesis in the repair of lethal and mitochondrial genetic damage after UV-irradiation of exponential and stationary phage haploid yeast cells was examined. This was carried out using cycloheximide (CH), a specific inhibitor of nuclear protein synthesis. It appears that nuclear protein synthesis is required for the increase in survival seen after the liquid holding of cells at both stages, as well as for the "petite" recovery seen after the liquid holding of exponential phase cells. The characteristic negative liquid holding effect observed for the UV induction of "petites" in stationary phase cells (increase of the frequency of "petites" during storage) remained following all the treatments which inhibited nuclear protein synthesis. However, the application of photoreactivating light following dark holding with cycloheximide indicates that some steps of the repair of both nuclear and mitochondrial damage are performed in the absence of a synthesis of proteins.

  2. An Introduction to Zeolite Synthesis Using Imidazolium-Based Cations as Organic Structure-Directing Agents.

    Science.gov (United States)

    Vinaches, Paloma; Bernardo-Gusmão, Katia; Pergher, Sibele B C

    2017-08-06

    Zeolite synthesis is a wide area of study with increasing popularity. Several general reviews have already been published, but they did not summarize the study of imidazolium species in zeolite synthesis. Imidazolium derivatives are promising compounds in the search for new zeolites and can be used to help understand the structure-directing role. Nearly 50 different imidazolium cations have already been used, resulting in a variety of zeolitic types, but there are still many derivatives to be studied. In this context, the purpose of this short review is to help researchers starting in this area by summarizing the most important concepts related to imidazolium-based zeolite studies and by presenting a table of recent imidazolium derivatives that have been recently studied to facilitate filling in the knowledge gaps.

  3. Direct Synthesis of 7 nm Thick Zinc(II)-Benzimidazole-Acetate Metal-Organic Framework Nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Feng; Kumar, Prashant; Xu, Wenqian; Mkhoyan, K. Andre; Tsapatsis, Michael

    2018-01-09

    Two-dimensional metal-organic frameworks (MOFs) are promising candidates for high performance gas sepa-ration membranes. Currently, MOF nanosheets are mostly fabricated through delamination of layered MOFs, which often re-sults in a low yield of intact free-standing nanosheets. In this work, we present a direct synthesis method for zinc(II)-benzimidazole-acetate (Zn(Bim)OAc) MOF nanosheets. The obtained nanosheets have a lateral dimension of 600 nm when synthesized at room temperature. By adjusting the synthesis temperature, the morphology of obtained nanosheets can be readily tuned from nanosheets to nanobelts. A thickness of 7 nm is determined for Zn(Bim)OAc using high-angle annular dark-field scanning transmission electron microscopy, which makes these nanosheets promising building blocks of gas sepa-ration membranes.

  4. Direct observation of glycogen synthesis in human muscle with 13C NMR

    International Nuclear Information System (INIS)

    Jue, T.; Rothman, D.L.; Shulman, G.I.; Tavitian, B.A.; DeFronzo, R.A.; Shulman, R.G.

    1989-01-01

    On the basis of previous indirect measurements, skeletal muscle has been implicated as the major site of glucose uptake and it has been suggested that muscle glycogen formation is the dominant pathway. However, direct measurements of the rates of glycogen synthesis have not been possible by previous techniques. The authors have developed 13 C NMR methods to measure directly the rate of human muscle glycogen formation from infused, isotopically labeled [1- 13 C]glucose. They show that under conditions of imposed hyperglycemia and hyperinsulinemia, a majority of the infused glucose was converted to muscle glycogen in a normal man. This directly shows that muscle is the major site of glucose disposal under these conditions, and provides quantitation of the glucose flux to muscle glycogen

  5. Direct vs. indirect pathway of hepatic glycogen synthesis as a function of glucose infusion rate

    International Nuclear Information System (INIS)

    Bagby, G.J.; Lang, C.H.; Johnson, J.L.; Blakesly, H.L.; Spitzer, J.J.

    1986-01-01

    This study was initiated to determine the influence of the rate of exogenous glucose administration on liver glycogen synthesis by the direct (glucose uptake and incorporation into glycogen) vs the indirect pathway (glucose degradation to 3-carbon intermediates, e.g., lactate, prior to incorporation into glycogen). Catheterized rats were fasted 2 days prior to receiving a 3 hr infusion of glucose at rates of 0 to 230 μmol/min/kg containing tracer [6- 3 H]- and [U- 14 C]-glucose. Plasma glucose (r = 0.80), insulin (r = 0.90) and lactate (r = 0.84) were correlated with glucose infusion rate. The rate of liver glycogen deposition (0.46 +/- 0.03 μmol/min/g) did not differ between a glucose infusion rate of 20 and 230 μmol/min/kg. At the lowest and highest glucose infusion rates hepatic glycogenesis accounted for 87 +/- 6 and 9 +/- 1% of the total glucose load, respectively. The percent contribution of the direct pathways to glycogen deposition ([ 3 H] specific activity in hepatic glycogen/[ 3 H] specific activity in plasma glucose) increased from 16 +/- 3 to 83 +/- 5% from lowest to highest glucose infusion rates (prevailing plasma glucose concentrations: 9 +/- 1 and 21 +/- 2 mM, respectively). The results indicate that the relative contribution of the direct and indirect pathways of glucogen synthesis are dependent upon the glucose load or plasma glucose concentration

  6. Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate.

    Science.gov (United States)

    Liu, Yi-Kai; Lee, Ming-Tsang

    2014-08-27

    This study presents a novel approach for the rapid fabrication of conductive nano/microscale metal structures on flexible polymer substrate (polyimide). Silver film is simultaneously synthesized and patterned on the polyimide substrate using an advanced continuous wave (CW) laser direct writing technology and a transparent, particle-free reactive silver ion ink. The location and shape of the resulting silver patterns are written by a laser beam from a digitally controlled micromirror array device. The silver patterns fabricated by this laser direct synthesis and patterning (LDSP) process exhibit the remarkably low electrical resistivity of 2.1 μΩ cm, which is compatible to the electrical resistivity of bulk silver. This novel LDSP process requires no vacuum chamber or photomasks, and the steps needed for preparation of the modified reactive silver ink are simple and straightforward. There is none of the complexity and instability associated with the synthesis of the nanoparticles that are encountered for the conventional laser direct writing technology which involves nanoparticle sintering process. This LDSP technology is an advanced method of nano/microscale selective metal patterning on flexible substrates that is fast and environmentally benign and shows potential as a feasible process for the roll-to-roll manufacturing of large area flexible electronic devices.

  7. Recent progress in the direct synthesis of hierarchical zeolites: synthetic strategies and characterization methods

    KAUST Repository

    Liu, Zhaohui

    2017-06-16

    Hierarchically structured zeolites combine the merits of microporous zeolites and mesoporous materials to offer enhanced molecular diffusion and mass transfer without compromising the inherent catalytic activities and selectivity of zeolites. This short review gives an introduction to the synthesis strategies for hierarchically structured zeolites with emphasis on the latest progress in the route of ‘direct synthesis’ using various templates. Several characterization methods that allow us to evaluate the ‘quality’ of complex porous structures are also introduced. At the end of this review, an outlook is given to discuss some critical issues and challenges regarding the development of novel hierarchically structured zeolites as well as their applications.

  8. Directing factors affecting the synthesis of a MFI-type zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Vinaches, P.; Pergher, S.B.C. [Universidade Federal de Rio Grande do Norte (UFRN), RN (Brazil); Lopes, C.W. [Institute of Chemical Technology, Mumbai (India); Gomez-Hortiguela, L. [Instituto de Catalisis y Petroleoquimica, Madrid (Spain); Finger, P.H.; Silva, B.A. da; Dallago, R.M.; Mignoni, M.L. [Universidade Regional Integrada do Alto Uruguai e das Missoes (URI), Erechim, RS (Brazil)

    2016-07-01

    Full text: Zeolites are crystalline tectosilicates constituted by (TO4) tetrahedra connected through the oxygens of their vertices. The importance of these materials is that their properties differ, due to their variable compositions and structures, leading to the possibility of applying them into different industries, for example, as catalyst in petroleum industry or sensors in quality control. One of the big questions in this area is about the understanding of the chemistry that directs to one or another type of zeolite. Another important question is the search of new zeolitic structures for new applications. One approach to answer both is the study of the structure-directing agents, which are inorganic or organic molecules used in the synthesis of zeolites. New and already-used molecules have been studied within different synthesis conditions and different techniques, as characterization or computational studies. And several attempts of rationalization were and, still, will be performed. In this research, an imidazolium-based compound was studied in hydrothermal zeolite synthesis as organic structure-directing agent (OSDA). The products were obtained with Si/Al or Si/(Al+Zn) compositions, proved by ICP data. X-ray diffractograms showed two different zeolitic types: MFI and TON. It was observed that when Zn was present in the synthesis gel, pure MFI phases were able to appear. But in his absence, the products were all mixtures of MFI and TON zeolites. It was also possible to distinguish both phases by SEM micrographs, as MFI had brick-like shape and TON appeared as needles. The obtained zeolites were stable until 900°C minimum, as tested by a TG/DTG/DSC experiment. To prove that the chosen OSDA directed these structures, a CHN analysis was performed, resulting in integrity of the molecules inside the zeolitic pores and cavities. Finally, a rationale about the location and conformation of the OSDA was needed to understand these experimental results. So, it was

  9. In situ synthesis of nanocomposite membranes: comprehensive improvement strategy for direct methanol fuel cells.

    Science.gov (United States)

    Rao, Siyuan; Xiu, Ruijie; Si, Jiangju; Lu, Shanfu; Yang, Meng; Xiang, Yan

    2014-03-01

    In situ synthesis is a powerful approach to control nanoparticle formation and consequently confers extraordinary properties upon composite membranes relative to conventional doping methods. Herein, uniform nanoparticles of cesium hydrogen salts of phosphotungstic acid (CsPW) are controllably synthesized in situ in Nafion to form CsPW–Nafion nanocomposite membranes with both improved proton conductivity and methanol-crossover suppression. A 101.3% increase of maximum power density has been achieved relative to pristine Nafion in a direct methanol fuel cell (DMFC), indicating a potential pathway for large-scale fabrication of DMFC alternative membranes.

  10. Directing factors affecting the synthesis of a MFI-type zeolite

    International Nuclear Information System (INIS)

    Vinaches, P.; Pergher, S.B.C.; Lopes, C.W.; Gomez-Hortiguela, L.; Finger, P.H.; Silva, B.A. da; Dallago, R.M.; Mignoni, M.L.

    2016-01-01

    Full text: Zeolites are crystalline tectosilicates constituted by (TO4) tetrahedra connected through the oxygens of their vertices. The importance of these materials is that their properties differ, due to their variable compositions and structures, leading to the possibility of applying them into different industries, for example, as catalyst in petroleum industry or sensors in quality control. One of the big questions in this area is about the understanding of the chemistry that directs to one or another type of zeolite. Another important question is the search of new zeolitic structures for new applications. One approach to answer both is the study of the structure-directing agents, which are inorganic or organic molecules used in the synthesis of zeolites. New and already-used molecules have been studied within different synthesis conditions and different techniques, as characterization or computational studies. And several attempts of rationalization were and, still, will be performed. In this research, an imidazolium-based compound was studied in hydrothermal zeolite synthesis as organic structure-directing agent (OSDA). The products were obtained with Si/Al or Si/(Al+Zn) compositions, proved by ICP data. X-ray diffractograms showed two different zeolitic types: MFI and TON. It was observed that when Zn was present in the synthesis gel, pure MFI phases were able to appear. But in his absence, the products were all mixtures of MFI and TON zeolites. It was also possible to distinguish both phases by SEM micrographs, as MFI had brick-like shape and TON appeared as needles. The obtained zeolites were stable until 900°C minimum, as tested by a TG/DTG/DSC experiment. To prove that the chosen OSDA directed these structures, a CHN analysis was performed, resulting in integrity of the molecules inside the zeolitic pores and cavities. Finally, a rationale about the location and conformation of the OSDA was needed to understand these experimental results. So, it was

  11. Optimum conditions of the synthesis of zeolite A by the direct hydrolysis of ethyl orthosilicate

    Energy Technology Data Exchange (ETDEWEB)

    Hino, R; Toki, K

    1975-11-01

    Synthesis of various types of zeolites has been reported using as a starting material silica sols, gels, silicates or silicate minerals, all of which are polymers of silicic acid. In this study Zeolite A was synthesized from ethyl orthosilicate which was probably a monomer at the beginning of hydrolysis. Optimum conditions of synthesis and factors which influence the formation of Zeolite A were examined. Ethyl orthosilicate was directly hydrolyzed by sodium aluminate solution in the presence of excess sodium hydroxide. After ultrasonic and mechanical stirring for an hour at 70/sup 0/C, the solution was kept in the air bath at 70/sup 0/C under atmospheric pressure for 48 approximately 120 hours. Zeolite A with high purity and crystallinity was obtained in a good yield from the starting mixture with the composition of 2 approximately 4.5 Na/sub 2/O . Al/sub 2/O/sub 3/ . 0.5 approximately 2 SiO/sub 2/ . 200 approximately 400 H/sub 2/O. Present method was effective for the synthesis of Zeolite A in the lower molar ratios of SiO/sub 2//Al/sub 2/O/sub 3/ as compared with the ordinary methods using silica or silicates. The species formed were also investigated by the optical, x-ray diffraction, DTA, TGA, IR and chemical methods.

  12. Direct on-chip DNA synthesis using electrochemically modified gold electrodes as solid support

    Science.gov (United States)

    Levrie, Karen; Jans, Karolien; Schepers, Guy; Vos, Rita; Van Dorpe, Pol; Lagae, Liesbet; Van Hoof, Chris; Van Aerschot, Arthur; Stakenborg, Tim

    2018-04-01

    DNA microarrays have propelled important advancements in the field of genomic research by enabling the monitoring of thousands of genes in parallel. The throughput can be increased even further by scaling down the microarray feature size. In this respect, microelectronics-based DNA arrays are promising as they can leverage semiconductor processing techniques with lithographic resolutions. We propose a method that enables the use of metal electrodes for de novo DNA synthesis without the need for an insulating support. By electrochemically functionalizing gold electrodes, these electrodes can act as solid support for phosphoramidite-based synthesis. The proposed method relies on the electrochemical reduction of diazonium salts, enabling site-specific incorporation of hydroxyl groups onto the metal electrodes. An automated DNA synthesizer was used to couple phosphoramidite moieties directly onto the OH-modified electrodes to obtain the desired oligonucleotide sequence. Characterization was done via cyclic voltammetry and fluorescence microscopy. Our results present a valuable proof-of-concept for the integration of solid-phase DNA synthesis with microelectronics.

  13. Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors.

    Science.gov (United States)

    Stamatopoulou, Vassiliki; Apostolidi, Maria; Li, Shuang; Lamprinou, Katerina; Papakyriakou, Athanasios; Zhang, Jinwei; Stathopoulos, Constantinos

    2017-09-29

    Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Capability of the Direct Dimethyl Ether Synthesis Process for the Conversion of Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Ainara Ateka

    2018-04-01

    Full Text Available The direct synthesis of dimethyl ether (DME is an ideal process to achieve the environmental objective of CO2 conversion together with the economic objective of DME production. The effect of the reaction conditions (temperature, pressure, space time and feed composition (ternary mixtures of H2 + CO + CO2 with different CO2/CO and H2/COx molar ratios on the reaction indices (COx conversion, product yield and selectivity, CO2 conversion has been studied by means of experiments carried out in a fixed-bed reactor, with a CuO-ZnO-MnO/SAPO-18 catalyst, in order to establish suitable ranges of operating conditions for enhancing the individual objectives of CO2 conversion and DME yield. The optimums of these two objectives are achieved in opposite conditions, and for striking a good balance between both objectives, the following conditions are suitable: 275–300 °C; 20–30 bar; 2.5–5 gcat h (molC−1 and a H2/COx molar ratio in the feed of 3. CO2/CO molar ratio in the feed is of great importance. Ratios below 1/3 are suitable for enhancing DME production, whereas CO2/CO ratios above 1 improve the conversion of CO2. This conversion of CO2 in the overall process of DME synthesis is favored by the reverse water gas shift equation, since CO is more active than CO2 in the methanol synthesis reaction.

  15. Synthesis of phenanthridines via palladium-catalyzed picolinamide-directed sequential C–H functionalization

    Directory of Open Access Journals (Sweden)

    Ryan Pearson

    2013-05-01

    Full Text Available We report a new synthesis of phenanthridines based on palladium-catalyzed picolinamide-directed sequential C–H functionalization reactions starting from readily available benzylamine and aryl iodide precursors. Under the catalysis of Pd(OAc2, the ortho-C–H bond of benzylpicolinamides is first arylated with an aryl iodide. The resulting biaryl compound is then subjected to palladium-catalyzed picolinamide-directed intramolecular dehydrogenative C–H amination with PhI(OAc2 oxidant to form the corresponding cyclized dihydrophenanthridines. The benzylic position of these dihydrophenanthridines could be further oxidized with Cu(OAc2, removing the picolinamide group and providing phenathridine products. The cyclization and oxidation could be carried out in a single step and afford phenathridines in moderate to good yields.

  16. DISY. The direct synthesis of hydrogen peroxide, a bridge for innovative applications

    Energy Technology Data Exchange (ETDEWEB)

    Buzzoni, R.; Perego, C. [Eni S.p.A., Novara (Italy). Research Center for Non-Conventional Energies

    2011-07-01

    Hydrogen peroxide is largely recognized as the green oxidant of choice for future sustainable processes. The current industrial production still goes through the old anthraquinone process, a complex, two-step process suffering from a low specific productivity. Following the development of TS-1/H{sub 2}O{sub 2} based selective oxidation processes e.g. propylene epoxidation, cyclohexanone ammoximation and the new benzene direct oxidation to phenol, there has been an incentive for the development of a new technology, simpler and with better economics. DISY process, based on direct synthesis of hydrogen peroxide from hydrogen and oxygen, is highly suitable to the design of integrated selective oxidation processes as well as for production of commercial-grade high concentration aqueous hydrogen peroxide solutions. Catalyst and process development up to pilot scale are described. (orig.)

  17. Block copolymer directed synthesis of mesoporous TiO 2 for dye-sensitized solar cells

    KAUST Repository

    Nedelcu, Mihaela

    2009-01-01

    The morphology of TiO2 plays an important role in the operation of solid-state dye-sensitized solar cells. By using polyisoprene-block- ethyleneoxide (PI-b-PEO) copolymers as structure directing agents for a sol-gel based synthesis of mesoporous TiO2, we demonstrate a strategy for the detailed control of the semiconductor morphology on the 10 nm length scale. The careful adjustment of polymer molecular weight and titania precursor content is used to systematically vary the material structure and its influence upon solar cell performance is investigated. Furthermore, the use of a partially sp 2 hybridized structure directing polymer enables the crystallization of porous TiO2 networks at high temperatures without pore collapse, improving its performance in solid-state dye-sensitized solar cells. © 2009 The Royal Society of Chemistry.

  18. Direct synthesis of polyglycolide and its related compounds. Polyglycolide oyobi kanren kagobutsu no chokusetsu gosei

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, T. (National Chemical Laboratory for Industry, Tsukuba (Japan))

    1991-07-01

    This paper describes a direct synthesis utilizing polyglycolide and its related compound, carbon monoxide, and the summary of the latest research. Polyglycolide is a kind of polyester, and synthesized from glycolic acid as the starting material. Because this polymer is decomposed and absorbed in an organism, it is developed as surgical suture in the U.S.A. Polyglycolide has been hitherto synthesized by multi-step method processing from glycolic acid to glycolic acid low grade gaade polymer to glycolide, but in the latest research, polyglycolide was synthesized directly from carbon monoxide and formaldehyde. The polyglycolide thus obtained was observed to have micro-organism decomposability under the decomposition test in active sludge using the modified MITI process. The application field of polyglycolide includes release controlling capsules for agricultural chemicals, herbicides, insecticides, plasticizers, polymer blending constituents, film, thread, packaging material, as well as synthesizing material for glycolic acid. 11 refs., 3 figs.

  19. Structure-directing effects of ionic liquids in the ionothermal synthesis of metal-organic frameworks.

    Science.gov (United States)

    Vaid, Thomas P; Kelley, Steven P; Rogers, Robin D

    2017-07-01

    Traditional synthesis of metal-organic frameworks (MOFs) involves the reaction of a metal-containing precursor with an organic linker in an organic solvent at an elevated temperature, in what is termed a 'solvothermal' reaction. More recently, many examples have been reported of MOF synthesis in ionic liquids (ILs), rather than an organic solvent, in 'ionothermal' reactions. The high concentration of both cations and anions in an ionic liquid allows for the formation of new MOF structures in which the IL cation or anion or both are incorporated into the MOF. Most commonly, the IL cation is included in the open cavities of the MOF, countering the anionic charge of the MOF framework itself and acting as a template around which the MOF structure forms. Ionic liquids can also serve other structure-directing roles, for example, when an IL containing a single enantiomer of a chiral anion leads to a homochiral MOF, even though the IL anion is not itself incorporated into the MOF. A comprehensive review of ionothermal syntheses of MOFs, and the structure-directing effects of the ILs, is given.

  20. Structure-directing effects of ionic liquids in the ionothermal synthesis of metal–organic frameworks

    Directory of Open Access Journals (Sweden)

    Thomas P. Vaid

    2017-07-01

    Full Text Available Traditional synthesis of metal–organic frameworks (MOFs involves the reaction of a metal-containing precursor with an organic linker in an organic solvent at an elevated temperature, in what is termed a `solvothermal' reaction. More recently, many examples have been reported of MOF synthesis in ionic liquids (ILs, rather than an organic solvent, in `ionothermal' reactions. The high concentration of both cations and anions in an ionic liquid allows for the formation of new MOF structures in which the IL cation or anion or both are incorporated into the MOF. Most commonly, the IL cation is included in the open cavities of the MOF, countering the anionic charge of the MOF framework itself and acting as a template around which the MOF structure forms. Ionic liquids can also serve other structure-directing roles, for example, when an IL containing a single enantiomer of a chiral anion leads to a homochiral MOF, even though the IL anion is not itself incorporated into the MOF. A comprehensive review of ionothermal syntheses of MOFs, and the structure-directing effects of the ILs, is given.

  1. DnaB gene product-independence of DNA polymerase III-directed repair synthesis in Escherichia coli K-12

    International Nuclear Information System (INIS)

    Billen, D.; Hellermann, G.R.

    1977-01-01

    An investigation has been carried out into the role of dnaB gene product in X-ray-induced repair synthesis carried out by DNA polymerase III in toluene-treated Escherichia coli K-12. A polAl polBlOO dnaB mutant deficient in both DNA polymerase I and II activities was used, and it was shown that the level of X-ray-induced, ATP-dependent, non-conservative DNA synthesis was, unlike semi-conservative DNA synthesis, unaffected by a temperature shift from 30 0 to 42 0 C. The dnaB gene product was not therefore necessary for DNA polymerase III-directed repair synthesis, which occurred in the absence of replicative synthesis. (U.K.)

  2. Stereoselective, nitro-Mannich/lactamisation cascades for the direct synthesis of heavily decorated 5-nitropiperidin-2-ones and related heterocycles

    Directory of Open Access Journals (Sweden)

    Pavol Jakubec

    2012-04-01

    Full Text Available A versatile nitro-Mannich/lactamisation cascade for the direct stereoselective synthesis of heavily decorated 5-nitropiperidin-2-ones and related heterocycles has been developed. A highly enantioenriched substituted 5-nitropiperidin-2-one was synthesised in a four component one-pot reaction combining an enantioselective organocatalytic Michael addition with the diastereoselective nitro-Mannich/lactamisation cascade. Protodenitration and chemoselective reductive manipulation of the heterocycles was used to install contiguous and fully substituted stereocentres in the synthesis of substituted piperidines.

  3. Direct Analysis in Real Time Mass Spectrometry of Potential By-Products from Homemade Nitrate Ester Explosive Synthesis

    OpenAIRE

    Sisco, Edward; Forbes, Thomas P.

    2015-01-01

    This work demonstrates the coupling of direct analysis in real time (DART) ionization with time-of-flight mass spectrometry (MS) in an off-axis configuration for the trace detection and analysis of potential partially nitrated and dimerized by-products of homemade nitrate ester explosive synthesis. Five compounds relating to the synthesis of nitroglycerin (NG) and pentaerythritol tetranitrate (PETN) were examined. Deprotonated ions and adducts with molecular oxygen, nitrite, and nitrate were ...

  4. Silver-palladium catalysts for the direct synthesis of hydrogen peroxide

    Science.gov (United States)

    Khan, Zainab; Dummer, Nicholas F.; Edwards, Jennifer K.

    2017-11-01

    A series of bimetallic silver-palladium catalysts supported on titania were prepared by wet impregnation and assessed for the direct synthesis of hydrogen peroxide, and its subsequent side reactions. The addition of silver to a palladium catalyst was found to significantly decrease hydrogen peroxide productivity and hydrogenation, but crucially increase the rate of decomposition. The decomposition product, which is predominantly hydroxyl radicals, can be used to decrease bacterial colonies. The interaction between silver and palladium was characterized using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The results of the TPR and XPS indicated the formation of a silver-palladium alloy. The optimal 1% Ag-4% Pd/TiO2 bimetallic catalyst was able to produce approximately 200 ppm of H2O2 in 30 min. The findings demonstrate that AgPd/TiO2 catalysts are active for the synthesis of hydrogen peroxide and its subsequent decomposition to reactive oxygen species. The catalysts are promising for use in wastewater treatment as they combine the disinfectant properties of silver, hydrogen peroxide production and subsequent decomposition. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.

  5. Direct Synthesis of Polymer Nanotubes by Aqueous Dispersion Polymerization of a Cyclodextrin/Styrene Complex.

    Science.gov (United States)

    Chen, Xi; Liu, Lei; Huo, Meng; Zeng, Min; Peng, Liao; Feng, Anchao; Wang, Xiaosong; Yuan, Jinying

    2017-12-22

    A one-step synthesis of nanotubes by RAFT dispersion polymerization of cyclodextrin/styrene (CD/St) complexes directly in water is presented. The resulted amphiphilic PEG-b-PS diblock copolymers self-assemble in situ into nanoparticles with various morphologies. Spheres, worms, lamellae, and nanotubes were controllably obtained. Because of the complexation, the swelling degree of polystyrene (PS) blocks by free St is limited, resulting in limited mobility of PS chains. Consequently, kinetically trapped lamellae and nanotubes were obtained instead of spherical vesicles. During the formation of nanotubes, small vesicles first formed at the ends of the tape-like lamellae, then grew and fused into nanotubes with a limited chain rearrangement. The introduction of a host-guest interaction based on CDs enables the aqueous dispersion polymerization of water-immiscible monomers, and produces kinetically trapped nanostructures, which could be a powerful technique for nanomaterials synthesis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide

    Science.gov (United States)

    Zhang, Haitao; Zhang, Xiong; Sun, Xianzhong; Ma, Yanwei

    2013-12-01

    Morphology control of carbon-based nanomaterials (nanocarbons) is critical to practical applications because their physical and chemical properties are highly shape-dependent. The discovery of novel shaped nanocarbons stimulates new development in carbon science and technology. Based on direct reaction of CO2 with Mg metal, we achieved controlled synthesis of several different types of nanocarbons including mesoporous graphene, carbon nanotubes, and hollow carbon nanoboxes. The last one, to our knowledge, has not been previously reported to this date. The method described here allows effective control of the shape and dimensions of nanocarbons through manipulation of reaction temperature. The formation mechanism of nanocarbons is proposed. As a proof of concept, the synthesized nanocarbons are used for electrodes in symmetrical supercapacitors, which exhibit high capacitance and good cycling stability. The reported protocols are instructive to production of nanocarbons with controlled shape and dimensions which are much desirable for many practical applications.

  7. Direct synthesis and structure characterization of ultrafine CeO2 nanoparticles

    International Nuclear Information System (INIS)

    Hu Chenguo; Zhang Zuwei; Liu Hong; Gao Puxian; Wang Zhonglin

    2006-01-01

    A new method to directly synthesize single-crystalline CeO 2 nanoparticles has been developed. The advantages of the method are rapid synthesis, at normal atmosphere, 100% productive ratio and low cost, with a great potential for scale-up. X-ray diffraction (XRD) spectra showed unusual peak width versus particle size, compared with Scherrer equation predictions. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), electron diffraction and ultraviolet (UV) absorption were used to examine the particle size and microstructure to find out the cause. As a result, ultrafine particles with a size less than 6 nm were found to be self-assembled into a 'coherent interface', so that a large group of particles behave like a large single particle in XRD

  8. Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide

    Science.gov (United States)

    Zhang, Haitao; Zhang, Xiong; Sun, Xianzhong; Ma, Yanwei

    2013-01-01

    Morphology control of carbon-based nanomaterials (nanocarbons) is critical to practical applications because their physical and chemical properties are highly shape-dependent. The discovery of novel shaped nanocarbons stimulates new development in carbon science and technology. Based on direct reaction of CO2 with Mg metal, we achieved controlled synthesis of several different types of nanocarbons including mesoporous graphene, carbon nanotubes, and hollow carbon nanoboxes. The last one, to our knowledge, has not been previously reported to this date. The method described here allows effective control of the shape and dimensions of nanocarbons through manipulation of reaction temperature. The formation mechanism of nanocarbons is proposed. As a proof of concept, the synthesized nanocarbons are used for electrodes in symmetrical supercapacitors, which exhibit high capacitance and good cycling stability. The reported protocols are instructive to production of nanocarbons with controlled shape and dimensions which are much desirable for many practical applications. PMID:24346481

  9. Mergers and acquisitions: A synthesis of theories and directions for future research

    Directory of Open Access Journals (Sweden)

    Wissal Ben Letaifa

    2017-02-01

    Full Text Available The purpose of this paper is to review a synthesis of theories and empirical studies dealing with the mergers and acquisitions in the recent decay in an attempt to provide directions for future research. The review focuses on four main streams including: first, the motives for mergers-acquisitions; which are the strategic profits, the overconfidence of managers and the desire to create a big empire resulting from merger. From second, corporate characteristics of firms that did merger or acquisition; third, the economic consequences of the operation of merger and acquisition and finally; fourth, the implication on the market with the impact of merger on the value of the firm. We think that this article can give another idea about the information disclosed by any company choosing to merge and can be analyzed by practitioners by giving them the theoretical background of the merger and acquisition problem.

  10. Technical difficulties and solutions of direct transesterification process of microbial oil for biodiesel synthesis.

    Science.gov (United States)

    Yousuf, Abu; Khan, Maksudur Rahman; Islam, M Amirul; Wahid, Zularisam Ab; Pirozzi, Domenico

    2017-01-01

    Microbial oils are considered as alternative to vegetable oils or animal fats as biodiesel feedstock. Microalgae and oleaginous yeast are the main candidates of microbial oil producers' community. However, biodiesel synthesis from these sources is associated with high cost and process complexity. The traditional transesterification method includes several steps such as biomass drying, cell disruption, oil extraction and solvent recovery. Therefore, direct transesterification or in situ transesterification, which combines all the steps in a single reactor, has been suggested to make the process cost effective. Nevertheless, the process is not applicable for large-scale biodiesel production having some difficulties such as high water content of biomass that makes the reaction rate slower and hurdles of cell disruption makes the efficiency of oil extraction lower. Additionally, it requires high heating energy in the solvent extraction and recovery stage. To resolve these difficulties, this review suggests the application of antimicrobial peptides and high electric fields to foster the microbial cell wall disruption.

  11. Studies on the direct synthesis of [O-15]-H2O

    International Nuclear Information System (INIS)

    Hagami, Eiichi; Murakami, Matsutaro; Takahashi, Kazuhiro; Kanno, Iwao; Aizawa, Yasuo; Hachiya, Takenori; Shoji, Yasuaki; Shishido, Fumio; Uemura, Kazuo

    1986-01-01

    A direct [O-15]-H 2 O synthesis method and its critical point of non-radioactive NH 4 + contamination were described. The 6.4 MeV deuterons were irradiated into the target chamber of 177 ml, filled up with 3.5 kg/cm 2 of 0.1 % H 2 in N 2 . [O-15]-H 2 O vapor was transported to PET room by He flow of 2.5 l/min through the teflon tubing of 2 mm in internal diameter and of 30 m in length. [O-15]-H 2 O was trapped in the vial containing 10 ml of saline and passed through Millipore filter. In this condition, the small amount of non-radioactive NH 4 + (24.9 ± 12.8 (1 SD) μg/dl, n = 23) was detected. This NH 4 + concentration varied from 25 to 11,000 μg/dl with changing H 2 amount in the target from 0.1 to 4.0 %. The NH 4 + concentration was kept lower than a normal range of the healthy human blood with 0.5 % or less H 2 in N 2 in the target. Therefore, 0.1 % of H 2 was used in clinical use. By the present method, a yield of approximately 7 mCi/μA of [O-15]-H 2 O saline was obtained. About 10 % of radioactive gases, corresponding to C 15 O, C 15 O 2 and N 2 15 O, were detected in the waste gas. The radiochemical and radionuclidic impurity was not detected in the saline. The biological tests for bacteria and pyrogen were all passed. In conclusion, the direct synthesis method provides [O-15]-H 2 O saline in the PET room with the simple handling and is convenient for the clinical use. (author)

  12. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-Min [Institute of NT-IT Fusion Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of); Jeong, Gyoung Hwa [Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Banyeon 100, Ulsan 44919 (Korea, Republic of); Kim, Sang-Wook [Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of); Kim, Chang-Koo, E-mail: changkoo@ajou.ac.kr [Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of)

    2017-04-01

    Highlights: • Vanadium nitrides were directly synthesized by a one-step chemical precipitation method. • This method was carried out at a low temperature of 70 °C. • Vanadium nitrides had a specific capacitance of 598 F/g. • The equivalent series resistance of the vanadium nitride electrode was 1.42 Ω after 5000 cycles. - Abstract: Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2–5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  13. Towards behavioral synthesis of asynchronous circuits - an implementation template targeting syntax directed compilation

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard; Sparsø, Jens; Madsen, Jan

    2004-01-01

    This paper presents a method for behavioral synthesis of asynchronous circuits. Our approach aims at providing a synthesis flow which is very similar to what is found in existing synchronous design tools. We adapt the synchronous behavioral synthesis abstraction into the asynchronous handshake...

  14. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    Science.gov (United States)

    Lee, Hae-Min; Jeong, Gyoung Hwa; Kim, Sang-Wook; Kim, Chang-Koo

    2017-04-01

    Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2-5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  15. Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review

    Directory of Open Access Journals (Sweden)

    Wisut Chamsa-ard

    2017-05-01

    Full Text Available The global demand for energy is increasing and the detrimental consequences of rising greenhouse gas emissions, global warming and environmental degradation present major challenges. Solar energy offers a clean and viable renewable energy source with the potential to alleviate the detrimental consequences normally associated with fossil fuel-based energy generation. However, there are two inherent problems associated with conventional solar thermal energy conversion systems. The first involves low thermal conductivity values of heat transfer fluids, and the second involves the poor optical properties of many absorbers and their coating. Hence, there is an imperative need to improve both thermal and optical properties of current solar conversion systems. Direct solar thermal absorption collectors incorporating a nanofluid offers the opportunity to achieve significant improvements in both optical and thermal performance. Since nanofluids offer much greater heat absorbing and heat transfer properties compared to traditional working fluids. The review summarizes current research in this innovative field. It discusses direct solar absorber collectors and methods for improving their performance. This is followed by a discussion of the various types of nanofluids available and the synthesis techniques used to manufacture them. In closing, a brief discussion of nanofluid property modelling is also presented.

  16. Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review.

    Science.gov (United States)

    Chamsa-Ard, Wisut; Brundavanam, Sridevi; Fung, Chun Che; Fawcett, Derek; Poinern, Gerrard

    2017-05-31

    The global demand for energy is increasing and the detrimental consequences of rising greenhouse gas emissions, global warming and environmental degradation present major challenges. Solar energy offers a clean and viable renewable energy source with the potential to alleviate the detrimental consequences normally associated with fossil fuel-based energy generation. However, there are two inherent problems associated with conventional solar thermal energy conversion systems. The first involves low thermal conductivity values of heat transfer fluids, and the second involves the poor optical properties of many absorbers and their coating. Hence, there is an imperative need to improve both thermal and optical properties of current solar conversion systems. Direct solar thermal absorption collectors incorporating a nanofluid offers the opportunity to achieve significant improvements in both optical and thermal performance. Since nanofluids offer much greater heat absorbing and heat transfer properties compared to traditional working fluids. The review summarizes current research in this innovative field. It discusses direct solar absorber collectors and methods for improving their performance. This is followed by a discussion of the various types of nanofluids available and the synthesis techniques used to manufacture them. In closing, a brief discussion of nanofluid property modelling is also presented.

  17. Applying Tiab’s direct synthesis technique to dilatant non-Newtonian/Newtonian fluids

    Directory of Open Access Journals (Sweden)

    Javier Andrés Martínez

    2011-09-01

    Full Text Available Non-Newtonian fluids, such as polymer solutions, have been used by the oil industry for many years as fracturing agents and drilling mud. These solutions, which normally include thickened water and jelled fluids, are injected into the formation to enhanced oil recovery by improving sweep efficiency. It is worth noting that some heavy oils behave non-Newtonianly. Non-Newtonian fluids do not have direct proportionality between applied shear stress and shear rate and viscosity varies with shear rate depending on whether the fluid is either pseudoplastic or dilatant. Viscosity decreases as shear rate increases for the former whilst the reverse takes place for dilatants. Mathematical models of conventional fluids thus fail when applied to non-Newtonian fluids. The pressure derivative curve is introduced in this descriptive work for a dilatant fluid and its pattern was observed. Tiab’s direct synthesis (TDS methodology was used as a tool for interpreting pressure transient data to estimate effective permeability, skin factors and non-Newtonian bank radius. The methodology was successfully verified by its application to synthetic examples. Also, comparing it to pseudoplastic behavior, it was found that the radial flow regime in the Newtonian zone of dilatant fluids took longer to form regarding both the flow behavior index and consistency factor.

  18. Biodiesel synthesis by direct transesterification of microalga Botryococcus braunii with continuous methanol reflux.

    Science.gov (United States)

    Hidalgo, Pamela; Ciudad, Gustavo; Schober, Sigurd; Mittelbach, Martin; Navia, Rodrigo

    2015-04-01

    Direct transesterification of Botryococcus braunii with continuous acyl acceptor reflux was evaluated. This method combines in one step lipid extraction and esterification/transesterification. Fatty acid methyl esters (FAME) synthesis by direct conversion of microalgal biomass was carried out using sulfuric acid as catalyst and methanol as acyl acceptor. In this system, once lipids are extracted, they are contacted with the catalyst and methanol reaching 82%wt of FAME yield. To optimize the reaction conditions, a factorial design using surface response methodology was applied. The effects of catalyst concentration and co-solvent concentration were studied. Hexane was used as co-solvent for increasing lipid extraction performance. The incorporation of hexane in the reaction provoked an increase in FAME yield from 82% (pure methanol) to 95% when a 47%v/v of hexane was incorporated in the reaction. However, the selectivity towards non-saponifiable lipids such as sterols was increased, negatively affecting biodiesel quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Direct Synthesis of 5-Aryl Barbituric Acids by Rhodium(II)-Catalyzed Reactions of Arenes with Diazo Compounds**

    Science.gov (United States)

    Best, Daniel; Burns, David J; Lam, Hon Wai

    2015-01-01

    A commercially available rhodium(II) complex catalyzes the direct arylation of 5-diazobarbituric acids with arenes, allowing straightforward access to 5-aryl barbituric acids. Free N—H groups are tolerated on the barbituric acid, with no complications arising from N—H insertion processes. This method was applied to the concise synthesis of a potent matrix metalloproteinase (MMP) inhibitor. PMID:25959544

  20. Facile directing agent-free synthesis and magnetism of nanocrystalline Fe–Ni alloy with tunable shape

    International Nuclear Information System (INIS)

    Mohamed, Marwa A.A.

    2014-01-01

    Highlights: • Simple directing agent-free wet chemical method for high-yield synthesis of nc Fe-Ni particles with tunable shape. • The alloy morphology is controlled by varying synthesis conditions; concentration of metal ions and pH of reaction. • Synthesis conditions control the final shape of alloy particles via controlling their growth rate and capping with OH − ions. • The alloy magnetic behavior is driven away from soft magnetic toward hard one, by particles anisotropy and size reduction. • The branched wires morphology can be considered a new morphology of distinctive magnetic behavior, for nc Fe-Ni alloy. - Abstract: This article reports the synthesis of nanocrystalline (nc) Fe 20 Ni 80 particles with tunable shape, using a heterogeneous directing agent-free aqueous wet chemical method of mild synthesis conditions. The particle morphology has been controlled by varying synthesis conditions. The results demonstrate that the morphology of alloy particles changes from quasi-isotropic to anisotropic architecture by decreasing concentration of metal ions or increasing pH of reaction solution. Deep interpretations of such phenomena are reported. Magnetic behavior of the alloy is driven away from soft magnetic and toward hard magnetic behavior, by anisotropy and size reduction of alloy particles. This broadens practical applications of nc Fe 20 Ni 80 alloy. Overall, the study provides an effective economical way for high-yield synthesis of nc Fe–Ni particles with tailored shape and subsequently magnetic properties for a specific technological application. Additionally, it adds a new morphology, highly branched wires, of distinctive magnetic behavior to the known morphologies of nc Fe–Ni particles

  1. A Novel Approach in Cinnamic Acid Synthesis: Direct Synthesis of Cinnamic Acids from Aromatic Aldehydes and Aliphatic Carboxylic Acids in the Presence of Boron Tribromide

    Directory of Open Access Journals (Sweden)

    M. Onciu

    2005-02-01

    Full Text Available Cinnamic acids have been prepared in moderate to high yields by a new direct synthesis using aromatic aldehydes and aliphatic carboxylic acids, in the presence of boron tribromide as reagent, 4-dimethylaminopyridine (4-DMAP and pyridine (Py as bases and N-methyl-2-pyrolidinone (NMP as solvent, at reflux (180-190°C for 8-12 hours.

  2. Synthesis of benzimidazoles by PIDA-promoted direct C(sp2)-H imidation of N-arylamidines.

    Science.gov (United States)

    Huang, Jinbo; He, Yimiao; Wang, Yong; Zhu, Qiang

    2012-10-29

    A metal-free synthesis of diversified benzimidazoles from N-arylamidines through a phenyliodine(III) diacetate (PIDA) promoted intramolecular direct C(sp(2))-H imidation has been developed. The reaction proceeds smoothly at 0 °C or ambient temperature to provide the desired products in good to excellent yields. The synthesis of 2-alkyl- or 2-alkyl-fused benzimidazoles, which are generally inaccessible by similar Pd- or Cu-catalyzed approaches, can also be achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Direct synthesis of nitrogen-containing carbon nanotubes on carbon paper for fuel cell electrode

    Science.gov (United States)

    Yin, Wong Wai; Daud, Wan Ramli Wan; Mohamad, Abu Bakar; Kadhum, Abdul Amir Hassan; Majlan, Edy Herianto; Shyuan, Loh Kee

    2012-06-01

    Organic catalyst has recently been identified as the potential substitution for expensive platinum electrocatalyst for fuel cell application. Numerous studies have shown that the nitrogen-containing carbon nanotubes (N-CNT) can be synthesized through spray pyrolysis or floating chemical vapor deposition (CVD) technique using various type of organometallic as precursors. This paper presents the method of synthesis and the initial findings of the growth of N-CNT directly on carbon paper using a modified CVD technique. In this research, nickel (II) phthalocyanines (Ni-Pc) as precursor was dissolved in ethanol solvent, stirred and sonicated to become homogenized. The solution was poured into a bubbler and heated up to allow the mixture to vaporize. Subsequently, the solution vapor was flowed into the tubical reactor maintained at 900°C. Carbon paper sputtered with nickel nanoparticles was used as the substrate. The synthesized sample was examined through Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM) and Fourier Transform Infra-Red (FTIR). Long, entangled and compartmentalized nanotubes with tube diameter ranging 23-27 nm were found covered the carbon paper surface with approximate of 5.5-6.0 μm in thickness. EDX analysis has successfully showed the presence of nitrogen in the carbon nanotube. FTIR analysis showed the presence of the C-N bond on CNT.

  4. The Synthesis of Nanostructured WC-Based Hardmetals Using Mechanical Alloying and Their Direct Consolidation

    Directory of Open Access Journals (Sweden)

    N. Al-Aqeeli

    2014-01-01

    Full Text Available Tungsten carbide- (WC- based hardmetals or cemented carbides represent an important class of materials used in a wide range of industrial applications which primarily include cutting/drilling tools and wear resistant components. The introduction and processing of nanostructured WC-based cemented carbides and their subsequent consolidation to produce dense components have been the subject of several investigations. One of the attractive means of producing this class of materials is by mechanical alloying technique. However, one of the challenging issues in obtaining the right end-product is the possible loss of the nanocrystallite sizes due to the undesirable grain growth during powder sintering step. Many research groups have engaged in multiple projects aiming at exploring the right path of consolidating the nanostructured WC-based powders without substantially loosing the attained nanostructure. The present paper highlights some key issues related to powder synthesis and sintering of WC-based nanostructured materials using mechanical alloying. The path of directly consolidating the powders using nonconventional consolidation techniques will be addressed and some light will be shed on the advantageous use of such techniques. Cobalt-bonded hardmetals will be principally covered in this work along with an additional exposure of the use of other binders in the WC-based hardmetals.

  5. Synthesis of luminescent YVO4:Eu3+ submicrometer crystals through hydrogels as directing agents

    International Nuclear Information System (INIS)

    Li, Yan; Zheng, Yuhui; Wang, Qianming; Zhang, Cheng Cheng

    2012-01-01

    The innovative hydrogel template (polyacrylamide or polyacrylic acid) directed synthesis of YVO 4 :Eu 3+ phosphor in a controlled manner was thoroughly studied. Photoluminescence spectra show the europium(III)-doped yttrium orthovanadate could exhibit strong red emissions within the soft matrix (polyacrylamide) and remain relatively stable even when the temperature reached nearly 100 °C. After calcination process, X-ray powder diffraction patterns, SEM and DLS measurements implied that the sample was in agreement with pure tetragonal phase and the particle sizes were in the range of 100–200 nm. More importantly, YVO 4 :Eu 3+ products prepared based on hydrogels have remarkable improvement in emission intensities compared to phosphors synthesized by conventional approach. Similar results of overall quantum efficiency also support that YVO 4 :Eu 3+ assembled by PAM hydrogel (1.94%) is better than the routine way (0.91%). -- Highlights: ► YVO 4 :Eu 3+ could be formed within the soft matrix. ► The as-derived YVO 4 :Eu 3+ exhibited red emissions and remain relatively stable nearly 100 °C. ► YVO 4 :Eu 3+ prepared by hydrogels has remarkable improvement in emission intensities.

  6. One-step aqueous synthesis of fluorescent copper nanoclusters by direct metal reduction

    International Nuclear Information System (INIS)

    Fernández-Ujados, Mónica; Trapiella-Alfonso, Laura; Costa-Fernández, José M; Pereiro, Rosario; Sanz-Medel, Alfredo

    2013-01-01

    A one-step aqueous synthesis of highly fluorescent water-soluble copper nanoclusters (CuNCs) is here described, based on direct reduction of the metal precursor with NaBH 4 in the presence of bidentate ligands (made of lipoic acid anchoring groups, appended with a poly(ethylene glycol) short chain). A complete optical and structural characterization was carried out: the optical emission was centred at 416 nm, with a luminescence quantum yield in water of 3.6% (the highest one reported so far in water for this kind of nanocluster). The structural characterization reveals a homogeneous size distribution (of 2.5 nm diameter) with spherical shape. The CuNCs obtained offer long-term stability (the luminescence emission remained unaltered after more than two months) under a broad range of chemical conditions (e.g. stored at pH 3–12 or even in a high ionic strength medium such as 1 M NaCl) and high photostability, keeping their fluorescence emission intact after more than 2 h of daylight and UV-light exposition. All those advantageous features warrant synthesized CuNCs being promising fluorescent nanoprobes for further developments including (bio)applications. (paper)

  7. Direct Silver Micro Circuit Patterning on Transparent Polyethylene Terephthalate Film Using Laser-Induced Photothermochemical Synthesis

    Directory of Open Access Journals (Sweden)

    Chen-Jui Lan

    2017-02-01

    Full Text Available This study presents a new and improved approach to the rapid and green fabrication of highly conductive microscale silver structures on low-cost transparent polyethylene terephthalate (PET flexible substrate. In this new laser direct synthesis and pattering (LDSP process, silver microstructures are simultaneously synthesized and laid down in a predetermined pattern using a low power continuous wave (CW laser. The silver ion processing solution, which is transparent and reactive, contains a red azo dye as the absorbing material. The silver pattern is formed by photothermochemical reduction of the silver ions induced by the focused CW laser beam. In this improved LDSP process, the non-toxic additive in the transparent ionic solution absorbs energy from a low cost CW visible laser without the need for the introduction of any hazardous chemical process. Tests were carried out to determine the durability of the conductive patterns, and numerical analyses of the thermal and fluid transport were performed to investigate the morphology of the deposited patterns. This technology is an advanced method for preparing micro-scale circuitry on an inexpensive, flexible, and transparent polymer substrate that is fast, environmentally benign, and shows potential for Roll-to-Roll manufacture.

  8. Simulation of the Direct Digital Synthesis module for Helium RFQ LLRF system

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae-Seong; Ahn, Tae-Sung; Kim, Seong-Gu; Kwon, Hyeok-Jung; Kim, Han-Sung; Song, Young-Gi; Seol, Kyung-Tae; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2015-10-15

    In this paper, the DDS module in the FPGA simulated and the analysis result will be introduced. Using Xilinx ISE design suite which is tool for developing the FPGA logic module, DDS module simulated. KOMAC (Korea Multi-purpose Accelerator Complex) has a plan to develop the helium irradiation system. This system includes the Ion source, LEBT, RFQ, MEBT systems to transport helium particles to the target. Especially, the RFQ (Radio Frequency Quadrupole) system should receive the 200 MHz RF within 1% amplitude error stability. For supplying stable 200 MHz RF to the RFQ, the LLRF (low-level radio frequency) should be controlled by control system. This helium RFQ LLRF control system have a concept to track the cavity resonance frequency. For tracking the cavity resonance frequency, the FPGA (Field Programmable Gate Array) in the digital board will tune the frequency of the output sinusoidal signal. In order to implement this frequency tracking concept, the DDS (Direct Digital Synthesis) module should be implemented in the FPGA. In the future, frequency tracking system will be tested using test cavity.

  9. Thermochemistry of some binary lead and transition metal compounds by high temperature direct synthesis calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Meschel, S.V., E-mail: meschel@jfi.uchicago.edu [Illinois Institute of Technology,Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, Illinois 60615 (United States); Gordon Center for Integrated Science, 929 E. 57th Street, Chicago, Illinois 60637 (United States); Nash, P. [Illinois Institute of Technology,Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, Illinois 60615 (United States); Chen, X.Q.; Wei, P. [Materials processing Modeling Division, Shenyang National Laboratory for Materials Science, Institute of Metals Research, 72 Wenhua Road, Shenyang City (China)

    2015-06-05

    Highlights: • Studied binary lead-transition metal alloys by high temperature calorimetry. • Determined the enthalpies of formation of 8 alloys. • Compared the measurements with predictions by the model of Miedema and by the ab initio method. - Abstract: The standard enthalpies of formation of some binary lead and transition metal compounds have been measured by high temperature direct synthesis calorimetry. The reported results are: Pb{sub 3}Sc{sub 5}(−61.3 ± 2.9); PbTi{sub 4}(−16.6 ± 2.4); Pb{sub 3}Y{sub 5}(−64.8 ± 3.6); Pb{sub 3}Zr{sub 5}(−50.6 ± 3.1); PbNb{sub 3}(−10.4 ± 3.4); PbRh(−16.5 ± 3.3); PbPd{sub 3}(−29.6 ± 3.1); PbPt(−34.7 ± 3.3) kJ/mole of atoms. We will compare our results with previously published measurements. We will also compare the experimental measurements with enthalpies of formation of transition metal compounds with elements in the same vertical column in the periodic table. We will compare our measurements with predicted values on the basis of the semi empirical model of Miedema and coworkers and with ab initio values when available.

  10. Hydrothermal synthesis of zeolite T from kaolin using two different structure-directing agents

    Science.gov (United States)

    Arshad, Sazmal E.; Lutfor Rahman, M.; Sarkar, Shaheen M.; Yusslee, Eddy F.; Patuwan, Siti Z.

    2018-01-01

    Zeolite T was synthesized from the molar chemical composition of 1SiO2:0.04Al2O3:0.26Na2O:0.09K2O:14H2O in the form of a homogenous milky solution in the presence of the two different structure-directing agents TMAOH and TEAOH respectively. Modification of the composition of silica was undertaken using metakaolin from calcined kaolin at 750 °C for 4 h, while the molar composition of each different SDA was variated from 0.05, 0.10, 0.15, 0.20 and 0.25. The homogenous mixture was left at room temperature for 24 h before undergoing hydrothermal synthesis at 100 °C for 168 h. The synthesized samples were filtered and aged at 120 °C for 2 h and each sample was calcined at high temperatures (545 °C for TMAOH and 520 °C for TEAOH) for template removal before characterization using XRD and SEM. Crystallization of the zeolite T in its major form only took place at a molar ratio of 0.10 of TMAOH, while TEAOH showed the species evolution of zeolite T into zeolite L and W for other molar ratios.

  11. Direct chemical synthesis of MnO2 nanowhiskers on MXene surfaces for supercapacitor applications

    KAUST Repository

    Baby, Rakhi Raghavan

    2016-07-05

    Transition metal carbides (MXenes) are an emerging class of two dimensional (2D) materials with promising electrochemical energy storage performance. Herein, for the first time, by direct chemical synthesis, nanocrystalline ε-MnO2 whiskers were formed on MXene nanosheet surfaces (ε-MnO2/Ti2CTx and ε-MnO2/Ti3C2Tx) to make nanocomposite electrodes for aqueous pseudocapacitors. The ε-MnO2 nanowhiskers increase the surface area of the composite electrode and enhance the specific capacitance by nearly three orders of magnitude compared to pure MXene based symmetric supercapacitors. Combined with enhanced pseudocapacitance, the fabricated ε-MnO2/MXene supercapacitors exhibited excellent cycling stability with ~88% of the initial specific capacitance retained after 10000 cycles which is much higher than pure ε-MnO2 based supercapacitors (~74%). The proposed electrode structure capitalizes on the high specific capacitance of MnO2 and the ability of MXenes to improve conductivity and cycling stability.

  12. A single gene directs synthesis of a precursor protein with beta- and alpha-amylase activities in Bacillus polymyxa.

    OpenAIRE

    Uozumi, N; Sakurai, K; Sasaki, T; Takekawa, S; Yamagata, H; Tsukagoshi, N; Udaka, S

    1989-01-01

    The Bacillus polymyxa amylase gene comprises 3,588 nucleotides. The mature amylase comprises 1,161 amino acids with a molecular weight of 127,314. The gene appeared to be divided into two portions by the direct-repeat sequence located at almost the middle of the gene. The 5' region upstream of the direct-repeat sequence was shown to be responsible for the synthesis of beta-amylase. The 3' region downstream of the direct-repeat sequence contained four sequences homologous with those in other a...

  13. Ant colony optimisation-direct cover: a hybrid ant colony direct cover technique for multi-level synthesis of multiple-valued logic functions

    Science.gov (United States)

    Abd-El-Barr, Mostafa

    2010-12-01

    The use of non-binary (multiple-valued) logic in the synthesis of digital systems can lead to savings in chip area. Advances in very large scale integration (VLSI) technology have enabled the successful implementation of multiple-valued logic (MVL) circuits. A number of heuristic algorithms for the synthesis of (near) minimal sum-of products (two-level) realisation of MVL functions have been reported in the literature. The direct cover (DC) technique is one such algorithm. The ant colony optimisation (ACO) algorithm is a meta-heuristic that uses constructive greediness to explore a large solution space in finding (near) optimal solutions. The ACO algorithm mimics the ant's behaviour in the real world in using the shortest path to reach food sources. We have previously introduced an ACO-based heuristic for the synthesis of two-level MVL functions. In this article, we introduce the ACO-DC hybrid technique for the synthesis of multi-level MVL functions. The basic idea is to use an ant to decompose a given MVL function into a number of levels and then synthesise each sub-function using a DC-based technique. The results obtained using the proposed approach are compared to those obtained using existing techniques reported in the literature. A benchmark set consisting of 50,000 randomly generated 2-variable 4-valued functions is used in the comparison. The results obtained using the proposed ACO-DC technique are shown to produce efficient realisation in terms of the average number of gates (as a measure of chip area) needed for the synthesis of a given MVL function.

  14. Optimal conditions in direct dimethyl ether synthesis from syngas utilizing a dual-type fluidized bed reactor

    International Nuclear Information System (INIS)

    Yousefi, Ahmad; Eslamloueyan, Reza; Kazerooni, Nooshin Moradi

    2017-01-01

    Concerns over environmental pollution and ever-increasing energy demand have urged the global community to tap clean-burning fuels among which dimethyl ether is a promising candidate for contribution in the transportation sector. Direct dimethyl ether synthesis from syngas, in which methanol production and dehydration take place simultaneously, is arguably the preferred route for large scale production. In this study, direct dimethyl ether synthesis is proposed in an industrial dual-type fluidized bed reactor. This configuration involves two fluidized bed reactors operating in different conditions. In the first catalytic reactor (water-cooled reactor), the synthesis gas is partly converted to methanol after being preheated by the reaction heat in the second reactor (gas-cooled reactor). A two-phase generalized comprehensive reactor model, comprised of the flow in three different regimes is applied and a smooth transition between flow regimes is provided based on the probabilistic averaging approach. The optimal operating conditions are sought by employing differential evolution algorithm as a robust optimization strategy. The dimethyl ether mole fraction is considered as the objective function during the optimization. The results show considerable dimethyl ether enhancement by 16% and 14% compared to the conventional direct dimethyl ether synthesis reactor and dual-type fixed bed dimethyl ether reactor arrangements, respectively. - Highlights: • Dual-type catalytic fluidized bed reactors for dimethyl ether synthesis is studied. • A two-phase comprehensive model comprised of flow in three regimes is used. • Probabilistic averaging approach is applied for smooth transitions between regimes. • Differential evolution method is employed to determine optimal operating conditions. • Production capacity is remarkably enhanced compared to conventional reactor.

  15. The thermochemical behavior of some binary shape memory alloys by high temperature direct synthesis calorimetry

    International Nuclear Information System (INIS)

    Meschel, S.V.; Pavlu, J.; Nash, P.

    2011-01-01

    Research highlights: → We studied 14 shape memory alloys. → The enthalpies of formation and structure characteristics are summarized. → Theoretical predictions by ab initio calculations compare better with experimental measurements than Miedema's semi empirical model. - Abstract: The standard enthalpies of formation of some shape memory alloys have been measured by high temperature direct synthesis calorimetry at 1373 K. The following results (in kJ/mol of atoms) are reported: CoCr (-0.3 ± 2.9); CuMn (-3.7 ± 3.2); Cu 3 Sn (-10.4 ± 3.1); Fe 2 Tb (-5.5 ± 2.4); Fe 2 Dy (-1.6 ± 2.9); Fe 17 Tb 2 (-2.1 ± 3.1); Fe 17 Dy 2 (-5.3 ± 1.7); FePd 3 (-16.0 ± 2.7); FePt (-23.0 ± 1.9); FePt 3 (-20.7 ± 2.3); NiMn (-24.9 ± 2.6); TiNi (-32.7 ± 1.0); TiPd (-60.3 ± 2.5). The results are compared with some earlier experimental values obtained by calorimetry and by EMF technique. They are also compared with predicted values on the basis of the semi empirical model of Miedema and co-workers and with ab initio calculations when available. We will also assess the available information regarding the structures of these alloys.

  16. Collapsed polymer-directed synthesis of multicomponent coaxial-like nanostructures

    KAUST Repository

    Huang, Zhiqi; Liu, Yijing; Zhang, Qian; Chang, Xiaoxia; Li, Ang; Deng, Lin; Yi, Chenglin; Yang, Yang; Khashab, Niveen M.; Gong, Jinlong; Nie, Zhihong

    2016-01-01

    Multicomponent colloidal nanostructures (MCNs) exhibit intriguing topologically dependent chemical and physical properties. However, there remain significant challenges in the synthesis of MCNs with high-order complexity. Here we show the development of a general yet scalable approach for the rational design and synthesis of MCNs with unique coaxial-like construction. The site-preferential growth in this synthesis relies on the selective protection of seed nanoparticle surfaces with locally defined domains of collapsed polymers. By using this approach, we produce a gallery of coaxial-like MCNs comprising a shaped Au core surrounded by a tubular metal or metal oxide shell. This synthesis is robust and not prone to variations in kinetic factors of the synthetic process. The essential role of collapsed polymers in achieving anisotropic growth makes our approach fundamentally distinct from others. We further demonstrate that this coaxial-like construction can lead to excellent photocatalytic performance over conventional core–shell-type MCNs.

  17. Collapsed polymer-directed synthesis of multicomponent coaxial-like nanostructures

    KAUST Repository

    Huang, Zhiqi

    2016-07-19

    Multicomponent colloidal nanostructures (MCNs) exhibit intriguing topologically dependent chemical and physical properties. However, there remain significant challenges in the synthesis of MCNs with high-order complexity. Here we show the development of a general yet scalable approach for the rational design and synthesis of MCNs with unique coaxial-like construction. The site-preferential growth in this synthesis relies on the selective protection of seed nanoparticle surfaces with locally defined domains of collapsed polymers. By using this approach, we produce a gallery of coaxial-like MCNs comprising a shaped Au core surrounded by a tubular metal or metal oxide shell. This synthesis is robust and not prone to variations in kinetic factors of the synthetic process. The essential role of collapsed polymers in achieving anisotropic growth makes our approach fundamentally distinct from others. We further demonstrate that this coaxial-like construction can lead to excellent photocatalytic performance over conventional core–shell-type MCNs.

  18. Synthesis of ammonia directly from air and water at ambient temperature and pressure

    Science.gov (United States)

    Lan, Rong; Irvine, John T. S.; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol−1) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N2 separation and H2 production stages. A maximum ammonia production rate of 1.14 × 10−5 mol m−2 s−1 has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future. PMID:23362454

  19. Synthesis of ammonia directly from air and water at ambient temperature and pressure.

    Science.gov (United States)

    Lan, Rong; Irvine, John T S; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol⁻¹) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N₂ separation and H₂ production stages. A maximum ammonia production rate of 1.14 × 10⁻⁵ mol m⁻² s⁻¹ has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.

  20. Progress in the Supramolecular Architecture-directed Synthesis of Perfect Ladder Polysiloxanes

    Institute of Scientific and Technical Information of China (English)

    C; C; Han

    2007-01-01

    1 Introduction Ladder polysiloxanes (LPSs) including organo-bridged ladder polyorganosiloxanes (R-OLPSs, R is side group) and ladder polyorganosilsesquioxanes (R-LPSQs) have intrigued polymer chemists for about 50 years due to their excellent resistance to all kinds of degradations. However, their synthesis has been a great challenge to polymer chemists. Here, we describe a new approach based on supramolecular concerted interactions as follows.2 Results2.1 Synthesis of Perfect R-OLPSsA series of real ...

  1. Structural archetypes in nickel(II) hybrid vanadates. Towards a directed hydrothermal synthesis

    International Nuclear Information System (INIS)

    Luis, R. Fernandez de; Urtiaga, M.K.; Mesa, J.L.; Rojo, T.; Arriortua, M.I.

    2009-01-01

    In the present work, we relate the modifications of the initial synthesis parameters (pH value, stoichiometry and concentration) with the different structural archetypes obtained in the {Ni/Bpy/VO} and {Ni/Bpe/VO} systems (4,4'-bipyridine (Bpy), 1,2-di(4-pyridyl) ethylene (Bpe)). The vanadium coordination is partially controlled by the hydrothermal synthesis conditions, and the final crystal structures depend on the synergetic interaction between the metal-organic subnets and the vanadium oxide subunits.

  2. Microwave-assisted synthesis of poly(3-hexylthiophene) via direct oxidation with FeCl{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nicho, M.E., E-mail: menicho@uaem.mx [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos (Mexico); Garcia-Escobar, C.H.; Hernandez-Martinez, D. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos (Mexico); Linzaga-Elizalde, I. [Centro de Investigaciones Quimicas (CIQ) de la UAEM (Mexico); Cadenas-Pliego, G. [Centro de Investigacion en Quimica Aplicada, Saltillo, Coahuila (Mexico)

    2012-09-20

    In this work, CoolMate microwave synthesis system was employed to synthesize soluble poly(3-hexylthiophene) by direct oxidation of 3-hexylthiophene monomer with FeCl{sub 3} as oxidant. P3HT was synthesized varying reaction time by 2 h, 1 h and 0.5 h. According to the results optimal microwave radiation time for synthesis was 1 h. On the other hand, P3HT was synthesized in two different solvents: chloroform (CHCl{sub 3}) and dichloromethane (CH{sub 2}Cl{sub 2}). The obtained yields depend on the solvent and the reaction time used in the synthesis, microwave-assisted synthesis leads to outstanding increase in yield (with dichloromethane solvent). Homogeneous thin films were prepared by spin-coating technique from toluene. Physicochemical characterization of P3HT polymers was carried out: changes in weight molecular distribution and polydispersity were obtained by HPLC (high-performance liquid chromatography); dyads and triads percent were analyzed by NMR (nuclear magnetic resonance). Surface topographical changes were obtained by atomic force microscopy (AFM). AFM images revealed that the surface morphology depends on synthesis method, reaction time and solvent used. Finally the samples were characterized by thermogravimetric analysis (TGA) and ultraviolet-visible analysis (UV-vis). Compared with the traditional method (without microwave), this method provided considerable decrease in the reaction time, both lower polydispersity and molecular weight, less volume of solvents for the synthesis, as well as more alternatives for solvent choice. The results confirmed the versatility of the procedure by microwave, which yields polymeric materials in 1 h and has no adverse effects on the polymers quality.

  3. Direct synthesis of iso-butane from synthesis gas or CO2 over CuZnZrAl/Pd-β hybrid catalyst

    Directory of Open Access Journals (Sweden)

    Congming Li

    2017-12-01

    Full Text Available The effect of various factors on the catalytic performance of iso-butane formation over CuZnZrAl/Pd-β hybrid catalyst via synthesis gas or CO2 hydrogenation has been deeply investigated in this work. It was interesting to note that the iso-butane/n-butane ratio value was much higher than that of thermodynamic equilibrium (about 1/1, whose value was directly related to the reaction condition using this hybrid catalyst. In order to further clearly clarify this finding, various experimental reaction factors were selected to investigate the formation of iso-butane. The results revealed that increasing temperature, H2/COx, CO2/COx, and/or Pd loading possessed an inhibiting effect on the iso-butane yield. High selectivity of iso-butane could be achieved by increasing the reaction pressure, W/F and the weight ratio of CuZnZrAl methanol catalyst to Pd-β catalyst. It is also noted that the addition of water seriously suppressed the reaction activity, resulting in the low ratio of iso-butane/n-butane. A possible reaction route was elucidated based on the latest results. This might shed light on the development of a high efficient catalyst for iso-butane production from synthesis gas or CO2 hydrogenation. Keywords: Iso-butane, Synthesis gas, CO2, CuZnZrAl/Pd-β hybrid catalyst

  4. One-Step Synthesis of Hierarchical ZSM-5 Using Cetyltrimethylammonium as Mesoporogen and Structure-Directing Agent

    OpenAIRE

    Meng, Lingqian; Mezari, Brahim; Goesten, Maarten G.; Hensen, Emiel J. M.

    2017-01-01

    Hierarchical ZSM-5 zeolite is hydrothermally synthesized in a single step with cetyltrimethylammonium (CTA) hydroxide acting as mesoporogen and structure-directing agent. Essential to this synthesis is the replacement of NaOH with KOH. An in-depth solid-state NMR study reveals that, after early electrostatic interaction between condensed silica and the head group of CTA, ZSM-5 crystallizes around the structure-directing agent. The crucial aspect of using KOH instead of NaOH lies in the faster...

  5. Molten salt-directed synthesis method for LiMn2O4 nanorods as a cathode material for a lithium-ion battery with superior cyclability

    CSIR Research Space (South Africa)

    Kebede, Mesfin A

    2017-02-01

    Full Text Available A molten salt synthesis technique has been used to prepare nanorods of Mn2O3 and single-crystal LiMn2O4 nanorods cathode material with superior capacity retention. The molten salt-directed synthesis involved the use of NaCl as the eutectic melt...

  6. Direct Energy Supply to the Reaction Mixture during Microwave-Assisted Hydrothermal and Combustion Synthesis of Inorganic Materials

    Directory of Open Access Journals (Sweden)

    Roberto Rosa

    2014-05-01

    Full Text Available The use of microwaves to perform inorganic synthesis allows the direct transfer of electromagnetic energy inside the reaction mixture, independently of the temperature manifested therein. The conversion of microwave (MW radiation into heat is useful in overcoming the activation energy barriers associated with chemical transformations, but the use of microwaves can be further extended to higher temperatures, thus creating unusual high-energy environments. In devising synthetic methodologies to engineered nanomaterials, hydrothermal synthesis and solution combustion synthesis can be used as reference systems to illustrate effects related to microwave irradiation. In the first case, energy is transferred to the entire reaction volume, causing a homogeneous temperature rise within a closed vessel in a few minutes, hence assuring uniform crystal growth at the nanometer scale. In the second case, strong exothermic combustion syntheses can benefit from the application of microwaves to convey energy to the reaction not only during the ignition step, but also while it is occurring and even after its completion. In both approaches, however, the direct interaction of microwaves with the reaction mixture can lead to practically gradient-less heating profiles, on the basis of which the main observed characteristics and properties of the aforementioned reactions and products can be explained.

  7. Structural archetypes in nickel(II) hybrid vanadates. Towards a directed hydrothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Luis, R. Fernandez de; Urtiaga, M.K. [Dpto. Mineralogia y Petrologia, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); Mesa, J.L.; Rojo, T. [Dpto. Quimica Inorganica, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); Arriortua, M.I. [Dpto. Mineralogia y Petrologia, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/UPV/EHU, Apdo. 644, 48080 Bilbao (Spain)], E-mail: maribel.arriortua@ehu.es

    2009-07-01

    In the present work, we relate the modifications of the initial synthesis parameters (pH value, stoichiometry and concentration) with the different structural archetypes obtained in the {l_brace}Ni/Bpy/VO{r_brace} and {l_brace}Ni/Bpe/VO{r_brace} systems (4,4'-bipyridine (Bpy), 1,2-di(4-pyridyl) ethylene (Bpe)). The vanadium coordination is partially controlled by the hydrothermal synthesis conditions, and the final crystal structures depend on the synergetic interaction between the metal-organic subnets and the vanadium oxide subunits.

  8. The direct conversion of synthesis gas to chemicals / Ernest du Toit

    OpenAIRE

    Du Toit, Ernest

    2002-01-01

    The catalytic conversion of synthesis gas, obtainable from the processing of coal, biomass or natural gas, to a complex hydrocarbon product stream can be achieved via the Fischer-Tropsch process. The Fischer-Tropsch synthesis process has evolved from being mainly a fuel producing process in the early 1950's to that of a solvent and speciality wax production process towards the end of the 1970's. From the early 1980's there has been a clear shift towards the production of commod...

  9. Direct synthesis of L1 type Fe-Pt nanoparticles using microwave-polyol method

    International Nuclear Information System (INIS)

    Minami, Rumiko; Kitamoto, Yoshitaka; Chikata, Tsukasa; Kato, Shunsaku

    2005-01-01

    We report the synthesis of Fe-Pt nanoparticles with microwave irradiation during polyol-reduction reaction. Chemically ordered Fe-Pt nanoparticles with L1 structure are fabricated at 250 deg. C using a microwave-polyol method without any post-synthesis treatments. Moessbauer analyses reveal the nanoparticles have partially ordered L1 structure. The partially ordered Fe-Pt nanoparticles exhibit coercivity of 3.4 kOe, saturation magnetization of 49 emu/g, and anisotropy field of 83 kOe at room temperature

  10. Correction: An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells.

    Science.gov (United States)

    Payne, Abby-Jo; Li, Shi; Dayneko, Sergey V; Risko, Chad; Welch, Gregory C

    2017-09-21

    Correction for 'An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells' by Abby-Jo Payne et al., Chem. Commun., 2017, 53, 10168-10171.

  11. Direct synthesis of magnetite nanoparticles from iron(II) carboxymethylcellulose and their performance as NMR contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Gomes da Silva, Delmarcio; Hiroshi Toma, Sergio; Menegatti de Melo, Fernando [Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil); Carvalho, Larissa Vieira C.; Magalhães, Alvicler; Sabadini, Edvaldo [Instituto de Química, Universidade Estadual de Campinas – UNICAMP, Campinas, SP (Brazil); Domingues dos Santos, Antônio [Instituto de Física, Universidade de São Paulo, São Paulo, SP (Brazil); Araki, Koiti [Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil); Toma, Henrique E., E-mail: henetoma@iq.usp.br [Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil)

    2016-01-01

    Iron(II) carboxymethylcellulose (CMC) has been successfully employed in the synthesis of hydrophylic magnetite nanoparticles stabilized with a biopolymer coating, aiming applications in NMR imaging. The new method encompasses a convenient one-step synthetic procedure, allowing a good size control and yielding particles of about 10 nm (core size). In addition to the biocompatibility, the nanoparticles have promoted a drastic reduction in the transverse relaxation time (T{sub 2}) of the water protons. The relaxivity rates have been investigated as a function of the nanoparticles concentration, showing a better performance in relation to the common NMR contrast agents available in the market. - Highlights: • Stable, hydrophylic magnetic nanoparticles have been obtained. • Direct use of iron(II) carboxymethylcellulose improves the synthesis. • The magnetic nanoparticles exhibit high spin–spin relaxivity. • The particles promote dark contrast by decreasing the T{sub 2} relaxation time.

  12. Synthesis of one-dimensional metal-containing insulated molecular wire with versatile properties directed toward molecular electronics materials.

    Science.gov (United States)

    Masai, Hiroshi; Terao, Jun; Seki, Shu; Nakashima, Shigeto; Kiguchi, Manabu; Okoshi, Kento; Fujihara, Tetsuaki; Tsuji, Yasushi

    2014-02-05

    We report, herein, the design, synthesis, and properties of new materials directed toward molecular electronics. A transition metal-containing insulated molecular wire was synthesized through the coordination polymerization of a Ru(II) porphyrin with an insulated bridging ligand of well-defined structure. The wire displayed not only high linearity and rigidity, but also high intramolecular charge mobility. Owing to the unique properties of the coordination bond, the interconversion between the monomer and polymer states was realized under a carbon monoxide atmosphere or UV irradiation. The results demonstrated a high potential of the metal-containing insulated molecular wire for applications in molecular electronics.

  13. Direct Synthesis of 5-Aryl Barbituric Acids by Rhodium(II)-Catalyzed Reactions of Arenes with Diazo Compounds.

    Science.gov (United States)

    Best, Daniel; Burns, David J; Lam, Hon Wai

    2015-06-15

    A commercially available rhodium(II) complex catalyzes the direct arylation of 5-diazobarbituric acids with arenes, allowing straightforward access to 5-aryl barbituric acids. Free N-H groups are tolerated on the barbituric acid, with no complications arising from N-H insertion processes. This method was applied to the concise synthesis of a potent matrix metalloproteinase (MMP) inhibitor. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  14. Direct analysis in real time mass spectrometry of potential by-products from homemade nitrate ester explosive synthesis.

    Science.gov (United States)

    Sisco, Edward; Forbes, Thomas P

    2016-04-01

    This work demonstrates the coupling of direct analysis in real time (DART) ionization with time-of-flight mass spectrometry (MS) in an off-axis configuration for the trace detection and analysis of potential partially nitrated and dimerized by-products of homemade nitrate ester explosive synthesis. Five compounds relating to the synthesis of nitroglycerin (NG) and pentaerythritol tetranitrate (PETN) were examined. Deprotonated ions and adducts with molecular oxygen, nitrite, and nitrate were observed in the mass spectral responses of these compounds. A global optimum temperature of 350 °C for the by-products investigated here enabled single nanogram to sub nanogram trace detection. Matrix effects were examined through a series of mixtures containing one or more compounds (sugar alcohol precursors, by-products, and/or explosives) across a range of mass loadings. The explosives MS responses experienced competitive ionization in the presence of all by-products. The magnitude of this influence corresponded to both the degree of by-product nitration and the relative mass loading of the by-product to the explosive. This work provides a characterization of potential by-products from homemade nitrate ester synthesis, including matrix effects and potential challenges that might arise from the trace detection of homemade explosives (HMEs) containing impurities. Detection and understanding of HME impurities and complex mixtures may provide valuable information for the screening and sourcing of homemade nitrate ester explosives. Published by Elsevier B.V.

  15. Template-directed synthesis of nets based upon octahemioctahedral cages that encapsulate catalytically active metalloporphyrins

    KAUST Repository

    Zhang, ZhenJie

    2012-01-18

    meso-Tetra(N-methyl-4-pyridyl)porphine tetratosylate (TMPyP) templates the synthesis of six new metal-organic materials by the reaction of benzene-1,3,5-tricarboxylate with transition metals, five of which exhibit HKUST-1 or tbo topology (M = Fe, Mn, Co, Ni, Mg). The resulting materials, porph@MOMs, selectively encapsulate the corresponding metalloporphyrins in octahemioctahedral cages and can serve as size-selective heterogeneous catalysts for oxidation of olefins. © 2011 American Chemical Society.

  16. Direct synthesis of ESBO derivatives-¹⁸O labelled with dioxirane.

    Science.gov (United States)

    La Tegola, Stefano; Annese, Cosimo; Suman, Michele; Tommasi, Immacolata; Fusco, Caterina; D'Accolti, Lucia

    2013-01-01

    This work addresses a new approach developed in our laboratory, consisting in the application of isolated dimethyldioxirane (DDO, 1a) labelled with ¹⁸O for synthesis of epoxidized glyceryl linoleate (Gly-LLL, 2). We expect that this work could contribute in improving analytical methods for the determination of epoxidized soybean oil (ESBO) in complex food matrices by adopting an ¹⁸O-labelled-epoxidized triacylglycerol as an internal standard.

  17. Template-directed synthesis of nets based upon octahemioctahedral cages that encapsulate catalytically active metalloporphyrins

    KAUST Repository

    Zhang, ZhenJie; Zhang, Linping; Wojtas, Łukasz; Eddaoudi, Mohamed; Zaworotko, Michael J.

    2012-01-01

    meso-Tetra(N-methyl-4-pyridyl)porphine tetratosylate (TMPyP) templates the synthesis of six new metal-organic materials by the reaction of benzene-1,3,5-tricarboxylate with transition metals, five of which exhibit HKUST-1 or tbo topology (M = Fe, Mn, Co, Ni, Mg). The resulting materials, porph@MOMs, selectively encapsulate the corresponding metalloporphyrins in octahemioctahedral cages and can serve as size-selective heterogeneous catalysts for oxidation of olefins. © 2011 American Chemical Society.

  18. High-pressure synthesis of rhombohedral α-AgGaO{sub 2} via direct solid state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Meysam [Department of Physics and Astronomy, University of Louisville, 102 Natural Science Building, Louisville, KY 40292 (United States); Menon, Madhu [Center for Computational Sciences, University of Kentucky, 325 McVey Hall, Lexington, KY 40506 (United States); Sunkara, Mahendra [Conn Center for Renewable Energy Research, University of Louisville, Ernst Hall Room 102A, Louisville, KY 40292 (United States); Sumanasekera, Gamini [Department of Physics and Astronomy, University of Louisville, 102 Natural Science Building, Louisville, KY 40292 (United States); Conn Center for Renewable Energy Research, University of Louisville, Ernst Hall Room 102A, Louisville, KY 40292 (United States); Durygin, Andriy [Center for the Study of Matter at Extreme Conditions, Florida International University, VH 140, University Park, Miami, FL 33199 (United States); Jasinski, Jacek B., E-mail: jacek.jasinski@louisville.edu [Conn Center for Renewable Energy Research, University of Louisville, Ernst Hall Room 102A, Louisville, KY 40292 (United States)

    2015-08-25

    Highlights: • Direct synthesis of α-AgGaO{sub 2} via a solid state reaction of Ag{sub 2}O and Ga{sub 2}O{sub 3} powders. • Utilizing high pressure diamond anvil cell to facilitate solid state reaction. • Experimental and theoretical study of vibrational modes for α-AgGaO{sub 2}. • Extensive characterization of synthesized α-AgGaO{sub 2} samples. • GGA + U formalism-based DFT calculations of electronic structure and band gap in α-AgGaO{sub 2}. - Abstract: In this work, we demonstrate the application of high pressure conditions to enable the direct synthesis of α-AgGaO{sub 2} via a solid state reaction of Ag{sub 2}O and Ga{sub 2}O{sub 3}. Synthesis experiments were carried out at pressures and temperatures up to ∼10 GPa and ∼600 °C, respectively, using a resistively-heated diamond anvil cell. Thus synthesized α-AgGaO{sub 2} samples were characterized and their chemical composition and crystal structure were confirmed. In particular, electron diffraction confirmed the rhombohedral delafossite crystal structure of the synthesized AgGaO{sub 2} and its corresponding lattice parameters of a = 2.99 Å and c = 18.43 Å. The vibrational modes analysis was also conducted using a combination of ab initio density functional theory (DFT) and Raman spectroscopy. This analysis yielded good agreement between the calculated Raman-active modes and experimental Raman data. Finally, the application of the GGA + U formalism-based on DFT to calculate the electronic band structure of α-AgGaO{sub 2} provided a more realistic theoretical band gap value than those reported previously.

  19. Direct large-scale synthesis of perovskite barium strontium titanate nano-particles from solutions

    International Nuclear Information System (INIS)

    Qi Jianquan; Wang Yu; Wan Pingchen; Long Tuli; Chan, Helen Lai Wah

    2005-01-01

    This paper reports a wet chemical synthesis technique for large-scale fabrication of perovskite barium strontium titanate nano-particles near room temperature and under ambient pressure. The process employs titanium alkoxide and alkali earth hydroxides as starting materials and involves very simple operation steps. Particle size and crystallinity of the particles are controllable by changing the processing parameters. Observations by X-ray diffraction, scanning electron microscopy and transmission electron microscopy TEM indicate that the particles are well-crystallized, chemically stoichiometric and ∼50nm in diameter. The nanoparticles can be sintered into ceramics at 1150 deg. C and show typical ferroelectric hysteresis loops

  20. Protein coated gold nanoparticles as template for the directed synthesis of highly fluorescent gold nanoclusters

    Science.gov (United States)

    Zhang, Lingyan; Han, Fei

    2018-04-01

    Bovine serum albumin (BSA) modified gold nanoparticles (AuNPs) was selected as template for the synthesis of AuNPs@gold nanoclusters (AuNCs) core/shell nanoparticles, in which BSA not only acted as dual functions agent for both anchoring and reducing Au3+ ions, but also was employed as a bridge between the AuNPs and AuNCs. Optical properties of AuNPs@AuNCs core/shell nanoparticles were studied using UV-visible and fluorescence spectroscopy. The prepared AuNPs@AuNCs core/shell nanoparticles exhibited sphere size uniformity with improved monodispersity, excellent fluorescence and fluorescent stability. Compared with AuNCs, AuNPs@AuNCs core/shell nanoparticles possessed large size and strong fluorescence intensity due to the effect of AuNPs as core. Moreover, the mechanism of the AuNPs induced fluorescence changes of the core/shell nanoparticles was first explored.

  1. Template-directed synthesis of MS (M=Cd, Zn) hollow microsphere via hydrothermal method

    Science.gov (United States)

    Wang, Shi-Ming; Wang, Qiong-Sheng; Wan, Qing-Li

    2008-05-01

    CdS, ZnS hollow microspheres were prepared with chitosan as the synthesis template at 140 and 150 °C, respectively, by hydrothermal method. The resultant products were characterized by X-ray diffraction (XRD) measurements in order to determine the crystalline phase of the products. The structural and morphological features of the nanoparticles were investigated by transmission electron microscopy (TEM) and ultraviolet-visible diffuse reflection spectroscopy (DRS). The experimental results indicated that all the nanoparticles aggregated into hollow microspheres and chitosan as a template played an important role in the formation of hollow microspheres. In addition, an intermediate complex structure-controlling possible reaction mechanism was proposed in this paper.

  2. Self-assembled catalytic DNA nanostructures for synthesis of para-directed polyaniline.

    Science.gov (United States)

    Wang, Zhen-Gang; Zhan, Pengfei; Ding, Baoquan

    2013-02-26

    Templated synthesis has been considered as an efficient approach to produce polyaniline (PANI) nanostructures. The features of DNA molecules enable a DNA template to be an intriguing template for fabrication of emeraldine PANI. In this work, we assembled HRP-mimicking DNAzyme with different artificial DNA nanostructures, aiming to manipulate the molecular structures and morphologies of PANI nanostructures through the controlled DNA self-assembly. UV-vis absorption spectra were used to investigate the molecular structures of PANI and monitor kinetic growth of PANI. It was found that PANI was well-doped at neutral pH and the redox behaviors of the resultant PANI were dependent on the charge density of the template, which was controlled by the template configurations. CD spectra indicated that the PANI threaded tightly around the helical DNA backbone, resulting in the right handedness of PANI. These reveal the formation of the emeraldine form of PANI that was doped by the DNA. The morphologies of the resultant PANI were studied by AFM and SEM. It was concluded from the imaging and spectroscopic kinetic results that PANI grew preferably from the DNAzyme sites and then expanded over the template to form 1D PANI nanostructures. The strategy of the DNAzyme-DNA template assembly brings several advantages in the synthesis of para-coupling PANI, including the region-selective growth of PANI, facilitating the formation of a para-coupling structure and facile regulation. We believe this study contributes significantly to the fabrication of doped PANI nanopatterns with controlled complexity, and the development of DNA nanotechnology.

  3. Role of the direct and indirect pathways for glycogen synthesis in rat liver in the postprandial state

    International Nuclear Information System (INIS)

    Huang, M.T.; Veech, R.L.

    1988-01-01

    The pathway for hepatic glycogen synthesis in the postprandial state was studied in meal-fed rats chronically cannulated in the portal vein. Plasma glucose concentration in the portal vein was found to be 4.50 +/- 1.01 mM (mean +/- SE; n = 3) before a meal and 11.54 +/- 0.70 mM (mean +/- SE; n = 4) after a meal in rats meal-fed a diet consisting of 100% commercial rat chow for 7 d. The hepatic-portal difference of plasma glucose concentration showed that liver released glucose in the fasted state and either extracted or released glucose after feeding depending on plasma glucose concentration in the portal vein. The concentration of portal vein glucose at which liver changes from glucose releasing to glucose uptake was 8 mM, the Km of glucokinase. The rate of glycogen synthesis in liver during meal-feeding was found to be approximately 1 mumol glucosyl U/g wet wt/min in rats meal-fed a 50% glucose supplemented chow diet. The relative importance of the direct vs. indirect pathway for the replenishment of hepatic glycogen was determined by the incorporation of [3- 3 H,U- 14 C]glucose into liver glycogen. Labeled glucose was injected into the portal vein at the end of meal-feeding. The ratio of 3 H/ 14 C in the glucosyl units of glycogen was found to be 83-92% of the ratio in liver free glucose six minutes after the injection, indicating that the majority of exogenous glucose incorporated into glycogen did not go through glycolysis. The percent contribution of the direct versus indirect pathway was quantitated from the difference in the relative specific activity (RSA) of [ 3 H] and [ 14 C]-glycogen in rats infused with [3- 3 H,U- 14 C]glucose. No significant difference was found between the RSA of [ 3 H]glycogen and [ 14 C]glycogen, indicating further that the pathway for glycogen synthesis in liver from exogenous glucose is from the direct pathway

  4. On the direct synthesis of Cu(BDC) MOF nanosheets and their performance in mixed matrix membranes

    Energy Technology Data Exchange (ETDEWEB)

    Shete, Meera; Kumar, Prashant; Bachman, Jonathan E.; Ma, Xiaoli; Smith, Zachary P.; Xu, Wenqian; Mkhoyan, K. Andre; Long, Jeffrey R.; Tsapatsis, Michael

    2018-03-01

    High aspect-ratio nanosheets of metal-organic frameworks (MOFs) hold promise for use as selective flakes in gas separation membranes. However, simple and scalable methods for the synthesis of MOF nanosheets have thus far remained elusive. Here, we describe the direct synthesis of Cu(BDC) (BDC2-= 1,4-benzenedicarboxylate) nanosheets with an average lateral size of 2.5 mu m and a thickness of 25 nm from a well-mixed solution. Characterization of the nanosheets by powder and thin film X-ray diffraction, electron microscopy, and electron diffraction reveals pronounced structural disorder that may affect their pore structure. Incorporation of the Cu (BDC) nanosheets into a Matrimid polymer matrix results in mixed matrix membranes (MMMs) that exhibit a 70% increase in the CO2/CH4 selectivity compared with that of Matrimid. Analysis of new and previously reported permeation data for Cu(BDC) MMMs using a mathematical model for selective flake composites indicates that further performance improvements could be achieved with the selection of different polymers for use in the continuous phase.

  5. High temperature synthesis of ceramic composition by directed reaction of molten titanium or zirconium with boron carbide

    International Nuclear Information System (INIS)

    Johnson, W.B.

    1990-01-01

    Alternative methods of producing ceramics and ceramic composites include sintering, hot pressing and more recently hot isostatic pressing (HIP) and self-propagating high temperature synthesis (SHS). Though each of these techniques has its advantages, each suffers from several restrictions as well. Sintering may require long times at high temperatures and for most materials requires sintering aids to get full density. These additives can, and generally do, change (often degrade) the properties of the ceramic. Hot pressing and hot isostatic pressing are convenient methods to quickly prepare samples of some materials to full density, but generally are expensive and may damage some types of reinforcements during densification. This paper focuses on the preparation and processing of composites prepared by the directed reaction of molten titanium or zirconium with boron carbide. Advantages and disadvantages of this approach when compared to traditional methods are discussed, with reference to specific examples. Examples of microstructure are properties of these materials are reported

  6. Eco-friendly synthesis of 4-4-diaminodiphenylurea, a dye intermediate and direct dyes derived from it

    International Nuclear Information System (INIS)

    Amjad, R.; Khan, S.R.; Naeem, M.; Sohaib, M.; Munawar, M.A.

    2011-01-01

    A rapid, environmental friendly and highly efficient method for the synthesis of 4-4/sup '/-diaminodiphenyl- urea and direct dyes derived form it has been reported. The reported method is environmentally friendly, as it doesn't involve the usage of environmentally hazardous material like phosgene and tri phosgene. Novel azo dyes have been prepared by the coupling of 4-4/sup '/-Diamino diphenylurea with various couplers. Structure elucidation of the synthesized dyes was carried out by IR, NMR, Elemental analysis, and confirmation was made by Mass Spectrometry. The dyeing performance of these dyes was assessed on cotton fabric. The dye bath exhaustion, sublimation and fastness properties were also determined. The dyed fabric showed moderate to good light fastness and very good to excellent fastness properties for washing, rubbing, perspiration, and sublimation. (author)

  7. Synthesis of a Bicyclic Azetidine with In Vivo Antimalarial Activity Enabled by Stereospecific, Directed C(sp3)-H Arylation.

    Science.gov (United States)

    Maetani, Micah; Zoller, Jochen; Melillo, Bruno; Verho, Oscar; Kato, Nobutaka; Pu, Jun; Comer, Eamon; Schreiber, Stuart L

    2017-08-16

    The development of new antimalarial therapeutics is necessary to address the increasing resistance to current drugs. Bicyclic azetidines targeting Plasmodium falciparum phenylalanyl-tRNA synthetase comprise one promising new class of antimalarials, especially due to their activities against three stages of the parasite's life cycle, but a lengthy synthetic route to these compounds may affect the feasibility of delivering new therapeutic agents within the cost constraints of antimalarial drugs. Here, we report an efficient synthesis of antimalarial compound BRD3914 (EC 50 = 15 nM) that hinges on a Pd-catalyzed, directed C(sp 3 )-H arylation of azetidines at the C3 position. This newly developed protocol exhibits a broad substrate scope and provides access to valuable, stereochemically defined building blocks. BRD3914 was evaluated in P. falciparum-infected mice, providing a cure after four oral doses.

  8. [1+1+3] Annulation of Diazoenals and Vinyl Azides: Direct Synthesis of Functionalized 1-Pyrrolines through Olefination.

    Science.gov (United States)

    Kanchupalli, Vinaykumar; Katukojvala, Sreenivas

    2018-05-04

    A dirhodium carboxylate catalyzed [1+1+3] annulation reaction of diazoenals and vinyl azides that gives synthetically important enal-functionalized 1-pyrroline derivatives was developed. The reaction involves a novel rhodium-catalyzed olefination of diazoenals with vinyl azides via electrophilic enal carbenoids, resulting in a new class of enal acrylates. The annulation reaction was used for the direct synthesis of valuable deuterated 1-pyrrolines. Structural diversification of the enal-functionalized 1-pyrrolines resulted in the biologically important pyrrolidine-fused oxaziridine, amino acid derivatives, and a 6-azabicyclo[3.2.1]octane motif present in polycyclic alkaloids. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis and microstructural characterization of growth direction controlled ZnO nanorods using a buffer layer

    International Nuclear Information System (INIS)

    Park, Dong Jun; Kim, Dong Chan; Lee, Jeong Yong; Cho, Hyung Koun

    2006-01-01

    The growth direction and morphology of one-dimensional ZnO nanostructures grown by metal-organic chemical vapour deposition (MOCVD) were modulated by changing the growth temperature of previously deposited ZnO buffer layers that were used as a template. The ZnO nanorods grown on the low-temperature deposited buffer layer were regularly inclined with respect to the substrate surface and show in-plane alignment with azimuthally six-fold symmetry. In contrast, deposition of the buffer layer at higher growth temperature led to the formation of vertically well-aligned ZnO nanorods. In addition, the ZnO nanorods grown on the buffer layer deposited at low growth temperature show a growth direction of [1 0 1-bar 0], unlike the conventional ZnO nanorods showing a growth direction of [0001]. The microstructural analysis and atomic modelling of the formation of regularly inclined nanorods using transmission electron microscopy are presented

  10. Direct synthesis of antimicrobial coatings based on tailored bi-elemental nanoparticles

    Directory of Open Access Journals (Sweden)

    Giulio Benetti

    2017-03-01

    Full Text Available Ultrathin coatings based on bi-elemental nanoparticles (NPs are very promising to limit the surface-related spread of bacterial pathogens, particularly in nosocomial environments. However, tailoring the synthesis, composition, adhesion to substrate, and antimicrobial spectrum of the coating is an open challenge. Herein, we report on a radically new nanostructured coating, obtained by a one-step gas-phase deposition technique, and composed of bi-elemental Janus type Ag/Ti NPs. The NPs are characterized by a cluster-in-cluster mixing phase with metallic Ag nano-crystals embedded in amorphous TiO2 and present a promising antimicrobial activity including also multidrug resistant strains. We demonstrate the flexibility of the method to tune the embedded Ag nano-crystals dimension, the total relative composition of the coating, and the substrate type, opening the possibility of tailoring the dimension, composition, antimicrobial spectrum, and other physical/chemical properties of such multi-elemental systems. This work is expected to significantly spread the range of applications of NPs coatings, not only as an effective tool in the prevention of healthcare-associated infections but also in other technologically relevant fields like sensors or nano-/micro joining.

  11. Direct synthesis of metal complexes starting from zero-valent metals

    Energy Technology Data Exchange (ETDEWEB)

    Gojon-Zorrilla, Gabriel; Kharisov, Boris I. [Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon (Mexico); Garnovskii, Alexander D. [Institute of Physical and Organic Chemistry (Russian Federation)

    1996-06-01

    The recent (1980-1994) literature on metal-vapor synthesis of coordination and organometallic compounds is reviewed. An account is given of the high-and low-temperature reactions between free metal atoms and a large variety of substrates, mainly alkenes, alkynes, dienes, arenes, funtionalized arenes, alkyl halides {beta}-diketones and simple inorganic molecules. The main experimental methods are described, as well as the results obtained thereby. It is shown that in many instances these methods present significant advantages over conventional synthetic procedures, offering unique access to some metal complexes. [Spanish] Se reviso la literatura reciente (1980-1994) sobre la sintesis de compuestos de coordinacion y compuestos organometalicos a partir de vapores metalicos. Se examinan las reacciones de los atomos metalicos libres con una gran variedad de substratos, principalmente alquenos, alquinos, dienos, hidrocarburos aromaticos y sus derivados, haluros de alquilo y arilo, {beta}-dicetonas y moleculas inorganicas simples. Se presentan los principales metodos experimentales, asi como los resultados obtenidos; se concluye que la crisintesis presenta en muchos casos ventajas significativas sobre los procedimientos sinteticos tradicionales, constituyendo frecuentemente la unica opcion disponible.

  12. Methylcellulose-Directed Synthesis of Nanocrystalline Zeolite NaA with High CO₂ Uptake.

    Science.gov (United States)

    Shakarova, Dilshod; Ojuva, Arto; Bergström, Lennart; Akhtar, Farid

    2014-07-28

    Zeolite NaA nanocrystals with a narrow particle size distribution were prepared by template-free hydrothermal synthesis in thermo-reversible methylcellulose gels. The effects of the amount of methylcellulose, crystallization time and hydrothermal treatment temperature on the crystallinity and particle size distribution of the zeolite NaA nanocrystals were investigated. We found that the thermogelation of methylcellulose in the alkaline Na₂O-SiO₂-Al₂O₃-H₂O system played an important role in controlling the particle size. The synthesized zeolite nanocrystals are highly crystalline, as demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) shows that the nanocrystals can also display a well-defined facetted morphology. Gas adsorption studies on the synthesized nanocrystalline zeolite NaA showed that nanocrystals with a size of 100 nm displayed a high CO₂ uptake capacity (4.9 mmol/g at 293 K at 100 kPa) and a relatively rapid uptake rate compared to commercially available, micron-sized particles. Low-cost nanosized zeolite adsorbents with a high and rapid uptake are important for large scale gas separation processes, e.g., carbon capture from flue gas.

  13. Template directed synthesis of plasmonic gold nanotubes with tunable IR absorbance.

    Science.gov (United States)

    Bridges, Colin R; Schon, Tyler B; DiCarmine, Paul M; Seferos, Dwight S

    2013-04-01

    A nearly parallel array of pores can be produced by anodizing aluminum foils in acidic environments. Applications of anodic aluminum oxide (AAO) membranes have been under development since the 1990's and have become a common method to template the synthesis of high aspect ratio nanostructures, mostly by electrochemical growth or pore-wetting. Recently, these membranes have become commercially available in a wide range of pore sizes and densities, leading to an extensive library of functional nanostructures being synthesized from AAO membranes. These include composite nanorods, nanowires and nanotubes made of metals, inorganic materials or polymers. Nanoporous membranes have been used to synthesize nanoparticle and nanotube arrays that perform well as refractive index sensors, plasmonic biosensors, or surface enhanced Raman spectroscopy (SERS) substrates, as well as a wide range of other fields such as photo-thermal heating, permselective transport, catalysis, microfluidics, and electrochemical sensing. Here, we report a novel procedure to prepare gold nanotubes in AAO membranes. Hollow nanostructures have potential application in plasmonic and SERS sensing, and we anticipate these gold nanotubes will allow for high sensitivity and strong plasmon signals, arising from decreased material dampening.

  14. Direct synthesis of antimicrobial coatings based on tailored bi-elemental nanoparticles

    Science.gov (United States)

    Benetti, Giulio; Cavaliere, Emanuele; Canteri, Adalberto; Landini, Giulia; Rossolini, Gian Maria; Pallecchi, Lucia; Chiodi, Mirco; Van Bael, Margriet J.; Winckelmans, Naomi; Bals, Sara; Gavioli, Luca

    2017-03-01

    Ultrathin coatings based on bi-elemental nanoparticles (NPs) are very promising to limit the surface-related spread of bacterial pathogens, particularly in nosocomial environments. However, tailoring the synthesis, composition, adhesion to substrate, and antimicrobial spectrum of the coating is an open challenge. Herein, we report on a radically new nanostructured coating, obtained by a one-step gas-phase deposition technique, and composed of bi-elemental Janus type Ag/Ti NPs. The NPs are characterized by a cluster-in-cluster mixing phase with metallic Ag nano-crystals embedded in amorphous TiO2 and present a promising antimicrobial activity including also multidrug resistant strains. We demonstrate the flexibility of the method to tune the embedded Ag nano-crystals dimension, the total relative composition of the coating, and the substrate type, opening the possibility of tailoring the dimension, composition, antimicrobial spectrum, and other physical/chemical properties of such multi-elemental systems. This work is expected to significantly spread the range of applications of NPs coatings, not only as an effective tool in the prevention of healthcare-associated infections but also in other technologically relevant fields like sensors or nano-/micro joining.

  15. Mixed phase Pt-Ru catalyst for direct methanol fuel cell anode by flame aerosol synthesis

    DEFF Research Database (Denmark)

    Chakraborty, Debasish; Bischoff, H.; Chorkendorff, Ib

    2005-01-01

    A spray-flame aerosol catalyzation technique was studied for producing Pt-Ru anode electrodes for the direct methanol fuel cell. Catalysts were produced as aerosol nanoparticles in a spray-flame reactor and deposited directly as a thin layer on the gas diffusion layer. The as-prepared catalyst wa......Ru1/Vulcan carbon. The kinetics of methanol oxidation on the mixed phase catalyst was also explored by electrochemical impedance spectroscopy. (c) 2005 The Electrochemical Society.......A spray-flame aerosol catalyzation technique was studied for producing Pt-Ru anode electrodes for the direct methanol fuel cell. Catalysts were produced as aerosol nanoparticles in a spray-flame reactor and deposited directly as a thin layer on the gas diffusion layer. The as-prepared catalyst...... was found to be a mixture of nanocrystalline, mostly unalloyed Pt and an amorphous phase mostly of Ru and to a lesser extent of Pt oxides on top of the crystalline phase. The flame-produced Pt1Ru1 demonstrated similar onset potential but similar to 60% higher activity compared to commercially available Pt1...

  16. Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors.

    Science.gov (United States)

    Sevilla, Marta; Fuertes, Antonio B

    2014-05-27

    An easy, one-step procedure is proposed for the synthesis of highly porous carbon nanosheets with an excellent performance as supercapacitor electrodes. The procedure is based on the carbonization of an organic salt, i.e., potassium citrate, at a temperature in the 750-900 °C range. In this way, carbon particles made up of interconnected carbon nanosheets with a thickness of <80 nm are obtained. The porosity of the carbon nanosheets consists essentially of micropores distributed in two pore systems of 0.7-0.85 nm and 0.95-1.6 nm. Importantly, the micropore sizes of both systems can be enlarged by simply increasing the carbonization temperature. Furthermore, the carbon nanosheets possess BET surface areas in the ∼1400-2200 m(2) g(-1) range and electronic conductivities in the range of 1.7-7.4 S cm(-1) (measured at 7.1 MPa). These materials behave as high-performance supercapacitor electrodes in organic electrolyte and exhibit an excellent power handling ability and a superb robustness over long-term cycling. Excellent results were obtained with the supercapacitor fabricated from the material synthesized at 850 °C in terms of both gravimetric and volumetric energy and power densities. This device was able to deliver ∼13 Wh kg(-1) (5.2 Wh L(-1)) at an extremely high power density of 78 kW kg(-1) (31 kW L(-1)) and ∼30 Wh kg(-1) (12 Wh L(-1)) at a power density of 13 kW kg(-1) (5.2 kW L(-1)) (voltage range of 2.7 V).

  17. Directed synthesis of bio-inorganic vanadium oxide composites using genetically modified filamentous phage

    International Nuclear Information System (INIS)

    Mueller, Michael; Baik, Seungyun; Jeon, Hojeong; Kim, Yuchan; Kim, Jungtae; Kim, Young Jun

    2015-01-01

    Highlights: • Phage is an excellent seeding for bio-templates for environmentally benign vanadium oxide nanocomposite synthesis. • The synthesized bio-inorganic vanadium oxide showed photodegradation activities. • The fabricated wt phage/vanadium oxide composite exhibited bundle-like structure. • The fabricated RSTB-phage/vanadium oxide composite exhibited a ball with a fiber-like nanostructure. • The virus/vanadium oxide composite could be applied in photocatalysts, sensors and nanoelectronic applications. - Abstract: The growth of crystalline vanadium oxide using a filamentous bacteriophage template was investigated using sequential incubation in a V 2 O 5 precursor. Using the genetic modification of the bacteriophage, we displayed two cysteines that constrained the RSTB-1 peptide on the major coat protein P8, resulting in vanadium oxide crystallization. The phage-driven vanadium oxide crystals with different topologies, microstructures, photodegradation and vanadium oxide composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), quartz microbalance and dissipation (QCM-D) and X-ray photoelectron spectroscopy (XPS). Non-specific electrostatic attraction between a wild-type phage (wt-phage) and vanadium cations in the V 2 O 5 precursor caused phage agglomeration and fiber formation along the length of the viral scaffold. As a result, the addition of recombinant phage (re-phage) in V 2 O 5 precursors formed heterogeneous structures, which led to efficient condensation of vanadium oxide crystal formation in lines, shown by QCM-D analysis. Furthermore, re-phage/V x O x composites showed significantly enhanced photodegradation activities compared with the synthesized wt-phage-V 2 O 5 composite under illumination. This study demonstrates that peptide-mediated vanadium oxide mineralization is governed by a complicated interplay of peptide sequence, local structure, kinetics and the presence of a mineralizing

  18. Block copolymer self-assembly–directed synthesis of mesoporous gyroidal superconductors

    Science.gov (United States)

    Robbins, Spencer W.; Beaucage, Peter A.; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G.; Sethna, James P.; DiSalvo, Francis J.; Gruner, Sol M.; Van Dover, Robert B.; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly–directed sol-gel–derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (Tc) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (Jc) of 440 A cm−2 at 100 Oe and 2.5 K. We expect block copolymer self-assembly–directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies. PMID:27152327

  19. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors.

    Science.gov (United States)

    Robbins, Spencer W; Beaucage, Peter A; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G; Sethna, James P; DiSalvo, Francis J; Gruner, Sol M; Van Dover, Robert B; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly-directed sol-gel-derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (T c) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (J c) of 440 A cm(-2) at 100 Oe and 2.5 K. We expect block copolymer self-assembly-directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies.

  20. Direct synthesis of graphene nanosheets support Pd nanodendrites for electrocatalytic formic acid oxidation

    Institute of Scientific and Technical Information of China (English)

    杨苏东; 陈琳

    2015-01-01

    We report a solvothermal method preparation of dendritic Pd nanoparticles (DPNs) and spherical Pd nanoparticles (SPNs) supported on reduced graphene oxide (RGO). Drastically different morphologies of Pd NPs with nanodendritic structures or spherical structures were observed on graphene by controlling the reduction degree of graphene oxide (GO) un-der mild conditions. In addition to being a commonplace substrate, GO plays a more important role that relies on its surface groups, which serves as a shape-directing agent to direct the dendritic growth. As a result, the obtained DPNs/RGO catalyst exhibits a significantly enhanced electro-catalytic behavior for the oxidation of formic acid compared to the SPNs/RGO catalyst.

  1. Highly integrated CO2 capture and conversion: Direct synthesis of cyclic carbonates from industrial flue gas

    KAUST Repository

    Barthel, Alexander; Saih, Youssef; Gimenez, Michel; Pelletier, Jeremie; Kü hn, Fritz Elmar; D´ Elia, Valerio; Basset, Jean-Marie

    2016-01-01

    Robust and selective catalytic systems based on early transition metal halides (Y, Sc, Zr) and organic nucleophiles were found able to quantitatively capture CO2 from diluted streams via formation of hemicarbonate species and to convert it to cyclic organic carbonates under ambient conditions. This observation was exploited in the direct and selective chemical fixation of flue gas CO2 collected from an industrial exhaust, affording high degrees of CO2 capture and conversion.

  2. Highly integrated CO2 capture and conversion: Direct synthesis of cyclic carbonates from industrial flue gas

    KAUST Repository

    Barthel, Alexander

    2016-02-08

    Robust and selective catalytic systems based on early transition metal halides (Y, Sc, Zr) and organic nucleophiles were found able to quantitatively capture CO2 from diluted streams via formation of hemicarbonate species and to convert it to cyclic organic carbonates under ambient conditions. This observation was exploited in the direct and selective chemical fixation of flue gas CO2 collected from an industrial exhaust, affording high degrees of CO2 capture and conversion.

  3. Synthesis of metalloporphyrin-based conjugated microporous polymer spheres directed by bipyridine-type ligands.

    Science.gov (United States)

    Ji, Guipeng; Yang, Zhenzhen; Zhao, Yanfei; Zhang, Hongye; Yu, Bo; Xu, Jilei; Xu, Huanjun; Liu, Zhimin

    2015-04-30

    Zinc porphyrin (TP-Zn)-based conjugated microporous polymer (Zn-CMP) spheres were obtained via Sonagashira-Hagihara cross coupling reactions between 5,10,15,20-tetrakis(4-ethynylphenyl)porphyrin-Zn(II) and brominated monomers directed by bidentate bipyridine (BP)-type ligands for the first time, and the sphere diameters could be adjusted from 320 to 740 nm. The coordination between BP and TP-Zn was proved to be the key to forming spheres.

  4. Directed synthesis of bio-inorganic vanadium oxide composites using genetically modified filamentous phage

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Michael; Baik, Seungyun [Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, Saarbruecken (Germany); Jeon, Hojeong; Kim, Yuchan [Center for Biomaterials, Biomedical Research Institute Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, Jungtae [Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, Saarbruecken (Germany); Kim, Young Jun, E-mail: youngjunkim@kist-europe.de [Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, Saarbruecken (Germany)

    2015-05-15

    Highlights: • Phage is an excellent seeding for bio-templates for environmentally benign vanadium oxide nanocomposite synthesis. • The synthesized bio-inorganic vanadium oxide showed photodegradation activities. • The fabricated wt phage/vanadium oxide composite exhibited bundle-like structure. • The fabricated RSTB-phage/vanadium oxide composite exhibited a ball with a fiber-like nanostructure. • The virus/vanadium oxide composite could be applied in photocatalysts, sensors and nanoelectronic applications. - Abstract: The growth of crystalline vanadium oxide using a filamentous bacteriophage template was investigated using sequential incubation in a V{sub 2}O{sub 5} precursor. Using the genetic modification of the bacteriophage, we displayed two cysteines that constrained the RSTB-1 peptide on the major coat protein P8, resulting in vanadium oxide crystallization. The phage-driven vanadium oxide crystals with different topologies, microstructures, photodegradation and vanadium oxide composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), quartz microbalance and dissipation (QCM-D) and X-ray photoelectron spectroscopy (XPS). Non-specific electrostatic attraction between a wild-type phage (wt-phage) and vanadium cations in the V{sub 2}O{sub 5} precursor caused phage agglomeration and fiber formation along the length of the viral scaffold. As a result, the addition of recombinant phage (re-phage) in V{sub 2}O{sub 5} precursors formed heterogeneous structures, which led to efficient condensation of vanadium oxide crystal formation in lines, shown by QCM-D analysis. Furthermore, re-phage/V{sub x}O{sub x} composites showed significantly enhanced photodegradation activities compared with the synthesized wt-phage-V{sub 2}O{sub 5} composite under illumination. This study demonstrates that peptide-mediated vanadium oxide mineralization is governed by a complicated interplay of peptide sequence, local structure

  5. Direct solution-phase synthesis of Se submicrotubes using Se powder as selenium source

    International Nuclear Information System (INIS)

    Yan Shancheng; Wang Haitao; Zhang Yuping; Li Shuchun; Xiao Zhongdang

    2009-01-01

    The selenium submicrotubes were directly prepared using Se powder as selenium source by microwave-assisted method. Field-emission scan electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were adopted to characterize the as-prepared products. The results of high-resolution transmission electron microscopy (HRTEM) and XRD pattern proved that the selenium submicrotubes were single crystalline in nature and [0 0 1] oriented. A possible growth mechanism of the selenium submicrotubes was proposed. The effects of the experimental conditions, such as alkaline concentration and solvent properties, on the morphology and dimension of the products have also been discussed

  6. Direct synthesis of highly textured Ge on flexible polyimide films by metal-induced crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Oya, N.; Toko, K., E-mail: toko@bk.tsukuba.ac.jp; Suemasu, T. [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Saitoh, N.; Yoshizawa, N. [Electron Microscope Facility, TIA, AIST, 16-1 Onogawa, Tsukuba 305-8569 (Japan)

    2014-06-30

    The highly (111)-textured Ge thin film (50-nm thickness) is demonstrated on a flexible polyimide film via the low-temperature crystallization (325 °C) of amorphous Ge using Al as a catalyst. Covering the polyimide with insulators significantly improved the crystal quality of the resulting Ge layer. In particular, SiN covering led to 97% (111)-oriented Ge with grains 200 μm in size, two orders larger than the grain size of polycrystalline Ge directly formed on the polyimide film. This achievement will give a way to realize advanced electronic and optical devices simultaneously allowing for high performance, inexpensiveness, and flexibility.

  7. Total asymmetric synthesis of the putative structure of the cytotoxic diterpenoid (-)-sclerophytin a and of the authentic natural sclerophytins A and B.

    Science.gov (United States)

    Bernardelli, P; Moradei, O M; Friedrich, D; Yang, J; Gallou, F; Dyck, B P; Doskotch, R W; Lange, T; Paquette, L A

    2001-09-19

    An enantioselective synthetic route to the thermodynamically most stable diastereomer of the structure assigned to sclerophytin A (5) has been realized. The required tricyclic ketone 33 was prepared by sequential Tebbe-Claisen rearrangement of lactones 29 and 30, which originated from the Diels-Alder cycloaddition of Danishefsky's diene to (5S)-5-(d-menthyloxy)-2(5H)-furanone (14). An allyl and a cyano group were introduced into the resulting adduct by means of stereocontrolled allylindation under aqueous Barbier-like conditions and by way of cyanotrimethylsilane, respectively. Following stereocontrolled nucleophilic addition of a methyl group to 33, ring A was elaborated by formation of the silyl enol ether, ytterbium triflate-catalyzed condensation with formaldehyde, O-silylation, and Cu(I)-promoted 1,4-addition of isopropylmagnesium chloride. The superfluous ketone carbonyl was subsequently removed and the second ether bridge introduced by means of oxymercuration chemistry. Only then was the exocyclic methylene group unmasked via elimination. An alternative approach to the alpha-carbinol diastereomer proceeds by initial alpha-oxygenation of 37 and ensuing 1,2-carbonyl transposition. Neither this series of steps nor the Wittig olefination to follow induced epimerization at C10. Through deployment of oxymercuration chemistry, it was again possible to elaborate the dual oxygen-bridge network of the target ring system. Oxidation of the organomercurial products with O(2) in the presence of sodium borohydride furnished 72, which was readily separated from its isomer 73 after oxidation to 61. Hydride attack on this ketone proceeded with high selectivity from the beta-direction to deliver (-)-60. Comparison of the high-field (1)H and (13)C NMR properties and polarity of synthetic 5 with natural material required that structural revision be made. Following a complete spectral reassessment of the structural assignments to many sclerophytin diterpenes, a general approach

  8. Improved synthesis with high yield and increased molecular weight of poly(alpha,beta-malic acid) by direct polycondensation.

    Science.gov (United States)

    Kajiyama, Tetsuto; Kobayashi, Hisatoshi; Taguchi, Tetsushi; Kataoka, Kazunori; Tanaka, Junzo

    2004-01-01

    The development of synthetic biodegradable polymers, such as poly(alpha-hydroxy acid), is particularly important for constructing medical devices, including scaffolds and sutures, and has attracted growing interest in the biomedical field. Here, we report a novel approach to preparing high molecular weight poly(malic acid) (HMW--PMA) as a biodegradable and bioabsorbable water-soluble polymer. We investigated in detail the reaction conditions for the simple direct polycondensation of l-malic acid, including the reaction times, temperatures, and catalysts. The molecular weight of synthesized alpha,beta-PMA is dependent on both the reaction temperature and time. The optimum reaction condition to obtain alpha,beta-PMA by direct polycondensation using tin(II) chloride as a catalyst was thus determined to be 110 degrees C for 45 h with a molecular weight of 5300. The method for alpha,beta-PMA synthesis established here will facilitate production of alpha,beta-PMA of various molecular weights, which may have a potential utility as biomaterials.

  9. Black carbon semi-direct effects on cloud cover: review and synthesis

    Directory of Open Access Journals (Sweden)

    D. Koch

    2010-08-01

    Full Text Available Absorbing aerosols (AAs such as black carbon (BC or dust absorb incoming solar radiation, perturb the temperature structure of the atmosphere, and influence cloud cover. Previous studies have described conditions under which AAs either increase or decrease cloud cover. The effect depends on several factors, including the altitude of the AA relative to the cloud and the cloud type. We attempt to categorize the effects into several likely regimes. Cloud cover is decreased if the AAs are embedded in the cloud layer. AAs below cloud may enhance convection and cloud cover. AAs above cloud top stabilize the underlying layer and tend to enhance stratocumulus clouds but may reduce cumulus clouds. AAs can also promote cloud cover in convergent regions as they enhance deep convection and low level convergence as it draws in moisture from ocean to land regions. Most global model studies indicate a regional variation in the cloud response but generally increased cloud cover over oceans and some land regions, with net increased low-level and/or reduced upper level cloud cover. The result is a net negative semi-direct effect feedback from the cloud response to AAs. In some of these climate model studies, the cooling effect of BC due to cloud changes is strong enough to essentially cancel the warming direct effects.

  10. Direct synthesis of ultrathin SOI structure by extremely low-energy oxygen implantation

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Yasushi, E-mail: yhoshino@kanagawa-u.ac.jp; Yachida, Gosuke; Inoue, Kodai; Toyohara, Taiga; Nakata, Jyoji [Department of mathematics and physics, Kanagawa University, 2946, Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan)

    2016-06-15

    We performed extremely low-energy {sup 16}O{sup +} implantation at 10 keV (R{sub p} ∼ 25 nm) followed by annealing aiming at directly synthesizing an ultrathin Si layer separated by a buried SiO{sub 2} layer in Si(001) substrates, and then investigated feasible condition of recrystallization and stabilization of the superficial Si and the buried oxide layer by significantly low temperature annealing. The elemental compositions were analyzed by Rutherford backscattering (RBS) and secondary ion mass spectroscopy (SIMS). The crystallinity of the superficial Si layer was quantitatively confirmed by ananlyzing RBS-channeling spectra. Cross-sectional morphologies and atomic configurations were observed by transmission electron microscope (TEM). As a result, we succeeded in directly synthesizing an ultrathin single-crystalline silicon layer with ≤20 nm thick separated by a thin buried stoichiometric SiO{sub 2} layer with ≤20 nm thick formed by extremely low-energy {sup 16}O{sup +} implantation followed by surprisingly low temperature annealing at 1050{sup ∘} C.

  11. Direct synthesis of RGO/Cu{sub 2}O composite films on Cu foil for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiangmao; Wang, Kun [Key Laboratory for Ultrafine Materials of the Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao, Chongjun, E-mail: chongjunzhao@ecust.edu.cn [Key Laboratory for Ultrafine Materials of the Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong 2500 (Australia); Qian, Xiuzhen [Key Laboratory for Ultrafine Materials of the Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Chen, Shi [School of Information Engineering, Wuhan University of Technology, Wuhan 430070 (China); Li, Zhen, E-mail: zhenl@uow.edu.au [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong 2500 (Australia); Liu, Huakun; Dou, Shixue [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong 2500 (Australia)

    2014-02-15

    Graphical abstract: RGO/Cu{sub 2}O/Cu composites were synthesized by simple hydrothermal treatment of copper foils with graphene oxide, in which the reduction of graphene oxide and the formation of Cu{sub 2}O nanoparticles simultaneously happened in one-pot reaction. These composites can be directly used as electrodes of supercapacitors with the highest specific capacitance of 98.5 F/g at 1 A g{sup −1}, which is much better than that of CuO or Cu{sub 2}O electrodes. -- Highlights: • The RGO/Cu{sub 2}O/Cu composites were obtained by a friendly method in one step. • Improved capacitance performance is realized by the hydrothermal treatment of graphene oxides with Cu foils. • RGO/Cu{sub 2}O/Cu-200 composites exhibit the largest specific capacitance of 98.5 F g{sup −1} at 1 A g{sup −1}. -- Abstract: Reduced graphene oxide/cuprous oxide (RGO/Cu{sub 2}O) composite films were directly synthesized on the surface of copper foil substrates through a straight redox reaction between GO and Cu foil via a hydrothermal approach. Characterization of the resultant composites with X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and field emission scanning electron microscope (FESEM) confirms the formation of Cu{sub 2}O and reduction of GO, in which Cu{sub 2}O nanoparticles were well covered by RGO. The resultant composites (referred to as RGO/Cu{sub 2}O/Cu) were directly used as electrodes for supercapacitors, and their electrochemical performance was assessed by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectrometry (EIS) in 1 M KOH aqueous solution. A specific capacitance of 98.5 F g{sup −1} at 1 A g{sup −1} was obtained, which is much higher than that of pure Cu{sub 2}O prepared under the same conditions, due to the presence of RGO.

  12. Direct synthesis of II-VI compound nanocrystals in polymer matrix

    International Nuclear Information System (INIS)

    Antolini, F.; Di Luccio, T.; Laera, A.M.; Mirenghi, L.; Piscopiello, E.; Re, M.; Tapfer, L.

    2007-01-01

    The production of II-VI semiconductor compound - polymer matrix nanocomposites by a direct in-situ thermolysis process is described. Metal-thiolate precursor molecules embedded in a polymer matrix decompose by a thermal annealing and the nucleation of semiconductor nanocrystals occurs. It is shown that the nucleation of nanoparticles and the formation of the nanocomposite can be also achieved by laser beam irradiation; this opens the way towards a ''lithographic'' in-situ nanocomposite production process. A possible growth and nanocomposite formation mechanism, describing the structural and chemical transformation of the precursor molecules, their decomposition and the formation of the nanoparticles, is presented. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Synthesis of silicon containing materials using liquid hydrosilane compositions through direct injection

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Guruvenket; Sailer, Robert A.; Hoey, Justin

    2018-03-13

    An apparatus and a non-vapor-pressure dependent method of chemical vapor deposition of Si based materials using direct injection of liquid hydrosilane(s) are presented. Liquid silane precursor solutions may also include metal, non-metal or metalloid dopants, nanomaterials and solvents. An illustrative apparatus has a precursor solution and carrier gas system, atomizer and deposit head with interior chamber and a hot plate supporting the substrate. Atomized liquid silane precursor solutions and carrier gas moves through a confined reaction zone that may be heated and the aerosol and vapor are deposited on a substrate to form a thin film. The substrate may be heated prior to deposition. The deposited film may be processed further with thermal or laser processing.

  14. Synthesis of well-dispersed ZnO nanomaterials by directly calcining zinc stearate

    International Nuclear Information System (INIS)

    Guo Guangsheng; Shi Chen; Tao Dongliang; Qian Weizhong; Han Dongmei

    2009-01-01

    Well-dispersed ZnO nanomaterials were synthesized by direct calcination of zinc stearate. Results from Fourier transform infrared (FT-IR) spectra and X-ray diffraction (XRD) indicated both the decomposition degree of organic ligand and the purity of calcined products were increased with the calcination temperature. The influence of decomposition temperature on the morphology of ZnO nanomaterials was investigated by field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The experimental results revealed the morphology of ZnO transformed from nanosheets to hexagonal nanopyramids and then to nanoparticles at 573, 673 and 773 K respectively. Finally, a morphology evolution model of ZnO nanomaterials under different temperatures was proposed

  15. Synthesis-based approach toward direct sandwich immunoassay for ciguatoxin CTX3C.

    Science.gov (United States)

    Oguri, Hiroki; Hirama, Masahiro; Tsumuraya, Takeshi; Fujii, Ikuo; Maruyama, Megumi; Uehara, Hisatoshi; Nagumo, Yoko

    2003-06-25

    Ciguatoxins are the major causative toxins of ciguatera seafood poisoning. Limited availability of ciguatoxins has hampered the development of a reliable and specific immunoassay for detecting these toxins in contaminated fish. Monoclonal antibodies (mAbs) specific against both ends of ciguatoxin CTX3C were prepared by immunization of mice with protein conjugates of rationally designed synthetic haptens, 3 and 4, in place of the natural toxin. Haptenic groups that possess a surface area larger than 400 A(2) were required to produce mAbs that can bind strongly to CTX3C itself. A direct sandwich enzyme-linked immunosorbent assay (ELISA) using these mAbs was established to detect CTX3C at the ppb level with no cross-reactivity against other related marine toxins, including brevetoxin A, brevetoxin B, okadaic acid, or maitotoxin.

  16. Direct synthesis of few-layer graphene supported platinum nanocatalyst for methanol oxidation

    Science.gov (United States)

    Tan, Hong; Ma, Xiaohui; Sheng, Leimei; An, Kang; Yu, Liming; Zhao, Hongbin; Xu, Jiaqiang; Ren, Wei; Zhao, Xinluo

    2014-11-01

    High-crystalline few-layer graphene supported Pt nanoparticles have been synthesized by arc discharge evaporation of carbon electrodes containing Pt element. A high-temperature treatment under hydrogen atmosphere has been carried out to obtain a new type of Pt/graphene catalyst for methanol oxidation in direct methanol fuel cell. The morphology and structure characterizations of as-grown few-layer graphene supported Pt nanoparticles and Pt/graphene catalysts have been studied by Raman spectroscopy, scanning electron microscopy with energy-dispersive spectroscopy, and high-resolution transmission electron microscopy. Cyclic voltammograms and chronoamperometric curves show that our present Pt/graphene catalysts have larger current density for methanol oxidation, higher tolerance to carbon monoxide poisoning, and better stability during the operating procedure, compared to commercial Pt/C catalysts.

  17. Synthesis of stable ultra-small Cu nanoparticles for direct writing flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Chen, Minfang, E-mail: mfchentj@126.com [School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2014-01-30

    In this study, pure Cu nanoparticles (NPs) have been successfully synthesized and the Cu nano-ink was prepared for direct writing on photo paper using a roller pen. The tri-sodium citrate was used as initial reducing-cum-surfactant agent followed by hydrazine as a second massive reducing agent and cetyltrimethylammonium bromide (CTAB) as extra surfactant agent. From the XRD, TEM, and HR-TEM analyses, the synthesized particles are confirmed to be Cu in spherical shape with sizes range of 2.5 ± 1.0 nm. By analyzing the FT-IR spectroscopy and TGA curves, it was found that the obtained particles capped with tri-sodium citrate and CTAB layers are stable to oxidation up to the temperature 228 °C. The reduced size and enhanced air-stability of the Cu NPs result in an improved particle density upon sintering, which is mainly responsible for the increased conductivity of the Cu patterns. The resistivity of Cu patterns sintered in Ar at 160 °C for 2 h is 7.2 ± 0.6 μΩ cm, which is 4.40 times the bulk Cu resistivity. The drawn Cu lines exhibited excellent integrity and good conductivity, which were experimentally tested. Moreover, a Cu electrode and a sample RFID antenna were successfully made.

  18. Synthesis of a multi-functional DNA nanosphere barcode system for direct cell detection.

    Science.gov (United States)

    Han, Sangwoo; Lee, Jae Sung; Lee, Jong Bum

    2017-09-28

    Nucleic acid-based technologies have been applied to numerous biomedical applications. As a novel material for target detection, DNA has been used to construct a barcode system with a range of structures. This paper reports multi-functionalized DNA nanospheres (DNANSs) by rolling circle amplification (RCA) with several functionalized nucleotides. DNANSs with a barcode system were designed to exhibit fluorescence for coding enhanced signals and contain biotin for more functionalities, including targeting through the biotin-streptavidin (biotin-STA) interaction. Functionalized deoxynucleotide triphosphates (dNTPs) were mixed in the RCA process and functional moieties can be expressed on the DNANSs. The anti-epidermal growth factor receptor antibodies (anti-EGFR Abs) can be conjugated on DNANSs for targeting cancer cells specifically. As a proof of concept, the potential of the multi-functional DNANS barcode was demonstrated by direct cell detection as a simple detection method. The DNANS barcode provides a new route for the simple and rapid selective recognition of cancer cells.

  19. Synthesis of thick diamond films by direct current hot-cathode plasma chemical vapour deposition

    CERN Document Server

    Jin Zeng Sun; Bai Yi Zhen; Lu Xian Yi

    2002-01-01

    The method of direct current hot-cathode plasma chemical vapour deposition has been established. A long-time stable glow discharge at large discharge current and high gas pressure has been achieved by using a hot cathode in the temperature range from 1100 degree C to 1500 degree C and non-symmetrical configuration of the poles, in which the diameter of the cathode is larger than that of anode. High-quality thick diamond films, with a diameter of 40-50 mm and thickness of 0.5-4.2 mm, have been synthesized by this method. Transparent thick diamond films were grown over a range of growth rates between 5-10 mu m/h. Most of the thick diamond films have thermal conductivities of 10-12 W/K centre dot cm. The thick diamond films with high thermal conductivity can be used as a heat sink of semiconducting laser diode array and as a heat spreading and isolation substrate of multichip modules. The performance can be obviously improved

  20. Direct Synthesis of MnO2 Nanorods on Carbon Cloth as Flexible Supercapacitor Electrode

    Directory of Open Access Journals (Sweden)

    Shuang Xi

    2017-01-01

    Full Text Available MnO2 nanorod/carbon cloth (MnO2/CC composites were prepared through in situ redox deposition as freestanding electrodes for flexible supercapacitors. The CC substrates possessing porous and interconnecting structures enable the uniform decoration of MnO2 nanorods on each fiber, thus forming conformal coaxial micro/nanocomposites. Three-dimensional CC can provide considerable specific surface area for high mass loading of MnO2, and the direct deposition process without using polymeric binders enables reliable electrical connection of MnO2 with CC. The effect of MnO2 decoration on the electrochemical performances was further investigated, indicating that the electrode prepared with 40 min deposition time shows high specific capacitance (220 F/g at a scan rate of 5 mV/s and good cycling property (90% of the initial specific capacitance was maintained after 2500 cycles in 1 M Na2SO4 aqueous solution. This enhanced electrochemical performance is ascribed to the synergistic effect of good conductivity of carbon substrates as well as outstanding pseudocapacitance of MnO2 nanorods. The obtained MnO2/CC compositing electrode with the advantages of low cost and easy fabrication is promising in applications of flexible supercapacitors.

  1. Direct synthesis of carbon nanofibers from South African coal fly ash

    Science.gov (United States)

    Hintsho, Nomso; Shaikjee, Ahmed; Masenda, Hilary; Naidoo, Deena; Billing, Dave; Franklyn, Paul; Durbach, Shane

    2014-08-01

    Carbon nanofibers (CNFs), cylindrical nanostructures containing graphene, were synthesized directly from South African fly ash (a waste product formed during the combustion of coal). The CNFs (as well as other carbonaceous materials like carbon nanotubes (CNTs)) were produced by the catalytic chemical vapour deposition method (CCVD) in the presence of acetylene gas at temperatures ranging from 400°C to 700°C. The fly ash and its carbonaceous products were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), laser Raman spectroscopy and Brunauer-Emmett-Teller (BET) surface area measurements. It was observed that as-received fly ash was capable of producing CNFs in high yield by CCVD, starting at a relatively low temperature of 400°C. Laser Raman spectra and TGA thermograms showed that the carbonaceous products which formed were mostly disordered. Small bundles of CNTs and CNFs observed by TEM and energy-dispersive spectroscopy (EDS) showed that the catalyst most likely responsible for CNF formation was iron in the form of cementite; X-ray diffraction (XRD) and Mössbauer spectroscopy confirmed these findings.

  2. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions.

    Science.gov (United States)

    Patra, Amlan Kumar

    2012-04-01

    Enteric methane (CH(4)) emission in ruminants, which is produced via fermentation of feeds in the rumen and lower digestive tract by methanogenic archaea, represents a loss of 2% to 12% of gross energy of feeds and contributes to global greenhouse effects. Globally, about 80 million tonnes of CH(4) is produced annually from enteric fermentation mainly from ruminants. Therefore, CH(4) mitigation strategies in ruminants have focused to obtain economic as well as environmental benefits. Some mitigation options such as chemical inhibitors, defaunation, and ionophores inhibit methanogenesis directly or indirectly in the rumen, but they have not confirmed consistent effects for practical use. A variety of nutritional amendments such as increasing the amount of grains, inclusion of some leguminous forages containing condensed tannins and ionophore compounds in diets, supplementation of low-quality roughages with protein and readily fermentable carbohydrates, and addition of fats show promise for CH(4) mitigation. These nutritional amendments also increase the efficiency of feed utilization and, therefore, are most likely to be adopted by farmers. Several new potential technologies such as use of plant secondary metabolites, probiotics and propionate enhancers, stimulation of acetogens, immunization, CH(4) oxidation by methylotrophs, and genetic selection of low CH(4)-producing animals have emerged to decrease CH(4) production, but these require extensive research before they can be recommended to livestock producers. The use of bacteriocins, bacteriophages, and development of recombinant vaccines targeting archaeal-specific genes and cell surface proteins may be areas worthy of investigation for CH(4) mitigation as well. A combination of different CH(4) mitigation strategies should be adopted in farm levels to substantially decrease methane emission from ruminants. Evidently, comprehensive research is needed to explore proven and reliable CH(4) mitigation technologies

  3. Synthesis and characterization of PtRuMo/C nanoparticle electrocatalyst for direct ethanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen-Bo; Yin, Ge-Ping [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Lin, Yong-Ge [Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931 (United States)

    2007-07-10

    This research aims at enhancement of the performance of anodic catalysts for the direct ethanol fuel cell (DEFC). Two distinct DEFC nanoparticle electrocatalysts, PtRuMo/C and PtRu/C, were prepared and characterized, and one glassy carbon working electrode for each was employed to evaluate the catalytic performance. The cyclic-voltammetric, chronoamperometric, and amperometric current-time measurements were done in the solution 0.5 mol L{sup -1} CH{sub 3}CH{sub 2}OH and 0.5 mol L{sup -1} H{sub 2}SO{sub 4}. The composition, particle sizes, lattice parameters, morphology, and the oxidation states of the metals on nanoparticle catalyst surfaces were determined by energy dispersive analysis of X-ray (EDAX), X-ray diffraction (XRD), transmission electron micrographs (TEM) and X-ray photoelectron spectrometer (XPS), respectively. The results of XRD analysis showed that both PtRuMo/C and PtRu/C had a face-centered cubic (fcc) structure with smaller lattice parameters than that of pure platinum. The typical particle sizes were only about 2.5 nm. Both electrodes showed essentially the same onset potential as shown in the CV for ethanol electrooxidation. Despite their comparable active specific areas, PtRuMo/C was superior to PtRu/C in respect of the catalytic activity, durability and CO-tolerance. The effect of Mo in the PtRuMo/C nanoparticle catalyst was illustrated with a bifunctional mechanism, hydrogen-spillover effect and the modification on the Pt electronic states. (author)

  4. Synthesis and characterization of CuGeO3 photocatalyst using Green Chemistry and its application for the degradation of direct black dye

    Directory of Open Access Journals (Sweden)

    Ashok. V. Borhade

    2013-03-01

    Full Text Available In this paper, we report synthesis of CuGeO3 photocatalyst by mechanochemical, solid state synthesis, method with green chemistry approach. The product obtained was characterized by various investigative techniques like UV-Diffuse Reflectance Spectroscopy, Fourier Transform Infrared Spectroscopy, X-ray Diffraction, Scanning Electron Microscopy, with Energy Dispersive X-ray Spectroscopy, and BET Surface area. The study confirm orthorhombic pervoskite crystal structure of photocatalyst with band gap 3.7 eV. The photocatalytic activity of the catalysts CuGeO3 was evaluated by photochemical bleaching of Direct black dye, under sun light.

  5. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles.

    Science.gov (United States)

    Lee, Hye-Eun; Ahn, Hyo-Yong; Mun, Jungho; Lee, Yoon Young; Kim, Minkyung; Cho, Nam Heon; Chang, Kiseok; Kim, Wook Sung; Rho, Junsuk; Nam, Ki Tae

    2018-04-01

    Understanding chirality, or handedness, in molecules is important because of the enantioselectivity that is observed in many biochemical reactions 1 , and because of the recent development of chiral metamaterials with exceptional light-manipulating capabilities, such as polarization control 2-4 , a negative refractive index 5 and chiral sensing 6 . Chiral nanostructures have been produced using nanofabrication techniques such as lithography 7 and molecular self-assembly 8-11 , but large-scale and simple fabrication methods for three-dimensional chiral structures remain a challenge. In this regard, chirality transfer represents a simpler and more efficient method for controlling chiral morphology 12-18 . Although a few studies 18,19 have described the transfer of molecular chirality into micrometre-sized helical ceramic crystals, this technique has yet to be implemented for metal nanoparticles with sizes of hundreds of nanometres. Here we develop a strategy for synthesizing chiral gold nanoparticles that involves using amino acids and peptides to control the optical activity, handedness and chiral plasmonic resonance of the nanoparticles. The key requirement for achieving such chiral structures is the formation of high-Miller-index surfaces ({hkl}, h ≠ k ≠ l ≠ 0) that are intrinsically chiral, owing to the presence of 'kink' sites 20-22 in the nanoparticles during growth. The presence of chiral components at the inorganic surface of the nanoparticles and in the amino acids and peptides results in enantioselective interactions at the interface between these elements; these interactions lead to asymmetric evolution of the nanoparticles and the formation of helicoid morphologies that consist of highly twisted chiral elements. The gold nanoparticles that we grow display strong chiral plasmonic optical activity (a dis-symmetry factor of 0.2), even when dispersed randomly in solution; this observation is supported by theoretical calculations and direct

  6. Synthesis of luminescent YVO{sub 4}:Eu{sup 3+} submicrometer crystals through hydrogels as directing agents

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Zheng, Yuhui [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: qmwang@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Ministry of Education (MOE) Key Laboratory of Theoretical and Environmental Chemistry, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zhang, Cheng Cheng [Departments of Physiology and Developmental Biology, University of Texas Southwestern MedicalCenter, Dallas (United States)

    2012-08-15

    The innovative hydrogel template (polyacrylamide or polyacrylic acid) directed synthesis of YVO{sub 4}:Eu{sup 3+} phosphor in a controlled manner was thoroughly studied. Photoluminescence spectra show the europium(III)-doped yttrium orthovanadate could exhibit strong red emissions within the soft matrix (polyacrylamide) and remain relatively stable even when the temperature reached nearly 100 Degree-Sign C. After calcination process, X-ray powder diffraction patterns, SEM and DLS measurements implied that the sample was in agreement with pure tetragonal phase and the particle sizes were in the range of 100-200 nm. More importantly, YVO{sub 4}:Eu{sup 3+} products prepared based on hydrogels have remarkable improvement in emission intensities compared to phosphors synthesized by conventional approach. Similar results of overall quantum efficiency also support that YVO{sub 4}:Eu{sup 3+} assembled by PAM hydrogel (1.94%) is better than the routine way (0.91%). -- Highlights: Black-Right-Pointing-Pointer YVO{sub 4}:Eu{sup 3+} could be formed within the soft matrix. Black-Right-Pointing-Pointer The as-derived YVO{sub 4}:Eu{sup 3+} exhibited red emissions and remain relatively stable nearly 100 Degree-Sign C. Black-Right-Pointing-Pointer YVO{sub 4}:Eu{sup 3+} prepared by hydrogels has remarkable improvement in emission intensities.

  7. Direct Synthesis of Renewable Dodecanol and Dodecane with Methyl Isobutyl Ketone over Dual-Bed Catalyst Systems.

    Science.gov (United States)

    Sheng, Xueru; Li, Ning; Li, Guangyi; Wang, Wentao; Wang, Aiqin; Cong, Yu; Wang, Xiaodong; Zhang, Tao

    2017-03-09

    For the first time, we demonstrated two integrated processes for the direct synthesis of dodecanol or 2,4,8-trimethylnonane (a jet fuel range C 12 -branched alkane) using methyl isobutyl ketone (MIBK) that can be derived from lignocellulose. The reactions were carried out in dual-bed continuous flow reactors. In the first bed, MIBK was selectively converted to a mixture of C 12 alcohol and ketone. Over the Pd-modified magnesium- aluminium hydrotalcite (Pd-MgAl-HT) catalyst, a high total carbon yield (73.0 %) of C 12 oxygenates can be achieved under mild conditions. In the second bed, the C 12 oxygenates generated in the first bed were hydrogenated to dodecanol over a Ru/C catalyst or hydrodeoxygenated to 2,4,8-trimethylnonane over a Cu/SiO 2 catalyst. The as-obtained dodecanol can be used as feedstock in the production of sodium dodecylsulfate (SDS) and sodium dodecyl benzene sulfonate (SDBS), which are widely used as surfactants or detergents. The asobtained 2,4,8-trimethylnonane can be blended into conventional jet fuel without hydroisomerization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Controlled synthesis of Pt/CS/PW12-GNs composite as an anodic electrocatalyst for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Li, Zhongshui; Lei, Fengling; Ye, Lingting; Zhang, Xiaofeng; Lin, Shen

    2015-01-01

    Controlled assembly in aqueous solution was used to synthesize the well-organized Pt/CS/PW 12 -GNs composite. By the aid of linear cationic polysaccharide chitosan, 2-D distribution worm-like Pt nanoparticles with their length and width of 15–20 and 3–4 nm, respectively, were formed on the surface of CS/PW 12 -GNs using HCOOH as a reducing agent at room temperature. The introduction of CS leads to well dispersion of worm-like Pt nanoparticles, the electroactivity of H 3 PW 12 O 40 (PW 12 ) alleviates CO poisoning toward Pt particles, and graphene nanosheets (GNs) ensure excellent electrical conductivity of the composites. The combined action among different components results in significantly enhanced catalytic activity of Pt/CS/PW 12 -GNs toward methanol oxidation and better tolerance of CO. The as-synthesized Pt/CS/PW 12 -GNs exhibit the forward peak current density of 445 mA mg −1 , which is much higher than that (220 mA mg −1 ) for Pt/C-JM (the commercially available Johnson Matthey Hispec4000 catalyst, simplified as Pt/C-JM) and some recently reported Pt/graphene-based nanomaterials. The construction of 2-D distribution worm-like Pt nanoparticles and facile wet chemical synthesis strategy provide a promising way to develop superior performance electrocatalysts for direct methanol fuel cells applications

  9. Controlled synthesis of Pt/CS/PW{sub 12}-GNs composite as an anodic electrocatalyst for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhongshui; Lei, Fengling; Ye, Lingting; Zhang, Xiaofeng; Lin, Shen, E-mail: shenlin@fjnu.edu.cn [Fujian Normal University, College of Chemistry & Chemical Engineering (China)

    2015-04-15

    Controlled assembly in aqueous solution was used to synthesize the well-organized Pt/CS/PW{sub 12}-GNs composite. By the aid of linear cationic polysaccharide chitosan, 2-D distribution worm-like Pt nanoparticles with their length and width of 15–20 and 3–4 nm, respectively, were formed on the surface of CS/PW{sub 12}-GNs using HCOOH as a reducing agent at room temperature. The introduction of CS leads to well dispersion of worm-like Pt nanoparticles, the electroactivity of H{sub 3}PW{sub 12}O{sub 40} (PW{sub 12}) alleviates CO poisoning toward Pt particles, and graphene nanosheets (GNs) ensure excellent electrical conductivity of the composites. The combined action among different components results in significantly enhanced catalytic activity of Pt/CS/PW{sub 12}-GNs toward methanol oxidation and better tolerance of CO. The as-synthesized Pt/CS/PW{sub 12}-GNs exhibit the forward peak current density of 445 mA mg{sup −1}, which is much higher than that (220 mA mg{sup −1}) for Pt/C-JM (the commercially available Johnson Matthey Hispec4000 catalyst, simplified as Pt/C-JM) and some recently reported Pt/graphene-based nanomaterials. The construction of 2-D distribution worm-like Pt nanoparticles and facile wet chemical synthesis strategy provide a promising way to develop superior performance electrocatalysts for direct methanol fuel cells applications.

  10. Direct C-H Arylation Meets Perovskite Solar Cells: Sn-Free Synthesis Shortcut to High Performance Hole-Transporting Materials.

    Science.gov (United States)

    Chang, Yu-Chieh; Lee, Kun-Mu; Lai, Chia-Hsin; Liu, Ching-Yuan

    2018-03-30

    In contrast to the traditional multistep synthesis, we demonstrate herein a two-step synthesis-shortcut to triphenylamine-based hole-transporting materials (HTMs) through sequential direct C-H arylations. These hole-transporting molecules are fabricated in perovskite-based solar cells (PSCs), exhibiting promising efficiencies up to 17.69%, which is comparable to PSCs utilizing the commercially available spiro-OMeTAD as HTM. This is the first report describing the use of step-saving C-H activations/arylations in the facile synthesis of small-molecule HTMs for perovskite solar cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Comparative Characterization of the HPA-MCM-48 Type Catalysts Produced by the Direct Hydrothermal and Room Temperature Synthesis Methods

    International Nuclear Information System (INIS)

    Gucbilmez, Y.; Calis, I.; Yargic, A. S.

    2012-01-01

    MCM-48 type support materials synthesized by the direct hydrothermal synthesis (HTS) and room temperature synthesis (RTS) methods were incorporated with tungstophosphoric acid (TPA) in the range of 10-40 wt% by using a wet impregnation technique in methanol solutions. Resulting HPA-MCM-48 catalysts were characterized by the XRD, Nitrogen Physisorption, SEM, TEM, EDS, and FT-IR methods in order to determine the effects of different initial synthesis conditions on the catalyst properties. RTS samples were found to have better crystalline structures, higher BET surface areas, and higher BJH pore volumes than HTS samples. They also had slightly higher TPA incorporation, except for the 40 wt% samples, as evidenced by the EDS results. Keggin ion structure was preserved, for both methods, even at the highest acid loading of 40 wt%. It was concluded that the simpler and more economical RTS method was more successful than the HTS method for hetero poly acid incorporation into MCM-48 type materials

  12. Extraction of Alumina from Red Mud for Synthesis of Mesoporous Alumina by Adding CTABr as Mesoporous Directing Agent

    Directory of Open Access Journals (Sweden)

    Eka Putra Ramdhani

    2018-05-01

    Full Text Available Mines in Bintan were producing bauxite for many years. The production process of bauxite to alumina produced much red mud. From X-ray Fluorescence (XRF, alumina content on Bintan’s red mud was 28.87 wt.%. This research was studying on the extraction alumina from red mud with reduction of hematite (Fe2O3 and desilication processes. After extraction process alumina was collected about 52.89 wt.%. Synthesis of mesoporous alumina from red mud using sol-gel method at the room temperature for 72 h with cetyltrimethylammonium bromide (CTABr as mesoporous directing agent. The CTABr/Al-salt ratio, i.e. 1.57; 4.71 and 7.85 with the sample code of AMC-1, AMC-3, AMC-5, respectively. The product was calcined at 550 °C for 6 h. The synthesized materials were characterized by X-ray Diffraction (XRD, scanning electron microscopy-energy dispersive X-ray (SEM-EDX, transmission electron microscopy (TEM, and N2 adsorption-desorption techniques. XRD pattern of AMC-1, AMC-3, and AMC-5 showed that all synthesized materials have amorphous phase. The morphology were wormhole aggregate that were showed by SEM and TEM characterization. N2 adsorption-desorption characterization showed the distribution of pore size of about 3.2 nm. The highest surface area and pore volume were obtained in solid-solid ratio CTABr/GM-AL by 1.57 (AMC-1 i.e. 241 m2/g and 0.107 cm3/g, respectively.

  13. An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells.

    Science.gov (United States)

    Payne, Abby-Jo; Li, Shi; Dayneko, Sergey V; Risko, Chad; Welch, Gregory C

    2017-09-12

    This study reports on the design and synthesis of an unsymmetrical π-conjugated organic molecule composed of perylene diimide, thienyl diketopyrrolopyrrole, and indoloquinoxaline pieced together using direct heteroarylation. This material demonstrates unprecedented response in the thin-film upon post-deposition solvent vapor annealing, resulting in dramatic red-shifts in optical absorption. Such changes were utilized to enhance photocurrent generation in P3HT based organic solar cells.

  14. N-oxide as a traceless oxidizing directing group: mild rhodium(III)-catalyzed C-H olefination for the synthesis of ortho-alkenylated tertiary anilines.

    Science.gov (United States)

    Huang, Xiaolei; Huang, Jingsheng; Du, Chenglong; Zhang, Xingyi; Song, Feijie; You, Jingsong

    2013-12-02

    Double role: A traceless directing group also acts as an internal oxidant in a novel Rh(III) -catalyzed protocol developed for the synthesis of ortho-alkenylated tertiary anilines. A five-membered cyclometalated Rh(III) complex is proposed as a plausible intermediate and confirmed by X-ray crystallographic analysis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Direct asymmetric vinylogous aldol reaction of allyl ketones with isatins: Divergent synthesis of 3-hydroxy-2-oxindole derivatives

    KAUST Repository

    Zhu, Bo; Zhang, Wen; Lee, Richmond; Han, Zhiqiang; Yang, Wenguo; Tan, Davin; Huang, Kuo-Wei; Jiang, Zhiyong

    2013-01-01

    6 in 1: The highly enantioselective title reaction is mediated by a bifunctional catalyst and leads to E-configured vinylogous aldol products (see scheme). These products are used as common intermediates in the synthesis of six biologically active 3

  16. A novel method for direct fabrication of ferromolybdenum using molybdenite via self-propagation high temperature synthesis

    International Nuclear Information System (INIS)

    Golmakani, M.H.; Vahdati khaki, J.; Babakhani, A.

    2017-01-01

    Direct production of ferromolybdenum from molybdenite (MoS 2 ), in the presence of lime as a desulfurizing reagent using combustion synthesis process is investigated. Thermodynamic calculations and measurement of the adiabatic temperature of the reaction denoted that the process is in agreement with the Merzhanov criterion for self-sustaining processes. The experimental results indicated a relatively complete separation between the molten metal droplets and the co-existing slag. The slag and metal phases were characterized by X-ray diffraction, electron microscopy and wet chemical analysis techniques. It was found that sulfur is mainly distributed into the slag in the form of solid calcium sulfide (CaS). The Lack of calcium oxide in the slag indicated a complete desulfurization reaction between lime and the sulfur in molybdenum sulfide. Characterization of the molted metal revealed that only two phases namely Fe 3 Mo 3 C and Fe 3 Mo exist in the melt. Mass balance calculations showed an Iron-molybdenum recovery greater than 85%. Analyses of the phases indicated that a significant amount of Fe 3 Mo 3 C phase (60–70 wt%) is present in ferromolybdenum molten droplets even though the raw materials were low in carbon. Chemical analysis and microstructural studies of the raw materials and the products showed that carbon is not present in sufficient quantities to produce this amount of Fe 3 Mo 3 C; therefore the structure of this phase should contain a high concentration of carbon vacancies. The deviation of Fe 3 Mo 3 C 1-x peaks in X-ray diffraction pattern compared to its standard reference peaks and a calculated 0.02% decrease in the lattice parameter of this phase are evidence of the presence of these carbon vacancies. - Highlights: • A new SHS method for direct fabrication of ferromolybdenum from MoS 2 is introduced. • Addition of CaO as an effective desulfurizing agent has been investigated. • Removing the oxidative roasting process, and sulfur gas emission

  17. A novel method for direct fabrication of ferromolybdenum using molybdenite via self-propagation high temperature synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Golmakani, M.H.; Vahdati khaki, J., E-mail: vahdati@um.ac.ir; Babakhani, A.

    2017-06-15

    Direct production of ferromolybdenum from molybdenite (MoS{sub 2}), in the presence of lime as a desulfurizing reagent using combustion synthesis process is investigated. Thermodynamic calculations and measurement of the adiabatic temperature of the reaction denoted that the process is in agreement with the Merzhanov criterion for self-sustaining processes. The experimental results indicated a relatively complete separation between the molten metal droplets and the co-existing slag. The slag and metal phases were characterized by X-ray diffraction, electron microscopy and wet chemical analysis techniques. It was found that sulfur is mainly distributed into the slag in the form of solid calcium sulfide (CaS). The Lack of calcium oxide in the slag indicated a complete desulfurization reaction between lime and the sulfur in molybdenum sulfide. Characterization of the molted metal revealed that only two phases namely Fe{sub 3}Mo{sub 3}C and Fe{sub 3}Mo exist in the melt. Mass balance calculations showed an Iron-molybdenum recovery greater than 85%. Analyses of the phases indicated that a significant amount of Fe{sub 3}Mo{sub 3}C phase (60–70 wt%) is present in ferromolybdenum molten droplets even though the raw materials were low in carbon. Chemical analysis and microstructural studies of the raw materials and the products showed that carbon is not present in sufficient quantities to produce this amount of Fe{sub 3}Mo{sub 3}C; therefore the structure of this phase should contain a high concentration of carbon vacancies. The deviation of Fe{sub 3}Mo{sub 3}C{sub 1-x} peaks in X-ray diffraction pattern compared to its standard reference peaks and a calculated 0.02% decrease in the lattice parameter of this phase are evidence of the presence of these carbon vacancies. - Highlights: • A new SHS method for direct fabrication of ferromolybdenum from MoS{sub 2} is introduced. • Addition of CaO as an effective desulfurizing agent has been investigated. • Removing the

  18. Multicomponent Synthesis of Isoindolinone Frameworks via RhIII -Catalysed in situ Directing Group-Assisted Tandem Oxidative Olefination/Michael Addition.

    Science.gov (United States)

    Wang, Liang; Liu, Xi; Liu, Jian-Biao; Shen, Jun; Chen, Qun; He, Ming-Yang

    2018-04-04

    A Rh III -catalysed three-component synthesis of isoindolinone frameworks via direct assembly of benzoyl chlorides, o-aminophenols and activated alkenes has been developed. The process involves in situ generation of o-aminophenol (OAP)-based bidentate directing group (DG), Rh III -catalysed tandem ortho C-H olefination and subsequent cyclization via aza-Michael addition. This protocol exhibits good chemoselectivity and functional group tolerance. Computational studies showed that the presence of hydroxyl group on the N-aryl ring could enhance the chemoselectivity of the reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Standard enthalpies of formation of some Lanthanide–Cobalt binary alloys by high temperature direct synthesis calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Meschel, S.V., E-mail: meschel@jfi.uchicago.edu [Illinois Institute of Technology, Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, IL (United States); University of Chicago, Gordon Center of Interactive Science, 929 E 57th Street, Chicago, IL 60637 (United States); Nash, P. [Illinois Institute of Technology, Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, IL (United States); Gao, Q.N.; Wang, J.C.; Du, Y. [Central South University, State Key Laboratory of Powder Metallurgy, Changsha, Hunan 410083 (China)

    2013-11-25

    Highlights: •Studied binary Lanthanide–Cobalt intermetallic alloys by high temperature calorimetry. •Determined the enthalpies of formation of 16 magnetostrictive alloys. •Compared the experimental measurements with theoretical predictions by two different models. -- Abstract: The standard enthalpies of formation of intermetallic compounds of some Lanthanide–Cobalt systems have been measured by high temperature direct synthesis calorimetry at 1373 ± 2 K. The following results in kJ/mol of atoms are reported: CeCo{sub 5}(−9.4 ± 3.3); Ce{sub 2}Co{sub 17}(−6.8 ± 3.2); PrCo{sub 5}(−10.5 ± 2.4); Pr{sub 2}Co{sub 17}(−6.8 ± 3.6); NdCo{sub 5}(−12.7 ± 2.6); Nd{sub 2}Co{sub 17}(−6.6 ± 2.7); SmCo{sub 5}(−12.2 ± 1.8); Sm{sub 2}Co{sub 17}(−7.2 ± 2.5); GdCo{sub 5}(−10.0 ± 2.4); Tb{sub 2}Co{sub 17}(−7.7 ± 2.9); Dy{sub 2}Co{sub 17}(−8.1 ± 2.9); HoCo{sub 3}(−17.5 ± 2.2); ErCo{sub 3}(−19.7 ± 3.3); TmCo{sub 3}(−22.9 ± 3.0); LuCo{sub 3}(−23.0 ± 2.6). The measurements are compared with values from the literature and with predicted values of the semi empirical model of Miedema and Coworkers. We also compare the measurements with predicted values by ab initio calculations. We will present a systematic picture of how the enthalpies of formation may be related to the atomic number of the Lanthanide element (LA). We will also compare the thermochemical behavior of the Fe, Co and Ni binary alloys with Lanthanide elements.

  20. Synthesis and application of luminescent single CdS quantum dot encapsulated silica nanoparticles directed for precision optical bioimaging

    Directory of Open Access Journals (Sweden)

    Veeranarayanan S

    2012-07-01

    Full Text Available Srivani Veeranarayanan, Aby Cheruvathoor Poulose, M Sheikh Mohamed, Yutaka Nagaoka, Seiki Iwai, Yuya Nakagame, Shosaku Kashiwada, Yasuhiko Yoshida, Toru Maekawa, D Sakthi KumarBio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, JapanAbstract: This paper presents the synthesis of aqueous cadmium sulfide (CdS quantum dots (QDs and silica-encapsulated CdS QDs by reverse microemulsion method and utilized as targeted bio-optical probes. We report the role of CdS as an efficient cell tag with fluorescence on par with previously documented cadmium telluride and cadmium selenide QDs, which have been considered to impart high levels of toxicity. In this study, the toxicity of bare QDs was efficiently quenched by encapsulating them in a biocompatible coat of silica. The toxicity profile and uptake of bare CdS QDs and silica-coated QDs, along with the CD31-labeled, silica-coated CdS QDs on human umbilical vein endothelial cells and glioma cells, were investigated. The effect of size, along with the time-dependent cellular uptake of the nanomaterials, has also been emphasized. Enhanced, high-specificity imaging toward endothelial cell lines in comparison with glioma cells was achieved with CD31 antibody-conjugated nanoparticles. The silica-coated nanomaterials exhibited excellent biocompatibility and greater photostability inside live cells, in addition to possessing an extended shelf life. In vivo biocompatibility and localization study of silica-coated CdS QDs in medaka fish embryos, following direct nanoparticle exposure for 24 hours, authenticated the nanomaterials' high potential for in vivo imaging, augmented with superior biocompatibility. As expected, CdS QD-treated embryos showed 100% mortality, whereas the silica-coated QD-treated embryos stayed viable and healthy throughout and after the experiments, devoid of any deformities. We provide highly cogent and convincing evidence for such

  1. C-H functionalization directed by transformable nitrogen heterocycles: synthesis of ortho-oxygenated arylnaphthalenes from arylphthalazines.

    Science.gov (United States)

    Rastogi, Shiva K; Medellin, Derek C; Kornienko, Alexander

    2014-01-21

    Two protocols for oxygenation of aromatic C-H bonds ortho-positioned to the phthalazine ring were developed. The transannulation of the phthalazine ring to a naphthalene moiety by an Inverse Electron Demand Diels-Alder (IEDDA) reaction led to the synthesis of naphtho[2,1-c]chromenes, 1-(ortho-hydroxyaryl)naphthalenes and 6,7-dihydrobenzo[b]naphtho[1,2-d]oxepine. This new strategy based on the utilization of transformable nitrogen heterocycles in C-H functionalization chemistry can be potentially applicable to the synthesis of a broad range of biaryl compounds.

  2. New apparatus for direct counting of β particles from two-dimensional gels and an application to changes in protein synthesis due to cell density

    International Nuclear Information System (INIS)

    Anderson, H.L.; Puck, T.T.; Shera, E.B.

    1987-07-01

    A new method is described for scanning two-dimensional gels by the direct counting of β particles instead of autoradiography. The methodology is described; results are compared with autoradiographic results; and data are presented demonstrating changed patterns of protein synthesis accompanying changes in cell density. The method is rapid and permits identification of differences in protein abundance of approximately 10% for a substantial fraction of the more prominent proteins. A modulation effect of more than 5 standard deviations, accompanying contact inhibition of cell growth, is shown to occur for an appreciable number of these proteins. The method promises to be applicable to a variety of biochemical and genetic experiments designed to delineate changes in protein synthesis accompanying changes in genome, molecular environment, history, and state of differentiation of the cell populations studied. 13 refs., 8 figs., 4 tabs

  3. Base-mediated generation of ketenimines from ynamides: direct access to azetidinimines by an imino staudinger synthesis

    OpenAIRE

    Romero, Eugénie; Minard, Corinne; Benchekroun, Mohamed; Ventre, Sandrine; Retailleau, Pascal; Dodd, Robert H; Cariou, Kevin

    2017-01-01

    Ynamides were used as precursors for the in situ generation of highly reactive ketenimines which could be trapped with imines in a [2+2] cycloaddition. This imino Staudinger synthesis led to a variety of imino-analogs of β-lactams, namely azetidinimines (20 examples), that could be further functionalized through a broad range of transformations.

  4. Direct observation of the effects of cellulose synthesis inhibitors using live cell imaging of Cellulose Synthase (CESA) in Physcomitrella patens.

    Science.gov (United States)

    Tran, Mai L; McCarthy, Thomas W; Sun, Hao; Wu, Shu-Zon; Norris, Joanna H; Bezanilla, Magdalena; Vidali, Luis; Anderson, Charles T; Roberts, Alison W

    2018-01-15

    Results from live cell imaging of fluorescently tagged Cellulose Synthase (CESA) proteins in Cellulose Synthesis Complexes (CSCs) have enhanced our understanding of cellulose biosynthesis, including the mechanisms of action of cellulose synthesis inhibitors. However, this method has been applied only in Arabidopsis thaliana and Brachypodium distachyon thus far. Results from freeze fracture electron microscopy of protonemal filaments of the moss Funaria hygrometrica indicate that a cellulose synthesis inhibitor, 2,6-dichlorobenzonitrile (DCB), fragments CSCs and clears them from the plasma membrane. This differs from Arabidopsis, in which DCB causes CSC accumulation in the plasma membrane and a different cellulose synthesis inhibitor, isoxaben, clears CSCs from the plasma membrane. In this study, live cell imaging of the moss Physcomitrella patens indicated that DCB and isoxaben have little effect on protonemal growth rates, and that only DCB causes tip rupture. Live cell imaging of mEGFP-PpCESA5 and mEGFP-PpCESA8 showed that DCB and isoxaben substantially reduced CSC movement, but had no measureable effect on CSC density in the plasma membrane. These results suggest that DCB and isoxaben have similar effects on CSC movement in P. patens and Arabidopsis, but have different effects on CSC intracellular trafficking, cell growth and cell integrity in these divergent plant lineages.

  5. Synthesis and characterization of (zinc-layered hydroxide-hippurate) nano hybrid by direct reaction of zinc oxide under aqueous environment

    International Nuclear Information System (INIS)

    Mohd Zobir Hussein; Samer Hasan Al Ali; Zulkarnain Zainal

    2011-01-01

    A new method for synthesis of hippurate nano hybrid has been developed. In this method, zinc oxide was added directly into aqueous solution of hippurate anions (A - ). The resulting hippurate nano hybrid (HAN) is composed of the organic moieties sandwiched between zinc layered hydroxide (ZLH) inorganic interlayers. HAN synthesized using 0.2 M hippuric acid showed the best crystallinity compared to other samples synthesized in this work. X-ray powder diffraction shows the basal spacing of the HAN was 21.3 Angstrom indicating that the monolayer of A - was arranged vertically to the ZLH interlayers. (author)

  6. Combining two-directional synthesis and tandem reactions, part 11: second generation syntheses of (±-hippodamine and (±-epi-hippodamine

    Directory of Open Access Journals (Sweden)

    Alcaraz Marie-Lyne

    2008-01-01

    Full Text Available Abstract Background Hippodamine is a volatile defence alkaloid isolated from ladybird beetles which holds potential as an agrochemical agent and was the subject of a synthesis by our group in 2005. Results Two enhancements to our previous syntheses of (±-hippodamine and (±-epi-hippodamine are presented which are able to shorten the syntheses by up to two steps. Conclusion Key advances include a two-directional homologation by cross metathesis and a new tandem reductive amination/double intramolecular Michael addition which generates 6 new bonds, 2 stereogenic centres and two rings, giving a single diastereomer in 74% yield.

  7. Thiocarbamate-Directed Tandem Olefination-Intramolecular Sulfuration of Two Ortho C-H Bonds: Application to Synthesis of a COX-2 Inhibitor.

    Science.gov (United States)

    Li, Wendong; Zhao, Yingwei; Mai, Shaoyu; Song, Qiuling

    2018-02-16

    A palladium-catalyzed dual ortho C-H bond activation of aryl thiocarbamates is developed. This tandem reaction initiates by thiocarbamate-directed ortho C-H palladation, which leads to favorable olefin insertion rather than reductive elimination. The oxidative Heck reaction followed by another C-H activation and sulfuration affords the dual-functionalized products. This reaction provides a concise route to the S,O,C multisubstituted benzene skeleton which could be successfully applied for the synthesis of a COX-2 inhibitor.

  8. The Role of Template Structure and Synergism between Inorganic and Organic Structure Directing Agents in the Synthesis of UTL Zeolite

    Czech Academy of Sciences Publication Activity Database

    Shvets, O. V.; Kasian, N.; Zukal, Arnošt; Pinkas, Jiří; Čejka, Jiří

    2010-01-01

    Roč. 22, č. 11 (2010), s. 3482-3495 ISSN 0897-4756 R&D Projects: GA ČR GA203/08/0604; GA ČR GA104/07/0383 Institutional research plan: CEZ:AV0Z40400503 Keywords : UTL zeolite * synthesis * zeolite molecular sietes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.400, year: 2010

  9. Base-Mediated Generation of Ketenimines from Ynamides: Direct Access to Azetidinimines by an Imino-Staudinger Synthesis.

    Science.gov (United States)

    Romero, Eugénie; Minard, Corinne; Benchekroun, Mohamed; Ventre, Sandrine; Retailleau, Pascal; Dodd, Robert H; Cariou, Kevin

    2017-09-21

    Ynamides were used as precursors for the in situ generation of highly reactive ketenimines that could be trapped with imines in a [2+2] cycloaddition. This imino-Staudinger synthesis led to a variety of imino-analogs of β-lactams, namely azetidinimines (20 examples), that could be further functionalized through a broad range of transformations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Graphene oxide directed in-situ synthesis of Prussian blue for non-enzymatic sensing of hydrogen peroxide released from macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Weiwei; Zhu, Qionghua; Gao, Fei; Gao, Feng [College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China); Huang, Jiafu; Pan, Yutian [College of Biological Science and Technology, Minnan Normal University, Zhangzhou 363000 (China); Wang, Qingxiang, E-mail: axiang236@126.com [College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China)

    2017-03-01

    A novel electrochemical non-enzymatic hydrogen peroxide (H{sub 2}O{sub 2}) sensor has been developed based on Prussian blue (PB) and electrochemically reduced graphene oxide (ERGO). The GO was covalently modified on glassy carbon electrode (GCE), and utilized as a directing platform for in-situ synthesis of electroactive PB. Then the GO was electrochemically treated to reduction form to improve the effective surface area and electroactivity of the sensing interface. The fabrication process was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). The results showed that the rich oxygen containing groups play a crucial role for the successful synthesis of PB, and the obtained PB layer on the covalently immobilized GO has good stability. Electrochemical sensing assay showed that the modified electrode had tremendous electrocatalytic property for the reduction of H{sub 2}O{sub 2}. The steady-state current response increased linearly with H{sub 2}O{sub 2} concentrations from 5 μM to 1 mM with a fast response time (less than 3 s). The detection limit was estimated to be 0.8 μM. When the sensor was applied for determination of H{sub 2}O{sub 2} released from living cells of macrophages, satisfactory results were achieved. - Highlights: • Covalent method was applied for immobilization of GO on glassy carbon electrode. • GO directed in-situ synthesis of electroactive PB. • PB-ERGO composite shows high electrocatalytic activity toward H{sub 2}O{sub 2}. • The modified biosensor is capable of detecting H{sub 2}O{sub 2} released from living macrophages.

  11. Self-assembly in poly(dimethylsiloxane)-poly(ethylene oxide) block copolymer template directed synthesis of Linde type A zeolite.

    Science.gov (United States)

    Bonaccorsi, Lucio; Calandra, Pietro; Kiselev, Mikhail A; Amenitsch, Heinz; Proverbio, Edoardo; Lombardo, Domenico

    2013-06-11

    We describe the hydrothermal synthesis of zeolite Linde type A (LTA) submicrometer particles using a water-soluble amphiphilic block copolymer of poly(dimethylsiloxane)-b-poly(ethylene oxide) as a template. The formation and growth of the intermediate aggregates in the presence of the diblock copolymer have been monitored by small-angle X-ray scattering (SAXS) above the critical micellar concentration at a constant temperature of 45 °C. The early stage of the growth process was characterized by the incorporation of the zeolite LTA components into the surface of the block copolymer micellar aggregates with the formation of primary units of 4.8 nm with a core-shell morphology. During this period, restricted to an initial time of 1-3 h, the core-shell structure of the particles does not show significant changes, while a subsequent aggregation process among these primary units takes place. A shape transition of the SAXS profile at the late stage of the synthesis has been connected with an aggregation process among primary units that leads to the formation of large clusters with fractal characteristics. The formation of large supramolecular assemblies was finally verified by scanning electron microscopy, which evidenced the presence of submicrometer aggregates with size ranging between 100 and 300 nm, while X-ray diffraction confirmed the presence of crystalline zeolite LTA. The main finding of our results gives novel insight into the mechanism of formation of organic-inorganic mesoporous materials based on the use of a soft interacting nanotemplate as well as stimulates the investigation of alternative protocols for the synthesis of novel hybrid materials with new characteristics and properties.

  12. Direct asymmetric vinylogous aldol reaction of allyl ketones with isatins: Divergent synthesis of 3-hydroxy-2-oxindole derivatives

    KAUST Repository

    Zhu, Bo

    2013-05-03

    6 in 1: The highly enantioselective title reaction is mediated by a bifunctional catalyst and leads to E-configured vinylogous aldol products (see scheme). These products are used as common intermediates in the synthesis of six biologically active 3-hydroxy-2-oxindole derivatives (e.g., CPC-1). Computational studies indicated that the observed stereoselectivity is a result of favorable secondary π-π* and H-bonding interactions in the transition state. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Rhodium enalcarbenoids: direct synthesis of indoles by rhodium(II)-catalyzed [4+2] benzannulation of pyrroles.

    Science.gov (United States)

    Dawande, Sudam Ganpat; Kanchupalli, Vinaykumar; Kalepu, Jagadeesh; Chennamsetti, Haribabu; Lad, Bapurao Sudam; Katukojvala, Sreenivas

    2014-04-14

    Disclosed herein is the design of an unprecedented electrophilic rhodium enalcarbenoid which results from rhodium(II)-catalyzed decomposition of a new class of enaldiazo compounds. The synthetic utility of these enalcarbenoids has been successfully demonstrated in the first transition-metal-catalyzed [4+2] benzannulation of pyrroles, thus leading to substituted indoles. The new benzannulation has been applied to the efficient synthesis of the natural product leiocarpone as well as a potent adipocyte fatty-acid binding protein inhibitor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Direct synthesis of pure single-crystalline Magnéli phase Ti8O15 nanowires as conductive carbon-free materials for electrocatalysis

    Science.gov (United States)

    He, Chunyong; Chang, Shiyong; Huang, Xiangdong; Wang, Qingquan; Mei, Ao; Shen, Pei Kang

    2015-02-01

    The Magnéli phase Ti8O15 nanowires (NWs) have been grown directly on a Ti substrate by a facile one-step evaporation-deposition synthesis method under a hydrogen atmosphere. The Ti8O15 NWs exhibit an outstanding electrical conductivity at room temperature. The electrical conductivity of a single Ti8O15 nanowire is 20.6 S cm-1 at 300 K. Theoretical calculations manifest that the existence of a large number of oxygen vacancies changes the band structure, resulting in the reduction of the electronic resistance. The Magnéli phase Ti8O15 nanowires have been used as conductive carbon-free supports to load Pt nanoparticles for direct methanol oxidation reaction (MOR). The Pt/Ti8O15 NWs show an enhanced activity and extremely high durability compared with commercial Pt/C catalysts.The Magnéli phase Ti8O15 nanowires (NWs) have been grown directly on a Ti substrate by a facile one-step evaporation-deposition synthesis method under a hydrogen atmosphere. The Ti8O15 NWs exhibit an outstanding electrical conductivity at room temperature. The electrical conductivity of a single Ti8O15 nanowire is 20.6 S cm-1 at 300 K. Theoretical calculations manifest that the existence of a large number of oxygen vacancies changes the band structure, resulting in the reduction of the electronic resistance. The Magnéli phase Ti8O15 nanowires have been used as conductive carbon-free supports to load Pt nanoparticles for direct methanol oxidation reaction (MOR). The Pt/Ti8O15 NWs show an enhanced activity and extremely high durability compared with commercial Pt/C catalysts. Electronic supplementary information (ESI) available: Additional data for the characterization and experimental details see DOI: 10.1039/c4nr05806b

  15. Direct synthesis of mesostructured carbon nanofibers decorated with silver-nanoparticles as a multifunctional membrane for water treatment

    International Nuclear Information System (INIS)

    Taha, Ahmed Aboueloyoun

    2015-01-01

    One-dimensional (1D) porous carbon nanofibers (CNFs) decorated by silver (Ag) nanoparticles (NPs) were prepared using a one-pot/self-template synthesis strategy by combining electrospinning and carbonization methods. The characterization results revealed that AgNPs were homogenously distributed along the CNFs and possessed a relatively uniform nano-size of about 12 nm. The novel membrane distinctively displayed enhanced photocatalytic activity under visible-light irradiation. The membrane exhibited excellent dye degradation and bacteria disinfection in batch experiments. The high photocatalytic activity can be attributed to the highly accessible surface areas, good light absorption capability, and high separation efficiency of photogenerated electron–hole pairs. The as-prepared membranes can be easily recycled because of their 1D property. (paper)

  16. Direct synthesis of multi-layer graphene film on various substrates by microwave plasma at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Jae [Plasma Technology Research Center, 814-2 Osickdo-dong (SGFEZ), Gunsan, Jeollabuk-do 573-540 (Korea, Republic of); Ahn, Byung Wook; Kim, Tae Yoo; Lee, Jung Woo [School of Advanced Materials Science and Engineering, Advanced Materials and Process Research Center (AMPRC), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Jung, Yong Ho; Choi, Yong Sup [Plasma Technology Research Center, 814-2 Osickdo-dong (SGFEZ), Gunsan, Jeollabuk-do 573-540 (Korea, Republic of); Song, Young Il, E-mail: physein01@skku.edu [School of Advanced Materials Science and Engineering, Advanced Materials and Process Research Center (AMPRC), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Suh, Su Jeong, E-mail: suhsj@skku.edu [School of Advanced Materials Science and Engineering, Advanced Materials and Process Research Center (AMPRC), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-07-31

    We introduce a possible route for vertically standing multi-layer graphene films (VMGs) on various substrates at low temperature by electron cyclone resonance microwave plasma. VMG films on various substrates, including copper sheet, glass and silicon oxide wafer, were analyzed by studying their structural, electrical, and optical properties. The density and temperature of plasma were measured using Cylindrical Langmuir probe analysis. The morphologies and microstructures of multi-layer graphene were characterized using field emission scattering electron microscope, high resolution transmission electron microscope, and Raman spectra measurement. The VMGs on different substrates at the same experimental conditions synthesized the wrinkled VMGs with different heights. In addition, the transmittance and electrical resistance were measured using ultra-violet visible near-infrared spectroscopy and 4 probe point surface resistance measurement. The VMGs on glass substrate obtained a transmittance of 68.8% and sheet resistance of 796 Ω/square, whereas the VMGs on SiO{sub 2} wafer substrate showed good sheet resistance of 395 Ω/square and 278 Ω/square. The results presented herein demonstrate a simple method of synthesizing of VMGs on various substrates at low temperature for mass production, in which the VMGs can be used in a wide range of application fields for energy storage, catalysis, and field emission due to their unique orientation. - Highlights: • We present for synthesis method of graphene at low temperature on various substrates. • We grow the graphene films at low temperature under of 432 °C. • Structural information of graphene films were studied upon Raman spectroscopy. • Inter-layer spacing of vertically standing graphene relies on synthesis time. • We measured a transmittance and a resistance for graphene films on difference substrate.

  17. Low-temperature metal-oxide thin-film transistors formed by directly photopatternable and combustible solution synthesis.

    Science.gov (United States)

    Rim, You Seung; Lim, Hyun Soo; Kim, Hyun Jae

    2013-05-01

    We investigated the formation of ultraviolet (UV)-assisted directly patternable solution-processed oxide semiconductor films and successfully fabricated thin-film transistors (TFTs) based on these films. An InGaZnO (IGZO) solution that was modified chemically with benzoylacetone (BzAc), whose chelate rings decomposed via a π-π* transition as result of UV irradiation, was used for the direct patterning. A TFT was fabricated using the directly patterned IGZO film, and it had better electrical characteristics than those of conventional photoresist (PR)-patterned TFTs. In addition, the nitric acid (HNO3) and acetylacetone (AcAc) modified In2O3 (NAc-In2O3) solution exhibited both strong UV absorption and high exothermic reaction. This method not only resulted in the formation of a low-energy path because of the combustion of the chemically modified metal-oxide solution but also allowed for photoreaction-induced direct patterning at low temperatures.

  18. Facile solvothermal synthesis of highly active and robust Pd1.87Cu0.11Sn electrocatalyst towards direct ethanol fuel cell applications

    Science.gov (United States)

    Jana, Rajkumar; Dhiman, Shikha; Peter, Sebastian C.

    2016-08-01

    Ordered intermetallic Pd1.87Cu0.11Sn ternary electrocatalyst has been synthesized by sodium borohydride reduction of precursor salts Pd(acac)2, CuCl2.2H2O and SnCl2 using one-pot solvothermal synthesis method at 220 °C with a reaction time of 24 h. To the best of our knowledge, here for the first time we report surfactant free synthesis of a novel ordered intermetallic ternary Pd1.87Cu0.11Sn nanoparticles. The ordered structure of the catalyst has been confirmed by powder x-ray diffraction, transmission electron microscopy (TEM). Composition and morphology of the nanoparticles have been confirmed through field emission scanning electron microscopy, energy-dispersive spectrometry and TEM. The electrocatalytic activity and stability of the ternary electrocatalyst towards ethanol oxidation in alkaline medium was investigated by cyclic voltammetry and chronoamperometry techniques. The catalyst is proved to be highly efficient and stable upto 500th cycle and even better than commercially available Pd/C (20 wt%) electrocatalysts. The specific and mass activity of the as synthesized ternary catalyst are found to be ∼4.76 and ∼2.9 times better than that of commercial Pd/C. The enhanced activity and stability of the ordered ternary Pd1.87Cu0.11Sn catalyst can make it as a promising candidate for the alkaline direct ethanol fuel cell application.

  19. The Brønsted Acid-Catalyzed, Enantioselective Aza-Diels-Alder Reaction for the Direct Synthesis of Chiral Piperidones.

    Science.gov (United States)

    Weilbeer, Claudia; Sickert, Marcel; Naumov, Sergei; Schneider, Christoph

    2017-01-12

    We disclose herein the first enantioselective aza-Diels-Alder reaction of β-alkyl-substituted vinylketene silyl-O,O-acetals and imines furnishing a broad range of optically highly enriched 4-alkyl-substituted 2-piperidones. As a catalyst for this one-pot reaction we employed a chiral phosphoric acid which effects a vinylogous Mannich reaction directly followed by ring-closure to the lactam. Subsequent fully diastereoselective transformations including hydrogenation, enolate alkylation, and lactam alkylation/reduction processes converted the cycloadducts into various highly substituted piperidines of great utility for the synthesis of natural products and medicinally active compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis and evaluation of [/sup 125/I]iodothienoperidol as a potential receptor site directed brain imaging agent

    International Nuclear Information System (INIS)

    Hanson, R.N.; Franke, L.A.; Astik, R.R.

    1985-01-01

    This study was undertaken to design and evaluate radioligands for the noninvasive quantification of dopamine receptors in the brain. The approach involved the preparation of the iodothienyl analog I of haloperidol II, a well characterized dopamine antagonist which has been labeled with F-18 and C-11. The synthesis involved the addition of 5-trimethylstannyl-2-thienyllithium so the piperidone intermediate. The product was characterized by spectroscopic and analytic methods and radioiodinated via electrophilic iododestannylation to yield the product in 75-85% isolated yield. The tissue distribution of the radiochemical was evaluated in rats as a function of time, 0.25-2 hrs, and in the presence or absence of haloperidol (1 mg/kg) to measure receptor binding. The results indicated that the 0.25 h uptake in the brain was high (2.2% ID) and that the washout of the activity was relatively slow, 1.3% ID present at 2 hr. The Br/B1 values remained relatively constant over that time interval (9.3-12.1:1). Coadministration of 1 mg/kg haloperidol markedly reduced the uptake in the brain at 0.25 and 2 hr (55% and 62%) with much less of an effect on the nontarget tissues. The study indicates that the authors have prepared a radiotracer, labeled with iodine, that demonstrates both good brain uptake and selectivity as well as a specific binding site component

  1. Surfactant-directed synthesis of mesoporous films made single-step by a tandem photosol-gel/photocalcination route

    Energy Technology Data Exchange (ETDEWEB)

    De Paz-Simon, Héloïse; Chemtob, Abraham, E-mail: abraham.chemtob@uha.fr; Croutxé-Barghorn, Céline [Laboratory of Macromolecular Photochemistry and Engineering, ENSCMu, University of Haute-Alsace, 3 bis rue Alfred Werner, 68093 Mulhouse Cedex (France); Rigolet, Séverinne; Michelin, Laure; Vidal, Loïc; Lebeau, Bénédicte [Institut de Science des Matériaux de Mulhouse, UMR-CNRS 7361, University of Haute-Alsace, 3 rue Alfred Werner, 68093 Mulhouse Cedex (France)

    2014-11-01

    In view of their technological impact in materials chemistry, a simplified and more efficient synthetic route to mesoporous films is highly sought. We report, herein, a smart UV-mediated approach coupling in a one-stage process sol-gel photopolymerization and photoinduced template decomposition/ablation to making mesoporous silica films. Performed at room temperature with a solvent-free solution of silicate precursor and amphiphilic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer, the synthesis relies on photoacid generation to induce the fast formation (≈10 min) of mesostructured silica/surfactant domains. Continuation of UV exposure for three additional hours enables subsequent and complete photodegradation of the polyether copolymer, resulting in ordered or disordered mesoporous silica film. One of the most attractive features is that the one-step procedure relies on a continuous illumination provided by the same conventional medium-pressure Hg-Xe arc lamp equipped with a 254 nm reflector to enhance the emission of energetic photons <300 nm. In addition to X-ray diffraction and transmission electron microscopy, time-resolved Fourier transform infrared spectroscopy has proved to be a powerful in situ technique to probe the different chemical transformations accompanying irradiation. Photocalcination strengthens the inorganic network, while allowing to preserve a higher fraction of residual silanol groups compared with thermal calcination. A polyether chain degradation mechanism based on oxygen reactive species-mediated photo-oxidation is proposed.

  2. Direct synthesis of graphitic mesoporous carbon from green phenolic resins exposed to subsequent UV and IR laser irradiations

    Science.gov (United States)

    Sopronyi, Mihai; Sima, Felix; Vaulot, Cyril; Delmotte, Luc; Bahouka, Armel; Matei Ghimbeu, Camelia

    2016-01-01

    The design of mesoporous carbon materials with controlled textural and structural features by rapid, cost-effective and eco-friendly means is highly demanded for many fields of applications. We report herein on the fast and tailored synthesis of mesoporous carbon by UV and IR laser assisted irradiations of a solution consisting of green phenolic resins and surfactant agent. By tailoring the UV laser parameters such as energy, pulse repetition rate or exposure time carbon materials with different pore size, architecture and wall thickness were obtained. By increasing irradiation dose, the mesopore size diminishes in the favor of wall thickness while the morphology shifts from worm-like to an ordered hexagonal one. This was related to the intensification of phenolic resin cross-linking which induces the reduction of H-bonding with the template as highlighted by 13C and 1H NMR. In addition, mesoporous carbon with graphitic structure was obtained by IR laser irradiation at room temperature and in very short time periods compared to the classical long thermal treatment at very high temperatures. Therefore, the carbon texture and structure can be tuned only by playing with laser parameters, without extra chemicals, as usually required. PMID:28000781

  3. Direct dynamic synthesis of nanodispersed phases of titanium oxides upon sputtering of electrodischarge titanium plasma into an air atmosphere

    Science.gov (United States)

    Sivkov, A. A.; Gerasimov, D. Yu.; Nikitin, D. S.

    2017-01-01

    Experimental investigations of the possibility of directly synthesizing nanodispersed crystalline phases of titanium dioxides with rutile and anatase structures in a hypervelocity jet of electroerosion plasma generated by a coaxial magnetoplasma accelerator with titanium electrodes are presented. A powder product containing nanosized polymorphic phases of titanium dioxide with a spherical shape of particles has been manufactured.

  4. Dual platinum and pyrrolidine catalysis in the direct alkylation of allylic alcohols: selective synthesis of monoallylation products.

    Science.gov (United States)

    Shibuya, Ryozo; Lin, Lu; Nakahara, Yasuhito; Mashima, Kazushi; Ohshima, Takashi

    2014-04-22

    A dual platinum- and pyrrolidine-catalyzed direct allylic alkylation of allylic alcohols with various active methylene compounds to produce products with high monoallylation selectivity was developed. The use of pyrrolidine and acetic acid was essential, not only for preventing undesirable side reactions, but also for obtaining high monoallylation selectivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Direct hydrothermal synthesis of iron-containing mesoporous silica SBA-15 : potential as a support for gold nanoparticles

    NARCIS (Netherlands)

    Li, Y.; Guan, Y.; Santen, van R.A.; Kooyman, P.J.; Dugulan, A.I.; Li, C.; Hensen, E.J.M.

    2009-01-01

    The preparation of mesoporous silica SBA-15 with high iron loadings (14-90 wt % Fe2O3) as a suitable support for gold nanoparticles to be used in CO oxidation catalysis has been investigated. The support materials were prepared by a direct hydrothermal two-step pH adjusting method which consisted of

  6. Direct synthesis of platelet graphitic-nanofibres as a highly porous counter-electrode in dye-sensitized solar cells.

    Science.gov (United States)

    Hsieh, Chien-Kuo; Tsai, Ming-Chi; Yen, Ming-Yu; Su, Ching-Yuan; Chen, Kuei-Fu; Ma, Chen-Chi M; Chen, Fu-Rong; Tsai, Chuen-Horng

    2012-03-28

    We synthesized platelet graphitic-nanofibres (GNFs) directly onto FTO glass and applied this forest of platelet GNFs as a highly porous structural counter-electrode in dye-sensitized solar cells (DSSCs). We investigated the electrochemical properties of counter-electrodes made from the highly porous structural GNFs and the photoconversion performance of the cells made with these electrodes.

  7. Direct Synthesis of Fe3C-Functionalized Graphene by High Temperature Autoclave Pyrolysis for Oxygen Reduction

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei

    2014-01-01

    We present a novel approach to direct fabrication of few-layer graphene sheets with encapsulated Fe3C nanoparticles from pyrolysis of volatile non-graphitic precursors without any substrate. This one-step autoclave approach is facile and potentially scalable for production. Tested as an electroca...

  8. Facile synthesis of Ni-decorated multi-layers graphene sheets as effective anode for direct urea fuel cells

    Directory of Open Access Journals (Sweden)

    Ahmed Yousef

    2017-09-01

    Full Text Available A large amount of urea-containing wastewater is produced as a by-product in the fertilizer industry, requiring costly and complicated treatment strategies. Considering that urea can be exploited as fuel, this wastewater can be treated and simultaneously exploited as a renewable energy source in a direct urea fuel cell. In this study, multi-layers graphene/nickel nanocomposites were prepared by a one-step green method for use as an anode in the direct urea fuel cell. Typically, commercial sugar was mixed with nickel(II acetate tetrahydrate in distilled water and then calcined at 800 °C for 1 h. Raman spectroscopy, X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM and energy dispersive spectroscopy (EDS were employed to characterize the final product. The results confirmed the formation of multi-layers graphene sheets decorated by nickel nanoparticles. To investigate the influence of metal nanoparticles content, samples were prepared using different amounts of the metal precursor; nickel acetate content was changed from 0 to 5 wt.%. Investigation of the electrochemical characterizations indicated that the sample prepared using the original solution with 3 wt.% nickel acetate had the best current density, 81.65 mA/cm2 in a 0.33 M urea solution (in 1 M KOH at an applied voltage 0.9 V vs Ag/AgCl. In a passive direct urea fuel cell based on the optimal composition, the observed maximum power density was 4.06 × 10−3 mW/cm2 with an open circuit voltage of 0.197 V at room temperature in an actual electric circuit. Overall, this study introduces a cheap and beneficial methodology to prepare effective anode materials for direct urea fuel cells.

  9. Synthesis of the european national requirements and practices for recycling in HMA and WMA (DIRECT_MAT PROJECT)

    OpenAIRE

    IPAVEC , Aleksander; Marsac , Paul; Mollenhauer , Konrad

    2012-01-01

    The purpose of the 2009-2011 European project DIsmantling and RECycling Techniques for road MATerials is to contribute to the waste minimization in road maintenance and construction by sharing and disseminating, at a European level, the national know-how and sustainable practices regarding the dismantling of the pavements and the recycling of the reclaimed materials. In the framework of the DIRECT_MAT subproject Asphalt materials, the present paper gives a broad overview of the European polic...

  10. Hydrothermal synthesis of size-controllable Yttrium Orthovanadate (YVO4) nanoparticles and its application in photocatalytic degradation of direct blue dye

    International Nuclear Information System (INIS)

    Mohamed, R.M.; Harraz, F.A.; Mkhalid, I.A.

    2012-01-01

    Graphical abstract: XRD patterns of YVO 4 nanopowders prepared at different hydrothermal times; where Y 1 = 4 h, Y 2 = 8 h, Y 3 = 12 h and Y 4 = 24 h. Highlights: ► Size control of Yttrium Orthovanadate. ► Hydrothermal synthesis. ► Removal of direct blue dye. - Abstract: Sized-controlled YVO 4 nanoparticles have been synthesized by a simple hydrothermal method by changing hydrothermal time from 4 to 24 h. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area (Brunauer–Emmett–Teller (BET)), and ultraviolet–visible spectroscopy (UV–vis) measurements. The results showed that the size of as-synthesized YVO 4 nanoparticles was in the range of 11–40 nm and was extremely dependent on the hydrothermal time. Photocatalytic measurement showed that the YVO 4 nanoparticles with particle size of about 11 nm (prepared by 4 h hydrothermal time) possess superior photocatalytic properties in the decolorization of direct blue dye. Due to simple preparation, high photocatalytic oxidation of direct blue dye and low cost, the YVO 4 photocatalyst is a potential candidate for pollutants removal and will find wide application in the coming future in photocatalytic oxidation processes. The overall kinetics of photodegradation of direct blue dye using YVO 4 nanopowders photocatalyst was found to be of first order. The photocatalyst could be easily removed from the reaction mixture and its recyclability with no loss of activity was possible for six times. The catalytic performance was found to decrease by 5% after run number six.

  11. Hydrothermal synthesis of size-controllable Yttrium Orthovanadate (YVO{sub 4}) nanoparticles and its application in photocatalytic degradation of direct blue dye

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, R.M., E-mail: redama123@yahoo.com [Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Advanced Materials Department, Central Metallurgical R and D Institute, CMRDI, P.O. Box 87, Helwan, Cairo 11421 (Egypt); Harraz, F.A. [Advanced Materials Department, Central Metallurgical R and D Institute, CMRDI, P.O. Box 87, Helwan, Cairo 11421 (Egypt); Mkhalid, I.A. [Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2012-08-15

    Graphical abstract: XRD patterns of YVO{sub 4} nanopowders prepared at different hydrothermal times; where Y{sub 1} = 4 h, Y{sub 2} = 8 h, Y{sub 3} = 12 h and Y{sub 4} = 24 h. Highlights: Black-Right-Pointing-Pointer Size control of Yttrium Orthovanadate. Black-Right-Pointing-Pointer Hydrothermal synthesis. Black-Right-Pointing-Pointer Removal of direct blue dye. - Abstract: Sized-controlled YVO{sub 4} nanoparticles have been synthesized by a simple hydrothermal method by changing hydrothermal time from 4 to 24 h. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area (Brunauer-Emmett-Teller (BET)), and ultraviolet-visible spectroscopy (UV-vis) measurements. The results showed that the size of as-synthesized YVO{sub 4} nanoparticles was in the range of 11-40 nm and was extremely dependent on the hydrothermal time. Photocatalytic measurement showed that the YVO{sub 4} nanoparticles with particle size of about 11 nm (prepared by 4 h hydrothermal time) possess superior photocatalytic properties in the decolorization of direct blue dye. Due to simple preparation, high photocatalytic oxidation of direct blue dye and low cost, the YVO{sub 4} photocatalyst is a potential candidate for pollutants removal and will find wide application in the coming future in photocatalytic oxidation processes. The overall kinetics of photodegradation of direct blue dye using YVO{sub 4} nanopowders photocatalyst was found to be of first order. The photocatalyst could be easily removed from the reaction mixture and its recyclability with no loss of activity was possible for six times. The catalytic performance was found to decrease by 5% after run number six.

  12. Synthesis and Characterization of Titanium Supported on High Order Nanoporous Silica and Application for Direct Oxidation of Benzene to Phenol

    OpenAIRE

    Alireza Badiei; Javad Gholami; Yeganeh Khaniani

    2009-01-01

    Direct oxidation of benzene to phenol in liquid phase by H2O2 peroxide was examined over Ti/ LUS-1 catalyst in methanol and acetic acid as solvents. The maximum yield and selectivity of the phenol produced was obtained in the presence of acetic acid. It can be attributed to the stabilization of H2O2 as peroxy acetic acid species in the radical mechanism for this reaction. Acetic acid interacts with hydrogen peroxide over Ti/LUS-1 and produces acetoxy radicals.

  13. Synthesis and Characterization of Titanium Supported on High Order Nanoporous Silica and Application for Direct Oxidation of Benzene to Phenol

    Directory of Open Access Journals (Sweden)

    Alireza Badiei

    2009-01-01

    Full Text Available Direct oxidation of benzene to phenol in liquid phase by H2O2 peroxide was examined over Ti/ LUS-1 catalyst in methanol and acetic acid as solvents. The maximum yield and selectivity of the phenol produced was obtained in the presence of acetic acid. It can be attributed to the stabilization of H2O2 as peroxy acetic acid species in the radical mechanism for this reaction. Acetic acid interacts with hydrogen peroxide over Ti/LUS-1 and produces acetoxy radicals.

  14. Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in Escherichia coli.

    Science.gov (United States)

    Fenton, Andrew K; Gerdes, Kenn

    2013-07-03

    How bacteria coordinate cell growth with division is not well understood. Bacterial cell elongation is controlled by actin-MreB while cell division is governed by tubulin-FtsZ. A ring-like structure containing FtsZ (the Z ring) at mid-cell attracts other cell division proteins to form the divisome, an essential protein assembly required for septum synthesis and cell separation. The Z ring exists at mid-cell during a major part of the cell cycle without contracting. Here, we show that MreB and FtsZ of Escherichia coli interact directly and that this interaction is required for Z ring contraction. We further show that the MreB-FtsZ interaction is required for transfer of cell-wall biosynthetic enzymes from the lateral to the mature divisome, allowing cells to synthesise the septum. Our observations show that bacterial cell division is coupled to cell elongation via a direct and essential interaction between FtsZ and MreB.

  15. Beating Bias in the Directed Evolution of Proteins: Combining High-Fidelity on-Chip Solid-Phase Gene Synthesis with Efficient Gene Assembly for Combinatorial Library Construction.

    Science.gov (United States)

    Li, Aitao; Acevedo-Rocha, Carlos G; Sun, Zhoutong; Cox, Tony; Xu, Jia Lucy; Reetz, Manfred T

    2018-02-02

    Saturation mutagenesis (SM) constitutes a widely used technique in the directed evolution of selective enzymes as catalysts in organic chemistry and in the manipulation of metabolic paths and genomes, but the quality of the libraries is far from optimal due to the inherent amino acid bias. Herein, it is shown how this fundamental problem can be solved by applying high-fidelity solid-phase chemical gene synthesis on silicon chips followed by efficient gene assembly. Limonene epoxide hydrolase was chosen as the catalyst in the model desymmetrization of cyclohexene oxide with the stereoselective formation of (R,R)- and (S,S)-cyclohexane-1,2-diol. A traditional combinatorial PCR-based SM library, produced by simultaneous randomization at several residues by using a reduced amino acid alphabet, and the respective synthetic library were constructed and compared. Statistical analysis at the DNA level with massive sequencing demonstrates that, in the synthetic approach, 97 % of the theoretically possible DNA mutants are formed, whereas the traditional SM library contained only about 50 %. Screening at the protein level also showed the superiority of the synthetic library; many highly (R,R)- and (S,S)-selective variants being discovered are not found in the traditional SM library. With the prices of synthetic genes decreasing, this approach may point the way to future directed evolution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis of free-standing carbon nanohybrid by directly growing carbon nanotubes on air-sprayed graphene oxide paper and its application in supercapacitor

    International Nuclear Information System (INIS)

    Wei, Li; Jiang, Wenchao; Yuan, Yang; Goh, Kunli; Yu, Dingshan; Wang, Liang; Chen, Yuan

    2015-01-01

    We report the synthesis of a free-standing two dimensional carbon nanotube (CNT)-reduced graphene oxide (rGO) hybrid by directly growing CNTs on air-sprayed GO paper. As a result of the good integration between CNTs and thermally reduced GO film during chemical vapor deposition, excellent electrical conductivity (2.6×10 4 S/m), mechanical flexibility (electrical resistance only increases 1.1% after bent to 90° for 500 times) and a relatively large surface area (335.3 m 2 /g) are achieved. Two-electrode supercapacitor assembled using the CNT–rGO hybrids in ionic liquid electrolyte (1-ethyl-3-methylimidazolium tetrafluoroborate) shows excellent stability upon 500 bending cycles with the gravimetric energy density measuring 23.7 Wh/kg and a power density of 2.0 kW/kg. Furthermore, it shows an impedance phase angle of −64.4° at a frequency of 120 Hz, suggesting good potentials for 120 Hz alternating current line filtering applications. - Graphical abstract: Flexible and highly conductive carbon nanotube-reduced graphene oxide nanohybrid. - Highlights: • Direct growth of carbon nanotubes by chemical vapor deposition on air-sprayed graphene oxide paper. • Two-dimensional carbon nanohybrid with excellent conductivity and mechanical flexibility. • Supercapacitor with excellent performance stability upon mechanical deformation for flexible electronics applications. • Supercapacitor with high impedance phase angle for 120 Hz alternating current line filtering applications

  17. Direct synthesis of solid and hollow carbon nanospheres over NaCl crystals using acetylene by chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chandra Kishore, S.; Anandhakumar, S.; Sasidharan, M., E-mail: sasidharan.m@res.srmuniv.ac.in

    2017-04-01

    Highlights: • Hollow and solid carbon nanospheres were synthesized by CVD method. • NaCl was used as template for direct growth of carbon nanospheres. • Separation of NaCl from the mixture is made easy by dissolving in water. • The hollow carbon nanospheres exhibit high specific capacity in Li-ion batteries than the graphite anodes. - Abstract: Carbon nanospheres (CNS) with hollow and solid morphologies have been synthesised by a simple chemical vapour deposition method using acetylene as a carbon precursor. Sodium chloride (NaCl) powder as a template was used for the direct growth of CNS via facile and low-cost approach. The effect of various temperatures (500 °C, 600 °C and 700 °C) and acetylene flow rates were investigated to study the structural evolution on the carbon products. The purified CNS thus obtained was characterized by various physicochemical techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and cyclicvoltametry. The synthesised hollow nanospheres were investigated as anode materials for Li-ion batteries. After 25 cycles of repeated charge/discharge cycles, the discharge and charge capacities were found to be 574 mAh/g and 570 mAh/g, respectively which are significantly higher than the commercial graphite samples.

  18. Evaluation and selection of Bacillus species based on enzyme production, antimicrobial activity and biofilm synthesis as direct-fed microbials candidates for poultry

    Directory of Open Access Journals (Sweden)

    Juan D Latorre

    2016-10-01

    Full Text Available Social concern about misuse of antibiotics as growth promoters (AGP and generation of multidrug-resistant bacteria have restricted the dietary inclusion of antibiotics in livestock feed in several countries. Direct-fed microbials (DFM are one of the multiple alternatives commonly evaluated as substitutes of AGP. Sporeformer bacteria from the genus Bacillus have been extensively investigated because of their extraordinary properties to form highly-resistant endospores, production of antimicrobial compounds and synthesize different exogenous enzymes. The purpose of the present study was to evaluate and select Bacillus spp. from environmental and poultry sources as DFM candidates, considering their enzyme production profile, biofilm synthesis capacity and pathogen-inhibition activity. Thirty one Bacillus isolates were screened for in vitro relative enzyme activity of amylase, protease, lipase and phytase using a selective media for each enzyme, with 3/31 strains selected as superior enzyme producers. These three isolates were identified as B. subtilis (1/3, and B. amyloliquefaciens (2/3 based on biochemical tests and 16S rRNA sequence analysis. For evaluation of biofilm synthesis, the generation of an adherent crystal violet-stained ring was determined in polypropylene tubes, resulting in 11/31 strains showing a strong biofilm formation. Moreover, all Bacillus strains were evaluated for growth inhibition activity against Salmonella enterica serovar Enteritidis (26/31, Escherichia coli (28/31 and Clostridioides difficile (29/31. Additionally, in previous in vitro and in vivo studies, these selected Bacillus strains have shown to be resistant to different biochemical conditions of the gastrointestinal tract of poultry. Results of the present study suggest that the selection and consumption of Bacillus-DFM, producing a variable set of enzymes and antimicrobial compounds may contribute to enhanced performance through improving nutrient digestibility

  19. Direct versus ligand-exchange synthesis of [PtAg28(BDT)12(TPP)4]4− nanoclusters: effect of a single-atom dopant on the optoelectronic and chemical properties

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa; Kozlov, Sergey M.; Cao, Zhen; Harb, Moussab; Parida, Manas R.; Hedhili, Mohamed N.; Mohammed, Omar F.; Bakr, Osman; Cavallo, Luigi; Basset, Jean-Marie

    2017-01-01

    to offer monodisperse doped NCs. For instance, the direct synthesis of PtAg28 NCs produces a mixture of [Ag29(BDT)12(TPP)4]3- and [PtAg28(BDT)12(TPP)4]4- NCs (TPP: triphenylphosphine; BDT: 1,3-benzenedithiolate). Here, we designed a ligand-exchange (LE

  20. Synthesis and characterization of Pt-Sn-Ni alloys to application as catalysts for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Silva, E.L. da; Correa, P.S.; Oliveira, E.L. de; Takimi, A.S.; Malfatti, C.F.; Radtke, C.

    2010-01-01

    Direct ethanol fuel cells (DEFCs) have been the focus of recent research due its application in mobile energy sources. In order to obtain the maximum efficiency from these systems, it is necessary the total ethanol oxidation, which implies in C-C bond break. Different catalysts described in literature are employed with this intent. This work consists in studying PtSnNi catalysts supported on carbon Vulcan XC72R, to application in DEFCs. Thus, it was used the impregnation/reduction method, varying the atomic proportion among Pt, Sn and Ni. The alloys were characterized by X-Ray Diffraction, Cyclic Voltammetry and Transmission Microscopy. Preliminary results show that predominant structure on the catalysts is the face centered cubic platinum and the densities currents are dependent on the platinum amount. (author)

  1. Synthesis and characterization of ZSM-5 and calcined kaolin evaluation using the content of structure-directing

    International Nuclear Information System (INIS)

    Rodrigues, J.J.; Silva, V.J. da; Rodrigues, M.G.F.

    2012-01-01

    This study aims to evaluate the effect of the structure-directing content, tetrapropylammonium bromide, on the structural and morphological characteristics of ZSM-5 zeolite obtained using calcined kaolin as silicon and aluminum. The samples were characterized by XRD, EDX, SEM and Physics Adsorption N 2 . Trough X ray diffraction patterns was possible to observed the formation of the structure of ZSM-5 with intense peaks and well-defined characteristic of crystalline. The micrographs showed that the samples consist of agglomerates and/or aggregates of particles characteristic of the MFI structure typical of ZSM-5 zeolite. And through the adsorption-desorption isotherms physical N2 was possible to observe that the samples show hysteresis type I typical of microporous materials with specific surface areas of 218 and 222 m 2 /g. Therefore, the use of calcined kaolin to obtain ZSM-5 zeolite was effective. (author)

  2. Fluorine-Directed Glycosylation Enables the Stereocontrolled Synthesis of Selective SGLT2 Inhibitors for Type II Diabetes.

    Science.gov (United States)

    Sadurní, Anna; Kehr, Gerald; Ahlqvist, Marie; Wernevik, Johan; Sjögren, Helena Peilot; Kankkonen, Cecilia; Knerr, Laurent; Gilmour, Ryan

    2018-02-26

    Inhibition of the sodium-glucose co-transporters (SGLT1 and SGLT2) is a validated strategy to address the increasing prevalence of type II diabetes mellitus. However, achieving selective inhibition of human SGLT1 or SGLT2 remains challenging. Orally available small molecule drugs based on the d-glucose core of the natural product Gliflozin have proven to be clinically effective in this regard, effectively impeding glucose reabsorption. Herein, we disclose the influence of molecular editing with fluorine at the C2 position of the pyranose ring of Phlorizin analogues Remogliflozin Etabonate and Dapagliflozin (Farxiga ® ) to concurrently direct β-selective glycosylation, as is required for biological efficacy, and enhance aspects of the physicochemical profile. Given the abundance of glycosylated pharmaceuticals in diabetes therapy that contain a β-configured d-glucose nucleus, it is envisaged that this strategy may prove to be expansive. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-Mordenite and Cu/ZnO catalysts.

    Science.gov (United States)

    Li, Xingang; San, Xiaoguang; Zhang, Yi; Ichii, Takashi; Meng, Ming; Tan, Yisheng; Tsubaki, Noritatsu

    2010-10-25

    Ethanol was directly synthesized from dimethyl ether (DME) and syngas with the combined H-Mordenite and Cu/ZnO catalysts that were separately loaded in a dual-catalyst bed reactor. Methyl acetate (MA) was formed by DME carbonylation over the H-Mordenite catalyst. Thereafter, ethanol and methanol were produced by MA hydrogenation over the Cu/ZnO catalyst. With the reactant gas containing 1.0% DME, the optimized temperature for the reaction was at 493 K to reach 100% conversion. In the products, the yield of methanol and ethanol could reach 46.3% and 42.2%, respectively, with a small amount of MA, ethyl acetate, and CO(2). This process is environmentally friendly as the main byproduct methanol can be recycled to DME by a dehydration reaction. In contrast, for the physically mixed catalysts, the low conversion of DME and high selectivity of methanol were observed.

  4. Direct synthesis of Fe3 C-functionalized graphene by high temperature autoclave pyrolysis for oxygen reduction.

    Science.gov (United States)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei; Huang, Yunjie; Cleemann, Lars N; Xing, Wei; Bjerrum, Niels J; Li, Qingfeng

    2014-08-01

    We present a novel approach to direct fabrication of few-layer graphene sheets with encapsulated Fe3 C nanoparticles from pyrolysis of volatile non-graphitic precursors without any substrate. This one-step autoclave approach is facile and potentially scalable for production. Tested as an electrocatalyst, the graphene-based composite exhibited excellent catalytic activity towards the oxygen reduction reaction in alkaline solution with an onset potential of ca. 1.05 V (vs. the reversible hydrogen electrode) and a half-wave potential of 0.83 V, which is comparable to the commercial Pt/C catalyst. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Pt-Fe catalyst nanoparticles supported on single-wall carbon nanotubes: Direct synthesis and electrochemical performance for methanol oxidation

    Science.gov (United States)

    Ma, Xiaohui; Luo, Liqiang; Zhu, Limei; Yu, Liming; Sheng, Leimei; An, Kang; Ando, Yoshinori; Zhao, Xinluo

    2013-11-01

    Single-wall carbon nanotubes (SWCNTs) supported Pt-Fe nanoparticles have been prepared by one-step hydrogen arc discharge evaporation of carbon electrode containing both Pt and Fe metal elements. The formation of SWCNTs and Pt-Fe nanoparticles occur simultaneously during the evaporation process. High-temperature hydrogen treatment and hydrochloric acid soaking have been carried out to purify and activate those materials in order to obtain a new type of Pt-Fe/SWCNTs catalyst for methanol oxidation. The Pt-Fe/SWCNTs catalyst performs much higher electrocatalytic activity for methanol oxidation, better stability and better durability than a commercial Pt/C catalyst according to the electrochemical measurements, indicating that it has a great potential for applications in direct methanol fuel cells.

  6. Simple synthesis of P(Cbz-alt-TBT) and PCDTBT by combining direct arylation with suzuki polycondensation of heteroaryl chlorides.

    Science.gov (United States)

    Lombeck, Florian; Matsidik, Rukiya; Komber, Hartmut; Sommer, Michael

    2015-01-01

    Direct arylation (DA) of 2-chlorothiophene and 2-chloro-3-hexylthiophene with 4,7-dibromo-2,1,3-benzothiadiazole is used to synthesize 4,7-bis(5-chloro-2-thienyl)-2,1,3-benzothiadiazole (TBTCl2) and 4,7-bis(5-chloro-4-hexyl-2-thienyl)-2,1,3-benzothiadiazole (DH-TBTCl2) in one step. Suitable conditions of the Suzuki polycondensations (SPC) of TBTCl2 and DH-TBTCl2 with the carbazole comonomer CbzPBE2 are established, furnishing PCDTBT and P(Cbz-alt-TBT) with high molecular weight and yield. Compared with control samples made from the corresponding dibromides, high-temperature NMR and UV-vis spectroscopy indicate similar properties for PCDTBT but an increased content of Cbz-Cbz homocouplings for P(Cbz-alt-TBT). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Direct in situ activation of Ag0 nanoparticles in synthesis of Ag/TiO2 and its photoactivity

    International Nuclear Information System (INIS)

    Jaafar, N.F.; Jalil, A.A.; Triwahyono, S.; Efendi, J.; Mukti, R.R.; Jusoh, R.; Jusoh, N.W.C.; Karim, A.H.; Salleh, N.F.M.; Suendo, V.

    2015-01-01

    Graphical abstract: - Highlights: • Ag 0 loaded on TiO 2 was prepared by a direct in situ electrochemical method. • 5 wt% Ag–TiO 2 demonstrated the best photocatalytic degradation of 2-CP. • Isomorphous substitution of Ag with Ti occurred to form Ti−O−Ag bonds. • Ag 0 and oxygen vacancies trapped electrons to enhance e–H + separation. • Substitution of Ag in the TiO 2 structure decreased the number of oxygen vacancies. - Abstract: Metallic Ag nanoparticles (Ag 0 ) were successfully activated using a direct in situ electrochemical method before being supported on TiO 2 . Catalytic testing showed that 5 wt% Ag–TiO 2 gave the highest photodegradation (94%) of 50 mg L −1 2-chlorophenol (2-CP) at pH 5 using 0.375 g L −1 catalyst within 6 h, while under similar conditions, 1 wt% and 10 wt% Ag–TiO 2 only gave 75% and 78% degradation, respectively. Characterization results illustrated that the photoactivity was affected by the amount of Ag 0 and oxygen vacancies which act as an electrons trap to enhance the electron–hole separation. While, the Ag−O−Ti bonds formation reduced the photoactivity. The degradation followed a pseudo-first order Langmuir–Hinshelwood model where adsorption was the controlling step. Study on the effect of scavengers showed that the hole (H + ) and hydroxyl radical (OH·) play important roles in the photodegradation. The regenerated photocatalyst was still stable after five cycling runs

  8. Ice as a Green-Structure-Directing Agent in the Synthesis of Macroporous MWCNTs and Chondroitin Sulphate Composites

    Science.gov (United States)

    Nardecchia, Stefania; Serrano, María Concepción; García-Argüelles, Sara; Maia Da Costa, Marcelo E. H.; Ferrer, María Luisa; Gutiérrez, María C.

    2017-01-01

    The incorporation of multi-walled carbon nanotubes (MWCNTs) into chondroitin sulphate-based scaffolds and the effect on the structural, mechanical, conductive, and thermal properties of the resulting scaffolds is investigated. Three-dimensional hierarchical materials are prepared upon the application of the ice segregation-induced self-assembly (ISISA) process. The use of ice as structure-directing agents avoids chemicals typically used for this purpose (e.g., surfactants, block copolymers, etc.), hence, emphasising the green features of this soft-templating approach. We determine the critical parameters that control the morphology of the scaffolds formed upon ice-templating (i.e., MWCNTs type, freezing conditions, polymer and MWCNT concentration). MWCNTs are surface functionalized by acidic treatment. MWCNT functionalization is characterized by Raman, Fourier transfer infrared (FTIR) and X-ray Photoelectron (XPS) spectroscopies. Scanning electron microscopy (SEM) analysis and porosity studies reveal that MWCNT content modifies the morphology of the macroporous structure, which decreases by increasing MWCNT concentration. Differences in scaffold morphology should be translated into their conductivity and mechanical properties. As a general trend, the Young’s modulus and the electrical conductivity of the scaffolds increase with the MWCNT content. Preliminary biocompatibility tests with human osteoblast-like cells also reveal the capability of these structures to support cell growth. PMID:28772715

  9. Direct synthesis of Sb{sub 2}O{sub 3} nanoparticles via hydrolysis-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yuehua [Department of Inorganic Materials, School of Resources Processing and Bioengineering, Central South University, Changsha 410083 (China); Zhang, Huihui [Department of Inorganic Materials, School of Resources Processing and Bioengineering, Central South University, Changsha 410083 (China); Yang, Huaming [Department of Inorganic Materials, School of Resources Processing and Bioengineering, Central South University, Changsha 410083 (China)]. E-mail: hmyang@mail.csu.edu.cn

    2007-01-31

    Antimony oxide (Sb{sub 2}O{sub 3}) has wide applications as conductive materials, effective catalyst, functional filler and optical materials. Nanocrystalline Sb{sub 2}O{sub 3} has been successfully synthesized by hydrolysis-precipitation method. The samples were characterized by means of transmission electron microscopy (TEM), high-resolution TEM (HRTEM) images, X-ray diffraction (XRD) and differential thermal analysis (DTA). The average crystal size of the Sb{sub 2}O{sub 3} nanoparticles increases with increasing the reaction temperature. TEM image of the as-synthesized nanocrystalline Sb{sub 2}O{sub 3} shows rod-like structure. HRTEM images indicate a preferred directional growth of the Sb{sub 2}O{sub 3} nanoparticles. The electrochemical behaviors of Sb{sub 2}O{sub 3} electrodes have been primarily investigated by cyclic voltammetry (CV) in lithium hexafluorophosphate (LiPF{sub 6}) solution. Sb{sub 2}O{sub 3} nanocrystallite phase has prominent effect on the electrochemical properties. The results indicate that nanocrystalline Sb{sub 2}O{sub 3} synthesized by hydrolysis-precipitation method shows potential application in the field of the electrode materials.

  10. Direct synthesis of Pt-free catalyst on gas diffusion layer of fuel cell and usage of high boiling point fuels for efficient utilization of waste heat

    International Nuclear Information System (INIS)

    Nandan, Ravi; Goswami, Gopal Krishna; Nanda, Karuna Kar

    2017-01-01

    Graphical abstract: Direct-grown boron-doped carbon nanotubes on gas-diffusion layer as efficient Pt-free cathode catalyst for alcohol fuel cells, high boiling point fuels used to obtain hot fuels for the enhancement of cell performance that paves the way for the utilization of waste heat. Display Omitted -- Highlights: •One-step direct synthesis of boron-doped carbon nanotubes (BCNTs) on gas diffusion layer (GDL). •Home built fuel-cell testing using BCNTs on GDL as Pt-free cathode catalyst. •BCNTs exhibit concentration dependent oxygen reduction reaction and the cell performance. •Effective utilization of waste heat to raise the fuel temperature. •Fuel selectivity to raise the fuel temperature and the overall performance of the fuel cells. -- Abstract: Gas diffusion layers (GDL) and electrocatalysts are integral parts of fuel cells. It is, however, a challenging task to grow Pt-free robust electrocatalyst directly on GDL for oxygen reduction reaction (ORR) – a key reaction in fuel cells. Here, we demonstrate that boron-doped carbon nanotubes (BCNTs) grown directly on gas-diffusion layer (which avoid the need of ionomer solution used for catalyst loading) can be used as efficient Pt-free catalyst in alcohol fuel cells. Increase in boron concentration improves the electrochemical ORR activity in terms of onset and ORR peak positions, half-wave potentials and diffusion-limited current density that ensure the optimization of the device performance. The preferential 4e − pathway, excellent cell performance, superior tolerance to fuel crossover and long-term stability makes directly grown BCNTs as an efficient Pt-free cathode catalyst for cost-effective fuel cells. The maximum power density of the fuel cell is found to increase monotonically with boron concentration. In addition to the application of BCNTs in fuel cell, we have introduced the concept of hot fuels so that waste heat can effectively be used and external power sources can be avoided. The fuel

  11. Synthesis and electrochemical capacitive properties of nitrogen-doped porous carbon micropolyhedra by direct carbonization of zeolitic imidazolate framework-11

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Fei; Li, Li; Zhang, Xiaohua, E-mail: mickyxie@hnu.edu.cn; Chen, Jinhua, E-mail: chenjinhua@hnu.edu.cn

    2015-06-15

    Highlights: • Nitrogen-doped porous carbon micropolyhedra (N-PCMPs) were prepared from ZIF-11. • The activated N-PCMPs with fused KOH (N-PCMPs-A) have high specific surface area. • N-PCMPs-A exhibits high specific capacitance. • N-PCMPs-A reveals good cycling performance even at a high current density. - Abstract: Nitrogen-doped porous carbon micropolyhedra (N-PCMPs) were successfully prepared by direct carbonization of ZIF-11 polyhedra and further activated with fused KOH to obtain N-PCMPs-A. The morphology and microstructure of samples were examined by scanning electron microscopy, X-ray diffraction, and micropore and chemisorption analyzer. Electrochemical properties were characterized by cyclic voltammetry and galvanostatic charge/discharge method in 1.0 M H{sub 2}SO{sub 4} aqueous solution on a standard three-electrode system. Results show that, compared with N-PCMPs, N-PCMPs-A has higher specific surface area (2188 m{sup 2} g{sup −1}) and exhibits improved electrochemical capacitive properties (307 F g{sup −1} at 1.0 A g{sup −1}). The mass specific capacitance of N-PCMPs-A is also higher than that of most MOF-derived carbons, some carbide-derived carbons and carbon aerogel-derived carbons. In addition, the capacitance of the N-PCMPs-A retains 90% after 4000 cycles even at a high current density of 10 A g{sup −1}. These imply that N-PCMPs-A is the promising materials for the construction of a high-performance supercapacitor.

  12. Synthesis and Bioevaluation of Iodine-131 Directly Labeled Cyclic RGD-PEGylated Gold Nanorods for Tumor-Targeted Imaging

    Directory of Open Access Journals (Sweden)

    Yingying Zhang

    2017-01-01

    Full Text Available Introduction. Radiolabeled gold nanoparticles play an important role in biomedical application. The aim of this study was to prepare iodine-131 (131I-labeled gold nanorods (GNRs conjugated with cyclic RGD and evaluate its biological characteristics for targeted imaging of integrin αvβ3-expressing tumors. Methods. HS-PEG(5000-COOH molecules were applied to replace CTAB covering the surface of bare GNRs for better biocompatibility, and c(RGDfK peptides were conjugated onto the carboxyl terminal of GNR-PEG-COOH via EDC/NHS coupling reactions. The nanoconjugate was characterized, and 131I was directly tagged on the surface of GNRs via AuI bonds for SPECT/CT imaging. We preliminarily studied the characteristics of the probe and its feasibility for tumor-targeting SPECT/CT imaging. Results. The [131I]GNR-PEG-cRGD probe was prepared in a simple and rapid manner and was stable in both PBS and fetal bovine serum. It targeted selectively and could be taken up by tumor cells mainly via integrin αvβ3-receptor-mediated endocytosis. In vivo imaging, biodistribution, and autoradiography results showed evident tumor uptake in integrin αvβ3-expressing tumors. Conclusions. These promising results showed that this smart nanoprobe can be used for angiogenesis-targeted SPECT/CT imaging. Furthermore, the nanoprobe possesses a remarkable capacity for highly efficient photothermal conversion in the near-infrared region, suggesting its potential as a multifunctional theranostic agent.

  13. Application of diazene-directed fragment assembly to the total synthesis and stereochemical assignment of (+)-desmethyl-meso-chimonanthine and related heterodimeric alkaloids

    OpenAIRE

    Lathrop, Stephen; Movassaghi, Mohammad

    2013-01-01

    We describe the first application of our methodology for heterodimerization via diazene fragmentation towards the total synthesis of (−)-calycanthidine, meso-chimonanthine, and (+)-desmethyl-meso-chimonanthine. Our syntheses of these alkaloids feature an improved route to C3a-aminocyclotryptamines, an enhanced method for sulfamide synthesis and oxidation, in addition to a late-stage diversification leading to the first enantioselective total synthesis of (+)-desmethyl-meso-chimonanthine and i...

  14. One-pot solvothermal synthesis of ordered intermetallic Pt2In3 as stable and efficient electrocatalyst towards direct alcohol fuel cell application

    Science.gov (United States)

    Jana, Rajkumar; Peter, Sebastian C.

    2016-10-01

    Ordered intermetallic Pt2In3 nanoparticles have been synthesized by superhydride reduction of K2PtCl4 and InCl3.xH2O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt2In3 intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt2In3 catalyst exhibit far superior electrocatalytic activity and stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be 3.2 and 2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt2In3 nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell.

  15. Direct chemical synthesis of 1 alpha,25-dihydroxy[26,27-3H] vitamin D3 with high specific activity: its use in receptor studies

    International Nuclear Information System (INIS)

    Napoli, J.L.; Mellon, W.S.; Fivizzani, M.A.; Schnoes, H.K.; DeLuca, H.F.

    1980-01-01

    The first direct chemical synthesis of radiolabeled 1 alpha, 25-dihydroxyvitamin D3 is reported. Unlike all previous syntheses, the new approach does not rely on enzymatic 1 alpha-hydroxylation of radiolabeled precursors. Rather, isotope is introduced in the last synthetic step by reaction of [3H] -methylmagnesium bromide with methyl 1 alpha-hydroxy-26,27-dinorvitamin D3-25-carboxylate to give 1 alpha,25-dihydroxy-[26,27-3H] vitamin D3 with a specific activity of 160 Ci/mmol. Mass spectroscopy confirmed that the radiohormone consists of a single isomer with six tritium atoms bound to carbons 26 and 27. Synthetically produced 1 alpha,25-dihydroxy [26,27-3H] vitamin D3 is indistinguishable from 1 alpha,25-dihydroxy-[26,27-3H] vitamin D3 obtained from the enzymatic 1 alpha-hydroxylation of 25-hydroxy[26,27-3H] vitamin D3 (160 Ci/mmol) by high-pressure liquid chromatography analysis and in the competitive binding assay using chick intestinal cytosol as the receptor source. Equilibrium dissociation constant measurements with the high specific activity radiohormone indicate a Kd of 8.2 x 10(-11) M for the chick intestinal cytosol 1 alpha,25-dihydroxyvitamin D3 receptor--a value considerably lower than the constants in the range of (1-5) x 10(-9) M previously reported

  16. A Method for Suppression of Active Metal Leaching during the Direct Synthesis of H{sub 2}O{sub 2} by Using Polyelectrolyte Multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young-Min [Kunsan National University, Kunsan (Korea, Republic of)

    2015-04-15

    In this study, two types of catalysts were prepared via conventional metal supporting method and encapsulation of metal nanoparticles in the polyelectrolyte multilayers constructed on support. The resulting catalysts were applied to the direct synthesis of hydrogen peroxide, and the effect of catalyst preparation method on the catalyst life as well as hydrogen peroxide productivity was investigated. The catalytic activity was strongly dependent upon the acid strength of support regardless of the catalyst preparation methods and HBEA (SAR=25) with strong acidity was superior to other supports to promote the reaction. In the case of metal supported catalyst, while hydrogen peroxide productivity was higher than that of polyelectrolyte multilayered counterpart, the reaction performance was sharply decreased during catalyst recycling due to the metal leaching. On the other hand, construction of polyelectrolyte multilayers on support weakened the influence of acid support on the reaction medium and therefore resulted in the decrease of catalytic activity and the increase of hydrogen peroxide decomposition as well. It is noted, however, that the catalytic activity was maintained after 5 recycles, which suggests that the introduction of polyelectrolyte multilayers on the support is very effective to suppress the unfavorable metal leaching phenomenon during a reaction.

  17. Synthesis of ZnO micro-pompons by soft template-directed wet chemical method and their application in electrochemical biosensors

    International Nuclear Information System (INIS)

    Zhou, Yu; Wang, Lei; Ye, Zhizhen; Zhao, Minggang; Huang, Jingyun

    2014-01-01

    Highlights: •ZnO micro-pompons (MPs) are synthesized by a controlled soft template-directed route. •ZnO MPs are composed of radial robust nanowires built of numerous nanoparticles. •The structure is ideal for the immobilization of enzymes to maintain their activity. •ZnO MPs are favorable for electron transfer and liquid mobilization. •Good performance of H 2 O 2 biosensor indicates ZnO MPs are promising in biosensing. -- Abstract: ZnO micro-pompons are fabricated by a controlled synthesis route via a soft template-directed wet chemical method followed by a subsequent calcination in air. The achieved ZnO micro-pompons with several hundred micrometers in diameter are composed of a great number of robust nanowires built of numerous nanoparticles. This unique structure is accessible for enzymes to sequester or bind, and the tightly connected nanoparticles facilitate the transmission of electrons, what's more, the large spaces between the nanowires are favorable for the mobilization of the liquid with target substance. In addition, the high electron communication features of ZnO and the tightly connected nanoparticles of the structure also promote the electron transfer between the active sites of proteins and the electrode. The enzymatic electrode fabricated with Horseradish peroxidase immobilized on ZnO micro-pompons along with chitosan covering outside exhibits excellent response for detecting H 2 O 2 with a wide linear range of 0.2–3.4 mM and a high sensitivity of 1395.64 (μA/mM cm 2 ), indicating a great potential in fabricating electrochemical biosensors

  18. Novel multi-target-directed ligands for Alzheimer's disease: Combining cholinesterase inhibitors and 5-HT6 receptor antagonists. Design, synthesis and biological evaluation.

    Science.gov (United States)

    Więckowska, Anna; Kołaczkowski, Marcin; Bucki, Adam; Godyń, Justyna; Marcinkowska, Monika; Więckowski, Krzysztof; Zaręba, Paula; Siwek, Agata; Kazek, Grzegorz; Głuch-Lutwin, Monika; Mierzejewski, Paweł; Bienkowski, Przemysław; Sienkiewicz-Jarosz, Halina; Knez, Damijan; Wichur, Tomasz; Gobec, Stanislav; Malawska, Barbara

    2016-11-29

    As currently postulated, a complex treatment may be key to an effective therapy for Alzheimer's disease (AD). Recent clinical trials in patients with moderate AD have shown a superior effect of the combination therapy of donepezil (a selective acetylcholinesterase inhibitor) with idalopirdine (a 5-HT 6 receptor antagonist) over monotherapy with donepezil. Here, we present the first report on the design, synthesis and biological evaluation of a novel class of multifunctional ligands that combines a 5-HT 6 receptor antagonist with a cholinesterase inhibitor. Novel multi-target-directed ligands (MTDLs) were designed by combining pharmacophores directed against the 5-HT 6 receptor (1-(phenylsulfonyl)-4-(piperazin-1-yl)-1H-indole) and cholinesterases (tacrine or N-benzylpiperidine analogues). In vitro evaluation led to the identification of tacrine derivative 12 with well-balanced potencies against the 5-HT 6 receptor (K b  = 27 nM), acetylcholinesterase and butyrylcholinesterase (IC 50 hAChE  = 12 nM, IC 50 hBuChE  = 29 nM). The compound also showed good in vitro blood-brain-barrier permeability (PAMPA-BBB assay), which was confirmed in vivo (open field study). Central cholinomimetic activity was confirmed in vivo in rats using a scopolamine-induced hyperlocomotion model. A novel class of multifunctional ligands with compound 12 as the best derivative in a series represents an excellent starting point for the further development of an effective treatment for AD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Synthesis of a Hoechst 32258 Analogue Amino Acid Building Block for Direct Incorporation of a Fluorescent High-Affinity DNA Binding Motif into Peptides

    DEFF Research Database (Denmark)

    Harrit, Niels; Behrens, Carsten; Nielsen, P. E.

    2001-01-01

    The synthesis of a new versatile "Hoechst 33258-like" Boc-protected amino acid building block for peptide synthesis is described. It is demonstrated that this new ligand is an effective mimic of Hoechst 33258 in terms of DNA affinity and sequence specificity. Furthermore, this minor groove binder...

  20. Synthesis, characterization of organo-modified zeolitic nanomaterial from coal ash and application as adsorbent on remediation of contaminated water by rhodamine B and direct blue 71

    International Nuclear Information System (INIS)

    Alcântara, Raquel Reis

    2016-01-01

    The synthesis of zeolites from mineral coal fly and bottom ash was performed by alkaline hydrothermal treatment, which were named ZFA and ZBA, respectively. Organo-modified zeolites, SMZF and SMZB, were obtained from surface modification of ZFA and ZBA, respectively, using the cationic surfactant hexadecyltrimethylammonium bromide. From the remaining solutions generated in ZFA and ZBA synthesis it was possible to synthesis two new zeolites. The physicochemical characteristics of the synthesized nanomaterials zeolite as well as their respective raw materials, such as cation exchange capacity, density, specific area, chemical composition, mineralogical and morphological, among others, were determined. The adsorbents SMZF and SMZB were used to remove the dyes, Direct Blue 71 (DB71) and Rhodamine B (RB) from aqueous solutions in batch system. Thus, four systems DB71/SMZF, RB/SMZF, DB71/SMZB, RB/SMZB were investigated. The models of pseudo-first order and pseudo-second order were applied to the experimental data for the study the adsorption kinetics. The model of pseudo-second order was the one that best described the adsorption of all dye/organomodified-zeolites systems. The equilibrium adsorption was analyzed from four models isotherm, namely: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-B). The results show that the model Freundlich and Langmuir best described the experimental data systems DB71/SMZF and DB71/SMZB, respectively. For systems with RB, the model D-R was the best fit for both adsorbents (SMZF and SMZB). The factorial design 2 4 was applied to the analysis of the following factors influencing the adsorption process: initial concentration of dye (C o ), pH, amount of adsorbent (M) and temperature (T). Under the conditions studied it concludes with the confidence interval of 95%, which for the DB71/SMZF system, the factors and their interactions that influence more were C 0 , M, pH, pH∗M, pH∗C 0 , M∗C 0 , pH∗M∗C 0 , in that order. In DB

  1. Synthesis of multi-layer graphene and multi-wall carbon nanotubes from direct decomposition of ethanol by microwave plasma without using metal catalysts

    International Nuclear Information System (INIS)

    Rincón, R; Melero, C; Jiménez, M; Calzada, M D

    2015-01-01

    The synthesis of nanostructured carbon materials by using microwave plasmas at atmospheric pressure is presented. This technique involves only one step and without any other supplementary chemical process or metal catalyst. Multi-layer graphene, multi-wall carbon nananotubes and H 2 were obtained by the plasma after ethanol decomposition. Strong emissions of both C 2 molecular bands and C carbon were emitted by the plasma during the process. Futhermore, plasma parameters were studied. Our research shows that both C 2 radicals and high gas temperatures (>3000 K) are required for the synthesis of these materials, which contribute to the understanding of materials synthesis by plasma processes. (fast track communication)

  2. One-pot solvothermal synthesis of ordered intermetallic Pt{sub 2}In{sub 3} as stable and efficient electrocatalyst towards direct alcohol fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Rajkumar; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in

    2016-10-15

    Ordered intermetallic Pt{sub 2}In{sub 3} nanoparticles have been synthesized by superhydride reduction of K{sub 2}PtCl{sub 4} and InCl{sub 3}.xH{sub 2}O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt{sub 2}In{sub 3} intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt{sub 2}In{sub 3} catalyst exhibit far superior electrocatalytic activity and stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be ~3.2 and ~2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt{sub 2}In{sub 3} nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell. - Graphical abstract: The ordered structure of Pt{sub 2}In{sub 3} nanoparticles synthesized by solvothermal method has confirmed through XRD and TEM. Cyclic voltametry and chronoamperometry showed improved catalytic activity and stability compared to commercial Pt/C. - Highlights: • Ordered Pt{sub 2}In{sub 3} nanoparticles were synthesized by solvothermal method. • Electrooxidation of alcohols on Pt{sub 2}In{sub 3} catalyst was investigated in acidic medium. • Pt{sub 2}In{sub 3} catalyst has superior catalytic activity compared to commercial Pt/C. • Pt{sub 2}In{sub 3} catalyst exhibited much higher stability than commercial Pt/C.

  3. Breaking the Fischer–Tropsch synthesis selectivity : Direct conversion of syngas to gasoline over hierarchical Co/H-ZSM-5 catalysts

    NARCIS (Netherlands)

    Sartipi, S.; Parashar, K.; Makkee, M.; Gascon, J.; Kapteijn, F.

    2012-01-01

    We report the combination of Fischer–Tropsch catalyst with acid functionality in one single catalyst particle. The resulting bifunctional catalyst is capable of producing gasoline range hydrocarbons from synthesis gas in one catalytic step with outstanding activities and selectivities.

  4. Electrochemically assisted organosol method for Pt-Sn nanoparticle synthesis and in situ deposition on graphite felt support: Extended reaction zone anodes for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lycke, Derek R.; Gyenge, Elod L. [Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC (Canada)

    2007-03-20

    Two electrochemically assisted variants of the Boenneman organosol method were developed for Pt-Sn nanoparticle synthesis and in situ deposition on graphite felt electrodes (e.g. thickness up to 2 mm). Tetraoctylammonium triethylhydroborate N(C{sub 8}H{sub 17}){sub 4}BH(C{sub 2}H{sub 5}){sub 3} was employed as colloid stabilizer and reductant dissolved in tetrahydrofuran (THF). The role of the electric field at a low deposition current density of 1.25 mA cm{sup -2} was mainly electrophoretic causing the migration and adsorption of N(C{sub 8}H{sub 17}){sub 4}BH(C{sub 2}H{sub 5}){sub 3} on the graphite felt surface where it reduced the PtCl{sub 2}-SnCl{sub 2} mixture. Faradaic electrodeposition was detected mostly for Sn. Typical Pt-Sn loadings were between 0.4 and 0.9 mg cm{sup -2} depending on the type of pre-deposition exposure of the graphite felt: surfactant-adsorption and metal-adsorption variant, respectively. The catalyst surface area and Pt:Sn surface area ratio was determined by anodic striping of an underpotential deposited Cu monolayer. The two deposition variants gave different catalyst surfaces: total area 233 and 76 cm{sup 2} mg{sup -1}, with Pt:Sn surface area ratio of 3.5:1 and 7.7:1 for surfactant and metal adsorption, respectively. Regarding electrocatalysis of ethanol oxidation, voltammetry and chronopotentiometry studies corroborated by direct ethanol fuel cell experiments using 0.5 M H{sub 2}SO{sub 4} as electrolyte, showed that due to a combination of higher catalyst load and Pt:Sn surface ratio, the graphite felt anodes prepared by the metal-adsorption variant gave better performance. The catalyzed graphite felt provided an extended reaction zone for ethanol electrooxidation and it gave higher catalyst mass specific peak power outputs compared to literature data obtained using gas diffusion anodes with carbon black supported Pt-Sn nanoparticles. (author)

  5. Nanocrystalline TiO{sub 2} films containing sulfur and gold: Synthesis, characterization and application to immobilize and direct electrochemistry of cytochrome c

    Energy Technology Data Exchange (ETDEWEB)

    Rafiee-Pour, Hossain-Ali, E-mail: rafieepour@kashanu.ac.ir [Biotechnology Division, Department of Molecular and Cell Biology, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of); Hamadanian, Masood [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan , Islamic Republic of Iran (Iran, Islamic Republic of); Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of); Koushali, Samaneh Katebi [Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of)

    2016-02-15

    Graphical abstract: - Highlights: • Promoting efficiency of TiO{sub 2} in cyt c immobilization by metal and nonmetal doping. • Synthesis of Au/S-TiO{sub 2} as a novel and efficient for cyt c immobilization. • Investigating structural, chemical and morphological characteristics of prepared TiO{sub 2}, S-TiO{sub 2} and Au/S-TiO{sub 2} nanoparticles. • 4%Au/S-TiO{sub 2} showed high surface area, nanometer size, strong absorbance, high efficiency in cyt c immobilization. • Promoting immobilization efficiency by addition of a small amount of gold at the surface of TiO{sub 2} by photochemistry method. - Abstract: In this paper, nanoporous titanium dioxide (TiO{sub 2}) film was used for cytochrome c (cyt c) immobilization as an electrode substrate for electrochemical redox activity of the adsorbed cyt c. The result of cyclic voltammetry exhibited a pair of well-defined and quasi-reversible peaks for direct electron transfer of cyt c (formal potential [E{sup 0}′ = (E{sub pa} + E{sub pc})/2] of 53 mV versus Ag/AgCl). In addition the effect of metal and nonmetal ions (Au, S) co-doping on the efficiency of TiO{sub 2} nanoparticles (prepared by combining sol–gel and photo-deposition methods) on the cyt c immobilization process was investigated. The results exhibited that the Au, S-co-doped TiO{sub 2} (Au/S-TiO{sub 2}) with a spheroidal shape demonstrates a smaller grain size than the pure TiO{sub 2}. Meanwhile, the UV–vis DRS of Au/S-TiO{sub 2} showed a considerable red shift to the visible region. As a result, it was found that 4% Au/0.1% S-TiO{sub 2} had the highest efficiency for cytochrome c immobilization. The results showed that the peak currents were higher after the annealing of the TiO{sub 2} film. This observation suggests that the use of TiO{sub 2} films may be advantageous for the development of nanoporous biosensors employing reductive electrochemistry.

  6. Synthesis of Nucleosides through Direct Glycosylation of Nucleobases with 5-O-Monoprotected or 5-Modified Ribose: Improved Protocol, Scope, and Mechanism

    Czech Academy of Sciences Publication Activity Database

    Downey, Alan Michael; Pohl, Radek; Roithová, J.; Hocek, Michal

    2017-01-01

    Roč. 23, č. 16 (2017), s. 3910-3917 ISSN 0947-6539 R&D Projects: GA TA ČR(CZ) TE01020028; GA ČR(CZ) GA16-00178S Institutional support: RVO:61388963 Keywords : epoxides * glycosylation * nucleosides * riboses * synthesis design Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 5.317, year: 2016

  7. A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells.

    Science.gov (United States)

    Zhou, Yi-Ge; Chen, Jing-Jing; Wang, Feng-bin; Sheng, Zhen-Huan; Xia, Xing-Hua

    2010-08-28

    A one-step electrochemical approach to the synthesis of highly dispersed Pt nanoparticles on graphene has been proposed. The resultant Pt NPs@G nanocomposite shows higher electrocatalytic activity and long-term stability towards methanol electrooxidation than the Pt NPs@Vulcan.

  8. Direct Synthesis of H{sub 2}O{sub 2} over Ti-Containing Molecular Sieves Supported Gold Catalysts: A Comparative Study for In-situ-H{sub 2}O{sub 2}-ODS of Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Han; Song, Haiyan; Chen, Chunxia; Han, Fuqin; Hu, Shaozheng [Northeast Forestry Univ., Harbin (China); Liu, Guangliang [Univ. of Connecticut, Storrs (United States); Chen, Ping; Zhao, Zhixi [Xinjiang Normal Univ., Urumqi (China)

    2013-10-15

    Direct synthesis of H{sub 2}O{sub 2} and in situ oxidative desulfurization of model fuel over Au/Ti-HMS and Au/TS-1 catalysts has been comparatively investigated in water or methanol. Maximum amount (82%) of active Au{sup 0} species for H{sub 2}O{sub 2} synthesis was obtained. Au/Ti-HMS and Au/TS-1 exhibited the contrary performances in H{sub 2}O{sub 2} synthesis as CH{sub 3}OH/H{sub 2}O ratio of solvent changed. H{sub 2}O{sub 2} decomposition and hydrogenation in water was inhibited by the introduction of methanol. Effect of O{sub 2}/H{sub 2} ratio on H{sub 2}O{sub 2} concentration, H{sub 2} conversion and H{sub 2}O{sub 2} selectivity revealed a relationship between H{sub 2}O{sub 2} generation and H2 consumption. The highest dibenzothiophene removal rate (83.2%) was obtained over Au/Ti-HMS in methanol at 1.5 of O{sub 2}/H{sub 2} ratio and 60 .deg. C. But removal of thiophene over Au/TS-1 should be performed in water without heating to obtain a high removal rate (61.3%). Meanwhile, H{sub 2} conversion and oxidative desulfurization selectivity of H{sub 2} were presented.

  9. Direct Synthesis of H2O2 over Ti-Containing Molecular Sieves Supported Gold Catalysts: A Comparative Study for In-situ-H2O2-ODS of Fuel

    International Nuclear Information System (INIS)

    Zhang, Han; Song, Haiyan; Chen, Chunxia; Han, Fuqin; Hu, Shaozheng; Liu, Guangliang; Chen, Ping; Zhao, Zhixi

    2013-01-01

    Direct synthesis of H 2 O 2 and in situ oxidative desulfurization of model fuel over Au/Ti-HMS and Au/TS-1 catalysts has been comparatively investigated in water or methanol. Maximum amount (82%) of active Au 0 species for H 2 O 2 synthesis was obtained. Au/Ti-HMS and Au/TS-1 exhibited the contrary performances in H 2 O 2 synthesis as CH 3 OH/H 2 O ratio of solvent changed. H 2 O 2 decomposition and hydrogenation in water was inhibited by the introduction of methanol. Effect of O 2 /H 2 ratio on H 2 O 2 concentration, H 2 conversion and H 2 O 2 selectivity revealed a relationship between H 2 O 2 generation and H2 consumption. The highest dibenzothiophene removal rate (83.2%) was obtained over Au/Ti-HMS in methanol at 1.5 of O 2 /H 2 ratio and 60 .deg. C. But removal of thiophene over Au/TS-1 should be performed in water without heating to obtain a high removal rate (61.3%). Meanwhile, H 2 conversion and oxidative desulfurization selectivity of H 2 were presented

  10. Direct versus ligand-exchange synthesis of [PtAg28(BDT)12(TPP)4]4− nanoclusters: effect of a single-atom dopant on the optoelectronic and chemical properties

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2017-06-07

    Heteroatom doping of atomically precise nanoclusters (NCs) often yields a mixture of doped and undoped products of single-atom difference, whose separation is extremely difficult. To overcome this challenge, novel synthesis methods are required to offer monodisperse doped NCs. For instance, the direct synthesis of PtAg28 NCs produces a mixture of [Ag29(BDT)12(TPP)4]3- and [PtAg28(BDT)12(TPP)4]4- NCs (TPP: triphenylphosphine; BDT: 1,3-benzenedithiolate). Here, we designed a ligand-exchange (LE) strategy to synthesize single-sized, Pt-doped, superatomic Ag NCs [PtAg28(BDT)12(TPP)4]4- by LE of [Pt2Ag23Cl7(TPP)10] NCs with BDTH2 (1,3-benzenedithiol). The doped NCs were thoroughly characterized by optical and photoelectron spectroscopy, mass spectrometry, total electron count, and time-dependent density functional theory (TDDFT). We show that the Pt dopant occupies the center of the PtAg28 cluster, modulates its electronic structure and enhances its photoluminescence intensity and excited-state lifetime, and also enables solvent interactions with the NC surface. Furthermore, doped NCs showed unique reactivity with metal ions - the central Pt atom of PtAg28 could not be replaced by Au, unlike the central Ag of Ag29 NCs. The achieved synthesis of single-sized PtAg28 clusters will facilitate further applications of the LE strategy for the exploration of novel multimetallic NCs.

  11. Direct synthesis of 2-methyl-1-propanol/methanol fuels and feedstocks: Quarterly technical progress report for the period June--August 1985

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R. G.; Simmons, G. W.; Nunan, J.; Himelfarb, P. B.

    1985-09-01

    During the present quarter, and intensive series of aluminum- supported catalysts, both Cs promoted and unpromoted, have been prepared by a special preparation technique and tested to determine alcohol synthesis activity, selectivities, and stability. Preparation of a single-phase hydrotalcite-like ((Cu/sub x/Zn/sub 1 -x/)/sub 6/Al/sub 2/CO/sub 3/(OH)/sub 16//center dot/4H/sub 2/O) catalyst precursor has been successfully accomplished. Some of these catalysts have been tested to determine their activities in producing methanol and higher alcohols. It has been observed that catalysts obtained by calcination and reduction of the hydrotalcite-like precursor are very active methanol synthesis catalysts. Doping these catalysts with cesium in an aqueous solution leads to initial deactivation, which is partially recovered by doping at higher cesium levels. Results give us guidelines for altering the promoter doping procedure so that a more active and selective aluminum-supported higher alcohol synthesis catalyst will be obtained. 4 refs., 13 figs., 13 tabs.

  12. Total Synthesis and Stereochemical Assignment of Delavatine A: Rh-Catalyzed Asymmetric Hydrogenation of Indene-Type Tetrasubstituted Olefins and Kinetic Resolution through Pd-Catalyzed Triflamide-Directed C-H Olefination.

    Science.gov (United States)

    Zhang, Zhongyin; Wang, Jinxin; Li, Jian; Yang, Fan; Liu, Guodu; Tang, Wenjun; He, Weiwei; Fu, Jian-Jun; Shen, Yun-Heng; Li, Ang; Zhang, Wei-Dong

    2017-04-19

    Delavatine A (1) is a structurally unusual isoquinoline alkaloid isolated from Incarvillea delavayi. The first and gram-scale total synthesis of 1 was accomplished in 13 steps (the longest linear sequence) from commercially available starting materials. We exploited an isoquinoline construction strategy and developed two reactions, namely Rh-catalyzed asymmetric hydrogenation of indene-type tetrasubstituted olefins and kinetic resolution of β-alkyl phenylethylamine derivatives through Pd-catalyzed triflamide-directed C-H olefination. The substrate scope of the first reaction covered unfunctionalized olefins and those containing polar functionalities such as sulfonamides. The kinetic resolution provided a collection of enantioenriched indane- and tetralin-based triflamides, including those bearing quaternary chiral centers. The selectivity factor (s) exceeded 100 for a number of substrates. These reactions enabled two different yet related approaches to a key intermediate 28 in excellent enantiopurity. In the synthesis, the triflamide served as not only an effective directing group for C-H bond activation but also a versatile functional group for further elaborations. The relative and absolute configurations of delavatine A were unambiguously assigned by the syntheses of the natural product and its three stereoisomers. Their cytotoxicity against a series of cancer cell lines was evaluated.

  13. Stereodivergent Synthesis of N-Heterocycles by Catalyst-Controlled, Activity-Directed Tandem Annulation of Diazo Compounds with Amino Alkynes.

    Science.gov (United States)

    Liu, Kai; Zhu, Chenghao; Min, Junxiang; Peng, Shiyong; Xu, Guangyang; Sun, Jiangtao

    2015-10-26

    A stereodivergent synthesis of five-membered N-heterocycles, such as 2,3-dihydropyrroles, and 2-methylene and 3-methylene pyrrolidines, has been developed through a tandem annulation of amino alkynes with diazo compounds and involves the trapping of in situ formed intermediates. Mechanistic investigations indicate that the copper-catalyzed tandem annulations proceed by allenoate formation and subsequent intramolecular hydroamination. In contrast, the rhodium-catalyzed protocol features a carbenoid insertion into the NH bond and subsequent Conia-ene cyclization. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Direct Synthesis and Morphological Characterization of Gold-Dendrimer Nanocomposites Prepared Using PAMAM Succinamic Acid Dendrimers: Preliminary Study of the Calcification Potential

    Directory of Open Access Journals (Sweden)

    E. Vasile

    2014-01-01

    Full Text Available Gold-dendrimer nanocomposites were obtained for the first time by a simple colloidal approach based on the use of polyamidoamine dendrimers with succinamic acid terminal groups and dodecanediamine core. Spherical and highly crystalline nanoparticles with dimensions between 3 nm and 60 nm, and size-polydispersity depending on the synthesis conditions, have been generated. The influence of the stoichiometric ratio and the structural and architectural features of the dendrimers on the properties of the nanocomposites has been described. The self-assembling behaviour of these materials produces gold-dendrimer nanostructured porous networks with variable density, porosity, and composition. The investigations of the reaction systems, by TEM, at two postsynthesis moments, allowed to preliminary establish the control over the properties of the nanocomposite products. Furthermore, this study allowed better understanding of the mechanism of nanocomposite generation. Impressively, in the early stages of the synthesis, the organization of gold inside the dendrimer molecules has been evidenced by micrographs. Growth and ripening mechanisms further lead to nanoparticles with typical characteristics. The potential of such nanocomposite particles to induce calcification when coating a polymer substrate was also investigated.

  15. Directed Evolution of Carbonyl Reductase from Rhodosporidium toruloides and Its Application in Stereoselective Synthesis of tert-Butyl (3R,5S)-6-Chloro-3,5-dihydroxyhexanoate.

    Science.gov (United States)

    Liu, Zhi-Qiang; Wu, Lin; Zhang, Xiao-Jian; Xue, Ya-Ping; Zheng, Yu-Guo

    2017-05-10

    tert-Butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate ((3R,5S)-CDHH) is a key intermediate of atorvastatin and rosuvastatin synthesis. Carbonyl reductase RtSCR9 from Rhodosporidium toruloides exhibited excellent activity toward tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH). For the activity of RtSCR9 to be improved, random mutagenesis and site-saturation mutagenesis were performed. Three positive mutants were obtained (mut-Gln95Asp, mut-Ile144Lys, and mut-Phe156Gln). These mutants exhibited 1.94-, 3.03-, and 1.61-fold and 1.93-, 3.15-, and 1.97-fold improvement in the specific activity and k cat /K m , respectively. Asymmetric reduction of (S)-CHOH by mut-Ile144Lys coupled with glucose dehydrogenase was conducted. The yield and enantiomeric excess of (3R,5S)-CDHH reached 98 and 99%, respectively, after 8 h bioconversion in a single batch reaction with 1 M (S)-CHOH, and the space-time yield reached 542.83 mmol L -1 h -1 g -1 wet cell weight. This study presents a new carbonyl reductase for efficient synthesis of (3R,5S)-CDHH.

  16. Direct synthesis and morphological characterization of gold-dendrimer nanocomposites prepared using PAMAM succinamic acid dendrimers: preliminary study of the calcification potential.

    Science.gov (United States)

    Vasile, E; Serafim, A; Petre, D; Giol, D; Dubruel, P; Iovu, H; Stancu, I C

    2014-01-01

    Gold-dendrimer nanocomposites were obtained for the first time by a simple colloidal approach based on the use of polyamidoamine dendrimers with succinamic acid terminal groups and dodecanediamine core. Spherical and highly crystalline nanoparticles with dimensions between 3 nm and 60 nm, and size-polydispersity depending on the synthesis conditions, have been generated. The influence of the stoichiometric ratio and the structural and architectural features of the dendrimers on the properties of the nanocomposites has been described. The self-assembling behaviour of these materials produces gold-dendrimer nanostructured porous networks with variable density, porosity, and composition. The investigations of the reaction systems, by TEM, at two postsynthesis moments, allowed to preliminary establish the control over the properties of the nanocomposite products. Furthermore, this study allowed better understanding of the mechanism of nanocomposite generation. Impressively, in the early stages of the synthesis, the organization of gold inside the dendrimer molecules has been evidenced by micrographs. Growth and ripening mechanisms further lead to nanoparticles with typical characteristics. The potential of such nanocomposite particles to induce calcification when coating a polymer substrate was also investigated.

  17. Instrument Modeling and Synthesis

    Science.gov (United States)

    Horner, Andrew B.; Beauchamp, James W.

    During the 1970s and 1980s, before synthesizers based on direct sampling of musical sounds became popular, replicating musical instruments using frequency modulation (FM) or wavetable synthesis was one of the “holy grails” of music synthesis. Synthesizers such as the Yamaha DX7 allowed users great flexibility in mixing and matching sounds, but were notoriously difficult to coerce into producing sounds like those of a given instrument. Instrument design wizards practiced the mysteries of FM instrument design.

  18. Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst.

    Science.gov (United States)

    Tran, Dang-Thuan; Chen, Ching-Lung; Chang, Jo-Shu

    2013-05-01

    In this work, a one-step extraction/transesterification process was developed to directly convert wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 into biodiesel using immobilized Burkholderia lipase as the catalyst. The microalgal biomass (water content of 86-91%; oil content 14-63%) was pre-treated by sonication to disrupt the cell walls and then directly mixed with methanol and solvent to carry out the enzymatic transesterification. Addition of a sufficient amount of solvent (hexane is most preferable) is required for the direct transesterification of wet microalgal biomass, as a hexane-to-methanol mass ratio of 1.65 was found optimal for the biodiesel conversion. The amount of methanol and hexane required for the direct transesterification process was also found to correlate with the lipid content of the microalga. The biodiesel synthesis process was more efficient and economic when the lipid content of the microalgal biomass was higher. Therefore, using high-lipid-content microalgae as feedstock appears to be desirable. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Direct synthesis of all-inorganic heterostructured CdSe/CdS QDs in aqueous solution for improved photocatalytic hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi-Jun; Fan, Xiang-Bing; Li, Xu-Bing; Li, Jia-Xin; Zhan, Fei; Tao, Ye; Zhang, Xiaoyi; Kong, Qing-Yu; Zhao, Ning-Jiu; Zhang, Jian-Ping; Ye, Chen; Gao, Yu-Ji; Wang, Xu-Zhe; Meng, Qing-Yuan; Feng, Ke; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2017-01-01

    Here we present a facile aqueous approach to synthesize heterostructured CdSe/CdS QDs with all-inorganic chalcogenide S2- ligands under mild conditions. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and steady-state emission spectroscopy demonstrate that the heterostructured CdSe/CdS QDs with sulfur-rich surface composition are formed by heterogeneous nucleation of Cd2+ and S2- precursors on the CdSe QDs. After adsorption of small Ni(OH)(2) clusters over the surface in situ, the CdSe/CdS-Ni(OH)(2) photocatalyst enables H-2 production efficiently with an internal quantum yield of 52% under visible light irradiation at 455 nm, up to an 8-fold increase of activity to that of spherical CdSe QDs-Ni(OH)(2) under the same conditions. Femtosecond transient absorption spectroscopy, X-ray transient absorption (XTA) spectroscopy, steady-state and time-resolved emission spectroscopy show that the quasi-type-II band alignment in the CdSe/CdS heterostructure is responsible for the efficiency enhancement of light harvesting and surface/interfacial charge separation in solar energy conversion. The unprecedented results exemplify an easily accessible pattern of aqueous synthesis of all-inorganic heterostructured QDs for advanced photosynthetic H-2 evolution.

  20. Influence of Synthesis pH on Textural Properties of Carbon Xerogels as Supports for Pt/CXs Catalysts for Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    C. Alegre

    2012-01-01

    Full Text Available Carbon xerogels (CXs have been prepared by polycondensation of resorcinol and formaldehyde. Two synthesis pHs were studied in order to evaluate its influence on the electrochemical behaviour of Pt catalysts supported on previous carbon xerogels, synthesized by conventional impregnation method. Catalysts were also synthesized over a commercial carbon black (Vulcan-XC-72R for comparison purposes. Characterization techniques included nitrogen physisorption, scanning electron microscopy, and X-ray diffraction. Catalysts electrochemical activity towards the oxidation of carbon monoxide and methanol was studied by cyclic voltammetry and chronoamperometry to establish the effect of the carbon support on the catalysts performance. Commercial Pt/C catalyst (E-TEK was analyzed for comparison purposes. It was observed that the more developed and mesopore-enriched porous structure of the carbon xerogel synthesized at a higher initial pH resulted in an optimal utilization of the active phase and in an enhanced and promising catalytic activity in the electrooxidation of methanol, in comparison with commercial catalysts.

  1. Visual masking and the dynamics of human perception, cognition, and consciousness A century of progress, a contemporary synthesis, and future directions.

    Science.gov (United States)

    Ansorge, Ulrich; Francis, Gregory; Herzog, Michael H; Oğmen, Haluk

    2008-07-15

    The 1990s, the "decade of the brain," witnessed major advances in the study of visual perception, cognition, and consciousness. Impressive techniques in neurophysiology, neuroanatomy, neuropsychology, electrophysiology, psychophysics and brain-imaging were developed to address how the nervous system transforms and represents visual inputs. Many of these advances have dealt with the steady-state properties of processing. To complement this "steady-state approach," more recent research emphasized the importance of dynamic aspects of visual processing. Visual masking has been a paradigm of choice for more than a century when it comes to the study of dynamic vision. A recent workshop (http://lpsy.epfl.ch/VMworkshop/), held in Delmenhorst, Germany, brought together an international group of researchers to present state-of-the-art research on dynamic visual processing with a focus on visual masking. This special issue presents peer-reviewed contributions by the workshop participants and provides a contemporary synthesis of how visual masking can inform the dynamics of human perception, cognition, and consciousness.

  2. A facile synthesis of δ-aminolevulinic acid (ALA) regio-selectively labeled with 13C and direct observation of enzymatic transformation from ALA to porphobilinogen (PBG)

    International Nuclear Information System (INIS)

    Kurumaya, Katsuyuki; Okazaki, Takeo; Seido, Nobuo; Akasaka, Yuzuru; Kawajiri, Yoshiki; Kajiwara, Masahiro; Kondo, Masao

    1989-01-01

    δ-Aminolevulinic acid (ALA), labeled with 13 C at position 1, 2, 3, 4, or 5, was synthesized from 13 C-labeled glycine, Meldrum's acid, or bromoacetate. The latter compounds were prepared from 13 C-sodium acetate or 13 C-acetic acid. Enzymatic transformation from ALA to porphobilinogen (PBG) was directly observed by 13 C-NMR. (author)

  3. The modern synthesis, Ronald Fisher and creationism.

    Science.gov (United States)

    Leigh

    1999-12-01

    The 'modern evolutionary synthesis' convinced most biologists that natural selection was the only directive influence on adaptive evolution. Today, however, dissatisfaction with the synthesis is widespread, and creationists and antidarwinians are multiplying. The central problem with the synthesis is its failure to show (or to provide distinct signs) that natural selection of random mutations could account for observed levels of adaptation.

  4. Analysis of diverse direct arylation polymerization (DArP) conditions toward the efficient synthesis of polymers converging with stille polymers in organic solar cells

    DEFF Research Database (Denmark)

    Livi, Francesco; Gobalasingham, Nemal S.; Thompson, Barry C.

    2016-01-01

    Despite the emergence of direct arylation polymerization (DArP) as an alternative method to traditional cross-coupling routes like Stille polymerization, the exploration of DArP polymers in practical applications like polymer solar cells (PSCs) is limited. DArP polymers tend to have a reputation...... for being marginally inferior to Stille counterparts due to the increased presence of defects that result from unwanted side reactions in direct arylation, such as unselective C-H bond activation and homocoupling. We report ten DArP protocols across the three major classes of DArP to generate poly[(2,5-bis...... was synthesized in superheated THF with Cs2CO3, neodecanoic acid, and P(o-anisyl)3, it generated polymers of exceptional quality that performed comparably to Stille counterparts in both roll coated ITO-free and spin-coated ITO devices....

  5. Synthesis of single-crystal PbS nanorods via a simple hydrothermal process using PEO-PPO-PEO triblock copolymer as a structure-directing agent

    International Nuclear Information System (INIS)

    Bu Junfu; Nie Chageng; Liang Jinxia; Sun Lan; Xie Zhaoxiong; Wu Qi; Lin Changjian

    2011-01-01

    Single-crystal PbS nanorods were successfully synthesized through a simple hydrothermal route using PEO-PPO-PEO triblock copolymer (P123) as a structure-directing agent. The XRD pattern indicates that the crystal structure of the nanorods is face-centre-cubic rocksalt. A SEM image shows that the nanorods have a diameter of 40-70 nm and a length of 200-600 nm, and both tips exhibit taper-like structures. HRTEM and SAED images reveal the single-crystalline nature of the nanorods with the growth along the (111) direction. The experimental results indicated that the P123 concentration and reaction temperature played important roles in controlling the morphology of the PbS nanostructures. The optical property of PbS nanorods was investigated by UV-Vis absorption spectroscopy and the band structure was calculated by the B3LYP hybrid density functional theory.

  6. A facile synthesis of. delta. -aminolevulinic acid (ALA) regio-selectively labeled with sup 13 C and direct observation of enzymatic transformation from ALA to porphobilinogen (PBG)

    Energy Technology Data Exchange (ETDEWEB)

    Kurumaya, Katsuyuki; Okazaki, Takeo; Seido, Nobuo; Akasaka, Yuzuru; Kawajiri, Yoshiki; Kajiwara, Masahiro (Meiji College of Pharmacy, Tokyo (Japan)); Kondo, Masao (Institute of Public Health, Tokyo (Japan))

    1989-02-01

    {delta}-Aminolevulinic acid (ALA), labeled with {sup 13}C at position 1, 2, 3, 4, or 5, was synthesized from {sup 13}C-labeled glycine, Meldrum's acid, or bromoacetate. The latter compounds were prepared from {sup 13}C-sodium acetate or {sup 13}C-acetic acid. Enzymatic transformation from ALA to porphobilinogen (PBG) was directly observed by {sup 13}C-NMR. (author).

  7. A Simple Catalytic Mechanism for the Direct Coupling of α-Carbonyls with Functionalized Amines: A One-Step Synthesis of Plavix

    OpenAIRE

    Evans, Ryan W.; Zbieg, Jason R.; Zhu, Shaolin; Li, Wei; MacMillan, David W. C.

    2013-01-01

    The direct α-amination of ketones, esters, and aldehydes has been accomplished via copper catalysis. In the presence of catalytic copper(II) bromide, a diverse range of carbonyl and amine substrates undergo fragment coupling to produce synthetically useful α-amino substituted motifs. The transformation is proposed to proceed via a catalytically generated α-bromo carbonyl species; nucleophilic displacement of the bromide by the amine then delivers the α-amino carbonyl adduct while the catalyst...

  8. Flower-like Bi2Se3 nanostructures: Synthesis and their application for the direct electrochemistry of hemoglobin and H2O2 detection

    International Nuclear Information System (INIS)

    Fan Hai; Zhang Shenxiang; Ju Peng; Su Haichao; Ai Shiyun

    2012-01-01

    Highlights: ► Flower-like Bi 2 Se 3 nanostructures were prepared via a hydrothermal technique. ► Bi 2 Se 3 nanostructures significantly improve the direct electron-transfer of Hb. ► The immobilized Hb shows high catalytic activity to the reduction of H 2 O 2 . - Abstract: In this paper, flower-like Bi 2 Se 3 nanostructures consisting of intercrossed nanosheets networks have been synthesized via a facile hydrothermal technique and applied to the protein electrochemistry for the first time. The prepared Bi 2 Se 3 nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM). The direct electrochemistry of hemoglobin (Hb) has been achieved by immobilizing Hb on the prepared Bi 2 Se 3 nanostructures and Nafion (Nf) modified glassy carbon electrode. Bi 2 Se 3 nanostructures show significant promotion to the direct electron-transfer of Hb. The immobilized Hb retained its biological activity well and shows high catalytic activity to the reduction of hydrogen peroxide (H 2 O 2 ). Under the optimal experimental conditions, the catalytic currents are linear to the concentrations of H 2 O 2 in the range of 2.0 × 10 −6 to 1.0 × 10 −4 M. The corresponding detection limits are 6.3 × 10 −7 M. The prepared flower-like Bi 2 Se 3 nanostructures provide an alternative matrix for protein immobilization and biosensor preparation.

  9. CLEAN CHEMICAL SYNTHESIS IN WATER

    Science.gov (United States)

    Newer green chemistry approach to accomplish chemical synthesis in water is summarized. Recent global developments pertaining to C-C bond forming reactions using metallic reagents and direct use of the renewable materials such as carbohydrates without derivatization are described...

  10. DNA-Directed alkylating agents. 7. Synthesis, DNA interaction, and antitumor activity of bis(hydroxymethyl)- and bis(carbamate)-substituted pyrrolizines and imidazoles.

    Science.gov (United States)

    Atwell, G J; Fan, J Y; Tan, K; Denny, W A

    1998-11-19

    A series of bis(hydroxymethyl)-substituted imidazoles, thioimidazoles, and pyrrolizines and related bis(carbamates), linked to either 9-anilinoacridine (intercalating) or 4-(4-quinolinylamino)benzamide (minor groove binding) carriers, were synthesized and evaluated for sequence-specific DNA alkylation and cytotoxicity. The imidazole and thioimidazole analogues were prepared by initial synthesis of [(4-aminophenyl)alkyl]imidazole-, thioimidazole-, or pyrrolizine dicarboxylates, coupling of these with the desired carrier, and reduction to give the required bis(hydroxymethyl) alkylating moiety. The pyrrolizines were the most reactive alkylators, followed by the thioimidazoles, while the imidazoles were unreactive. The pyrrolizines and some of the thioimidazoles cross-linked DNA, as measured by agarose gel electrophoresis. Strand cleavage assays showed that none of the compounds reacted at purine N7 or N3 sites in the gpt region of the plasmid gpt2Eco, but the polymerase stop assay showed patterns of G-alkylation in C-rich regions. The corresponding thioimidazole bis(carbamates) were more selective than the bis(hydroxymethyl) pyrrolizines, with high-intensity bands at 5'-NCCN, 5'-NGCN and 5'-NCGN sequences in the PCR stopping assay ( indicates block sites). The data suggest that these targeted compounds, like the known thioimidazole bis(carbamate) carmethizole, alkylate exclusively at guanine residues via the 2-amino group, with little or no alkylation at N3 and N7 guanine or adenine sites. The cytotoxicities of the compounds correlated broadly with their reactivities, with the bis(hydroxymethyl)imidazoles being the least cytotoxic (IC50s >1 microM; P388 leukemia) and with the intercalator-linked analogues being more cytotoxic than the corresponding minor-groove-targeted ones. This was true also for the more reactive thioimidazole bis(carbamates) (IC50s 0.8 and 11 microM, respectively), but both were more active than the analogous "untargeted" carmethizole (IC50 20

  11. Synthesis of kaolin supported nanoscale zero-valent iron and its degradation mechanism of Direct Fast Black G in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xiaoying; Chen, Zhengxian [Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Zhou, Rongbing [Institute of Environ Sci and Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018 (China); Chen, Zuliang, E-mail: Zuliang.chen@unisa.edu.au [Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2015-01-15

    Graphical abstract: UV–visible spectra of DFBG solution using K-nZVI (1:1) nanoparticles. (a) Before reaction; (b) during reaction; (c) after reaction. - Highlights: • Kaolin-supported Fe{sup 0} nanoparticle (K-nZVI) was synthesized. • Degradation of Direct Fast Black by K-nZVI was studied. • K-nZVI was characterized by SEM, XRD, UV and FIIR. • Degradation mechanism of Direct Fast Black was proposed. - Abstract: Calcinated kaolin supported nanoscale zero-valent iron (K-nZVI) was synthesized and used for the removal of tetrad azo-group dye-Direct Fast Black G (DFBG) from aqueous solution. The results demonstrated that after reacting for 10 min with an initial concentration of DFBG 100 mg L{sup −1} (pH 9.49), 78.60% of DFBG was removed using K-nZVI, while only 41.39% and 12.56% of DFBG were removed using nZVI and kaolin, respectively. K-nZVI with a mass ratio of nZVI nanoparticles versus kaolin at 1:1 was found to have a high degree of reactivity. Furthermore, scanning electron microscopy (SEM) confirmed that nZVI was better dispersed when kaolin was present. XRD patterns indicated that iron oxides were formed after reaction. Fourier transforms infrared spectra (FTIR) and UV–visible demonstrated that the peak in the visible light region of DFBG was degraded and new bands were observed. Kinetics studies showed that the degradation of DFBG fitted well to the pseudo first-order model. The degradation of DFBG by K-nZVI was based on its adsorption onto kaolin and iron oxides, and subsequently reduction using nZVI was proposed. A significant outcome emerged in that 99.84% of DFBG in wastewater was removed using K-nZVI after reacting for 60 min.

  12. Synthesis of kaolin supported nanoscale zero-valent iron and its degradation mechanism of Direct Fast Black G in aqueous solution

    International Nuclear Information System (INIS)

    Jin, Xiaoying; Chen, Zhengxian; Zhou, Rongbing; Chen, Zuliang

    2015-01-01

    Graphical abstract: UV–visible spectra of DFBG solution using K-nZVI (1:1) nanoparticles. (a) Before reaction; (b) during reaction; (c) after reaction. - Highlights: • Kaolin-supported Fe 0 nanoparticle (K-nZVI) was synthesized. • Degradation of Direct Fast Black by K-nZVI was studied. • K-nZVI was characterized by SEM, XRD, UV and FIIR. • Degradation mechanism of Direct Fast Black was proposed. - Abstract: Calcinated kaolin supported nanoscale zero-valent iron (K-nZVI) was synthesized and used for the removal of tetrad azo-group dye-Direct Fast Black G (DFBG) from aqueous solution. The results demonstrated that after reacting for 10 min with an initial concentration of DFBG 100 mg L −1 (pH 9.49), 78.60% of DFBG was removed using K-nZVI, while only 41.39% and 12.56% of DFBG were removed using nZVI and kaolin, respectively. K-nZVI with a mass ratio of nZVI nanoparticles versus kaolin at 1:1 was found to have a high degree of reactivity. Furthermore, scanning electron microscopy (SEM) confirmed that nZVI was better dispersed when kaolin was present. XRD patterns indicated that iron oxides were formed after reaction. Fourier transforms infrared spectra (FTIR) and UV–visible demonstrated that the peak in the visible light region of DFBG was degraded and new bands were observed. Kinetics studies showed that the degradation of DFBG fitted well to the pseudo first-order model. The degradation of DFBG by K-nZVI was based on its adsorption onto kaolin and iron oxides, and subsequently reduction using nZVI was proposed. A significant outcome emerged in that 99.84% of DFBG in wastewater was removed using K-nZVI after reacting for 60 min

  13. Tuning of platinum nano-particles by Au usage in their binary alloy for direct ethanol fuel cell: Controlled synthesis, electrode kinetics and mechanistic interpretation

    Science.gov (United States)

    Dutta, Abhijit; Mondal, Achintya; Datta, Jayati

    2015-06-01

    Understanding of the electrode-kinetics and mechanism of ethanol oxidation reaction (EOR) is of considerable interest for optimizing electro-catalysis in direct ethanol fuel cell (DEFC). This work attempts to design Pt based electro-catalyst on carbon support, tuned with gold nano-particles (NPs), for their use in DEFC operating in alkaline medium. The platinum-gold alloyed NPs are synthesized at desired compositions and size (2-10 nm) by controlled borohydride reduction method and successfully characterized by XRD, TEM, EDS and XPS techniques. The kinetic parameters along with the activation energies for the EOR are evaluated over the temperature range 20-80 °C and the oxidation reaction products estimated through ion chromatographic analysis. Compared to single Pt/C catalyst, the over potential of EOR is reduced by ca. 500 mV, at the onset during the reaction, for PtAu/C alloy with only 23% Pt content demonstrating the ability of Au and/or its surface oxides providing oxygen species at much lower potentials compared to Pt. Furthermore, a considerable increase in the peak power density (>191%) is observed in an in-house fabricated direct ethanol anion exchange membrane fuel cell, DE(AEM)FC using the best performing Au covered Pt electrode (23% Pt) compared to the monometallic Pt catalyst.

  14. In Escherichia coli, MreB and FtsZ direct the synthesis of lateral cell wall via independent pathways that require PBP 2.

    Science.gov (United States)

    Varma, Archana; Young, Kevin D

    2009-06-01

    In Escherichia coli, the cytoplasmic proteins MreB and FtsZ play crucial roles in ensuring that new muropeptide subunits are inserted into the cell wall in a spatially correct way during elongation and division. In particular, to retain a constant diameter and overall shape, new material must be inserted into the wall uniformly around the cell's perimeter. Current thinking is that MreB accomplishes this feat through intermediary proteins that tether peptidoglycan synthases to the outer face of the inner membrane. We tested this idea in E. coli by using a DD-carboxypeptidase mutant that accumulates pentapeptides in its peptidoglycan, allowing us to visualize new muropeptide incorporation. Surprisingly, inhibiting MreB with the antibiotic A22 did not result in uneven insertion of new wall, although the cells bulged and lost their rod shapes. Instead, uneven (clustered) incorporation occurred only if MreB and FtsZ were inactivated simultaneously, providing the first evidence in E. coli that FtsZ can direct murein incorporation into the lateral cell wall independently of MreB. Inhibiting penicillin binding protein 2 (PBP 2) alone produced the same clustered phenotype, implying that MreB and FtsZ tether peptidoglycan synthases via a common mechanism that includes PBP 2. However, cell shape was determined only by the presence or absence of MreB and not by the even distribution of new wall material as directed by FtsZ.

  15. Protein-directed in situ synthesis of platinum nanoparticles with superior peroxidase-like activity, and their use for photometric determination of hydrogen peroxide

    International Nuclear Information System (INIS)

    Chen, Lijian; Wang, Nan; Wang, Xindong; Ai, Shiyun

    2013-01-01

    Platinum nanoparticles (Pt-NPs) with sizes in the range from 10 to 30 nm were synthesized using protein-directed one-pot reduction. The model globular protein bovine serum albumin (BSA) was exploited as the template, and the resulting BSA/Pt-NPs were studied by transmission electron microscopy, energy dispersive X-ray spectroscopy, and resonance Rayleigh scattering spectroscopy. The modified nanoparticles display a peroxidase-like activity that was exploited in a rapid method for the colorimetric determination of hydrogen peroxide which can be detected in the 50 μM to 3 mM concentration range. The limit of detection is 7.9 μM, and the lowest concentration that can be visually detected is 200 μM. (author)

  16. Synthesis of sulfated titania supported on mesoporous silica using direct impregnation and its application in esterification of acetic acid and n-butanol

    International Nuclear Information System (INIS)

    Wang Yuhong; Gan Yunting; Whiting, Roger; Lu Guanzhong

    2009-01-01

    A new method has been developed for the preparation of sulfated titania (S-TiO 2 ) supported on mesoporous silica. The use of direct exchange of metal containing precursors for the surfactants in the as-synthesized MCM-41 substrate produced a product with high sulfur content without serious blockage of the pore structure of MCM-41. The pore sizes and volumes of the resultant S-TiO 2 /MCM-41 composites were found to vary markedly with the loading of TiO 2 . The strong acidic character of the composites obtained was examined by using them as catalysts for the esterification of acetic acid and n-butanol. - Abstract: XRD profiles of the composites of S-TiO 2 /MCM-41 with different TiO 2 contents. The low angle peaks indicate the MCM-41-like structure retained and a TiO 2 phase appeared at high angle region. Display Omitted

  17. Synthesis of Pd₃Co₁@Pt/C core-shell catalysts for methanol-tolerant cathodes of direct methanol fuel cells.

    Science.gov (United States)

    Aricò, Antonino S; Stassi, Alessandro; D'Urso, Claudia; Sebastián, David; Baglio, Vincenzo

    2014-08-18

    A composite Pd-based electrocatalyst consisting of a surface layer of Pt (5 wt.%) supported on a core Pd3Co1 alloy (95 wt.%) and dispersed as nanoparticles on a carbon black support (50 wt.% metal content) was prepared by using a sulphite-complex route. The structure, composition, morphology, and surface properties of the catalyst were investigated by XRD, XRF, TEM, XPS and low-energy ion scattering spectroscopy (LE-ISS). The catalyst showed an enrichment of Pt on the surface and a smaller content of Co in the outermost layers. These characteristics allow a decrease the Pt content in direct methanol fuel cell cathode electrodes (from 1 to 0.06 mg cm(-2)) without significant decay in performance, due also to a better tolerance to methanol permeated through the polymer electrolyte membrane. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Mango core inner shell membrane template-directed synthesis of porous ZnO films and their application for enzymatic glucose biosensor

    Science.gov (United States)

    Zhou, Yu; Wang, Lei; Ye, Zhizhen; Zhao, Minggang; Cai, Hui; Huang, Jingyun

    2013-11-01

    Micro/nano-porous ZnO films were synthesized through a simple biotemplate-directed method using mango core inner shell membranes as templates. The achieved ZnO films with wrinkles on the surface are combined of large holes and small pores in the bulk. High specific surface area, numerous microspaces, and small channels for fluid circulation provided by this unique structure along with the good biocompatibility and electron communication features of ZnO material make the product an ideal platform for the immobilization of enzymes The fabricated glucose biosensor based on the porous ZnO films exhibits good selective detection ability of analyte with good stability, high sensitivity of 50.58 μA cm-2 mM-1 and a wide linear range of 0.2-5.6 mM along with a low detection limit of 10 μM.

  19. Mango core inner shell membrane template-directed synthesis of porous ZnO films and their application for enzymatic glucose biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yu; Wang, Lei [Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 (China); Ye, Zhizhen [Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 (China); Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University (China); Zhao, Minggang; Cai, Hui [Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 (China); Huang, Jingyun, E-mail: huangjy@zju.edu.cn [Department of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 (China); Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University (China)

    2013-11-15

    Micro/nano-porous ZnO films were synthesized through a simple biotemplate-directed method using mango core inner shell membranes as templates. The achieved ZnO films with wrinkles on the surface are combined of large holes and small pores in the bulk. High specific surface area, numerous microspaces, and small channels for fluid circulation provided by this unique structure along with the good biocompatibility and electron communication features of ZnO material make the product an ideal platform for the immobilization of enzymes The fabricated glucose biosensor based on the porous ZnO films exhibits good selective detection ability of analyte with good stability, high sensitivity of 50.58 μA cm{sup −2} mM{sup −1} and a wide linear range of 0.2–5.6 mM along with a low detection limit of 10 μM.

  20. Direct synthesis of bimetallic PtCo mesoporous nanospheres as efficient bifunctional electrocatalysts for both oxygen reduction reaction and methanol oxidation reaction

    Science.gov (United States)

    Wang, Hongjing; Yu, Hongjie; Li, Yinghao; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang

    2018-04-01

    The engineering of electrocatalysts with high performance for cathodic and/or anodic catalytic reactions is of great urgency for the development of direct methanol fuel cells. Pt-based bimetallic alloys have recently received considerable attention in the field of fuel cells because of their superior catalytic performance towards both fuel molecule electro-oxidation and oxygen reduction. In this work, bimetallic PtCo mesoporous nanospheres (PtCo MNs) with uniform size and morphology have been prepared by a one-step method with a high yield. The as-made PtCo MNs show superior catalytic activities for both oxygen reduction reaction and methanol oxidation reaction relative to Pt MNs and commercial Pt/C catalyst, attributed to their mesoporous structure and bimetallic composition.

  1. Hydrothermal–galvanic couple synthesis of directionally oriented BaTiO3 thin films on TiN-coated substrates

    International Nuclear Information System (INIS)

    Yang, Chia-Jung; Tsai, Di-You; Chan, Pei-Hsuan; Wu, Chu-Tsun; Lu, Fu-Hsing

    2013-01-01

    BaTiO 3 films were synthesized on TiN-coated Si substrate below 100 °C by a hydrothermal–galvanic couple technique in barium contained alkaline solutions. X-ray diffraction and electron backscatter diffraction results show that the BaTiO 3 thin films were directionally oriented grown on the TiN/Si substrates, i.e., (111) BaTiO 3 over (111) TiN. The surface morphologies revealed that BaTiO 3 nucleated and grew over the TiN surface with a single layer. From kinetic analyses, the growth rates of BaTiO 3 films prepared by the hydrothermal–galvanic couple technique were faster than a hydrothermal method. The galvanic effects were confirmed by investigating the induced currents and energies. The galvanic currents were generated and controlled by both the dissolution of TiN and the formation of BaTiO 3 . The output electric energies increased rapidly with the reaction time and leveled off at the full coverage of BaTiO 3 . - Highlights: • Cubic BaTiO 3 films are synthesized by a hydrothermal–galvanic couple method (HT–GC). • Growth rates of BaTiO 3 films made by HT–GC are faster than a hydrothermal method. • BaTiO 3 films are directionally oriented grown on the TiN/Si substrates. • Galvanic currents are controlled by dissolution of TiN and formation of BaTiO 3

  2. Direct in situ activation of Ag{sup 0} nanoparticles in synthesis of Ag/TiO{sub 2} and its photoactivity

    Energy Technology Data Exchange (ETDEWEB)

    Jaafar, N.F. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Jalil, A.A., E-mail: aishah@cheme.utm.my [Institute of Hydrogen Economy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Triwahyono, S. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Efendi, J. [Department of Chemistry, Universitas Negeri Padang, Jl. Prof. Hamka, Air Tawar, Padang, West Sumatera (Indonesia); Mukti, R.R. [Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jl Ganesha No. 10, Bandung 40132 (Indonesia); Jusoh, R.; Jusoh, N.W.C. [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Karim, A.H. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Salleh, N.F.M. [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Suendo, V. [Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jl Ganesha No. 10, Bandung 40132 (Indonesia)

    2015-05-30

    Graphical abstract: - Highlights: • Ag{sup 0} loaded on TiO{sub 2} was prepared by a direct in situ electrochemical method. • 5 wt% Ag–TiO{sub 2} demonstrated the best photocatalytic degradation of 2-CP. • Isomorphous substitution of Ag with Ti occurred to form Ti−O−Ag bonds. • Ag{sup 0} and oxygen vacancies trapped electrons to enhance e–H{sup +} separation. • Substitution of Ag in the TiO{sub 2} structure decreased the number of oxygen vacancies. - Abstract: Metallic Ag nanoparticles (Ag{sup 0}) were successfully activated using a direct in situ electrochemical method before being supported on TiO{sub 2}. Catalytic testing showed that 5 wt% Ag–TiO{sub 2} gave the highest photodegradation (94%) of 50 mg L{sup −1} 2-chlorophenol (2-CP) at pH 5 using 0.375 g L{sup −1} catalyst within 6 h, while under similar conditions, 1 wt% and 10 wt% Ag–TiO{sub 2} only gave 75% and 78% degradation, respectively. Characterization results illustrated that the photoactivity was affected by the amount of Ag{sup 0} and oxygen vacancies which act as an electrons trap to enhance the electron–hole separation. While, the Ag−O−Ti bonds formation reduced the photoactivity. The degradation followed a pseudo-first order Langmuir–Hinshelwood model where adsorption was the controlling step. Study on the effect of scavengers showed that the hole (H{sup +}) and hydroxyl radical (OH·) play important roles in the photodegradation. The regenerated photocatalyst was still stable after five cycling runs.

  3. Synthesis of 1,3-di(4-amino-1-pyridinium)propane ionic liquid functionalized graphene nanosheets and its application in direct electrochemistry of hemoglobin

    International Nuclear Information System (INIS)

    Li, Rui; Liu, Changxian; Ma, Ming; Wang, Zhengguo; Zhan, Guoqing; Li, Buhai; Wang, Xian; Fang, Huaifang; Zhang, Huijuan; Li, Chunya

    2013-01-01

    Highlights: ► 1,3-Di(4-amino-1-pyridinium)propane tetrafluoroborate ionic liquid was successfully synthesized. ► Ionic liquid modified graphene nanosheets were successfully prepared and fully characterized. ► Hb was immobilized on the as-prepared graphene–ionic liquid nanosheets. ► Direct electrochemistry of Hb was succeeded. ► Biocatalysis of Hb towards H 2 O 2 was demonstrated, and was used in H 2 O 2 determination. -- Abstract: 1,3-Di(4-amino-1-pyridinium)propane tetrafluoroborate (DAPPT) ionic liquid was successfully synthesized, and was used as a modifier to functionalize graphene nanosheets through covalent binding of amino groups and epoxy groups in an alkaline solution. The as-prepared graphene-DAPPT nanosheets (Gr-DAPPT) were confirmed with transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV/vis and FTIR spectroscopy. A biocompatible platform based on Gr-DAPPT was constructed for the immobilization of hemoglobin (Hb) through a cross-linking step with chitosan and glutaraldehyde. The direct electron transfer and bioelectrocatalytic reaction of Hb immobilized on Gr-DAPPT surface were achieved. A pair of reversible redox peaks of hemoglobin was observed, and bioelectrocatalytic activity toward the reduction of H 2 O 2 was also demonstrated, displaying a potential application for the fabrication of novel biosensors to sense H 2 O 2 . Such results indicated that Gr-DAPPT based interface would be a promising platform for biomacromolecular immobilization and biosensor preparation

  4. Site-directed mutagenesis of α-L-rhamnosidase from Alternaria sp. L1 to enhance synthesis yield of reverse hydrolysis based on rational design.

    Science.gov (United States)

    Xu, Li; Liu, Xiaohong; Yin, Zhenhao; Liu, Qian; Lu, Lili; Xiao, Min

    2016-12-01

    The α-L-rhamnosidase catalyzes the hydrolytic release of rhamnose from polysaccharides and glycosides and is widely used due to its applications in a variety of industrial processes. Our previous work reported that a wild-type α-L-rhamnosidase (RhaL1) from Alternaria sp. L1 could synthesize rhamnose-containing chemicals (RCCs) though reverse hydrolysis reaction with inexpensive rhamnose as glycosyl donor. To enhance the yield of reverse hydrolysis reaction and to determine the amino acid residues essential for the catalytic activity of RhaL1, site-directed mutagenesis of 11 residues was performed in this study. Through rationally designed mutations, the critical amino acid residues which may form direct or solvent-mediated hydrogen bonds with donor rhamnose (Asp 252 , Asp 257 , Asp 264 , Glu 530 , Arg 548 , His 553 , and Trp 555 ) and may form the hydrophobic pocket in stabilizing donor (Trp 261 , Tyr 302 , Tyr 316 , and Trp 369 ) in active-site of RhaL1 were analyzed, and three positive mutants (W261Y, Y302F, and Y316F) with improved product yield stood out. From the three positive variants, mutant W261Y accelerated the reverse hydrolysis with a prominent increase (43.7 %) in relative yield compared to the wild-type enzyme. Based on the 3D structural modeling, we supposed that the improved yield of mutant W261Y is due to the adjustment of the spatial position of the putative catalytic acid residue Asp 257 . Mutant W261Y also exhibited a shift in the pH-activity profile in hydrolysis reaction, indicating that introducing of a polar residue in the active site cavity may affect the catalysis behavior of the enzyme.

  5. Direct Synthesis of Carbon Nanotube Field Emitters on Metal Substrate for Open-Type X-ray Source in Medical Imaging

    Directory of Open Access Journals (Sweden)

    Amar Prasad Gupta

    2017-07-01

    Full Text Available We report the design, fabrication and characterization of a carbon nanotube enabled open-type X-ray system for medical imaging. We directly grew the carbon nanotubes used as electron emitter for electron gun on a non-polished raw metallic rectangular-rounded substrate with an area of 0.1377 cm2 through a plasma enhanced chemical vapor deposition system. The stable field emission properties with triode electrodes after electrical aging treatment showed an anode emission current of 0.63 mA at a gate field of 7.51 V/μm. The 4.5-inch cubic shape open type X-ray system was developed consisting of an X-ray aperture, a vacuum part, an anode high voltage part, and a field emission electron gun including three electrodes with focusing, gate and cathode electrodes. Using this system, we obtained high-resolution X-ray images accelerated at 42–70 kV voltage by digital switching control between emitter and ground electrode.

  6. HTLV-1 Tax Functions as a Ubiquitin E3 Ligase for Direct IKK Activation via Synthesis of Mixed-Linkage Polyubiquitin Chains.

    Science.gov (United States)

    Wang, Chong; Long, Wenying; Peng, Chao; Hu, Lin; Zhang, Qiong; Wu, Ailing; Zhang, Xiaoqing; Duan, Xiaotao; Wong, Catherine C L; Tanaka, Yuetsu; Xia, Zongping

    2016-04-01

    The HTLV-1 oncoprotein Tax plays a key role in CD4+ T cell transformation by promoting cell proliferation and survival, mainly through permanent activation of the NK-κB pathway and induction of many NF-κB target genes. Elucidating the underlying molecular mechanism is therefore critical in understanding HTLV-1-mediated transformation. Current studies have suggested multiple but controversial mechanisms regarding Tax-induced IKK activation mainly due to blending of primary Tax-induced IKK activation events and secondary IKK activation events induced by cytokines secreted by the primary Tax-induced IKK-NF-κB activation events. We reconstituted Tax-stimulated IKK activation in a cell-free system to dissect the essential cellular components for primary IKK activation by Tax and studied the underlying biochemical mechanism. We found that Tax is a putative E3 ubiquitin ligase, which, together with UbcH2, UhcH5c, or UbcH7, catalyzes the assembly of free mixed-linkage polyubiquitin chains. These free mixed-linkage polyubiquitin chains are then responsible for direct IKK activation by binding to the NEMO subunit of IKK. Our studies revealed the biochemical function of Tax in the process of IKK activation, which utilizes the minimal cellular ubiquitination components for NF-κB activation.

  7. Direct synthesis of La9.33Si6O26 ultrafine powder via sol-gel self-combustion method

    International Nuclear Information System (INIS)

    Tian Changan; Liu Junliang; Cai Jun; Zeng Yanwei

    2008-01-01

    Single phase La 9.33 Si 6 O 26 ultrafine powder, as a kind of highly activated precursor to prepare medium-to-low temperature electrolyte for solid oxide fuel cells (SOFCs), has been successfully synthesized via a non-aqueous sol-gel and self-combustion approach from the starting materials: lanthanum nitrate (La(NO 3 ) 3 .6H 2 O), citric acid, ethylene glycol (EG), tetraethyl orthosilicate (TEOS) and ammonium nitrate. The details of gel's self-combustion were investigated by DTA-TG and the structural characterization of as-synthesized powder from self-combustion was performed by XRD and SEM. The results show that La 9.33 Si 6 O 26 single phase of apatite-type crystal structure can be directly synthesized by sol-gel self-combustion method without further calcinations on the condition that the molar ratio (R) of NO 3 - to citric acid and ethylene glycol being 6:1. Such powders composed of well-dispersed particles with an average size of 200 nm and a specific surface area of 5.54 m 2 /g. It can be sintered to 90% of its theoretical density at 1500 deg. C for 10 h, about 200 deg. C lower than the sintering temperature for the powder derived from traditional solid reactions. The sintered material has a thermal expansion coefficient of 9.2 x 10 -6 K -1 between room temperature and 800 deg. C

  8. HTLV-1 Tax Functions as a Ubiquitin E3 Ligase for Direct IKK Activation via Synthesis of Mixed-Linkage Polyubiquitin Chains.

    Directory of Open Access Journals (Sweden)

    Chong Wang

    2016-04-01

    Full Text Available The HTLV-1 oncoprotein Tax plays a key role in CD4+ T cell transformation by promoting cell proliferation and survival, mainly through permanent activation of the NK-κB pathway and induction of many NF-κB target genes. Elucidating the underlying molecular mechanism is therefore critical in understanding HTLV-1-mediated transformation. Current studies have suggested multiple but controversial mechanisms regarding Tax-induced IKK activation mainly due to blending of primary Tax-induced IKK activation events and secondary IKK activation events induced by cytokines secreted by the primary Tax-induced IKK-NF-κB activation events. We reconstituted Tax-stimulated IKK activation in a cell-free system to dissect the essential cellular components for primary IKK activation by Tax and studied the underlying biochemical mechanism. We found that Tax is a putative E3 ubiquitin ligase, which, together with UbcH2, UhcH5c, or UbcH7, catalyzes the assembly of free mixed-linkage polyubiquitin chains. These free mixed-linkage polyubiquitin chains are then responsible for direct IKK activation by binding to the NEMO subunit of IKK. Our studies revealed the biochemical function of Tax in the process of IKK activation, which utilizes the minimal cellular ubiquitination components for NF-κB activation.

  9. Application of Mössbauer spectroscopy in industrial heterogeneous catalysis: effect of oxidant on FePO{sub 4} material phase transformations in direct methanol synthesis from methane

    Energy Technology Data Exchange (ETDEWEB)

    Dasireddy, Venkata D. B. C., E-mail: dasireddy@ki.si [National Institute of Chemistry, Department of Catalysis and Chemical Reaction Engineering (Slovenia); Khan, Faiza B. [Energy Technology (South Africa); Hanzel, Darko [Jozef Stefan Institute (Slovenia); Bharuth-Ram, Krish [Durban University of Technology, Physics Department (South Africa); Likozar, Blaž [National Institute of Chemistry, Department of Catalysis and Chemical Reaction Engineering (Slovenia)

    2017-11-15

    The effect of the FePO{sub 4} material phase transformation in the direct selective oxidation of methane to methanol was studied using various oxidants, i.e. O{sub 2}, H{sub 2}O and N{sub 2}O. The phases of the heterogeneous catalyst applied, before and after the reactions, were characterized by M¨ossbauer spectroscopy. The main reaction products were methanol, carbon monoxide and carbon dioxide, whereas formaldehyde was produced in rather minute amounts. The Mössbauer spectra showed the change of the initial catalyst material, FePO{sub 4} (tridymite-like phase (tdm)), to the reduced metal form, iron(II) pyrophosphate, Fe{sub 2}P{sub 2}O{sub 7}, and thereafter, the material phase change was governed by the oxidation with individual oxidizing species.Mössbauer spectroscopy measurements applied along with X-ray diffraction (XRD) studies on fresh, reduced and spent catalytic materials demonstrated a transformation of the catalyst to a mixture of phases which depended on operating process conditions. Generally, activity was low and should be a subject of further material optimization and engineering, while the selectivity towards methanol at low temperatures applied was adequate. The proceeding redox mechanism should thus play a key role in catalytic material design, while the advantage of iron-based heterogeneous catalysts primarily lies in them being comparably inexpensive and comprising non-critical raw materials only.

  10. Direct Synthesis of Carbon Nanotube Field Emitters on Metal Substrate for Open-Type X-ray Source in Medical Imaging.

    Science.gov (United States)

    Gupta, Amar Prasad; Park, Sangjun; Yeo, Seung Jun; Jung, Jaeik; Cho, Chonggil; Paik, Sang Hyun; Park, Hunkuk; Cho, Young Chul; Kim, Seung Hoon; Shin, Ji Hoon; Ahn, Jeung Sun; Ryu, Jehwang

    2017-07-29

    We report the design, fabrication and characterization of a carbon nanotube enabled open-type X-ray system for medical imaging. We directly grew the carbon nanotubes used as electron emitter for electron gun on a non-polished raw metallic rectangular-rounded substrate with an area of 0.1377 cm² through a plasma enhanced chemical vapor deposition system. The stable field emission properties with triode electrodes after electrical aging treatment showed an anode emission current of 0.63 mA at a gate field of 7.51 V/μm. The 4.5-inch cubic shape open type X-ray system was developed consisting of an X-ray aperture, a vacuum part, an anode high voltage part, and a field emission electron gun including three electrodes with focusing, gate and cathode electrodes. Using this system, we obtained high-resolution X-ray images accelerated at 42-70 kV voltage by digital switching control between emitter and ground electrode.

  11. In situ synthesis of bilayered gradient poly(vinyl alcohol)/hydroxyapatite composite hydrogel by directional freezing-thawing and electrophoresis method.

    Science.gov (United States)

    Su, Cui; Su, Yunlan; Li, Zhiyong; Haq, Muhammad Abdul; Zhou, Yong; Wang, Dujin

    2017-08-01

    Bilayered poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) composite hydrogels with anisotropic and gradient mechanical properties were prepared by the combination of directional freezing-thawing (DFT) and electrophoresis method. Firstly, PVA hydrogels with aligned channel structure were prepared by the DFT method. Then, HA nanoparticles were in situ synthesized within the PVA hydrogels via electrophoresis. By controlling the time of the electrophoresis process, a bilayered gradient hydrogel containing HA particles in only half of the gel region was obtained. The PVA/HA composite hydrogel exhibited gradient mechanical strength depending on the distance to the cathode. The gradient initial tensile modulus ranging from 0.18MPa to 0.27MPa and the gradient initial compressive modulus from 0.33MPa to 0.51MPa were achieved. The binding strength of the two regions was relatively high and no apparent internal stress or defect was observed at the boundary. The two regions of the bilayered hydrogel also showed different osteoblast cell adhesion properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Graphene Oxide Directed One-Step Synthesis of Flowerlike Graphene@HKUST-1 for Enzyme-Free Detection of Hydrogen Peroxide in Biological Samples.

    Science.gov (United States)

    Wang, Qingxiang; Yang, Yizhen; Gao, Feng; Ni, Jiancong; Zhang, Yanhui; Lin, Zhenyu

    2016-11-30

    A novel metal-organic framework (MOF)-based electroactive nanocomposite containing graphene fragments and HKUST-1 was synthesized via a facile one-step solvothermal method using graphene oxide (GO), benzene-1,3,5-tricarboxylic acid (BTC), and copper nitrate (Cu(NO 3 ) 2 ) as the raw materials. The morphology and structure characterization revealed that the GO could induce the transformation of HKUST-1 from octahedral structure to the hierarchical flower shape as an effective structure-directing agent. Also, it is interesting to find out that the GO was torn into small fragments to participate in the formation of HKUST-1 and then transformed into the reduction form during the solvothermal reaction process, which dramatically increased the surface area, electronic conductivity, and redox-activity of the material. Electrochemical assays showed that the synergy of graphene and HKUST-1 in the nanocomposite leaded to high electrocatalysis, fast response, and excellent selectivity toward the reduction of hydrogen peroxide (H 2 O 2 ). Based on these remarkable advantages, satisfactory results were obtained when the nanocomposite was used as a sensing material for electrochemical determination of H 2 O 2 in the complex biological samples such as human serum and living Raw 264.7 cell fluids.

  13. Application of Direct Current Atmospheric Pressure Glow Microdischarge Generated in Contact with a Flowing Liquid Solution for Synthesis of Au-Ag Core-Shell Nanoparticles.

    Science.gov (United States)

    Dzimitrowicz, Anna; Jamroz, Piotr; Nyk, Marcin; Pohl, Pawel

    2016-04-06

    A direct current atmospheric pressure glow microdischarge (dc-μAPGD) generated between an Ar nozzle microjet and a flowing liquid was applied to produce Au-Ag core-shell nanoparticles (Au@AgCSNPs) in a continuous flow system. Firstly, operating dc-μAPGD with the flowing solution of the Au(III) ions as the cathode, the Au nanoparticles (AuNPs) core was produced. Next, to produce the core-shell nanostructures, the collected AuNPs solution was immediately mixed with an AgNO₃ solution and passed through the system with the reversed polarity to fabricate the Ag nanoshell on the AuNPs core. The formation of Au@AgCSNPs was confirmed using ultraviolet-visible (UV-Vis) absorbance spectrophotometry, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). Three localized surface plasmon resonance absorption bands with wavelengths centered at 372, 546, and 675 nm were observed in the UV-Vis spectrum of Au@AgCSNPs, confirming the reduction of both the Au(III) and Ag(I) ions. The right configuration of metals in Au@AgCSNPs was evidenced by TEM. The Au core diameter was 10.2 ± 2.0 nm, while the thickness of the Ag nanoshell was 5.8 ± 1.8 nm. The elemental composition of the bimetallic nanoparticles was also confirmed by EDS. It is possible to obtain 90 mL of a solution containing Au@AgCSNPs per hour using the applied microdischarge system.

  14. Synthesis and properties of a novel sulfonated poly(arylene ether ketone sulfone) membrane with a high β-value for direct methanol fuel cell applications

    International Nuclear Information System (INIS)

    Xu, Jingmei; Ma, Li; Han, Hailan; Ni, Hongzhe; Wang, Zhe; Zhang, Huixuan

    2014-01-01

    Highlights: • Introduction of carboxyl groups into copolymers resulted in extensive hydrogen bond. • The C-SPAEKS membranes had obviously hydrophilic/hydrophobic phase separation. • The membranes showed low methanol permeability and high β values. • The membranes exhibited good thermal property and desirable mechanical performance. - Abstract: Sulfonated poly(arylene ether ketone sulfone) membranes containing carboxylic acid groups (C-SPAEKS) with different degrees of sulfonation were synthesized by the nucleophilic aromatic substitution reactions of 4-carboxylphenyl hydroquinone (4C-PH), bisphenol A, 3,3′-disulfonated 4,4′-dichlorodiphenyl sulfone, and 4,4′-difluorobenzophenone. The Fourier transform infrared and 1 H NMR analyses of C-SPAEKS revealed the presence of carboxylic acid groups in the C-SPAEKS membranes. The membranes exhibited a low swelling degree and methanol crossover level. The effects of different degrees of sulfonation on the water uptake, proton conductivity, and methanol permeability coefficient of the membranes were studied. The maximum proton conductivity of C-SPAEKS-80 membrane at room temperature was 0.069 S cm −1 , which was higher than that of Nafion ® 117 membrane. The methanol permeability coefficient of C-SPAEKS-80 membrane was 9.15 × 10 −7 cm 2 s −1 at 20 °C, much lower than that of Nafion 117 membrane (22.9 × 10 −7 cm 2 s −1 ). Furthermore, the carboxyl group-containing membranes exhibited a high β-value, further confirming that this series of membranes possess excellent comprehensive performance and can be applied in direct methanol fuel cells

  15. Imidazoline derivative templated synthesis of broccoli-like Bi2S3 and its electrocatalysis towards the direct electrochemistry of hemoglobin.

    Science.gov (United States)

    Chen, Xiaoqian; Wang, Qingxiang; Wang, Liheng; Gao, Feng; Wang, Wei; Hu, Zhengshui

    2015-04-15

    A broccoli-like bismuth sulfide (bBi2S3) was synthesized via a solvothermal method using a self-made imidazoline derivative of 2-undecyl-1-dithioureido-ethyl-imidazoline as the soft template. The morphology and chemical constitution of the product were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electrochemical characterization experiments show that the bBi2S3 has the higher specific surface area and standard heterogeneous electron transfer rate constant than the rod-like Bi2S3 (rBi2S3). Hemoglobin (Hb) was then chosen as a protein model to investigate the electrocatalytic property of the synthesized bBi2S3. The results show that Hb entrapped in the composite film of chitosan and bBi2S3 displays an excellent direct electrochemistry, and retains its biocatalytic activity toward the electro-reduction of hydrogen peroxide. The current response in the amperometry shows a linear response to H2O2 concentrations in the range from 0.4 to 4.8µM with high sensitivity (444µAmM(-1)) and low detection limit (0.096µM). The Michaelis-Menten constant (KM(app)) of the fabricated bioelectrode for H2O2 was determined as low as 1µM. These results demonstrate that the synthesized bBi2S3 offers a new path for the immobilization of redox-active protein and the construction of the third-generation biosensors. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S.E.

    1991-01-01

    This paper reports on reactions of organoboranes. Organoboron routes to unsaturated hydrocarbons. Boronic ester homologation. Properties of organosilicon compounds. Alkene synthesis (Peterson olefination). Allylsilanes and acylsilanes.

  17. Fundamentals, progress, and future directions of nitride-based semiconductors and their composites in two-dimensional limit: A first-principles perspective to recent synthesis

    Science.gov (United States)

    Kecik, D.; Onen, A.; Konuk, M.; Gürbüz, E.; Ersan, F.; Cahangirov, S.; Aktürk, E.; Durgun, E.; Ciraci, S.

    2018-03-01

    on a substrate is addressed. We also examine recent works treating the composite structures of GaN and AlN joined commensurately along their zigzag and armchair edges and forming heterostructures, δ-doping, single, and multiple quantum wells, as well as core/shell structures. Finally, outlooks and possible new research directions are briefly discussed.

  18. Organic synthesis

    International Nuclear Information System (INIS)

    Lallemand, J.Y.; Fetizon, M.

    1988-01-01

    The 1988 progress report of the Organic Synthesis Chemistry laboratory (Polytechnic School, France), is presented. The laboratory activities are centered on the chemistry of natural products, which have a biological activity and on the development of new reactions, useful in the organic synthesis. The research works involve the following domains: the natural products chemistry which are applied in pharmacology, the plants and insects chemistry, the organic synthesis, the radical chemistry new reactions and the bio-organic physicochemistry. The published papers, the congress communications and the thesis are listed [fr

  19. Citrulline directly modulates muscle protein synthesis via the PI3K/MAPK/4E-BP1 pathway in a malnourished state: evidence from in vivo, ex vivo, and in vitro studies.

    Science.gov (United States)

    Le Plénier, Servane; Goron, Arthur; Sotiropoulos, Athanassia; Archambault, Eliane; Guihenneuc, Chantal; Walrand, Stéphane; Salles, Jérome; Jourdan, Marion; Neveux, Nathalie; Cynober, Luc; Moinard, Christophe

    2017-01-01

    Citrulline (CIT) is an endogenous amino acid produced by the intestine. Recent literature has consistently shown CIT to be an activator of muscle protein synthesis (MPS). However, the underlying mechanism is still unknown. Our working hypothesis was that CIT might regulate muscle homeostasis directly through the mTORC1/PI3K/MAPK pathways. Because CIT undergoes both interorgan and intraorgan trafficking and metabolism, we combined three approaches: in vivo, ex vivo, and in vitro. Using a model of malnourished aged rats, CIT supplementation activated the phosphorylation of S6K1 and 4E-BP1 in muscle. Interestingly, the increase in S6K1 phosphorylation was positively correlated (P < 0.05) with plasma CIT concentration. In a model of isolated incubated skeletal muscle from malnourished rats, CIT enhanced MPS (from 30 to 80% CIT vs. Ctrl, P < 0.05), and the CIT effect was abolished in the presence of wortmannin, rapamycin, and PD-98059. In vitro, on myotubes in culture, CIT led to a 2.5-fold increase in S6K1 phosphorylation and a 1.5-fold increase in 4E-BP1 phosphorylation. Both rapamycin and PD-98059 inhibited the CIT effect on S6K1, whereas only LY-294002 inhibited the CIT effect on both S6K1 and 4E-BP1. These findings show that CIT is a signaling agent for muscle homeostasis, suggesting a new role of the intestine in muscle mass control. Copyright © 2017 the American Physiological Society.

  20. Sonochemical synthesis of magnetic core-shell Fe{sub 3}O{sub 4}-ZrO{sub 2} nanoparticles and their application to the highly effective immobilization of myoglobin for direct electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Peng Huaping; Liang Ruping; Zhang Li [Department of Chemistry, Nanchang University, Nanchang 330031 (China); Qiu Jianding, E-mail: jdqiu@ncu.edu.c [Department of Chemistry, Nanchang University, Nanchang 330031 (China)

    2011-04-15

    Graphical abstract: Display Omitted Highlights: Magnetic core-shell Fe{sub 3}O{sub 4}-ZrO{sub 2} nanoparticle was synthesized by sonochemical approach. Fe{sub 3}O{sub 4}-ZrO{sub 2} NPs provided high capacity for trapping Mb on magnetic glassy carbon electrode surface. The constructed Mb/Fe{sub 3}O{sub 4}-ZrO{sub 2} film exhibited excellent electrocatalytic ability for the reduction of H{sub 2}O{sub 2}. The proposed method simplifies the immobilization methodology of proteins. - Abstract: In this study, bifunctional Fe{sub 3}O{sub 4}-ZrO{sub 2} magnetic core-shell nanoparticles (NPs), synthesized by a simple and effective sonochemical approach, were attached to the surface of a magnetic glassy carbon electrode (MGCE) and successfully applied to the immobilization/adsorption of myoglobin (Mb) for constructing a novel biosensor platform. With the advantages of the magnetism and the excellent biocompatibility of the Fe{sub 3}O{sub 4}-ZrO{sub 2} NPs, Mb could be easily immobilized on the surface of the electrode in the present of external magnetic field and well retained its bioactivity, hence dramatically facilitated direct electron transfer of Mb was demonstrated. The proposed Mb/Fe{sub 3}O{sub 4}-ZrO{sub 2} biofilm electrode exhibited excellent electrocatalytic behaviors towards the reduction of H{sub 2}O{sub 2} with a linear range from 0.64 {mu}M to 148 {mu}M. This presented system avoids the complex synthesis for protecting Fe{sub 3}O{sub 4} NPs, supplies a simple, effective and inexpensive way to immobilize protein, and is promising for construction of third-generation biosensors and other bio-magnetic induction devices.

  1. Phase contrast image synthesis

    DEFF Research Database (Denmark)

    Glückstad, J.

    1996-01-01

    A new method is presented for synthesizing arbitrary intensity patterns based on phase contrast imaging. The concept is grounded on an extension of the Zernike phase contrast method into the domain of full range [0; 2 pi] phase modulation. By controlling the average value of the input phase funct...... function and by choosing appropriate phase retardation at the phase contrast filter, a pure phase to intensity imaging is accomplished. The method presented is also directly applicable in dark field image synthesis....

  2. Total synthesis of nepetoidin B

    Science.gov (United States)

    The total synthesis of nepetoidin B (the 2-(3,4-dihydroxyphenyl)ethenyl ester of 3-(3,4-dihydroxy¬phenyl)-2-propenoic acid) has been achieved in two steps from commercially available 1,5-bis(3,4-dimethoxyphenyl)-1,4-pentadien-3-one. Tetramethylated nepetoidin B was prepared directly by Baeyer-Villig...

  3. Structural synthesis of parallel robots

    CERN Document Server

    Gogu, Grigore

    This book represents the fifth part of a larger work dedicated to the structural synthesis of parallel robots. The originality of this work resides in the fact that it combines new formulae for mobility, connectivity, redundancy and overconstraints with evolutionary morphology in a unified structural synthesis approach that yields interesting and innovative solutions for parallel robotic manipulators.  This is the first book on robotics that presents solutions for coupled, decoupled, uncoupled, fully-isotropic and maximally regular robotic manipulators with Schönflies motions systematically generated by using the structural synthesis approach proposed in Part 1.  Overconstrained non-redundant/overactuated/redundantly actuated solutions with simple/complex limbs are proposed. Many solutions are presented here for the first time in the literature. The author had to make a difficult and challenging choice between protecting these solutions through patents and releasing them directly into the public domain. T...

  4. Direct Democracy

    DEFF Research Database (Denmark)

    Beramendi, Virginia; Ellis, Andrew; Kaufman, Bruno

    While many books on direct democracy have a regional or national approach, or simply focus on one of the many mechanisms associated with direct democracy, this Handbook delves into a global comparison of direct democracy mechanisms, including referendums, citizens' initiatives, agenda initiatives...... learned. In addition, the uniquely comprehensive world survey outlines direct democracy provisions in 214 countries and territories and indicates which, if any, of these provisions are used by each country or territory at both the national and sub-national levels. Furthermore, the world survey includes...

  5. Directing 101.

    Science.gov (United States)

    Pintoff, Ernest

    Providing an introduction to anyone considering directing as a field of study or career, this book takes a broad look at the process of directing and encourages students and professionals alike to look outside of the movie industry for inspiration. Chapters in the book discuss selecting and acquiring material; budgeting and financing; casting and…

  6. Finding the K best synthesis plans.

    Science.gov (United States)

    Fagerberg, Rolf; Flamm, Christoph; Kianian, Rojin; Merkle, Daniel; Stadler, Peter F

    2018-04-05

    In synthesis planning, the goal is to synthesize a target molecule from available starting materials, possibly optimizing costs such as price or environmental impact of the process. Current algorithmic approaches to synthesis planning are usually based on selecting a bond set and finding a single good plan among those induced by it. We demonstrate that synthesis planning can be phrased as a combinatorial optimization problem on hypergraphs by modeling individual synthesis plans as directed hyperpaths embedded in a hypergraph of reactions (HoR) representing the chemistry of interest. As a consequence, a polynomial time algorithm to find the K shortest hyperpaths can be used to compute the K best synthesis plans for a given target molecule. Having K good plans to choose from has many benefits: it makes the synthesis planning process much more robust when in later stages adding further chemical detail, it allows one to combine several notions of cost, and it provides a way to deal with imprecise yield estimates. A bond set gives rise to a HoR in a natural way. However, our modeling is not restricted to bond set based approaches-any set of known reactions and starting materials can be used to define a HoR. We also discuss classical quality measures for synthesis plans, such as overall yield and convergency, and demonstrate that convergency has a built-in inconsistency which could render its use in synthesis planning questionable. Decalin is used as an illustrative example of the use and implications of our results.

  7. Study of various synthesis techniques of nanomaterials

    Science.gov (United States)

    Patil, Madhuri; Sharma, Deepika; Dive, Avinash; Mahajan, Sandeep; Sharma, Ramphal

    2018-05-01

    Development of synthesis techniques of realizing nano-materials over a range of sizes, shapes, and chemical compositions is an important aspect of nanotechnology. The remarkable size dependent physical & chemical properties of particles have fascinated and inspired research activity in this direction. This paper describes some aspects on synthesis and characterization of particles of metals, metal alloys, and oxides, either in the form of thin films or bulk shapes. A brief discussion on processing of thin-films is also described.

  8. Template-directed synthesis of linear porphyrin oligomers: classical, Vernier and mutual Vernier† †Electronic supplementary information (ESI) available: Synthesis and characterization of new compounds, ladder complexes, UV-vis-NIR titrations and binding data for reference compounds and for the formation of linear oligomer complexes, calculation of effective molarities, analytical GPC calibration and molar absorption coefficients. See DOI: 10.1039/c6sc05355f Click here for additional data file.

    Science.gov (United States)

    Kamonsutthipaijit, Nuntaporn

    2017-01-01

    Three different types of template-directed syntheses of linear porphyrin oligomers are presented. In the classical approach the product has the same number of binding sites as the template, whereas in Vernier reactions the product has the lowest common multiple of the numbers of binding sites in the template and the building block. Mutual Vernier templating is like Vernier templating except that both strands of the Vernier complex undergo coupling simultaneously, so that it becomes impossible to say which is the ‘template’ and which is the ‘building block’. The template-directed synthesis of monodisperse linear oligomers is more difficult than that of cyclic oligomers, because the products of linear templating have reactive ends. All three types of templating are demonstrated here, and used to prepare a nickel(ii) porphyrin dodecamer with 4-pyridyl substituents on all twelve porphyrin units. The stabilities and cooperativities of the double-strand complexes involved in these reactions were investigated by UV-vis-NIR titration. The four-rung ladder duplex has a stability constant of about 2 × 1018 M–1 in dichloromethane at 298 K. PMID:28553508

  9. Environment and hydroelectricity colloquium - Synthesis

    International Nuclear Information System (INIS)

    Aelbrecht, Denis; Abadie, Marc; Baril, Dominique; Delacoux, Jean-Yves; Delaunay, Alexis; Loudiere, Daniel; Penalba, Anne; Pont, Didier; Rocq, Sylvie; Roult, Didier; Sheibani, Neda; Thevenet, Regis; Weisrock, Ghislain

    2010-10-01

    This document proposes a synthesis of a colloquium dedicated to the interactions between hydroelectric installations and the environment. The four sessions respectively addressed the impacts of hydroelectric installations on ecosystems and more particularly on pisciculture populations (strategies for migration restoration, development of fish-friendly turbines), the sedimentary management of hydroelectric installations, the implementation of the Water Framework European Directive (Austrian experience, biological assessment criteria), and examples of environmental integration of existing or projected installations

  10. Directing Creativity

    DEFF Research Database (Denmark)

    Darsø, Lotte; Ibbotson, Piers

    2008-01-01

    In this article we argue that leaders facing complex challenges can learn from the arts, specifically that leaders can learn by examining how theatre directors direct creativity through creative constraints. We suggest that perceiving creativity as a boundary phenomenon is helpful for directing it....... Like leaders, who are caught in paradoxical situations where they have to manage production and logistics simultaneously with making space for creativity and innovation, theatre directors need to find the delicate balance between on one hand renewal of perceptions, acting and interaction...... and on the other hand getting ready for the opening night. We conclude that the art of directing creativity is linked to developing competencies of conscious presence, attention and vigilance, whereas the craft of directing creativity concerns communication, framing and choice....

  11. Direct Heat

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P J

    1990-01-01

    Potential resources and applications of earth heat in the form of geothermal energy are large. United States direct uses amount to 2,100 MWt thermal and worldwide 8,850 MWt above a reference temperature of 35 degrees Celsius. Space and district heating are the major direct uses of geothermal energy. Equipment employed in direct use projects is of standard manufacture and includes downhole and circulation pumps, transmission and distribution pipelines, heat exchangers and convectors, heat pumps and chillers. Direct uses of earth heat discussed are space and district heating, greenhouse heating and fish farming, process and industrial applications. The economic feasibility of direct use projects is governed by site specific factors such as location of user and resource, resource quality, system load factor and load density, as well as financing. Examples are presented of district heating in Klamath Falls, and Elko. Further developments of direct uses of geothermal energy will depend on matching user needs to the resource, and improving load factors and load density.

  12. Directed polymers versus directed percolation

    Science.gov (United States)

    Halpin-Healy, Timothy

    1998-10-01

    Universality plays a central role within the rubric of modern statistical mechanics, wherein an insightful continuum formulation rises above irrelevant microscopic details, capturing essential scaling behaviors. Nevertheless, occasions do arise where the lattice or another discrete aspect can constitute a formidable legacy. Directed polymers in random media, along with its close sibling, directed percolation, provide an intriguing case in point. Indeed, the deep blood relation between these two models may have sabotaged past efforts to fully characterize the Kardar-Parisi-Zhang universality class, to which the directed polymer belongs.

  13. Microemulsion Synthesis of Nanoparticles

    Directory of Open Access Journals (Sweden)

    Gotić, M.

    2013-11-01

    Full Text Available Nanoparticles and nanomaterials have wide applications in electronics, physics, material design, being also utilized as sensors, catalysts, and more and more in biomedicine. Microemulsions are an exceptionally suitable medium for the synthesis of nanoparticles due to their thermodynamical stability, great solubility of both polar and nonpolar components, as well as their ability to control the size, dispersity and shape of the particles. This review presents microemulsion techniques for the synthesis of inorganic nanoparticles. It takes place in water-in-oil microemulsions by mixing one microemulsion with a cationic precursor, and the other with a precipitating or reducing agent, or by direct addition of reducing agents or gas (O2, NH3 ili CO2 into microemul sion (Fig. 1. Metal nanoparticles are used as catalysts, sensors, ferrofluids etc. They are produced by reducing the metal cation with a suitable reducing agent. In a similar way, one can prepare nanoparticles of alloys from the metal salts, provided that the metals are mutually soluble. The microemulsion technique is also suitable for depositing nanoparticles onto various surfaces. Highly active catalysts made from nanoparticles of Pt, Pd, Rh and other noble metals may be obtained in this way. Metal oxides and hydroxides may be prepared by hydrolysis or precipitation in the water core of microemulsion. Precipitation can be initiated by adding the base or precipitating agent into the microemulsion with water solution of metal ions. Similarly, nanoparticles may be prepared of sulphides, halogenides, cyanides, carbonates, sulphates and other insoluble metal salts. To prevent oxidation of nanoparticles, especially Fe, the particles are coated with inert metals, oxides, various polymers etc. Coating may provide additional functionality; e.g. coating with gold allows subsequent functionalization with organic compounds containing sulphur, due to the strong Au–S bond. Polymer coatings decrease

  14. Ordered mesoporous MFe(2)O(4) (M = Co, Cu, Mg, Ni, Zn) thin films with nanocrystalline walls, uniform 16 nm diameter pores and high thermal stability: template-directed synthesis and characterization of redox active trevorite.

    Science.gov (United States)

    Haetge, Jan; Suchomski, Christian; Brezesinski, Torsten

    2010-12-20

    In this paper, we report on ordered mesoporous NiFe(2)O(4) thin films synthesized via co-assembly of hydrated ferric nitrate and nickel chloride with an amphiphilic diblock copolymer, referred to as KLE. We establish that the NiFe(2)O(4) samples are highly crystalline after calcination at 600 °C, and that the conversion of the amorphous inorganic framework comes at little cost to the ordering of the high quality cubic network of pores averaging 16 nm in diameter. We further show that the synthesis method employed in this work can be readily extended to other ferrites, such as CoFe(2)O(4), CuFe(2)O(4), MgFe(2)O(4), and ZnFe(2)O(4), which could pave the way for innovative device design. While this article focuses on the self-assembly and characterization of these materials using various state-of-the-art techniques, including electron microscopy, grazing incidence small-angle X-ray scattering (GISAXS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray photoelectron spectroscopy (XPS), as well as UV-vis and Raman spectroscopy, we also examine the electrochemical properties and show the benefits of combining a continuous mesoporosity with nanocrystalline films. KLE-templated NiFe(2)O(4) electrodes exhibit reasonable levels of lithium ion storage at short charging times which stem from facile pseudocapacitance.

  15. Neurotensin enhances estradiol induced DNA synthesis in immature rat uterus

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, A.; Vijayan, E.

    1985-05-27

    Systemic administration of Neurotensin, a tridecapeptide, in immature rats treated with estradiol benzoate significantly enhances uterine DNA synthesis as reflected by the incorporation of /sup 3/H-thymidine. The peptide may have a direct action on the uterus. Substance P, a related peptide, had no effect on uterine DNA synthesis. 18 references, 4 tables.

  16. Direct marketing

    Directory of Open Access Journals (Sweden)

    Čičić Muris

    2002-01-01

    Full Text Available Direct Marketing (DM is usually treated as unworthy activity, with actions at the edge of legality and activities minded cheating. Despite obvious problems regarding ethics and privacy threat, DM with its size, importance and role in a concept of integrated marketing communication deserves respect and sufficient analysis and review

  17. Chronological protein synthesis in regenerating rat liver.

    Science.gov (United States)

    He, Jinjun; Hao, Shuai; Zhang, Hao; Guo, Fuzheng; Huang, Lingyun; Xiao, Xueyuan; He, Dacheng

    2015-07-01

    Liver regeneration has been studied for decades; however, its regulation remains unclear. In this study, we report a dynamic tracing of protein synthesis in rat regenerating liver with a new proteomic technique, (35) S in vivo labeling analysis for dynamic proteomics (SiLAD). Conventional proteomic techniques typically measure protein alteration in accumulated amounts. The SiLAD technique specifically detects protein synthesis velocity instead of accumulated amounts of protein through (35) S pulse labeling of newly synthesized proteins, providing a direct way for analyzing protein synthesis variations. Consequently, protein synthesis within short as 30 min was visualized and protein regulations in the first 8 h of regenerating liver were dynamically traced. Further, the 3.5-5 h post partial hepatectomy (PHx) was shown to be an important regulatory turning point by acute regulation of many proteins in the initiation of liver regeneration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis of allocolchicinoids: a 50 year journey

    International Nuclear Information System (INIS)

    Sitnikov, N S; Fedorov, A Yu

    2013-01-01

    Published data on the stereo- and enantioselective synthesis of allocolchicinoids, which are of interest as antitumour agents, are summarized. The stereochemistry of these compounds is described. Two key approaches to their preparation are considered, namely, the synthesis from natural colchicine and total synthesis from commercially available reagents. Various total syntheses of N-acetylcolchicinol are performed using biaryl oxidative and reductive coupling, cyclopropanation–ring expansion and Nicholas reaction. The synthetic routes to allocolchicine are based on Diels–Alder cycloaddition, combination of metathesis and Diels–Alder reaction and direct catalytic CH-arylation. Analogues of the colchicine site ligands incorporating heteroaromatic rings are briefly considered; their structural features and methods of synthesis are discussed. The bibliography includes 144 references.

  19. Total synthesis of ciguatoxin.

    Science.gov (United States)

    Hamajima, Akinari; Isobe, Minoru

    2009-01-01

    Something fishy: Ciguatoxin (see structure) is one of the principal toxins involved in ciguatera poisoning and the target of a total synthesis involving the coupling of three segments. The key transformations in this synthesis feature acetylene-dicobalthexacarbonyl complexation.

  20. View synthesis using parallax invariance

    Science.gov (United States)

    Dornaika, Fadi

    2001-06-01

    View synthesis becomes a focus of attention of both the computer vision and computer graphics communities. It consists of creating novel images of a scene as it would appear from novel viewpoints. View synthesis can be used in a wide variety of applications such as video compression, graphics generation, virtual reality and entertainment. This paper addresses the following problem. Given a dense disparity map between two reference images, we would like to synthesize a novel view of the same scene associated with a novel viewpoint. Most of the existing work is relying on building a set of 3D meshes which are then projected onto the new image (the rendering process is performed using texture mapping). The advantages of our view synthesis approach are as follows. First, the novel view is specified by a rotation and a translation which are the most natural way to express the virtual location of the camera. Second, the approach is able to synthesize highly realistic images whose viewing position is significantly far away from the reference viewpoints. Third, the approach is able to handle the visibility problem during the synthesis process. Our developed framework has two main steps. The first step (analysis step) consists of computing the homography at infinity, the epipoles, and thus the parallax field associated with the reference images. The second step (synthesis step) consists of warping the reference image into a new one, which is based on the invariance of the computed parallax field. The analysis step is working directly on the reference views, and only need to be performed once. Examples of synthesizing novel views using either feature correspondences or dense disparity map have demonstrated the feasibility of the proposed approach.

  1. Directional differentiation of chicken embryonic stem cells into ...

    African Journals Online (AJOL)

    Jane

    2011-08-01

    Aug 1, 2011 ... In this study, the differentiation potential of chicken ES cells was investigated ... Key words: Chicken embryonic stem cells, in vitro, directional differentiation, .... synthesized by using the Revert Aid first strand cDNA synthesis kit.

  2. Synthesis of novel azaxanthones derived from N-hydroxyazoles

    DEFF Research Database (Denmark)

    Kristensen, Jesper Langgaard; Vedsø, P.; Begtrup, M.

    2002-01-01

    The synthesis of a new class of azaxanthones is presented. The N-O functionality of 1-hydroxypyrazole and 1-hydroxy-1,2,3-triazole was used to direct metalation and subsequently in the new ring systems....

  3. An Efficient, Eco-friendly and Sustainable One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones Directly from Alcohols Catalyzed by Heteropolyanion-Based Ionic Liquids.

    Science.gov (United States)

    Fu, Renzhong; Yang, Yang; Ma, Xudong; Sun, Yu; Li, Jin; Gao, Hang; Hu, Huaxing; Zeng, Xiaojun; Yi, Jun

    2017-09-11

    Efficient, eco-friendly and sustainable access to 3,4-dihydropyrimidin-2(1 H )-ones directly from alcohols under microwave and solvent-free conditions has been reported. The practical protocol involves heteropolyanion-based catalyzed oxidation of alcohols to aldehydes with NaNO₃ as the oxidant followed by cyclocondensation with dicarbonyl compounds and urea or thiourea in a two-step, one-pot manner. Compatibility with different functional groups, good to excellent yields and reusable catalysts are the main highlights. The utilization of alcohols instead of aldehydes is a valid and green alternative to the classical Biginelli reaction.

  4. Synthesis of 17α-[(E)-2-[125I]iodoethenyl]androsta-4-6-dien-17β-o l-3-one, an active -site-directed photoaffinity radiolabel for androgen-binding proteins

    International Nuclear Information System (INIS)

    Diaz Cruz, P.J.; Smith, H.E.; Vanderbilt Univ., Nashville, TN; Danzo, B.J.; Clanton, J.A.; Mason, N.S.

    1993-01-01

    The active-site-directed photoaffinity radiolabel for androgen-binding proteins, 17α-[(E)-2-[ 125 I]iodoethenyl]androsta-4,6-dien-17β-ol-3-one, was prepared by reaction of 17α-[(E)-2-tributyltin(IV)ethenyl]androsta-4,6-dien-17β-ol-3-one with carrier added sodium iodide-125 in the presence of hydrogen peroxide and acetic acid. Purification by HPLC gave the radiolabeled steroid in 52% radiochemical yield with a specific activity of 27 Ci/mmol and 100% radiochemical purity. (author)

  5. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    OpenAIRE

    Idris, Jamaliah; Christian, Chukwuekezie; Gaius, Eyu

    2013-01-01

    Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC) and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis par...

  6. Direct Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Austern, N. [University of Pittsburgh, Pittsburgh, PA (United States)

    1963-01-15

    In order to give a unified presentation of one point of view, these lectures are devoted only to a detailed development of the standard theories of direct reactions, starting from basic principles. Discussion is given of the present status of the theories, of the techniques used for practical calculation, and of possible future developments. The direct interaction (DI) aspects of a reaction are those which involve only a few of the many degrees of freedom of a nucleus. In fact the minimum number of degrees of freedom which must be involved in a reaction are those required to describe the initial and final channels, and DI studies typically consider these degrees of freedom and no others. Because of this simplicity DI theories may be worked out in painstaking detail. DI processes concern only part of the wave function for a problem. The other part involves complicated excitations of many degrees of freedom, and gives the compound nucleus (CN) effects. While it is extremely interesting to learn how to separate DI and CN effects in an orderly manner, if they are both present in a reaction, no suitable method has yet been found. Instead, current work stresses the kinds of reactions and the kinds of final states in which DI effects dominate and in which CN effects may almost be forgotten. The DI cross-sections which are studied are often extremely large, comparable to elastic scattering cross-sections. (author)

  7. Speech Synthesis Applied to Language Teaching.

    Science.gov (United States)

    Sherwood, Bruce

    1981-01-01

    The experimental addition of speech output to computer-based Esperanto lessons using speech synthesized from text is described. Because of Esperanto's phonetic spelling and simple rhythm, it is particularly easy to describe the mechanisms of Esperanto synthesis. Attention is directed to how the text-to-speech conversion is performed and the ways…

  8. The Interpretation of Cholesterol Balance Derived Synthesis Data and Surrogate Noncholesterol Plasma Markers for Cholesterol Synthesis under Lipid Lowering Therapies

    Directory of Open Access Journals (Sweden)

    Frans Stellaard

    2017-01-01

    Full Text Available The cholesterol balance procedure allows the calculation of cholesterol synthesis based on the assumption that loss of endogenous cholesterol via fecal excretion and bile acid synthesis is compensated by de novo synthesis. Under ezetimibe therapy hepatic cholesterol is diminished which can be compensated by hepatic de novo synthesis and hepatic extraction of plasma cholesterol. The plasma lathosterol concentration corrected for total cholesterol concentration (R_Lath as a marker of de novo cholesterol synthesis is increased during ezetimibe treatment but unchanged under treatment with ezetimibe and simvastatin. Cholesterol balance derived synthesis data increase during both therapies. We hypothesize the following. (1 The cholesterol balance data must be applied to the hepatobiliary cholesterol pool. (2 The calculated cholesterol synthesis value is the sum of hepatic de novo synthesis and the net plasma—liver cholesterol exchange rate. (3 The reduced rate of biliary cholesterol absorption is the major trigger for the regulation of hepatic cholesterol metabolism under ezetimibe treatment. Supportive experimental and literature data are presented that describe changes of cholesterol fluxes under ezetimibe, statin, and combined treatments in omnivores and vegans, link plasma R_Lath to liver function, and define hepatic de novo synthesis as target for regulation of synthesis. An ezetimibe dependent direct hepatic drug effect cannot be excluded.

  9. Synthesis and characterization of Pt-Sn-Ni alloys to application as catalysts for direct ethanol fuel cells; Sintese e caracterizacao de ligas de Pt-Sn-Ni para aplicacao como caztalisadores em celulas a combustivel do tipo DEFC

    Energy Technology Data Exchange (ETDEWEB)

    Silva, E.L. da; Correa, P.S.; Oliveira, E.L. de; Takimi, A.S.; Malfatti, C.F., E-mail: celia.malfatti@ufrgs.b [Universidade Federal do Rio Grande do Sul (LAPEC/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica. Lab. de Pesquisa em Corrosao; Radtke, C. [Universidade Federal do Rio Grande do Sul (IQ/UFRGS), Porto Alegre, RS (Brazil). Inst. de Quimica

    2010-07-01

    Direct ethanol fuel cells (DEFCs) have been the focus of recent research due its application in mobile energy sources. In order to obtain the maximum efficiency from these systems, it is necessary the total ethanol oxidation, which implies in C-C bond break. Different catalysts described in literature are employed with this intent. This work consists in studying PtSnNi catalysts supported on carbon Vulcan XC72R, to application in DEFCs. Thus, it was used the impregnation/reduction method, varying the atomic proportion among Pt, Sn and Ni. The alloys were characterized by X-Ray Diffraction, Cyclic Voltammetry and Transmission Microscopy. Preliminary results show that predominant structure on the catalysts is the face centered cubic platinum and the densities currents are dependent on the platinum amount. (author)

  10. Future direction of direct writing

    Science.gov (United States)

    Kim, Nam-Soo; Han, Kenneth N.

    2010-11-01

    Direct write technology using special inks consisting of finely dispersed metal nanoparticles in liquid is receiving an undivided attention in recent years for its wide range of applicability in modern electronic industry. The application of this technology covers radio frequency identification-tag (RFID-tag), flexible-electronics, organic light emitting diodes (OLED) display, e-paper, antenna, bumpers used in flip-chip, underfilling, frit, miniresistance applications and biological uses, artificial dental applications and many more. In this paper, the authors have reviewed various direct write technologies on the market and discussed their advantages and shortfalls. Emphasis has given on microdispensing deposition write (MDDW), maskless mesoscale materials deposition (M3D), and ink-jet technologies. All of these technologies allow printing various patterns without employing a mask or a resist with an enhanced speed with the aid of computer. MDDW and M3D are capable of drawing patterns in three-dimension and MDDW, in particular, is capable of writing nanoinks with high viscosity. However, it is still far away for direct write to be fully implemented in the commercial arena. One of the hurdles to overcome is in manufacturing conductive inks which are chemically and physically stable, capable of drawing patterns with acceptable conductivity, and also capable of drawing patterns with acceptable adhesiveness with the substrates. The authors have briefly discussed problems involved in manufacturing nanometal inks to be used in various writing devices. There are numerous factors to be considered in manufacturing such inks. They are reducing agents, concentrations, oxidation, compact ability allowing good conductivity, and stability in suspension.

  11. Stereodivergent synthesis with a programmable molecular machine

    Science.gov (United States)

    Kassem, Salma; Lee, Alan T. L.; Leigh, David A.; Marcos, Vanesa; Palmer, Leoni I.; Pisano, Simone

    2017-09-01

    It has been convincingly argued that molecular machines that manipulate individual atoms, or highly reactive clusters of atoms, with Ångström precision are unlikely to be realized. However, biological molecular machines routinely position rather less reactive substrates in order to direct chemical reaction sequences, from sequence-specific synthesis by the ribosome to polyketide synthases, where tethered molecules are passed from active site to active site in multi-enzyme complexes. Artificial molecular machines have been developed for tasks that include sequence-specific oligomer synthesis and the switching of product chirality, a photo-responsive host molecule has been described that is able to mechanically twist a bound molecular guest, and molecular fragments have been selectively transported in either direction between sites on a molecular platform through a ratchet mechanism. Here we detail an artificial molecular machine that moves a substrate between different activating sites to achieve different product outcomes from chemical synthesis. This molecular robot can be programmed to stereoselectively produce, in a sequential one-pot operation, an excess of any one of four possible diastereoisomers from the addition of a thiol and an alkene to an α,β-unsaturated aldehyde in a tandem reaction process. The stereodivergent synthesis includes diastereoisomers that cannot be selectively synthesized through conventional iminium-enamine organocatalysis. We anticipate that future generations of programmable molecular machines may have significant roles in chemical synthesis and molecular manufacturing.

  12. Bound Alternative Direction Optimization for Image Deblurring

    Directory of Open Access Journals (Sweden)

    Xiangrong Zeng

    2014-01-01

    the ℓp regularizer by a novel majorizer and then, based on a variable splitting, to reformulate the bound unconstrained problem into a constrained one, which is then addressed via an augmented Lagrangian method. The proposed algorithm actually combines the reweighted ℓ1 minimization method and the alternating direction method of multiples (ADMM such that it succeeds in extending the application of ADMM to ℓp minimization problems. The conducted experimental studies demonstrate the superiority of the proposed algorithm for the synthesis ℓp minimization over the state-of-the-art algorithms for the synthesis ℓ1 minimization on image deblurring.

  13. Invariant amino acids in the Mur peptide synthetases of bacterial peptidoglycan synthesis and their modification by site-directed mutagenesis in the UDP-MurNAc:L-alanine ligase from Escherichia coli.

    Science.gov (United States)

    Bouhss, A; Mengin-Lecreulx, D; Blanot, D; van Heijenoort, J; Parquet, C

    1997-09-30

    The comparison of the amino acid sequences of 20 cytoplasmic peptidoglycan synthetases (MurC, MurD, MurE, MurF, and Mpl) from various bacterial organisms has allowed us to detect common invariants: seven amino acids and the ATP-binding consensus sequence GXXGKT/S all at the same position in the alignment. The Mur synthetases thus appeared as a well-defined class of closely functionally related proteins. The conservation of a constant backbone length between certain invariants suggested common structural motifs. Among the other enzymes catalyzing a peptide bond formation driven by ATP hydrolysis to ADP and Pi, only folylpoly-gamma-l-glutamate synthetases presented the same common conserved amino acid residues, except for the most N-terminal invariant D50. Site-directed mutageneses were carried out to replace the K130, E174, H199, N293, N296, R327, and D351 residues by alanine in the MurC protein from Escherichia coli taken as model. For this purpose, plasmid pAM1005 was used as template, MurC being highly overproduced in this genetic setting. Analysis of the Vmax values of the mutated proteins suggested that residues K130, E174, and D351 are essential for the catalytic process whereas residues H199, N293, N296, and R327 were not. Mutations K130A, H199A, N293A, N296A, and R327A led to important variations of the Km values for one or more substrates, thereby indicating that these residues are involved in the structure of the active site and suggesting that the binding order of the substrates could be ATP, UDP-MurNAc, and alanine. The various mutated murC plasmids were tested for their effects on the growth, cell morphology, and peptidoglycan cell content of a murC thermosensitive strain at 42 degrees C. The observed effects (complementation, altered morphology, and reduced peptidoglycan content) paralleled more or less the decreased values of the MurC activity of each mutant.

  14. Biomimetic and Bioinspired Synthesis of Nanomaterials/Nanostructures.

    Science.gov (United States)

    Zan, Guangtao; Wu, Qingsheng

    2016-03-16

    In recent years, due to its unparalleled advantages, the biomimetic and bioinspired synthesis of nanomaterials/nanostructures has drawn increasing interest and attention. Generally, biomimetic synthesis can be conducted either by mimicking the functions of natural materials/structures or by mimicking the biological processes that organisms employ to produce substances or materials. Biomimetic synthesis is therefore divided here into "functional biomimetic synthesis" and "process biomimetic synthesis". Process biomimetic synthesis is the focus of this review. First, the above two terms are defined and their relationship is discussed. Next different levels of biological processes that can be used for process biomimetic synthesis are compiled. Then the current progress of process biomimetic synthesis is systematically summarized and reviewed from the following five perspectives: i) elementary biomimetic system via biomass templates, ii) high-level biomimetic system via soft/hard-combined films, iii) intelligent biomimetic systems via liquid membranes, iv) living-organism biomimetic systems, and v) macromolecular bioinspired systems. Moreover, for these five biomimetic systems, the synthesis procedures, basic principles, and relationships are discussed, and the challenges that are encountered and directions for further development are considered. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hamiltonian Algorithm Sound Synthesis

    OpenAIRE

    大矢, 健一

    2013-01-01

    Hamiltonian Algorithm (HA) is an algorithm for searching solutions is optimization problems. This paper introduces a sound synthesis technique using Hamiltonian Algorithm and shows a simple example. "Hamiltonian Algorithm Sound Synthesis" uses phase transition effect in HA. Because of this transition effect, totally new waveforms are produced.

  16. Synthesis of Mechanisms

    DEFF Research Database (Denmark)

    Hansen, John Michael

    1999-01-01

    These notes describe an automated procedure for analysis and synthesis of mechanisms. The analysis method is based on the body coordinate formulation, and the synthesis is based on applying optimization methods, used to minimize the difference between an actual and a desired behaviour...

  17. Synthesis of oligonucleotide phosphorodithioates

    DEFF Research Database (Denmark)

    Beaton, G.; Brill, W. K D; Grandas, A.

    1991-01-01

    The synthesis of DNA containing sulfur at the two nonbonding internucleotide valencies is reported. Several different routes using either tervalent or pentavalent mononucleotide synthons are described.......The synthesis of DNA containing sulfur at the two nonbonding internucleotide valencies is reported. Several different routes using either tervalent or pentavalent mononucleotide synthons are described....

  18. Synthesis of Isoiminosugars

    DEFF Research Database (Denmark)

    Hyldtoft, Lene; Godskesen, Michael Anders; Lundt, Inge

    1998-01-01

    A short synthesis of isoiminosugars have been developed. Bromolactones are diastereoselectively alkylated at C-2 followed by ring closure to the corresponding lactams. Reduction of these then gives isoiminosugars......A short synthesis of isoiminosugars have been developed. Bromolactones are diastereoselectively alkylated at C-2 followed by ring closure to the corresponding lactams. Reduction of these then gives isoiminosugars...

  19. Spatial control of direct chemical vapor deposition of graphene on silicon dioxide by directional copper dewetting

    NARCIS (Netherlands)

    van den Beld, Wesley Theodorus Eduardus; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    In this paper we present a method for the spatial control of direct graphene synthesis onto silicon dioxide by controlled dewetting. The dewetting process is controlled through a combination of using a grooved substrate and conducting copper deposition at an angle. The substrate is then treated

  20. Integrated biofuels process synthesis

    DEFF Research Database (Denmark)

    Torres-Ortega, Carlo Edgar; Rong, Ben-Guang

    2017-01-01

    Second and third generation bioethanol and biodiesel are more environmentally friendly fuels than gasoline and petrodiesel, andmore sustainable than first generation biofuels. However, their production processes are more complex and more expensive. In this chapter, we describe a two-stage synthesis......% used for bioethanol process), and steam and electricity from combustion (54%used as electricity) in the bioethanol and biodiesel processes. In the second stage, we saved about 5% in equipment costs and 12% in utility costs for bioethanol separation. This dual synthesis methodology, consisting of a top......-level screening task followed by a down-level intensification task, proved to be an efficient methodology for integrated biofuel process synthesis. The case study illustrates and provides important insights into the optimal synthesis and intensification of biofuel production processes with the proposed synthesis...

  1. VHDL for logic synthesis

    CERN Document Server

    Rushton, Andrew

    2011-01-01

    Many engineers encountering VHDL (very high speed integrated circuits hardware description language) for the first time can feel overwhelmed by it. This book bridges the gap between the VHDL language and the hardware that results from logic synthesis with clear organisation, progressing from the basics of combinational logic, types, and operators; through special structures such as tristate buses, register banks and memories, to advanced themes such as developing your own packages, writing test benches and using the full range of synthesis types. This third edition has been substantially rewritten to include the new VHDL-2008 features that enable synthesis of fixed-point and floating-point hardware. Extensively updated throughout to reflect modern logic synthesis usage, it also contains a complete case study to demonstrate the updated features. Features to this edition include: * a common VHDL subset which will work across a range of different synthesis systems, targeting a very wide range of technologies...

  2. Audio system using binaural synthesis for multimodal telepresence applications

    DEFF Research Database (Denmark)

    Madsen, Esben; Markovic, Milos; Olesen, Søren Krarup

    2013-01-01

    are implemented in a distributed manner. Body-tracking of all participants is provided through the system for the purpose of using binaural synthesis for directional sound. Head-worn microphones are used to capture sound, and the visitor is provided with directional sound through headphones. The visitor...

  3. Synthesis of ferroelectric nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Roervik, Per Martin

    2008-12-15

    respectively BaTi2O5/BaTi5O11 and Na2Ti6O13 for the two different systems, in contradiction to the previous studies. It was shown that NaCl reacted with BaO(PbO) resulting in loss of volatile BaCl2 (PbCl2 ) and formation and preferential growth of titanium oxide-rich nanorods instead of the target phase BaTiO3 (or PbTiO3 ). The molten salt synthesis route may therefore not necessarily yield nanorods of the target ternary oxide as reported previously. In addition, the importance of NaCl(g) for the growth of nanorods below the melting point of NaCl was demonstrated in a special experimental setup, where NaCl and the precursors were physically separated. In Paper II and III, a hydrothermal synthesis method to grow arrays and hierarchical nanostructures of PbTiO3 nanorods and platelets on substrates is presented. Hydrothermal treatment of an amorphous PbTiO3 precursor in the presence of a surfactant and PbTiO3 or SrTiO3 substrates resulted in the growth of PbTiO3 nanorods and platelets aligned in the crystallographic <100> orientations of the SrTiO3 substrates. PbTiO3 nanorods oriented perpendicular to the substrate surface could also be grown directly on the substrate by a modified synthesis method. The hydrothermal method described in Paper II and III was developed on the basis of the method described in Appendices I and II. In Paper IV, a template-assisted method to make PbTiO3 nanotubes is presented. An equimolar Pb-Ti sol was dropped onto porous alumina membranes and penetrated into the channels of the template. Single-phase PbTiO3 perovskite nanotubes were obtained by annealing at 700 degrees Celsius for 6 h. The nanotubes had diameters of 200 - 400 nm with a wall thickness of approximately 20 nm. Excess PbO or annealing in a Pb-containing atmosphere was not necessary in order to achieve single phase PbTiO3 nanotubes. The influence of the heating procedure and the sol concentration is discussed. In Paper V, a piezoresponse force microscopy study of single PbTiO3 nanorods is

  4. The synthesis of nanostructured, phase pure catalysts by hydrodynamic cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Moser, W.R.; Sunstrom, J.E.; Marshik-Geurts, B.J. [Worcester Polytechnic Institute, Worcester, MA (United States)

    1995-12-01

    A new process for the synthesis of advanced catalytic materials based on performing the synthesis under hydrodynamic cavitation conditions has been discovered. This continuous process for catalyst synthesis resulted in the formation of both supported and unsupported catalysts. The advantage of the process over classical methods of synthesis is that it permits the formation of a wide variety of nanostructured catalysts in exceptionally high phase purities. The synthesis of platinum and palladium catalysts supported on alumina and other supports resulted in high dispersions of the noble metals. The synthesis of alpha, beta- and gamma-bismuth molybdates resulted in catalysts having superior phase purities as compared to several other classical methods of synthesis. The beta-bismuth molybdate was synthesized directly onto Cabosil. These studies showed that the particle size of the active component could be varied from a few manometers to much larger grains. The process enabled the synthesis of other complex metal oxides like perovskites as pure phases. The process uses a commercially available Microfluidizer.

  5. Applying flow chemistry: methods, materials, and multistep synthesis.

    Science.gov (United States)

    McQuade, D Tyler; Seeberger, Peter H

    2013-07-05

    The synthesis of complex molecules requires control over both chemical reactivity and reaction conditions. While reactivity drives the majority of chemical discovery, advances in reaction condition control have accelerated method development/discovery. Recent tools include automated synthesizers and flow reactors. In this Synopsis, we describe how flow reactors have enabled chemical advances in our groups in the areas of single-stage reactions, materials synthesis, and multistep reactions. In each section, we detail the lessons learned and propose future directions.

  6. Conclusions, synthesis, and future directions: understanding sources of population change

    Science.gov (United States)

    Esler, Daniel N.; Flint, Paul L.; Derksen, Dirk V.; Savard, Jean-Pierre L.; Eadie, John M.

    2015-01-01

    The material in this volume reflects the burgeoning interest in sea ducks, both as study species with compelling and unique ecological attributes and as taxa of conservation concern. In this review, we provide perspective on the current state of sea duck knowledge by highlighting key findings in the preceding chapters that are of particular value for understanding or influencing population change. We also introduce a conceptual model that characterizes links among topics covered by individual chapters and places them in the context of demographic responses. Finally, we offer recommendations for areas of future research that we suggest will have importance for understanding and managing sea duck population dynamics.

  7. Nickel-catalyzed direct synthesis of dialkoxymethane ethers

    Indian Academy of Sciences (India)

    MURUGAN SUBARAMANIAN

    Nickel catalysis; alcohol; paraformaldehyde; ether; solvent-free condition. 1. Introduction ..... oxidation and Dopamine Release with Protective Effects. Against Central ... P, Ghosh A, Saha R and Saha B 2016 A Review on the. Advancement of ...

  8. Direct synthesis of acetylketene N,S-acetals with benzoylcyanamide

    International Nuclear Information System (INIS)

    Kolomnikova, G.D.; Sorokin, P.V.; Chizhevskij, I.T.; Petrovskij, P.V.; Bregadze, V.I.; Dolgushin, F.M.; Yanovskij, A.I.

    1997-01-01

    The reaction of the OsCl 2 (PPh 3 ) 3 with K + -salts of the [nido-7,8-R 2 -7,8-C 2 B 9 H 10 ] - afforded novel exo-nido-osmacarborane complexes, exo-nido-5,6,10-[Cl(PPh 3 ) 2 Os]-5,6,1-μ-(H) 3 -10-H-7,8-R 2 C 2 B 9 H 6 (2, R = H; 3, R = Me) in 78 and 85% yields, respectively. Complex 2 is transformed quantitatively in to know closo-3-Cl-3-H-3,3-(PPh 3 ) 2 -3,1,2-OsC 2 B 9 H 11 upon heating in benzene. The structure of exo-nido-osmacarboranes have been confirmed by 1 H and 31 P NMR spectral data and by single crystal X-ray diffraction study of 3

  9. Direct Synthesis of Telechelic Polyethylene by Selective Insertion Polymerization

    KAUST Repository

    Jian, Zhongbao; Falivene, Laura; Boffa, Giusi; Sá nchez, Sheila Ortega; Caporaso, Lucia; Grassi, Alfonso; Mecking, Stefan

    2016-01-01

    A single-step route to telechelic polyethylene (PE) is enabled by selective insertion polymerization. PdII-catalyzed copolymerization of ethylene and 2-vinylfuran (VF) generates α,ω-di-furan telechelic polyethylene. Orthogonally reactive exclusively

  10. Gas Phase Nanoparticle Synthesis

    Science.gov (United States)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  11. Radiation chemical synthesis

    International Nuclear Information System (INIS)

    Zagoretz, P.A.; Poluetkov, V.A.; Shostenko, A.G.

    1986-01-01

    The authors consider processes in radiation chemical synthesis which are being developed in various scientific-research organizations. The important advantages of radiation chlorination, viz. the lower temperature compared with the thermal method and the absence of dehydrochlorination products are discussed. The authors examine the liquid-phase chlorination of trifluorochloroethyltrichloromethyl ether to obtain the pentachloro-contining ether, trifluorodichloroethyltrichloromethyl ether. The authors discuss radiation synthesis processes that have be used formulated kinetic equations on which models have been based. It is concluded that the possibilities of preparative (micro- and low-tonnage) radiation synthesis are promising

  12. Catalytic chemical amide synthesis at room temperature: one more step toward peptide synthesis.

    Science.gov (United States)

    Mohy El Dine, Tharwat; Erb, William; Berhault, Yohann; Rouden, Jacques; Blanchet, Jérôme

    2015-05-01

    An efficient method has been developed for direct amide bond synthesis between carboxylic acids and amines via (2-(thiophen-2-ylmethyl)phenyl)boronic acid as a highly active bench-stable catalyst. This catalyst was found to be very effective at room temperature for a large range of substrates with slightly higher temperatures required for challenging ones. This methodology can be applied to aliphatic, α-hydroxyl, aromatic, and heteroaromatic acids as well as primary, secondary, heterocyclic, and even functionalized amines. Notably, N-Boc-protected amino acids were successfully coupled in good yields with very little racemization. An example of catalytic dipeptide synthesis is reported.

  13. Direct catalytic olefination of alcohols with sulfones.

    Science.gov (United States)

    Srimani, Dipankar; Leitus, Gregory; Ben-David, Yehoshoa; Milstein, David

    2014-10-06

    The synthesis of terminal, as well as internal, olefins was achieved by the one-step olefination of alcohols with sulfones catalyzed by a ruthenium pincer complex. Furthermore, performing the reaction with dimethyl sulfone under mild hydrogen pressure provides a direct route for the replacement of alcohol hydroxy groups by methyl groups in one step. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis of Acetylhomoagmatine

    Directory of Open Access Journals (Sweden)

    Carmenza Duque

    2006-08-01

    Full Text Available Abstract: The first total synthesis of acetylhomoagmatine, a natural product isolated form the methanolic extracts from the sponge Cliona celata, is performed in four steps in a very high yield.

  15. 2002 Annual report: synthesis

    International Nuclear Information System (INIS)

    2003-01-01

    This synthesis of the Annual Report 2002 presents information of the main activities on the scope of the radiation protection and nuclear safety of the Nuclear Regulatory Authority (ARN) of the Argentina during 2002

  16. Principles of asymmetric synthesis

    CERN Document Server

    Gawley, Robert E; Aube, Jeffrey

    2012-01-01

    The world is chiral. Most of the molecules in it are chiral, and asymmetric synthesis is an important means by which enantiopure chiral molecules may be obtained for study and sale. Using examples from the literature of asymmetric synthesis, this book presents a detailed analysis of the factors that govern stereoselectivity in organic reactions. After an explanation of the basic physical-organic principles governing stereoselective reactions, the authors provide a detailed, annotated glossary of stereochemical terms. A chapter on "Practical Aspects of Asymmetric Synthesis" provides a critical overview of the most common methods for the preparation of enantiomerically pure compounds, techniques for analysis of stereoisomers using chromatographic, spectroscopic, and chiroptical methods. The authors then present an overview of the most important methods in contemporary asymmetric synthesis organized by reaction type. Thus, there are four chapters on carbon-carbon bond forming reactions, one chapter on reductions...

  17. Synthesis of protargol

    International Nuclear Information System (INIS)

    Baratova, Z.R.; Sattarova, M.A.; Abdurakhmanov, A.Kh.; Solojenkin, P.M.

    1997-01-01

    This paper is devoted to synthesis of protargol containing 7,5-8,3% of silver. The flowsheet of obtaining of protargol was elaborated. The obtained protargol contains 7,5% of silver, insoluble in alcohol, ether and chloroform.

  18. Synthesis Polarimetry Calibration

    Science.gov (United States)

    Moellenbrock, George

    2017-10-01

    Synthesis instrumental polarization calibration fundamentals for both linear (ALMA) and circular (EVLA) feed bases are reviewed, with special attention to the calibration heuristics supported in CASA. Practical problems affecting modern instruments are also discussed.

  19. SYNTHESIS, CHARACTERIZATION AND PHOTOCATALYTIC ...

    African Journals Online (AJOL)

    ISSN 1011-3924. © 2018 Chemical Society of Ethiopia and The Authors. Printed in Ethiopia ... SYNTHESIS, CHARACTERIZATION AND PHOTOCATALYTIC ACTIVITY OF .... cm−1 to determine the surface functional groups. 10 mg of sample ...

  20. 2000 Annual report: synthesis

    International Nuclear Information System (INIS)

    2001-01-01

    This synthesis of the Annual Report 2000 present information of the main activities on the scope of the radiation protection and nuclear safety of the Nuclear Regulatory Authority (NRA) of the Argentina during 2000

  1. 2001 Annual report: synthesis

    International Nuclear Information System (INIS)

    2001-01-01

    This synthesis of the Annual Report 2001 presents information of the main activities on the scope of the radiation protection and nuclear safety of the Nuclear Regulatory Authority (ARN) of the Argentina during 2001

  2. Nitrocyclopropanes: synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Averina, Elena B; Yashin, N V; Kuznetsova, Tamara S; Zefirov, Nikolai S [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2009-10-31

    State-of-the-art data on the methods of synthesis, properties and transformations of nitro- and- dinitrocyclopropanes of different structure is generalized and described systematically. The attention is focused on stereoselective cyclopropanation methods, new approaches to the synthesis of natural products and their synthetic analogues with diversified biological activities, in particular, of aminocyclopropane acids based on nitrocyclopropanes, and the formation of structures of energetic compounds.

  3. A low-protein diet restricts albumin synthesis in nephrotic rats.

    OpenAIRE

    Kaysen, G A; Jones, H; Martin, V; Hutchison, F N

    1989-01-01

    High-protein diets increase albumin synthesis in rats with Heymann nephritis but albuminuria increases also, causing serum albumin concentration to be suppressed further than in nephrotic animals eating a low-protein diet. Experiments were designed to determine whether dietary protein augmentation directly stimulates albumin synthesis, or whether instead increased albumin synthesis is triggered by the decrease in serum albumin concentration. Evidence is presented that dietary protein augmenta...

  4. A Traceless Aryl-Triazene Linker for DNA-Directed Chemistry

    DEFF Research Database (Denmark)

    Hejesen, Christian; Pedersen, Lars Kolster; Gothelf, Kurt Vesterager

    2013-01-01

    DNA-directed synthesis of encoded combinatorial libraries of small organic compounds most often involves transfer of organic building blocks from one DNA strand to another. This requires cleavable linkers to enable cleavage of the link to the original DNA strand from which the building block...... is transferred. Relatively few cleavable linkers are available for DNA-directed synthesis and most often they leave an amino group at the organic molecule. Here we have extended the application of 10 aryltriazenes as traceless linkers for DNA-directed synthesis. After reaction of one building block...

  5. Direct Wittig Olefination of Alcohols.

    Science.gov (United States)

    Li, Qiang-Qiang; Shah, Zaher; Qu, Jian-Ping; Kang, Yan-Biao

    2018-01-05

    A base-promoted transition metal-free approach to substituted alkenes using alcohols under aerobic conditions using air as the inexpensive and clean oxidant is described. Aldehydes are relatively difficult to handle compared to corresponding alcohols due to their volatility and penchant to polymerize and autoxidize. Wittig ylides are easily oxidized to aldehydes and consequently form homo-olefination products. By the strategy of simultaneously in situ generation of ylides and aldehydes, for the first time, alcohols are directly transferred to olefins with no need of prepreparation of either aldehydes or ylides. Thus, the di/monocontrollable olefination of diols is accomplished. This synthetically practical method has been applied in the gram-scale synthesis of pharmaceuticals, such as DMU-212 and resveratrol from alcohols.

  6. An Approach to Interface Synthesis

    DEFF Research Database (Denmark)

    Madsen, Jan; Hald, Bjarne

    1995-01-01

    Presents a novel interface synthesis approach based on a one-sided interface description. Whereas most other approaches consider interface synthesis as optimizing a channel to existing client/server modules, we consider the interface synthesis as part of the client/server module synthesis (which...... may contain the re-use of existing modules). The interface synthesis approach describes the basic transformations needed to transform the server interface description into an interface description on the client side of the communication medium. The synthesis approach is illustrated through a point...

  7. Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Dolmatov, Valerii Yu [Federal State Unitary Enterprise Special Design-Technology Bureau (FSUE SDTB) ' ' Tekhnolog' ' at the St Petersburg State Institute of Technology (Technical University) (Russian Federation)

    2007-04-30

    The review outlines the theoretical foundations and industrial implementations of modern detonation synthesis of nanodiamonds and chemical purification of the nanodiamonds thus obtained. The structure, key properties and promising fields of application of detonation-synthesis nanodiamonds are considered.

  8. Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications

    International Nuclear Information System (INIS)

    Dolmatov, Valerii Yu

    2007-01-01

    The review outlines the theoretical foundations and industrial implementations of modern detonation synthesis of nanodiamonds and chemical purification of the nanodiamonds thus obtained. The structure, key properties and promising fields of application of detonation-synthesis nanodiamonds are considered.

  9. Synthesis and Application of Graphene Based Nanomaterials

    Science.gov (United States)

    Peng, Zhiwei

    Graphene, a two-dimensional sp2-bonded carbon material, has recently attracted major attention due to its excellent electrical, optical and mechanical properties. Depending on different applications, graphene and its derived hybrid nanomaterials can be synthesized by either bottom-up chemical vapor deposition (CVD) methods for electronics, or various top-down chemical reaction methods for energy generation and storage devices. My thesis begins with the investigation of CVD synthesis of graphene thin films in Chapter 1, including the direct growth of bilayer graphene on insulating substrates and synthesis of "rebar graphene": a hybrid structure with graphene and carbon or boron nitride nanotubes. Chapter 2 discusses the synthesis of nanoribbon-shaped materials and their applications, including splitting of vertically aligned multi-walled carbon nanotube carpets for supercapacitors, synthesis of dispersable ferromagnetic graphene nanoribbon stacks with enhanced electrical percolation properties in magnetic field, graphene nanoribbon/SnO 2 nanocomposite for lithium ion batteries, and enhanced electrocatalysis for hydrogen evolution reactions from WS2 nanoribbons. Next, Chapter 3 discusses graphene coated iron oxide nanomaterials and their use in energy storage applications. Finally, Chapter 4 introduces the development, characterization, and fabrication of laser induced graphene and its application as supercapacitors.

  10. Biological synthesis of nanoparticles in biofilms.

    Science.gov (United States)

    Tanzil, Abid H; Sultana, Sujala T; Saunders, Steven R; Shi, Liang; Marsili, Enrico; Beyenal, Haluk

    2016-12-01

    The biological synthesis of nanoparticles (NPs) by bacteria and biofilms via extracellular redox reactions has received attention because of the minimization of harmful chemicals, low cost, and ease of culturing and downstream processing. Bioreduction mechanisms vary across bacteria and growth conditions, which leads to various sizes and shapes of biosynthesized NPs. NP synthesis in biofilms offers additional advantages, such as higher biomass concentrations and larger surface areas, which can lead to more efficient and scalable biosynthesis. Although biofilms have been used to produce NPs, the mechanistic details of NP formation are not well understood. In this review, we identify three critical areas of research and development needed to advance our understanding of NP production by biofilms: 1) synthesis, 2) mechanism and 3) stabilization. Advancement in these areas could result in the biosynthesis of NPs that are suitable for practical applications, especially in drug delivery and biocatalysis. Specifically, the current status of methods and mechanisms of nanoparticle synthesis and surface stabilization using planktonic bacteria and biofilms is discussed. We conclude that the use of biofilms to synthesize and stabilize NPs is underappreciated and could provide a new direction in biofilm-based NP production. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Virtual screening of inorganic materials synthesis parameters with deep learning

    Science.gov (United States)

    Kim, Edward; Huang, Kevin; Jegelka, Stefanie; Olivetti, Elsa

    2017-12-01

    Virtual materials screening approaches have proliferated in the past decade, driven by rapid advances in first-principles computational techniques, and machine-learning algorithms. By comparison, computationally driven materials synthesis screening is still in its infancy, and is mired by the challenges of data sparsity and data scarcity: Synthesis routes exist in a sparse, high-dimensional parameter space that is difficult to optimize over directly, and, for some materials of interest, only scarce volumes of literature-reported syntheses are available. In this article, we present a framework for suggesting quantitative synthesis parameters and potential driving factors for synthesis outcomes. We use a variational autoencoder to compress sparse synthesis representations into a lower dimensional space, which is found to improve the performance of machine-learning tasks. To realize this screening framework even in cases where there are few literature data, we devise a novel data augmentation methodology that incorporates literature synthesis data from related materials systems. We apply this variational autoencoder framework to generate potential SrTiO3 synthesis parameter sets, propose driving factors for brookite TiO2 formation, and identify correlations between alkali-ion intercalation and MnO2 polymorph selection.

  12. "Professionalism" in Second and Foreign Language Teaching: A Qualitative Research Synthesis

    Science.gov (United States)

    Jansem, Anchalee

    2018-01-01

    This qualitative research synthesis concludes and displays pictures of professionalism in second/foreign language education. Adopting Weed's processes as the methodological framework for doing qualitative research synthesis, the researcher employed seven steps, from retrieving to selecting studies directly associated with professionalism. The…

  13. Room temperature synthesis of protonated layered titanate sheets using peroxo titanium carbonate complex solution.

    Science.gov (United States)

    Sutradhar, Narottam; Sinhamahapatra, Apurba; Pahari, Sandip Kumar; Bajaj, Hari C; Panda, Asit Baran

    2011-07-21

    We report the synthesis of peroxo titanium carbonate complex solution as a novel water-soluble precursor for the direct synthesis of layered protonated titanate at room temperature. The synthesized titanates showed excellent removal capacity for Pb(2+) and methylene blue. Based on experimental observations, a probable mechanism for the formation of protonated layered dititanate sheets is also discussed.

  14. Collagen synthesis in human musculoskeletal tissues and skin

    DEFF Research Database (Denmark)

    Babraj, J A; Cuthbertson, D J R; Smith, K

    2005-01-01

    We have developed a direct method for the measurement of human musculoskeletal collagen synthesis on the basis of the incorporation of stable isotope-labeled proline or leucine into protein and have used it to measure the rate of synthesis of collagen in tendon, ligament, muscle, and skin....... In postabsorptive, healthy young men (28 +/- 6 yr) synthetic rates for tendon, ligament, muscle, and skin collagen were 0.046 +/- 0.005, 0.040 +/- 0.006, 0.016 +/- 0.002, and 0.037 +/- 0.003%/h, respectively (means +/- SD). In postabsorptive, healthy elderly men (70 +/- 6 yr) the rate of skeletal muscle collagen...... synthesis is greater than in the young (0.023 +/- 0.002%/h, P collagen are similar to those of mixed skeletal muscle protein in the postabsorptive state, whereas the rate for muscle collagen synthesis is much lower in both young and elderly men...

  15. Noncovalent synthesis of protein dendrimers

    NARCIS (Netherlands)

    Lempens, E.H.M.; Baal, van I.; Dongen, van J.L.J.; Hackeng, T.M.; Merkx, M.; Meijer, E.W.

    2009-01-01

    The covalent synthesis of complex biomolecular systems such as multivalent protein dendrimers often proceeds with low efficiency, thereby making alternative strategies based on noncovalent chemistry of high interest. Here, the synthesis of protein dendrimers using a strong but noncovalent

  16. Behavioral synthesis of asynchronous circuits

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard

    2005-01-01

    This thesis presents a method for behavioral synthesis of asynchronous circuits, which aims at providing a synthesis flow which uses and tranfers methods from synchronous circuits to asynchronous circuits. We move the synchronous behavioral synthesis abstraction into the asynchronous handshake...... is idle. This reduces unnecessary switching activity in the individual functional units and therefore the energy consumption of the entire circuit. A collection of behavioral synthesis algorithms have been developed allowing the designer to perform time and power constrained design space exploration...

  17. Click synthesis of PET radiopharmaceuticals

    International Nuclear Information System (INIS)

    Xu Mei; Kuang Chunxiang

    2009-01-01

    Increasing attention has been focused on synthesis radiopharmaceuticals for positron emission tomography (PET). The recent years witnessed applications of click chemistry to PET radiopharmaceutical synthesis,because of its distinctive advantages including high speed,yield and stereospecificity under mild conditions. Synthesis of 18 F-labeled and 11 C-labeled radiopharmaceuticals and intermediates via click chemistry are reviewed. The future trend of click chemistry for the synthesis of PET radiopharmaceutical is prospected. (authors)

  18. Supercritical Synthesis of Biodiesel

    Directory of Open Access Journals (Sweden)

    Michel Vaultier

    2012-07-01

    Full Text Available The synthesis of biodiesel fuel from lipids (vegetable oils and animal fats has gained in importance as a possible source of renewable non-fossil energy in an attempt to reduce our dependence on petroleum-based fuels. The catalytic processes commonly used for the production of biodiesel fuel present a series of limitations and drawbacks, among them the high energy consumption required for complex purification operations and undesirable side reactions. Supercritical fluid (SCF technologies offer an interesting alternative to conventional processes for preparing biodiesel. This review highlights the advances, advantages, drawbacks and new tendencies involved in the use of supercritical fluids (SCFs for biodiesel synthesis.

  19. Toleration, Synthesis or Replacement?

    DEFF Research Database (Denmark)

    Holtermann, Jakob v. H.; Madsen, Mikael Rask

    2016-01-01

    , in order to answer is not yet another partisan suggestion, but rather an attempt at making intelligible both the oppositions and the possibilities of synthesis between normative and empirical approaches to law. Based on our assessment and rational reconstruction of current arguments and positions, we...... therefore outline a taxonomy consisting of the following three basic, ideal-types in terms of the epistemological understanding of the interface of law and empirical studies: toleration, synthesis and replacement. This tripartite model proves useful with a view to teasing out and better articulating...

  20. Fatty acid synthesis by spinach chloroplasts, 2

    International Nuclear Information System (INIS)

    Yamada, Mitsuhiro; Nakamura, Yasunori

    1975-01-01

    By incorporation of 3 H 2 O into the fatty acid chain in the presence of unlabelled precursor, we showed that fatty acids are synthesized from PGA, PEP and pyruvate by intact spinach chloroplasts in the light. 13 C-tracer experiments confirmed that 1-C of pyruvate is decarboxylated and 2-C is incorporated into fatty acids by the chloroplasts. The patterns of fatty acids synthesized from PGA and pyruvate were the same as that from acetate. The highest rate of fatty acid synthesis was reached at the physiological concentration of PGA (3 mM) and pyruvate (1 mM). These results indicate the operation of the following path in the chloroplasts in light: PGA→PEP→pyruvate→acetylCoA→fatty acids. Since citrate and OAA were much less active and malate and glyoxylate were inert as precursors for fatty acid synthesis, PEP or pyruvate carboxylation, citrate lyase reaction and malate synthetase reaction are not involved in the formation of acetylCoA and fatty acids. Since pyruvate was much more effective as a substrate for fatty acid synthesis than lactate, acetaldehyde or acetate, direct decarboxylation path is considered to be the primary path from pyruvate to acetylCoA. The insignificant effect of chloroplast-washing on fatty acid synthesis from PGA and pyruvate indicates that the glycolytic path from PGA to pyruvate is associated with the chloroplasts. Since pyruvate was more effectively incorporated into fatty acids than acetylCoA, it is unlikely that pyruvate decarboxylation to acetylCoA is due to mitochondria contaminating the chloroplast preparation. On the basis of measurements of 3 H 2 O incorporation in the light and dark, the activity of fatty acid synthesis in spincah leaves appears to be shared by the activities in chloroplasts (87%) and other organelles (13%). (author)

  1. Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water

    KAUST Repository

    Han, Sanyang; Qin, Xian; An, Zhongfu; Zhu, Yihan; Liang, Liangliang; Han, Yu; Huang, Wei; Liu, Xiaogang

    2016-01-01

    lanthanide-doped luminescent nanomaterials have relied on direct synthesis requiring stringent controls over crystal nucleation and growth at elevated temperatures. Here we demonstrate the use of a cation exchange strategy for expeditiously accessing large

  2. Versatile Multicomponent Reaction Macrocycle Synthesis Using α-Isocyano-ω-carboxylic Acids

    NARCIS (Netherlands)

    Liao, George P; Abdelraheem, Eman M M; Neochoritis, Constantinos G; Kurpiewska, Katarzyna; Kalinowska-Tłuścik, Justyna; McGowan, David C; Dömling, Alexander

    2015-01-01

    The direct macrocycle synthesis of α-isocyano-ω-carboxylic acids via an Ugi multicomponent reaction is introduced. This multicomponent reaction (MCR) protocol differs by being especially short, convergent, and versatile, giving access to 12-22 membered rings.

  3. Colloidal templating : a route towards controlled synthesis of functional polymeric nanoparticles

    NARCIS (Netherlands)

    Ali, S.I.

    2010-01-01

    Template-directed synthesis of polymeric nanoparticles offers better control over particle morphology, shape, structure, composition and properties compare to the conventional emulsion polymerization routes. For the production of anisotropic polymer-clay composite latex particles and polymeric

  4. Synthesis of Lipophilic Guanine N-9 Derivatives

    DEFF Research Database (Denmark)

    Wamberg, Michael C; Pedersen, Pernille L; Löffler, Philipp M G

    2017-01-01

    the synthesis of five new guanine-N9 derivatives bearing alkyl chains with different attachment chemistries, exploiting a synthesis pathway that allows a flexible choice of hydrophobic anchor moiety. In this study, these guanine derivatives were functionalized with C10 chains for insertion into decanoic acid...... bilayer structures, in which both alkyl chain length and attachment chemistry determined their interaction with the membrane. Incubation of these guanine conjugates, as solids, with a decanoic acid vesicle suspension, showed that ether- and triazole-linked C10 anchors yielded an increased partitioning...... of the guanine derivative into the membranous phase compared to directly N-9-linked saturated alkyl anchors. Decanoic acid vesicle membranes could be loaded with up to 5.5 mol % guanine derivative, a 6-fold increase over previous limits. Thus, anchor chemistries exhibiting favorable interactions with a bilayer...

  5. Game-based verification and synthesis

    DEFF Research Database (Denmark)

    Vester, Steen

    and the environment behaves. Synthesis of strategies in games can thus be used for automatic generation of correct-by-construction programs from specifications. We consider verification and synthesis problems for several well-known game-based models. This includes both model-checking problems and satisfiability...... can be extended to solve finitely-branching turn-based games more efficiently. Further, the novel concept of winning cores in parity games is introduced. We use this to develop a new polynomial-time under-approximation algorithm for solving parity games. Experimental results show that this algorithm...... corresponds directly to a program for the corresponding entity of the system. A strategy for a player which ensures that the player wins no matter how the other players behave then corresponds to a program ensuring that the specification of the entity is satisfied no matter how the other entities...

  6. Synthesis imaging in radio astronomy

    International Nuclear Information System (INIS)

    Perley, R.A.; Schwab, F.R.; Bridle, A.H.

    1989-01-01

    Recent advances in techniques and instrumentation for radio synthesis imaging in astronomy are discussed in a collection of review essays. Topics addressed include coherence in radio astronomy, the interferometer in practice, primary antenna elements, cross correlators, calibration and editing, sensitivity, deconvolution, self-calibration, error recognition, and image analysis. Consideration is given to wide-field imaging (bandwidth and time-average smearing, noncoplanar arrays, and mosaicking), high-dynamic-range imaging, spectral-line imaging, VLBI, solar imaging with a synthesis telescope, synthesis imaging of spatially coherent objects, noise in images of very bright sources, synthesis observing strategies, and the design of aperture-synthesis arrays

  7. Rapid Synthesis of Silver Nanoparticles from Fusarium oxysporum by Optimizing Physicocultural Conditions

    Directory of Open Access Journals (Sweden)

    Sonal S. Birla

    2013-01-01

    Full Text Available Synthesis of silver nanoparticles (SNPs by fungi is emerging as an important branch of nanotechnology due to its ecofriendly, safe, and cost-effective nature. In order to increase the yield of biosynthesized SNPs of desired shape and size, it is necessary to control the cultural and physical parameters during the synthesis. We report optimum synthesis of SNPs on malt extract glucose yeast extract peptone (MGYP medium at pH 9–11, 40–60°C, and 190.7 Lux and in sun light. The salt concentrations, volume of filtrate and biomass quantity were found to be directly proportional to the yield. The optimized conditions for the stable and rapid synthesis will help in large scale synthesis of monodispersed SNPs. The main aim of the present study was to optimize different media, temperature, pH, light intensity, salt concentration, volume of filtrate, and biomass quantity for the synthesis of SNPs by Fusarium oxysporum.

  8. Perspective: Toward "synthesis by design": Exploring atomic correlations during inorganic materials synthesis

    Science.gov (United States)

    Soderholm, L.; Mitchell, J. F.

    2016-05-01

    Synthesis of inorganic extended solids is a critical starting point from which real-world functional materials and their consequent technologies originate. However, unlike the rich mechanistic foundation of organic synthesis, with its underlying rules of assembly (e.g., functional groups and their reactivities), the synthesis of inorganic materials lacks an underpinning of such robust organizing principles. In the latter case, any such rules must account for the diversity of chemical species and bonding motifs inherent to inorganic materials and the potential impact of mass transport on kinetics, among other considerations. Without such assembly rules, there is less understanding, less predictive power, and ultimately less control of properties. Despite such hurdles, developing a mechanistic understanding for synthesis of inorganic extended solids would dramatically impact the range of new material discoveries and resulting new functionalities, warranting a broad call to explore what is possible. Here we discuss our recent approaches toward a mechanistic framework for the synthesis of bulk inorganic extended solids, in which either embryonic atomic correlations or fully developed phases in solutions or melts can be identified and tracked during product selection and crystallization. The approach hinges on the application of high-energy x-rays, with their penetrating power and large Q-range, to explore reaction pathways in situ. We illustrate this process using two examples: directed assembly of Zr clusters in aqueous solution and total phase awareness during crystallization from K-Cu-S melts. These examples provide a glimpse of what we see as a larger vision, in which large scale simulations, data-driven science, and in situ studies of atomic correlations combine to accelerate materials discovery and synthesis, based on the assembly of well-defined, prenucleated atomic correlations.

  9. Stellar population synthesis

    International Nuclear Information System (INIS)

    Pickles, A.J.

    1989-01-01

    The techniques used to derive astrophysically useful information from observations of the integrated light of composite stellar systems are briefly reviewed. A synthesis technique, designed to separate and describe on a standard system the competing effects of age and metallicity variations is introduced, and illustrated by its application to the study of the history of star formation in bright elliptical galaxies in clusters. (author)

  10. Enzymatic synthesis of vanillin

    NARCIS (Netherlands)

    van den Heuvel, RHH; Fraaije, MW; Laane, C; van Berkel, WJH; Heuvel, Robert H.H. van den; Berkel, Willem J.H. van

    Due to increasing interest in natural vanillin, two enzymatic routes for the synthesis of vanillin were developed. The flavoprotein vanillyl alcohol oxidase (VAO) acts on a wide range of phenolic compounds and converts both creosol and vanillylamine to vanillin with high yield. The VAO-mediated

  11. Enzymatic synthesis of vanillin

    NARCIS (Netherlands)

    Heuvel, van den R.H.H.; Fraaije, M.W.; Laane, C.; Berkel, van W.J.H.

    2001-01-01

    Due to increasing interest in natural vanillin, two enzymatic routes for the synthesis of vanillin were developed. The flavoprotein vanillyl alcohol oxidase (VAO) acts on a wide range of phenolic compounds and converts both creosol and vanillylamine to vanillin with high yield. The VAO-mediated

  12. Synthesis de 1-dotriacotanol

    International Nuclear Information System (INIS)

    Hernandez, L.; Gonzalez, J.C.

    1996-01-01

    In order to prepare isotopic labeled long chain aliphatic primary alcohol's, the synthesis overall yielding and chemical purity of 1-dotriacotanol were 41% and 98%, respectively. This procedure is very useful for carbon-14 and tritium labeling at Beta position of saturated fatty alcohol's

  13. Synthesis of acrylic prepolymer

    International Nuclear Information System (INIS)

    Hussin bin Mohd Nor; Dahlan bin Haji Mohd; Mohamad Hilmi bin Mahmood.

    1988-04-01

    An acrylic prepolymer was synthesized from glycidyl methacrylate (GMA), butyl methacrylate (BMA), methyl methacrylate (MMA) and acrylic acid (AA). Butyl acetate (BAc), benzoyl peroxide (BzO), 4-methoxyphenol (MPh) and triethylamine (TEA) were used as solvent, initiator, inhibitor and catalyst respectively. Observations of the synthesis leading to the formation of acrylic prepolymer are described. (author)

  14. Synthesis of new radiotracers

    International Nuclear Information System (INIS)

    Chahed, Ahlem

    2008-01-01

    The brain's sensibility besides to the rigorous selectivity of changes taking place on brain's barriers leads us to synthesis specifics radiotracers based on diamine ethylene and marked with technetium radioisotope to form a radiotracer able to pass these barriers and diagnose illnesses in an early stage. These radiotracers are tested by a biodistribution on a small animal to be ratified. (Author)

  15. Synthesis of arabinoxylan fragments

    DEFF Research Database (Denmark)

    Underlin, Emilie Nørmølle; Böhm, Maximilian F.; Madsen, Robert

    , or production of commercial chemicals which are mainly obtained from fossil fuels today.The arbinoxylan fragments have a backbone of β-1,4-linked xylans with α-L-arabinose units attached at specific positions. The synthesis ultilises an efficient synthetic route, where all the xylan units can be derived from D...

  16. [Synthesis of new nitrosoureas].

    Science.gov (United States)

    Papadaki-Valiraki, A; Siatra-Papastaikoudi, T; Skaltsounis, A L; Roussakis, C

    1989-01-01

    Two chemical pathways were used for the synthesis of three new N'-(2-chloroethyl)-N-[2-(4-alkoxyphenylthio)ethyl]-N'-nitrosoureas and two new N'-(2-chloroethyl)-N)[2-(4-alkoxyphenyl-thio)ethyl]-N-nitrosoureas . The study of the cytotoxicity of the three N'-nitrosoureas, was carried out in two experimental models (P 388 and NSCLCN6).

  17. MICROWAVES IN ORGANIC SYNTHESIS

    Science.gov (United States)

    The effect of microwaves, a non-ionizing radiation, on organic reactions is described both in polar solvents and under solvent-free conditions. The special applications are highlighted in the context of solventless organic synthesis which involve microwave (MW) exposure of neat r...

  18. SYNTHESIS, CHARACTERIZATION AND ANTIBACTERIAL ...

    African Journals Online (AJOL)

    Preferred Customer

    In the present study, synthesis, and biological evaluation of some novel ... Then slowly cooled and resultant mixture was basified with aqueous sodium hydroxide ... mol), anhydrous potassium carbonate (5.52 g, 0.04 mol) in acetone (25 mL), ...

  19. Synthesis, characterization and properties

    Indian Academy of Sciences (India)

    Unknown

    work, we report herein the synthesis, structural cha- racterization and properties of a chiral Mn(IV) mononuclear ... atmosphere with a platinum disc working electrode, a platinum wire auxiliary electrode and a Ag/AgCl ... SMART APEX CCD area detector system [λ(Mo-. Kα) = 0⋅71073 Å], graphite monochromator, 2400.

  20. Chemical Synthesis of Proanthocyanidins in Vitro and Their Reactions in Aging Wines

    Directory of Open Access Journals (Sweden)

    Qiu-Hong Pan

    2008-12-01

    Full Text Available Proanthocyanidins are present in many fruits and plant products like grapes and wine, and contribute to their taste and health benefits. In the past decades of years, substantial progresses has been achieved in the identification of composition and structure of proanthocyanidins, but the debate concerning the existence of an enzymatic or nonenzymatic mechanism for proanthocyanidin condensation still goes on. Substantial attention has been paid to elucidating the potential mechanism of formation by means of biomimetic and chemical synthesis in vitro. The present paper aims at summarizing the research status on chemical synthesis of proanthocyanidins, including non-enzymatic synthesis of proanthocyanidin precursors, chemical synthesis of proanthocyanidins with direct condensation of flavanols and stereoselective synthesis of proanthocyanidins. Proanthocyanidin-involved reactions in aging wines are also reviewed such as direct and indirect reactions among proanthocyanidins, flavanols and anthocyanins. Topics for future research in this field are also put forward in this paper.

  1. Industrial scale gene synthesis.

    Science.gov (United States)

    Notka, Frank; Liss, Michael; Wagner, Ralf

    2011-01-01

    The most recent developments in the area of deep DNA sequencing and downstream quantitative and functional analysis are rapidly adding a new dimension to understanding biochemical pathways and metabolic interdependencies. These increasing insights pave the way to designing new strategies that address public needs, including environmental applications and therapeutic inventions, or novel cell factories for sustainable and reconcilable energy or chemicals sources. Adding yet another level is building upon nonnaturally occurring networks and pathways. Recent developments in synthetic biology have created economic and reliable options for designing and synthesizing genes, operons, and eventually complete genomes. Meanwhile, high-throughput design and synthesis of extremely comprehensive DNA sequences have evolved into an enabling technology already indispensable in various life science sectors today. Here, we describe the industrial perspective of modern gene synthesis and its relationship with synthetic biology. Gene synthesis contributed significantly to the emergence of synthetic biology by not only providing the genetic material in high quality and quantity but also enabling its assembly, according to engineering design principles, in a standardized format. Synthetic biology on the other hand, added the need for assembling complex circuits and large complexes, thus fostering the development of appropriate methods and expanding the scope of applications. Synthetic biology has also stimulated interdisciplinary collaboration as well as integration of the broader public by addressing socioeconomic, philosophical, ethical, political, and legal opportunities and concerns. The demand-driven technological achievements of gene synthesis and the implemented processes are exemplified by an industrial setting of large-scale gene synthesis, describing production from order to delivery. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Direct electrochemical imidation of aliphatic amines via anodic oxidation.

    Science.gov (United States)

    Zhang, Li; Su, Ji-Hu; Wang, Sujing; Wan, Changfeng; Zha, Zhenggen; Du, Jiangfeng; Wang, Zhiyong

    2011-05-21

    Direct electrochemical synthesis of sulfonyl amidines from aliphatic amines and sulfonyl azides was realized with good to excellent yields. Traditional tertiary amine substrates were broadened to secondary and primary amines. The reaction intermediates were observed and a reaction mechanism was proposed and discussed. © The Royal Society of Chemistry 2011

  3. Synthesis of an Orthogonal Topological Analogue of Helicene

    DEFF Research Database (Denmark)

    Wixe, Torbjörn; Wallentin, Carl‐Johan; Johnson, Magnus T.

    2013-01-01

    The synthesis of an orthogonal topological pentamer analogue of helicene is presented. This analogue forms a tubular structure with its aromatic systems directed parallel to the axis of propagation, which creates a cavity with the potential to function as a host molecule. The synthetic strategy r...

  4. Microwave-Assisted Synthesis – Catalytic Applications in Aqueous Media

    Science.gov (United States)

    The development of sustainable methods directed towards the synthesis of molecules is due to the heightened awareness and recognition of alternative eco-friendly and economical protocols that have minimum impact on environment. Among others, microwave (MW)-assisted methodology ha...

  5. Synthesis of aluminium nanoparticles by arc evaporation of an ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Aluminium nanoparticles (Al Nps) are synthesized using arc discharge method by applying direct current between aluminium electrodes in liquid environment without any use of vacuum equipment, heat exchangers, high temperatures furnaces and inert gases. After synthesis of Al Nps, in situ coating process on.

  6. Two-Step Macrocycle Synthesis by Classical Ugi Reaction

    NARCIS (Netherlands)

    Abdelraheem, Eman M M; Khaksar, Samad; Kurpiewska, Katarzyna; Kalinowska-Tłuścik, Justyna; Shaabani, Shabnam; Dömling, Alexander

    2018-01-01

    The direct nonpeptidic macrocycle synthesis of α-isocyano-ω-amines via the classical Ugi four-component reaction (U-4CR) is introduced. Herein an efficient and flexible two-step procedure to complex macrocycles is reported. In the first step, the reaction between unprotected diamines and

  7. ROOM TEMPERATURE BULK SYNTHESIS OF SILVER NANOCABLES WRAPPED WITH POLYPYRROLE

    Science.gov (United States)

    Wet chemical synthesis of silver cables wrapped with polypyrrole is reported in aqueous media without use of any surfactant/capping agent and/or template. The method employs direct polymerization of pyrrole of an aqueous solution with AgNO3 as an oxidizing agent. The four probe c...

  8. Multistep Continuous-Flow Synthesis in Medicinal Chemistry

    DEFF Research Database (Denmark)

    Petersen, Trine P; Mirsharghi, Sahar; Rummel, Pia Cwarzko

    2013-01-01

    A three-step continuous-flow synthesis system and its application to the assembly of a new series of chemokine receptor ligands directly from commercial building blocks is reported. No scavenger columns or solvent switches are necessary to recover the desired test compounds, which were obtained i...... studies in medicinal chemistry....

  9. Current directions in radiopharmaceutical research

    Energy Technology Data Exchange (ETDEWEB)

    Mather, S J [Department of Nuclear Medicine, St. Bartholomew` s Hospital, London (United Kingdom)

    1998-08-01

    Much of current radiopharmaceutical research is directed towards the development of receptor-binding tracers which are targeted towards biochemical processes. These may be extra or intracellular in nature and hold promise for an imaging approach to tissue characterisation in-vivo. Many of these products are based on proteins which range in size from large monoclonal antibodies to small neuropeptides and share a radiolabelling chemistry based on the use of bifunctional chelating agents. Although developed initially for use with indium-111, considerations of cost and isotope availability have continued to direct the efforts of many researchers towards the use of technetium-99m. While polypeptide-based radiopharmaceuticals may be useful for imaging peripheral cell-surface receptors, access to sites of interest within the cell, or in the brain, requires the development of small lipophilic molecules with retained ability to interact with intracellular targets. The design and synthesis of these compounds presents a particular challenge to the radiopharmaceutical chemist which is being met through either a pendant or integrated approach to the use of technetium coordination with particular emphasis on technetium (v) cores. Progress continues to be made in the application of targeted radionuclide therapy particularly in the development of radiopharmaceuticals for the treatment of malignant bone disease. methods for labelling antibodies with a great variety of cytotoxic radionuclides have now been refined and their use for radioimmunotherapy in the treatment of haematological malignancies shows great promise. The major medical areas for application of these new radiopharmaceuticals will be in oncology, neurology and inflammation but the increasingly difficult regulatory climate in which drug development and health-care now operate will make it essential for researchers to direct their products toward specific clinical problems as well as biological targets. (author) 36 refs

  10. Current directions in radiopharmaceutical research

    International Nuclear Information System (INIS)

    Mather, S.J.

    1998-01-01

    Much of current radiopharmaceutical research is directed towards the development of receptor-binding tracers which are targeted towards biochemical processes. These may be extra or intracellular in nature and hold promise for an imaging approach to tissue characterisation in-vivo. Many of these products are based on proteins which range in size from large monoclonal antibodies to small neuropeptides and share a radiolabelling chemistry based on the use of bifunctional chelating agents. Although developed initially for use with indium-111, considerations of cost and isotope availability have continued to direct the efforts of many researchers towards the use of technetium-99m. While polypeptide-based radiopharmaceuticals may be useful for imaging peripheral cell-surface receptors, access to sites of interest within the cell, or in the brain, requires the development of small lipophilic molecules with retained ability to interact with intracellular targets. The design and synthesis of these compounds presents a particular challenge to the radiopharmaceutical chemist which is being met through either a pendant or integrated approach to the use of technetium coordination with particular emphasis on technetium (v) cores. Progress continues to be made in the application of targeted radionuclide therapy particularly in the development of radiopharmaceuticals for the treatment of malignant bone disease. methods for labelling antibodies with a great variety of cytotoxic radionuclides have now been refined and their use for radioimmunotherapy in the treatment of haematological malignancies shows great promise. The major medical areas for application of these new radiopharmaceuticals will be in oncology, neurology and inflammation but the increasingly difficult regulatory climate in which drug development and health-care now operate will make it essential for researchers to direct their products toward specific clinical problems as well as biological targets. (author)

  11. Suppression of glycosaminoglycan synthesis by articular cartilage, but not of hyaluronic acid synthesis by synovium, after exposure to radiation

    International Nuclear Information System (INIS)

    Hugenberg, S.T.; Myers, S.L.; Brandt, K.D.

    1989-01-01

    We recently found that injection of 2 mCi of yttrium 90 (90Y; approximately 23,000 rads) into normal canine knees stimulated glycosaminoglycan (GAG) synthesis by femoral condylar cartilage. The present investigation was conducted to determine whether radiation affects cartilage metabolism directly. Rates of GAG synthesis and degradation in normal canine articular cartilage were studied following irradiation. Cultured synovium from the same knees was treated similarly, to determine the effects of irradiation on hyaluronic acid synthesis. Twenty-four hours after exposure to 1,000 rads, 10,000 rads, or 50,000 rads, 35S-GAG synthesis by the cartilage was 93%, 69%, and 37%, respectively, of that in control, nonirradiated cartilage. The effect was not rapidly reversible: 120 hours after exposure to 50,000 rads, GAG synthesis remained at only 28% of the control level. Autoradiography showed marked suppression of 35S uptake by chondrocytes after irradiation. Cartilage GAG degradation was also increased following irradiation: 4 hours and 8 hours after exposure to 50,000 rads, the cartilage GAG concentration was only 66% and 54%, respectively, of that at time 0, while corresponding values for control, nonirradiated cartilage were 90% and 87%. In contrast to its effects on cartilage GAG metabolism, radiation at these levels had no effect on synovial hyaluronic acid synthesis

  12. Suppression of glycosaminoglycan synthesis by articular cartilage, but not of hyaluronic acid synthesis by synovium, after exposure to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hugenberg, S.T.; Myers, S.L.; Brandt, K.D.

    1989-04-01

    We recently found that injection of 2 mCi of yttrium 90 (90Y; approximately 23,000 rads) into normal canine knees stimulated glycosaminoglycan (GAG) synthesis by femoral condylar cartilage. The present investigation was conducted to determine whether radiation affects cartilage metabolism directly. Rates of GAG synthesis and degradation in normal canine articular cartilage were studied following irradiation. Cultured synovium from the same knees was treated similarly, to determine the effects of irradiation on hyaluronic acid synthesis. Twenty-four hours after exposure to 1,000 rads, 10,000 rads, or 50,000 rads, 35S-GAG synthesis by the cartilage was 93%, 69%, and 37%, respectively, of that in control, nonirradiated cartilage. The effect was not rapidly reversible: 120 hours after exposure to 50,000 rads, GAG synthesis remained at only 28% of the control level. Autoradiography showed marked suppression of 35S uptake by chondrocytes after irradiation. Cartilage GAG degradation was also increased following irradiation: 4 hours and 8 hours after exposure to 50,000 rads, the cartilage GAG concentration was only 66% and 54%, respectively, of that at time 0, while corresponding values for control, nonirradiated cartilage were 90% and 87%. In contrast to its effects on cartilage GAG metabolism, radiation at these levels had no effect on synovial hyaluronic acid synthesis.

  13. Cyclodextrins in Asymmetric and Stereospecific Synthesis

    Directory of Open Access Journals (Sweden)

    Fliur Macaev

    2015-09-01

    Full Text Available Since their discovery, cyclodextrins have widely been used as green and easily available alternatives to promoters or catalysts of different chemical reactions in water. This review covers the research and application of cyclodextrins and their derivatives in asymmetric and stereospecific syntheses, with their division into three main groups: (1 cyclodextrins promoting asymmetric and stereospecific catalysis in water; (2 cyclodextrins’ complexes with transition metals as asymmetric and stereospecific catalysts; and (3 cyclodextrins’ non-metallic derivatives as asymmetric and stereospecific catalysts. The scope of this review is to systematize existing information on the contribution of cyclodextrins to asymmetric and stereospecific synthesis and, thus, to facilitate further development in this direction.

  14. Appreciation of symmetry in natural product synthesis.

    Science.gov (United States)

    Bai, Wen-Ju; Wang, Xiqing

    2017-12-13

    Covering: 2012 to June 2017This review aims to show that complex natural product synthesis can be streamlined by taking advantage of molecular symmetry. Various strategies to construct molecules with either evident or hidden symmetry are illustrated. Insights regarding the origins and adjustments of these strategies as well as inspiring new methodological developments are deliberated. When a symmetric strategy fails, the corresponding reason is analysed and an alternative approach is briefly provided. Finally, the importance of exploiting molecular symmetry and future research directions are discussed.

  15. Ammonia synthesis from first principles calculations

    DEFF Research Database (Denmark)

    Honkala, Johanna Karoliina; Hellman, Anders; Remediakis, Ioannis

    2005-01-01

    . When the size distribution of ruthenium particles measured by transmission electron microscopy was used as the [ink between the catalyst material and the theoretical treatment, the calculated rate was within a factor of 3 to 20 of the experimental rate. This offers hope for computer-based methods......The rate of ammonia synthesis over a nanoparticle ruthenium catalyst can be calculated directly on the basis of a quantum chemical treatment of the problem using density functional theory. We compared the results to measured rates over a ruthenium catalyst supported on magnesium aluminum spinet...

  16. Prebiotic synthesis of histidine

    Science.gov (United States)

    Shen, C.; Yang, L.; Miller, S. L.; Oro, J.

    1990-01-01

    The prebiotic formation of histidine (His) has been accomplished experimentally by the reaction of erythrose with formamidine followed by a Strecker synthesis. In the first step of this reaction sequence, the formation of imidazole-4-acetaldehyde took place by the condensation of erythrose and formamidine, two compounds that are known to be formed under prebiotic conditions. In a second step, the imidazole-4-acetaldehyde was converted to His, without isolation of the reaction products by adding HCN and ammonia to the reaction mixture. LC, HPLC, thermospray liquid chromatography-mass spectrometry, and tandem mass spectrometry were used to identify the product, which was obtained in a yield of 3.5% based on the ratio of His/erythrose. This is a new chemical synthesis of one of the basic amino acids which had not been synthesized prebiotically until now.

  17. Voice synthesis application

    Science.gov (United States)

    Lightstone, P. C.; Davidson, W. M.

    1982-04-01

    The military detection assessment laboratory houses an experimental field system which assesses different alarm indicators such as fence disturbance sensors, MILES cables, and microwave Racons. A speech synthesis board which could be interfaced, by means of a computer, to an alarm logger making verbal acknowledgement of alarms possible was purchased. Different products and different types of voice synthesis were analyzed before a linear predictive code device produced by Telesensory Speech Systems of Palo Alto, California was chosen. This device is called the Speech 1000 Board and has a dedicated 8085 processor. A multiplexer card was designed and the Sp 1000 interfaced through the card into a TMS 990/100M Texas Instrument microcomputer. It was also necessary to design the software with the capability of recognizing and flagging an alarm on any 1 of 32 possible lines. The experimental field system was then packaged with a dc power supply, LED indicators, speakers, and switches, and deployed in the field performing reliably.

  18. Synthesis of quantum dots

    Science.gov (United States)

    McDaniel, Hunter

    2017-10-17

    Common approaches to synthesizing alloyed quantum dots employ high-cost, air-sensitive phosphine complexes as the selenium precursor. Disclosed quantum dot synthesis embodiments avoid these hazardous and air-sensitive selenium precursors. Certain embodiments utilize a combination comprising a thiol and an amine that together reduce and complex the elemental selenium to form a highly reactive selenium precursor at room temperature. The same combination of thiol and amine acts as the reaction solvent, stabilizing ligand, and sulfur source in the synthesis of quantum dot cores. A non-injection approach may also be used. The optical properties of the quantum dots synthesized by this new approach can be finely tuned for a variety of applications by controlling size and/or composition of size and composition. Further, using the same approach, a shell can be grown around a quantum dot core that improves stability, luminescence efficiency, and may reduce toxicity.

  19. Benzoylurea Chitin Synthesis Inhibitors.

    Science.gov (United States)

    Sun, Ranfeng; Liu, Chunjuan; Zhang, Hao; Wang, Qingmin

    2015-08-12

    Benzoylurea chitin synthesis inhibitors are widely used in integrated pest management (IPM) and insecticide resistance management (IRM) programs due to their low toxicity to mammals and predatory insects. In the past decades, a large number of benzoylurea derivatives have been synthesized, and 15 benzoylurea chitin synthesis inhibitors have been commercialized. This review focuses on the history of commercial benzolyphenylureas (BPUs), synthetic methods, structure-activity relationships (SAR), action mechanism research, environmental behaviors, and ecotoxicology. Furthermore, their disadvantages of high risk to aquatic invertebrates and crustaceans are pointed out. Finally, we propose that the para-substituents at anilide of benzoylphenylureas should be the functional groups, and bipartite model BPU analogues are discussed in an attempt to provide new insight for future development of BPUs.

  20. synthesis and structures

    Indian Academy of Sciences (India)

    Priya Saxena

    2017-08-29

    Aug 29, 2017 ... to a single crystal X-ray diffraction study for 1, 2 and 4-7. Keywords. Sterically .... 2.2b Mono-Schiff base 2: A suspension of I (1.00 g,. 2.27 mmol) and ...... bridge Crystallographic Data Centre, CCDC, 12 Union. Road, Cambridge .... H-C 2014 Rational design and synthesis of porous poly- mer networks: ...

  1. Distributed PROMPT-LTL Synthesis

    Directory of Open Access Journals (Sweden)

    Swen Jacobs

    2016-09-01

    Full Text Available We consider the synthesis of distributed implementations for specifications in Prompt Linear Temporal Logic (PROMPT-LTL, which extends LTL by temporal operators equipped with parameters that bound their scope. For single process synthesis it is well-established that such parametric extensions do not increase worst-case complexities. For synchronous systems, we show that, despite being more powerful, the distributed realizability problem for PROMPT-LTL is not harder than its LTL counterpart. For asynchronous systems we have to consider an assume-guarantee synthesis problem, as we have to express scheduling assumptions. As asynchronous distributed synthesis is already undecidable for LTL, we give a semi-decision procedure for the PROMPT-LTL assume-guarantee synthesis problem based on bounded synthesis.

  2. Integrated methanol synthesis

    International Nuclear Information System (INIS)

    Jaeger, W.

    1982-01-01

    This invention concerns a plant for methanol manufacture from gasified coal, particularly using nuclear power. In order to reduce the cost of the hydrogen circuits, the methanol synthesis is integrated in the coal gasification plant. The coal used is gasified with hydration by means of hydrogen and the crude gas emerging, after cooling and separating the carbon dioxide and hydrogen sulphide, is mixed with the synthetic gas leaving the methane cracking furnace. This mixture is taken to the methanol synthesis and more than 90% is converted into methanol in one pass. The gas mixture remaning after condensation and separation of methanol is decomposed into three fractions in low temperature gas decomposition with a high proportion of unconverted carbon monoxide. The flow of methane is taken to the cracking furnace with steam, the flow of hydrogen is taken to the hydrating coal gasifier, and the flow of carbon monoxide is taken to the methanol synthesis. The heat required for cracking the methane can either be provided by a nuclear reactor or by the coke left after hydrating gasification. (orig./RB) [de

  3. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  4. Chemistry of Ammonothermal Synthesis

    Directory of Open Access Journals (Sweden)

    Theresia M. M. Richter

    2014-02-01

    Full Text Available Ammonothermal synthesis is a method for synthesis and crystal growth suitable for a large range of chemically different materials, such as nitrides (e.g., GaN, AlN, amides (e.g., LiNH2, Zn(NH22, imides (e.g., Th(NH2, ammoniates (e.g., Ga(NH33F3, [Al(NH36]I3 · NH3 and non-nitrogen compounds like hydroxides, hydrogen sulfides and polychalcogenides (e.g., NaOH, LiHS, CaS, Cs2Te5. In particular, large scale production of high quality crystals is possible, due to comparatively simple scalability of the experimental set-up. The ammonothermal method is defined as employing a heterogeneous reaction in ammonia as one homogenous fluid close to or in supercritical state. Three types of milieus may be applied during ammonothermal synthesis: ammonobasic, ammononeutral or ammonoacidic, evoked by the used starting materials and mineralizers, strongly influencing the obtained products. There is little known about the dissolution and materials transport processes or the deposition mechanisms during ammonothermal crystal growth. However, the initial results indicate the possible nature of different intermediate species present in the respective milieus.

  5. Gold Nanoparticle Microwave Synthesis

    International Nuclear Information System (INIS)

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington II, Aaron L.; Murph, Simona H.

    2016-01-01

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  6. Influence of anabolic agents on protein synthesis and degradation in muscle cells grown in culture

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, R.A.; Thorpe, S.D.; Byers, F.M.; Schelling, G.T.; Gunn, J.M.

    Muscle cell culture (L/sub 6/) studies were conducted to determine whether anabolic agents have a direct effect on the muscle cell. The effect of zeranol, testosterone propionate, estradiol benzoate, progesterone, dexamethasone and anabolic agent-dexamethasone combinations on protein synthesis and degradation were measured. Myoblast and myotube cultures were pretreated with 1 ..mu..M compounds for 12, 24 and 48 h before a 6-h synthesis or degradation measuring period. Protein synthesis was determined as cpm of (/sup 3/H) leucine incorporated per mg cell protein. Protein degradation was measured by a pulse-chase procedure using (/sup 3/H) leucine and expressed as the percentage labeled protein degraded in 6 h. Progesterone slightly increased protein synthesis in myoblast cultures. Testosterone propionate had no effect on synthesis. Protein synthesis was decreased by estradiol benzoate in myotube cultures. Protein degradation was not altered appreciably by anabolic agents. Protein synthesis was initially inhibited in myotubes by dexamethasone, but increased in myoblasts and myotubes in the extended incubation time. Dexamethasone also consistently increased protein degradation, but this required several hours to be expressed. Anabolic agents did not interfere with dexamethasone-induced increases in protein synthesis and degradation. The magnitude of response and sensitivity were similar for both the myoblast and the more fully differentiated myotube for all compounds tested. These results indicate that anabolic agents at the 1 ..mu..M level do not have a direct anabolic effect on muscle or alter glucocorticoid-induced catabolic response in muscle.

  7. Influence of anabolic agents on protein synthesis and degradation in muscle cells grown in culture

    International Nuclear Information System (INIS)

    Roeder, R.A.; Thorpe, S.D.; Byers, F.M.; Schelling, G.T.; Gunn, J.M.

    1986-01-01

    Muscle cell culture (L 6 ) studies were conducted to determine whether anabolic agents have a direct effect on the muscle cell. The effect of zeranol, testosterone propionate, estradiol benzoate, progesterone, dexamethasone and anabolic agent-dexamethasone combinations on protein synthesis and degradation were measured. Myoblast and myotube cultures were pretreated with 1 μM compounds for 12, 24 and 48 h before a 6-h synthesis or degradation measuring period. Protein synthesis was determined as cpm of [ 3 H] leucine incorporated per mg cell protein. Protein degradation was measured by a pulse-chase procedure using [ 3 H] leucine and expressed as the percentage labeled protein degraded in 6 h. Progesterone slightly increased protein synthesis in myoblast cultures. Testosterone propionate had no effect on synthesis. Protein synthesis was decreased by estradiol benzoate in myotube cultures. Protein degradation was not altered appreciably by anabolic agents. Protein synthesis was initially inhibited in myotubes by dexamethasone, but increased in myoblasts and myotubes in the extended incubation time. Dexamethasone also consistently increased protein degradation, but this required several hours to be expressed. Anabolic agents did not interfere with dexamethasone-induced increases in protein synthesis and degradation. The magnitude of response and sensitivity were similar for both the myoblast and the more fully differentiated myotube for all compounds tested. These results indicate that anabolic agents at the 1 μM level do not have a direct anabolic effect on muscle or alter glucocorticoid-induced catabolic response in muscle

  8. Synthesis, characterization and reactivity of some lanthanide organometallics

    International Nuclear Information System (INIS)

    Marchal, N.

    1991-12-01

    Organo lanthanides with reactive metal-carbon bonds are obtained by direct synthesis of the metal (powder) and a hydrocarbon in ether medium, like with alkali metals. Two types of synthesis are envisaged: formation of covalent bonds by opening cycles, only biphenylene is reactive enough in regard to ytterbium and samarium, these organometallic compounds can also be prepared by the classical way, i.e. reaction of 2.2'-dilithio biphenyl on rare earth halogenides and coupling of 6.6-dimethylfulvene leading to dicyclopentadienyl compounds with Sm and Yb. The reactivity of these complexes is studied by catalysis of ethylene polymerization

  9. Feature-aware natural texture synthesis

    KAUST Repository

    Wu, Fuzhang; Dong, Weiming; Kong, Yan; Mei, Xing; Yan, Dongming; Zhang, Xiaopeng; Paul, Jean Claude

    2014-01-01

    This article presents a framework for natural texture synthesis and processing. This framework is motivated by the observation that given examples captured in natural scene, texture synthesis addresses a critical problem, namely, that synthesis

  10. The Advanced Aluminum Nitride Synthesis Methods and Its Applications: Patent Review.

    Science.gov (United States)

    Shishkin, Roman A; Elagin, Andrey A; Mayorova, Ekaterina S; Beketov, Askold R

    2016-01-01

    High purity nanosized aluminum nitride synthesis is a current issue for both industry and science. However, there is no up-to-date review considering the major issues and the technical solutions for different methods. This review aims to investigate the advanced methods of aluminum nitride synthesis and its development tendencies. Also the aluminum nitride application patents and prospects for development of the branch have been considered. The patent search on "aluminum nitride synthesis" has been carried out. The research activity has been analyzed. Special attention has been paid to the patenting geography and the leading researchers in aluminum nitride synthesis. Aluminum nitride synthesis methods have been divided into 6 main groups, the most studied approaches are carbothermal reduction (88 patents) and direct nitridation (107 patents). The current issues for each group have been analyzed; the main trends are purification of the final product and nanopowder synthesis. The leading researchers in aluminum nitride synthesis have represented 5 countries, namely: Japan, China, Russia, South Korea and USA. The main aluminum nitride application spheres are electronics (59,1 percent of applications) and new materials manufacturing (30,9 percent). The review deals with the state of the art data in nanosized aluminum nitride synthesis, the major issues and the technical solutions for different synthesis methods. It gives a full understanding of the development tendencies and of the current leaders in the sphere.

  11. Direct selling particularities

    OpenAIRE

    Greifová, Daniela

    2009-01-01

    Bachelor thesis is focused on the parcularities of direct selling, self regulation of this industry, multi-level marketing which is the most used sales method in the field of direct selling. The part of the thesis is dedicated to the issue of customer psychology that is very important for achieving success in direct selling. Main goals are to provide readers with the general view of direct selling and analysis of growing possibilities of the industry in the future.

  12. In vitro synthesis of a lipid-linked trisaccharide involved in synthesis of enterobacterial common antigen

    International Nuclear Information System (INIS)

    Barr, K.; Nunes-Edwards, P.; Rick, P.D.

    1989-01-01

    The heteropolysaccharide chains of enterobacterial common antigen (ECA) are made up of linear trisaccharide repeat units with the structure----3)-alpha-D-Fuc4NAc-(1----4)- beta-D-ManNAcA-(1----4)-alpha-D-GlcNAc-(1----, where Fuc4NAc is 4-acetamido-4,6-dideoxy-D-galactose, ManNAcA is N-acetyl-D-mannosaminuronic acid, and GlcNAc is N-acetyl-D-glucosamine. The assembly of these chains involves lipid-linked intermediates, and both GlcNAc-pyrophosphorylundecaprenol (lipid I) and ManNAcA-GlcNAc-pyrophosphorylundecaprenol (lipid II) are intermediates in ECA biosynthesis. In this study we demonstrated that lipid II serves as the acceptor of Fuc4NAc residues in the assembly of the trisaccharide repeat unit of ECA chains. Incubation of Escherichia coli membranes with UDP-GlcNAc, UDP-[14C]ManNAcA, and TDP-[3H]Fuc4NAc resulted in the synthesis of a radioactive glycolipid (lipid III) that contained both [14C]ManNAcA and [3H]Fuc4NAc. The oligosaccharide moiety of lipid III was identified as a trisaccharide by gel-permeation chromatography, and the in vitro synthesis of lipid III was dependent on prior synthesis of lipids I and II. Accordingly, the incorporation of [3H]Fuc4NAc into lipid III from the donor TDP-[3H]Fuc4NAc was dependent on the presence of both UDP-GlcNAc and UDP-ManNAcA in the reaction mixtures. In addition, the in vitro synthesis of lipid III was abolished by tunicamycin. Direct conversion of lipid II to lipid III was demonstrated in two-stage reactions in which membranes were initially incubated with UDP-GlcNAc and UDP-[14C]ManNAcA to allow the synthesis of radioactive lipid II

  13. Directed Energy Weapons

    Science.gov (United States)

    2007-12-01

    future business . In defense systems, the key to future business is the existence of funded programs. Military commanders understand the lethality and...directed energp capabilities that can provide visibiliy into the likey futur business case for sustaining directed energy industry capabilities...the USD (I) staff to be afocalpointfor advocating improvement in all dimensions of directed energy intelligence. - The Director, Defense Inteligence

  14. Some directions in ecological theory.

    Science.gov (United States)

    Kendall, Bruce E

    2015-12-01

    The role of theory within ecology has changed dramatically in recent decades. Once primarily a source of qualitative conceptual framing, ecological theories and models are now often used to develop quantitative explanations of empirical patterns and to project future dynamics of specific ecological systems. In this essay, I recount my own experience of this transformation, in which accelerating computing power and the widespread incorporation of stochastic processes into ecological theory combined to create some novel integration of mathematical and statistical models. This stronger integration drives theory towards incorporating more biological realism, and I explore ways in which we can grapple with that realism to generate new general theoretical insights. This enhanced realism, in turn, may lead to frameworks for projecting ecological responses to anthropogenic change, which is, arguably, the central challenge for 21st-century ecology. In an era of big data and synthesis, ecologists are increasingly seeking to infer causality from observational data; but conventional biometry provides few tools for this project. This is a realm where theorists can and should play an important role, and I close by pointing towards some analytical and philosophical approaches developed in our sister discipline of economics that address this very problem. While I make no grand prognostications about the likely discoveries of ecological theory over the coming century, you will find in this essay a scattering of more or less far-fetched ideas that I, at least, think are interesting and (possibly) fruitful directions for our field.

  15. Ammonia Synthesis at Low Pressure.

    Science.gov (United States)

    Cussler, Edward; McCormick, Alon; Reese, Michael; Malmali, Mahdi

    2017-08-23

    Ammonia can be synthesized at low pressure by the use of an ammonia selective absorbent. The process can be driven with wind energy, available locally in areas requiring ammonia for synthetic fertilizer. Such wind energy is often called "stranded," because it is only available far from population centers where it can be directly used. In the proposed low pressure process, nitrogen is made from air using pressure swing absorption, and hydrogen is produced by electrolysis of water. While these gases can react at approximately 400 °C in the presence of a promoted conventional catalyst, the conversion is often limited by the reverse reaction, which makes this reaction only feasible at high pressures. This limitation can be removed by absorption on an ammine-like calcium or magnesium chloride. Such alkaline metal halides can effectively remove ammonia, thus suppressing the equilibrium constraints of the reaction. In the proposed absorption-enhanced ammonia synthesis process, the rate of reaction may then be controlled not by the chemical kinetics nor the absorption rates, but by the rate of the recycle of unreacted gases. The results compare favorably with ammonia made from a conventional small scale Haber-Bosch process.

  16. Asymmetric catalysis in organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, S.D.; Click, D.R.; Grumbine, S.K.; Scott, B.L.; Watkins, J.G.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of the project was to prepare new catalyst systems, which would perform chemical reactions in an enantioselective manner so as to produce only one of the possible optical isomers of the product molecule. The authors have investigated the use of lanthanide metals bearing both diolate and Schiff-base ligands as catalysts for the enantioselective reduction of prochiral ketones to secondary alcohols. The ligands were prepared from cheap, readily available starting materials, and their synthesis was performed in a ''modular'' manner such that tailoring of specific groups within the ligand could be carried out without repeating the entire synthetic procedure. In addition, they have developed a new ligand system for Group IV and lanthanide-based olefin polymerization catalysts. The ligand system is easily prepared from readily available starting materials and offers the opportunity to rapidly prepare a wide range of closely related ligands that differ only in their substitution patterns at an aromatic ring. When attached to a metal center, the ligand system has the potential to carry out polymerization reactions in a stereocontrolled manner.

  17. Synthesis of 1,1-Diborylalkenes through a Bronsted Base Catalyzed Reaction between Terminal Alkynes and Bis(pinacolato)diboron

    OpenAIRE

    Morinaga, Akira; Nagao, Kazunori; Ohmiya, Hirohisa; Sawamura, Masaya

    2015-01-01

    A method for the synthesis of 1,1-diborylalkenes through a Bronsted base catalyzed reaction between terminal alkynes and bis(pinacolato)diboron has been developed. The procedure allows direct synthesis of functionalized 1,1-diborylalkenes from various terminal alkynes including propiolates, propiolamides, and 2-ethynylazoles.

  18. Indium mediated isoprenylation of carbonyl compounds with 2-bromomethyl-1,3-butadiene: a short synthesis of (±-ipsenol

    Directory of Open Access Journals (Sweden)

    Ceschi Marco A.

    2003-01-01

    Full Text Available Isoprenylation of aldehydes and ketones was directly performed by selective indium insertion on a mixture of 2-bromomethyl-1,3-butadiene and its vinylic isomers in good yields. A short synthesis of (±-ipsenol, an aggregation pheromone of the Ips paraconfusus bark beetle, demonstrates the utility of this method in organic synthesis.

  19. Rapid and accurate synthesis of TALE genes from synthetic oligonucleotides.

    Science.gov (United States)

    Wang, Fenghua; Zhang, Hefei; Gao, Jingxia; Chen, Fengjiao; Chen, Sijie; Zhang, Cuizhen; Peng, Gang

    2016-01-01

    Custom synthesis of transcription activator-like effector (TALE) genes has relied upon plasmid libraries of pre-fabricated TALE-repeat monomers or oligomers. Here we describe a novel synthesis method that directly incorporates annealed synthetic oligonucleotides into the TALE-repeat units. Our approach utilizes iterative sets of oligonucleotides and a translational frame check strategy to ensure the high efficiency and accuracy of TALE-gene synthesis. TALE arrays of more than 20 repeats can be constructed, and the majority of the synthesized constructs have perfect sequences. In addition, this novel oligonucleotide-based method can readily accommodate design changes to the TALE repeats. We demonstrated an increased gene targeting efficiency against a genomic site containing a potentially methylated cytosine by incorporating non-conventional repeat variable di-residue (RVD) sequences.

  20. Plasma-assisted synthesis of MoS2

    Science.gov (United States)

    Campbell, Philip M.; Perini, Christopher J.; Chiu, Johannes; Gupta, Atul; Ray, Hunter S.; Chen, Hang; Wenzel, Kevin; Snyder, Eric; Wagner, Brent K.; Ready, Jud; Vogel, Eric M.

    2018-03-01

    There has been significant interest in transition metal dichalcogenides (TMDs), including MoS2, in recent years due to their potential application in novel electronic and optical devices. While synthesis methods have been developed for large-area films of MoS2, many of these techniques require synthesis temperatures of 800 °C or higher. As a result of the thermal budget, direct synthesis requiring high temperatures is incompatible with many integrated circuit processes as well as flexible substrates. This work explores several methods of plasma-assisted synthesis of MoS2 as a way to lower the synthesis temperature. The first approach used is conversion of a naturally oxidized molybdenum thin film to MoS2 using H2S plasma. Conversion is demonstrated at temperatures as low as 400 °C, and the conversion is enabled by hydrogen radicals which reduce the oxidized molybdenum films. The second method is a vapor phase reaction incorporating thermally evaporated MoO3 exposed to a direct H2S plasma, similar to chemical vapor deposition (CVD) synthesis of MoS2. Synthesis at 400 °C results in formation of super-stoichiometric MoS2 in a beam-interrupted growth process. A final growth method relies on a cyclical process in which a small amount of Mo is sputtered onto the substrate and is subsequently sulfurized in a H2S plasma. Similar results could be realized using an atomic layer deposition (ALD) process to deposit the Mo film. Compared to high temperature synthesis methods, the lower temperature samples are lower quality, potentially due to poor crystallinity or higher defect density in the films. Temperature-dependent conductivity measurements are consistent with hopping conduction in the plasma-assisted synthetic MoS2, suggesting a high degree of disorder in the low-temperature films. Optimization of the plasma-assisted synthesis process for slower growth rate and better stoichiometry is expected to lead to high quality films at low growth temperature.

  1. Binaural loudness summation for directional sounds

    DEFF Research Database (Denmark)

    Sivonen, Ville Pekka; Ellermeier, Wolfgang

    2006-01-01

    the binaural loudness summation of the at-ear signals. Even though the effects of HRTFs were taken into account, considerable individual differences in the binaural summation of loudness remained. In order to create conditions in which the directional at-ear changes were identical for all participants......, the present experiment employed 'generic' HRTFs to create directional sounds via binaural synthesis. When inspecting the results of the listening tests, however, large individual differences were still evident, as in the earlier study. The generality of this finding was further corroborated by running...... an independent, inexperienced sample of ten participants exclusively being exposed to the present generic HRTFs. Despite the individual differences, the average results suggest a relatively simple rule for combining the binaural input when carrying out acoustical measurements using an artificial head...

  2. Radiochemical synthesis of etomoxir

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Hafiz G. [Institute of Nuclear Medicine and Oncology (INMOL), New Campus Road, Lahore (Pakistan); Yunus, M. [University of the Punjab, New Campus Road, Lahore (Pakistan); Feinendegen, Ludwig E., E-mail: feinendegen@gmx.ne [Department of Nuclear Medicine, Heinrich-Heine University Duesseldorf, Wannental 45, 88131 Lindau (Germany)

    2011-02-15

    Sodium 2-{l_brace}6-(4-chlorophenoxy)hexyl{r_brace}oxirane-2-carboxylate (Etomoxir) inhibits transport of fatty acids via the carnitine shuttle into mitochondria of muscle cells and prevents long chain fatty acids from providing energy through {beta}-oxidation especially for muscle contraction. The objective of this synthesis is to develop a method for radioiodination of Etomoxir in order to explore its potential in diagnostic metabolic studies and molecular imaging. Thus, a method is described for the radiochemical synthesis and purification of ethyl 2-{l_brace}6-(4-[{sup 131}I]iodophenoxy)hexyl{r_brace}oxirane-2-carboxylate (3) and 2-{l_brace}6-(4-[{sup 131}I]iodo-phenoxy)hexyl{r_brace}oxirane-2-carboxylic acid (4). For the synthesis of these new agents, ethyl 2-{l_brace}6-(4-bromophenoxy)hexyl{r_brace}oxirane-2-carboxylate (1) and 2-{l_brace}6-(4-bromophenoxy)hexyl{r_brace}oxirane-2-carboxylic acid (2) were refluxed with [{sup 131}I]NaI in the presence of anhydrous acetone at a temperature of 80 {sup o}C and 90 {sup o}C for a period of 3-4 hours, respectively. The method of radiolabeling, based on the nucleophilic exchange reaction, resulted in a radiochemical yield of 43% and 67% for compounds 3 and 4, respectively. This paper reports on the labeling of etomoxir with radioiodine as {sup 124}I labeled etomoxir may be of great importance in molecular imaging.

  3. Evidence synthesis software.

    Science.gov (United States)

    Park, Sophie Elizabeth; Thomas, James

    2018-06-07

    It can be challenging to decide which evidence synthesis software to choose when doing a systematic review. This article discusses some of the important questions to consider in relation to the chosen method and synthesis approach. Software can support researchers in a range of ways. Here, a range of review conditions and software solutions. For example, facilitating contemporaneous collaboration across time and geographical space; in-built bias assessment tools; and line-by-line coding for qualitative textual analysis. EPPI-Reviewer is a review software for research synthesis managed by the EPPI-centre, UCL Institute of Education. EPPI-Reviewer has text mining automation technologies. Version 5 supports data sharing and re-use across the systematic review community. Open source software will soon be released. EPPI-Centre will continue to offer the software as a cloud-based service. The software is offered via a subscription with a one-month (extendible) trial available and volume discounts for 'site licences'. It is free to use for Cochrane and Campbell reviews. The next EPPI-Reviewer version is being built in collaboration with National Institute for Health and Care Excellence using 'surveillance' of newly published research to support 'living' iterative reviews. This is achieved using a combination of machine learning and traditional information retrieval technologies to identify the type of research each new publication describes and determine its relevance for a particular review, domain or guideline. While the amount of available knowledge and research is constantly increasing, the ways in which software can support the focus and relevance of data identification are also developing fast. Software advances are maximising the opportunities for the production of relevant and timely reviews. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise

  4. Lactobacillusassisted synthesis of titanium nanoparticles

    Directory of Open Access Journals (Sweden)

    Jha Anal

    2007-01-01

    Full Text Available AbstractAn eco-friendlylactobacillussp. (microbe assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40–60 nm are found.

  5. Organic synthesis with stable isotopes

    International Nuclear Information System (INIS)

    Blazer, R.M.; Daub, G.H.; Kerr, V.N.; Williams, D.L.; Whaley, T.W.

    1982-01-01

    Described is a scheme for the synthesis of L-arginine-1- 13 C utilizing methods developed for the synthesis of L-ornithine-1- 13 C from L-ornithine-2- 13 C and then converting ornithine into arginine with the enzyme acylase

  6. A novel synthesis of hemispherands

    NARCIS (Netherlands)

    Ostaszewski, Ryszard; Verboom, Willem; Reinhoudt, David

    1992-01-01

    A novel, flexible synthesis of hemispherands {2,5,8-trioxa[9](3,3″) m-terphenylophanes 5a-d} with different central aromatic groups is described. The key step comprises the introduction of the central aromatic ring in the last step of the synthesis via a Suzuki cross-coupling reaction using

  7. First total synthesis of Boehmenan

    Indian Academy of Sciences (India)

    The first total synthesis of dilignan Boehmenan has been achieved. A biomimetic oxidative coupling of the ferulic acid methyl ester in the presence of silver oxide is the crucial step in the synthesis sequence, generating the dihydrobenzofuran skeleton. Hydroxyl group was protected with DHP and reducted with LiAlH4 to ...

  8. Chemical synthesis on SU-8

    DEFF Research Database (Denmark)

    Qvortrup, Katrine; Taveras, Kennedy; Thastrup, Ole

    2011-01-01

    In this paper we describe a highly effective surface modification of SU-8 microparticles, the attachment of appropriate linkers for solid-supported synthesis, and the successful chemical modification of these particles via controlled multi-step organic synthesis leading to molecules attached...

  9. Learning via Query Synthesis

    KAUST Repository

    Alabdulmohsin, Ibrahim Mansour

    2017-05-07

    Active learning is a subfield of machine learning that has been successfully used in many applications. One of the main branches of active learning is query synthe- sis, where the learning agent constructs artificial queries from scratch in order to reveal sensitive information about the underlying decision boundary. It has found applications in areas, such as adversarial reverse engineering, automated science, and computational chemistry. Nevertheless, the existing literature on membership query synthesis has, generally, focused on finite concept classes or toy problems, with a limited extension to real-world applications. In this thesis, I develop two spectral algorithms for learning halfspaces via query synthesis. The first algorithm is a maximum-determinant convex optimization method while the second algorithm is a Markovian method that relies on Khachiyan’s classical update formulas for solving linear programs. The general theme of these methods is to construct an ellipsoidal approximation of the version space and to synthesize queries, afterward, via spectral decomposition. Moreover, I also describe how these algorithms can be extended to other settings as well, such as pool-based active learning. Having demonstrated that halfspaces can be learned quite efficiently via query synthesis, the second part of this thesis proposes strategies for mitigating the risk of reverse engineering in adversarial environments. One approach that can be used to render query synthesis algorithms ineffective is to implement a randomized response. In this thesis, I propose a semidefinite program (SDP) for learning a distribution of classifiers, subject to the constraint that any individual classifier picked at random from this distributions provides reliable predictions with a high probability. This algorithm is, then, justified both theoretically and empirically. A second approach is to use a non-parametric classification method, such as similarity-based classification. In this

  10. Total Synthesis of Hyperforin.

    Science.gov (United States)

    Ting, Chi P; Maimone, Thomas J

    2015-08-26

    A 10-step total synthesis of the polycyclic polyprenylated acylphloroglucinol (PPAP) natural product hyperforin from 2-methylcyclopent-2-en-1-one is reported. This route was enabled by a diketene annulation reaction and an oxidative ring expansion strategy designed to complement the presumed biosynthesis of this complex meroterpene. The described work enables the preparation of a highly substituted bicyclo[3.3.1]nonane-1,3,5-trione motif in only six steps and thus serves as a platform for the construction of easily synthesized, highly diverse PPAPs modifiable at every position.

  11. Dibutylphosphoric acid synthesis

    International Nuclear Information System (INIS)

    Elias, H.; Boumaout, R.; Kellou, N.; Amedjkouh, A.; Hamidi, A.

    1995-09-01

    This work consists on the synthesis of dibutylphosphoric acis (DBP) by reaction of butanol with phosphorus pentoxid and on its separation by liquid-liquid extraction. It also deals with the characterization of DBP by some physicochemical analysis methods such as : chromatography, pH-metry and infrared and ultraviolet spectrophotometries. this study showed essentialy, that DBP can be formed in an appreciable amount (55%) when the reaction is realised with butanol/pentoxid molar ratio upper than 3 at temperature of 95 C

  12. Controlled synthesis of titania using water-soluble titanium complexes: A review

    Science.gov (United States)

    Truong, Quang Duc; Dien, Luong Xuan; Vo, Dai-Viet N.; Le, Thanh Son

    2017-07-01

    The development of human society has led to the increase in energy and resources consumption as well as the arising problems of environmental damage and the toxicity to the human health. The development of novel synthesis method which tolerates utilization of toxic solvents and chemicals would fulfill the demand of the society for safer, softer, and environmental friendly technologies. For the past decades, a remarkable progress has been attained in the development of new water-soluble titanium complexes (WSTC) and their use for the synthesis of nanocrystalline titanium dioxide materials by aqueous solution-based approaches. The progress of synthesis of nanocrystalline titanium dioxide using such WSTCs is reviewed in this work. The key structural features responsible for the successfully controlled synthesis of TiO2 are discussed to provide guidelines for the morphology-controlled synthesis. Finally, this review ends with a summary and some perspectives on the challenges as well as new directions in this fascinating research.

  13. Synthesis, characterization of organo-modified zeolitic nanomaterial from coal ash and application as adsorbent on remediation of contaminated water by rhodamine B and direct blue 71; Síntese, caracterização de nanomaterial zeolítico de cinzas de carvão organomodificado e aplicação como adsorvente na remediação de água contaminada por Rodamina B e Azul Direto 71

    Energy Technology Data Exchange (ETDEWEB)

    Alcântara, Raquel Reis

    2016-07-01

    The synthesis of zeolites from mineral coal fly and bottom ash was performed by alkaline hydrothermal treatment, which were named ZFA and ZBA, respectively. Organo-modified zeolites, SMZF and SMZB, were obtained from surface modification of ZFA and ZBA, respectively, using the cationic surfactant hexadecyltrimethylammonium bromide. From the remaining solutions generated in ZFA and ZBA synthesis it was possible to synthesis two new zeolites. The physicochemical characteristics of the synthesized nanomaterials zeolite as well as their respective raw materials, such as cation exchange capacity, density, specific area, chemical composition, mineralogical and morphological, among others, were determined. The adsorbents SMZF and SMZB were used to remove the dyes, Direct Blue 71 (DB71) and Rhodamine B (RB) from aqueous solutions in batch system. Thus, four systems DB71/SMZF, RB/SMZF, DB71/SMZB, RB/SMZB were investigated. The models of pseudo-first order and pseudo-second order were applied to the experimental data for the study the adsorption kinetics. The model of pseudo-second order was the one that best described the adsorption of all dye/organomodified-zeolites systems. The equilibrium adsorption was analyzed from four models isotherm, namely: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-B). The results show that the model Freundlich and Langmuir best described the experimental data systems DB71/SMZF and DB71/SMZB, respectively. For systems with RB, the model D-R was the best fit for both adsorbents (SMZF and SMZB). The factorial design 2{sup 4} was applied to the analysis of the following factors influencing the adsorption process: initial concentration of dye (C{sub o}), pH, amount of adsorbent (M) and temperature (T). Under the conditions studied it concludes with the confidence interval of 95%, which for the DB71/SMZF system, the factors and their interactions that influence more were C{sub 0}, M, pH, pH∗M, pH∗C{sub 0}, M∗C{sub 0}, p

  14. Palladium catalyzed direct oxidation of benzene with molecular oxygen to phenol

    International Nuclear Information System (INIS)

    Jintoku, Tetsuro; Takaki, Ken; Fujiwara, Yuzo; Fuchita, Yoshio; Hiraki, Katsuma.

    1990-01-01

    Direct phenol synthesis from benzene is currently one of the most important problems in modern chemistry. We have reported new phenol synthesis from benzene and O 2 via direct activation of a C-H aromatic bond by the Pd(OAc) 2 /phenanthroline catalyst system. The evidence for direct oxidation of benzene by O 2 was obtained using 18 O and 2 H isotopes. The mechanism was proposed on the basis of these results and the reactions of Ph-Pd σ complex intermediates. (author)

  15. Directed Energy Anechoic Chamber

    Data.gov (United States)

    Federal Laboratory Consortium — The Directed Energy Anechoic Chamber comprises a power anechoic chamber and one transverse electromagnetic cell for characterizing radiofrequency (RF) responses of...

  16. Records Management Directive

    Data.gov (United States)

    Office of Personnel Management — The Office of Personnel Management (OPM) Records Management Directive provides guidelines for the management of OPM records, and identifies the records management...

  17. Synthesis of Lipidated Proteins.

    Science.gov (United States)

    Mejuch, Tom; Waldmann, Herbert

    2016-08-17

    Protein lipidation is one of the major post-translational modifications (PTM) of proteins. The attachment of the lipid moiety frequently determines the localization and the function of the lipoproteins. Lipidated proteins participate in many essential biological processes in eukaryotic cells, including vesicular trafficking, signal transduction, and regulation of the immune response. Malfunction of these cellular processes usually leads to various diseases such as cancer. Understanding the mechanism of cellular signaling and identifying the protein-protein and protein-lipid interactions in which the lipoproteins are involved is a crucial task. To achieve these goals, fully functional lipidated proteins are required. However, access to lipoproteins by means of standard expression is often rather limited. Therefore, semisynthetic methods, involving the synthesis of lipidated peptides and their subsequent chemoselective ligation to yield full-length lipoproteins, were developed. In this Review we summarize the commonly used methods for lipoprotein synthesis and the development of the corresponding chemoselective ligation techniques. Several key studies involving full-length semisynthetic lipidated Ras, Rheb, and LC3 proteins are presented.

  18. Ethylene and protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, D J

    1973-01-01

    Ethylene reduces the rate of expansion growth of cells and it is suggestive that the rate of expansion is controlled at least in part by the synthesis of hydroxyproline rich glycopeptides that are secreted with other polysaccharide material through the plasmalemma into the cell wall, thereby enhancing the thickness of the cell wall and also rendering it poorly extensible. In combination, auxin would appear to counteract the effect of ethylene in this respect, for although auxin enhances the synthesis of protein and the content in the cell walls, as well as causing some increase in wall thickness, it reduces the amount of hydroxyproline reaching the wall. Such effects may be instrumental in enhancing wall plasticity, the rate of expansion and the final cell size. These results indicate that ethylene and auxin together afford a dual regulatory system exerted through a control of a specific part of the protein synthetic pathway, the products of which regulate the rate of expansion, and the potential for expansion, of the plant cell wall. 38 references, 3 figures, 8 tables.

  19. Effects of DNA polymerase inhibitors on replicative and repair DNA synthesis in ultraviolet-irradiated HeLa cells

    International Nuclear Information System (INIS)

    Morita, T.; Nakamura, H.; Tsutsui, Y.; Nishiyama, Y.; Yoshida, S.

    1982-01-01

    Aphidicolin specifically inhibits eukaryotic DNA polymerase α, while 2',3'-dideoxythymidine 5'-triphosphate (d 2 TTP) inhibits DNA polymerase ν and ν but not α. 1-ν-D-Arabinofuranosylcytosine 5'-triphosphate (araCTP) inhibits both DNA polymerase α and ν although to a different extent. Here we measured the effects of these inhibitors on repair DNA synthesis of U.V.-irradiated HeLa cells by two different methods. Firstly, aphidicolin, 1-ν-D-arabinofuranosylcytosine (araC, a precursor of araCTP) and 2',3'-dideoxythimidine (d 2 Thd, a precursor of d 2 TTP) were added directly to the culture medium. In this case, aphidicolin and araC strongly inhibited replicative DNA synthesis of HeLa cells, and they also inhibited repair synthesis after U.V.-irradiation but to a much lesser extent. In contrast, high concentrations of d 2 Thd inhibited repair DNA synthesis to a higher extent than replicative DNA synthesis. Secondly, the active form of inhibitor, d 2 TTP, was microinjected directly into cytoplasm or nuclei or U.V.-irradiated HeLa cells. Microinjection of d 2 TTP effectively inhibited repair synthesis. The microinjection of d 2 TTP, into either cytoplasm or nucleus, strongly inhibited replicative synthesis. These results might indicate that multiple DNA polymerases are involved in repair synthesis as well as in replicative synthesis

  20. Embedded audio without beeps: synthesis and sound effects from cheap to steep

    DEFF Research Database (Denmark)

    Møbius, Nikolaj; Overholt, Dan

    2015-01-01

    , and wireless devices for the control of sound or music generated remotely. For example, studio creations can synthesize sound directly with an Arduino or a more powerful "Create USB Interface" board via Direct Digital Synthesis. Alternatively, they can control a program such as Pure Data (or other common...

  1. Exploring and Implementing Participatory Action Synthesis

    Science.gov (United States)

    Wimpenny, Katherine; Savin-Baden, Maggi

    2012-01-01

    This article presents participatory action synthesis as a new approach to qualitative synthesis which may be used to facilitate the promotion and use of qualitative research for policy and practice. The authors begin by outlining different forms of qualitative research synthesis and then present participatory action synthesis, a collaborative…

  2. Direct Conversion of Energy.

    Science.gov (United States)

    Corliss, William R.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Direct energy conversion involves energy transformation without moving parts. The concepts of direct and dynamic energy conversion plus the laws governing energy conversion are investigated. Among the topics…

  3. Decisions Concerning Directional Dependence

    Science.gov (United States)

    von Eye, Alexander; DeShon, Richard P.

    2012-01-01

    In this rejoinder, von Eye and DeShon discuss the decision strategies proposed in their original article ("Directional Dependence in Developmental Research," this issue), as well as the ones proposed by the authors of the commentary (Pornprasertmanit and Little, "Determining Directional Dependency in Causal Associations," this issue). In addition,…

  4. Development of coating technology for nuclear fuel by self-propagating high temperature synthesis

    International Nuclear Information System (INIS)

    Choi, Y.; Kim, Bong G.; Lee, Y. W.

    1997-01-01

    This paper presents experimental results of the preparation of silicon carbide and graphite layers on a nuclear fuel from silane and propane gases by a conventional chemical vapor deposition and combustion synthesis technologies. The direct reaction between silicon and pyrolytic carbon in a high temperature releases sufficient amount of energy to make a synthesis self-sustaining under the preheating of about 1200 deg C. During this high temperature process, lamellar structure with isotropic carbon synthesis. A full characterization of phase composition and final morphology of the coated layers by X-ray diffraction, SEM and AES is presented. (author). 6 refs., 1 tab., 11 figs

  5. Synthesis of milligram quantities of proteins using a reconstituted in vitro protein synthesis system.

    Science.gov (United States)

    Kazuta, Yasuaki; Matsuura, Tomoaki; Ichihashi, Norikazu; Yomo, Tetsuya

    2014-11-01

    In this study, the amount of protein synthesized using an in vitro protein synthesis system composed of only highly purified components (the PURE system) was optimized. By varying the concentrations of each system component, we determined the component concentrations that result in the synthesis of 0.38 mg/mL green fluorescent protein (GFP) in batch mode and 3.8 mg/mL GFP in dialysis mode. In dialysis mode, protein concentrations of 4.3 and 4.4 mg/mL were synthesized for dihydrofolate reductase and β-galactosidase, respectively. Using the optimized system, the synthesized protein represented 30% (w/w) of the total protein, which is comparable to the level of overexpressed protein in Escherichia coli cells. This optimized reconstituted in vitro protein synthesis system may potentially be useful for various applications, including in vitro directed evolution of proteins, artificial cell assembly, and protein structural studies. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Synthesis of 2-phosphaadamantane derivatives

    International Nuclear Information System (INIS)

    Zemlyanoi, V.N.; Aleksandrov, A.M.; Kukhar', V.P.

    1986-01-01

    The authors describe the synthesis and properties of 2-phosphadamantane derivatives. For the synthesis of 2-phosphaadamantane derivatives they decided to use the methodology of the synthesis of 2-thiaadamantane. The IR spectra were determined on CHCl 3 solutions with a Specord 711R spectrometer, the PMR spectra were determined on Tesla BS-467 (60 MHz) and Bruker WP-200 (200 MHz) spectrometers, external standard hexamethyldisiloxane, the 31 P NMR spectra were determined on Tesla BS-487 C (30 MHz) and Bruker WP-200 (81 MHz) spectrometers, external standard 85% phosphoric acid, and the mass spectra were determined on an MS-1302 spectrometer

  7. Synthesis through Trans-disciplinarity

    DEFF Research Database (Denmark)

    Hansen, Hanne Tine Ring

    2006-01-01

    synthesis is a requirement for creating successful ‘environmentally sustainable' architecture through the application of trans-disciplinarity, which leads to an increased awareness of the differences in decision-making as well as that of communication barriers between the different professions......When looking up the word ‘synthesis' in a dictionary, one comes across the following definition: "The combining of separate elements or substances to form a coherent whole."[1] Based on this definition one could argue that all great architectureis achieved through synthesis in one way or another...

  8. Substrate-Directed Catalytic Selective Chemical Reactions.

    Science.gov (United States)

    Sawano, Takahiro; Yamamoto, Hisashi

    2018-05-04

    The development of highly efficient reactions at only the desired position is one of the most important subjects in organic chemistry. Most of the reactions in current organic chemistry are reagent- or catalyst-controlled reactions, and the regio- and stereoselectivity of the reactions are determined by the inherent nature of the reagent or catalyst. In sharp contrast, substrate-directed reaction determines the selectivity of the reactions by the functional group on the substrate and can strictly distinguish sterically and electronically similar multiple reaction sites in the substrate. In this Perspective, three topics of substrate-directed reaction are mainly reviewed: (1) directing group-assisted epoxidation of alkenes, (2) ring-opening reactions of epoxides by various nucleophiles, and (3) catalytic peptide synthesis. Our newly developed synthetic methods with new ligands including hydroxamic acid derived ligands realized not only highly efficient reactions but also pinpointed reactions at the expected position, demonstrating the substrate-directed reaction as a powerful method to achieve the desired regio- and stereoselective functionalization of molecules from different viewpoints of reagent- or catalyst-controlled reactions.

  9. Synthesis, characterization, thermal

    Directory of Open Access Journals (Sweden)

    Selma Bal

    2017-09-01

    Full Text Available This work explains the synthesis of a new azo-Schiff base compound, derived from condensation between N-ethylcarbazole-3-carbaldehyde and 1,3-diaminopropane, followed by azo coupling reaction with the diazonium salt of 2-amino-4-methyl phenol. The newly synthesized azo-Schiff base was further reacted with the acetate salts of Copper, Cobalt and Nickel to give three coordination compounds. All synthesized compounds have been characterized through spectral analysis. The coordination compounds have been examined for their thermal and catalytic features. Good and moderate yields were obtained for the oxidation of styrene and cyclohexene. Thermal features of the ligand and its complexes have been explained and the results obtained have supported the proposed structures.

  10. Synthesis of ruthenium phosphides

    International Nuclear Information System (INIS)

    Chernogorenko, V.B.; Lynchak, K.A.; Kulik, L.Ya.; Shkaravskij, Yu.F.; Klochkov, L.A.

    1977-01-01

    A method of ampoule synthesis of ruthenium phosphides, Ru 2 P, RuP, and RuP 2 , with stepwise heating of stoichimetric charges in a single-zone furnace is developed. A method for synthesizing ruthenium diphosphide by phosphidization of a ruthenium powder with phosphine at 1150 deg C is worked out. The optimum conditions of its manufacture are found by planning an extremal experiment. Interaction of PH 3 with ruthenium proceeds by the diffusion mechanism and obeys the parabolic law. An extraction-photometric method for determining phosphorus in phosphides is elaborated. Ruthenium phosphides are extremely corrosion-resistant in acids and alkalis. Ru 2 P and RuP exhibit metallic conductivity

  11. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    Jamaliah Idris

    2013-01-01

    Full Text Available Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis parameters, such as cathodic current density and temperature at constant pH, on electrodeposition and microstructure of Ni-Co alloys were examined. A homogeneous surface morphology was obtained at all current densities of the plated samples, and it was evident that the current density and temperature affect the coating thickness of Ni-Co alloy coatings.

  12. De Novo Glutamine Synthesis

    Science.gov (United States)

    He, Qiao; Shi, Xinchong; Zhang, Linqi; Yi, Chang; Zhang, Xuezhen

    2016-01-01

    Purpose: The aim of this study was to investigate the role of de novo glutamine (Gln) synthesis in the proliferation of C6 glioma cells and its detection with 13N-ammonia. Methods: Chronic Gln-deprived C6 glioma (0.06C6) cells were established. The proliferation rates of C6 and 0.06C6 cells were measured under the conditions of Gln deprivation along with or without the addition of ammonia or glutamine synthetase (GS) inhibitor. 13N-ammonia uptake was assessed in C6 cells by gamma counting and in rats with C6 and 0.06C6 xenografts by micro–positron emission tomography (PET) scanning. The expression of GS in C6 cells and xenografts was assessed by Western blotting and immunohistochemistry, respectively. Results: The Gln-deprived C6 cells showed decreased proliferation ability but had a significant increase in GS expression. Furthermore, we found that low concentration of ammonia was sufficient to maintain the proliferation of Gln-deprived C6 cells, and 13N-ammonia uptake in C6 cells showed Gln-dependent decrease, whereas inhibition of GS markedly reduced the proliferation of C6 cells as well as the uptake of 13N-ammoina. Additionally, microPET/computed tomography exhibited that subcutaneous 0.06C6 xenografts had higher 13N-ammonia uptake and GS expression in contrast to C6 xenografts. Conclusion: De novo Gln synthesis through ammonia–glutamate reaction plays an important role in the proliferation of C6 cells. 13N-ammonia can be a potential metabolic PET tracer for Gln-dependent tumors. PMID:27118759

  13. Directionality of dog vocalizations

    Science.gov (United States)

    Frommolt, Karl-Heinz; Gebler, Alban

    2004-07-01

    The directionality patterns of sound emission in domestic dogs were measured in an anechoic environment using a microphone array. Mainly long-distance signals from four dogs were investigated. The radiation pattern of the signals differed clearly from an omnidirectional one with average differences in sound-pressure level between the frontal and rear position of 3-7 dB depending from the individual. Frequency dependence of directionality was shown for the range from 250 to 3200 Hz. The results indicate that when studying acoustic communication in mammals, more attention should be paid to the directionality pattern of sound emission.

  14. The 1989 progress report: Polytechnic school laboratories' Direction

    International Nuclear Information System (INIS)

    1989-01-01

    The 1989 progress report of the laboratories' Direction of the Polytechnic School (France) is presented. The research activities carried out in each laboratory are summarized. Scientific and technical cooperation, financial and employement aspects are included. The main fields of research are: biochemistry, chemistry, reaction mechanisms, organic synthesis, mechanics of solids, meteorology, irradiated solids, optics, physics, biophysics, lasers, mathematics, econometrics, epistemology, management and computer science [fr

  15. FAA Directives System

    Science.gov (United States)

    1992-08-26

    Consistent with the Federal Aviation Administration's mission to foster a safe, : secure, and efficient aviation system is the need for an effective and efficient : process for communitcating policy and procedures. The FAA Directives System : provide...

  16. Assessing directionality in context

    African Journals Online (AJOL)

    Kate H

    In support of first-language interpreting as the exclusive interpreting direction, ... some light on the possible interaction between two independent variables, .... the “local context” refers to the setting, genre, participants, and aims of the event.

  17. Directed line liquids

    International Nuclear Information System (INIS)

    Kamien, R.D.

    1992-01-01

    This thesis is devoted to the study of ensembles of dense directed lines. These lines are principally to be thought of as polymers, though they also have the morphology of flux lines in high temperature superconductors, strings of colloidal spheres in electrorheological fluids and the world lines of quantum mechanical bosons. The authors discuss how directed polymer melts, string-like formations in electrorheological and ferro-fluids, flux lines in high temperature superconductors and the world lines of quantum mechanical bosons all share similar descriptions. They study a continuous transition in all of these systems, and then study the critical mixing properties of binary mixtures of directed polymers through the renormalization group. They predict the exponents for a directed polymer blend consolute point and a novel two-phase superfluid liquid-gas critical point

  18. The ''energy tax'' directive

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    As Austria dropped its reservation, U.E. Economics and Finance Ministers gave, on 20 March at Brussels, their political agreement to the proposed Directive on a Community framework for the taxation of energy products. (author)

  19. Vanillin Synthesis from 4-Hydroxybenzaldehyde

    Science.gov (United States)

    Taber, Douglass F.; Patel, Shweta; Hambleton, Travis M.; Winkel, Emma E.

    2007-01-01

    A regioselective, safe and efficient method for the synthesis of vanillin from 4-hydroxybenzaldehyde is being described. The vanillin derived from the process is cheap and can be used as a flavor or in the paper industry.

  20. Synthesis of deuterated 1-phenylpropenols

    International Nuclear Information System (INIS)

    Denhez, J.P.; Girault, G.; Dizabo, P.

    1981-01-01

    The synthesis of deuterated 1-phenylpropenols is reported. The methods involve either Grignard reactions or selective reduction of α, β unsaturated ketones. These ketones are obtained by degradation of ammonium salts of the Mannich bases. (author)