International Nuclear Information System (INIS)
Mack, G.
1982-01-01
After a description of a pure Yang-Mills theory on a lattice, the author considers a three-dimensional pure U(1) lattice gauge theory. Thereafter he discusses the exact relation between lattice gauge theories with the gauge groups SU(2) and SO(3). Finally he presents Monte Carlo data on phase transitions in SU(2) and SO(3) lattice gauge models. (HSI)
International Nuclear Information System (INIS)
Creutz, M.
1983-04-01
In the last few years lattice gauge theory has become the primary tool for the study of nonperturbative phenomena in gauge theories. The lattice serves as an ultraviolet cutoff, rendering the theory well defined and amenable to numerical and analytical work. Of course, as with any cutoff, at the end of a calculation one must consider the limit of vanishing lattice spacing in order to draw conclusions on the physical continuum limit theory. The lattice has the advantage over other regulators that it is not tied to the Feynman expansion. This opens the possibility of other approximation schemes than conventional perturbation theory. Thus Wilson used a high temperature expansion to demonstrate confinement in the strong coupling limit. Monte Carlo simulations have dominated the research in lattice gauge theory for the last four years, giving first principle calculations of nonperturbative parameters characterizing the continuum limit. Some of the recent results with lattice calculations are reviewed
International Nuclear Information System (INIS)
Petronzio, R.
1992-01-01
Lattice gauge theories are about fifteen years old and I will report on the present status of the field without making the elementary introduction that can be found in the proceedings of the last two conferences. The talk covers briefly the following subjects: the determination of α s , the status of spectroscopy, heavy quark physics and in particular the calculation of their hadronic weak matrix elements, high temperature QCD, non perturbative Higgs bounds, chiral theories on the lattice and induced theories
Continuum gauge fields from lattice gauge fields
International Nuclear Information System (INIS)
Goeckeler, M.; Kronfeld, A.S.; Schierholz, G.; Wiese, U.J.
1993-01-01
On the lattice some of the salient features of pure gauge theories and of gauge theories with fermions in complex representations of the gauge group seem to be lost. These features can be recovered by considering part of the theory in the continuum. The prerequisite for that is the construction of continuum gauge fields from lattice gauge fields. Such a construction, which is gauge covariant and complies with geometrical constructions of the topological charge on the lattice, is given in this paper. The procedure is explicitly carried out in the U(1) theory in two dimensions, where it leads to simple results. (orig.)
Digital lattice gauge theories
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.
Dielectric lattice gauge theory
International Nuclear Information System (INIS)
Mack, G.
1983-06-01
Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)epsilong that are attached to the links b = (x+esub(μ),x) of the lattice and take their values in the linear space g which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)osub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportionalosub(i)osub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson loop expectation values show an area law decay, if the Euclidean action has certain qualitative features which imply that PHI = 0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)
Dielectric lattice gauge theory
International Nuclear Information System (INIS)
Mack, G.
1984-01-01
Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)element ofG that are attached to the links b = (x+esub(μ), x) of the lattice and take their values in the linear space G which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)sigmasub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportional sigmasub(i)sigmasub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder-Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson-loop expectation values show an area law decay, if the euclidean action has certain qualitative features which imply that PHI=0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)
Global gauge fixing in lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Fachin, S.; Parrinello, C. (Physics Department, New York University, 4 Washington Place, New York, New York (USA))
1991-10-15
We propose a covariant, nonperturbative gauge-fixing procedure for lattice gauge theories that avoids the problem of Gribov copies. This is closely related to a recent proposal for a gauge fixing in the continuum that we review. The lattice gauge-fixed model allows both analytical and numerical investigations: on the analytical side, explicit nonperturbative calculations of gauge-dependent quantities can be easily performed in the framework of a generalized strong-coupling expansion, while on the numerical side a stochastic gauge-fixing algorithm is very naturally associated with the scheme. In both applications one can study the gauge dependence of the results, since the model actually provides a smooth'' family of gauge-fixing conditions.
International Nuclear Information System (INIS)
Hasenfratz, A.; Hasenfratz, P.
1985-01-01
This paper deals almost exclusively with applications in QCD. Presumably QCD will remain in the center of lattice calculations in the near future. The existing techniques and the available computer resources should be able to produce trustworthy results in pure SU(3) gauge theory and in quenched hadron spectroscopy. Going beyond the quenched approximation might require some technical breakthrough or exceptional computer resources, or both. Computational physics has entered high-energy physics. From this point of view, lattice QCD is only one (although the most important, at present) of the research fields. Increasing attention is devoted to the study of other QFTs. It is certain that the investigation of nonasymptotically free theories, the Higgs phenomenon, or field theories that are not perturbatively renormalizable will be important research areas in the future
Remarks on lattice gauge models
International Nuclear Information System (INIS)
Grosse, H.
1981-01-01
The author reports a study of the phase structure of lattice gauge models where one takes as a gauge group a non-abelian discrete subgroup of SU(3). In addition he comments on a lattice action proposed recently by Manton and observes that it violates a positivity property. (Auth.)
Remarks on lattice gauge models
International Nuclear Information System (INIS)
Grosse, H.
1981-01-01
The author reports on a study of the phase structure of lattice gauge models where one takes as a gauge group a non-abelian discrete subgroup of SU(3). In addition he comments on a lattice action proposed recently by Manton (1980) and observes that it violates a positivity property. (Auth.)
Introduction to lattice gauge theories
International Nuclear Information System (INIS)
La Cock, P.
1988-03-01
A general introduction to Lattice Gauge Theory (LGT) is given. The theory is discussed from first principles to facilitate an understanding of the techniques used in LGT. These include lattice formalism, gauge invariance, fermions on the lattice, group theory and integration, strong coupling methods and mean field techniques. A review of quantum chromodynamics on the lattice at finite temperature and density is also given. Monte Carlo results and analytical methods are discussed. An attempt has been made to include most relevant data up to the end of 1987, and to update some earlier reviews existing on the subject. 224 refs., 33 figs., 14 tabs
Lattice calculations in gauge theory
International Nuclear Information System (INIS)
Rebbi, C.
1985-01-01
The lattice formulation of quantum gauge theories is discussed as a viable technique for quantitative studies of nonperturbative effects in QCD. Evidence is presented to ascertain that whole classes of lattice actions produce a universal continuum limit. Discrepancies between numerical results from Monto Carlo simulations for the pure gauge system and for the system with gauge and quark fields are discussed. Numerical calculations for QCD require very substantial computational resources. The use of powerful vector processors of special purpose machines, in extending the scope and magnitude or the calculations is considered, and one may reasonably expect that in the near future good quantitative predictions will be obtained for QCD
Machines for lattice gauge theory
International Nuclear Information System (INIS)
Mackenzie, P.B.
1989-05-01
The most promising approach to the solution of the theory of strong interactions is large scale numerical simulation using the techniques of lattice gauge theory. At the present time, computing requirements for convincing calculations of the properties of hadrons exceed the capabilities of even the most powerful commercial supercomputers. This has led to the development of massively parallel computers dedicated to lattice gauge theory. This talk will discuss the computing requirements behind these machines, and general features of the components and architectures of the half dozen major projects now in existence. 20 refs., 1 fig
Introduction to lattice gauge theory
International Nuclear Information System (INIS)
Gupta, R.
1987-01-01
The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off ≅ 1/α, where α is the lattice spacing. The continuum (physical) behavior is recovered in the limit α → 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics. This will be the emphasis of the first lecture. In the second lecture, the author reviews the essential ingredients of formulating QCD on the lattice and discusses scaling and the continuum limit. In the last lecture the author summarizes the status of some of the main results. He also mentions the bottlenecks and possible directions for research. 88 refs
Lattice gauge theory using parallel processors
International Nuclear Information System (INIS)
Lee, T.D.; Chou, K.C.; Zichichi, A.
1987-01-01
The book's contents include: Lattice Gauge Theory Lectures: Introduction and Current Fermion Simulations; Monte Carlo Algorithms for Lattice Gauge Theory; Specialized Computers for Lattice Gauge Theory; Lattice Gauge Theory at Finite Temperature: A Monte Carlo Study; Computational Method - An Elementary Introduction to the Langevin Equation, Present Status of Numerical Quantum Chromodynamics; Random Lattice Field Theory; The GF11 Processor and Compiler; and The APE Computer and First Physics Results; Columbia Supercomputer Project: Parallel Supercomputer for Lattice QCD; Statistical and Systematic Errors in Numerical Simulations; Monte Carlo Simulation for LGT and Programming Techniques on the Columbia Supercomputer; Food for Thought: Five Lectures on Lattice Gauge Theory
BROOKHAVEN: Lattice gauge theory symposium
Energy Technology Data Exchange (ETDEWEB)
Anon.
1986-12-15
Originally introduced by Kenneth Wilson in the early 70s, the lattice formulation of a quantum gauge theory became a hot topic of investigation after Mike Creutz, Laurence Jacobs and Claudio Rebbi demonstrated in 1979 the feasibility of meaningful computer simulations. The initial enthusiasm led gradually to a mature research effort, with continual attempts to improve upon previous results, to develop better computational techniques and to find new domains of application.
Internal space decimation for lattice gauge theories
International Nuclear Information System (INIS)
Flyvbjerg, H.
1984-01-01
By a systematic decimation of internal space lattice gauge theories with continuous symmetry groups are mapped into effective lattice gauge theories with finite symmetry groups. The decimation of internal space makes a larger lattice tractable with the same computational resources. In this sense the method is an alternative to Wilson's and Symanzik's programs of improved actions. As an illustrative test of the method U(1) is decimated to Z(N) and the results compared with Monte Carlo data for Z(4)- and Z(5)-invariant lattice gauge theories. The result of decimating SU(3) to its 1080-element crystal-group-like subgroup is given and discussed. (orig.)
A lattice formulation of chiral gauge theories
International Nuclear Information System (INIS)
Bodwin, G.T.
1995-12-01
The authors present a method for formulating gauge theories of chiral fermions in lattice field theory. The method makes use of a Wilson mass to remove doublers. Gauge invariance is then restored by modifying the theory in two ways: the magnitude of the fermion determinant is replaced with the square root of the determinant for a fermion with vector-like couplings to the gauge field; a double limit is taken in which the lattice spacing associated with the fermion field is taken to zero before the lattice spacing associated with the gauge field. The method applies only to theories whose fermions are in an anomaly-free representation of the gauge group. They also present a related technique for computing matrix elements of operators involving fermion fields. Although the analyses of these methods are couched in weak-coupling perturbation theory, it is argued that computational prescriptions are gauge invariant in the presence of a nonperturbative gauge-field configuration
Gauge theories on a small lattice
International Nuclear Information System (INIS)
Robson, D.; Webber, D.M.
1980-01-01
We present exact solutions to U(1), SU(2), and SU(3) lattice gauge theories on a Kogut-Susskind lattice consisting of a single plaquette. We demonstrate precise equivalence between the U(1) theory and the harmonic oscillator on an infinite one-dimensional lattice, and between the SU(N) theory and an N-fermion Schroedinger equation. (orig.)
Fourier acceleration in lattice gauge theories. I. Landau gauge fixing
International Nuclear Information System (INIS)
Davies, C.T.H.; Batrouni, G.G.; Katz, G.R.; Kronfeld, A.S.; Lepage, G.P.; Wilson, K.G.; Rossi, P.; Svetitsky, B.
1988-01-01
Fourier acceleration is a useful technique which can be applied to many different numerical algorithms in order to alleviate the problem of critical slowing down. Here we describe its application to an optimization problem in the simulation of lattice gauge theories, that of gauge fixing a configuration of link fields to the Landau gauge (partial/sub μ/A/sup μ/ = 0). We find that a steepest-descents method of gauge fixing link fields at β = 5.8 on an 8 4 lattice can be made 5 times faster using Fourier acceleration. This factor will grow as the volume of the lattice is increased. We also discuss other gauges that are useful to lattice-gauge-theory simulations, among them one that is a combination of the axial and Landau gauges. This seems to be the optimal gauge to impose for the Fourier acceleration of two other important algorithms, the inversion of the fermion matrix and the updating of gauge field configurations
Residual gauge invariance of Hamiltonian lattice gauge theories
International Nuclear Information System (INIS)
Ryang, S.; Saito, T.; Shigemoto, K.
1984-01-01
The time-independent residual gauge invariance of Hamiltonian lattice gauge theories is considered. Eigenvalues and eigenfunctions of the unperturbed Hamiltonian are found in terms of Gegengauer's polynomials. Physical states which satisfy the subsidiary condition corresponding to Gauss' law are constructed systematically. (orig.)
Supersymmetric quiver gauge theories on the lattice
International Nuclear Information System (INIS)
Joseph, Anosh
2013-12-01
In this paper we detail the lattice constructions of several classes of supersymmetric quiver gauge theories in two and three Euclidean spacetime dimensions possessing exact supersymmetry at finite lattice spacing. Such constructions are obtained through the methods of topological twisting and geometric discretization of Euclidean Yang-Mills theories with eight and sixteen supercharges in two and three dimensions. We detail the lattice constructions of two-dimensional quiver gauge theories possessing four and eight supercharges and three-dimensional quiver gauge theories possessing eight supercharges.
Group theory and lattice gauge fields
International Nuclear Information System (INIS)
Creutz, M.
1988-09-01
Lattice gauge theory, formulated in terms of invariant integrals over group elements on lattice bonds, benefits from many group theoretical notions. Gauge invariance provides an enormous symmetry and powerful constraints on expectation values. Strong coupling expansions require invariant integrals over polynomials in group elements, all of which can be evaluated by symmetry considerations. Numerical simulations involve random walks over the group. These walks automatically generate the invariant group measure, avoiding explicit parameterization. A recently proposed overrelaxation algorithm is particularly efficient at exploring the group manifold. These and other applications of group theory to lattice gauge fields are reviewed in this talk. 17 refs
Soft covariant gauges on the lattice
Energy Technology Data Exchange (ETDEWEB)
Henty, D.S.; Oliveira, O.; Parrinello, C.; Ryan, S. [Department of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (UKQCD Collaboration)
1996-12-01
We present an exploratory study of a one-parameter family of covariant, nonperturbative lattice gauge-fixing conditions that can be implemented through a simple Monte Carlo algorithm. We demonstrate that at the numerical level the procedure is feasible, and as a first application we examine the gauge dependence of the gluon propagator. {copyright} {ital 1996 The American Physical Society.}
Classical solutions in lattice gauge theories
International Nuclear Information System (INIS)
Mitrjushkin, V.K.
1996-08-01
The solutions of the classical equations of motion on a periodic lattice are found which correspond to abelian single and double Dirac sheets. These solutions exist also in non-abelian theories. Possible applications of these solutions to the calculation of gauge dependent and gauge invariant observables are discussed. (orig.)
Numerical techniques for lattice gauge theories
International Nuclear Information System (INIS)
Creutz, M.
1981-01-01
The motivation for formulating gauge theories on a lattice is reviewed. Monte Carlo simulation techniques are then discussed for these systems. Finally, the Monte Carlo methods are combined with renormalization group analysis to give strong numerical evidence for confinement of quarks by non-Abelian gauge fields
Lattices gauge theories in terms of knots
International Nuclear Information System (INIS)
Vecernyes, P.
1989-01-01
Cluster expansion is developed in lattice gauge theories with finite gauge groups in d≥3 dimensions where the clusters are connected (d - 2)-dimensional surfaces which can branch along (d - 3)-cells. The interaction between them has a knot theoretical interpretation. It can be many body linking or knotting self-interaction. For small enough gauge coupling g the authors prove analyticity of the correlation functions in the variable exp(-1/g 2
International Nuclear Information System (INIS)
DeGrand, T.
1997-01-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and α s (M z ), and B-anti B mixing. 67 refs., 36 figs
Energy Technology Data Exchange (ETDEWEB)
DeGrand, T. [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics
1997-06-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.
Lattice Gauge Theories Have Gravitational Duals
International Nuclear Information System (INIS)
Hellerman, Simeon
2002-01-01
In this paper we examine a certain threebrane solution of type IIB string theory whose long-wavelength dynamics are those of a supersymmetric gauge theory in 2+1 continuous and 1 discrete dimension, all of infinite extent. Low-energy processes in this background are described by dimensional deconstruction, a strict limit in which gravity decouples but the lattice spacing stays finite. Relating this limit to the near-horizon limit of our solution we obtain an exact, continuum gravitational dual of a lattice gauge theory with nonzero lattice spacing. H-flux in this translationally invariant background encodes the spatial discreteness of the gauge theory, and we relate the cutoff on allowed momenta to a giant graviton effect in the bulk
Lattice gauge theory approach to quantum chromodynamics
International Nuclear Information System (INIS)
Kogut, J.B.
1983-01-01
The author reviews in a pedagogical fashion some of the recent developments in lattice quantum chromodynamics. This review emphasizes explicit examples and illustrations rather than general proofs and analyses. It begins with a discussion of the heavy-quark potential in continuum quantum chromodynamics. Asymptotic freedom and renormalization-group improved perturbation theory are discussed. A simple dielectric model of confinement is considered as an intuitive guide to the vacuum of non-Abelian gauge theories. Next, the Euclidean form of lattice gauge theory is introduced, and an assortment of calculational methods are reviewed. These include high-temperature expansions, duality, Monte Carlo computer simulations, and weak coupling expansions. A #betta#-parameter calculation for asymptotically free-spin models is presented. The Hamiltonian formulation of lattice gauge theory is presented and is illustrated in the context of flux tube dynamics. Roughening transitions, Casimir forces, and the restoration of rotational symmetry are discussed. Mechanisms of confinement in lattice theories are illustrated in the two-dimensional electrodynamics of the planar model and the U(1) gauge theory in four dimensions. Generalized actions for SU(2) gauge theories and the relevance of monopoles and strings to crossover phenomena are considered. A brief discussion of the continuity of fields and topologial charge in asymptotically free lattice models is presented. The final major topic of this review concerns lattice fermions. The species doubling problem and its relation to chiral symmetry are illustrated. Staggered Euclidean fermion methods are discussed in detail, with an emphasis on species counting, remnants of chiral symmetry, Block spin variables, and the axial anomaly. Numerical methods for including fermions in computer simulations are considered. Jacobi and Gauss-Siedel inversion methods to obtain the fermion propagator in a background gauge field are reviewed
Finite size scaling and lattice gauge theory
International Nuclear Information System (INIS)
Berg, B.A.
1986-01-01
Finite size (Fisher) scaling is investigated for four dimensional SU(2) and SU(3) lattice gauge theories without quarks. It allows to disentangle violations of (asymptotic) scaling and finite volume corrections. Mass spectrum, string tension, deconfinement temperature and lattice β-function are considered. For appropriate volumes, Monte Carlo investigations seem to be able to control the finite volume continuum limit. Contact is made with Luescher's small volume expansion and possibly also with the asymptotic large volume behavior. 41 refs., 19 figs
Recent advances in lattice gauge theories
Indian Academy of Sciences (India)
Abstract. Recent progress in the ﬁeld of lattice gauge theories is brieﬂy reviewed for a nonspecialist audience. While the emphasis is on the latest and more deﬁnitive results that have emerged prior to this symposium, an effort has been made to provide them with minimal technicalities.
Monte Carlo simulations of lattice gauge theories
International Nuclear Information System (INIS)
Forcrand, P. de; Minnesota Univ., Minneapolis, MN
1989-01-01
Lattice gauge simulations are presented in layman's terms. The need for large computer resources is justified. The main aspects of implementations on vector and parallel machines are explained. An overview of state of the art simulations and dedicated hardware projects is presented. 8 refs.; 1 figure; 1 table
Lattice gauge theory on the hypercube
International Nuclear Information System (INIS)
Apostolakis, J.; Baillie, C.; Ding, Hong-Qiang; Flower, J.
1988-01-01
Lattice gauge theory, an extremely computationally intensive problem, has been run successfully on hypercubes for a number of years. Herein we give a flavor of this work, discussing both the physics and the computing behind it. 19 refs., 5 figs., 27 tabs
Strong dynamics and lattice gauge theory
Schaich, David
In this dissertation I use lattice gauge theory to study models of electroweak symmetry breaking that involve new strong dynamics. Electroweak symmetry breaking (EWSB) is the process by which elementary particles acquire mass. First proposed in the 1960s, this process has been clearly established by experiments, and can now be considered a law of nature. However, the physics underlying EWSB is still unknown, and understanding it remains a central challenge in particle physics today. A natural possibility is that EWSB is driven by the dynamics of some new, strongly-interacting force. Strong interactions invalidate the standard analytical approach of perturbation theory, making these models difficult to study. Lattice gauge theory is the premier method for obtaining quantitatively-reliable, nonperturbative predictions from strongly-interacting theories. In this approach, we replace spacetime by a regular, finite grid of discrete sites connected by links. The fields and interactions described by the theory are likewise discretized, and defined on the lattice so that we recover the original theory in continuous spacetime on an infinitely large lattice with sites infinitesimally close together. The finite number of degrees of freedom in the discretized system lets us simulate the lattice theory using high-performance computing. Lattice gauge theory has long been applied to quantum chromodynamics, the theory of strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in this dissertation, is a new and exciting application of these methods. Of particular interest is non-perturbative lattice calculation of the electroweak S parameter. Experimentally S ≈ -0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from the momentum-dependence of vector and axial-vector current correlators. I created and applied computer programs to calculate these correlators and analyze them to determine S. I also calculated the masses
National Computational Infrastructure for Lattice Gauge Theory
Energy Technology Data Exchange (ETDEWEB)
Brower, Richard C.
2014-04-15
SciDAC-2 Project The Secret Life of Quarks: National Computational Infrastructure for Lattice Gauge Theory, from March 15, 2011 through March 14, 2012. The objective of this project is to construct the software needed to study quantum chromodynamics (QCD), the theory of the strong interactions of sub-atomic physics, and other strongly coupled gauge field theories anticipated to be of importance in the energy regime made accessible by the Large Hadron Collider (LHC). It builds upon the successful efforts of the SciDAC-1 project National Computational Infrastructure for Lattice Gauge Theory, in which a QCD Applications Programming Interface (QCD API) was developed that enables lattice gauge theorists to make effective use of a wide variety of massively parallel computers. This project serves the entire USQCD Collaboration, which consists of nearly all the high energy and nuclear physicists in the United States engaged in the numerical study of QCD and related strongly interacting quantum field theories. All software developed in it is publicly available, and can be downloaded from a link on the USQCD Collaboration web site, or directly from the github repositories with entrance linke http://usqcd-software.github.io
The Lanczos method in lattice gauge theories
International Nuclear Information System (INIS)
Barbour, I.M.; Behilil, N.E.; Gibbs, P.E.; Teper, M.; Schierholz, G.
1984-09-01
We present a modified version of the Lanczos algorithm as a computational method for tridiagonalising large sparse matrices, which avoids the requirement for large amounts of storage space. It can be applied as a first step in calculating eigenvalues and eigenvectors or for obtaining the inverse of a matrix row by row. Here we describe the method and apply it to various problems in lattice gauge theories. We have found it to have excellent convergence properties. In particular it enables us to do lattice calculations at small and even zero quark mass. (orig.)
Status and future of lattice gauge theory
International Nuclear Information System (INIS)
Hoek, J.
1989-07-01
The current status of lattice Quantum Chromo Dynamics (QCD) calculations, the computer requirements to obtain physical results and the direction computing is taking are described. First of all, there is a lot of evidence that QCD is the correct theory of strong interactions. Since it is an asymptotically free theory we can use perturbation theory to solve it in the regime of very hard collisions. However even in the case of very hard parton collisions the end-results of the collisions are bound states of quarks and perturbation theory is not sufficient to calculate these final stages. The way to solve the theory in this regime was opened by Wilson. He contemplated replacing the space-time continuum by a discrete lattice, with a lattice spacing a. Continuum physics is then recovered in the limit where the correlation length of the theory, say ξ. is large with respect to the lattice spacing. This will be true if the lattice spacing becomes very small, which for asymptotically free theories also implies that the coupling g becomes small. The lattice approach to QCD is in many respects analogous to the use of finite element methods to solve classical field theories. These finite element methods are easy to apply in 2-dimensional simulations but are computationally demanding in the 3-dimensional case. Therefore it is not unexpected that the 4-dimensional simulations needed for lattice gauge theories have led to an explosion in demand for computing power by theorists. (author)
Monopoles and confinement in lattice gauge theory
International Nuclear Information System (INIS)
Singh, V.
1992-01-01
The mechanism by which quarks, believed to be the fundamental constituents of matter, are prevented from existing in the free state is fundamental problems in physics. One of the most viable candidates for a hypothesis of confinement is the dual superconductor mechanism that likens quark confinement to the Meissner effect in superconductors. The peculiarities of quark interactions make a numerical approach to the subject a necessity, and therefore, much of the work in this area has been done through the methods of lattice gauge theory, with the simplicities afforded by putting spacetime on a four-dimensional grid. Over the years a large amount of indirect evidence has accumulated that the dual superconductor hypothesis does indeed lead to quark confinement but unambiguous evidence has eluded research efforts until recently. This work presents the first direct proof of a Meissner-like effect that leads to confinement, using the numerical techniques of lattice gauge theory. It is shown that for a U(1) lattice gauge theory, that serves as a toy model of the real world of quarks, a dual London relation and an electric fluxoid qauntization condition is satisfied, allowing the author to conclude that the vacuum in this case acts like an extreme type-II superconductor, and that quarks are confined. The author also shows that SU(2) lattice gauge theory, which is qualitatively different and another step closer to reality, shows a Meissner-like effect. In contrast to the U(1) case, the author's results are found consistent with a dual version of the Ginsburg-Landau theory of superconductor on the borderline between type-I and type-II. This approach paves the wave for a study of the more complicated theory, quantum chromodynamics, that is believed to describe quarks
Monte Carlo algorithms for lattice gauge theory
International Nuclear Information System (INIS)
Creutz, M.
1987-05-01
Various techniques are reviewed which have been used in numerical simulations of lattice gauge theories. After formulating the problem, the Metropolis et al. algorithm and some interesting variations are discussed. The numerous proposed schemes for including fermionic fields in the simulations are summarized. Langevin, microcanonical, and hybrid approaches to simulating field theories via differential evolution in a fictitious time coordinate are treated. Some speculations are made on new approaches to fermionic simulations
Microcanonical ensemble formulation of lattice gauge theory
International Nuclear Information System (INIS)
Callaway, D.J.E.; Rahman, A.
1982-01-01
A new formulation of lattice gauge theory without explicit path integrals or sums is obtained by using the microcanonical ensemble of statistical mechanics. Expectation values in the new formalism are calculated by solving a large set of coupled, nonlinear, ordinary differential equations. The average plaquette for compact electrodynamics calculated in this fashion agrees with standard Monte Carlo results. Possible advantages of the microcanonical method in applications to fermionic systems are discussed
Gauge theories and integrable lattice models
International Nuclear Information System (INIS)
Witten, E.
1989-01-01
Investigations of new knot polynomials discovered in the last few years have shown them to be intimately connected with soluble models of two dimensional lattice statistical mechanics. In this paper, these results, which in time may illuminate the whole question of why integrable lattice models exist, are reconsidered from the point of view of three dimensional gauge theory. Expectation values of Wilson lines in three dimensional Chern-Simons gauge theories can be computed by evaluating the partition functions of certain lattice models on finite graphs obtained by projecting the Wilson lines to the plane. The models in question - previously considered in both the knot theory and statistical mechanics literature - are IRF models in which the local Boltzmann weights are the matrix elements of braiding matrices in rational conformal field theories. These matrix elements, in turn, can be represented in three dimensional gauge theory in terms of the expectation value of a certain tetrahedral configuration of Wilson lines. This representation makes manifest a surprising symmetry of the braiding matrix elements in conformal field theory. (orig.)
Gauge-invariant variational methods for Hamiltonian lattice gauge theories
International Nuclear Information System (INIS)
Horn, D.; Weinstein, M.
1982-01-01
This paper develops variational methods for calculating the ground-state and excited-state spectrum of Hamiltonian lattice gauge theories defined in the A 0 = 0 gauge. The scheme introduced in this paper has the advantage of allowing one to convert more familiar tools such as mean-field, Hartree-Fock, and real-space renormalization-group approximation, which are by their very nature gauge-noninvariant methods, into fully gauge-invariant techniques. We show that these methods apply in the same way to both Abelian and non-Abelian theories, and that they are at least powerful enough to describe correctly the physics of periodic quantum electrodynamics (PQED) in (2+1) and (3+1) space-time dimensions. This paper formulates the problem for both Abelian and non-Abelian theories and shows how to reduce the Rayleigh-Ritz problem to that of computing the partition function of a classical spin system. We discuss the evaluation of the effective spin problem which one derives the PQED and then discuss ways of carrying out the evaluation of the partition function for the system equivalent to a non-Abelian theory. The explicit form of the effective partition function for the non-Abelian theory is derived, but because the evaluation of this function is considerably more complicated than the one derived in the Abelian theory no explicit evaluation of this function is presented. However, by comparing the gauge-projected Hartree-Fock wave function for PQED with that of the pure SU(2) gauge theory, we are able to show that extremely interesting differences emerge between these theories even at this simple level. We close with a discussion of fermions and a discussion of how one can extend these ideas to allow the computation of the glueball and hadron spectrum
Lattice gauge theory in the microcanonical ensemble
International Nuclear Information System (INIS)
Callaway, D.J.E.; Rahman, A.
1983-01-01
The microcanonical-ensemble formulation of lattice gauge theory proposed recently is examined in detail. Expectation values in this new ensemble are determined by solving a large set of coupled ordinary differential equations, after the fashion of a molecular dynamics simulation. Following a brief review of the microcanonical ensemble, calculations are performed for the gauge groups U(1), SU(2), and SU(3). The results are compared and contrasted with standard methods of computation. Several advantages of the new formalism are noted. For example, no random numbers are required to update the system. Also, this update is performed in a simultaneous fashion. Thus the microcanonical method presumably adapts well to parallel processing techniques, especially when the p action is highly nonlocal (such as when fermions are included)
National software infrastructure for lattice gauge theory
International Nuclear Information System (INIS)
Brower, Richard C
2005-01-01
The current status of the SciDAC software infrastructure project for lattice gauge theory is summarized. This includes the the design of a QCD application programmers interface (API) that allows existing and future codes to be run efficiently on Terascale hardware facilities and to be rapidly ported to new dedicated or commercial platforms. The critical components of the API have been implemented and are in use on the US QCDOC hardware at BNL and on both the switched and mesh architecture Pentium 4 clusters at Fermi National Accelerator Laboratory (FNAL) and Thomas Jefferson National Accelerator Facility (JLab). Future software infrastructure requirements and research directions are also discussed
Lattice Gauge Field Theory and Prismatic Sets
DEFF Research Database (Denmark)
Akyar, Bedia; Dupont, Johan Louis
as and in particular the latter we use to study lattice gauge theory in the sense of Phillips and Stone. Thus for a Lie group and a set of parallel transport functions defining the transition over faces of the simplices, we define a classifying map from the prismatic star to a prismatic version of the classifying......We study prismatic sets analogously to simplicial sets except that realization involves prisms, i.e., products of simplices rather than just simplices. Particular examples are the prismatic subdivision of a simplicial set and the prismatic star of . Both have the same homotopy type...
Lattices for laymen: a non-specialist's introduction to lattice gauge theory
International Nuclear Information System (INIS)
Callaway, D.J.E.
1985-01-01
The review on lattice gauge theory is based upon a series of lectures given to the Materials Science and Technology Division at Argonne National Laboratory. Firstly the structure of gauge theories in the continuum is discussed. Then the lattice formulation of these theories is presented, including quantum electrodynamics and non-abelian lattice gauge theories. (U.K.)
The Origins of Lattice Gauge Theory
International Nuclear Information System (INIS)
Wilson, Kenneth
2004-01-01
The main focus of this talk is an anecdotal account of the history underlying my 1974 article entitled 'Confinement of Quarks.' In preparing this talk, I will draw on a historical interview conducted by the project for History of Recent Science and Technology at the Dibner Institute for the History of Science and Technology at MIT, and on a theory of invention proposed by Peter Drucker in his book 'Innovation and Entrepreneurship.' I will explain this theory; no background is needed. The account will start with related work in the 1960's. I will end the talk with a plea for lattice gauge researchers to be alert for unexpected scalar or vector colored particles that are invisible to experimentalists yet could start to spoil the agreement of computations with experiment. Note: In association with the Symposium ' 'Lattice 2004,' June 21 to June 26, 2004.
Quiver gauge theories and integrable lattice models
International Nuclear Information System (INIS)
Yagi, Junya
2015-01-01
We discuss connections between certain classes of supersymmetric quiver gauge theories and integrable lattice models from the point of view of topological quantum field theories (TQFTs). The relevant classes include 4d N=1 theories known as brane box and brane tilling models, 3d N=2 and 2d N=(2,2) theories obtained from them by compactification, and 2d N=(0,2) theories closely related to these theories. We argue that their supersymmetric indices carry structures of TQFTs equipped with line operators, and as a consequence, are equal to the partition functions of lattice models. The integrability of these models follows from the existence of extra dimension in the TQFTs, which emerges after the theories are embedded in M-theory. The Yang-Baxter equation expresses the invariance of supersymmetric indices under Seiberg duality and its lower-dimensional analogs.
Chirality conservation in the lattice gauge theory
International Nuclear Information System (INIS)
Peskin, M.E.
1978-01-01
The derivation of conservation laws corresponding to chiral invariance in quantum field theories of interacting quarks and gluons are studied. In particular there is interest in observing how these conservation laws are constrained by the requirement that the field theory be locally gauge invariant. To examine this question, a manifestly gauge-invariant definition of local operators in a quantum field theory is introduced, a definition which relies in an essential way on the use of the formulation of gauge fields on a lattice due to Wilson and Polyakov to regulate ultraviolet divergences. The conceptual basis of the formalism is set out and applied to a long-standing puzzle in the phenomenology of quark-gluon theories: the fact that elementary particle interactions reflect the conservation of isospin-carrying chiral currents but not of the isospin-singlet chiral current. It is well known that the equation for the isospin-singlet current contains an extra term, the operator F/sub mu neu/F/sup mu neu/, not present in the other chirality conservation laws; however, this term conventionally has the form of a total divergence and so still allows the definition of a conserved chiral current. It is found that, when the effects of maintaining gauge invariance are properly taken into account, the structure of this operator is altered by renormalization effects, so that it provides an explicit breaking of the unwanted chiral invariance. The relation between this argument, based on renormaliztion, is traced to a set of more heuristic arguments based on gauge field topology given by 't Hooft; it is shown that the discussion provides a validation, through short-distance analysis, of the picture 'Hooft has proposed. The formal derivation of conservation laws for chiral currents are set out in detail
Instantons and topological charge in lattice gauge theory
International Nuclear Information System (INIS)
Iwasaki, Y.; Yoshie, T.
1983-01-01
The existence of instantons on the lattice in SU(2) lattice gauge theory is investigated for various lattice actions with loops of up to six lattice spacings. Instantons exist only for the actions where short range fluctuations are suppressed. A formula for topological properties of the solutions are examined. (orig.)
Discretisation errors in Landau gauge on the lattice
International Nuclear Information System (INIS)
Bonnet DR, Frederic; Bowman O, Patrick; Leinweber B, Derek; Williams G, Anthony; Richards G, David G.
1999-01-01
Lattice discretization errors in the Landau gauge condition are examined. An improved gauge fixing algorithm in which O(a 2 ) errors are removed is presented. O(a 2 ) improvement of the gauge fixing condition improves comparison with continuum Landau gauge in two ways: (1) through the elimination of O(a 2 ) errors and (2) through a secondary effect of reducing the size of higher-order errors. These results emphasize the importance of implementing an improved gauge fixing condition
Global anomalies in chiral lattice gauge theories
International Nuclear Information System (INIS)
Baer, O.
2000-07-01
We study global anomalies in a new approach to chiral gauge theories on the lattice, which is based on the Ginsparg-Wilson relation. In this approach, global anomalies make it impossible to define consistently a fermionic measure for the functional integral. We show that a global anomaly occurs in an SU(2) theory if the fundamental representation is used for the fermion fields. The generalization to higher representations is also discussed. In addition we establish a close relation between global anomalies and the spectral flow of the Dirac operator and employ it in a numerical computation to prove the existence of the global SU(2) anomaly in a different way. This method is inspired by an earlier work of Witten who first discovered this type of anomalies in continuum field theory. (orig.)
Lattice gauge theory on a parallel computer
International Nuclear Information System (INIS)
Flower, J.W.
1987-01-01
The results of several numerical simulations of QCD by Monte Carlo lattice gauge theory are presented. Studying the mesonic potential on a 20 4 lattice, we conclude that asymptotic scaling does not hold over the range 6.1 ≤ β ≤ 6.7, although we are not able to quantify the discrepancies. The effect of discrete rotational symmetry on physical parameters is examined and seems to modify the string tension by 15% at β = 6.1, while at β = 6.3 the change was less than 1%. The potential between three charges is studied and yields a string tension of .18 GeV 2 , consistent with mesonic calculations and relativized potential models. Contributions to the potential from low-energy string vibrations appear small in the range x ≤ .5 fm. We perform energy density measurements in the color fields surrounding both mesons and baryons, which provide strong evidence in favor of the dual superconductor picture of confinement. It is also suggested that the confining strings in the baryon meet at a central point rather than joining the quarks pairwise. Several algorithms are explored in an attempt to develop simulation methods which are able to directly account for the currents generated by color sources. The extension of the Langevin equation to complex degrees of freedom is derived leading to a Fokker-Planck equation for a complex 'Probability distribution'. Using this technique we are then able to calculate energy densities in U(1) gauge theory at large charge separations. The extension of the method to non-Abelian theories comes up against an unresolved problem in segregation for certain types of observable. 145 refs., 36 figs
Lattice gauge theories and Monte Carlo simulations
International Nuclear Information System (INIS)
Rebbi, C.
1981-11-01
After some preliminary considerations, the discussion of quantum gauge theories on a Euclidean lattice takes up the definition of Euclidean quantum theory and treatment of the continuum limit; analogy is made with statistical mechanics. Perturbative methods can produce useful results for strong or weak coupling. In the attempts to investigate the properties of the systems for intermediate coupling, numerical methods known as Monte Carlo simulations have proved valuable. The bulk of this paper illustrates the basic ideas underlying the Monte Carlo numerical techniques and the major results achieved with them according to the following program: Monte Carlo simulations (general theory, practical considerations), phase structure of Abelian and non-Abelian models, the observables (coefficient of the linear term in the potential between two static sources at large separation, mass of the lowest excited state with the quantum numbers of the vacuum (the so-called glueball), the potential between two static sources at very small distance, the critical temperature at which sources become deconfined), gauge fields coupled to basonic matter (Higgs) fields, and systems with fermions
Lattice chiral gauge theories with finely-grained fermions
International Nuclear Information System (INIS)
Hernandez, P.; Sundrum, R.
1996-01-01
The importance of lattice gauge field interpolation for our recent non-perturbative formulation of chiral gauge theory is emphasized. We illustrate how the requisite properties are satisfied by our recent four-dimensional non-abelian interpolation scheme, by going through the simpler case of U(1) gauge fields in two dimensions. (orig.)
Topological charge in non-abelian lattice gauge theory
International Nuclear Information System (INIS)
Lisboa, P.
1983-01-01
We report on a numerical calculation of topological charge densities in non-abelian gauge theory with gauge groups SU(2) and SU(3). The group manifold is represented by a discrete subset thereof which lies outside its finite subgroups. The results shed light on the usefulness of these representations in Monte Carlo evaluations of non-abelian lattice gauge theory. (orig.)
SU(3) lattice gauge fixing with overrelaxation and Gribov copies
Energy Technology Data Exchange (ETDEWEB)
Paciello, M.L.; Taglienti, B. (INFN La Sapienza, Rome (Italy)); Parrinello, C. (Physics Dept., New York Univ., NY (United States)); Petrarca, S. (Theory Div., CERN, Geneva (Switzerland)); Vladikas, A. (Dipt. di Fisica, Univ. Tor Vergata, Rome (Italy) INFN Tor Vergata, Rome (Italy))
1992-02-06
We report on the phenomenology of SU(3) lattice Landau gauge fixing as obtained by using an overrelaxation algorithm. An interesting result obtained using this very efficient algorithm is that distinct Gribov copies are generated by simply modifying the value {omega} of the overrelaxation parameter for a fixed starting configuration. By generating random gauge equivalent configurations, we study the variation of the number of copies with the lattice volume and gauge coupling. (orig.).
SU(N) chiral gauge theories on the lattice
International Nuclear Information System (INIS)
Golterman, Maarten; Shamir, Yigal
2004-01-01
We extend the construction of lattice chiral gauge theories based on non-perturbative gauge fixing to the non-Abelian case. A key ingredient is that fermion doublers can be avoided at a novel type of critical point which is only accessible through gauge fixing, as we have shown before in the Abelian case. The new ingredient allowing us to deal with the non-Abelian case as well is the use of equivariant gauge fixing, which handles Gribov copies correctly, and avoids Neuberger's no-go theorem. We use this method in order to gauge fix the non-Abelian group (which we will take to be SU(N)) down to its maximal Abelian subgroup. Obtaining an undoubled, chiral fermion content requires us to gauge-fix also the remaining Abelian gauge symmetry. This modifies the equivariant Becchi-Rouet-Stora-Tyutin (BRST) identities, but their use in proving unitarity remains intact, as we show in perturbation theory. On the lattice, equivariant BRST symmetry as well as the Abelian gauge invariance are broken, and a judiciously chosen irrelevant term must be added to the lattice gauge-fixing action in order to have access to the desired critical point in the phase diagram. We argue that gauge invariance is restored in the continuum limit by adjusting a finite number of counter terms. We emphasize that weak-coupling perturbation theory applies at the critical point which defines the continuum limit of our lattice chiral gauge theory
Lattice formulations of supersymmetric gauge theories with matter fields
International Nuclear Information System (INIS)
Joseph, Anosh
2014-12-01
Certain classes of supersymmetric gauge theories, including the well known N=4 supersymmetric Yang-Mills theory, that takes part in the AdS/CFT correspondence, can be formulated on a Euclidean spacetime lattice using the techniques of exact lattice supersymmetry. Great ideas such as topological field theories, Dirac-Kaehler fermions, geometric discretization all come together to create supersymmetric lattice theories that are gauge-invariant, doubler free, local and exact supersymmetric. We discuss the recent lattice constructions of supersymmetric Yang-Mills theories in two and three dimensions coupled to matter fields in various representations of the color group.
Standard model and chiral gauge theories on the lattice
International Nuclear Information System (INIS)
Smit, J.
1990-01-01
A review is given of developments in lattice formulations of chiral gauge theories. There is now evidence that the unwanted fermion doublers can be decoupled satisfactorily by giving them masses of the order of the cutoff. (orig.)
Discretisation errors in Landau gauge on the lattice
International Nuclear Information System (INIS)
Bonnet, F.D.R.; Bowmen, P.O.; Leinweber, D.B.
1999-01-01
Lattice discretisation errors in the Landau gauge condition are examined. An improved gauge fixing algorithm in which O(a 2 ) errors are removed is presented. O(a 2 ) improvement of the gauge fixing condition improves comparison with the continuum Landau gauge in two ways: (1) through the elimination of O(a 2 ) errors and (2) through a secondary effect of reducing the size of higher-order errors. These results emphasise the importance of implementing an improved gauge fixing condition. Copyright (1999) CSIRO Australia
Lattice gauge theories, confinement, strings and all that
International Nuclear Information System (INIS)
Muenster, G.
1980-11-01
In this talk I would like to give an overview over some developments in lattice gauge theory, which might be of some interest for experimental physicists. In particular, I shall try to convince you that lattice gauge theory is not only a play-ground for theorists, but is able to produce numerical results for some non-perturbative quantities. And, of course, I would like to tell you about some work, which has been done here in Hamburg. (orig.)
Frustration and dual superconductivity in lattice gauge theories
International Nuclear Information System (INIS)
Orland, P.
1984-01-01
Introducing plaquette fields in SU(N) gauge theories yields a mass gap and confinement by a dual Meisnner effect. Sources for the plaquette fields are electric strings. Similiar plaquette fields exist in pure compact lattice gauge theories. In principle they make it possible to expand in h while keeping the guage field compact
Statistical mechanics view of quantum chromodynamics: Lattice gauge theory
International Nuclear Information System (INIS)
Kogut, J.B.
1984-01-01
Recent developments in lattice gauge theory are discussed from a statistial mechanics viewpoint. The basic physics problems of quantum chromodynamics (QCD) are reviewed for an audience of critical phenomena theorists. The idea of local gauge symmetry and color, the connection between statistical mechanics and field theory, asymptotic freedom and the continuum limit of lattice gauge theories, and the order parameters (confinement and chiral symmetry) of QCD are reviewed. Then recent developments in the field are discussed. These include the proof of confinement in the lattice theory, numerical evidence for confinement in the continuum limit of lattice gauge theory, and perturbative improvement programs for lattice actions. Next, we turn to the new challenges facing the subject. These include the need for a better understanding of the lattice Dirac equation and recent progress in the development of numerical methods for fermions (the pseudofermion stochastic algorithm and the microcanonical, molecular dynamics equation of motion approach). Finally, some of the applications of lattice gauge theory to QCD spectrum calculations and the thermodynamics of QCD will be discussed and a few remarks concerning future directions of the field will be made
Overview of lattice gauge theory at the CSSM
International Nuclear Information System (INIS)
Williams, A.G.
2002-01-01
Full text: I present an overview of the lattice gauge theory effort at the Special Research Centre for the Subatomic Structure of Matter (CSSM). The CSSM specializes in research into the strong interactions and into quantum chromodynamics (QCD), which is the fundamental quantum gauge field theory of the strong interactions. The primary mission of the CSSM is to attempt to solve QCD and hence test the implications of the theory against experimental evidence. The difficulty lies in the fact that the QCD is a highly nonlinear, strongly coupled theory. The only known first-principles means to solve it is to approximate space-time by a four-dimensional 'grid' or 'lattice' and to simulate this 'lattice QCD' on massively parallel supercomputers. A discussion of the Orion supercomputer of the National Computing Facility for Lattice Gauge Theory (NFCLGT) and the latest QCD predictions obtained from Orion by CSSM researchers will be presented
Mean field with corrections in lattice gauge theory
International Nuclear Information System (INIS)
Flyvbjerg, H.; Zuber, J.B.; Lautrup, B.
1981-12-01
A systematic expansion of the path integral for lattice gauge theory is performed around the mean field solution. In this letter the authors present the results for the pure gauge groups Z(2), SU(2) and SO(3). The agreement with Monte Carlo calculations is excellent. For the discrete group the calculation is performed with and without gauge fixing, whereas for the continuous groups gauge fixing is mandatory. In the case of SU(2) the absence of a phase transition is correctly signalled by mean field theory. (Auth.)
Gauge field theories on a || lattice
International Nuclear Information System (INIS)
Burkardt, Matthias
1999-01-01
In these notes, the transverse || lattice approach is presented as a means to control the k + →0 divergences in light-front QCD. Technical difficulties of both the canonical compact formulation as well as the non-compact formulation of the || lattice motivate the color-dielectric formulation, where the link fields are linearized
Revisiting entanglement entropy of lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Hung, Ling-Yan [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Lu, Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Fudan University,220 Handan Lu, Shanghai 200433 (China); Wan, Yidun [Perimeter Institute for Theoretical Physics,31 Caroline Street, Waterloo, ON N2L 2Y5 (Canada)
2015-04-22
It is realized recently that the entanglement entropy in gauge theories is ambiguous because the Hilbert space cannot be expressed as a simple direct product of Hilbert spaces defined on the two regions; different ways of dividing the Hilbert spaces near the boundary leads to significantly different result, to the extreme that it could annihilate the otherwise finite topological entanglement entropy between two regions altogether. In this article, we first show that the topological entanglement entropy in the Kitaev model http://dx.doi.org/10.1016/S0003-4916(02)00018-0 which is not a true gauge theory, is free of ambiguity. Then, we give a physical interpretation, from the perspectives of what can be measured in an experiment, to the purported ambiguity of true gauge theories, where the topological entanglement arises as redundancy in counting the degrees of freedom along the boundary separating two regions. We generalize these discussions to non-Abelian gauge theories.
The cross-over points in lattice gauge theories with continuous gauge groups
International Nuclear Information System (INIS)
Cvitanovic, P.; Greensite, J.; Lautrup, B.
1981-01-01
We obtain a closed expression for the weak-to-strong coupling cross-over point in all Wilson type lattice gauge theories with continuous gauge groups. We use a weak-coupling expansion of the mean-field self-consistency equation. In all cases where our results can be compared with Monte Carlo calculations the agreement is excellent. (orig.)
Loop calculus for lattice gauge theories
International Nuclear Information System (INIS)
Gambini, R.; Leal, L.; Trias, A.; Departamento de Fisica Aplicada, Facultad de Ingenieria, Universidad Central de Venezuela, Apartado 47724, Caracas 1051, Venezuela; Departament de Matematiques, Universitat Politecnica de Catalunya, Escuela Tecnica Superior de Enginyers de Telecomunicaciones, Barcelona 08034, Spain)
1989-01-01
Hamiltonian calculations are performed using a loop-labeled basis where the full set of identities for the SU(N) gauge models has been incorporated. The loops are classified as clusterlike structures and the eigenvalue problem leads to a linear set of finite-difference equations easily amenable to numerical treatment. Encouraging results are reported for SU(2) at spatial dimension 2
Status of glueball mass calculations in lattice gauge theory
International Nuclear Information System (INIS)
Kronfeld, A.S.
1989-11-01
The status of glueball spectrum calculations in lattice gauge theory is briefly reviewed, with focus on the comparison between Monte Carlo simulations and small-volume analytical calculations in SU(3). The agreement gives confidence that the large-volume Monte Carlo results are accurate, at least in the context of the pure gauge theory. An overview of some of the technical questions, which is aimed at non-experts, serves as an introduction. 19 refs., 1 fig
U(1) Wilson lattice gauge theories in digital quantum simulators
Muschik, Christine; Heyl, Markus; Martinez, Esteban; Monz, Thomas; Schindler, Philipp; Vogell, Berit; Dalmonte, Marcello; Hauke, Philipp; Blatt, Rainer; Zoller, Peter
2017-10-01
Lattice gauge theories describe fundamental phenomena in nature, but calculating their real-time dynamics on classical computers is notoriously difficult. In a recent publication (Martinez et al 2016 Nature 534 516), we proposed and experimentally demonstrated a digital quantum simulation of the paradigmatic Schwinger model, a U(1)-Wilson lattice gauge theory describing the interplay between fermionic matter and gauge bosons. Here, we provide a detailed theoretical analysis of the performance and the potential of this protocol. Our strategy is based on analytically integrating out the gauge bosons, which preserves exact gauge invariance but results in complicated long-range interactions between the matter fields. Trapped-ion platforms are naturally suited to implementing these interactions, allowing for an efficient quantum simulation of the model, with a number of gate operations that scales polynomially with system size. Employing numerical simulations, we illustrate that relevant phenomena can be observed in larger experimental systems, using as an example the production of particle-antiparticle pairs after a quantum quench. We investigate theoretically the robustness of the scheme towards generic error sources, and show that near-future experiments can reach regimes where finite-size effects are insignificant. We also discuss the challenges in quantum simulating the continuum limit of the theory. Using our scheme, fundamental phenomena of lattice gauge theories can be probed using a broad set of experimentally accessible observables, including the entanglement entropy and the vacuum persistence amplitude.
Global anomalies in chiral gauge theories on the lattice
International Nuclear Information System (INIS)
Baer, O.; Campos, I.
2000-01-01
We discuss the issue of global anomalies in chiral gauge theories on the lattice. In Luescher's approach, these obstructions make it impossible to define consistently a fermionic measure for the path integral. We show that an SU(2) theory has such a global anomaly if the Weyl fermion is in the fundamental representation. The anomaly in higher representations is also discussed. We finally show that this obstruction is the lattice analogue of the SU(2) anomaly first discovered by Witten. (orig.)
Anomaly cancellation condition in abelian lattice gauge theories
International Nuclear Information System (INIS)
Suzuki, Hiroshi
1999-11-01
We analyze the general solution of the Wess-Zumino consistency condition in abelian lattice gauge theories, without taking the classical continuum limit. We find that, if the anomaly density is a local pseudo-scalar field on the lattice, the non-trivial anomaly is always proportional to the anomaly coefficient in the continuum theory. The possible extension of this result to non-abelian theories is briefly discussed. (author)
Gauge theory on a lattice, 1984: proceedings
International Nuclear Information System (INIS)
Zachos, C.; Celmaster, W.; Kovacs, E.; Sivers, D.
1984-06-01
In the past few years there have been rapid advances in understanding quantum field theory by making discrete approximations of the path integral functional. This approach offers a systematic alternative to perturbation theory and opens up the possibility of first-principles calculation of new classes of observables. Computer simulations based on lattice regularization have already provided intriguing insights into the long-distance behavior of quantum chromodynamics. The objective of the workshop was to bring together researchers using lattice techniques for a discussion of current projects and problems. These proceedings aim to communicate the results to a broader segment of the research community. Separate entries were made in the data base for 26 of the 31 papers presented. Five papers were previously included in the data base
National Computational Infrastructure for Lattice Gauge Theory: Final Report
International Nuclear Information System (INIS)
Richard Brower; Norman Christ; Michael Creutz; Paul Mackenzie; John Negele; Claudio Rebbi; David Richards; Stephen Sharpe; Robert Sugar
2006-01-01
This is the final report of Department of Energy SciDAC Grant ''National Computational Infrastructure for Lattice Gauge Theory''. It describes the software developed under this grant, which enables the effective use of a wide variety of supercomputers for the study of lattice quantum chromodynamics (lattice QCD). It also describes the research on and development of commodity clusters optimized for the study of QCD. Finally, it provides some high lights of research enabled by the infrastructure created under this grant, as well as a full list of the papers resulting from research that made use of this infrastructure
Optimization of renormalization group transformations in lattice gauge theory
International Nuclear Information System (INIS)
Lang, C.B.; Salmhofer, M.
1988-01-01
We discuss the dependence of the renormalization group flow on the choice of the renormalization group transformation (RGT). An optimal choice of the transformation's parameters should lead to a renormalized trajectory close to a few-parameter action. We apply a recently developed method to determine an optimal RGT to SU(2) lattice gauge theory and discuss the achieved improvement. (orig.)
Gluon condensate from lattice caculations: SU(3) pure gauge theory
International Nuclear Information System (INIS)
Kripfganz, J.
1981-01-01
A short distance expansion of Wilson loops is used to define and isolate vacuum expectation values of composite gluon operators. It is applied to available lattice Monte Carlo data for SU(3) pure gauge theory. The value obtained for the gluon condensate is consistent with the ITEP estimate. (author)
Tadpole-improved SU(2) lattice gauge theory
Shakespeare, Norman H.; Trottier, Howard D.
1999-01-01
A comprehensive analysis of tadpole-improved SU(2) lattice gauge theory is made. Simulations are done on isotropic and anisotropic lattices, with and without improvement. Two tadpole renormalization schemes are employed, one using average plaquettes, the other using mean links in the Landau gauge. Simulations are done with spatial lattice spacings as in the range of about 0.1-0.4 fm. Results are presented for the static quark potential, the renormalized lattice anisotropy at/as (where at is the ``temporal'' lattice spacing), and for the scalar and tensor glueball masses. Tadpole improvement significantly reduces discretization errors in the static quark potential and in the scalar glueball mass, and results in very little renormalization of the bare anisotropy that is input to the action. We also find that tadpole improvement using mean links in the Landau gauge results in smaller discretization errors in the scalar glueball mass (as well as in the static quark potential), compared to when average plaquettes are used. The possibility is also raised that further improvement in the scalar glueball mass may result when the coefficients of the operators which correct for discretization errors in the action are computed beyond the tree level.
Variational estimates for the mass gap of SU(2) Euclidean lattice gauge theory
International Nuclear Information System (INIS)
Hari Dass, N.D.
1984-10-01
The purpose of this letter is to report on the progress made in our understanding of series expansions for the masses in lattice gauge theories by the application of variational techniques to the Euclidean SU(2) lattice gauge theory. (Auth.)
Fusion basis for lattice gauge theory and loop quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Delcamp, Clement [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Department of Physics Astronomy and Guelph-Waterloo Physics Institute, University of Waterloo,Waterloo, Ontario N2L 3G1 (Canada); Dittrich, Bianca; Riello, Aldo [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)
2017-02-10
We introduce a new basis for the gauge-invariant Hilbert space of lattice gauge theory and loop quantum gravity in (2+1) dimensions, the fusion basis. In doing so, we shift the focus from the original lattice (or spin-network) structure directly to that of the magnetic (curvature) and electric (torsion) excitations themselves. These excitations are classified by the irreducible representations of the Drinfel’d double of the gauge group, and can be readily “fused” together by studying the tensor product of such representations. We will also describe in detail the ribbon operators that create and measure these excitations and make the quasi-local structure of the observable algebra explicit. Since the fusion basis allows for both magnetic and electric excitations from the onset, it turns out to be a precious tool for studying the large scale structure and coarse-graining flow of lattice gauge theories and loop quantum gravity. This is in neat contrast with the widely used spin-network basis, in which it is much more complicated to account for electric excitations, i.e. for Gauß constraint violations, emerging at larger scales. Moreover, since the fusion basis comes equipped with a hierarchical structure, it readily provides the language to design states with sophisticated multi-scale structures. Another way to employ this hierarchical structure is to encode a notion of subsystems for lattice gauge theories and (2+1) gravity coupled to point particles. In a follow-up work, we have exploited this notion to provide a new definition of entanglement entropy for these theories.
Fusion basis for lattice gauge theory and loop quantum gravity
International Nuclear Information System (INIS)
Delcamp, Clement; Dittrich, Bianca; Riello, Aldo
2017-01-01
We introduce a new basis for the gauge-invariant Hilbert space of lattice gauge theory and loop quantum gravity in (2+1) dimensions, the fusion basis. In doing so, we shift the focus from the original lattice (or spin-network) structure directly to that of the magnetic (curvature) and electric (torsion) excitations themselves. These excitations are classified by the irreducible representations of the Drinfel’d double of the gauge group, and can be readily “fused” together by studying the tensor product of such representations. We will also describe in detail the ribbon operators that create and measure these excitations and make the quasi-local structure of the observable algebra explicit. Since the fusion basis allows for both magnetic and electric excitations from the onset, it turns out to be a precious tool for studying the large scale structure and coarse-graining flow of lattice gauge theories and loop quantum gravity. This is in neat contrast with the widely used spin-network basis, in which it is much more complicated to account for electric excitations, i.e. for Gauß constraint violations, emerging at larger scales. Moreover, since the fusion basis comes equipped with a hierarchical structure, it readily provides the language to design states with sophisticated multi-scale structures. Another way to employ this hierarchical structure is to encode a notion of subsystems for lattice gauge theories and (2+1) gravity coupled to point particles. In a follow-up work, we have exploited this notion to provide a new definition of entanglement entropy for these theories.
Applications of Jarzynski's relation in lattice gauge theories
DEFF Research Database (Denmark)
Nada, Alessandro; Caselle, Michele; Costagliola, Gianluca
2016-01-01
Jarzynski's equality is a well-known result in statistical mechanics, relating free-energy differences between equilibrium ensembles with fluctuations in the work performed during non-equilibrium transformations from one ensemble to the other. In this work, an extension of this relation to lattice...... gauge theory will be presented, along with numerical results for the ℤ2 gauge model in three dimensions and for the equation of state in SU(2) Yang-Mills theory in four dimensions. Then, further applications will be discussed, in particular for the Schrödinger functional and for the study of QCD...
Interpolating Lagrangians and SU(2) gauge theory on the lattice
International Nuclear Information System (INIS)
Buckley, I.R.C.; Jones, H.F.
1992-01-01
We apply the linear δ expansion to non-Abelian gauge theory on the lattice, with SU(2) as the gauge group. We establish an appropriate parametrization and evaluate the average plaquette energy E P to O(δ). As a check on our results, we recover the large-β expansion up to O(1/β 2 ), which involves some O(δ 2 ) contributions. Using these contributions we construct a variant of the 1/β expansion which gives a good fit to the data down to the transition region
Phases of renormalized lattice gauge theories with fermions
International Nuclear Information System (INIS)
Caracciolo, S.; Menotti, P.; and INFN Sezione di Pisa, Italy)
1979-01-01
Starting from the formulation of gauge theories on a lattice we derive renormalization group transformation of the Migdal-Kadanoff type in the presence of fermions. We consider the effect of the fermion vacuum polarization on the gauge Lagrangian but we neglect fermion mass renormalization. We work out the weak coupling and strong coupling expansion in the same framework. Asymptotic freedom is recovered for the non-Abelian case provided the number of fermion multiplets is lower than a critical number. Fixed points are determined both for the U (1) and SU (2) case. We determine the renormalized trajectories and the phases of the theory
Surface representations of Wilson loop expectations in lattice gauge theory
International Nuclear Information System (INIS)
Brydges, D.C.; Giffen, C.; Durhuus, B.; Froehlich, J.
1986-01-01
Expectations of Wilson loops in lattice gauge theory with gauge group G=Z 2 , U(1) or SU(2) are expressed as weighted sums over surfaces with boundary equal to the loops labelling the observables. For G=Z 2 and U(1), the weights are all positive. For G=SU(2), the weights can have either sign depending on the Euler characteristic of the surface. Our surface (or flux sheet-) representations are partial resummations of the strong coupling expansion and provide some qualitative understanding of confinement. The significance of flux sheets with nontrivial topology for permanent confinement in the SU(2)-theory is elucidated. (orig.)
Phase diagrams of exceptional and supersymmetric lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Wellegehausen, Bjoern-Hendrik
2012-07-10
In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G{sub 2}, that has a trivial centre. To investigate G{sub 2} gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.
Phase diagrams of exceptional and supersymmetric lattice gauge theories
International Nuclear Information System (INIS)
Wellegehausen, Bjoern-Hendrik
2012-01-01
In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G 2 , that has a trivial centre. To investigate G 2 gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.
Majorana and Majorana-Weyl fermions in lattice gauge theory
International Nuclear Information System (INIS)
Inagaki, Teruaki; Suzuki, Hiroshi
2004-01-01
In various dimensional Euclidean lattice gauge theories, we examine a compatibility of the Majorana decomposition and the charge conjugation property of lattice Dirac operators. In 8n and 1 + 8n dimensions, we find a difficulty to decompose a classical lattice action of the Dirac fermion into a system of the Majorana fermion and thus to obtain a factorized form of the Dirac determinant. Similarly, in 2 + 8n dimensions, there is a difficulty to decompose a classical lattice action of the Weyl fermion into a system of the Majorana-Weyl fermion and thus to obtain a factorized form of the Weyl determinant. Prescriptions based on the overlap formalism do not remove these difficulties. We argue that these difficulties are reflections of the global gauge anomaly associated to the real Weyl fermion in 8n dimensions. For this reason (besides other well-known reasons), a lattice formulation of the N = 1 super Yang-Mills theory in these dimensions is expected to be extremely difficult to find. (author)
Departures from scaling in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Gutbrod, F.
1987-01-01
High statistics Monte Carlo Data in SU(2) lattice gauge theory are presented. At β = 2.6 and β = 2.7 large deviations form scaling are observed for Creutz ratios, when 12 4 and 24 4 lattice data are compared. There is a trend towards a restauration of asymptotic scaling with increasing β, which vanishes if at the higher value of β larger loops are considered than at lower β. The static qanti q-potential and an upper limit for the string tension are given. (orig.)
Anyonic order parameters for discrete gauge theories on the lattice
International Nuclear Information System (INIS)
Bais, F.A.; Romers, J.C.
2009-01-01
We present a new family of gauge invariant non-local order parameters Δ α A for (non-abelian) discrete gauge theories on a Euclidean lattice, which are in one-to-one correspondence with the excitation spectrum that follows from the representation theory of the quantum double D(H) of the finite group H. These combine magnetic flux-sector labeled by a conjugacy class with an electric representation of the centralizer subgroup that commutes with the flux. In particular, cases like the trivial class for magnetic flux, or the trivial irrep for electric charge, these order parameters reduce to the familiar Wilson and the 't Hooft operators, respectively. It is pointed out that these novel operators are crucial for probing the phase structure of a class of discrete lattice models we define, using Monte Carlo simulations.
Thick vortices in SU(2) lattice gauge theory
Cheluvaraja, Srinath
2004-01-01
Three dimensional SU(2) lattice gauge theory is studied after eliminating thin monopoles and the smallest thick monopoles. Kinematically this constraint allows the formation of thick vortex loops which produce Z(2) fluctuations at longer length scales. The thick vortex loops are identified in a three dimensional simulation. A condensate of thick vortices persists even after the thin vortices have all disappeared. The thick vortices decouple at a slightly lower temperature (higher beta) than t...
Hadron mass spectrum in a lattice gauge theory
International Nuclear Information System (INIS)
Seo, Koichi
1978-01-01
We perform the strong coupling expansion in a lattice gauge theory and obtain the hadron mass spectrum. We develop a theory in the Hamiltonian formalism following Kogut and Susskind, but our treatment of quark fields is quite different from theirs. Thus our results largely differ from theirs. In our model and approximation, the pseudoscalar mesons have the same mass as the vectors. The baryon decuplet and the octet are also degenerate. The excited meson states are studied in detail. (auth.)
Fermion frontiers in vector lattice gauge theories: Proceedings. Volume 8
International Nuclear Information System (INIS)
1998-01-01
The inclusion of fermions into simulations of lattice gauge theories is very difficult both theoretically and numerically. With the presence of Teraflops-scale computers for lattice gauge theory, the authors wanted a forum to discuss new approaches to lattice fermions. The workshop concentrated on approaches which are ripe for study on such large machines. Although lattice chiral fermions are vitally important to understand, there is not technique at hand which is viable on these Teraflops-scale machines for real-world problems. The discussion was therefore focused on recent developments and future prospects for QCD-like theories. For the well-known fermion formulations, the Aoki phase in Wilson fermions, novelties of U A (1) symmetry and the η' for staggered fermions and new approaches for simulating the determinant for Wilson fermions were discussed. The newer domain-wall fermion formulation was reviewed, with numerical results given by many speakers. The fermion proposal of Friedberg, Lee and Pang was introduced. They also were able to compare and contrast the dependence of QCD and QCD-like SUSY theories on the number of quark flavors. These proceedings consist of several transparencies and a summary page from each speaker. This should serve to outline the major points made in each talk
Monte Carlo sampling strategies for lattice gauge calculations
International Nuclear Information System (INIS)
Guralnik, G.; Zemach, C.; Warnock, T.
1985-01-01
We have sought to optimize the elements of the Monte Carlo processes for thermalizing and decorrelating sequences of lattice gauge configurations and for this purpose, to develop computational and theoretical diagnostics to compare alternative techniques. These have been applied to speed up generations of random matrices, compare heat bath and Metropolis stepping methods, and to study autocorrelations of sequences in terms of the classical moment problem. The efficient use of statistically correlated lattice data is an optimization problem depending on the relation between computer times to generate lattice sequences of sufficiently small correlation and times to analyze them. We can solve this problem with the aid of a representation of auto-correlation data for various step lags as moments of positive definite distributions, using methods known for the moment problem to put bounds on statistical variances, in place of estimating the variances by too-lengthy computer runs
Monte Carlo computations for lattice gauge theories with finite gauge groups
International Nuclear Information System (INIS)
Rabbi, G.
1980-01-01
Recourse to Monte Carlo simulations for obtaining numerical information about lattice gauge field theories is suggested by the fact that, after a Wick rotation of time to imaginary time, the weighted sum over all configurations used to define quantium expectation values becomes formally identical to a statistical sum of a four-dimensional system. Results obtained in a variety of Monte Carlo investigations are described
Ultraviolet stability of three-dimensional lattice pure gauge field theories
International Nuclear Information System (INIS)
Balaban, T.
1985-01-01
We prove the ultraviolet stability for three-dimensional lattice gauge field theories. We consider only the Wilson lattice approximation for pure Yang-Mills field theories. The proof is based on results of the previous papers on renormalization group method for lattice gauge theories. (orig.)
Lattice Gauge Theory and the Origin of Mass
Energy Technology Data Exchange (ETDEWEB)
Kronfeld, Andreas S.
2013-08-01
Most of the mass of everyday objects resides in atomic nuclei/ the total of the electrons' mass adds up to less than one part in a thousand. The nuclei are composed of nucleons---protons and neutrons---whose nuclear binding energy, though tremendous on a human scale, is small compared to their rest energy. The nucleons are, in turn, composites of massless gluons and nearly massless quarks. It is the energy of these confined objects, via $M=E/c^2$, that is responsible for everyday mass. This article discusses the physics of this mechanism and the role of lattice gauge theory in establishing its connection to quantum chromodynamics.
Analytic study of SU(3) lattice gauge theory
International Nuclear Information System (INIS)
Zheng Xite; Xu Yong
1989-01-01
The variational-cumulant expansion method has been extended to the case of lattice SU(3) Wilson model. The plaquette energy as an order paramenter has been calculated to the 2nd order expansion. No 1st order phase transition in the D = 4 case is found which is in agreement with the monte Carlo results, and the 1st order phase transition in the d = 5 case is clearly seen. The method can be used in the study of problems in LGT with SU(3) gauge group
Lattice Gauge Theories Within and Beyond the Standard Model
Energy Technology Data Exchange (ETDEWEB)
Gelzer, Zechariah John [Iowa U.
2017-01-01
The Standard Model of particle physics has been very successful in describing fundamental interactions up to the highest energies currently probed in particle accelerator experiments. However, the Standard Model is incomplete and currently exhibits tension with experimental data for interactions involving $B$~mesons. Consequently, $B$-meson physics is of great interest to both experimentalists and theorists. Experimentalists worldwide are studying the decay and mixing processes of $B$~mesons in particle accelerators. Theorists are working to understand the data by employing lattice gauge theories within and beyond the Standard Model. This work addresses the theoretical effort and is divided into two main parts. In the first part, I present a lattice-QCD calculation of form factors for exclusive semileptonic decays of $B$~mesons that are mediated by both charged currents ($B \\to \\pi \\ell \
Towards a multigrid scheme in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Gutbrod, F.
1992-12-01
The task of constructing a viable updating multigrid scheme for SU(2) lattice gauge theory is discussed in connection with the classical eigenvalue problem. For a nonlocal overrelaxation Monte Carlo update step, the central numerical problem is the search for the minimum of a quadratic approximation to the action under nonlocal constraints. Here approximate eigenfunctions are essential to reduce the numerical work, and these eigenfunctions are to be constructed with multigrid techniques. A simple implementation on asymmetric lattices is described, where the grids are restricted to 3-dimensional hyperplanes. The scheme is shown to be moderately successful in the early stages of the updating history (starting from a cold configuration). The main results of another, less asymmetric scheme are presented briefly. (orig.)
A preliminary study of the Gribov ambiguity in lattice SU(3) Coulomb gauge
Energy Technology Data Exchange (ETDEWEB)
Parrinello, C. (Physics Dept., New York Univ., NY (United States)); Petrarca, S. (Dipt. di Fisica, Rome-1 Univ. (Italy) INFN, Rome (Italy)); Vladikas, A. (Dipt. di Fisica, Rome-2 Univ. (Italy) INFN, Rome (Italy))
1991-10-10
We report on simulations of pure SU(3) gauge theory on a 10{sup 3}x20 lattice at {beta}=6.0 in the Coulomb gauge, from which the Gribov ambiguity appears to be maximal, in the sense that the gauge-fixing process is highly unstable with respect to variations of the starting configuration via random gauge transformations. We give a heuristic explanation of the larger number of Gribov copies in such a gauge with respect to the Landau gauge. (orig.).
National Computational Infrastructure for Lattice Gauge Theory: Final report
International Nuclear Information System (INIS)
Reed, Daniel A.
2008-01-01
In this document we describe work done under the SciDAC-1 Project National Computerational Infrastructure for Lattice Gauge Theory. The objective of this project was to construct the computational infrastructure needed to study quantum chromodynamics (QCD). Nearly all high energy and nuclear physicists in the United States working on the numerical study of QCD are involved in the project, as are Brookhaven National Laboratory (BNL), Fermi National Accelerator Laboratory (FNAL), and Thomas Jefferson National Accelerator Facility (JLab). A list of the senior participants is given in Appendix A.2. The project includes the development of community software for the effective use of the terascale computers, and the research and development of commodity clusters optimized for the study of QCD. The software developed as part of this effort is publicly available, and is being widely used by physicists in the United States and abroad. The prototype clusters built with SciDAC-1 fund have been used to test the software, and are available to lattice gauge theorists in the United States on a peer reviewed basis
Confinement in dually transformed U(1) lattice gauge theory
International Nuclear Information System (INIS)
Zach, M.
1997-10-01
The aim of this work is a detailed investigation of the confinement mechanism in U(1) lattice gauge theory. In the first chapters we give a review on the definition of compact Abelian gauge theory on space-time lattices, the numerical calculation of physical observables for exploring confinement, and the interpretation of the results in terms of the dual superconductor picture, which is introduced at two levels of description. We work out that the electric field strength and the magnetic currents around a charge pair can be described very well by a classical effective model of Maxwell and London equations, if fluctuations of the occurring fluxoid string are considered. In order to obtain a deeper understanding of confinement in U(1), we extend the duality transformation of the path integral to the correlation functions which are used to calculate expectation values of fields and currents. This not only helps to interpret U(1) lattice gauge theory as a limit of the dual Higgs model, but also opens the possibility for efficient calculations of expectation values in the presence of static charges by simulating the dual model. Using this technique we are able to consider large flux tube lengths, low temperatures, and multiply charged systems without loss of numerical precision. The dual simulation is applied to flux tubes between static charges, to periodically closed flux tubes (torelons), and to doubly charged systems. We find that the behavior of flux tubes for large charge distances cannot be explained by the picture of a classical dual type-II superconductor; the observed roughening of the flux tube agrees very well with the prediction from the effective string description. We also analyze the different contributions to the total energy of the electromagnetic field. For torelons we calculate both the free energy and the total field energy, split the free energy into a string tension and a string fluctuation part, and apply lattice sum rules modified for finite
Quantum Monte Carlo studies in Hamiltonian lattice gauge theory
International Nuclear Information System (INIS)
Hamer, C.J.; Samaras, M.; Bursill, R.J.
2000-01-01
Full text: The application of Monte Carlo methods to the 'Hamiltonian' formulation of lattice gauge theory has been somewhat neglected, and lags at least ten years behind the classical Monte Carlo simulations of Euclidean lattice gauge theory. We have applied a Green's Function Monte Carlo algorithm to lattice Yang-Mills theories in the Hamiltonian formulation, combined with a 'forward-walking' technique to estimate expectation values and correlation functions. In this approach, one represents the wave function in configuration space by a discrete ensemble of random walkers, and application of the time development operator is simulated by a diffusion and branching process. The approach has been used to estimate the ground-state energy and Wilson loop values in the U(1) theory in (2+1)D, and the SU(3) Yang-Mills theory in (3+1)D. The finite-size scaling behaviour has been explored, and agrees with the predictions of effective Lagrangian theory, and weak-coupling expansions. Crude estimates of the string tension are derived, which agree with previous results at intermediate couplings; but more accurate results for larger loops will be required to establish scaling behaviour at weak couplings. A drawback to this method is that it is necessary to introduce a 'trial' or 'guiding wave function' to guide the walkers towards the most probable regions of configuration space, in order to achieve convergence and accuracy. The 'forward-walking' estimates should be independent of this guidance, but in fact for the SU(3) case they turn out to be sensitive to the choice of trial wave function. It would be preferable to use some sort of Metropolis algorithm instead to produce a correct distribution of walkers: this may point in the direction of a Path Integral Monte Carlo approach
A map between corner and link operators in lattice gauge theories
International Nuclear Information System (INIS)
Bars, I.
1979-01-01
A completely local gauge-invariant lattice gauge theory is formulated in terms of a new set of variables introduced earlier in the continuum. This theory uses local 'corner' variables defined on lattice sites only, as opposed to the conventional 'link' variables. It is shown via a map that the formulation gives identical results to the usual lattice gauge theory. The properties of the quantum commutators in the continuum limit is also discussed and contrasted for the two lattice approaches. In terms of the corner operators the quantized lattice theory is seen to be closely related to continuum QCD. (Auth.)
Lattice gauge fixing as quenching and the violation of spectral positivity
International Nuclear Information System (INIS)
Aubin, C.; Ogilvie, Michael C.
2004-01-01
Lattice Landau gauge and other related lattice gauge-fixing schemes are known to violate spectral positivity. The most direct sign of the violation is the rise of the effective mass as a function of distance. The origin of this phenomenon lies in the quenched character of the auxiliary field g used to implement lattice gauge-fixing, and is similar to quenched QCD in this respect. This is best studied using the Parrinello Jona-Lasinio Zwanziger formalism, leading to a class of covariant gauges similar to the one-parameter class of covariant gauges commonly used in continuum gauge theories. Soluble models are used to illustrate the origin of the violation of spectral positivity. The phase diagram of the lattice theory, as a function of the gauge coupling β and the gauge-fixing parameter α, is similar to that of the unquenched theory, a Higgs model of a type first studied by Fradkin and Shenker. The gluon propagator is interpreted as yielding bound states in the confined phase, and a mixture of fundamental particles in the Higgs phase, but lattice simulation shows the two phases are connected. Gauge-field propagators from the simulation of an SU(2) lattice gauge theory on a 20 4 lattice are well described by a quenched mass-mixing model. The mass of the lightest state, which we interpret as the gluon mass, appears to be independent of α for sufficiently large α
Comparison of lattice gauge theories with gauge groups Z2 and SU(2)
International Nuclear Information System (INIS)
Mack, G.; Petkova, B.
1978-11-01
We study a model of a pure Yang Mills theory with gauge group SU(2) on a lattice in Euclidean space. We compare it with the model obtained by restricting varibales to 2 . An inequality relating expectation values of the Wilson loop integral in the two theories is established. It shows that confinement of static quarks is true in our SU(2) model whenever it holds for the corresponding 2 -model. The SU(2) model is shown to have high and low temperature phases that are distinguished by a qualitatively different behavior of the t'Hooft disorder parameter. (orig.) [de
Strongly coupled gauge theories: What can lattice calculations teach us?
CERN. Geneva
2015-01-01
Electroweak symmetry breaking and the dynamical origin of the Higgs boson are central questions today. Strongly coupled systems predicting the Higgs boson as a bound state of a new gauge-fermion interaction are candidates to describe beyond Standard Model physics. The phenomenologically viable models are strongly coupled, near the conformal boundary, requiring non-perturbative studies to reveal their properties. Lattice studies show that many of the beyond-Standard Model candidates have a relatively light isosinglet scalar state that is well separated from the rest of the spectrum. When the scale is set via the vev of electroweak symmetry breaking, a 2 TeV vector resonance appears to be a general feature of many of these models with several other resonances that are not much heavier.
Hardware matrix multiplier/accumulator for lattice gauge theory calculations
International Nuclear Information System (INIS)
Christ, N.H.; Terrano, A.E.
1984-01-01
The design and operating characteristics of a special-purpose matrix multiplier/accumulator are described. The device is connected through a standard interface to a host PDP11 computer. It provides a set of high-speed, matrix-oriented instructions which can be called from a program running on the host. The resulting operations accelerate the complex matrix arithmetic required for a class of Monte Carlo calculations currently of interest in high energy particle physics. A working version of the device is presently being used to carry out a pure SU(3) lattice gauge theory calculation using a PDP11/23 with a performance twice that obtainable on a VAX11/780. (orig.)
Vacuum structure of pure gauge theories on the lattice
International Nuclear Information System (INIS)
Haymaker, R.W.; Singh, V.; Browne, D.; Wosiek, J.; Max-Planck-Institut fuer Physik und Astrophysik, Muenchen
1992-01-01
Results from simulations on two aspects of quark confinement in the pure gauge sector are presented. First is the calculation of the profile of the flux tube connecting a static q bar q pair in SU(2). By use of the Michael sum rules as a constraint, evidence is set forth that the energy density at the center of the flux tube goes to a constant as a function of quark- separation. Slow variation of the width and energy density is not ruled out. Secondly in the confined phase of lattice U(l), the curl of the magnetic monopole current is calculated, and it is shown that the dual London equation is satisfied and that the electric fluxoid is quantized
Evidence for the existence of Gribov copies in Landau gauge lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Marinari, E.; Ricci, R. (Rome-2 Univ. (Italy). Dipt. di Fisica INFN, Rome (Italy)); Parrinello, C. (New York Univ., NY (USA). Physics Dept.)
1991-09-16
We unambiguously show the existence of Gribov copies in a pure SU(3) gauge lattice model, with Wilson action. We show that the usual steepest-descent algorithms used for implementing the lattice Landau gauge lead to ambiguities, which are related to the existence of Gribov copies in the model. (orig.).
Extrapolation of lattice gauge theories to the continuum limit
International Nuclear Information System (INIS)
Duncan, A.; Vaidya, H.
1978-01-01
The problem of extrapolating lattice gauge theories from the strong-coupling phase to the continuum critical point is studied for the Abelian (U(1)) and non-Abelian (SU(2)) theories in three (space--time) dimensions. A method is described for obtaining the asymptotic behavior, for large β, of such thermodynamic quantities and correlation functions as the free energy and Wilson loop function. Certain general analyticity and positivity properties (in the complex β-plane) are shown to lead, after appropriate analytic remappings, to a Stieltjes property of these functions. Rigorous theorems then guarantee uniform and monotone convergence of the Pade approximants, with exact pointwise upper and lower bounds. The first three Pade's are computed for both the free energy and the Wilson function. For the free energy, satisfactory agreement is with the asymptotic behavior computed by an explicit lattice calculation. The strong-coupling series for the Wilson function is found to be considerably more unstable in the lower order terms - correspondingly, convergence of the Pade's is found to be slower than in the free-energy case. It is suggested that higher-order calculations may allow a reasonably accurate determination of the string constant for the SU(2) theory. 14 references
SU(N) lattice gauge theory with Villain's action
International Nuclear Information System (INIS)
Onofri, E.
1981-01-01
The pure gauge lattice theory with Villain's action exp[-A(U)] = GAMMAsub(j=1)sup(N) Σsub(n=-infinity)sup(+infinity) exp[-(N/lambda)(THETAsub(j) + 2nπ) 2 ], where THETA 1 ,..., THETAsub(N) are the invariant angles of U is an element of U(N) or SU(N) is considered. For the two-dimensional lattice the partition function Z(lambda,N) is calculated with the specific heat, the level density rhosub(N)(THETA) and Wilson's loops Wsub(n) = (1/N) (n = 1,2,3,...). The 1/N expansion of Z and Wsub(n) is convergent for sufficiently small |lambda/N| and its coefficients are analytic in lambda near the real axis (no ''Gross-Witten'' singularity to all orders in 1/N), but it is still not possible to commute the strong-coupling limit with the planar limit (lambda→infinity, N→infinity). The character expansion which is needed for strong-coupling calculations in four dimensions is also calculated. A comparison with Monte Carlo data (N=2) and a preliminary discussion of the large-N limit is given. (author)
SU (2) lattice gauge theory simulations on Fermi GPUs
International Nuclear Information System (INIS)
Cardoso, Nuno; Bicudo, Pedro
2011-01-01
In this work we explore the performance of CUDA in quenched lattice SU (2) simulations. CUDA, NVIDIA Compute Unified Device Architecture, is a hardware and software architecture developed by NVIDIA for computing on the GPU. We present an analysis and performance comparison between the GPU and CPU in single and double precision. Analyses with multiple GPUs and two different architectures (G200 and Fermi architectures) are also presented. In order to obtain a high performance, the code must be optimized for the GPU architecture, i.e., an implementation that exploits the memory hierarchy of the CUDA programming model. We produce codes for the Monte Carlo generation of SU (2) lattice gauge configurations, for the mean plaquette, for the Polyakov Loop at finite T and for the Wilson loop. We also present results for the potential using many configurations (50,000) without smearing and almost 2000 configurations with APE smearing. With two Fermi GPUs we have achieved an excellent performance of 200x the speed over one CPU, in single precision, around 110 Gflops/s. We also find that, using the Fermi architecture, double precision computations for the static quark-antiquark potential are not much slower (less than 2x slower) than single precision computations.
Remarks on an equation common to Weyl's gauge field, Yang-Mills field and Toda lattice
International Nuclear Information System (INIS)
Nishioka, M.
1984-01-01
In this letter a remark is presented on an equation of a gauge-invariant Weyl's gauge field and it is shown that the equation is common to Yang's approach to the self-duality condition for SU 2 gauge field and the simplest Toda lattice
An approach to higher dimensional theories based on lattice gauge theory
International Nuclear Information System (INIS)
Murata, M.; So, H.
2004-01-01
A higher dimensional lattice space can be decomposed into a number of four-dimensional lattices called as layers. The higher dimensional gauge theory on the lattice can be interpreted as four-dimensional gauge theories on the multi-layer with interactions between neighboring layers. We propose the new possibility to realize the continuum limit of a five-dimensional theory based on the property of the phase diagram
Non-commutative differential calculus and the axial anomaly in Abelian lattice gauge theories
International Nuclear Information System (INIS)
Fujiwara, Takanori; Suzuki, Hiroshi; Wu, Ke
2000-01-01
The axial anomaly in lattice gauge theories has a topological nature when the Dirac operator satisfies the Ginsparg-Wilson relation. We study the axial anomaly in Abelian gauge theories on an infinite hypercubic lattice by utilizing cohomological arguments. The crucial tool in our approach is the non-commutative differential calculus (NCDC) which makes the Leibniz rule of exterior derivatives valid on the lattice. The topological nature of the 'Chern character' on the lattice becomes manifest in the context of NCDC. Our result provides an algebraic proof of Luescher's theorem for a four-dimensional lattice and its generalization to arbitrary dimensions
Selfduality and topological-like properties of lattice gauge field theories. A proposal
Energy Technology Data Exchange (ETDEWEB)
Cotta-Ramusino, P; Dell' Antonio, G [Freie Univ. Berlin (Germany, F.R.). Inst. fuer Theoretische Physik; Rome Univ. (Italy). Istituto di Matematica)
1979-11-01
We introduce for lattice gauge theories an analogue of the Pontrjagin index and a notion of 'selfduality' and 'antiselfduality'. Selfdual and antiselfdual configurations on the lattice have much of the same properties (with some remarkable differences) as the corresponding configurations on the continuum, to which they converge when the lattice spacing goes to zero.
Effective monopole potential for SU(2) lattice gluodynamics in spatial maximal Abelian gauge
International Nuclear Information System (INIS)
Chernodub, M.N.; Polikarpov, M.I.; Veselov, A.I.
1999-01-01
We investigate the dual superconductor hypothesis in finite-temperature SU(2) lattice gluodynamics in the Spatial Maximal Abelian gauge. This gauge is more physical than the ordinary Maximal Abelian gauge due to absence of non-localities in temporal direction. We shown numerically that in the Spatial Maximal Abelian gauge the probability distribution of the abelian monopole field is consistent with the dual superconductor mechanism of confinement [ru
Response of SU(2) lattice gauge theory to a gauge invariant external field
International Nuclear Information System (INIS)
Goepfert, M.
1980-10-01
Topologically determined Z(2) variables in pure SU(2) lattice gauge theory are discussed. They count the number of 'vortex souls'. The expectation value of the corresponding Z(2) loop and the dependence of the string tension on an external field h coupled to them is calculated to lowest order in the high temperature expansion. The result is in agreement with the conjecture that the probability distribution of vortex souls determines the string tension. A different formula for the string tension is found in the two limiting cases 0 < /h/ << β << 1 and 0 < β << h << 1. This penomenon is traced to the effect of short range interactions of the vortex souls which are mediated by the other excitations in the theory. (orig.)
Chaos, scaling and existence of a continuum limit in classical non-Abelian lattice gauge theory
International Nuclear Information System (INIS)
Nielsen, H.B.; Rugh, H.H.; Rugh, S.E.
1996-01-01
We discuss space-time chaos and scaling properties for classical non-Abelian gauge fields discretized on a spatial lattice. We emphasize that there is a open-quote no goclose quotes for simulating the original continuum classical gauge fields over a long time span since there is a never ending dynamical cascading towards the ultraviolet. We note that the temporal chaotic properties of the original continuum gauge fields and the lattice gauge system have entirely different scaling properties thereby emphasizing that they are entirely different dynamical systems which have only very little in common. Considered as a statistical system in its own right the lattice gauge system in a situation where it has reached equilibrium comes closest to what could be termed a open-quotes continuum limitclose quotes in the limit of very small energies (weak non-linearities). We discuss the lattice system both in the limit for small energies and in the limit of high energies where we show that there is a saturation of the temporal chaos as a pure lattice artifact. Our discussion focuses not only on the temporal correlations but to a large extent also on the spatial correlations in the lattice system. We argue that various conclusions of physics have been based on monitoring the non-Abelian lattice system in regimes where the fields are correlated over few lattice units only. This is further evidenced by comparison with results for Abelian lattice gauge theory. How the real time simulations of the classical lattice gauge theory may reach contact with the real time evolution of (semi-classical aspects of) the quantum gauge theory (e.g. Q.C.D.) is left an important question to be further examined
T expansion and SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Horn, D.; Karliner, M.; Weinstein, M.
1985-01-01
This paper presents the results obtained by applying the t expansion to the case of an SU(2) lattice gauge theory in 3+1 space-time dimensions. We compute the vacuum energy density, specific heat, string tension sigma, mass M of the lowest-lying 0 ++ glueball, and the ratio R = M 2 /sigma. Our computations converge best for the energy density, specific heat, and R, and these quantities exhibit behavior which agrees with what we expect on general grounds and what is known from Euclidean Monte Carlo calculations. In particular we see a broad lump in the specific heat and determine √R to be √R = 3.5 +- 0.2, a value which lies in the ballpark of values obtained from Monte Carlo calculations. Our direct computations of the mass of the 0 ++ glueball and string tension cannot be easily compared to the results of Monte Carlo calculations, but appear to be consistent with what one would expect
Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging
Energy Technology Data Exchange (ETDEWEB)
Solbrig, Stefan
2008-07-01
In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)
Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging
International Nuclear Information System (INIS)
Solbrig, Stefan
2008-01-01
In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)
Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging
Energy Technology Data Exchange (ETDEWEB)
Solbrig, Stefan
2008-07-01
In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)
A technique for analytical calculation of observables in lattice gauge theories
International Nuclear Information System (INIS)
Narayanan, R.; Vranas, P.
1990-01-01
It is shown that the partition function for a finite lattice factorizes into terms that can be associated with each vertex in the finite lattice. This factorization property forms the basis of well defined and efficient technique developed to calculate partition functions to high accuracy, on finite lattices for gauge theories. This technique along with the expansion in finite lattices, provides a powerful means for calculating observables in lattice gauge theories. This is applied to SU(2) lattice gauge theory in four dimensions. The free energy, expectation value of a plaquette and specific heat are calculated. The results are very good in the strong coupling region, succeed in entering the weak coupling region and describe the crossover region quite well, agreeing all the way with the Monte Carlo data. (orig.)
Z2 monopoles in the standard SU(2) lattice gauge theory model
International Nuclear Information System (INIS)
Mack, G.; Petkova, V.B.
1979-04-01
The standard SU(2) lattice gauge theory model without fermions may be considered as a Z 2 model with monopoles and fluctuating coupling constants. At low temperatures β -1 (= small bare coupling constant) the monopoles are confined. (orig.) [de
Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo
2013-09-13
Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.
Two-dimensional N=(2,2) lattice gauge theories with matter in higher representations
International Nuclear Information System (INIS)
Joseph, Anosh
2014-06-01
We construct two-dimensional N=(2,2) supersymmetric gauge theories on a Euclidean spacetime lattice with matter in the two-index symmetric and anti-symmetric representations of SU(N c ) color group. These lattice theories preserve a subset of the supercharges exact at finite lattice spacing. The method of topological twisting is used to construct such theories in the continuum and then the geometric discretization scheme is used to formulate them on the lattice. The lattice theories obtained this way are gauge-invariant, free from fermion doubling problem and exact supersymmetric at finite lattice spacing. We hope that these lattice constructions further motivate the nonperturbative explorations of models inspired by technicolor, orbifolding and orientifolding in string theories and the Corrigan-Ramond limit.
Review of lattice supersymmetry and gauge-gravity duality
International Nuclear Information System (INIS)
Joseph, Anosh
2015-12-01
We review the status of recent investigations on validating the gauge-gravity duality conjecture through numerical simulations of strongly coupled maximally supersymmetric thermal gauge theories. In the simplest setting, the gauge-gravity duality connects systems of D0-branes and black hole geometries at finite temperature to maximally supersymmetric gauged quantum mechanics at the same temperature. Recent simulations show that non-perturbative gauge theory results give excellent agreement with the quantum gravity predictions, thus proving strong evidence for the validity of the duality conjecture and more insight into quantum black holes and gravity.
On the presence of lower dimensional confinement mechanisms in 4d SU2 lattice gauge theory
International Nuclear Information System (INIS)
Hari Dass, N.D.
1983-11-01
The presence of an essentially two-dimensional confinement mechanism in 4d SU 2 gauge theory has been conjectured. The authors present an explicit realization of this conjecture valid up to β = 1.8 based on variational investigations of lattice gauge theories. (Auth.)
On the continuum limit of a Z4 lattice gauge theory
International Nuclear Information System (INIS)
Pena, A.; Socolovsky, M.
1983-01-01
The continuum limit of a Z 4 gauge plus matter lattice theory is identified with massless scalar and vector fields with quartic self-interactions phi 4 and (AμAμ) 2 , respectively. The analysis is based on the mean field approximation after gauge fixing. (orig.)
Towards a coupled-cluster treatment of SU(N) lattice gauge field theory
Bishop, Raymond F.; Ligterink, N.E.; Walet, Niels R.
2006-01-01
A consistent approach to Hamiltonian SU(N) lattice gauge field theory is developed using the maximal-tree gauge and an appropriately chosen set of angular variables. The various constraints are carefully discussed, as is a practical means for their implementation. A complete set of variables for the
Independent SU(2)-loop variables and the reduced configuration space of SU(2)-lattice gauge theory
International Nuclear Information System (INIS)
Loll, R.
1992-01-01
We give a reduction procedure for SU(2)-trace variables and an explicit description of the reduced configuration sace of pure SU(2)-gauge theory on the hypercubic lattices in two, three and four dimensions, using an independent subset of the gauge-invariant Wilson loops. (orig.)
Tricolored Blackbird - Monitoring [ds98
California Natural Resource Agency — Observations recorded during breeding season surveys for tricolored blackbirds conducted across their range in California primarily during the 1994, 1995, 1996,...
Time evolution of linearized gauge field fluctuations on a real-time lattice
Energy Technology Data Exchange (ETDEWEB)
Kurkela, A. [CERN, Theoretical Physics Department, Geneva (Switzerland); University of Stavanger, Faculty of Science and Technology, Stavanger (Norway); Lappi, T. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, Jyvaeskylae (Finland); University of Helsinki, Helsinki Institute of Physics, P.O. Box 64, Helsinki (Finland); Peuron, J. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, Jyvaeskylae (Finland)
2016-12-15
Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Due to instabilities, small quantum fluctuations on top of the classical background may significantly affect the dynamics of the system. In this paper we argue for the need for a numerical calculation of a system of classical gauge fields and small linearized fluctuations in a way that keeps the separation between the two manifest. We derive and test an explicit algorithm to solve these equations on the lattice, maintaining gauge invariance and Gauss' law. (orig.)
Time evolution of linearized gauge field fluctuations on a real-time lattice
Kurkela, Aleksi; Peuron, Jarkko
2016-01-01
Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Due to instabilities, small quantum fluctuations on top of the classical background may significantly affect the dynamics of the system. In this paper we argue for the need for a numerical calculation of a system of classical gauge fields and small linearized fluctuations in a way that keeps the separation between the two manifest. We derive and test an explicit algorithm to solve these equations on the lattice, maintaining gauge invariance and Gauss's law.
Mean fields and self consistent normal ordering of lattice spin and gauge field theories
International Nuclear Information System (INIS)
Ruehl, W.
1986-01-01
Classical Heisenberg spin models on lattices possess mean field theories that are well defined real field theories on finite lattices. These mean field theories can be self consistently normal ordered. This leads to a considerable improvement over standard mean field theory. This concept is carried over to lattice gauge theories. We construct first an appropriate real mean field theory. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean field theory are derived. (orig.)
Pure Gauge theory in crystal lattice and Coulomb gases
International Nuclear Information System (INIS)
Marchetti, D.H.U.
1985-01-01
A method for the construction of classical gases, starting from a pure gauge theory, is described. The method is applied to the U(1) gauge theory in two spatial dimensions. For this model it's seen the vaccua appearing as a consequence of the quantization ambiguity. The connection between the vaccua and the confinement is discussed. (Author) [pt
Efficient multitasking of the SU(3) lattice gauge theory algorithm on the CRAY X-MP
International Nuclear Information System (INIS)
Kuba, D.W.; Moriarty, K.J.M.
1985-01-01
The Monte Carlo lattice gauge theory algorithm with the Metropolis et.al. updating procedure is vectorized and multitasked on the four processor CRAY X-MP and results in a code with a link-update-time, in 64-bit arithmetic and 10 hits-per-link, of 11.0 μs on a 16 4 lattice, the fastest link-update-time so far achieved. The program calculates the Wilson loops of size up to L/2.L/2 for an L 4 lattice for SU(3) gauge theory. (orig./HSI)
Five-dimensional Lattice Gauge Theory as Multi-Layer World
Murata, Michika; So, Hiroto
2003-01-01
A five-dimensional lattice space can be decomposed into a number of four-dimens ional lattices called as layers. The five-dimensional gauge theory on the lattice can be interpreted as four-dimensional gauge theories on the multi-layer with interactions between neighboring layers. In the theory, there exist two independent coupling constants; $\\beta_4$ controls the dynamics inside a layer and $\\beta_5$ does the strength of the inter-layer interaction.We propose the new possibility to realize t...
Lattice implementation of Abelian gauge theories with Chern-Simons number and an axion field
Figueroa, Daniel G.; Shaposhnikov, Mikhail
2018-01-01
Real time evolution of classical gauge fields is relevant for a number of applications in particle physics and cosmology, ranging from the early Universe to dynamics of quark-gluon plasma. We present an explicit non-compact lattice formulation of the interaction between a shift-symmetric field and some U (1) gauge sector, a (x)FμνF˜μν, reproducing the continuum limit to order O (dxμ2) and obeying the following properties: (i) the system is gauge invariant and (ii) shift symmetry is exact on the lattice. For this end we construct a definition of the topological number density K =FμνF˜μν that admits a lattice total derivative representation K = Δμ+ Kμ, reproducing to order O (dxμ2) the continuum expression K =∂μKμ ∝ E → ṡ B → . If we consider a homogeneous field a (x) = a (t), the system can be mapped into an Abelian gauge theory with Hamiltonian containing a Chern-Simons term for the gauge fields. This allow us to study in an accompanying paper the real time dynamics of fermion number non-conservation (or chirality breaking) in Abelian gauge theories at finite temperature. When a (x) = a (x → , t) is inhomogeneous, the set of lattice equations of motion do not admit however a simple explicit local solution (while preserving an O (dxμ2) accuracy). We discuss an iterative scheme allowing to overcome this difficulty.
Lattice implementation of Abelian gauge theories with Chern–Simons number and an axion field
Directory of Open Access Journals (Sweden)
Daniel G. Figueroa
2018-01-01
Full Text Available Real time evolution of classical gauge fields is relevant for a number of applications in particle physics and cosmology, ranging from the early Universe to dynamics of quark–gluon plasma. We present an explicit non-compact lattice formulation of the interaction between a shift-symmetric field and some U(1 gauge sector, a(xFμνF˜μν, reproducing the continuum limit to order O(dxμ2 and obeying the following properties: (i the system is gauge invariant and (ii shift symmetry is exact on the lattice. For this end we construct a definition of the topological number density K=FμνF˜μν that admits a lattice total derivative representation K=Δμ+Kμ, reproducing to order O(dxμ2 the continuum expression K=∂μKμ∝E→⋅B→. If we consider a homogeneous field a(x=a(t, the system can be mapped into an Abelian gauge theory with Hamiltonian containing a Chern–Simons term for the gauge fields. This allow us to study in an accompanying paper the real time dynamics of fermion number non-conservation (or chirality breaking in Abelian gauge theories at finite temperature. When a(x=a(x→,t is inhomogeneous, the set of lattice equations of motion do not admit however a simple explicit local solution (while preserving an O(dxμ2 accuracy. We discuss an iterative scheme allowing to overcome this difficulty.
Strong-coupling study of the Gribov ambiguity in lattice Landau gauge
International Nuclear Information System (INIS)
Maas, Axel; Pawlowski, Jan M.; Spielmann, Daniel; Sternbeck, Andre; Smekal, Lorenz von
2010-01-01
We study the strong-coupling limit β=0 of lattice SU(2) Landau gauge Yang-Mills theory. In this limit the lattice spacing is infinite, and thus all momenta in physical units are infinitesimally small. Hence, the infrared behavior can be assessed at sufficiently large lattice momenta. Our results show that at the lattice volumes used here, the Gribov ambiguity has an enormous effect on the ghost propagator in all dimensions. This underlines the severity of the Gribov problem and calls for refined studies also at finite β. In turn, the gluon propagator only mildly depends on the Gribov ambiguity. (orig.)
Vortex structure in abelian-projected lattice gauge theory
International Nuclear Information System (INIS)
Ambjoern, J.; Giedt, J.; Greensite, J.
2000-01-01
We report on a breakdown of both monopole dominance and positivity in abelian-projected lattice Yang-Mills theory. The breakdown is associated with observables involving two units of the abelian charge. We find that the projected lattice has at most a global Z 2 symmetry in the confined phase, rather than the global U(1) symmetry that might be expected in a dual superconductor or monopole Coulomb gas picture. Implications for monopole and center vortex theories of confinement are discussed
International Nuclear Information System (INIS)
Ranft, J.
1984-01-01
Hamiltonian lattice models with fermions, gauge bosons and scalar fields are studied in 1+1 dimensions using the local Hamiltonian Monte-Carlo method. Results are presented for the massive Schwinger model with one and two flavors, for a model with interacting Higgs fields, fermions and gauge bosons, where fractionally charged solitons are found as free states of the lattice model, and for Wess-Zumino type models with restricted lattice supersymmetry, where examples for spontaneous breaking of supersymmetry are found
Decorated tensor network renormalization for lattice gauge theories and spin foam models
International Nuclear Information System (INIS)
Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian
2016-01-01
Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions. (paper)
Decorated tensor network renormalization for lattice gauge theories and spin foam models
Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian
2016-05-01
Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions.
Dupoyet, B.; Fiebig, H. R.; Musgrove, D. P.
2010-01-01
We report on initial studies of a quantum field theory defined on a lattice with multi-ladder geometry and the dilation group as a local gauge symmetry. The model is relevant in the cross-disciplinary area of econophysics. A corresponding proposal by Ilinski aimed at gauge modeling in non-equilibrium pricing is implemented in a numerical simulation. We arrive at a probability distribution of relative gains which matches the high frequency historical data of the NASDAQ stock exchange index.
Inequalities for magnetic-flux free energies and confinement in lattice gauge theories
International Nuclear Information System (INIS)
Yoneya, T.
1982-01-01
Rigorous inequalities among magnetic-flux free energies of tori with varying diameters are derived in lattice gauge theories. From the inequalities, it follows that if the magnetic-flux free energy vanishes in the limit of large uniform dilatation of a torus, the free energy must always decrease exponentially with the area of the cross section of the torus. The latter property is known to be sufficient for permanent confinement of static quarks. As a consequence of this property, a lower bound V(R) >= const x R for the static quark-antiquark potential is obtained in three-dimensional U(n) lattice gauge theory for sufficiently large R. (orig.)
Zero of the discrete beta function in SU(3) lattice gauge theory with color sextet fermions
International Nuclear Information System (INIS)
Shamir, Yigal; Svetitsky, Benjamin; DeGrand, Thomas
2008-01-01
We have carried out a Schrodinger functional calculation for the SU(3) lattice gauge theory with two flavors of Wilson fermions in the sextet representation of the gauge group. We find that the discrete beta function, which governs the change in the running coupling under a discrete change of spatial scale, changes sign when the Schrodinger functional renormalized coupling is in the neighborhood of g 2 =2.0. The simplest explanation is that the theory has an infrared-attractive fixed point, but more complicated possibilities are allowed by the data. While we compare rescalings by factors of 2 and 4/3, we work at a single lattice spacing.
Lattice approximation of gauge theories with Dirac Kaehler fermions
International Nuclear Information System (INIS)
Joos, H.
1988-01-01
A program which tries to overcome the systematic difficulties caused by the lattice fermion problem by the consideration of models which describe Dirac fields by differential forms is reported. In the first lecture the formalism is developped and applied to the formulation of geometric QCD and of a Geometric Standard Model. The second lecture treats the characteristic symmetry problems which appear in the lattice approximation of geometric field theories. In the last lecture strong coupling dynamics of geometric QCD are considered with the final aim of a derivation of the quark model for the hadron spectrum. (author) [pt
Digital Quantum Simulation of Z2 Lattice Gauge Theories with Dynamical Fermionic Matter
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2 +1 ) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z2 model in (2 +1 ) dimensions.
SU(N) gauge theory couplings on asymmetric lattices
International Nuclear Information System (INIS)
Karsch, F.
1982-01-01
The connection between euclidean and hamiltonian lattice QCD requires the use of asymmetric lattices, which in turn implies the necessity of two coupling parameters. We analyse the dependence of space- and time-like couplings gsub(sigma) and gsub(tau) on the different lattice spacings a and asub(tau) in space and time directions. Using the background field method we determine the derivatives of the couplings with respect to the asymmetry factor xi = a/asub(tau) in the weak coupling limit, obtaining for xi = 1 the values (deltag -2 sub(sigma)/deltaxi)sub(xi = 1) = 0.11403, N = 2, 0.20161, N = 3, (deltag -2 sub(tau)/deltaxi)sub(xi = 1) = -0.06759, N = 2, -0.13195, N = 3. We argue that the sum of these derivatives has to be equal to b 0 = 11N/48π 2 and determine the Λ parameter for asymmetric lattices. In the limit xi → infinity all our results agree with those of A. and P. Hasenfratz. (orig.)
Properties of lattice gauge theory models at low temperatures
International Nuclear Information System (INIS)
Mack, G.
1980-01-01
The Z(N) theory of quark confinement is discussed and how fluctuations of Z(N) gauge fields may continue to be important in the continuum limit. Existence of a model in four dimensions is pointed out in which confinement of (scalar) quarks can be shown to persist in the continuum limit. This article is based on the author's Cargese lectures 1979. Some of its results are published here for the first time. (orig.) 891 HSI/orig. 892 MKO
Tricolored Blackbird - Breeding [ds20
California Natural Resource Agency — These data come from observations of breeding tricolored blackbirds throughout their range in California. NAD27 coordinates are given in the data for each record....
Food for thought: Five lectures on lattice gauge theory
International Nuclear Information System (INIS)
Gupta, R.
1987-01-01
The topics covered in these lectures are the heavy anti qq potential, glueballs, the chiral transition with dynamical fermions, Weak interaction matrix elements on the lattice and Monte Carlo renormalization group. Even though for the most part these lectures are reviews, many new results and ideas are also presented. The emphasis is on critical analysis of existing data, exposing bottlenecks and a discussion of open problems. Five individual papers have been indexed separately
Topological charge and cooling scales in pure SU(2) lattice gauge theory
Berg, Bernd A.; Clarke, David A.
2018-01-01
Using Monte Carlo simulations with overrelaxation, we have equilibrated lattices up to β=2.928, size 604, for pure SU(2) lattice gauge theory with the Wilson action. We calculate topological charges with the standard cooling method and find that they become more reliable with increasing β values and lattice sizes. Continuum limit estimates of the topological susceptibility χ are obtained of which we favor χ1/4/Tc=0.643(12), where Tc is the SU(2) deconfinement temperature. Differences between ...
On the topological structure of the vacuum in SU(2) and SU(3) lattice gauge theories
International Nuclear Information System (INIS)
Ishikawa, K.; Schierholz, G.; Schneider, H.; Teper, M.
1983-01-01
We present Monte Carlo measurements of the net topological charge of the vacuum in SU(2) and SU(3) lattice gauge theories. In both cases there is no evidence of any topological structure, and the values obtained are a factor of 0(100) smaller than expectations based on analyses of the U(1) problem. Moreover we find a strong sensitivity to the lattice size and to the boundary conditions imposed on the lattice. We comment on the physical significance of these results, establish criteria for the reliable performance of such calculations, and remark on the possibly detrimental impact of these findings on the calculation of hadron spectra
Universality and the approach to the continuum limit in lattice gauge theory
De Divitiis, G M; Guagnelli, M; Lüscher, Martin; Petronzio, Roberto; Sommer, Rainer; Weisz, P; Wolff, U; de Divitiis, G; Frezzotti, R; Guagnelli, M; Luescher, M; Petronzio, R; Sommer, R; Weisz, P; Wolff, U
1995-01-01
The universality of the continuum limit and the applicability of renormalized perturbation theory are tested in the SU(2) lattice gauge theory by computing two different non-perturbatively defined running couplings over a large range of energies. The lattice data (which were generated on the powerful APE computers at Rome II and DESY) are extrapolated to the continuum limit by simulating sequences of lattices with decreasing spacings. Our results confirm the expected universality at all energies to a precision of a few percent. We find, however, that perturbation theory must be used with care when matching different renormalized couplings at high energies.
Deconfinement phase transition and finite-size scaling in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Mogilevskij, O.A.
1988-01-01
Calculation technique for deconfinement phase transition parameters based on application of finite-size scaling theory is suggested. The essence of the technique lies in plotting of universal scaling function on the basis of numerical data obtained at different-size final lattices and discrimination of phase transition parameters for infinite lattice system. Finite-size scaling technique was developed as applied to spin system theory. β critical index for Polyakov loop and SU(2) deconfinement temperature of lattice gauge theory are calculated on the basis of finite-size scaling technique. The obtained value agrees with critical index of magnetization in Ising three-dimensional model
Universality and scaling in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Michael, C.; Teper, M.; Oxford Univ.
1988-01-01
We calculate the lowest glueball masses and the string tension for both Manton's action and for Symanzik's tree-level improved action. We do so on large lattices and for small lattice spacings using techniques recently employed in an extensive investigation of the Wilson plaquette action. Comparing all these results we find that the ratios of the lightest masses are universal to a high degree of accuracy. In particular, we confirm that on large volumes the tensor glueball is heavier than the scalar glueball: m[2 + ] ≅ 1.5 m[0 + ]. We repeat these calculations for larger lattice spacings and find that the string tension follows 2-loop perturbation theory more closely in the case of these alternative actions than in the case of the standard plaquette action. Our attempt to repeat the analysis with Wilson's block-spin improved action foundered on the strong breakdown of positivity apparent in the calculated correlation functions. In all the cases which we were able to study the observed violations of scaling are in the same direction. This suggests that the causes of the scaling violations observed with Wilson's plaquette action are 'semi-universal'. It also weakens the implication of the observed universality for the question of how close we are to the continuum limit. (orig.)
Analytical methods applied to the study of lattice gauge and spin theories
International Nuclear Information System (INIS)
Moreo, Adriana.
1985-01-01
A study of interactions between quarks and gluons is presented. Certain difficulties of the quantum chromodynamics to explain the behaviour of quarks has given origin to the technique of lattice gauge theories. First the phase diagrams of the discrete space-time theories are studied. The analysis of the phase diagrams is made by numerical and analytical methods. The following items were investigated and studied: a) A variational technique was proposed to obtain very accurated values for the ground and first excited state energy of the analyzed theory; b) A mean-field-like approximation for lattice spin models in the link formulation which is a generalization of the mean-plaquette technique was developed; c) A new method to study lattice gauge theories at finite temperature was proposed. For the first time, a non-abelian model was studied with analytical methods; d) An abelian lattice gauge theory with fermionic matter at the strong coupling limit was analyzed. Interesting results applicable to non-abelian gauge theories were obtained. (M.E.L.) [es
Monte Carlo simulation of Su(2) lattice gauge theory with internal quark loops
International Nuclear Information System (INIS)
Azcoiti, V.; Nakamura, A.
1982-01-01
Dynamical effects of quark loops in lattice gauge theory with icosahedral group are studied. The standard Wilson action is employed and the fermionic part by a discretize pseudo fermionic method is calculated. The masses of π, rho, ω are computed and the average value of an effective fermionic action is evaluated
Computation of hybrid static potentials in SU(3 lattice gauge theory
Directory of Open Access Journals (Sweden)
Reisinger Christian
2018-01-01
Full Text Available We compute hybrid static potentials in SU(3 lattice gauge theory. We present a method to automatically generate a large set of suitable creation operators with defined quantum numbers from elementary building blocks. We show preliminary results for several channels and discuss, which structures of the gluonic flux tube seem to be realized by the ground states in these channels.
The string tension and the scaling behavior of SU(2) gauge theory on a random lattice
International Nuclear Information System (INIS)
Qui Zhaoming; Ren Haichang; Academia Sinica, Beijing; Wang Xiaoqun; Yang Zhixing; Zhao Enping
1987-01-01
The SU(2) gauge theory on an 8 4 random lattice has been studied by the Monte Carlo method. The string tensions have been evaluated. They display the expected scaling behavior for β = 1.2-1.3. The scale parameter Λ RAN has been determined approximately. (orig.)
Phase structure of lattice gauge theories for non-abelian subgroups of SU(3)
International Nuclear Information System (INIS)
Grosse, H.; Kuehnelt, H.
1981-01-01
The authors study the phase structure of Euclidean lattice gauge theories in four dimensions for certain non-abelian subgroups of SU(3) by using Monte-Carlo simulations and strong coupling expansions. As the order of the group increases a splitting of one phase transition into two is observed. (Auth.)
Plaquette-plaquette correlations in the SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Berg, B.
1980-09-01
Monte Carlo measurements of plaquette-plaquette correlations in the 4-dimensional SU(2) lattice gauge theory are reported. For low temperatures the glue ball mass (= inverse correlation length) is estimated to be msub(g) = (3.7 +- 1.2) √K, where K is the string tension. (orig.)
Infrared exponents and the strong-coupling limit in lattice Landau gauge
International Nuclear Information System (INIS)
Sternbeck, Andre; Smekal, Lorenz von
2010-01-01
We study the gluon and ghost propagators of lattice Landau gauge in the strong-coupling limit β=0 in pure SU(2) lattice gauge theory to find evidence of the conformal infrared behavior of these propagators as predicted by a variety of functional continuum methods for asymptotically small momenta q 2 QCD 2 . In the strong-coupling limit, this same behavior is obtained for the larger values of a 2 q 2 (in units of the lattice spacing a), where it is otherwise swamped by the gauge-field dynamics. Deviations for a 2 q 2 <1 are well parameterized by a transverse gluon mass ∝1/a. Perhaps unexpectedly, these deviations are thus no finite-volume effect but persist in the infinite-volume limit. They furthermore depend on the definition of gauge fields on the lattice, while the asymptotic conformal behavior does not. We also comment on a misinterpretation of our results by Cucchieri and Mendes (Phys. Rev. D 81:016005, 2010). (orig.)
Correlation of the ghost and the quark in the lattice Landau gauge QCD
International Nuclear Information System (INIS)
Furui, Sadataka; Nakajima, Hideo
2007-01-01
Effects of the quark field on the ghost propagator of the lattice Landau gauge are investigated by using the unquenched SU(3) configurations produced by the MILC collaboration and compared with quenched gauge configurations of SU(2) first copy of the over relaxation gauge fixing, the parallel tempering (PT) gauge fixing and quenched SU(3) 56 4 configurations. We measure the color symmetric and the color antisymmetric ghost propagator and the Binder cumulant of the l 1 norm and the l 2 norm of color antisymmetric ghost propagators and investigate deviation from those of Gaussian distributions. In the first copy samples of quenched SU(2) we observe a large fluctuation in the Binder cumulant at the lowest momentum point. This fluctuation is reduced in the P T gauge fixed samples. The color anti-symmetric ghost propagator of quenched SU(3) configurations depends on the lattice size and is small as compared to the symmetric one in the large lattice of 56 4 . The Binder cumulant of the quenched SU(2) and the N f = 2 + 1 unquenched SU(3) are almost consistent with 3-d and 8-d Gaussian distribution, respectively. A comparison of the SU(3) unquenched configurations and quenched configurations indicates that the dynamical quarks have the effect of making color antisymmetric ghost propagator closer to the Gaussian distribution and the Kugo-Ojima color confinement parameter c closer to 1. (author)
International Nuclear Information System (INIS)
Yamaguchi, A.; Sugamoto, A.
2000-01-01
Applying Genetic Algorithm for the Lattice Gauge Theory is formed to be an effective method to minimize the action of gauge field on a lattice. In 4 dimensions, the critical point and the Wilson loop behaviour of SU(2) lattice gauge theory as well as the phase transition of U(1) theory have been studied. The proper coding methodi has been developed in order to avoid the increase of necessary memory and the overload of calculation for Genetic Algorithm. How hichhikers toward equilibrium appear against kidnappers is clarified
Numerical evidence of chiral magnetic effect in lattice gauge theory
International Nuclear Information System (INIS)
Buividovich, P. V.; Chernodub, M. N.; Luschevskaya, E. V.; Polikarpov, M. I.
2009-01-01
The chiral magnetic effect is the generation of electric current of quarks along an external magnetic field in the background of topologically nontrivial gluon fields. There is recent evidence that this effect is observed by the STAR Collaboration in heavy-ion collisions at the Relativistic Heavy Ion Collider. In our paper we study qualitative signatures of the chiral magnetic effect using quenched lattice simulations. We find indications that the electric current is indeed enhanced in the direction of the magnetic field both in equilibrium configurations of the quantum gluon fields and in a smooth gluon background with nonzero topological charge. In the confinement phase the magnetic field enhances the local fluctuations of both the electric charge and chiral charge densities. In the deconfinement phase the effects of the magnetic field become smaller, possibly due to thermal screening. Using a simple model of a fireball we obtain a good agreement between our data and experimental results of STAR Collaboration.
One-loop fermion contribution in an asymmetric lattice regularization of SU(N) gauge theories
International Nuclear Information System (INIS)
Trinchero, R.C.
1983-01-01
Using the background field method we calculate the one-loop fermion corrections in an asymmetric lattice version of SU(N) gauge theories with massless fermions. The introduction of different lattice spacings for spatial (a) and temporal (a 4 ) links requires the introduction of two different bare coupling constants, gsub(sigma) and gsub(tau). Our calculation provides the value of the derivatives of the couplings with respect to xi=a/a 4 at xi=1; these derivatives are of particular relevance for finite-temperature lattice calculations. With xi->infinite, the lattice hamiltonian version is obtained, and the ratio of scale parameters Λsub(H)/Λsub(E) is calculated. (orig.)
Area-preserving diffeomorphisms in gauge theory on a non-commutative plane. A lattice study
International Nuclear Information System (INIS)
Bietenholz, W.; Bigarini, A.; INFN, Sezione di Perugia; Humboldt-Universitaet, Berlin; Torrielli, A.
2007-06-01
We consider Yang-Mills theory with the U(1) gauge group on a non-commutative plane. Perturbatively it was observed that the invariance of this theory under area-preserving diffeomorphisms (APDs) breaks down to a rigid subgroup SL(2,R). Here we present explicit results for the APD symmetry breaking at finite gauge coupling and finite non-commutativity. They are based on lattice simulations and measurements of Wilson loops with the same area but with a variety of different shapes. Our results confirm the expected loss of invariance under APDs. Moreover, they strongly suggest that non-perturbatively the SL(2,R) symmetry does not persist either. (orig.)
Real-time dynamics of lattice gauge theories with a few-qubit quantum computer
Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer
2016-06-01
Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.
Observing long colour flux tubes in SU(2) lattice gauge theory
Bali, G S; Schlichter, C; Bali, G S; Schilling, K; Schlichter, C
1995-01-01
We present results of a high statistics study of the chromo field distribution between static quarks in SU(2) gauge theory on lattices of volumes 16^4, 32^4, and 48^3*64, with physical extent ranging from 1.3 fm up to 2.7 fm at beta=2.5, beta=2.635, and beta=2.74. We establish string formation over physical distances as large as 2 fm. The results are tested against Michael's sum rules. A detailed investigation of the transverse action and energy flux tube profiles is provided. As a by-product, we obtain the static lattice potential in unpreceded accuracy.
Digital Quantum Simulation of Z_{2} Lattice Gauge Theories with Dynamical Fermionic Matter.
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J Ignacio
2017-02-17
We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2+1) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z_{2} model in (2+1) dimensions.
Study of unique trajectories in SU(2) and SU(3) lattice Gauge theories
International Nuclear Information System (INIS)
Nerses, Hudaverdian
1985-01-01
As is well known, in the context of quantum field theories describing different types of interactions in the domain of particle physics, there are rampant ultraviolet infinite which are subtly taken care of by adequate renormalization procedures. The most conventional perturbative regularization schemes are based on the Feynman expansion, so successfully used in quantum electrodynamics. But the unique feature of confinement in strong interactions has forced physicists to search for a non-perturbative cut-off, and this has been provided by the introduction of discrete spacetime lattices over which the field theories have been formulated. the lattice represents a mathematical trick, a more scaffolding, an intermediate step, used to analyze a difficult non-linear system, of an infinite number of degree of freedom. Herein lies the main virtue of the lattice, which directly eliminates all wavelengths less than twice the lattice spacing.Consequently, regarding the lattice merely as an ultraviolet cut-off, physicists should remove this regulator and expect observable quantities to approach their physical values. However as the removal of the regulator is discussed, the question of renormalization emerges, and it is here that the Migdal-Kadanoff recursion relations, representing a simple approximate method for comparing theories with different lattice spacings bring in their virtue by providing a simple method for obtaining an approximate renormalization group function. It is hoped, and currently extensively investigated whether the Migdal renormalization group approach, combined with some other methods, can really provide useful information on the phase structures of lattice gauge theories
The ϱ-ππ coupling constant in lattice gauge theory
Gottlieb, Steven; MacKenzie, Paul B.; Thacker, H. B.; Weingarten, Don
1984-01-01
We present a method for studying hadronic transitions in lattice gauge theory which requires computer time comparable to that required by recent hadron spectrum calculations. This method is applied to a calculation of the decay ϱ-->ππ. On leave from the Department of Physics, Indiana University, Bloomington, IN 47405, USA. Address after September 1, 1983: IBM, T.J. Watson Research Center, Yorktown Heights, NY 10598, USA.
Can Lorentz-breaking fermionic condensates form in large N strongly-coupled Lattice Gauge Theories?
Tomboulis, E. T.
2010-01-01
The possibility of Lorentz symmetry breaking (LSB) has attracted considerable attention in recent years for a variety of reasons, including the attractive prospect of the graviton as a Goldstone boson. Though a number of effective field theory analyses of such phenomena have recently been given it remains an open question whether they can take place in an underlying UV complete theory. Here we consider the question of LSB in large N lattice gauge theories in the strong coupling limit. We appl...
International Nuclear Information System (INIS)
Luescher, M.; Weisz, P.
1984-02-01
When operators of dimension 6 are added to the standard Wilson action in lattice gauge theories, physical positivity is lost in general. We show that a transfer matrix can nevertheless be defined. Its properties are, however, unusual: complex eigenvalues may occur (leading to damped oscillatory behaviour of correlation functions), and there are always contributions in the spectral decomposition of two-point functions that come with a negative weight. (orig.)
About relation between mass absence and gap in the lattice gauge theories
International Nuclear Information System (INIS)
Barata, J.C.A.
1985-01-01
The absence of electric charge in a dipole state, with limited energy, in a U(1) lattice gauge theory with scalar matter field, in the 'screening-confinement' region of the phase diagram of the theory, in the limit in which we take one of the constituent particles to infinity, is studied. It contains an introductory part, an apendix on polymer expansions and a review of results on changed states in the Z 2 model (Author) [pt
Calculations in the weak and crossover regions of SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Greensite, J.; Hansson, T.H.; Hari Dass, N.D.; Lauwers, P.G.
1981-07-01
A calculational scheme for lattice gauge theory is proposed which interpolates between lowest order mean-field and full Monte-Carlo calculations. The method is to integrate over a restricted set of link variables in the functional integral, with the remainder fixed at their mean-field value. As an application the authors compute small SU(2) Wilson loops near and above the weak-to-strong coupling transition point. (Auth.)
Renormalization group aspects of 3-dimensional Pure U(1) lattice gauge theory
International Nuclear Information System (INIS)
Gopfert, M.; Mack, G.
1983-01-01
A few surprises in a recent study of the 3-dimensional pure U(1) lattice gauge theory model, from the point of view of the renormalization group theory, are discussed. Since the gauge group U(1) of this model is abelian, the model is subject to KramersWannier duality transformation. One obtains a ferromagnet with a global symmetry group Z. The duality transformation shows that the surface tension alpha of the model equals the strong tension of the U(1) gauge model. A theorem to represent the true asymptotic behaviour of alpha is derived. A second theorem considers the correlation functions. Discrepiancies between the theorems result in a solution that ''is regarded as a catastrophe'' in renormalization group theory. A lesson is drawn: To choose a good block spin in a renormalization group procedure, know what the low lying excitations of the theory are, to avoid integrating some of them by mischief
International Nuclear Information System (INIS)
Moriarty, K.J.M.; Blackshaw, J.E.
1983-01-01
The computer program calculates the average action per plaquette for SU(6)/Z 6 lattice gauge theory. By considering quantum field theory on a space-time lattice, the ultraviolet divergences of the theory are regulated through the finite lattice spacing. The continuum theory results can be obtained by a renormalization group procedure. Making use of the FPS Mathematics Library (MATHLIB), we are able to generate an efficient code for the Monte Carlo algorithm for lattice gauge theory calculations which compares favourably with the performance of the CDC 7600. (orig.)
Critical behavior of the compact 3D U(1) gauge theory on isotropic lattices
International Nuclear Information System (INIS)
Borisenko, O; Fiore, R; Papa, A; Gravina, M
2010-01-01
We report on the computation of the critical point of the deconfinement phase transition, critical indices and the string tension in the compact three-dimensional U(1) lattice gauge theory at finite temperatures. The critical indices govern the behavior across the deconfinement phase transition in the pure gauge U(1) model and are generally expected to coincide with the critical indices of the two-dimensional XY model. We studied numerically the U(1) model for N t = 8 on lattices with spatial extension ranging from L = 32 to 256. Our determination of the infinite volume critical point on the lattice with N t = 8 differs substantially from the pseudo-critical coupling at L = 32, found earlier in the literature and implicitly assumed as the onset value of the deconfined phase. The critical index ν computed from the scaling of the pseudo-critical couplings with the extension of the spatial lattice agrees well with the XY value ν = 1/2. On the other hand, the index η shows large deviation from the expected universal value. The possible reasons for such behavior are discussed in detail
International Nuclear Information System (INIS)
Berube, D.; Kroeger, H.; Lafrance, R.; Marleau, L.
1991-01-01
We discuss properties of a noncompact formulation of gauge theories with fermions on a momentum (k) lattice. (a) This formulation is suitable to build in Fourier acceleration in a direct way. (b) The numerical effort to compute the action (by fast Fourier transform) goes essentially like logV with the lattice volume V. (c) For the Yang-Mills theory we find that the action conserves gauge symmetry and chiral symmetry in a weak sense: On a finite lattice the action is invariant under infinitesimal transformations with compact support. Under finite transformations these symmetries are approximately conserved and they are restored on an infinite lattice and in the continuum limit. Moreover, these symmetries also hold on a finite lattice under finite transformations, if the classical fields, instead of being c-number valued, take values from a finite Galois field. (d) There is no fermion doubling. (e) For the φ 4 model we investigate the transition towards the continuum limit in lattice perturbation theory up to second order. We compute the two- and four-point functions and find local and Lorentz-invariant results. (f) In QED we compute a one-loop vacuum polarization and find in the continuum limit the standard result. (g) As a numerical application, we compute the propagator left-angle φ(k)φ(k')right-angle in the φ 4 model, investigate Euclidean invariance, and extract m R as well as Z R . Moreover we compute left-angle F μν (k)F μν (k')right-angle in the SU(2) model
Energy Technology Data Exchange (ETDEWEB)
Sternbeck, A.
2006-07-18
Within the framework of lattice QCD we investigate different aspects of QCD in Landau gauge using Monte Carlo simulations. In particular, we focus on the low momentum behavior of gluon and ghost propagators. The gauge group is SU(3). Different systematic effects on the gluon and ghost propagators are studied. We demonstrate the ghost dressing function to systematically depend on the choice of Gribov copies at low momentum, while the influence on the gluon dressing function is not resolvable. Also the eigenvalue distribution of the Faddeev-Popov operator is sensitive to Gribov copies. We show that the influence of dynamical Wilson fermions on the ghost propagator is negligible at the momenta available to us. On the contrary, fermions affect the gluon propagator at large and intermediate momenta. In addition, we analyze data for both propagators obtained on asymmetric lattices and compare these results with data obtained on symmetric lattices. We compare our data with results from studies of Dyson-Schwinger equations for the gluon and ghost propagators. We demonstrate that the infrared behavior of both propagators, as found in this thesis, is consistent with different criteria for confinement. However, the running coupling constant, given as a renormalization-group-invariant combination of the gluon and ghost dressing functions, does not expose a finite infrared fixed point. Rather the data are in favor of an infrared vanishing coupling constant. We also report on a first nonperturbative computation of the SU(3) ghost-gluon-vertex renormalization constant. We present results of an investigation of the spectral properties of the Faddeev-Popov operator. For this we have calculated the low-lying eigenvalues and eigenmodes of the Faddeev-Popov operator. (orig.)
International Nuclear Information System (INIS)
Sternbeck, A.
2006-01-01
Within the framework of lattice QCD we investigate different aspects of QCD in Landau gauge using Monte Carlo simulations. In particular, we focus on the low momentum behavior of gluon and ghost propagators. The gauge group is SU(3). Different systematic effects on the gluon and ghost propagators are studied. We demonstrate the ghost dressing function to systematically depend on the choice of Gribov copies at low momentum, while the influence on the gluon dressing function is not resolvable. Also the eigenvalue distribution of the Faddeev-Popov operator is sensitive to Gribov copies. We show that the influence of dynamical Wilson fermions on the ghost propagator is negligible at the momenta available to us. On the contrary, fermions affect the gluon propagator at large and intermediate momenta. In addition, we analyze data for both propagators obtained on asymmetric lattices and compare these results with data obtained on symmetric lattices. We compare our data with results from studies of Dyson-Schwinger equations for the gluon and ghost propagators. We demonstrate that the infrared behavior of both propagators, as found in this thesis, is consistent with different criteria for confinement. However, the running coupling constant, given as a renormalization-group-invariant combination of the gluon and ghost dressing functions, does not expose a finite infrared fixed point. Rather the data are in favor of an infrared vanishing coupling constant. We also report on a first nonperturbative computation of the SU(3) ghost-gluon-vertex renormalization constant. We present results of an investigation of the spectral properties of the Faddeev-Popov operator. For this we have calculated the low-lying eigenvalues and eigenmodes of the Faddeev-Popov operator. (orig.)
Cutoff effects on energy-momentum tensor correlators in lattice gauge theory
International Nuclear Information System (INIS)
Meyer, Harvey B.
2009-01-01
We investigate the discretization errors affecting correlators of the energy-momentum tensor T μν at finite temperature in SU(N c ) gauge theory with the Wilson action and two different discretizations of T μν . We do so by using lattice perturbation theory and non-perturbative Monte-Carlo simulations. These correlators, which are functions of Euclidean time x 0 and spatial momentum p, are the starting point for a lattice study of the transport properties of the gluon plasma. We find that the correlator of the energy ∫d 3 x T 00 has much larger discretization errors than the correlator of momentum ∫d 3 x T 0k . Secondly, the shear and diagonal stress correlators (T 12 and T kk ) require N τ ≥ 8 for the Tx 0 = 1/2 point to be in the scaling region and the cutoff effect to be less than 10%. We then show that their discretization errors on an anisotropic lattice with a σ /a τ = 2 are comparable to those on the isotropic lattice with the same temporal lattice spacing. Finally, we also study finite p correlators.
Real-Time Dynamics in U(1 Lattice Gauge Theories with Tensor Networks
Directory of Open Access Journals (Sweden)
T. Pichler
2016-03-01
Full Text Available Tensor network algorithms provide a suitable route for tackling real-time-dependent problems in lattice gauge theories, enabling the investigation of out-of-equilibrium dynamics. We analyze a U(1 lattice gauge theory in (1+1 dimensions in the presence of dynamical matter for different mass and electric-field couplings, a theory akin to quantum electrodynamics in one dimension, which displays string breaking: The confining string between charges can spontaneously break during quench experiments, giving rise to charge-anticharge pairs according to the Schwinger mechanism. We study the real-time spreading of excitations in the system by means of electric-field and particle fluctuations. We determine a dynamical state diagram for string breaking and quantitatively evaluate the time scales for mass production. We also show that the time evolution of the quantum correlations can be detected via bipartite von Neumann entropies, thus demonstrating that the Schwinger mechanism is tightly linked to entanglement spreading. To present a variety of possible applications of this simulation platform, we show how one could follow the real-time scattering processes between mesons and the creation of entanglement during scattering processes. Finally, we test the quality of quantum simulations of these dynamics, quantifying the role of possible imperfections in cold atoms, trapped ions, and superconducting circuit systems. Our results demonstrate how entanglement properties can be used to deepen our understanding of basic phenomena in the real-time dynamics of gauge theories such as string breaking and collisions.
International Nuclear Information System (INIS)
Di Renzo, F.; Onofri, E.; Marchesini, G.; Marenzoni, P.
1994-01-01
We describe a stochastic technique which allows one to compute numerically the coefficients of the weak-coupling perturbative expansion of any observable in Lattice Gauge Theory. The idea is to insert the exponential representation of the link variables U μ (x) →exp {A μ (x)/√(β)} into the Langevin algorithm and the observables and to perform the expansion in β -1/2 . The Langevin algorithm is converted into an infinite hierarchy of maps which can be exactly truncated at any order. We give the result for the simple plaquette of SU(3) up to fourth loop order (β -4 ) which extends by one loop the previously known series. ((orig.))
Linked cluster expansion in the SU(2) lattice Higgs model at strong gauge coupling
International Nuclear Information System (INIS)
Wagner, C.E.M.
1989-01-01
A linked cluster expansion is developed for the β=0 limit of the SU(2) Higgs model. This method, when combined with strong gauge coupling expansions, is used to obtain the phase transition surface and the behaviour of scalar and vector masses in the lattice regularized theory. The method, in spite of the low order of truncation of the series applied, gives a reasonable agreement with Monte Carlo data for the phase transition surface and a qualitatively good picture of the behaviour of Higgs, glueball and gauge vector boson masses, in the strong coupling limit. Some limitations of the method are discussed, and an intuitive picture of the different behaviour for small and large bare self-coupling λ is given. (orig.)
Phase structure of 3DZ(N) lattice gauge theories at finite temperature
International Nuclear Information System (INIS)
Borisenko, O.; Chelnokov, V.; Cortese, G.; Gravina, M.; Papa, A.; Surzhikov, I.
2013-01-01
We perform a numerical study of the phase transitions in three-dimensional Z(N) lattice gauge theories at finite temperature for N>4. Using the dual formulation of the models and a cluster algorithm we locate the position of the critical points and study the critical behavior across both phase transitions in details. In particular, we determine various critical indices, compute the average action and the specific heat. Our results are consistent with the two transitions being of infinite order. Furthermore, they belong to the universality class of two-dimensional Z(N) vector spin models
On Δβ and the search for asymptotic scaling in lattice gauge theory
International Nuclear Information System (INIS)
Petcher, D.
1986-01-01
An ansatz for the β-function of SU(3) lattice gauge theory in four dimensions whose parameters are determined by Monte Carlo data is used both to compare different sets of data for Δβ and to study systematic errors. The data for Δβ obtained from different values of the block spin renormalization group scaling factor are shown to be compatible within statistical errors. However the data is easily consistent with sizeable deviations (ca. 30% or more) from the two loop approximation to the renormalization group scaling formula for physical quantities in the region of coupling for which Δβ essentially takes on its asymptotic value. (orig.)
Bistate t-expansion study of U(1) lattice gauge theory in 2+1 dimensions
International Nuclear Information System (INIS)
Morningstar, C.J.
1992-01-01
The compact formulation of U(1) Hamiltonian lattice gauge theory in 2+1 dimensions is studied using the t expansion. The ground-state energy, average plaquette, specific heat, photon mass gap, and the ratio of the two lowest masses are investigated. Two contraction techniques are applied: a unistate scheme which uses only the strong-coupling vacuum for the trial state, and a bistate scheme which allows the introduction of variational parameters and arbitrarily large loops of electric flux in one of the trial states. The mass ratio obtained from the bistate contraction scheme exhibits precocious scaling. No evidence of a stable scalar glueball is found
Calculating the Jet Transport Coefficient q-hat in Lattice Gauge Theory
International Nuclear Information System (INIS)
Majumder, Abhijit
2013-01-01
The formalism of jet modification in the higher twist approach is modified to describe a hard parton propagating through a hot thermalized medium. The leading order contribution to the transverse momentum broadening of a high energy (near on-shell) quark in a thermal medium is calculated. This involves a factorization of the perturbative process of scattering of the quark from the non-perturbative transport coefficient. An operator product expansion of the non-perturbative operator product which represents q -hat is carried out and related via dispersion relations to the expectation of local operators. These local operators are then evaluated in quenched SU(2) lattice gauge theory
Scaling of the quark-antiquark potential and improved actions in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Montvay, I.; Gutbrod, F.
1983-11-01
The scaling behaviour of the quark-antiquark potential is investigated by a high statistics Monte Carlo calculation in SU(2) lattice gauge theory. Besides the standard one-plaquette action we also use Symanzik's tree-level improved action and Wilson's block-spin improved action. No significant differences between Symanzik's action and the standard action have been observed. For small β Wilson's action scales differently. The string tension value chi extracted from the data corresponds to Λsub(latt) = (0.018 +- 0.001) √chi for the one-plaquette action. (orig.)
Series expansions of the density of states in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Denbleyker, A.; Du, Daping; Liu, Yuzhi; Meurice, Y.; Velytsky, A.
2008-01-01
We calculate numerically the density of states n(S) for SU(2) lattice gauge theory on L 4 lattices [S is the Wilson's action and n(S) measures the relative number of ways S can be obtained]. Small volume dependences are resolved for small values of S. We compare ln(n(S)) with weak and strong coupling expansions. Intermediate order expansions show a good overlap for values of S corresponding to the crossover. We relate the convergence of these expansions to those of the average plaquette. We show that, when known logarithmic singularities are subtracted from ln(n(S)), expansions in Legendre polynomials appear to converge and could be suitable to determine the Fisher's zeros of the partition function.
Critical behavior of 3D Z(N) lattice gauge theories at zero temperature
Energy Technology Data Exchange (ETDEWEB)
Borisenko, O., E-mail: oleg@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 03680 Kiev (Ukraine); Chelnokov, V., E-mail: chelnokov@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 03680 Kiev (Ukraine); Cortese, G., E-mail: cortese@unizar.es [Instituto de Física Teórica UAM/CSIC, Cantoblanco, E-28049 Madrid (Spain); Departamento de Física Teórica, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Gravina, M., E-mail: gravina@cs.infn.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy); Papa, A., E-mail: papa@cs.infn.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy); Surzhikov, I., E-mail: i_van_go@inbox.ru [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 03680 Kiev (Ukraine)
2014-02-15
Three-dimensional Z(N) lattice gauge theories at zero temperature are studied for various values of N. Using a modified phenomenological renormalization group, we explore the critical behavior of the generalized Z(N) model for N=2,3,4,5,6,8. Numerical computations are used to simulate vector models for N=2,3,4,5,6,8,13,20 for lattices with linear extension up to L=96. We locate the critical points of phase transitions and establish their scaling with N. The values of the critical indices indicate that the models with N>4 belong to the universality class of the three-dimensional XY model. However, the exponent α derived from the heat capacity is consistent with the Ising universality class. We discuss a possible resolution of this puzzle.
Critical behavior of 3D Z(N) lattice gauge theories at zero temperature
International Nuclear Information System (INIS)
Borisenko, O.; Chelnokov, V.; Cortese, G.; Gravina, M.; Papa, A.; Surzhikov, I.
2014-01-01
Three-dimensional Z(N) lattice gauge theories at zero temperature are studied for various values of N. Using a modified phenomenological renormalization group, we explore the critical behavior of the generalized Z(N) model for N=2,3,4,5,6,8. Numerical computations are used to simulate vector models for N=2,3,4,5,6,8,13,20 for lattices with linear extension up to L=96. We locate the critical points of phase transitions and establish their scaling with N. The values of the critical indices indicate that the models with N>4 belong to the universality class of the three-dimensional XY model. However, the exponent α derived from the heat capacity is consistent with the Ising universality class. We discuss a possible resolution of this puzzle
Magnetic polarizabilities of light mesons in SU(3 lattice gauge theory
Directory of Open Access Journals (Sweden)
E.V. Luschevskaya
2015-09-01
Full Text Available We investigate the ground state energies of neutral pseudoscalar and vector meson in SU(3 lattice gauge theory in the strong abelian magnetic field. The energy of ρ0 meson with zero spin projection sz=0 on the axis of the external magnetic field decreases, while the energies with non-zero spins sz=−1 and +1 increase with the field. The energy of π0 meson decreases as a function of the magnetic field. We calculate the magnetic polarizabilities of pseudoscalar and vector mesons for lattice volume 184. For ρ0 with spin |sz|=1 and π0 meson the polarizabilities in the continuum limit have been evaluated. We do not observe any evidence in favour of tachyonic mode existence.
Gauge theories on the lattice at N/sub c/ = infinity
International Nuclear Information System (INIS)
Cristofano, G.A.
1982-01-01
The thesis is devoted to the study of the physical properties of the SU(N/sub c/) Yang Mills theory on the lattice at N/sub c/ = infinity. Since the lattice approach provides a natural framework toward a better understanding of nonperturbative phenomena, like quark confinement, nonperturbative physical quantities, like the string tension and the glueball mass are studied. The first two chapters are introductory in nature. In chapters (3,4) the strong coupling expansion for the Euclidean SU(N/sub c/) lattice gauge theory at N/sub c/ = infinity to 16th and 12th order in β = 1/g 0 2 N/sub c/ for the free energy F and the string tension k respectively is performed. Estimates of the ratio √k/Λ/sub L/ and of the crossover point from strong to weak coupling for the string tension are made by matching the strong coupling series to the asymptotically free continuum theory. In chapter (5) the strong coupling expansion for the glueball mass m/sub g/ to the 8th order in β for the Euclidean SU(infinity) lattice gauge theory is performed. The ratio of the glueball mass m/sub g/ to the squareroot of the string tension √k for the SU(infinity) theory is estimated to be m/sub g//√k = 2.6 +/- 0.2. It is found that the ratio m/sub g//√k has a rather small dependence on N/sub c/ and appears to increase with the number of colors N/sub c/. In chapter (6) two-point Pade approximants for the one plaquette expectation value E/sub p/ for the SU(2) lattice gauge theory by using the known strong and weak coupling series for D/sub p/ is performed. Comparison with the correspondent Monte Carlo results is made, especially in the delicate transition region, at intermediate β = 4/g 0 2
On the value and origin of the chiral condensate in quenched SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Hands, S.J.; Teper, M.; Oxford Univ.
1990-01-01
We present results of a numerical calculation of the chiral condensate in quenched SU(2) lattice gauge theory. The calculation proceeds by evaluating the spectral density distribution function for small eigenvalues on both the original lattice and after a factor-of-two blocking. It is performed on lattices as large as 20 4 and for couplings as small as β=4/g 2 =2.6. The fitted values of the condensate as a function of β show good evidence for scaling and universality when compared with string tension measurements at the same value. At the smallest lattice spacings considered, we find evidence that a separation of length scales between ultraviolet fluctuations and those responsible for chiral symmetry breaking has occurred. A more qualitative study yields a significant correlation between the small modes vertical stroken> responsible for the non-zero value of and topological activity as revealed by the expectation value 5 x1/n(>, and hence provides evidence for a topological origin of chiral symmetry breaking. Our interpretation is supported by a subsidiary calculation of the topological susceptibility of the vacuum. (orig.)
From lattice BF gauge theory to area-angle Regge calculus
International Nuclear Information System (INIS)
Bonzom, Valentin
2009-01-01
We consider Riemannian 4D BF lattice gauge theory, on a triangulation of spacetime. Introducing the simplicity constraints which turn BF theory into simplicial gravity, some geometric quantities of Regge calculus, areas, and 3D and 4D dihedral angles, are identified. The parallel transport conditions are taken care of to ensure a consistent gluing of simplices. We show that these gluing relations, together with the simplicity constraints, contain the constraints of area-angle Regge calculus in a simple way, via the group structure of the underlying BF gauge theory. This provides a precise road from constrained BF theory to area-angle Regge calculus. Doing so, a framework combining variables of lattice BF theory and Regge calculus is built. The action takes a form a la Regge and includes the contribution of the Immirzi parameter. In the absence of simplicity constraints, the standard spin foam model for BF theory is recovered. Insertions of local observables are investigated, leading to Casimir insertions for areas and reproducing for 3D angles known results obtained through angle operators on spin networks. The present formulation is argued to be suitable for deriving spin foam models from discrete path integrals and to unravel their geometric content.
On entanglement entropy in non-Abelian lattice gauge theory and 3D quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Delcamp, Clement [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Department of Physics & Astronomy and Guelph-Waterloo Physics Institute, University of Waterloo,200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Dittrich, Bianca; Riello, Aldo [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)
2016-11-18
Entanglement entropy is a valuable tool for characterizing the correlation structure of quantum field theories. When applied to gauge theories, subtleties arise which prevent the factorization of the Hilbert space underlying the notion of entanglement entropy. Borrowing techniques from extended topological field theories, we introduce a new definition of entanglement entropy for both Abelian and non-Abelian gauge theories. Being based on the notion of excitations, it provides a completely relational way of defining regions. Therefore, it naturally applies to background independent theories, e.g. gravity, by circumventing the difficulty of specifying the position of the entangling surface. We relate our construction to earlier proposals and argue that it brings these closer to each other. In particular, it yields the non-Abelian analogue of the ‘magnetic centre choice’, as obtained through an extended-Hilbert-space method, but applied to the recently introduced fusion basis for 3D lattice gauge theories. We point out that the different definitions of entanglement entropy can be related to a choice of (squeezed) vacuum state.
International Nuclear Information System (INIS)
Christensen, J.; Damgaard, P.H.
1991-01-01
The finite-temperature deconfinement phase transition of SU(2) lattice gauge theory in (2+1) dimensions is studied by Monte Carlo methods. Comparison is made with the expected form of correlation functions on both sides of the critical point. The critical behavior is compared with expectations based on universality arguments. Attempts are made to extract unbiased values of critical exponents on several lattices sizes. The behavior of Polyakov loops in higher representations of the gauge group is studied close to the phase transition. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Borisenko, O., E-mail: oleg@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 03680 Kiev (Ukraine); Chelnokov, V., E-mail: chelnokov@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 03680 Kiev (Ukraine); Gravina, M., E-mail: gravina@fis.unical.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy); Papa, A., E-mail: papa@fis.unical.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy)
2014-11-15
We study numerically three-dimensional Z(N) lattice gauge theories at finite temperature, for N=5,6,8,12,13 and 20 on lattices with temporal extension N{sub t}=2,4,8. For each model, we locate phase transition points and determine critical indices. We propose also the scaling of critical points with N. The data obtained enable us to verify the scaling near the continuum limit for the Z(N) models at finite temperatures.
International Nuclear Information System (INIS)
Borisenko, O.; Chelnokov, V.; Gravina, M.; Papa, A.
2014-01-01
We study numerically three-dimensional Z(N) lattice gauge theories at finite temperature, for N=5,6,8,12,13 and 20 on lattices with temporal extension N t =2,4,8. For each model, we locate phase transition points and determine critical indices. We propose also the scaling of critical points with N. The data obtained enable us to verify the scaling near the continuum limit for the Z(N) models at finite temperatures
Unexpected behavior of an order parameter for lattice gauge theories with matter fields
International Nuclear Information System (INIS)
Meyer, H.
1983-07-01
I consider a slightly modified definition of an order parameter that was recently suggested by DeTar and McLerran. It is supposed to test for confinement in lattice gauge theories when arbitrary matter fields are present, at finite physical temperature β -1 > 0. Its definition is quite directly related to confinement in the sense that no physical states with fractional baryon number can be observed. We test the parameter for different ranges of the coupling constants in the Z(2) Higgs model, whose phase structure is well known at zero temperature. It is found that the order parameter always shows the behavior characteristic of confinement, for all values of the coupling constants and arbitrary nonzero temperature. (orig.)
Study of higher order cumulant expansion of U(1) lattice gauge model at finite temperature
International Nuclear Information System (INIS)
Zheng Xite; Lei Chunhong; Li Yuliang; Chen Hong
1993-01-01
The order parameter, Polyakov line , of the U(1) gauge model on N σ 3 x N τ (N τ = 1) lattice by using the cumulant expansion is calculated to the 5-th order. The emphasis is put on the behaviour of the cumulant expansion in the intermediate coupling region. The necessity of higher order expansion is clarified from the connection between the cumulant expansion and the correlation length. The variational parameter in the n-th order calculation is determined by the requirement that corrections of the n-th order expansion to the zeroth order expansion finish. The agreement with the Monte Carlo simulation is obtained not only in the weak and strong coupling regions, but also in the intermediate coupling region except in the very vicinity of the phase transition point
Estimating q-hat in Quenched Lattice SU(2) Gauge Theory
International Nuclear Information System (INIS)
Majumder, Abhijit
2013-01-01
The propagation of a virtual quark in a thermal medium is considered. The non-perturbative jet transport coefficient q -hat is estimated in quark less SU(2) lattice gauge theory. The light like correlator which defines q -hat , defined in the regime where the jet has small virtuality compared to its energy, is analytically related to a series of local operators in the deep Euclidean region, where the jet's virtuality is of the same order as its energy. It is demonstrated that in this region, for temperatures in the range of T=400–600 MeV, and for jet energies above 20 GeV, the leading term in the series is dominant over the next-to-leading term and thus yields an estimate of the value of q -hat . In these proceedings we discuss the details of the numerical calculation
String tensions for lattice gauge theories in 2+1 dimensions
International Nuclear Information System (INIS)
Ambjoern, J.; Hey, A.J.G.; Otto, S.
1982-01-01
Compact U(1) and SU(2) lattice gauge theories in 3 euclidean dimensions are studied by standard Monte Carlo techniques. The question of extracting reliable string tensions from these theories is examined in detail, including a comparison of the Monte Carlo Wilson loop data with weak coupling predictions and a careful error analysis: our conclusions are rather different from those of previous investigations of these theories. In the case of U(1) theory, we find that only a tiny range of β values can possibly be relevant for extracting a string tension and we are unable to convincingly demonstrate the expected exponential dependence of the string tension on β. For the SU(2) theory we are able to determine, albeit with rather large errors, a string tension from a study of Wilson loops. (orig.)
On Δβ and the search for asymptotic scaling in lattice gauge theory
International Nuclear Information System (INIS)
Petcher, D.
1986-01-01
An ansatz for the β-function of SU(3) lattice gauge theory in four dimensions whose parameters are determined by Monte Carlo data is used both to compare different sets of data for Δβ and to study systematic errors. The data for Δβ obtained from different values of the block-spin renormalization group scaling factor are shown to be compatible within statistical errors. However the data is easily consistent with sizeable deviations (ca. 30% or more) from the two-loop approximation to the renormalization group scaling formula for physical quantities in the region of coupling for which Δβ essentially takes on its asymptotic value. (orig.)
Thermodynamic Lattice Study for Preconformal Dynamics in Strongly Flavored Gauge Theory
International Nuclear Information System (INIS)
Miura, Kohtaroh
2013-01-01
By using the lattice Monte-Carlo simulation, we investigate the finite temperature chiral phase transition in color SU(3) gauge theories with various species of fundamental fermions, and discuss the signals of the (pre-)conformality at large N f (number of flavors) via their comparisons. With increasing N f , we confirm stronger fermion screening which results from a larger fermion multiplicity. We investigate a finite T step-scaling which is attributed to the uniqueness of the critical temperature (T c ) at each N f , then the vanishing step-scaling signals the emergence of the conformality around N* f ∼ 10−12. Further, motivated by the recent functional renormalization group analyses, we examine the N f dependence of T c , whose vanishing behavior indicates that the conformal phase sets in around N* f ∼ 9 − 10.
Hamiltonian study of improved U(1) lattice gauge theory in three dimensions
International Nuclear Information System (INIS)
Loan, Mushtaq; Hamer, Chris
2004-01-01
A comprehensive analysis of the Symanzik improved anisotropic three-dimensional U(1) lattice gauge theory in the Hamiltonian limit is made. Monte Carlo techniques are used to obtain numerical results for the static potential, ratio of the renormalized and bare anisotropies, the string tension, lowest glueball masses and the mass ratio. Evidence that rotational symmetry is established more accurately for the Symanzik improved anisotropic action is presented. The discretization errors in the static potential and the renormalization of the bare anisotropy are found to be only a few percent compared to errors of about 20-25 % for the unimproved gauge action. Evidence of scaling in the string tension, antisymmetric mass gap and the mass ratio is observed in the weak coupling region and the behavior is tested against analytic and numerical results obtained in various other Hamiltonian studies of the theory. We find that more accurate determination of the scaling coefficients of the string tension and the antisymmetric mass gap has been achieved, and the agreement with various other Hamiltonian studies of the theory is excellent. The improved action is found to give faster convergence to the continuum limit. Very clear evidence is obtained that in the continuum limit the glueball ratio M S /M A approaches exactly 2, as expected in a theory of free, massive bosons
Reduction of a Z(3) gauge theory on the flat lattices to the spin-1 BEG model
International Nuclear Information System (INIS)
Ananikian, N.S.; Shcherbakov, R.R.
1995-01-01
The Z(3) gauge model with double plaquette representation of the action on the flat triangular and square lattices is constructed. It is reduced to the spin-1 Blume-Emery-Griffiths (BEG) model. An Ising-type critical line of a second-order phase transition is found. ((orig.))
Non-planar diagrams in the large N limit of U(N) and SU(N) lattice gauge theories
International Nuclear Information System (INIS)
Weingarten, D.
1980-01-01
It is shown that the limit as N → infinitely with g 2 N fixed of the strong coupling expansion for the vacuum expectation values of a U(N) or SU(N) lattice gauge theory is not given by a sum of planar diagrams. This contradicts a result claimed by De Wit and 't Hooft. (orig.)
International Nuclear Information System (INIS)
Makeenko, Yu.M.; Polikarpov, M.I.; Zhelonkin, A.V.
1983-01-01
The mixed SU(2) lattice gauge theory (LGT) is approximately represented as an effective SU(2) LGT with Wilson's action. This approach is applied to the nonperturbative calculation of the ratio of Λ-parameters in the mixed SU(2) LGT. It is shown that the formulas obtained fairly describe the Monte Carlo data so that universality holds in the mixed SU(2) LGT
Fortran code for SU(3) lattice gauge theory with and without MPI checkerboard parallelization
Berg, Bernd A.; Wu, Hao
2012-10-01
We document plain Fortran and Fortran MPI checkerboard code for Markov chain Monte Carlo simulations of pure SU(3) lattice gauge theory with the Wilson action in D dimensions. The Fortran code uses periodic boundary conditions and is suitable for pedagogical purposes and small scale simulations. For the Fortran MPI code two geometries are covered: the usual torus with periodic boundary conditions and the double-layered torus as defined in the paper. Parallel computing is performed on checkerboards of sublattices, which partition the full lattice in one, two, and so on, up to D directions (depending on the parameters set). For updating, the Cabibbo-Marinari heatbath algorithm is used. We present validations and test runs of the code. Performance is reported for a number of currently used Fortran compilers and, when applicable, MPI versions. For the parallelized code, performance is studied as a function of the number of processors. Program summary Program title: STMC2LSU3MPI Catalogue identifier: AEMJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 26666 No. of bytes in distributed program, including test data, etc.: 233126 Distribution format: tar.gz Programming language: Fortran 77 compatible with the use of Fortran 90/95 compilers, in part with MPI extensions. Computer: Any capable of compiling and executing Fortran 77 or Fortran 90/95, when needed with MPI extensions. Operating system: Red Hat Enterprise Linux Server 6.1 with OpenMPI + pgf77 11.8-0, Centos 5.3 with OpenMPI + gfortran 4.1.2, Cray XT4 with MPICH2 + pgf90 11.2-0. Has the code been vectorised or parallelized?: Yes, parallelized using MPI extensions. Number of processors used: 2 to 11664 RAM: 200 Mega bytes per process. Classification: 11
Program package for multicanonical simulations of U(1) lattice gauge theory-Second version
Bazavov, Alexei; Berg, Bernd A.
2013-03-01
A new version STMCMUCA_V1_1 of our program package is available. It eliminates compatibility problems of our Fortran 77 code, originally developed for the g77 compiler, with Fortran 90 and 95 compilers. New version program summaryProgram title: STMC_U1MUCA_v1_1 Catalogue identifier: AEET_v1_1 Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html Programming language: Fortran 77 compatible with Fortran 90 and 95 Computers: Any capable of compiling and executing Fortran code Operating systems: Any capable of compiling and executing Fortran code RAM: 10 MB and up depending on lattice size used No. of lines in distributed program, including test data, etc.: 15059 No. of bytes in distributed program, including test data, etc.: 215733 Keywords: Markov chain Monte Carlo, multicanonical, Wang-Landau recursion, Fortran, lattice gauge theory, U(1) gauge group, phase transitions of continuous systems Classification: 11.5 Catalogue identifier of previous version: AEET_v1_0 Journal Reference of previous version: Computer Physics Communications 180 (2009) 2339-2347 Does the new version supersede the previous version?: Yes Nature of problem: Efficient Markov chain Monte Carlo simulation of U(1) lattice gauge theory (or other continuous systems) close to its phase transition. Measurements and analysis of the action per plaquette, the specific heat, Polyakov loops and their structure factors. Solution method: Multicanonical simulations with an initial Wang-Landau recursion to determine suitable weight factors. Reweighting to physical values using logarithmic coding and calculating jackknife error bars. Reasons for the new version: The previous version was developed for the g77 compiler Fortran 77 version. Compiler errors were encountered with Fortran 90 and Fortran 95 compilers (specified below). Summary of revisions: epsilon=one/10**10 is replaced by epsilon/10.0D10 in the parameter statements of the subroutines u1_bmha.f, u1_mucabmha.f, u1wl
Effects of the quark field on the ghost propagator of lattice Landau gauge QCD
International Nuclear Information System (INIS)
Furui, Sadataka; Nakajima, Hideo
2006-01-01
Infrared features of the ghost propagator of color-diagonal and color antisymmetric ghost propagator of quenched SU(2) and quenched SU(3) are compared with those of unquenched Kogut-Susskind fermion SU(3) lattice Landau gauge. We compare (i) the fluctuation of the ghost propagator (ii) the ghost condensate parameter v of the local composite operator (LCO) approach, and (iii) the Binder cumulant of color antisymmetric ghost propagator between quenched and unquenched configurations. The color-diagonal SU(3) ghost dressing function of unquenched configurations has weaker singularity than the quenched configurations. In both cases fluctuations become large in q c configuration samples is ∼0.002-0.04 GeV 2 while that of the SU(2) parallel tempering samples is consistent with 0. The Binder cumulant defined as U(q)=1-(1/3)( 4 >/( 2 >) 2 ), where φ-vector(q) is the color antisymmetric ghost propagator measured by the sample average of gauge fixed configurations via parallel tempering method, becomes ∼4/9 in all the momentum region. The Binder cumulant of the color antisymmetric ghost propagator of quenched SU(2) can be explained by the 3D Gaussian distribution, but that of the unquenched MILC c deviates slightly from that of the eight-dimensional Gaussian distribution. The stronger singularity and large fluctuation in the quenched configuration could be the cause of the deviation of the Kugo-Ojima confinement parameter c from 1, and the presence of ordering in the ghost propagator of unquenched configurations makes it closer to 1
Energy Technology Data Exchange (ETDEWEB)
Gattringer, Christof, E-mail: christof.gattringer@uni-graz.at; Marchis, Carlotta, E-mail: carla.marchis@uni-graz.at
2017-03-15
We propose a new approach to strong coupling series and dual representations for non-abelian lattice gauge theories using the SU(2) case as an example. The Wilson gauge action is written as a sum over “abelian color cycles” (ACC) which correspond to loops in color space around plaquettes. The ACCs are complex numbers which can be commuted freely such that the strong coupling series and the dual representation can be obtained as in the abelian case. Using a suitable representation of the SU(2) gauge variables we integrate out all original gauge links and identify the constraints for the dual variables in the SU(2) case. We show that the construction can be generalized to the case of SU(2) gauge fields with staggered fermions. The result is a strong coupling series where all gauge integrals are known in closed form and we discuss its applicability for possible dual simulations. The abelian color cycle concept can be generalized to other non-abelian gauge groups such as SU(3).
International Nuclear Information System (INIS)
Heys, D.W.; Stump, D.R.
1987-01-01
Variational calculations are described that use multi-parameter trial wave functions for the U(1) lattice gauge theory in two space dimensions, and for the XY model. The trial functions are constructed as the exponential of a linear combination of states from the strong-coupling basis of the model, with the coefficients treated as variational parameters. The expectation of the hamiltonian is computed by the Monte Carlo method, using a reweighting technique to evaluate expectation values in finite patches of the parameter space. The trial function for the U(1) gauge theory involves six variational parameters, and its weak-coupling behaviour is in reasonable agreement with theoretical expectations. (orig.)
International Nuclear Information System (INIS)
Heys, D.W.; Stump, D.R.
1984-01-01
The variational principle is used to estimate the ground state of the Kogut-Susskind Hamiltonian of the SU(2) lattice gauge theory, with a trial wave function for which the magnetic fields on different plaquettes are uncorrelated. This trial function describes a disordered state. The energy expectation value is evaluated by a Monte Carlo method. The variational results are compared to similar results for a related Abelian gauge theory. Also, the expectation value of the Wilson loop operator is computed for the trial state, and the resulting estimate of the string tension is compared to the prediction of asymptotic freedom
Research in Lattice Gauge Theory and in the Phenomenology of Neutrinos and Dark Matter
Energy Technology Data Exchange (ETDEWEB)
Meurice, Yannick L [Univ. of Iowa, Iowa City, IA (United States); Reno, Mary Hall [Univ. of Iowa, Iowa City, IA (United States)
2016-06-23
Research in theoretical elementary particle physics was performed by the PI Yannick Meurice and co-PI Mary Hall Reno. New techniques designed for precision calculations of strong interaction physics were developed using the tensor renormalization group method. Large-scale Monte Carlo simulations with dynamical quarks were performed for candidate models for Higgs compositeness. Ab-initio lattice gauge theory calculations of semileptonic decays of B-mesons observed in collider experiments and relevant to test the validity of the standard model were performed with the Fermilab/MILC collaboration. The phenomenology of strong interaction physics was applied to new predictions for physics processes in accelerator physics experiments and to cosmic ray production and interactions. A research focus has been on heavy quark production and their decays to neutrinos. The heavy quark contributions to atmospheric neutrino and muon fluxes have been evaluated, as have the neutrino fluxes from accelerator beams incident on heavy targets. Results are applicable to current and future particle physics experiments and to astrophysical neutrino detectors such as the IceCube Neutrino Observatory.
Research in Lattice Gauge Theory and in the Phenomenology of Neutrinos and Dark Matter
International Nuclear Information System (INIS)
Meurice, Yannick L; Reno, Mary Hall
2016-01-01
Research in theoretical elementary particle physics was performed by the PI Yannick Meurice and co-PI Mary Hall Reno. New techniques designed for precision calculations of strong interaction physics were developed using the tensor renormalization group method. Large-scale Monte Carlo simulations with dynamical quarks were performed for candidate models for Higgs compositeness. Ab-initio lattice gauge theory calculations of semileptonic decays of B-mesons observed in collider experiments and relevant to test the validity of the standard model were performed with the Fermilab/MILC collaboration. The phenomenology of strong interaction physics was applied to new predictions for physics processes in accelerator physics experiments and to cosmic ray production and interactions. A research focus has been on heavy quark production and their decays to neutrinos. The heavy quark contributions to atmospheric neutrino and muon fluxes have been evaluated, as have the neutrino fluxes from accelerator beams incident on heavy targets. Results are applicable to current and future particle physics experiments and to astrophysical neutrino detectors such as the IceCube Neutrino Observatory.
Directory of Open Access Journals (Sweden)
Mari Carmen Bañuls
2017-11-01
Full Text Available We propose an explicit formulation of the physical subspace for a (1+1-dimensional SU(2 lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.
Energy Technology Data Exchange (ETDEWEB)
Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2017-07-20
We propose an explicit formulation of the physical subspace for a 1+1 dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.
International Nuclear Information System (INIS)
Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan; Cichy, Krzysztof; Adam Mickiewicz Univ., Poznan; Jansen, Karl
2017-01-01
We propose an explicit formulation of the physical subspace for a 1+1 dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.
Bañuls, Mari Carmen; Cichy, Krzysztof; Cirac, J. Ignacio; Jansen, Karl; Kühn, Stefan
2017-10-01
We propose an explicit formulation of the physical subspace for a (1 +1 )-dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.
Magnetic monopoles and the dual London equation in SU(3) lattice gauge theory
International Nuclear Information System (INIS)
Skala, P.; Faber, M.; Zach, M.
1996-01-01
The dual superconductor model of confinement in non-Abelian gauge theories is studied in a gauge invariant formulation. We propose a method for the determination of magnetic monopole currents in non-Abelian gauge theories which does not need a projection to Abelian degrees of freedom. With this definition we are able to determine the distribution of magnetic currents and electric fields for the gluonic flux tube between a pair of static charges. Further we check the validity of the dual London equation in a gauge invariant formulation. (orig.)
International Nuclear Information System (INIS)
Hasenfratz, P.
1983-01-01
The author presents a general introduction to lattice gauge theories and discusses non-perturbative methods in the gauge sector. He then shows how the lattice works in obtaining the string tension in SU(2). Lattice QCD at finite physical temperature is discussed. Universality tests in SU(2) lattice QCD are presented. SU(3) pure gauge theory is briefly dealt with. Finally, fermions on the lattice are considered. (Auth.)
Probabilistic aspects of lattice gauge theories: confinement problem and correlation inequalities
International Nuclear Information System (INIS)
Ruiz, J.
1982-03-01
Definition, formalism and important results are presented. A probabilistic method is developed which enables permanent confinement to be demonstrated in dimension 3 of space time for the gauge models defined on group U(1) or a group such that its centre contains O(1). Correlation inequalities are given for the Ising gauge model defined on the discrete group Z 2 [fr
Spectral sum for the color-Coulomb potential in SU(3) Coulomb gauge lattice Yang-Mills theory
International Nuclear Information System (INIS)
Nakagawa, Y.; Nakamura, A.; Saito, T.; Toki, H.
2010-01-01
We discuss the essential role of the low-lying eigenmodes of the Faddeev-Popov (FP) ghost operator on the confining color-Coulomb potential using SU(3) quenched lattice simulations in the Coulomb gauge. The color-Coulomb potential is expressed as a spectral sum of the FP ghost operator and has been explored by partially summing the FP eigenmodes. We take into account the Gribov copy effects that have a great impact on the FP eigenvalues and the color-Coulomb potential. We observe that the lowest eigenvalue vanishes in the thermodynamic limit much faster than that in the Landau gauge. The color-Coulomb potential at large distances is governed by the near-zero FP eigenmodes; in particular, the lowest one accounts for a substantial portion of the color-Coulomb string tension comparable to the Wilson string tension.
International Nuclear Information System (INIS)
Muenster, G.
1980-05-01
We derive high temperature cluster expansions for the free energy of vortices in SU(2) and Z 2 lattice gauge theories in 3 and 4 dimensions. The expected behaviour of the vortex free energy is verified. It obeys an area law behaviour. The coefficient of the area is shown to be equal to the string tension between static quarks. We calculate its expansion up to 12th order. For SU(2) in 4 dimensions the result is compared with Monte Carlo calculations of Creutz and is in good agreement at strong and intermediate coupling. (orig.)
On a phase transition of a Kosterlitz-thouless-type in the d=4, U(1)-lattice gauge theory
International Nuclear Information System (INIS)
Marchetti, D.H.U.; Perez, J.F.
1986-12-01
The d=4, U(1)-lattice gauge theory with the Villain action may be represented as a locally neutral gas of topological (plaquette) charges which interact via a logarithmically confining potential, is shown. Using this representation a renormalization group analysis to show the existence of a phase transition of the Kosterlitz-Thouless-type was performed. An improved hierarchical version of the model which displays (unlike the usual Migdal-Kadanoff approach) a stable line of gaussian fixed points at low temperatures, which should correspond to the usual deconfining region of these systems is presented. (Author) [pt
International Nuclear Information System (INIS)
Haymaker, Richard W.; Matsuki, Takayuki
2007-01-01
We address the problem of determining the type I, type II or borderline dual superconductor behavior in maximal Abelian gauge SU(2) through the study of the dual Abrikosov vortex. We find that significant electric currents in the simulation data call into question the use of the dual Ginzburg-Landau Higgs model in interpreting the data. Further, two definitions of the penetration depth parameter take two different values. The splitting of this parameter into two is intricately connected to the existence of electric currents. It is important in our approach that we employ definitions of flux and electric and magnetic currents that respect Maxwell equations exactly for lattice averages independent of lattice spacings. Applied to specific Wilson loop sizes, our conclusions differ from those that use the dual GLH model
On the effect of the lattice asymmetry parameter on the phase structure of SU(N) pure gauge theories
International Nuclear Information System (INIS)
Averchenkova, L.A.; Petrov, K.V.; Petrov, V.K.; Zinovjev, G.M.
1998-01-01
The role of the lattice asymmetry parameter ξ in the phase structure description of the SU(2) and SU(3) gluodynamics at finite temperature has been studied analytically in the SU(N)∼Z(N) approach. The properties of thermodynamic quantities have been investigated near the physical border. The effective action which includes the first non-trivial order from the space-like part allows estimates to be made of the phase structure not only close to the physical border but in the whole area of couplings. We find that thermodynamic quantities depend on ξ and this dependence may be strong enough, up to discontinuity over this parameter for some of them. The Hamiltonian formulation of the SU(2) gauge theory on the asymmetric lattice is presented. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Borisenko, O.; Chelnokov, V. [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine,UA-03680 Kiev (Ukraine); Gravina, M.; Papa, A. [Dipartimento di Fisica, Università della Calabria, and INFN - Gruppo collegato di Cosenza,I-87036 Arcavacata di Rende, Cosenza (Italy)
2015-09-10
We study analytically and numerically the three-dimensional U(1) lattice gauge theory at finite temperature in the dual formulation. For an appropriate disorder operator, we obtain the renormalization group equations describing the critical behavior of the model in the vicinity of the deconfinement phase transition. These equations are used to check the validity of the Svetitsky-Yaffe conjecture regarding the critical behavior of the lattice U(1) model. Furthermore, we perform numerical simulations of the model for N{sub t}=1,2,4,8 and compute, by a cluster algorithm, the dual correlation functions and the corresponding second moment correlation length. In this way we locate the position of the critical point and calculate critical indices.
International Nuclear Information System (INIS)
Bartels, J.; Wu, T.T.
1988-01-01
This paper contains the first part of a systematic semiclassical analysis of the weak-coupling limit of lattice gauge theories, using the Hamiltonian formulation. The model consists of an N 3 cubic lattice of pure SU(2) Yang-Mills theory, and in this first part we limit ourselves to the subspace of constant field configurations. We investigate the flow of classical trajectories, with a particular emphasis on the existence and location of caustics. There the ground-state wave function is expected to peak. It is found that regions densely filled with caustics are very close to the origin, i.e., in the domain of weak field configurations. This strongly supports the expectation that caustics are essential for quantities of physical interest
Renormalisation group behaviour of O+ and 2+ glueball masses in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Ishikawa, K.; Schierholz, G.
1982-07-01
We calculate the 0 + and 2 + glueball masses at several values of the coupling and verify compatibility with the desired renormalisation group behaviour. The calculation uses momentum smeared glueball wave functions on a large 8 4 lattice and confirms our previous results obtained on smaller lattices. (orig.)
Width and string tension of the flux tube in SU(2) lattice gauge theory at high temperature
Chagdaa, S.; Galsandorj, E.; Laermann, E.; Purev, B.
2018-02-01
We study the profiles of the flux tube between a static quark and an antiquark in quenched SU(2) lattice gauge theory at temperatures around the deconfinement phase transition. The physical width of the flux tube and the string tension have been determined from the transverse profiles and the q\\bar{q} potential, respectively. Exploiting the computational power of a GPU accelerator in our flux tube investigation, we achieve much higher statistics through which we can increase the signal to noise ratio of our observables in the simulation. This has allowed the investigation of larger lattices as well as larger separations between the quarks than in our previous work. The improved accuracy gives us better results for the width and the string tension. The physical width of the flux tube increases with the temperature up to around T c while keeping its increasing dependence on the q\\bar{q} separation. The string tension results are compared for two different sizes of the lattice. As the lattice becomes larger and finer together with the improved precision, the temperature dependent string tension tends to have a smaller value than the previous one.
Bennett, Ed; Ki Hong, Deog; Lee, Jong-Wan; David Lin, C.-J.; Lucini, Biagio; Piai, Maurizio; Vadacchino, Davide
2018-03-01
As a first step towards a quantitative understanding of the SU(4)/Sp(4) composite Higgs model through lattice calculations, we discuss the low energy effective field theory resulting from the SU(4) → Sp(4) global symmetry breaking pattern. We then consider an Sp(4) gauge theory with two Dirac fermion flavours in the fundamental representation on a lattice, which provides a concrete example of the microscopic realisation of the SU(4)/Sp(4) composite Higgs model. For this system, we outline a programme of numerical simulations aiming at the determination of the low-energy constants of the effective field theory and we test the method on the quenched theory. We also report early results from dynamical simulations, focussing on the phase structure of the lattice theory and a calculation of the lowest-lying meson spectrum at coarse lattice spacing. Combined contributions of B. Lucini (e-mail: b.lucini@swansea.ac.uk) and J.-W. Lee (e-mail: wlee823@pusan.ac.kr).
Colour magnetic currents and the dual London equation in SU(3) lattice gauge theory
International Nuclear Information System (INIS)
Skala, P.; Faber, M.; Zach, M.
1997-01-01
We propose a method for the determination of magnetic currents in non-Abelian gauge theories which does not need a projection to Abelian degrees of freedom. With this definition we are able to determine the distribution of magnetic currents and electric fields for the gluonic flux tube between a pair of static charges. Further we check the validity of the Gauss law and the dual London equation in a gauge-invariant formulation. (orig.)
Magnetic Monopoles and the Dual London Equation in SU(3) Lattice Gauge Theory
Skala, Peter; Faber, Manfried; Zach, Martin
1996-01-01
We propose a method for the determination of magnetic monopole currents in non-Abelian gauge theories which does not need a projection to Abelian degrees of freedom. With this definition we are able to determine the distribution of magnetic currents and electric fields for the gluonic flux tube between a pair of static charges. Further we check the validity of the Gauss law and the dual London equation in a gauge invariant formulation.
Sizes of the lightest glueballs in SU(3) lattice gauge theory
International Nuclear Information System (INIS)
Loan Mushtaq; Ying Yi
2006-01-01
Standard Monte Carlo simulations have been performed on improved lattices to determine the wave functions and the sizes of the scalar and tensor glueballs at four lattice spacings in the range a =0.05 - 0.145 fm. Systematic errors introduced by the discretization and the finite volume are studied. Our results in the continuum limit show that the tensor glueball is approximately two times as large as the scalar glueball. (author)
Consistency of lattice definitions of U(1) flux in Abelian projected SU(2) gauge theory
International Nuclear Information System (INIS)
Matsuki, Takayuki; Haymaker, Richard W.
2004-01-01
We reexamine the dual Abrikosov vortex under the requirement that the lattice averages of the fields satisfy exact Maxwell equations [ME]. The electric ME accounts for the total flux and the magnetic ME determines the shape of the confining string. This leads to unique and consistent definitions of flux and electric and magnetic currents at finite lattice spacing. The resulting modification of the standard DeGrand-Toussaint construction gives a magnetic current comprised of smeared monopoles
On the phase structure of lattice SU(2) Gauge-Higgs theory
International Nuclear Information System (INIS)
Gerdt, V.P.; Mitryushkin, V.K.; Zadorozhnyj, A.M.; Ilchev, A.S.
1985-01-01
The results on the phase structure of SU(2) gauge theory coupled with radially active Higgs fields are iscussed. It is shown that obtained results are not in contradiction with the known ones. The first order phase transitions observed are confirmed by the Monte Carlo calcUlations and by the analysis of an approximate effective potential
Phase-structure of SU(3) lattice gauge-higgs model
International Nuclear Information System (INIS)
Gerdt, V.P.; Mitrjushkin, V.K.; Zadorozhny, A.M.
1985-01-01
Phase structure is investigated of SU(3) symmetric gauge-Higgs theory with a defrost radial mode. The Higgs fields are considered in the fundamental representation of SU(3) group. It is shown that the phase structures of SU(3) and SU(2) symmetric coincide qualitatively
An improved geometric algorithm for calculating the topology of lattice gauge fields
International Nuclear Information System (INIS)
Pugh, D.J.R.; Teper, M.; Oxford Univ.
1989-01-01
We implement the algorithm of Phillips and Stone on a hypercubic, periodic lattice and show that at currently accessible couplings the SU(2) topological charge so calculated is dominated by short-distance fluctuations. We propose and test an improvement to rid the measure of such lattice artifacts. We find that the improved algorithm produces a topological susceptibility that is consistent with that obtained by the alternative cooling method, thus resolving the controversial discrepancy between geometric and cooling methods. We briefly discuss the reasons for this and point out that our improvement is likely to be particularly effective when applied to the case of SU(3). (orig.)
T-expansion and its application to SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Karliner, M.
1984-01-01
A scheme allowing systematic improvement of variational calculations has been developed at SLAC. This paper contains an outline of the method, as well as some preliminary results of its application to two dimensional spin systems and four dimensional SU(2) lattice guage theory
On confinement potentials in gauge theory: the Z2 case on a lattice
International Nuclear Information System (INIS)
Messager, A.; Ruiz, J.
1981-02-01
We show that a sufficient decrease of the Wilson loop implies automatically an area decrease; i.e. the energy to separate quarks at distance L is either at most Log L or L in the Z 2 case. We believe that it is a general fact on a lattice
Anatomy of isolated monopole in Abelian projection od SU(2) lattice gauge theory
Belavin, V A; Veselov, A I
2001-01-01
The structure of the isolated static monopolies in the maximum Abelian projection of the SU(2) gluodynamics on the lattice studied. The standard parametrization of the coupling matrix was used by determining the maximum Abelian projection of the R functional maximization relative to all scale transformations. The monopole radius R approx = 0.06 fm is evaluated
Roy, Sthitadhi; Kolodrubetz, Michael; Goldman, Nathan; Grushin, Adolfo G.
2018-04-01
In this work, we describe a toolbox to realize and probe synthetic axial gauge fields in engineered Weyl semimetals. These synthetic electromagnetic fields, which are sensitive to the chirality associated with Weyl nodes, emerge due to spatially and temporally dependent shifts of the corresponding Weyl momenta. First, we introduce two realistic models, inspired by recent cold-atom developments, which are particularly suitable for the exploration of these synthetic axial gauge fields. Second, we describe how to realize and measure the effects of such axial fields through center-of-mass observables, based on semiclassical equations of motion and exact numerical simulations. In particular, we suggest realistic protocols to reveal an axial Hall response due to the axial electric field \
Symmetry restoration at high-temperature in two-color and two-flavor lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Lee, Jong-Wan [Department of Physics, College of Science, Swansea University,Singleton Park, SA2 8PP, Swansea, Wales (United Kingdom); Department of Physics, Pusan National University,Busan 46241 (Korea, Republic of); Extreme Physics Institute, Pusan National University,Busan 46241 (Korea, Republic of); Lucini, Biagio; Piai, Maurizio [Department of Physics, College of Science, Swansea University,Singleton Park, SA2 8PP, Swansea, Wales (United Kingdom)
2017-04-07
We consider the SU(2) gauge theory with N{sub f}=2 flavors of Dirac fundamental fermions. We study the high-temperature behavior of the spectra of mesons, discretizing the theory on anisotropic lattices, and measuring the two-point correlation functions in the temporal direction as well as screening masses in various channels. We identify the (pseudo-)critical temperature as the temperature at which the susceptibility associated with the Polyakov loop has a maximum. At high temperature both the spin-1 and spin-0 sectors of the light meson spectra exhibit enhanced symmetry properties, indicating the restoration of both the global SU(4) and the axial U(1){sub A} symmetries of the model.
Group integration for lattice gauge theory at large and at small coupling
International Nuclear Information System (INIS)
Brower, R.C.; Nauenberg, M.
1981-01-01
We consider the fundamental SU(N) invariant integrals encountered in Wilson's lattice QCD with an eye to analytical results for N → infinite and approximations for small g 2 at fixed N. We develop a new semiclassical technique starting from the Schwinger-Dyson equations cast in differential form to give an exact solution to the single-link integral for N → infinite. The third-order phase transition discovered by Gross and Witten for two-dimensional QCD occurs here for any dimension. Alternatively we parametrize directly the integral over the Haar measure and obtain approximate results for SU(N) using stationary phase at small g 2 . Remarkably the single-loop correction gives the exact answer at N = infinite. We show that the naive lattice string of Weingarten is obtained from N → infinite QCD in the limit of dimensions d → infinite. We discuss applications of our techniques to the 1/N expansion. (orig.)
International Nuclear Information System (INIS)
Decker, K.; Hamburg Univ.
1985-12-01
An efficient description of all clusters contributing to the strong coupling expansion of the mass gap in three-dimensional pure Z 2 lattice gauge theory is presented. This description is correct to all orders in the strong coupling expansion and is chosen in such a way that it remains valid in four dimensions for gauge group Z 2 . Relying on this description an algorithm has been constructed which generates and processes all the contributing graphs to the exact strong coupling expansion of the mass gap in the three-dimensional model in a fully automatic fashion. A major component of this algorithm can also be used to generate exact strong coupling expansions for the free energy logZ. The algorithm is correct to any order; thus the order of these expansions is only limited by the available computing power. The presentation of the algorithm is such that it can serve as a guide-line for the construction of a generalized one which would also generate exact strong coupling expansions for the masses of low-lying excited states of four-dimensional pure Yang-Mills theories. (orig.)
Color Dielectric Models from the Lattice SU(N)c Gauge Theory
International Nuclear Information System (INIS)
Arodz, H.; Pirner, H.J.
1999-01-01
The idea of coarse-grained gluon field is discussed. We recall motivation for introducing such a field. Next, we outline the approach to small momenta limit of lattice coarse-grained gluon field presented in our paper hep-ph/9803392. This limit points to color dielectric type models with a number of scalar and tensor fields instead of single scalar dielectric field. (author)
Evaluation of physical constants and operators in the SU(2) and SU(3) lattice gauge theory
International Nuclear Information System (INIS)
Tsuchida, R.H.
1987-01-01
Wilson loops and Wilson lines in the fundamental and the adjoint representations of SU(2) on the lattice are measured using the icosahedral subgroup and a noise reduction technique. The string tension was evaluated by fitting the expectation value of loops of all sizes to a 6-parameter curve. From the Wilson lines in the adjoint representation of SU(2), two kinds of gluon potentials were measured: the gluon-gluon interaction potential and the gluon-image interaction potential. The effective mass of the gluon was evaluated on each of those potentials and compared. In SU(3), the contribution of s anti σ/sub μnu/F/sub μnu/d operator to the correction of effective weak four-quark operator in the measurement of ΔI = 1/2 amplitude of kaon decay is examined. The renormalization of the critical hopping parameter is calculated perturbatively and compared with the Monte Carlo results. The VEV of psi anti psi operator is measured on the lattice. In the hopping parameter renormalization calculation and the psi anti psi measurements, the effects of expanding of Feynman diagrams in power of a, the lattice spacing, are examined
Center-vortex dominance after dimensional reduction of SU(2) lattice gauge theory
Gattnar, J.; Langfeld, K.; Schafke, A.; Reinhardt, H.
2000-01-01
The high-temperature phase of SU(2) Yang-Mills theory is addressed by means of dimensional reduction with a special emphasis on the properties of center vortices. For this purpose, the vortex vacuum which arises from center projection is studied in pure 3-dimensional Yang-Mills theory as well as in the 3-dimensional adjoint Higgs model which describes the high temperature phase of the 4-dimensional SU(2) gauge theory. We find center-dominance within the numerical accuracy of 10%.
Topology and the eta' mass in SU(3) lattice gauge theory
International Nuclear Information System (INIS)
Hock, Jaap; Teper, M.; Waterhouse, J.
1986-06-01
The topological charge density of the (Monte Carlo generated) SU(3) vacuum is measured. The algorithm is designed to be robust against lattice artifacts. The resulting topological susceptibility is found to vary with g 2 like the string tension (within errors) which allows one to extract a value in physical units: Xsub(t) approx. = (190 +-10 MeV) 4 in good agreement with the Witten-Veneziano mass formula. The topological susceptibility is found to be strongly suppressed as the temperature is raised through the deconfining transition: the quantum Usub(A)(1) symmetry is effectively restored in the deconfined phase. (author)
Phase transitions and flux distributions of SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Peng, Yingcai.
1993-01-01
The strong interactions between quarks are believed to be described by Quantum Chromodynamics (QCD), which is a non-abelian SU(3) gauge theory. It is known that QCD undergoes a deconfining phase transition at very high temperatures, that is, at low temperatures QCD is in confined phase, at sufficient high temperatures it is in an unconfined phase. Also, quark confinement is believed to be due to string formation. In this dissertation the authors studied SU(2) gauge theory using numerical methods of LGT, which will provide some insights about the properties of QCD because SU(2) is similar to SU(3). They measured the flux distributions of a q bar q pair at various temperatures in different volumes. They find that in the limit of infinite volumes the flux distribution is different in the two phases. In the confined phase strong evidence is found for the string formation, however, in the unconfined phase there is no string formation. On the other hand, in the limit of zero temperature and finite volumes they find a clear signal for string formation in the large volume region, however, the string tension measured in intermediate volumes is due to finite volume effects, there is no intrinsic string formation. The color flux energies (action) of the q bar q pair are described by Michael sum rules. The original Michael sum rules deal with a static q bar q pair at zero temperature in infinite volumes. To check these sum rules with flux data at finite temperatures, they present a complete derivation for the sum rules, thus generalizing them to account for finite temperature effects. They find that the flux data are consistent with the prediction of generalized sum rules. The study elucidates the rich structures of QCD, and provides evidence for quark confinement and string formation. This supports the belief that QCD is a correct theory for strong interactions, and quark confinement can be explained by QCD
The free energy of spherical bubbles in lattice SU(3) gauge theory
Kajantie, Keijo; Rummukainen, K; Karkkainen, Leo
1992-01-01
We study the coefficients of the expansion $F(R) = 1/3 c_3 R^3 + 1/2 c_2 R^2 + c_1 R$ of the free energy of spherical bubbles at $T=T_c$ in pure glue QCD using lattice Monte Carlo techniques. The coefficient $c_3$ vanishes at $T=T_c$ and our results suggest that the sign and the order of magnitude of $c_1$ is in agreement with the value $c_1=\\pm 32\\pi T_c^2/9$ (- for hadronic bubbles in quark phase, + for quark bubbles in hadronic phase) computed by Mardor and Svetitsky from the MIT bag model. The parameter $c_2$ is small in agreement with earlier determinations.
Tricolore. A flexible color scale for ternary compositions
DEFF Research Database (Denmark)
2018-01-01
tricolore is an R library providing a flexible color scale for the visualization of three-part/ternary compositions. Its main functionality is to color-code any ternary composition as a mixture of three primary colours and to draw a suitable color-key. tricolore flexibly adapts to different...... visualisation challenges via - discrete and continuous color support - support for unbalanced compositional data via centering - support for data with very narrow range via scaling - hue, chroma and lightness options...
International Nuclear Information System (INIS)
Nielsen, H.B.; Brene, N.
1984-12-01
The fundamental laws of nature may be truely random, or they may be so complicated that a random description is adequate. With this philosophy we examine various ways in which a lattice gauge theory (at the Planck scale) can be generalized. Without here giving up a regular lattice structure (which we really ought to do) we consider two generalizations. Making the action (quenched) random has the effect that the gauge group tends to break down and some gauge bosons become massive, unless the gauge group has special properties: no noncentral corners in the geometry of conjugacy classes and furthermore a connected center. Making the concept of gauge transformation more general has a symmetry breaking effect for groups with outer automorphisms. A study of SU 5 -breaking in the context of the first breakdown mechanism (D. Bennett, E. Buturovic and H. B. Nielsen) is shortly reviewed. (orig.)
International Nuclear Information System (INIS)
Baig, M.; Colet, J.
1986-01-01
Using Monte Carlo simulations the SU(2)xU(1) lattice gauge theory has been analyzed, which is equivalent for the Wilson action to a U(2) theory, at space-time dimensionalities from d=3 to 5. It has been shown that there exist first-order phase transitions for both d=4 and d=5. A monopole-condensation mechanism seems to be responsible for these phase transitions. At d=3 no phase transitions have been detected. (orig.)
Indian Academy of Sciences (India)
other problem, viz. they generate large forces in the molecular dynamics evolution ... derivative of the inverse of the Dirac operator, a small eigenvalue can ... There are two options to handle this situation: either one has to very carefully handle the ... the near future we hope to be able to run our entire simulation on the GPUs.
International Nuclear Information System (INIS)
Katz, G.R.
1986-01-01
Part I of this thesis is a perturbative QCD calculation to two loops of the meson nonsinglet evolution potential in the Feynman gauge. The evolution potential describes the momentum dependence of the distribution amplitude. This amplitude is needed for the calculation to beyond leading order of exclusive amplitudes and form factors. Techniques are presented that greatly simplify the calculation. The results agree with an independent light-cone gauge calculation and disagree with predictions made using conformal symmetry. In Part II the author presents a Fourier acceleration method that is effective in accelerating the computation of the fermion propagator in lattice QCD. The conventional computation suffers from critical slowing down: the long distance structure converges much slower than the short distance structure. by evaluating the fermion propagator in momentum space using fast Fourier transforms, it is possible to make different length scales converge at a more equal rate. From numerical experiments made on a 8 4 lattice, the author obtained savings of a factor of 3 to 4 by using Fourier acceleration. He also discusses the important of gauge fixing when using Fourier acceleration
Yamamoto, Takuya; Nishigaki, Shinsuke M.
2018-02-01
We compute individual distributions of low-lying eigenvalues of a chiral random matrix ensemble interpolating symplectic and unitary symmetry classes by the Nyström-type method of evaluating the Fredholm Pfaffian and resolvents of the quaternion kernel. The one-parameter family of these distributions is shown to fit excellently the Dirac spectra of SU(2) lattice gauge theory with a constant U(1) background or dynamically fluctuating U(1) gauge field, which weakly breaks the pseudoreality of the unperturbed SU(2) Dirac operator. The observed linear dependence of the crossover parameter with the strength of the U(1) perturbations leads to precise determination of the pseudo-scalar decay constant, as well as the chiral condensate in the effective chiral Lagrangian of the AI class.
EFEK PEMBERIAN PAKLOBUTRAZOL PADA ANGGREK Vanda tricolor SECARA IN VITRO
Directory of Open Access Journals (Sweden)
Ni Wayan Deswiniyanti
2018-03-01
Full Text Available Vanda tricolor Lindl. Var. Suavis forma Bali has a specific character than the forma Merapi and forma West Java that is size of flowers and fruits, spots purple in labellum purple colored labelum and floral fragrance. High genetic diversity is one of the major factors in breeding improvement. Increasing the diversity of orchid plant characteristics can be done by giving paclobutrazol. Treatment by paklobutrazol in culture medium aims to inhibit growth both in number of leaves and shoot length so that the plant becomes smaller size than their parent or original. The result of growth resistance that occurs varies based on the concentration of paclobutrazol added to medium Vacint & Went (VW in culture of seeds V. tricolor orchid added with coconut water with concentration of paklobutrazol Control K0 (0%, K1 (1mg / l, K2 (3mg / l, K3 (5mg / L, and K4 (7mg / l. Each treatment performed 5 times repetition. The result of planting of Vanda tricolor seed explants with paclobutrazol modification in vitro was found 40% cultured imbibition and then protocorm, 8% browning on seed, and 52% contamination. This study showed descriptively the orchid seed Vanda tricolor responded to Vacint and Went (VW media which was added with plant growth regulator of paklobutrazol, so that it was able to grow and develop until reaching phase 1 that seeds to form protocorm, but statistically the addition of plant growth regulator of paklobutrazol has not show a significant influence on the growth and growth response of orchids Vanda tricolor (P> 0.05 because the observation time is not sufficient for at least 6 months of observation and see the function of paklobutrazol is to slow the growth. Keywords :Vanda tricolor, paclobutrazol, in vitro, vacin went, protocorm
International Nuclear Information System (INIS)
Aoki, Y.; Csikor, F.; Fodor, Z.; Ukawa, A.
1999-01-01
We report results of a study of the end point of the electroweak phase transition of the SU(2) gauge-Higgs model defined on a four-dimensional isotropic lattice with N t = 2. Finite-size scaling study of Lee-Yang zeros yields λ c = 0.00116(16) for the end point. Combined with a zero-temperature measurement of Higgs and W boson masses, this leads to M H,c = 68.2 ± 6.6 GeV for the critical Higgs boson mass. An independent analysis of Binder cumulant gives a consistent value λ c = 0.00102(3) for the end point
International Nuclear Information System (INIS)
Goepfert, M.; Mack, G.
1981-07-01
We study the 3-dimensional pure U(1) lattice gauge theory with Villain action which is related to the 3-dimensional Z-ferro-magnet by an exact duality transformation (and also to a Coulomb system). We show that its string tension α is nonzero for all values of the coupling constant g 2 , and obeys and bound α >= const x msub(D)β -1 for small ag 2 , with β = 4π 2 /g 2 and m 2 sub(D) = (2β/a 3 )esup(-βupsiloncb(0)/2) (a = lattice spacing). A continuum limit a → 0, msub(D) fixed, exists and represents a scalar free field theory of mass msub(D). The string tension αmsub(D) -2 in physical units tends to infinite in this limit. Characteristic differences in the behavior of the model for large and small coupling constant ag 2 are found. Renormalization group aspects are discussed. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Brambilla, M.; Di Renzo, F. [Universita di Parma (Italy); INFN, Gruppo Collegato di Parma, Dipartimento di Fisica e Scienze della Terra, Parma (Italy); Hasegawa, M. [Universita di Parma (Italy); Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); INFN, Gruppo Collegato di Parma, Dipartimento di Fisica e Scienze della Terra, Parma (Italy)
2014-07-15
This is the third of a series of papers on three-loop computation of renormalization constants for Lattice QCD. Our main points of interest are results for the regularization defined by the Iwasaki gauge action and n{sub f} Wilson fermions. Our results for quark bilinears renormalized according to the RI'-MOM scheme can be compared to non-perturbative results. The latter are available for twisted mass QCD: being defined in the chiral limit, the renormalization constants must be the same. We also address more general problems. In particular, we discuss a few methodological issues connected to summing the perturbative series such as the effectiveness of boosted perturbation theory and the disentanglement of irrelevant and finite-volume contributions. Discussing these issues we consider not only the new results of this paper, but also those for the regularization defined by the tree-level Symanzik improved gauge action and n{sub f} Wilson fermions, which we presented in a recent paper of ours. We finally comment on the extent to which the techniques we put at work in the NSPT context can provide a fresher look into the lattice version of the RI'-MOM scheme. (orig.)
International Nuclear Information System (INIS)
Naik, S.
1990-01-01
We have developed a mean field theory technique to study the confinement-deconfinement phase transition and chiral symmetry restoring phase transition with dynamical fermions and with finite chemical potential and finite temperature. The approximation scheme concerns the saddle point scenario and large space dimension. The static quark-antiquark potentials are identified from the Wilson loop correlation functions in both the fundamental and the adjoint representation of the gauge group with different temperatures. The difference between the responses of the chemical potential to the fermion number with singlet and non-singlet isospin configuration is found. We compare our results with recent Monte Carlo data. (orig.)
International Nuclear Information System (INIS)
Randjbar-Daemi, S.
1995-12-01
The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if Γ/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs
Energy Technology Data Exchange (ETDEWEB)
Randjbar-Daemi, S
1995-12-01
The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if {Gamma}/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs.
International Nuclear Information System (INIS)
Nielsen, H.B.; Bennett, D.L.
1987-08-01
Assuming that a lattice gauge theory describes a fundamental attribute of Nature, it should be pointed out that such a theory in the form of a gauge glass is a weaker assumption than a regular lattice model in as much as it is not constrained by the imposition of translational invariance; translational invariance is, however, recovered approximately in the long wavelength or continuum limit. (orig./WL)
International Nuclear Information System (INIS)
Partovi, M.H.
1982-01-01
From a generalization of the covariant derivative, nonlocal gauge theories are developed. These theories enjoy local gauge invariance and associated Ward identities, a corresponding locally conserved current, and a locally conserved energy-momentum tensor, with the Ward identities implying the masslessness of the gauge field as in local theories. Their ultraviolet behavior allows the presence as well as the absence of the Adler-Bell-Jackiw anomaly, the latter in analogy with lattice theories
Study of meterial distribution of Tang tricolor from Huangye kiln
International Nuclear Information System (INIS)
Dong Junling; Zhao Weijuan; Liu Guodong; Cheng Huansheng; Liao Yongmin; Zhang Songlin
2008-01-01
By using the proton induced X-ray enission (PIXE) method, the measurements of the oxide compound content have veen carried out for the selected 18 samples of Tang tricolor in Huangye kiln. For ascertaining the classification and origin relation of the samples the principal component analysis method was adopted, and the results indicate that the chemical compositions of Tang tricolor body with diggerent glaze colors are close, which shows that their raw material habitat distribution is quite concentrative. But the prescriptions of diffierent color glaze are different. The content of CoO is more than others in blue glaze; CuO is more than others in green glaze; Fe 2 O 3 is more than others in brown and yellow glaze; A1 2 O3 is less than others but SiO 2 is more in white glaze, which shows that glazers material origin is diffierent, but brown and yellow glaze are close and even the same in chemistry component. (authors)
International Nuclear Information System (INIS)
Creutz, M.
1984-01-01
After reviewing some recent developments in supercomputer access, the author discusses a few areas where perturbation theory and lattice gauge simulations make contact. The author concludes with a brief discussion of a deterministic dynamics for the Ising model. This may be useful for numerical studies of nonequilibrium phenomena. 13 references
International Nuclear Information System (INIS)
Catterall, Simon
2013-01-01
Discretization of supersymmetric theories is an old problem in lattice field theory. It has resisted solution until quite recently when new ideas drawn from orbifold constructions and topological field theory have been brought to bear on the question. The result has been the creation of a new class of lattice gauge theory in which the lattice action is invariant under one or more supersymmetries. The resultant theories are local and free of doublers and in the case of Yang-Mills theories also possess exact gauge invariance. In principle they form the basis for a truly non-perturbative definition of the continuum supersymmetric field theory. In this talk these ideas are reviewed with particular emphasis being placed on N = 4 super Yang-Mills theory.
Central extensions of some Abelian finite gauge groups
International Nuclear Information System (INIS)
Combe, Ph.; Rodriguez, R.; Sirugue, M.; Sirugue-Collin, M.
1981-01-01
The authors describe central extensions of Abelian finite gauge groups on lattices which are permutation invariant. Moreover some remarks are made on the gauge models on lattice associated with these non-commutative central extensions. (Auth.)
Bio-Inspired Asynchronous Pixel Event Tricolor Vision Sensor.
Lenero-Bardallo, Juan Antonio; Bryn, D H; Hafliger, Philipp
2014-06-01
This article investigates the potential of the first ever prototype of a vision sensor that combines tricolor stacked photo diodes with the bio-inspired asynchronous pixel event communication protocol known as Address Event Representation (AER). The stacked photo diodes are implemented in a 22 × 22 pixel array in a standard STM 90 nm CMOS process. Dynamic range is larger than 60 dB and pixels fill factor is 28%. The pixels employ either simple pulse frequency modulation (PFM) or a Time-to-First-Spike (TFS) mode. A heuristic linear combination of the chip's inherent pseudo colors serves to approximate RGB color representation. Furthermore, the sensor outputs can be processed to represent the radiation in the near infrared (NIR) band without employing external filters, and to color-encode direction of motion due to an asymmetry in the update rates of the different diode layers.
Improved Landau gauge fixing and discretisation errors
International Nuclear Information System (INIS)
Bonnet, F.D.R.; Bowman, P.O.; Leinweber, D.B.; Richards, D.G.; Williams, A.G.
2000-01-01
Lattice discretisation errors in the Landau gauge condition are examined. An improved gauge fixing algorithm in which O(a 2 ) errors are removed is presented. O(a 2 ) improvement of the gauge fixing condition displays the secondary benefit of reducing the size of higher-order errors. These results emphasise the importance of implementing an improved gauge fixing condition
Particle structure of gauge theories
International Nuclear Information System (INIS)
Fredenhagen, K.
1985-11-01
The implications of the principles of quantum field theory for the particle structure of gauge theories are discussed. The general structure which emerges is compared with that of the Z 2 Higgs model on a lattice. The discussion leads to several confinement criteria for gauge theories with matter fields. (orig.)
International Nuclear Information System (INIS)
Sowerby, B.D.
1982-01-01
Techniques employed in nuclear gauges for the measurement of level, thickness, density and moisture are described. The gauges include both transmission and backscatter gauges and utilize alpha particles, beta particles, neutrons or gamma radiation
Directory of Open Access Journals (Sweden)
Boada, C. E.
2010-01-01
Full Text Available In Ecuador, Thyroptera tricolor is distributed on the northern coastal region, in Amazonia, and in the foothillsof the Andes between 50 to 1,800 m of altitude. We reported a capture of a non-breeding female at El Descanso, Los RíosProvince, in the central coastal region of Ecuador. With this record, we have extended the geographical distribution of T.tricolor in Ecuador 55 km further south. Using the available data for Ecuador, a predictive distribution model was generatedusing a Maximum Entropy approach.
Directory of Open Access Journals (Sweden)
Geraldo C. Leynaud
2005-12-01
Full Text Available Colubrid snakes of the South American genus Phalotris are difficult to detect because of their secretive habits, and thus they are poorly represented in collections. The species Phalotris cuyanus and P. tricolor, the southernmost representatives of the tricolor species group, were studied to determine the limits of intraspecific variation of P. cuyanus and to consolidate the taxonomic relationship between both species, the phenetically and geographically closest members in the group. The distribution of selected external characters (cephalic, ventral and subcaudal scales, coloration pattern, width of white and black collars, and hemipenis morphology were analyzed. Comparative data on the other members of the group, P. mertensi and P. matogrossensis, are briefly discussed. Males of P. cuyanus have a higher number of ventral scales than males of P. tricolor (mean of 220.3 vs. 204.6. Cephalic melanism varies among individuals and does not have discriminant orgeographic value for this species group. The white nuchal collar may partially cover the parietal scales in the four species. The black collar is moderately narrow in P. cuyanus, but it can be up to 12 scales wide in P. tricolor. Vertebral dotting is neither constant nor exclusive of any species. The four species of the group are wellcharacterized by combinations of character states for each one. We suggest considering to P. cuyanus as an evolutionary species typical of the Monte biogeographic province.
International Nuclear Information System (INIS)
Tellis, D.R.
2000-01-01
Full text: Instantons in pure Yang-Mills gauge theory have been studied extensively by physicists and mathematicians alike. The surprisingly rich topological structure plays an important role in hadron structure. A crucial role is played by how the boundary conditions on the gauge fields are imposed. While the topology of gauge fields in pure Yang-Mills gauge theory is understood for the compact manifold of the 4-sphere, the manifold of the 4-torus remains an active area of study. The latter is particularly important in the study of Lattice QCD
Anomalous gauge theories revisited
International Nuclear Information System (INIS)
Matsui, Kosuke; Suzuki, Hiroshi
2005-01-01
A possible formulation of chiral gauge theories with an anomalous fermion content is re-examined in light of the lattice framework based on the Ginsparg-Wilson relation. It is shown that the fermion sector of a wide class of anomalous non-abelian theories cannot consistently be formulated within this lattice framework. In particular, in 4 dimension, all anomalous non-abelian theories are included in this class. Anomalous abelian chiral gauge theories cannot be formulated with compact U(1) link variables, while a non-compact formulation is possible at least for the vacuum sector in the space of lattice gauge fields. Our conclusion is not applied to effective low-energy theories with an anomalous fermion content which are obtained from an underlying anomaly-free theory by sending the mass of some of fermions to infinity. For theories with an anomalous fermion content in which the anomaly is cancelled by the Green-Schwarz mechanism, a possibility of a consistent lattice formulation is not clear. (author)
International Nuclear Information System (INIS)
Dahmen, B.
1994-12-01
A recently proposed method for a strong coupling analysis of scattering phenomena in hamiltonian lattice field theories is applied to the SU(2) Yang-Mills model in (2 + 1) dimensions. The calculation is performed up to second order in the hopping parameter. All relevant quantities that characterize the collision between the lightest glueballs in the elastic region - cross section, phase shifts, resonance parameters - are determined. (orig.)
International Nuclear Information System (INIS)
Li Guoxia; Zhao Weijuan; Gao Zhengyao; Xie Jianzhong; Guo Min
2006-01-01
The technique of neutron activation analysis (NAA) has been employed to measure the content of 29 kinds of elements in the Tang Tri-color glazed potteryies of Huangye kiln and Yaozhou kiln. Then a fuzzy cluster analysis has been conducted to the NAA data. The results indicate that the places of origin of raw materials of body samples in the Tang Tri-color glazed potteryies of Huangye kiln are very concentrated, and that the places of origin of raw materials of body and glaze samples are scattered the places of origin of raw materials of the body and glaze raw material cover that of the body raw material. The source of raw materials of samples in the Tang Tri-color glazed potteryies of Huangye kiln is obviously different from that of samples in the Tang Tri-color glazed potteryies of Yaozhou kiln. (authors)
International Nuclear Information System (INIS)
Lee, B.W.
1976-01-01
Some introductory remarks to Yang-Mills fields are given and the problem of the Coulomb gauge is considered. The perturbation expansion for quantized gauge theories is discussed and a survey of renormalization schemes is made. The role of Ward-Takahashi identities in gauge theories is discussed. The author then discusses the renormalization of pure gauge theories and theories with spontaneously broken symmetry. (B.R.H.)
International Nuclear Information System (INIS)
Power, B.D.; Priestland, C.R.D.
1978-01-01
This invention relates to vacuum gauges, particularly of the type known as Penning gauges, which are cold cathode ionisation gauges, in which a magnetic field is used to lengthen the electron path and thereby increase the number of ions produced. (author)
International Nuclear Information System (INIS)
Kummer, W.; Mistelberger, H.; Schaller, P.; Schweda, M.
1989-01-01
Supersymmetric gauge theories can be suitably quantized in non-supersymmetric 'superaxial' gauges without abolishing the basic advantages of the superfield technique. In this review the state of the art is presented. It includes the proof of renormalization and the proof of gauge independence and supersymmetry of observable physical quantities. (author)
International Nuclear Information System (INIS)
Mackenzie, Paul
1989-01-01
The forty-year dream of understanding the properties of the strongly interacting particles from first principles is now approaching reality. Quantum chromodynamics (QCD - the field theory of the quark and gluon constituents of strongly interacting particles) was initially handicapped by the severe limitations of the conventional (perturbation) approach in this picture, but Ken Wilson's inventions of lattice gauge theory and renormalization group methods opened new doors, making calculations of masses and other particle properties possible. Lattice gauge theory became a major industry around 1980, when Monte Carlo methods were introduced, and the first prototype calculations yielded qualitatively reasonable results. The promising developments over the past year were highlighted at the 1988 Symposium on Lattice Field Theory - Lattice 88 - held at Fermilab
Energy Technology Data Exchange (ETDEWEB)
Mackenzie, Paul
1989-03-15
The forty-year dream of understanding the properties of the strongly interacting particles from first principles is now approaching reality. Quantum chromodynamics (QCD - the field theory of the quark and gluon constituents of strongly interacting particles) was initially handicapped by the severe limitations of the conventional (perturbation) approach in this picture, but Ken Wilson's inventions of lattice gauge theory and renormalization group methods opened new doors, making calculations of masses and other particle properties possible. Lattice gauge theory became a major industry around 1980, when Monte Carlo methods were introduced, and the first prototype calculations yielded qualitatively reasonable results. The promising developments over the past year were highlighted at the 1988 Symposium on Lattice Field Theory - Lattice 88 - held at Fermilab.
Lattice theory for nonspecialists
International Nuclear Information System (INIS)
Hari Dass, N.D.
1984-01-01
These lectures were delivered as part of the academic training programme at the NIKHEF-H. These lectures were intended primarily for experimentalists, and theorists not specializing in lattice methods. The goal was to present the essential spirit behind the lattice approach and consequently the author has concentrated mostly on issues of principle rather than on presenting a large amount of detail. In particular, the author emphasizes the deep theoretical infra-structure that has made lattice studies meaningful. At the same time, he has avoided the use of heavy formalisms as they tend to obscure the basic issues for people trying to approach this subject for the first time. The essential ideas are illustrated with elementary soluble examples not involving complicated mathematics. The following subjects are discussed: three ways of solving the harmonic oscillator problem; latticization; gauge fields on a lattice; QCD observables; how to solve lattice theories. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Koike, Amanda Cristina Ramos; Silva, Pamela Galo da; Villavicencio, Anna Lucia Casanas Haasis, E-mail: amandaramos@usp.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Rodrigues, Flávio Thihara, E-mail: flaviot@ymail.com [Instituto Federal de Góias (IFG), Inhumas, GO (Brazil); Alencar, Severino Matias de, E-mail: smalencar@usp.br [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil)
2017-07-01
Edible flowers are increasingly being used in gastronomy, being also recognized for their potential valuable effects beneficial to human health. Viola tricolor L. (johnny-jump-up) flowers represents one of the most popular and are widely used in culinary preparations, being also acknowledged for their antioxidant properties. To improve the conservation and safety of flowers the new approaches can be used as ionizing radiation. Radiation treatment contribute to the improve the safety, quality and extends the shelf life of foods by disinfestation insects and reducing or eliminating pathogenic microorganisms. The purpose of this study was to evaluate the dose-dependent effects of electron beam and gamma irradiation in the doses of 0.5, 0.8, 1.0 kGy and control (non-irradiated) on the antioxidant activity of Viola tricolor L.by the Oxygen Radical Absorbance Capacity assay (ORAC). Therefore, the ionizing radiation did not affect the antioxidant activity of the flowers. (author)
International Nuclear Information System (INIS)
Koike, Amanda Cristina Ramos; Silva, Pamela Galo da; Villavicencio, Anna Lucia Casanas Haasis; Rodrigues, Flávio Thihara; Alencar, Severino Matias de
2017-01-01
Edible flowers are increasingly being used in gastronomy, being also recognized for their potential valuable effects beneficial to human health. Viola tricolor L. (johnny-jump-up) flowers represents one of the most popular and are widely used in culinary preparations, being also acknowledged for their antioxidant properties. To improve the conservation and safety of flowers the new approaches can be used as ionizing radiation. Radiation treatment contribute to the improve the safety, quality and extends the shelf life of foods by disinfestation insects and reducing or eliminating pathogenic microorganisms. The purpose of this study was to evaluate the dose-dependent effects of electron beam and gamma irradiation in the doses of 0.5, 0.8, 1.0 kGy and control (non-irradiated) on the antioxidant activity of Viola tricolor L.by the Oxygen Radical Absorbance Capacity assay (ORAC). Therefore, the ionizing radiation did not affect the antioxidant activity of the flowers. (author)
Unorthodox lattice fermion derivatives and their shortcomings
International Nuclear Information System (INIS)
Bodwin, G.T.; Kovacs, E.V.
1987-01-01
We discuss the DWY (Lagrangian), Quinn-Weinstein, and Rebbi proposals for incorporating fermions into lattice gauge theory and analyze them in the context of weak coupling perturbation theory. We find that none of these proposals leads to a completely satisfactory lattice transcription of fully-interacting gauge theory
Electroweak interactions on the lattice
International Nuclear Information System (INIS)
Kieu, T.D.
1994-07-01
It is shown that the lattice fermion doubling phenomenon is connected to the chiral anomaly which is unique to the electroweak interactions. The chiral anomaly is the breaking of chiral gauge symmetry at the quantum level due to the quantum fluctuations. Such breaking, however, is undesirable and to be avoided. The preservation of gauge symmetry imposes stringent constraints on acceptable chiral gauge theory. It is argued that the constraints are unnecessary because the conventional quantization of chiral gauge theory has missed out some crucial contributions of the chiral interactions. The corrected quantization yields consistent theory in which there is no gauge anomaly and in which various mass terms can be introduced with neither the loss of gauge invariance nor the need for the Higgs mechanism. The new quantization also provide a solution to the difficulty of how to model the electroweak interactions on the lattice. 9 refs. 1 fig
Phytochemistry and hepatoprotective activity of aqueous extract of Amaranthus tricolor Linn. roots
Directory of Open Access Journals (Sweden)
Simran Aneja
2013-01-01
Full Text Available Background: The genus Amaranthus has potential activity as a hepatoprotective agent. Objective : The present pharmacological investigation focuses on evaluation of the efficacy of aqueous extract of roots of Amaranthus tricolor Linn. for their protection against paracetamol (PCM overdose induced hepatotoxicity . Materials and Methods: The aqueous extract of roots of A. tricolor Linn. was prepared and phytochemical screening was done. The biochemical investigation viz. serum glutamic oxaloacetate transaminase (SGOT, serum glutamic pyruvate transaminase (SGPT, alkaline phosphatase (ALP and total Bilirubin (TB was done against PCM-induced hepatotoxicity in wistar albino rats. The histopathological studies of liver were also done. Results: The phytochemical screening of the aqueous extract showed the presence of alkaloids, carbohydrates, flavanoids, amino acids, proteins, fixed oil, saponins and tannins, and phenolic compounds. Pretreatment with the aqueous extract of root significantly prevented the physical, biochemical, histological, and functional changes induced by paracetamol in the liver. The extract showed significant hepatoprotective effects as evidenced by decreased serum enzyme activities like SGPT, SGOT, ALP, and TB, which was supported by histopathological studies of liver. The aqueous extract showed significant hepatoprotective activity comparable with standard drug silymarin as well as hepatotoxin drug PCM. Conclusion: From these results, it is concluded that the A. tricolor has potential effectiveness in treating liver damage in a dose dependent manner.
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Stefan [DESY (Germany). Neumann Inst. for Computing
2016-11-01
These configurations are currently in use in many on-going projects carried out by researchers throughout Europe. In particular this data will serve as an essential input into the computation of the coupling constant of QCD, where some of the simulations are still on-going. But also projects computing the masses of hadrons and investigating their structure are underway as well as activities in the physics of heavy quarks. As this initial project of gauge field generation has been successful, it is worthwhile to extend the currently available ensembles with further points in parameter space. These will allow to further study and control systematic effects like the ones introduced by the finite volume, the non-physical quark masses and the finite lattice spacing. In particular certain compromises have still been made in the region where pion masses and lattice spacing are both small. This is because physical pion masses require larger lattices to keep the effects of the finite volume under control. At light pion masses, a precise control of the continuum extrapolation is therefore difficult, but certainly a main goal of future simulations. To reach this goal, algorithmic developments as well as faster hardware will be needed.
International Nuclear Information System (INIS)
Krojts, M.
1987-01-01
The book by the known american physicist-theoretist M.Kreuts represents the first monography in world literature, where a new perspective direction in elementary particle physics and quantum field theory - lattice formulation of gauge theories is stated systematically. Practically all main ideas of this direction are given. Material is stated in systematic and understandable form
International Nuclear Information System (INIS)
Kenyon, I.R.
1986-01-01
Modern theories of the interactions between fundamental particles are all gauge theories. In the case of gravitation, application of this principle to space-time leads to Einstein's theory of general relativity. All the other interactions involve the application of the gauge principle to internal spaces. Electromagnetism serves to introduce the idea of a gauge field, in this case the electromagnetic field. The next example, the strong force, shows unique features at long and short range which have their origin in the self-coupling of the gauge fields. Finally the unification of the description of the superficially dissimilar electromagnetic and weak nuclear forces completes the picture of successes of the gauge principle. (author)
International Nuclear Information System (INIS)
Chodos, A.
1978-01-01
A version of lattice gauge theory is presented in which the shape of the lattice is not assumed at the outset but is a consequence of the dynamics. Other related features which are not specified a priori include the internal and space-time symmetry groups and the dimensionality of space-time. The theory possesses a much larger invariance group than the usual gauge group on a lattice, and has associated with it an integer k 0 analogous to the topological quantum numer of quantum chromodynamics. Families of semiclassical solutions are found which are labeled by k 0 and a second integer x, but the analysis is not carried far enough to determine which space-time and internal symmetry groups characterize the lowest-lying states of the theory
International Nuclear Information System (INIS)
Mills, R.
1989-01-01
This article is a survey of the history and ideas of gauge theory. Described here are the gradual emergence of symmetry as a driving force in the shaping of physical theory; the elevation of Noether's theorem, relating symmetries to conservation laws, to a fundamental principle of nature; and the force of the idea (''the gauge principle'') that the symmetries of nature, like the interactions themselves, should be local in character. The fundamental role of gauge fields in mediating the interactions of physics springs from Noether's theorem and the gauge principle in a remarkably clean and elegant way, leaving, however, some tantalizing loose ends that might prove to be the clue to a future deeper level of understanding. The example of the electromagnetic field as the prototype gauge theory is discussed in some detail and serves as the basis for examining the similarities and differences that emerge in generalizing to non-Abelian gauge theories. The article concludes with a brief examination of the dream of total unification: all the forces of nature in a single unified gauge theory, with the differences among the forces due to the specific way in which the fundamental symmetries are broken in the local environment
Directory of Open Access Journals (Sweden)
Wirdati Irma
2016-02-01
Full Text Available Penelitian ini bertujuan untuk melihat pengaruh timbal (Pb terhadap bentuk morfologi daun bayam (Amaranthus tricolor L. dengan 3 konsentrasi Pb yang berbeda, yaitu 1 ppm, 3 ppm, 5 ppm dan kontrol dalam skala laboratorium. Metode penelitian secara eksperimen di laboratorium. Hasil penelitian menunjukkan bahwa dari analisis Pb yang dilakukan, bayam Pb 1 ppm terjadi perubahan morfologi hanya pada warna daun dan permukaan daun. Pada bayam Pb 3 ppm dan 5 ppm terjadi perubahan morfologi pada semua karakteristik daun. Kerusakan terlihat yang diakibatkan dari ketiga konsentrasi tersebut beragam, makin tinggi konsentrasi Pb, kerusakan tanaman pun semakin besar.
Gauge-fixing ambiguity and monopole number
International Nuclear Information System (INIS)
Hioki, S.; Miyamura, O.
1991-01-01
Gauge-fixing ambiguities of lattice SU(2) QCD are studied in the maximally abelian and unitary gauges. In the former, we find local maxima of a gauge-fixing function which may correspond to Gribov copies. There is a definite anti-correlation between the number of monopoles and the value of the function. Errors of measured quantities coming from the ambiguity are found to be less than inherent dispersion in the ensemble average. No ambiguity is found in the unitary gauges. (orig.)
International Nuclear Information System (INIS)
Jarlskog, C.
An introduction to the unified gauge theories of weak and electromagnetic interactions is given. The ingredients of gauge theories and symmetries and conservation laws lead to discussion of local gauge invariance and QED, followed by weak interactions and quantum flavor dynamics. The construction of the standard SU(2)xU(1) model precedes discussion of the unification of weak and electromagnetic interactions and weak neutral current couplings in this model. Presentation of spontaneous symmetry breaking and spontaneous breaking of a local symmetry leads to a spontaneous breaking scheme for the standard SU(2)xU(1) model. Consideration of quarks, leptons, masses and the Cabibbo angles, of the four quark and six quark models and CP violation lead finally to grand unification, followed by discussion of mixing angles in the Georgi-Glashow model, the Higgses of the SU(5) model and proton/ neutron decay in SU(5). (JIW)
SU(2) gauge theory in the maximally Abelian gauge without monopoles
International Nuclear Information System (INIS)
Shmakov, S.Yu.; Zadorozhnyj, A.M.
1995-01-01
We present an algorithm for simulation of SU(2) lattice gauge theory under the maximally Abelian (MA) gauge and first numerical results for the theory without Abelian monopoles. The results support the idea that nonperturbative interaction arises between monopoles and residual Abelian field and the other interactions are perturbative. It is shown that the Gribov region for the theory with the MA gauge fixed is non-connected. 12 refs., 1 tab
Directory of Open Access Journals (Sweden)
Hamid Reza Sadeghnia
2014-01-01
Full Text Available In the present study, the cytotoxic and apoptogenic properties of hydroalcoholic extract and ethyl acetate (EtOAc, n-butanol, and water fractions (0–800 μg/mL of Viola tricolor were investigated in Neuro2a mouse neuroblastoma and MCF-7 human breast cancer cells. In addition, antiangiogenic effect of EtOAc fraction was evaluated on chicken chorioallantoic membrane (CAM. The quality of EtOAc fraction was also characterized using high performance liquid chromatography (HPLC fingerprint. Cytotoxicity assay revealed that EtOAc fraction was the most potent among all fractions with maximal effect on MCF-7 and minimal toxicity against normal murine fibroblast L929 cells. Apoptosis induction by EtOAc fraction was confirmed by increased sub-G1 peak of propidium iodide (PI stained cells. This fraction triggered the apoptotic pathway by increased Bax/Bcl-2 ratio and cleaved caspase-3 level. Moreover, treatment with EtOAc fraction significantly decreased the diameter of vessels on CAM, while the number of newly formed blood vessels was not suppressed significantly. Analysis of quality of EtOAc fraction using HPLC fingerprint showed six major peaks with different retention times. The results of the present study suggest that V. tricolor has potential anticancer property by inducing apoptosis and inhibiting angiogenesis.
International Nuclear Information System (INIS)
Itzykson, C.
1978-01-01
In these notes the author provides some background on the theory of gauge fields, a subject of increasing popularity among particle physicists (and others). Detailed motivations and applications which are covered in the other lectures of this school are not presented. In particular the application to weak interactions is omitted by referring to the introduction given by J. Ilipoulos a year ago (CERN Report 76-11). The aim is rather to stress those aspects which suggest that gauge fields may play some role in a future theory of strong interactions. (Auth.)
Lattice gauge calculation in particle theory
International Nuclear Information System (INIS)
Barkai, D.; Moriarty, K.J.M.; Rebbi, C.; Brookhaven National Lab., Upton, NY
1985-01-01
There are many problems in particle physics which cannot be treated analytically, but are amenable to numcerical solution using today's most powerful computers. Prominent among such problems are those encountered in the theory of strong interactions, where the resolution of fundamental issues such as demonstrating quark confinement or evaluating hadronic structure is rooted in a successful description of the behaviour of a very large number of dynamical variables in non-linear interaction. This paper briefly outlines the mathematical problems met in the formulation of the quantum field theory for strong interactions, the motivation for numerical methods of resolution and the algorithms which are currently being used. Such algorithms require very large amounts of memory and computation and, because of their organized structure, are ideally suited for implementation on mainframes with vectorized architecture. While the details of the actual implementation will be coverd in other contributions to this conference, this paper will present an account of the most important physics results obtained up to now and will conclude with a survey of open problems in particle theory which could be solved numerically in the near future. (orig.)
Lattice gauge calculation in particle theory
International Nuclear Information System (INIS)
Barkai, D.; Moriarity, K.J.M.; Rebbi, C.
1985-01-01
There are many problems in particle physics which cannot be treated analytically, but are amenable to numerical solution using today's most powerful computers. Prominent among such problems are those encountered in the theory of strong interactions, where the resolution of fundamental issues such as demonstrating quark confinement or evaluating hadronic structure is rooted in a successful description of the behavior of a very large number of dynamical variables in non-linear interaction. This paper briefly outlines the mathematical problems met in the formulation of the quantum field theory for strong interactions, the motivation for numerical methods of resolution and the algorithms which are currently being used. Such algorithms require very large amounts of memory and computation and, because of their organized structure, are ideally suited for implementation on mainframes with vectorized architecture. While the details of the actual implementation will be covered in other contributions to this conference, this paper will present an account of the most important physics results obtained up to now and will conclude with a survey of open problems in particle theory which could be solved numerically in the near future
Lattice gauge calculation in particle theory
Energy Technology Data Exchange (ETDEWEB)
Barkai, D [Control Data Corp., Fort Collins, CO (USA); Moriarty, K J.M. [Dalhousie Univ., Halifax, Nova Scotia (Canada). Inst. for Computational Studies; Rebbi, C [European Organization for Nuclear Research, Geneva (Switzerland); Brookhaven National Lab., Upton, NY (USA). Physics Dept.)
1985-05-01
There are many problems in particle physics which cannot be treated analytically, but are amenable to numcerical solution using today's most powerful computers. Prominent among such problems are those encountered in the theory of strong interactions, where the resolution of fundamental issues such as demonstrating quark confinement or evaluating hadronic structure is rooted in a successful description of the behaviour of a very large number of dynamical variables in non-linear interaction. This paper briefly outlines the mathematical problems met in the formulation of the quantum field theory for strong interactions, the motivation for numerical methods of resolution and the algorithms which are currently being used. Such algorithms require very large amounts of memory and computation and, because of their organized structure, are ideally suited for implementation on mainframes with vectorized architecture. While the details of the actual implementation will be coverd in other contributions to this conference, this paper will present an account of the most important physics results obtained up to now and will conclude with a survey of open problems in particle theory which could be solved numerically in the near future.
Abelian gauge potentials on cubic lattices
DEFF Research Database (Denmark)
Burrello, M.; Lepori, L.; Paganelli, S.
2017-01-01
The study of the properties of quantum particles in a periodic potential subjected to a magnetic field is an active area of research both in physics and mathematics, and it has been and is yet deeply investigated. In this chapter we discuss how to implement and describe tunable Abelian magnetic...... potentials in one-dimensional rings....
Energy Technology Data Exchange (ETDEWEB)
Catterall, Simon; Kaplan, David B.; Unsal, Mithat
2009-03-31
We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
An infinite-dimensional calculus for gauge theories
Mendes, Rui Vilela
2010-01-01
A space for gauge theories is defined, using projective limits as subsets of Cartesian products of homomorphisms from a lattice on the structure group. In this space, non-interacting and interacting measures are defined as well as functions and operators. From projective limits of test functions and distributions on products of compact groups, a projective gauge triplet is obtained, which provides a framework for the infinite-dimensional calculus in gauge theories. The gauge measure behavior ...
Composite gauge bosons of transmuted gauge symmetry
International Nuclear Information System (INIS)
Terazawa, Hidezumi.
1987-10-01
It is shown that effective gauge theories of composite gauge bosons describing the dynamics of composite quarks and leptons can be transmuted from the subcolor gauge theory describing that of subquarks due to the condensation of subquarks and that the equality of effective gauge coupling constants can result as in a grand unified gauge theory. (author)
Lattice QCD for nuclear physics
Meyer, Harvey
2015-01-01
With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun, and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems, and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spect...
International Nuclear Information System (INIS)
Bond, A.
1977-01-01
The present position of nucleonic techniques for process measurements, is considered from the technical and cost viewpoints. Systems considered include level, density, thickness (including coating thickness), moisture, and sulphur in hydrocarbons gauges and also belt weighers. The advantages of such systems are discussed and the cost-benefit position considered. The combination of nucleonic measuring equipment with a microcomputer is examined. (U.K.)
Chiral fermions on the lattice
International Nuclear Information System (INIS)
Randjbar Daemi, S.; Strathdee, J.
1995-01-01
The overlap approach to chiral gauge theories on arbitrary D-dimensional lattices is studied. The doubling problem and its relation to chiral anomalies for D = 2 and 4 is examined. In each case it is shown that the doublers can be eliminated and the well known perturbative results for chiral anomalies can be recovered. We also consider the multi-flavour case and give the general criteria for the construction of anomaly free chiral gauge theories on arbitrary lattices. We calculate the second order terms in a continuum approximation to the overlap formula in D dimensions and show that they coincide with the bilinear part of the effective action of D-dimensional Weyl fermions coupled to a background gauge field. Finally, using the same formalism we reproduce the correct Lorentz, diffeomorphism and gauge anomalies in the coupling of a Weyl fermion to 2-dimensional gravitation and Maxwell fields. (author). 15 refs
Holographic description of large N gauge theory
International Nuclear Information System (INIS)
Lee, Sung-Sik
2011-01-01
Based on the earlier work [S.-S. Lee, Nucl. Rev. B 832 (2010) 567], we derive a holographic dual for the D-dimensional U(N) lattice gauge theory from a first principle construction. The resulting theory is a lattice field theory of closed loops, dubbed as lattice loop field theory which is defined on a (D+1)-dimensional space. The lattice loop field theory is well defined non-perturbatively, and it becomes weakly coupled and local in the large N limit with a large 't Hooft coupling.
Automated lattice data generation
Directory of Open Access Journals (Sweden)
Ayyar Venkitesh
2018-01-01
Full Text Available The process of generating ensembles of gauge configurations (and measuring various observables over them can be tedious and error-prone when done “by hand”. In practice, most of this procedure can be automated with the use of a workflow manager. We discuss how this automation can be accomplished using Taxi, a minimal Python-based workflow manager built for generating lattice data. We present a case study demonstrating this technology.
Automated lattice data generation
Ayyar, Venkitesh; Hackett, Daniel C.; Jay, William I.; Neil, Ethan T.
2018-03-01
The process of generating ensembles of gauge configurations (and measuring various observables over them) can be tedious and error-prone when done "by hand". In practice, most of this procedure can be automated with the use of a workflow manager. We discuss how this automation can be accomplished using Taxi, a minimal Python-based workflow manager built for generating lattice data. We present a case study demonstrating this technology.
Supersymmetry on the noncommutative lattice
International Nuclear Information System (INIS)
Nishimura, Jun; Rey, Soo-Jong; Sugino, Fumihiko
2003-01-01
Built upon the proposal of Kaplan et al. (heplat{0206109}), we construct noncommutative lattice gauge theory with manifest supersymmetry. We show that such theory is naturally implementable via orbifold conditions generalizing those used by Kaplan et al. We present the prescription in detail and illustrate it for noncommutative gauge theories latticized partially in two dimensions. We point out a deformation freedom in the defining theory by a complex-parameter, reminiscent of discrete torsion in string theory. We show that, in the continuum limit, the supersymmetry is enhanced only at a particular value of the deformation parameter, determined solely by the size of the noncommutativity. (author)
Role of gauge invariance in a variational and mean-field calculation
International Nuclear Information System (INIS)
Masperi, L.; Omero, C.
1981-08-01
We show that the implementation of gauge invariance is essential for a variational treatment to correctly reproduce all the features of the phase diagram for the Z(2) lattice gauge theory with matter field. (author)
Nonlattice Simulation for Supersymmetric Gauge Theories in One Dimension
International Nuclear Information System (INIS)
Hanada, Masanori; Nishimura, Jun; Takeuchi, Shingo
2007-01-01
Lattice simulation of supersymmetric gauge theories is not straightforward. In some cases the lack of manifest supersymmetry just necessitates cumbersome fine-tuning, but in the worse cases the chiral and/or Majorana nature of fermions makes it difficult to even formulate an appropriate lattice theory. We propose circumventing all these problems inherent in the lattice approach by adopting a nonlattice approach for one-dimensional supersymmetric gauge theories, which are important in the string or M theory context. In particular, our method can be used to investigate the gauge-gravity duality from first principles, and to simulate M theory based on the matrix theory conjecture
International Nuclear Information System (INIS)
Qurnell, F.D.; Patterson, C.B.
1979-01-01
A gauge supporting device for measuring say a square tube comprises a pair of rods or guides in tension between a pair of end members, the end members being spaced apart by a compression member or members. The tensioned guides provide planes of reference for measuring devices moved therealong on a carriage. The device is especially useful for making on site dimensional measurements of components, such as irradiated and therefore radioactive components, that cannot readily be transported to an inspection laboratory. (UK)
Gudowska, Agnieszka; Boardman, Leigh; Terblanche, John S
2016-08-15
The discontinuous gas exchange (DGE) pattern of respiration shown by many arthropods includes periods of spiracle closure (C-phase) and is largely thought to serve as a physiological adaptation to restrict water loss in terrestrial environments. One major challenge to this hypothesis is to explain the presence of DGE in insects in moist environments. Here, we show a novel ecological correlate of the C-phase, namely, diving behaviour in mesic Paracinema tricolor grasshoppers. Notably, maximal dive duration is positively correlated with C-phase length, even after accounting for mass scaling and absolute metabolic rate. Here, we propose that an additional advantage of DGE may be conferred by allowing the tracheal system to act as a sealed underwater oxygen reservoir. Spiracle closure may facilitate underwater submersion, which, in turn, may contribute to predator avoidance, the survival of accidental immersion or periodic flooding and the exploitation of underwater resources. © 2016. Published by The Company of Biologists Ltd.
International Nuclear Information System (INIS)
Correa, Diego H.; Silva, Guillermo A.
2008-01-01
We discuss how geometrical and topological aspects of certain (1/2)-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents
Lattice Methods for Quantum Chromodynamics
DeGrand, Thomas
2006-01-01
Numerical simulation of lattice-regulated QCD has become an important source of information about strong interactions. In the last few years there has been an explosion of techniques for performing ever more accurate studies on the properties of strongly interacting particles. Lattice predictions directly impact many areas of particle and nuclear physics theory and phenomenology. This book provides a thorough introduction to the specialized techniques needed to carry out numerical simulations of QCD: a description of lattice discretizations of fermions and gauge fields, methods for actually do
Compact lattice QED with Wilson fermions
International Nuclear Information System (INIS)
Hoferichter, A.
1994-08-01
We study the phase structure and the chiral limit of 4d compact lattice QED with Wilson fermions (both dynamical and quenched). We use the standard Wilson gauge action and also a modified one suppressing lattice artifacts. Different techniques and observables to locate the chiral limit are discussed. (orig.)
Nuclear physics on the lattice?
International Nuclear Information System (INIS)
Koonin, S.E.
1985-01-01
The goal of the paper is to try to adapt lattice gauge theory to build in some biases in order for being applicable to nuclear physics. In so doing the calculations are made more precise, and the author can address questions like the size of the nucleon, the nucleon-nucleon potential, the modifications of the nucleon in the nuclear medium, etc. (Auth.)
Lattice fields and strong interactions
International Nuclear Information System (INIS)
Creutz, M.
1989-06-01
I review the lattice formulation of gauge theories and the use of numerical methods to investigate nonperturbative phenomena. These methods are directly applicable to studying hadronic matter at high temperatures. Considerable recent progress has been made in numerical algorithms for including dynamical fermions in such calculations. Dealing with a nonvanishing baryon density adds new unsolved challenges. 33 refs
Lattice quantum chromodynamics: Some topics
Indian Academy of Sciences (India)
I will begin with a lightning quick overview of the basic lattice gauge theory and then go on to .... The Monte Carlo technique to evaluate C(t), or the expectation value of any other observable ... x }occurs with a probability proportional to. 890.
Hamiltonian formulation of QCD in the Schwinger gauge
International Nuclear Information System (INIS)
Schutte, D.
1989-01-01
The structure of the Hamiltonian related to a regularized non-Abelian gauge field theory is discussed in the light of different choices for gauge-invariant wave functionals (loop space, Coulomb, axial, Schwinger gauge). Arguments are given for the suggestion that the Schwinger gauge offers a specially suited framework for the computation of bound-state (hadron) properties. The most important reasons are the manifest rotation invariance, the lack of a Gribov horizon (giving standard many-body techniques a better chance), and the fact that a regularization analogous to the lattice regularization is easily implementable. Some details of the Schwinger-gauge Hamiltonian theory are discussed
Piana, Mariana; Silva, Mariane Arnoldi; Trevisan, Gabriela; de Brum, Thiele Faccim; Silva, Cássia Regina; Boligon, Aline Augusti; Oliveira, Sara Marchesan; Zadra, Marina; Hoffmeister, Carin; Rossato, Mateus Fortes; Tonello, Raquel; Laporta, Luciane Varini; de Freitas, Robson Borba; Belke, Bianca Vargas; Jesus, Roberta da Silva; Ferreira, Juliano; Athayde, Margareth Linde
2013-11-25
Viola tricolor, popularly known as heartsease has been empirically used in several skin disorders, including burns. The objective of this study was investigate the antinociceptive and antiinflammatory effect of a gel containing extract of Viola tricolor flowers on thermal burn induced by UVB irradiation and to perform gel stability study. The antinociceptive and antiinflammatory effect were evaluated by static and dynamic mechanical allodynia model, paw edema, and neutrophilic cell infiltration. Metabolites compounds were quantified by HPLC. The gel stability study was performed analyzing organoleptical aspects, besides pH, viscosity, and quantification of rutin by HPLC. In the results were evidenced changes in threshold in statical and dynamic mechanical allodynia (I(max)=100 ± 10% and 49 ± 10%, respectively), paw edema (I(max)=61 ± 6%), and myeloperoxidase activity (I(max)=89 ± 5%). Such effects may be attributed, in part, to rutin, salicylic and chlorogenic acids, and others compounds found in this species. No important changes were detected in the stability study, in all aspects analyzed in temperature below 25 °C. These findings suggest that Viola tricolor gel has an antinociceptive and antiinflammatory effect in the ultraviolet-B-induced burn, since maintain the temperature below 25 °C. © 2013 Elsevier Ireland Ltd. All rights reserved.
International Nuclear Information System (INIS)
Price, M.
2004-01-01
This presentation described the Tricolor oil spill incident, the remote sensing equipment used to monitor the spill, the observed spill characteristics and the flight data assessment. The spill occurred on December 14, 2002 following a collision between the carrier Tricolor and the container vessel Kariba in French waters in the Zone of Joint Responsibility, close to the Belgian and English borders. The Tricolor sank and 3 more vessels collided with the wreck in the five weeks following the collision, spilling several 100 tons of mostly heavy fuel oil into the sea. The remote sensing equipment aboard Belgian surveillance aircraft noted that freshly spilled oil formed a network of widespread dark oil trails surrounded by light oil fractions. The spill volumes were estimated to be high because of the large extent of the polluted area. Nine months following the spill, the emulsified oil trails had a density close to that of seawater. It was assumed that a cold and thick emulsion had formed and became trapped inside the wreck. Upon release, the emulsion could submerse and resurface. The incident demonstrated that early stage oil sample analysis could help interpret slick behaviour by means of remote sensing. 9 refs., 3 tabs., 1 fig
International Nuclear Information System (INIS)
Tominaga, Hiroshi
1980-01-01
A survey was made by Japan Atomic Industrial Forum, Inc., in August, 1979, on the uses of isotope-equipped measuring instruments in private industrial enterprises by sending questionnaires to 1372 enterprises using sealed radiation sources. The results are described. i.e. usage of isotope-equipped measuring instruments, the economic effects, and problems for the future, and also the general situation in this field. Such instruments used are gas chromatography apparatus, thickness, level and moisture gauges, sulfur analyzer, etc. Except the gas chromatography, the rest are mostly incorporated in automatic control systems. As the economic effects, there are the rises in productivity, quality and yield and the savings in materials, energy and manpower. While they are used to great advantage, there are still problems occasionally in measuring accuracy and others. (J.P.N.)
Introduction to gauge theories
International Nuclear Information System (INIS)
Wit, B. de
1983-01-01
In these lectures we present the key ingredients of theories with local gauge invariance. We introduce gauge invariance as a starting point for the construction of a certain class of field theories, both for abelian and nonabelian gauge groups. General implications of gauge invariance are discussed, and we outline in detail how gauge fields can acquire masses in a spontaneous fashion. (orig./HSI)
the Simple Centern Projection of SU (2) Gauge Theory
Bakker, B.L.G.; Veselov, A.I.; Zubkov, M.A.
2001-01-01
We consider the SU(2) lattice gauge model. We propose a new gauge invariant definition of center projection, which we call the Simple Center Projection. We demonstrate the center dominance, i.e., the coincidence of the projected potential with the full potential up to the mass renormalization term
Wess-Zumino-Witten term on the lattice
International Nuclear Information System (INIS)
Fujiwara, Takanori; Suzuki, Hiroshi; Matsui, Kosuke; Yamamoto, Masaru
2003-01-01
We construct the Wess-Zumino-Witten (WZW) term in lattice gauge theory by using a Dirac operator which obeys the Ginsparg-Wilson relation. Topological properties of the WZW term known in the continuum are reproduced on the lattice as a consequence of a non-trivial topological structure of the space of admissible lattice gauge fields. In the course of this analysis, we observe that the gauge anomaly generally implies that there is no basis of a Weyl fermion which leads to a single-valued expectation value in the fermion sector. The lattice Witten term, which carries information of a gauge path along which the gauge anomaly is integrated, is separated from the WZW term and the multivaluedness of the Witten term is shown to be related to the homotopy group π 2n+1 (G). We also discuss the global SU(2) anomaly on the basis of the WZW term. (author)
Radionuclides gauges. Gauges designed for permanent installation
International Nuclear Information System (INIS)
1987-06-01
This present norm determines, for radionuclides gauges designed for permanent installation, the characteristics that these gauges should satisfied in their construction and performance to respect the prescriptions. It indicates the testing methods which permit to verify the agreement, gives a classification of gauges and specifies the indications to put on the emitter block [fr
International Nuclear Information System (INIS)
Wilkens, P.H.
1978-01-01
This system of gauging is now being designed to fit on an Excello NC lathe to measure the form, accuracy, and size of external contoured surfaces as they approach the finish machined size. A template profile of the finished workpiece, but 0.003 in. bigger on radius, will be aligned with the workpiece using a reference diameter and face on the machining fixture to leave a gap between the profile of the template and workpiece. A helium--neon laser beam will be projected through this gap using a rotating retroreflector and a fixed laser. The resulting diffraction pattern produced by the laser beam passing through the template to workpiece gap will be reflected and focused on a fixed diode array via a second retroreflector which moves and remains in optical alignment with the first. These retroreflectors will be rotated about a center that will enable the laser beam, which is shaped in a long slit, to scan the template workpiece gap from the pole to the equator of the workpiece. The characteristic diffraction pattern will be detected by the fixed diode array, and the signal levels from this array will be processed in a mini-computer programmed to produce a best fit through the two minima of the diode signals. The separation of the two minima will yield the size of the workpiece to template gap and this information will be presented to the machine tool operator
Elimination of spurious lattice fermion solutions and noncompact lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Lee, T.D.
1997-09-22
It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.
Variability, heritability and genetic association in vegetable amaranth (Amaranthus tricolor L.)
Energy Technology Data Exchange (ETDEWEB)
Sarker, U.; Islam, Md T.; Rabbani, Md G.; Oba, S.
2015-07-01
Forty three vegetable amaranth (Amaranthus tricolor L.) genotypes selected from different eco-geographic regions of Bangladesh were evaluated during 3 years (2012-2014) for genetic variability, heritability and genetic association among mineral elements and quality and agronomic traits in randomized complete block design (RCBD) with five replications. The analysis showed that vegetable amaranth is a rich source of K, Ca, Mg, proteins and dietary fibre with average values among the 43 genotypes (1.014%, 2.476%, 2.984, 1.258% and 7.81%, respectively). Six genotypes (VA13, VA14, VA16, VA18, VA26, VA27) showed a biological yield >2000 g/m2 and high mineral, protein and dietary fibre contents; eleven genotypes had high amount of minerals, protein and dietary fibre with above average biological yield; nine genotypes had below average biological yield but were rich in minerals, protein and dietary fibre. Biological yield exhibited a strong positive correlation with leaf area, shoot weight, shoot/root weight and stem base diameter. Insignificant genotypic correlation was observed among mineral, quality and agronomic traits, except K vs. Mg, protein vs. dietary fibre and stem base diameter vs. Ca. Some of these genotypes can be used for improvement of vegetable amaranth regarding mineral, protein and dietary fibre content without compromising yield loss. (Author)
Monosodium glutamate derived tricolor fluorescent carbon nanoparticles for cell-imaging application.
Zheng, Nannan; Ding, Sha; Zhou, Xingping
2016-06-01
Fluorescent carbon nanoparticle (FCN) is a new type of carbon-based materials. Because of its wide raw material sources, excellent optical properties and good biocompatibility, FCN is getting more and more attentions. However, its synthesis from resources at low cost under mild conditions is still a challenge. Here we report a novel and simple method derived from monosodium glutamate carbonization to make tricolor fluorescent carbon nanoparticles with an average size below 10nm, a high yield up to 35.2% based on the carbon content in the resource, a long life-time of 3.71ns, and a high fluorescence quantum yield up to 51.5% by using quinine sulfate as the standard substance. We discovered that the fluorescent stability of the FCNs was very excellent under UV irradiation for hours in aqueous solutions of pH ranged from 2.0 to 9.0. The cell viability tested under a pretty high concentration of FCNs indicated their safety for biological applications. Based on their high fluorescence quantum efficiency and the advantages mentioned above, these FCNs were then used for cell imaging and exhibited a perfect performance under 3 kinds of excitation bands (UV, blue, and green lights). Thus, they can be practically applied to immune labeling and imaging in vivo in the near future. Copyright © 2016 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Dwi Lestari Handayani
2017-03-01
Full Text Available A research has conducted about the microemulsion formulation of purified extract of red spinach leaves (Amaranthus tricolor L. as an antioxidant supplement with the aim to be able to know the formula to form a microemulsion which meet the physical quality stability and determine antioxidant activity (IC50 of the preparation. Extracts prepared by maceration method using ethanol 96% and then later do the purification using solvent n-hexane and ethyl acetate, after it tested its antioxidant activity. Formula to form a microemulsion purified extract of red spinach leaves clear is to use virgin coconut oil (VCO by 15%, tween 80 for 40%, 35% glycerin and 10% distilled water. Physical stability test was conducted on the organoleptic test, measuring the diameter of globules, pH test, test and test viscosity centrifugation. Test of antioxidant activity in vitro using DPPH method and using Vitamin C as a positive control. Measurement data were statistically analyzed using paired samples T test. The test results of antioxidant activity microemulsion purified extracts of spinach leaves, red show IC50 values on day 1 was 1.83 ppm and the 28th day amounted to 3.71 ppm. While vitamin C microemulsion shows IC50 values on day 1 of 0.24 ppm and the 28th day of 2.51 ppm. Despite the decreased antioxidant activity, but each of the stocks included in the category of very powerful antioxidants.
Crisafulli, M.; Martinelli, G.; Sachrajda, Christopher T.; Crisafulli, M; Gimenez, V; Martinelli, G; Sachrajda, C T
1994-01-01
We present the first lattice calculation of the B-meson binding energy \\labar and of the kinetic energy \\lambda_1/2 m_Q of the heavy-quark inside the pseudoscalar B-meson. In order to cancel the ambiguities due to the ultraviolet renormalons present in the operator matrix elements, this calculation has required the non-perturbative subtraction of the power divergences present in the Lagrangian operator \\energy and in the kinetic energy operator \\kkinetic. The non-perturbative renormalization of the relevant operators has been implemented by imposing suitable renormalization conditions on quark matrix elements in the Landau gauge.
A lattice approach to spinorial quantum gravity
Renteln, Paul; Smolin, Lee
1989-01-01
A new lattice regularization of quantum general relativity based on Ashtekar's reformulation of Hamiltonian general relativity is presented. In this form, quantum states of the gravitational field are represented within the physical Hilbert space of a Kogut-Susskind lattice gauge theory. The gauge field of the theory is a complexified SU(2) connection which is the gravitational connection for left-handed spinor fields. The physical states of the gravitational field are those which are annihilated by additional constraints which correspond to the four constraints of general relativity. Lattice versions of these constraints are constructed. Those corresponding to the three-dimensional diffeomorphism generators move states associated with Wilson loops around on the lattice. The lattice Hamiltonian constraint has a simple form, and a correspondingly simple interpretation: it is an operator which cuts and joins Wilson loops at points of intersection.
Geometry of lattice field theory
International Nuclear Information System (INIS)
Honan, T.J.
1986-01-01
Using some tools of algebraic topology, a general formalism for lattice field theory is presented. The lattice is taken to be a simplicial complex that is also a manifold and is referred to as a simplicial manifold. The fields on this lattice are cochains, that are called lattice forms to emphasize the connections with differential forms in the continuum. This connection provides a new bridge between lattice and continuum field theory. A metric can be put onto this simplicial manifold by assigning lengths to every link or I-simplex of the lattice. Regge calculus is a way of defining general relativity on this lattice. A geometric discussion of Regge calculus is presented. The Regge action, which is a discrete form of the Hilbert action, is derived from the Hilbert action using distribution valued forms. This is a new derivation that emphasizes the underlying geometry. Kramers-Wannier duality in statistical mechanics is discussed in this general setting. Nonlinear field theories, which include gauge theories and nonlinear sigma models are discussed in the continuum and then are put onto a lattice. The main new result here is the generalization to curved spacetime, which consists of making the theory compatible with Regge calculus
Many-Body Localization Dynamics from Gauge Invariance
Brenes, Marlon; Dalmonte, Marcello; Heyl, Markus; Scardicchio, Antonello
2018-01-01
We show how lattice gauge theories can display many-body localization dynamics in the absence of disorder. Our starting point is the observation that, for some generic translationally invariant states, the Gauss law effectively induces a dynamics which can be described as a disorder average over gauge superselection sectors. We carry out extensive exact simulations on the real-time dynamics of a lattice Schwinger model, describing the coupling between U(1) gauge fields and staggered fermions. Our results show how memory effects and slow, double-logarithmic entanglement growth are present in a broad regime of parameters—in particular, for sufficiently large interactions. These findings are immediately relevant to cold atoms and trapped ion experiments realizing dynamical gauge fields and suggest a new and universal link between confinement and entanglement dynamics in the many-body localized phase of lattice models.
Directory of Open Access Journals (Sweden)
Rindang Dwiyani
2015-06-01
Full Text Available Vanda tricolor Lindl. var. suavis is an Indonesian wild orchid that has been rare in nature, so it needs attention to take care and conserve them. The objective of the research was to investigate the effect of coconut water and / or tomato juice on the growth of protocorm of V. tricolor Lindl. var suavis from Bali grown in vitro. The experiment was laid out in the factorial design, with two factors (coconut water/CW and tomato juice/TJ, each contained three concentration (CW: 0, 100, and 200 cc L-1; TJ: 0, 100 and 200 g L-1 resulted in nine combination of treatments and replicated four times. The results showed that tomato juice with concentration of 100 gL-1 or 200 gL-1 promotes growth of protocorms of Vanda tricolor Lindl. var. suavis from Bali regardless the presence of coconut water.
International Nuclear Information System (INIS)
Weinberg, S.
1976-01-01
The problem of how gauge symmetries of the weak interactions get broken is discussed. Some reasons why such a heirarchy of gauge symmetry breaking is needed, the reason gauge heirarchies do not seem to arise in theories of a given and related type, and the implications of theories with dynamical symmetry breaking, which can exhibit a gauge hierarchy
International Nuclear Information System (INIS)
Moriyasu, K.
1978-01-01
A pedagogical approach to gauge invariance is presented which is based on the analogy between gauge transformations and relativity. By using the concept of an internal space, purely geometrical arguments are used to teach the physical ideas behind gauge invariance. Many of the results are applicable to general gauge theories
Gauge invariance and Weyl-polymer quantization
Strocchi, Franco
2016-01-01
The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable. The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators). However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra. In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magne...
On diffeomorphism invariance for lattice theories
International Nuclear Information System (INIS)
Corichi, A.; Zapata, J.
1997-01-01
We consider the role of the diffeomorphism constraint in the quantization of lattice formulations of diffeomorphism invariant theories of connections. It has been argued that in working with abstract lattices one automatically takes care of the diffeomorphism constraint in the quantum theory. We use two systems in order to show that imposing the diffeomorphism constraint is imperative to obtain a physically acceptable quantum theory. First, we consider 2+1 gravity where an exact lattice formulation is available. Next, general theories of connections for compact gauge groups are treated, where the quantum theories are known - for both the continuum and the lattice - and can be compared. (orig.)
Testing the holographic principle using lattice simulations
Directory of Open Access Journals (Sweden)
Jha Raghav G.
2018-01-01
Full Text Available The lattice studies of maximally supersymmetric Yang-Mills (MSYM theory at strong coupling and large N is important for verifying gauge/gravity duality. Due to the progress made in the last decade, based on ideas from topological twisting and orbifolding, it is now possible to study these theories on the lattice while preserving an exact supersymmetry on the lattice. We present some results from the lattice studies of two-dimensional MSYM which is related to Type II supergravity. Our results agree with the thermodynamics of different black hole phases on the gravity side and the phase transition (Gregory–Laflamme between them.
International Nuclear Information System (INIS)
Chadderton, L.T.; Johnson, E.; Wohlenberg, T.
1976-01-01
Void lattices in metals apparently owe their stability to elastically anisotropic interactions. An ordered array of voids on the anion sublattice in fluorite does not fit so neatly into this scheme of things. Crowdions may play a part in the formation of the void lattice, and stability may derive from other sources. (Auth.)
Gauge field entanglement in Kitaev's honeycomb model
Dóra, Balázs; Moessner, Roderich
2018-01-01
A spin fractionalizes into matter and gauge fermions in Kitaev's spin liquid on the honeycomb lattice. This follows from a Jordan-Wigner mapping to fermions, allowing for the construction of a minimal entropy ground-state wave function on the cylinder. We use this to calculate the entanglement entropy by choosing several distinct partitionings. First, by partitioning an infinite cylinder into two, the -ln2 topological entanglement entropy is reconfirmed. Second, the reduced density matrix of the gauge sector on the full cylinder is obtained after tracing out the matter degrees of freedom. This allows for evaluating the gauge entanglement Hamiltonian, which contains infinitely long-range correlations along the symmetry axis of the cylinder. The matter-gauge entanglement entropy is (Ny-1 )ln2 , with Ny the circumference of the cylinder. Third, the rules for calculating the gauge sector entanglement of any partition are determined. Rather small correctly chosen gauge partitions can still account for the topological entanglement entropy in spite of long-range correlations in the gauge entanglement Hamiltonian.
Exact partition functions for gauge theories on Rλ3
Directory of Open Access Journals (Sweden)
Jean-Christophe Wallet
2016-11-01
Full Text Available The noncommutative space Rλ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of Rλ3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.
Evolutionary algorithms applied to Landau-gauge fixing
International Nuclear Information System (INIS)
Markham, J.F.
1998-01-01
Current algorithms used to put a lattice gauge configuration into Landau gauge either suffer from the problem of critical slowing-down or involve an additions computational expense to overcome it. Evolutionary Algorithms (EAs), which have been widely applied to other global optimisation problems, may be of use in gauge fixing. Also, being global, they should not suffer from critical slowing-down as do local gradient based algorithms. We apply EA'S and also a Steepest Descent (SD) based method to the problem of Landau Gauge Fixing and compare their performance. (authors)
Directory of Open Access Journals (Sweden)
Nawasit Chotsaeng
2017-10-01
Full Text Available Seven allelochemicals, namely R-(+-limonene (A, vanillin (B, xanthoxyline (C, vanillic acid (D, linoleic acid (E, methyl linoleate (F, and (±-odorine (G, were investigated for their herbicidal activities on Chinese amaranth (Amaranthus tricolor L.. At 400 μM, xanthoxyline (C showed the greatest inhibitory activity on seed germination and seedling growth of the tested plant. Both vanillic acid (D and (±-odorine (G inhibited shoot growth, however, apart from xanthoxyline (C, only vanillic acid (D could inhibit root growth. Interestingly, R-(+-limonene (A lightly promoted root length. Other substances had no allelopathic effect on seed germination and seedling growth of the tested plant. To better understand and optimize the inhibitory effects of these natural herbicides, 21 samples of binary mixtures of these seven compounds were tested at 400 μM using 0.25% (v/v Tween® 80 as a control treatment. The results showed that binary mixtures of R-(+-limonene:xanthoxyline (A:C, vanillin:xanthoxyline (B:C, and xanthoxyline:linoleic acid (C:E exhibited strong allelopathic activities on germination and seedling growth of the tested plant, and the level of inhibition was close to the effect of xanthoxyline (C at 400 µM and was better than the effect of xanthoxyline (C at 200 µM. The inhibition was hypothesized to be from a synergistic interaction of each pair of alleochemicals. Mole ratios of each pair of allelochemicals ((A:C, (B:C, and (C:E were then evaluated, and the best ratios of the binary mixtures A:C, B:C and C:E were found to be 2:8, 2:8, and 4:6 respectively. These binary mixtures significantly inhibited germination and shoot and root growth of Chinese amaranth at low concentrations. The results reported here highlight a synergistic behavior of some allelochemicals which could be applied in the development of potential herbicides.
Groenewald, Berlizé; Chown, Steven L; Terblanche, John S
2014-10-01
The evolutionary origin and maintenance of discontinuous gas exchange (DGE) in tracheate arthropods are poorly understood and highly controversial. We investigated prioritization of abiotic factors in the gas exchange control cascade by examining oxygen, water and haemolymph pH regulation in the grasshopper Paracinema tricolor. Using a full-factorial design, grasshoppers were acclimated to hypoxic or hyperoxic (5% O2, 40% O2) gas conditions, or dehydrated or hydrated, whereafter their CO2 release was measured under a range of O2 and relative humidity (RH) conditions (5%, 21%, 40% O2 and 5%, 60%, 90% RH). DGE was significantly less common in grasshoppers acclimated to dehydrating conditions compared with the other acclimations (hypoxia, 98%; hyperoxia, 100%; hydrated, 100%; dehydrated, 67%). Acclimation to dehydrating conditions resulted in a significant decrease in haemolymph pH from 7.0±0.3 to 6.6±0.1 (mean ± s.d., P=0.018) and also significantly increased the open (O)-phase duration under 5% O2 treatment conditions (5% O2, 44.1±29.3 min; 40% O2, 15.8±8.0 min; 5% RH, 17.8±1.3 min; 60% RH, 24.0±9.7 min; 90% RH, 20.6±8.9 min). The observed acidosis could potentially explain the extension of the O-phase under low RH conditions, when it would perhaps seem more useful to reduce the O-phase to lower respiratory water loss. The results confirm that DGE occurrence and modulation are affected by multiple abiotic factors. A hierarchical framework for abiotic factors influencing DGE is proposed in which the following stressors are prioritized in decreasing order of importance: oxygen supply, CO2 excretion and pH modulation, oxidative damage protection and water savings. © 2014. Published by The Company of Biologists Ltd.
Real-time tricolor phase measuring profilometry based on CCD sensitivity calibration
Zhu, Lin; Cao, Yiping; He, Dawu; Chen, Cheng
2017-02-01
A real-time tricolor phase measuring profilometry (RTPMP) based on charge coupled device (CCD) sensitivity calibration is proposed. Only one colour fringe pattern whose red (R), green (G) and blue (B) components are, respectively, coded as three sinusoidal phase-shifting gratings with an equivalent shifting phase of 2π/3 is needed and sent to an appointed flash memory on a specialized digital light projector (SDLP). A specialized time-division multiplexing timing sequence actively controls the SDLP to project the fringe patterns in R, G and B channels sequentially onto the measured object in one over seventy-two of a second and meanwhile actively controls a high frame rate monochrome CCD camera to capture the corresponding deformed patterns synchronously with the SDLP. So the sufficient information for reconstructing the three-dimensional (3D) shape in one over twenty-four of a second is obtained. Due to the different spectral sensitivity of the CCD camera to RGB lights, the captured deformed patterns from R, G and B channels cannot share the same peak and valley, which will lead to lower accuracy or even failing to reconstruct the 3D shape. So a deformed pattern amending method based on CCD sensitivity calibration is developed to guarantee the accurate 3D reconstruction. The experimental results verify the feasibility of the proposed RTPMP method. The proposed RTPMP method can obtain the 3D shape at over the video frame rate of 24 frames per second, avoid the colour crosstalk completely and be effective for measuring real-time changing object.
Manifestly gauge invariant discretizations of the Schrödinger equation
International Nuclear Information System (INIS)
Halvorsen, Tore Gunnar; Kvaal, Simen
2012-01-01
Grid-based discretizations of the time dependent Schrödinger equation coupled to an external magnetic field are converted to manifest gauge invariant discretizations. This is done using generalizations of ideas used in classical lattice gauge theory, and the process defined is applicable to a large class of discretized differential operators. In particular, popular discretizations such as pseudospectral discretizations using the fast Fourier transform can be transformed to gauge invariant schemes. Also generic gauge invariant versions of generic time integration methods are considered, enabling completely gauge invariant calculations of the time dependent Schrödinger equation. Numerical examples illuminating the differences between a gauge invariant discretization and conventional discretization procedures are also presented. -- Highlights: ► We investigate the Schrödinger equation coupled to an external magnetic field. ► Any grid-based discretization is made trivially gauge invariant. ► An extension of classical lattice gauge theory.
International Nuclear Information System (INIS)
Thorn, C.B.
1988-01-01
The possibility of studying non-perturbative effects in string theory using a world sheet lattice is discussed. The light-cone lattice string model of Giles and Thorn is studied numerically to assess the accuracy of ''coarse lattice'' approximations. For free strings a 5 by 15 lattice seems sufficient to obtain better than 10% accuracy for the bosonic string tachyon mass squared. In addition a crude lattice model simulating string like interactions is studied to find out how easily a coarse lattice calculation can pick out effects such as bound states which would qualitatively alter the spectrum of the free theory. The role of the critical dimension in obtaining a finite continuum limit is discussed. Instead of the ''gaussian'' lattice model one could use one of the vertex models, whose continuum limit is the same as a gaussian model on a torus of any radius. Indeed, any critical 2 dimensional statistical system will have a stringy continuum limit in the absence of string interactions. 8 refs., 1 fig. , 9 tabs
Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus
2013-07-01
Building a universal quantum computer is a central goal of emerging quantum technologies, which has the potential to revolutionize science and technology. Unfortunately, this future does not seem to be very close at hand. However, quantum computers built for a special purpose, i.e. quantum simulators , are currently developed in many leading laboratories. Many schemes for quantum simulation have been proposed and realized using, e.g., ultracold atoms in optical lattices, ultracold trapped ions, atoms in arrays of cavities, atoms/ions in arrays of traps, quantum dots, photonic networks, or superconducting circuits. The progress in experimental implementations is more than spectacular. Particularly interesting are those systems that simulate quantum matter evolving in the presence of gauge fields. In the quantum simulation framework, the generated (synthetic) gauge fields may be Abelian, in which case they are the direct analogues of the vector potentials commonly associated with magnetic fields. In condensed matter physics, strong magnetic fields lead to a plethora of fascinating phenomena, among which the most paradigmatic is perhaps the quantum Hall effect. The standard Hall effect consists in the appearance of a transverse current, when a longitudinal voltage difference is applied to a conducting sample. For quasi-two-dimensional semiconductors at low temperatures placed in very strong magnetic fields, the transverse conductivity, the ratio between the transverse current and the applied voltage, exhibits perfect and robust quantization, independent for instance of the material or of its geometry. Such an integer quantum Hall effect, is now understood as a deep consequence of underlying topological order. Although such a system is an insulator in the bulk, it supports topologically robust edge excitations which carry the Hall current. The robustness of these chiral excitations against backscattering explains the universality of the quantum Hall effect. Another
Some approximate calculations in SU2 lattice mean field theory
International Nuclear Information System (INIS)
Hari Dass, N.D.; Lauwers, P.G.
1981-12-01
Approximate calculations are performed for small Wilson loops of SU 2 lattice gauge theory in mean field approximation. Reasonable agreement is found with Monte Carlo data. Ways of improving these calculations are discussed. (Auth.)
Working Group Report: Lattice Field Theory
Energy Technology Data Exchange (ETDEWEB)
Blum, T.; et al.,
2013-10-22
This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.
Gauge orbits and the Coulomb potential
International Nuclear Information System (INIS)
Greensite, J.
2009-01-01
If the color Coulomb potential is confining, then the Coulomb field energy of an isolated color charge is infinite on an infinite lattice, even if the usual UV divergence is lattice regulated. A simple criterion for Coulomb confinement is that the expectation value of timelike link variables vanishes in the Coulomb gauge, but it is unclear how this criterion is related to the spectrum of the corresponding Faddeev-Popov operator, which can be used to formulate a quite different criterion for Coulomb confinement. The purpose of this article is to connect the two seemingly different Coulomb confinement criteria, and explain the geometrical basis of the connection.
Phase transition in SO(3) gauge theory
International Nuclear Information System (INIS)
Datta, Saumen; Gavai, Rajiv V.
1998-01-01
The phase transition in SO(3) lattice gauge theory is investigated by Monte Carlo techniques with a view (i) to understand the relationship between the bulk transition and the deconfinement transition, and (ii) to resolve the current ambiguity about the nature of the high temperature phase. By introduction of a magnetic field, it was shown that the +ve and -ve values of a > correspond to the same phase. Studies on different sized lattices lead to the conclusion that in SO(3), there is only one transition, which is deconfining in nature. (author)
International Nuclear Information System (INIS)
Smith, L.
1975-01-01
An analysis is given of a number of variants of the basic lattice of the planned ISABELLE storage rings. The variants were formed by removing cells from the normal part of the lattice and juggling the lengths of magnets, cells, and insertions in order to maintain a rational relation of circumference to that of the AGS and approximately the same dispersion. Special insertions, correction windings, and the working line with nonlinear resonances are discussed
Status of the Fermilab lattice supercomputer project
International Nuclear Information System (INIS)
Mackenzie, P.; Eichten, E.; Hockney, G.
1988-10-01
Fermilab has completed construction of a sixteen node (320 megaflop peak speed) parallel computer for lattice gauge theory calculations. The architecture was designed to provide the highest possible cost effectiveness while maintaining a high level of programmability and constraining as little as possible the types of lattice problems which can be done on it. The machine is programmed in C. It is a prototype for a 256 node (5 gigaflop peak speed) computer which will be assembled this winter. 6 refs
Chiral Schwinger model and lattice fermionic regularizations
International Nuclear Information System (INIS)
Kieu, T.D.; Sen, D.; Xue, S.
1988-01-01
The chiral Schwinger model is studied on the lattice with use of Wilson fermions. The arbitrary mass term for the gauge boson is shown to originate from the arbitrariness of the Wilson parameter, which is required to avoid the doubling phenomenon on the lattice. The necessity for such a term is thus demonstrated in contrast to the mere admissibility as indicated by previous continuum calculations
Manipulating novel quantum phenomena using synthetic gauge fields
Zhang, Shao-Liang; Zhou, Qi
2017-11-01
The past few years have seen fascinating progress in the creation and utilization of synthetic gauge fields for charge-neutral ultracold atoms. Whereas the synthesis of gauge fields in itself is readily interesting, it is more exciting to explore the new era that will be brought by the interplay between synthetic gauge fields and many other degrees of freedom of highly tunable ultracold atoms. This topical review surveys recent developments in using synthetic gauge fields to manipulate novel quantum phenomena that are not easy to access in other systems. We first summarize current experimental methods of creating synthetic gauge fields, including the use of Raman schemes, shaken lattices, and Raman-dressed lattices. We then discuss how synthetic gauge fields bring new physics to non-interacting systems, including degenerate single-particle ground states, quartic dispersions, topological band structures in lattices, and synthetic dimensions. As for interacting systems, we focus on novel quantum many-body states and quantum macroscopic phenomena induced by interactions in the presence of unconventional single-particle dispersions. For bosons, we discuss how a quartic dispersion leads to non-condensed bosonic states at low temperatures and at the ground state. For fermions, we discuss chiral superfluids in the presence of attractive s-wave interaction, where high partial-wave interactions are not required. Finally, we discuss the challenges in current experiments, and conclude with an outlook for what new exciting developments synthetic gauge fields may bring us in the near future.
Abelian projection on the torus for general gauge groups
International Nuclear Information System (INIS)
Ford, C.; Tok, T.; Wipf, A.
1999-01-01
We consider Yang-Mills theories with general gauge groups G and twists of the four-torus. We find consistent boundary conditions for gauge fields in all instanton sectors. An extended abelian projection with respect to the Polyakov loop operator is presented, where A 0 is independent of time and in the Cartan subalgebra. Fundamental domains for the gauge fixed A 0 are constructed for arbitrary gauge groups. In the sectors with non-vanishing instanton number such gauge fixings are necessarily singular. The singularities can be restricted to Dirac strings joining magnetically charged defects. The magnetic charges of these monopoles take their values in the co-root lattice of the gauge group. We relate the magnetic charges of the defects and the windings of suitable Higgs fields about these defects to the instanton number
On the entanglement entropy for gauge theories
International Nuclear Information System (INIS)
Ghosh, Sudip; Soni, Ronak M; Trivedi, Sandip P.
2015-01-01
We propose a definition for the entanglement entropy of a gauge theory on a spatial lattice. Our definition applies to any subset of links in the lattice, and is valid for both Abelian and Non-Abelian gauge theories. For ℤ_N and U(1) theories, without matter, our definition agrees with a particular case of the definition given by Casini, Huerta and Rosabal. We also argue that in general, both for Abelian and Non-Abelian theories, our definition agrees with the entanglement entropy calculated using a definition of the replica trick. Our definition, however, does not agree with some standard ways to measure entanglement, like the number of Bell pairs which can be produced by entanglement distillation.
Differential geometry of group lattices
International Nuclear Information System (INIS)
Dimakis, Aristophanes; Mueller-Hoissen, Folkert
2003-01-01
In a series of publications we developed ''differential geometry'' on discrete sets based on concepts of noncommutative geometry. In particular, it turned out that first-order differential calculi (over the algebra of functions) on a discrete set are in bijective correspondence with digraph structures where the vertices are given by the elements of the set. A particular class of digraphs are Cayley graphs, also known as group lattices. They are determined by a discrete group G and a finite subset S. There is a distinguished subclass of ''bicovariant'' Cayley graphs with the property ad(S)S subset of S. We explore the properties of differential calculi which arise from Cayley graphs via the above correspondence. The first-order calculi extend to higher orders and then allow us to introduce further differential geometric structures. Furthermore, we explore the properties of ''discrete'' vector fields which describe deterministic flows on group lattices. A Lie derivative with respect to a discrete vector field and an inner product with forms is defined. The Lie-Cartan identity then holds on all forms for a certain subclass of discrete vector fields. We develop elements of gauge theory and construct an analog of the lattice gauge theory (Yang-Mills) action on an arbitrary group lattice. Also linear connections are considered and a simple geometric interpretation of the torsion is established. By taking a quotient with respect to some subgroup of the discrete group, generalized differential calculi associated with so-called Schreier diagrams are obtained
Directory of Open Access Journals (Sweden)
M. S. Gins
2016-01-01
Full Text Available At present there is numerous evidence of the antioxidant positive role in the defensive reaction that is capable to protect not only plants, but also humans against oxidative stress. Plant pigments such as natural dyes from leaves, flowers and fruits are known to have high antioxidant activity. Amaranth species A. tricolor L. cultivar ‘Early Splendor’ is a convenient model for the comparative studying of the formation processes of differently colored pigment composition in leaf tissues that differs in the ability to photosynthesize. Leaves of amaranth cultivar ‘Valentina’ were as a standard. The aim of the experiment was a comparative studying of the pigments content: amaranthine, chlorophyll a and b, carotenoids in the cauline leaves of amaranth cultivars ‘Valentina’ and ‘Early Splendor’, as well as in the red and green areas of the leaves. Analysis of the aqueous extract of red Early Splendor amaranth apical leaves showed the presence of betacyanin pigment - amaranthine, in the absorption spectrum in which peak was seen in the green region at 540 nm. In addition to the antioxidant amaranthine there are also antioxidants which might be phenolic glycosides, and ascorbic acid in the extract, the total content of which is almost twice as small as in the leaves of amaranth cauline of this cultivar. Yellow fraction was found in the ethanolic extract of red leaves. Its absorption spectrum had peaks in the blue region at 445 nm and 472 nm and a shoulder at 422 nm that indicated the presence of betaxanthin, betalamic acid or carotenoids. Water-soluble antioxidants - amaranthine and ascorbic acid were found in auline leaves of studied species. Their content in the leaves of Valentina cultivar was higher than in the leaves of cultivar ‘Early Splendor’, and the maximum level of photosynthetic pigments was found in ‘Early Splendor’ leaves. The obtained results showed that the amaranth is a promising source of pigments with the
Abelian gauge theories with tensor gauge fields
International Nuclear Information System (INIS)
Kapuscik, E.
1984-01-01
Gauge fields of arbitrary tensor type are introduced. In curved space-time the gravitational field serves as a bridge joining different gauge fields. The theory of second order tensor gauge field is developed on the basis of close analogy to Maxwell electrodynamics. The notion of tensor current is introduced and an experimental test of its detection is proposed. The main result consists in a coupled set of field equations representing a generalization of Maxwell theory in which the Einstein equivalence principle is not satisfied. (author)
A non-perturbative study of massive gauge theories
DEFF Research Database (Denmark)
Della Morte, Michele; Hernandez, Pilar
2013-01-01
and the lightest degrees of freedom are spin one vector particles with the same quantum numbers as the conserved current, we argue that the most general effective theory describing their low-energy dynamics must be a massive gauge theory. We present results of a exploratory numerical simulation of the model......We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists...... and find indications for the presence of a scaling region where both a triplet vector and a scalar remain light....
An improved single-plaquette gauge action
International Nuclear Information System (INIS)
Banerjee, D.; Bögli, M.; Holland, K.; Niedermayer, F.; Pepe, M.; Wenger, University; Wiese, UniversityJ.
2016-01-01
We describe and test a nonperturbatively improved single-plaquette lattice action for 4-d SU(2) and SU(3) pure gauge theory, which suppresses large fluctuations of the plaquette, without requiring the naive continuum limit for smooth fields. We tune the action parameters based on torelon masses in moderate cubic physical volumes, and investigate the size of cut-off effects in other physical quantities, including torelon masses in asymmetric spatial volumes, the static quark potential, and gradient flow observables. In 2-d O(N) models similarly constructed nearest-neighbor actions have led to a drastic reduction of cut-off effects, down to the permille level, in a wide variety of physical quantities. In the gauge theories, we find significant reduction of lattice artifacts, and for some observables, the coarsest lattice result is very close to the continuum value. We estimate an improvement factor of 40 compared to using the Wilson gauge action to achieve the same statistical accuracy and suppression of cut-off effects.
DEFF Research Database (Denmark)
2016-01-01
The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction....... The reinforcement members are each placed within a certain axial distance to the measurement grid with the axial distance being equal to or smaller than a factor times the grid spacing. The invention further relates to a multi-axial strain gauge such as a bi-axial strain gauge or a strain gauge rosette where each...... of the strain gauges comprises reinforcement members. The invention further relates to a method for manufacturing a strain gauge as mentioned above....
More on random-lattice fermions
International Nuclear Information System (INIS)
Kieu, T.D.; Institute for Advanced Study, Princeton, NJ; Markham, J.F.; Paranavitane, C.B.
1995-01-01
The lattice fermion determinants, in a given background gauge field, are evaluated for two different kinds of random lattices and compared to those of naive and wilson fermions in the continuum limit. While the fermion doubling is confirmed on one kind of lattices, there is positive evidence that it may be absent for the other, at least for vector interactions in two dimensions. Combined with previous studies, arbitrary randomness by itself is shown to be not a sufficient condition to remove the fermion doublers. 8 refs., 3 figs
The lattice spinor QED Hamiltonian critique of the continuous space approach
International Nuclear Information System (INIS)
Sidorov, A.V.; Zastavenko, L.G.
1993-01-01
We give the irreproachable, from the point of view of gauge invariance, derivation of the lattice spinor QED Hamiltonian. Our QED Hamiltonian is manifestly gauge invariant. We point out important defects of the continuous space formulation of the QED that make, in our opinion, the lattice QED obviously preferable to the continuous space QED. We state that it is impossible to give a continuous space QED formulation which is compatible with the condition of gauge invariance. 17 refs
Magnetic monopoles, center vortices, confinement and topology of gauge fields
International Nuclear Information System (INIS)
Reinhardt, H.; Engelhardt, M.; Langfeld, K.; Quandt, M.; Schaefke, A.
2000-01-01
The vortex picture of confinement is studied. The deconfinement phase transition is explained as a transition from a phase in which vortices percolate to a phase of small vortices. Lattice results are presented in support of this scenario. Furthermore the topological properties of magnetic monopoles and center vortices arising, respectively, in Abelian and center gauges are studied in continuum Yang-Mills-theory. For this purpose the continuum analog of the maximum center gauge is constructed
Magnetic Monopoles, Center Vortices, Confinement and Topology of Gauge Fields
Reinhardt, H.; Engelhardt, M.; Langfeld, K.; Quandt, M.; Sch"afke, A.
1999-01-01
The vortex picture of confinement is studied. The deconfinement phase transition is explained as a transition from a phase in which vortices percolate to a phase of small vortices. Lattice results are presented in support of this scenario. Furthermore the topological properties of magnetic monopoles and center vortices arising, respectively, in Abelian and center gauges are studied in continuum Yang-Mills-theory. For this purpose the continuum analog of the maximum center gauge is constructed.
Monte Carlo studies of non-Abelian gauge theories
International Nuclear Information System (INIS)
Creutz, M.
1980-05-01
After some general remarks on the efficiency of various Monte Carlo algorithms for gauge theories, the calculation of the asymptotic freedom scales of SU(2) and SU(3) gauge theories in the absence of quarks was discussed. There are large numerical factors between these scales when defined in terms of the bare coupling of the lattice theory or when defined in terms of the physical force between external sources
Renormalization of Supersymmetric QCD on the Lattice
Costa, Marios; Panagopoulos, Haralambos
2018-03-01
We perform a pilot study of the perturbative renormalization of a Supersymmetric gauge theory with matter fields on the lattice. As a specific example, we consider Supersymmetric N=1 QCD (SQCD). We study the self-energies of all particles which appear in this theory, as well as the renormalization of the coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-point Green's functions using both dimensional and lattice regularizations. Our lattice formulation involves theWilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for scalar fields (squarks) we use naive discretization. The gauge group that we consider is SU(Nc), while the number of colors, Nc, the number of flavors, Nf, and the gauge parameter, α, are left unspecified. We obtain analytic expressions for the renormalization factors of the coupling constant (Zg) and of the quark (ZΨ), gluon (Zu), gluino (Zλ), squark (ZA±), and ghost (Zc) fields on the lattice. We also compute the critical values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in order to disentangle the components of the squark field via an additional finite renormalization.
Supersymmetry and the lattice: A reconciliation?
International Nuclear Information System (INIS)
Curci, G.
1987-01-01
Contrary to common prejudice, we claim that supersymmetric gauge theories can be studied non-perturbatively on the lattice (by using known ideas and techniques). We discuss in detail super-Yang-Mills theory and propose some explicit measurements which are both physically interesting and within present or near-future computer capabilities. (orig.)
Lattice QCD simulation of meson exchange forces
International Nuclear Information System (INIS)
Richards, D.G.; Sinclair, D.K.; Sivers, D.
1990-01-01
We present the formalism for investigating the bar Qq bar Qq system in lattice QCD. This system serves as a model for describing exchange forces between heavy, static hadrons. We use this formalism to calculate the exchange potential from gauge configurations which incorporate the effects of dynamical quarks. Our data can be interpreted as giving preliminary results on the range of the nuclear force
Quantum Link Models and Quantum Simulation of Gauge Theories
International Nuclear Information System (INIS)
Wiese, U.J.
2015-01-01
This lecture is about Quantum Link Models and Quantum Simulation of Gauge Theories. The lecture consists out of 4 parts. The first part gives a brief history of Computing and Pioneers of Quantum Computing and Quantum Simulations of Quantum Spin Systems are introduced. The 2nd lecture is about High-Temperature Superconductors versus QCD, Wilson’s Lattice QCD and Abelian Quantum Link Models. The 3rd lecture deals with Quantum Simulators for Abelian Lattice Gauge Theories and Non-Abelian Quantum Link Models. The last part of the lecture discusses Quantum Simulators mimicking ‘Nuclear’ physics and the continuum limit of D-Theorie models. (nowak)
N=4 supersymmetry on a space-time lattice
DEFF Research Database (Denmark)
Catterall, Simon; Schaich, David; Damgaard, Poul H.
2014-01-01
Maximally supersymmetric Yang–Mills theory in four dimensions can be formulated on a space-time lattice while exactly preserving a single supersymmetry. Here we explore in detail this lattice theory, paying particular attention to its strongly coupled regime. Targeting a theory with gauge group SU...... behind a lattice formulation based on the SU(N) gauge group with the expected apparently conformal behavior at both weak and strong coupling....
Synthesizing lattice structures in phase space
International Nuclear Information System (INIS)
Guo, Lingzhen; Marthaler, Michael
2016-01-01
In one dimensional systems, it is possible to create periodic structures in phase space through driving, which is called phase space crystals (Guo et al 2013 Phys. Rev. Lett. 111 205303). This is possible even if for particles trapped in a potential without periodicity. In this paper we discuss ultracold atoms in a driven optical lattice, which is a realization of such a phase space crystals. The corresponding lattice structure in phase space is complex and contains rich physics. A phase space lattice differs fundamentally from a lattice in real space, because its coordinate system, i.e., phase space, has a noncommutative geometry, which naturally provides an artificial gauge (magnetic) field. We study the behavior of the quasienergy band structure and investigate the dissipative dynamics. Synthesizing lattice structures in phase space provides a new platform to simulate the condensed matter phenomena and study the intriguing phenomena of driven systems far away from equilibrium. (paper)
Quantum Operator Design for Lattice Baryon Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Lichtl, Adam [Carnegie Mellon Univ., Pittsburgh, PA (United States)
2006-09-07
A previously-proposed method of constructing spatially-extended gauge-invariant three-quark operators for use in Monte Carlo lattice QCD calculations is tested, and a methodology for using these operators to extract the energies of a large number of baryon states is developed. This work is part of a long-term project undertaken by the Lattice Hadron Physics Collaboration to carry out a first-principles calculation of the low-lying spectrum of QCD. The operators are assemblages of smeared and gauge-covariantly-displaced quark fields having a definite flavor structure. The importance of using smeared fields is dramatically demonstrated. It is found that quark field smearing greatly reduces the couplings to the unwanted high-lying short-wavelength modes, while gauge field smearing drastically reduces the statistical noise in the extended operators.
Vacuum polarization and chiral lattice fermions
International Nuclear Information System (INIS)
Randjbar Daemi, S.; Strathdee, J.
1995-09-01
The vacuum polarization due to chiral fermions on a 4-dimensional Euclidean lattice is calculated according to the overlap prescription. The fermions are coupled to weak and slowly varying background gauge and Higgs fields, and the polarization tensor is given by second order perturbation theory. In this order the overlap constitutes a gauge invariant regularization of the fermion vacuum amplitude. Its low energy - long wavelength behaviour can be computed explicitly and we verify that it coincides with the Feynman graph result obtainable, for example, by dimensional regularization of continuum gauge theory. In particular, the Standard Model Callan-Symanzik, RG functions are recovered. Moreover, there are no residual lattice artefacts such as a dependence on Wilson-type mass parameters. (author). 16 refs
A gauge-invariant reorganization of thermal gauge theory
Energy Technology Data Exchange (ETDEWEB)
Su, Nan
2010-07-01
This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m{sub D}/T, m{sub f}/T and e{sup 2}, where m{sub D} and m{sub f} are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e {proportional_to} 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m{sub D}/T and g{sup 2}, where m{sub D} is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T {proportional_to} 2 - 3 T{sub c}. The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)
A gauge-invariant reorganization of thermal gauge theory
International Nuclear Information System (INIS)
Su, Nan
2010-01-01
This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m D /T, m f /T and e 2 , where m D and m f are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e ∝ 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m D /T and g 2 , where m D is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T ∝ 2 - 3 T c . The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)
Gauge symmetry from decoupling
Directory of Open Access Journals (Sweden)
C. Wetterich
2017-02-01
Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1975-10-01
Stora's analysis is continued in discussing the nonabelian (Yang-Mills) gauge field models (G.F.M.). The gauge independence of the physical scattering operator is discussed in some details and the connection between its unitary and the Slavnov symmetry outlined. Only the models involving semisimple gauge groups are considered. This greatly simplifies the analysis of the possible quantum corrections to the Quantum Action Principle which is reduced to the study of the cohomology group of the Lie algebra characterizing the gauge theory. The discussion is at the classical level for the algebraic properties of the SU(2) Higgs-Kibble-Englert-Brout-Faddeev-Popov lagrangian and its invariance under Slavnov identity transformations is exhibited. The renormalization of the Slavnov identity in the G.M.F. involving semisimple gauge groups is studied. The unitary and gauge independence of the physical S operator in the SU(2) H.K. model is dealt with [fr
International Nuclear Information System (INIS)
Lassig, C.C.; Joshi, G.C.
1995-01-01
The nonassociativity of the octonion algebra makes necessitates a bimodule representation, in which each element is represented by a left and a right multiplier. This representation can then be used to generate gauge transformations for the purpose of constructing a field theory symmetric under a gauged octonion algebra, the nonassociativity of which appears as a failure of the representation to close, and hence produces new interactions in the gauge field kinetic term of the symmetric Lagrangian. 5 refs., 1 tab
Introduction to gauge theories
International Nuclear Information System (INIS)
Okun, L.B.
1984-01-01
These lecture notes contain the text of five lectures and a Supplement. The lectures were given at the JINR-CERN School of Physics, Tabor, Czechoslovakia, 5-18 June 1983. The subgect of the lecinvariancetures: gauge of electromagnetic and weak interactions, higgs and supersymmetric particles. The Supplement contains reprints (or excerpts) of some classical papers on gauge invariance by V. Fock, F. London, O. Klein and H. Weyl, in which the concept of gauge invariance was introduced and developed
International Nuclear Information System (INIS)
Greensite, J.; Olejnik, S.
2003-01-01
We study the phase structure of SU(2) gauge theories at zero and high temperature, with and without scalar matter fields, in terms of the symmetric/broken realization of the remnant gauge symmetry which exists after fixing to Coulomb gauge. The symmetric realization is associated with a linearly rising color Coulomb potential (which we compute numerically), and is a necessary but not sufficient condition for confinement.
Entanglement entropy and nonabelian gauge symmetry
International Nuclear Information System (INIS)
Donnelly, William
2014-01-01
Entanglement entropy has proven to be an extremely useful concept in quantum field theory. Gauge theories are of particular interest, but for these systems the entanglement entropy is not clearly defined because the physical Hilbert space does not factor as a tensor product according to regions of space. Here we review a definition of entanglement entropy that applies to abelian and nonabelian lattice gauge theories. This entanglement entropy is obtained by embedding the physical Hilbert space into a product of Hilbert spaces associated to regions with boundary. The latter Hilbert spaces include degrees of freedom on the entangling surface that transform like surface charges under the gauge symmetry. These degrees of freedom are shown to contribute to the entanglement entropy, and the form of this contribution is determined by the gauge symmetry. We test our definition using the example of two-dimensional Yang–Mills theory, and find that it agrees with the thermal entropy in de Sitter space, and with the results of the Euclidean replica trick. We discuss the possible implications of this result for more complicated gauge theories, including quantum gravity. (paper)
Four-dimensional Ashkin-Teller gauge theory
International Nuclear Information System (INIS)
Alcaraz, F.C.; Jacobs, L.
1983-01-01
The authors construct and analyze a lattice field theory of two Z 2 gauge fields which interact in a minimal gauge-invariant fashion. Although the theory presented here, a generalization of the two-dimensional Ashkin-Teller spin system, has no formal continuum limit, it is found that it has an electrodynamicslike phase similar to that observed in general Z/sub N/ theories for N> or =4. This model is probably the simplest generalization of the conventional Z 2 pure gauge theory which has a massless phase separated from the strong- and weak-coupling regions by lines of second-order phase transitions
Simulating plasma instabilities in SU(3) gauge theory
International Nuclear Information System (INIS)
Berges, Juergen; Gelfand, Daniil; Scheffler, Sebastian; Sexty, Denes
2009-01-01
We compute nonequilibrium dynamics of plasma instabilities in classical-statistical lattice gauge theory in 3+1 dimensions. The simulations are done for the first time for the SU(3) gauge group relevant for quantum chromodynamics. We find a qualitatively similar behavior as compared to earlier investigations in SU(2) gauge theory. The characteristic growth rates are about 25% lower for given energy density, such that the isotropization process is slower. Measured in units of the characteristic screening mass, the primary growth rate is independent of the number of colors.
Implementing general gauge mediation
International Nuclear Information System (INIS)
Carpenter, Linda M.; Dine, Michael; Festuccia, Guido; Mason, John D.
2009-01-01
Recently there has been much progress in building models of gauge mediation, often with predictions different than those of minimal gauge mediation. Meade, Seiberg, and Shih have characterized the most general spectrum which can arise in gauge-mediated models. We discuss some of the challenges of building models of general gauge mediation, especially the problem of messenger parity and issues connected with R symmetry breaking and CP violation. We build a variety of viable, weakly coupled models which exhibit some or all of the possible low energy parameters.
International Nuclear Information System (INIS)
Krasnikov, N.V.
1987-01-01
Nonlocal gauge theories including gravity are considered. It is shown that the introduction of the additional nonlocal interaction makes γ 5 -anomalous theories meaningful. The introduction of such interaction leads to macrocausal unitary theory, which describes the interaction of massive vector fields with fermion fields. It is shown that nonlocal gauge theories with nonlocal scale Λ nl ≤(1-10) TeV can solve the gauge hierarchy problem. An example of nonlinear grand unified gauge model in which topologically nontrivial finite energy monopole solutions are absent is found
Parastatistics and gauge symmetries
International Nuclear Information System (INIS)
Govorkov, A.B.
1982-01-01
A possible formulation of gauge symmetries in the Green parafield theory is analysed and the SO(3) gauge symmetry is shown to be on a distinct status. The Greenberg paraquark hypothesis turns out to be not equivalent to the hypothesis of quark colour SU(3)sub(c) symmetry. Specific features of the gauge SO(3) symmetry are discussed, and a possible scheme where it is an exact subgroup of the broken SU(3)sub(c) symmetry is proposed. The direct formulation of the gauge principle for the parafield represented by quaternions is also discussed
A new gauge for supersymmetric abelian gauge theories
International Nuclear Information System (INIS)
Smith, A.W.; Barcelos Neto, J.
1984-01-01
A new gauge for supersymmetric abelian gauge theories is presented. It is shown that this new gauge allows us to obtain terms which usually come as radiative corrections to the supersymmetric abelian gauge theories when one uses the Wess-Zumino gauge. (Author) [pt
A lattice QCD calculation of the transverse decay constant of the b1(1235) meson
International Nuclear Information System (INIS)
Jansen, K.; McNeile, C.; Michael, C.; Urbach, C.
2009-10-01
We review various B meson decays that require knowledge of the transverse decay constant of the b 1 (1235) meson. We report on an exploratory lattice QCD calculation of the transverse decay constant of the b 1 meson. The lattice QCD calculations used unquenched gauge configurations, at two lattice spacings, generated with two flavours of sea quarks. The twisted mass formalism is used. (orig.)
Schwinger mechanism in linear covariant gauges
Aguilar, A. C.; Binosi, D.; Papavassiliou, J.
2017-02-01
In this work we explore the applicability of a special gluon mass generating mechanism in the context of the linear covariant gauges. In particular, the implementation of the Schwinger mechanism in pure Yang-Mills theories hinges crucially on the inclusion of massless bound-state excitations in the fundamental nonperturbative vertices of the theory. The dynamical formation of such excitations is controlled by a homogeneous linear Bethe-Salpeter equation, whose nontrivial solutions have been studied only in the Landau gauge. Here, the form of this integral equation is derived for general values of the gauge-fixing parameter, under a number of simplifying assumptions that reduce the degree of technical complexity. The kernel of this equation consists of fully dressed gluon propagators, for which recent lattice data are used as input, and of three-gluon vertices dressed by a single form factor, which is modeled by means of certain physically motivated Ansätze. The gauge-dependent terms contributing to this kernel impose considerable restrictions on the infrared behavior of the vertex form factor; specifically, only infrared finite Ansätze are compatible with the existence of nontrivial solutions. When such Ansätze are employed, the numerical study of the integral equation reveals a continuity in the type of solutions as one varies the gauge-fixing parameter, indicating a smooth departure from the Landau gauge. Instead, the logarithmically divergent form factor displaying the characteristic "zero crossing," while perfectly consistent in the Landau gauge, has to undergo a dramatic qualitative transformation away from it, in order to yield acceptable solutions. The possible implications of these results are briefly discussed.
Aspects of confinement in QCD from lattice simulations
Energy Technology Data Exchange (ETDEWEB)
Spielmann, Daniel
2011-01-12
We study confinement in quantum chromodynamics via numerical simulations in the framework of lattice gauge theory. In Landau gauge, the mechanism of confinement is related to the infrared behavior of the ghost and gluon propagators via the Gribov-Zwanziger and Kugo- Ojima scenarios. These scenarios entail a scaling behavior. Functional methods in the continuum allow both for this behavior and for decoupling solutions, while lattice simulations in three and four dimensions yield only the latter. A possible explanation for this mismatch is based on limitations of standard lattice gauge fixing methods. Hence, we investigate a number of alternative gauge fixing algorithms in pure SU(2) gauge theory in two, three and four dimensions. We find that stochastic quantization yields an infrared behavior of the propagators in agreement with the results of standard procedures, even though the Faddeev-Popov operator spectrum indicates some different properties. In the strong-coupling limit, our results challenge the standard picture. In particular, we find in a non-perturbative completion of Landau gauge an enormous effect of the Gribov ambiguity. It entails that no subset of infrared solutions can be excluded yet. Moreover, we study the gluon propagator with free boundary conditions. On large lattices, the results mostly show the standard behavior. We also examine non-periodic gauge transformations. Furthermore, we analyze two topics related to the phase diagram of QCD. First, we explore the sign problem for fermions on the lattice by simulating the three-dimensional Thirring model with a complex Langevin equation. The algorithm succeeds in yielding a 'Silver Blaze' behavior of observables, but it does not reliably describe the onset to a phase with non-zero density. Second, we determine properties of the deconfinement phase transition of pure SU(2) gauge theory in 2+1 dimensions, like the critical temperature, by means of the gluon propagator in Landau gauge. (orig.)
Aspects of confinement in QCD from lattice simulations
International Nuclear Information System (INIS)
Spielmann, Daniel
2011-01-01
We study confinement in quantum chromodynamics via numerical simulations in the framework of lattice gauge theory. In Landau gauge, the mechanism of confinement is related to the infrared behavior of the ghost and gluon propagators via the Gribov-Zwanziger and Kugo- Ojima scenarios. These scenarios entail a scaling behavior. Functional methods in the continuum allow both for this behavior and for decoupling solutions, while lattice simulations in three and four dimensions yield only the latter. A possible explanation for this mismatch is based on limitations of standard lattice gauge fixing methods. Hence, we investigate a number of alternative gauge fixing algorithms in pure SU(2) gauge theory in two, three and four dimensions. We find that stochastic quantization yields an infrared behavior of the propagators in agreement with the results of standard procedures, even though the Faddeev-Popov operator spectrum indicates some different properties. In the strong-coupling limit, our results challenge the standard picture. In particular, we find in a non-perturbative completion of Landau gauge an enormous effect of the Gribov ambiguity. It entails that no subset of infrared solutions can be excluded yet. Moreover, we study the gluon propagator with free boundary conditions. On large lattices, the results mostly show the standard behavior. We also examine non-periodic gauge transformations. Furthermore, we analyze two topics related to the phase diagram of QCD. First, we explore the sign problem for fermions on the lattice by simulating the three-dimensional Thirring model with a complex Langevin equation. The algorithm succeeds in yielding a 'Silver Blaze' behavior of observables, but it does not reliably describe the onset to a phase with non-zero density. Second, we determine properties of the deconfinement phase transition of pure SU(2) gauge theory in 2+1 dimensions, like the critical temperature, by means of the gluon propagator in Landau gauge. (orig.)
Directory of Open Access Journals (Sweden)
Xueran Geng
2015-06-01
Full Text Available An 86-kDa homodimeric angiotensin I-converting enzyme (ACE inhibitory protein designated as LTP was isolated from fruit bodies of the mushroom Leucopaxillus tricolor. The isolation procedure involved ultrafiltration through a membrane with a molecular weight cutoff of 10-kDa, ion exchange chromatography on Q-Sepharose, and finally fast protein liquid chromatography-gel filtration on Superdex 75. LTP exhibited an IC50 value of 1.64 mg∙mL−1 for its ACE inhibitory activity. The unique N-terminal amino acid sequence of LTP was disclosed by Edman degradation to be DGPTMHRQAVADFKQ. In addition, seven internal sequences of LTP were elucidated by liquid chromatography-tandem mass spectrometry (LC-MS/MS analysis. Results of the Lineweaver-Burk plot suggested that LTP competitively inhibited ACE. Both LTP and the water extract of L. tricolor exhibited a clear antihypertensive effect on spontaneously hypertensive rats.
Higgs compositeness in Sp(2N) gauge theories — The pure gauge model
Bennett, Ed; Ki Hong, Deog; Lee, Jong-Wan; David Lin, C.-J.; Lucini, Biagio; Piai, Maurizio; Vadacchino, Davide
2018-03-01
As a first step in the study of Sp(2N) composite Higgs models, we obtained a set of novel numerical results for the pure gauge Sp(4) lattice theory in 3+1 space-time dimensions. Results for the continuum extrapolations of the string tension and the glueball mass spectrum are presented and their values are compared with the same quantities in neighbouring SU(N) models.
Energy Technology Data Exchange (ETDEWEB)
Bartholomew, M. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-01-01
To improve the quantitative description of precipitation processes in climate models, the Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed rain gauges located near disdrometers (DISD and VDIS data streams). This handbook deals specifically with the rain gauges that make the observations for the RAIN data stream. Other precipitation observations are made by the surface meteorology instrument suite (i.e., MET data stream).
Nonabelian generalized gauge multiplets
International Nuclear Information System (INIS)
Lindstroem, Ulf; Zabzine, Maxim; Rocek, Martin; Ryb, Itai; Unge, Rikard von
2009-01-01
We give the nonabelian extension of the newly discovered N = (2, 2) two-dimensional vector multiplets. These can be used to gauge symmetries of sigma models on generalized Kaehler geometries. Starting from the transformation rule for the nonabelian case we find covariant derivatives and gauge covariant field-strengths and write their actions in N = (2, 2) and N = (1, 1) superspace.
DEFF Research Database (Denmark)
2017-01-01
The invention relates to a strain gauge of a carrier layer and a meandering measurement grid (101) positioned on the carrier layer, wherein the measurement grid comprises a number of measurement grid sections placed side by side with gaps in between, and a number of end loops (106) interconnecting...... relates to a method for manufacturing a strain gauge as mentioned above....
International Nuclear Information System (INIS)
Kikkawa, Keiji; Nakanishi, Noboru; Nariai, Hidekazu
1983-01-01
These proceedings contain the articles presented at the named symposium. They deal with geometrical aspects of gauge theory and gravitation, special problems in gauge theories, quantum field theory in curved space-time, quantum gravity, supersymmetry including supergravity, and grand unification. See hints under the relevant topics. (HSI)
The vortex-finding property of maximal center (and other) gauges
International Nuclear Information System (INIS)
Faber, M.; Greensite, J.; Olejnik, S.; Yamada, D.
1999-01-01
The authors argue that the vortex-finding property of maximal center gauge, i.e. the ability of this gauge to locate center vortices inserted by hand on any given lattice, is the key to its success in extracting the vortex content of thermalized lattice configurations. The authors explain how this property comes about, and why it is expected not only in maximal center gauge, but also in an infinite class of gauge conditions based on adjoint-representation link variables. In principle, the vortex-finding property can be foiled by Gribov copies. This fact is relevant to a gauge-fixing procedure devised by Kovacs and Tomboulis, where they show that the loss of center dominance, found in their procedure, is explained by a corresponding loss of the vortex-finding property. The dependence of center dominance on the vortex-finding property is demonstrated numerically in a number of other gauges
Putra, Rayshatico Perdana; Wulandari, Sri; Fauziah, Yuslim
2017-01-01
This study was conducted to determine the effect of nutrient concentrations on plant growth AB Mix the spinach with hydroponic techniques wick system as well as the design for the development of learning handout on SMP IPA in March-May 2016. The study was carried out by two phases: an experiment: the effect of nutrient concentrations AB Mix the spinach plant growth (Amaranthus tricolor L.) with hydroponic techniques and the wick system design stage handout science teaching junior high school....
SU(2) Gauge Theory with Two Fundamental Flavours
DEFF Research Database (Denmark)
Arthur, Rudy; Drach, Vincent; Hansen, Martin
2016-01-01
We investigate the continuum spectrum of the SU(2) gauge theory with $N_f=2$ flavours of fermions in the fundamental representation. This model provides a minimal template which is ideal for a wide class of Standard Model extensions featuring novel strong dynamics that range from composite...... (Goldstone) Higgs theories to several intriguing types of dark matter candidates, such as the SIMPs. We improve our previous lattice analysis [1] by adding more data at light quark masses, at two additional lattice spacings, by determining the lattice cutoff via a Wilson flow measure of the $w_0$ parameter...
Coulomb branches for rank 2 gauge groups in 3dN=4 gauge theories
Energy Technology Data Exchange (ETDEWEB)
Hanany, Amihay [Theoretical Physics Group, Imperial College London,Prince Consort Road, London, SW7 2AZ (United Kingdom); Sperling, Marcus [Institut für Theoretische Physik, Leibniz Universität Hannover,Appelstraße 2, 30167 Hannover (Germany)
2016-08-02
The Coulomb branch of 3-dimensional N=4 gauge theories is the space of bare and dressed BPS monopole operators. We utilise the conformal dimension to define a fan which, upon intersection with the weight lattice of a GNO-dual group, gives rise to a collection of semi-groups. It turns out that the unique Hilbert bases of these semi-groups are a sufficient, finite set of monopole operators which generate the entire chiral ring. Moreover, the knowledge of the properties of the minimal generators is enough to compute the Hilbert series explicitly. The techniques of this paper allow an efficient evaluation of the Hilbert series for general rank gauge groups. As an application, we provide various examples for all rank two gauge groups to demonstrate the novel interpretation.
Center vortex properties in the Laplace center gauge of SU(2) Yang-Mills theory
Langfeld, K.; Reinhardt, H.; Schafke, A.
2001-01-01
Resorting to the the Laplace center gauge (LCG) and to the Maximal-center gauge (MCG), respectively, confining vortices are defined by center projection in either case. Vortex properties are investigated in the continuum limit of SU(2) lattice gauge theory. The vortex (area) density and the density of vortex crossing points are investigated. In the case of MCG, both densities are physical quantities in the continuum limit. By contrast, in the LCG the piercing as well as the crossing points li...
International Nuclear Information System (INIS)
Linauskas, S.H.
1988-08-01
Field studies to measure actual radiation exposures of operators of commercial moisture-density gauges were undertaken in several regions of Canada. Newly developed bubble detector dosimeter technology and conventional dosimetry such as thermoluminescent dosimeters (TLDs), integrating electronic dosimeters (DRDs), and CR-39 neutron track-etch detectors were used to estimate the doses received by 23 moisture-density gauge operators and maintenance staff. These radiation dose estimates were supported by mapping radiation fields and accounting for the time an operator was near a gauge. Major findings indicate that gauge maintenance and servicing workers were more likely than gauge operators to receive exposures above the level of 5 mSv, and that neutron doses were roughly the same as gamma doses. Gauge operators receive approximately 75% of their dose when transporting and carrying the gauge. Dose to their hands is similar to the dose to their trunks, but the dose to their feet area is 6 to 30 times higher. Gamma radiation is the primary source of radiation contributing to operator dose
International Nuclear Information System (INIS)
O'Raifeartaigh, L.
1979-01-01
This review describes the principles of hidden gauge symmetry and of its application to the fundamental interactions. The emphasis is on the structure of the theory rather than on the technical details and, in order to emphasise the structure, gauge symmetry and hidden symmetry are first treated as independent phenomena before being combined into a single (hidden gauge symmetric) theory. The main application of the theory is to the weak and electromagnetic interactions of the elementary particles, and although models are used for comparison with experiment and for illustration, emphasis is placed on those features of the application which are model-independent. (author)
Microcomputerized neutron moisture gauge
International Nuclear Information System (INIS)
Liu Shengkang; Mei Yu
1987-01-01
A microcomputerized neutron moisture gauge is introduced. This gauge consists of a neutron moisture sensor and instruments. It is developed from the neutron moisture gauge for concrete mixer. A TECH-81 single card microcomputer is used for count, computation and display. It has the function of computing compensated quantity of sand. It can acquire the data from several neutron sensors by the multichanneling sampling, therefore it can measure moisture values of sand in several hoppers simultaneously. The precision of the static state calibration curve is 0.24% wt. The error limits of the dynamic state check is < 0.50% wt
International Nuclear Information System (INIS)
Krejci, M.; Pilat, M.; Stulik, P.
1977-01-01
Equipment was developed measuring the heavy water level in the TR-0 reactor core within an accuracy of several hundredths of a millimeter in a range of around 3.5 m and at a temperature of up to 90 degC. The equipment uses a vibrating needle contact as a high sensitivity level gauge and a servomechanical system with a motion screw carrying the gauge for monitoring and measuring the level in the desired range. The advantage of the unique level gauge consists in that that the transducer converts the measured level position to an electric signal, ie., pulse width, with high sensitivity and without hysteresis. (Kr)
International Nuclear Information System (INIS)
Meade, Patrick; Seiberg, Nathan; Shih, David
2009-01-01
We give a general definition of gauge mediated supersymmetry breaking which encompasses all the known gauge mediation models. In particular, it includes both models with messengers as well as direct mediation models. A formalism for computing the soft terms in the generic model is presented. Such a formalism is necessary in strongly-coupled direct mediation models where perturbation theory cannot be used. It allows us to identify features of the entire class of gauge mediation models and to distinguish them from specific signatures of various subclasses. (author)
Extended Josephson Relation and Abrikosov lattice deformation
International Nuclear Information System (INIS)
Matlock, Peter
2012-01-01
From the point of view of time-dependent Ginzburg Landau (TDGL) theory, a Josephson-like relation is derived for an Abrikosov vortex lattice accelerated and deformed by applied fields. Beginning with a review of the Josephson Relation derived from the two ingredients of a lattice-kinematics assumption in TDGL theory and gauge invariance, we extend the construction to accommodate a time-dependent applied magnetic field, a Floating-Kernel formulation of normal current, and finally lattice deformation due to the electric field and inertial effects of vortex-lattice motion. The resulting Josephson-like relation, which we call an Extended Josephson Relation, applies to a much wider set of experimental conditions than the original Josephson Relation, and is explicitly compatible with the considerations of TDGL theory.
Arbitrary spin fermions on the lattice
International Nuclear Information System (INIS)
Bullinaria, J.A.
1985-01-01
Lattice actions are constructed for free Dirac and Majorana fermions of arbitrary (half-integer) spin various extensions of the spin 1/2 Kogut-Susskind, Kaehler and Wilson formalisms. In each case, the spectrum degeneracy and preservation of gauge invariance is analysed, and the equivalence or non-equivalence to previously constructed actions is determined. The Kogut-Susskind and lattice Kaehler actions are then written explicitly in terms of spinors to demonstrate how the degenerate fermions couple on the lattice and how the original spinorial actions are recovered (or to recovered) in the continuum limit. Both degenerate and non-degenerate mass terms are dealt with and the various U(1) invariances of the lattice actions are pointed out
The ghost propagator in Coulomb gauge
International Nuclear Information System (INIS)
Watson, P.; Reinhardt, H.
2011-01-01
We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until 'forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.
International Nuclear Information System (INIS)
Cabibbo, N.
1983-01-01
This chapter attempts to present some of the fundamental geometrical ideas at the basis of gauge theories. Describes Dirac Monopoles and discusses those ideas that are not usually found in more ''utilitarian'' presentations which concentrate on QCD or on the Glashow-Salam-Weinberg model. This topic was chosen because of the announcement of the possible detection of a Dirac monopole. The existence of monopoles depends on topological features of gauge theories (i.e., on global properties of field configurations which are unique to gauge theories). Discusses global symmetry-local symmetry; the connection; path dependence and the gauge fields; topology and monopoles; the case of SU(3) x U(1); and the 't Hooft-Polyakov monopole
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.; Tiomno, J.
1979-01-01
The construction of field strength copies without any gauge constraint is discussed. Several examples are given, one of which is not only a field strength copy but also (at the same time) a 'current copy'. (author) [pt
Nuclear radiation gauge standard
International Nuclear Information System (INIS)
Berry, R.L.
1977-01-01
A hydrophobic standard for calibrating nuclear radiation moisture gauges is described, comprising a body of superposed interleaved thin layers of a moderating material containing hydrogen in the molecular structure thereof and of a substantially non-moderating material
International Nuclear Information System (INIS)
Rizzo, T.G.
1995-01-01
Present and future prospects for the discovery of new gauge bosons, Z' and W', are reviewed. Particular attention is paid to hadron and e + e - collider searches for the W' of the Left-Right Symmetric Model
Scott, Paul
2006-01-01
A lattice is a (rectangular) grid of points, usually pictured as occurring at the intersections of two orthogonal sets of parallel, equally spaced lines. Polygons that have lattice points as vertices are called lattice polygons. It is clear that lattice polygons come in various shapes and sizes. A very small lattice triangle may cover just 3…
Viscous conformal gauge theories
DEFF Research Database (Denmark)
Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.
2017-01-01
We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....
International Nuclear Information System (INIS)
Natale, A.A.; Shellard, R.C.
1981-01-01
The problem of gauge hierarchy in Grand Unified Theories using a toy model with O(N) symmetry is discussed. It is shown that there is no escape to the unnatural adjustment of coupling constants, made only after the computation of several orders in perturbation theory is performed. The propositions of some authors on ways to overcome the gauge hierarchy problem are commented. (Author) [pt
International Nuclear Information System (INIS)
Leite Lopes, J.
1981-01-01
The book is intended to explain, in an elementary way, the basic notions and principles of gauge theories. Attention is centred on the Salem-Weinberg model of electro-weak interactions, as well as neutrino-lepton scattering and the parton model. Classical field theory, electromagnetic, Yang-Mills and gravitational gauge fields, weak interactions, Higgs mechanism and the SU(5) model of grand unification are also discussed. (U.K.)
Two Dimensional Super QCD on a Lattice
Energy Technology Data Exchange (ETDEWEB)
Catterall, Simon [Syracuse U.; Veernala, Aarti [Fermilab
2017-10-04
We construct a lattice theory with one exact supersymmetry which consists of fields transforming in both the adjoint and fundamental representations of a U(Nc) gauge group. In addition to gluons and gluinos, the theory contains Nf flavors of fermion in the fundamental representation along with their scalar partners and is invariant under a global U(Nf) flavor symmetry. The lattice action contains an additional Fayet-Iliopoulos term which can be used to generate a scalar potential. We perform numerical simulations that corroborate the theoretical expectation that supersymmetry is spontaneously broken for Nf
A Lattice Calculation of Parton Distributions
International Nuclear Information System (INIS)
Alexandrou, Constantia; Cichy, Krzysztof; Poznan Univ.; Drach, Vincent; Univ. of Southern Denmark, Odense; Garcia-Ramos, Elena; Humboldt-Universitaet, Berlin; Hadjiyiannakou, Kyriakos; Jansen, Karl; Steffens, Fernanda; Wiese, Christian
2015-04-01
We report on our exploratory study for the direct evaluation of the parton distribution functions from lattice QCD, based on a recently proposed new approach. We present encouraging results using N f =2+1+1 twisted mass fermions with a pion mass of about 370 MeV. The focus of this work is a detailed description of the computation, including the lattice calculation, the matching to an infinite momentum and the nucleon mass correction. In addition, we test the effect of gauge link smearing in the operator to estimate the influence of the Wilson line renormalization, which is yet to be done.
Directory of Open Access Journals (Sweden)
Anna J. Schulte
2011-05-01
Full Text Available Hierarchically structured flower leaves (petals of many plants are superhydrophobic, but water droplets do not roll-off when the surfaces are tilted. On such surfaces water droplets are in the “Cassie impregnating wetting state”, which is also known as the “petal effect”. By analyzing the petal surfaces of different species, we discovered interesting new wetting characteristics of the surface of the flower of the wild pansy (Viola tricolor. This surface is superhydrophobic with a static contact angle of 169° and very low hysteresis, i.e., the petal effect does not exist and water droplets roll-off as from a lotus (Nelumbo nucifera leaf. However, the surface of the wild pansy petal does not possess the wax crystals of the lotus leaf. Its petals exhibit high cone-shaped cells (average size 40 µm with a high aspect ratio (2.1 and a very fine cuticular folding (width 260 nm on top. The applied water droplets are in the Cassie–Baxter wetting state and roll-off at inclination angles below 5°. Fabricated hydrophobic polymer replicas of the wild pansy were prepared in an easy two-step moulding process and possess the same wetting characteristics as the original flowers. In this work we present a technical surface with a new superhydrophobic, low adhesive surface design, which combines the hierarchical structuring of petals with a wetting behavior similar to that of the lotus leaf.
Freire, E.; Acevedo, V.; Halac, E. B.; Polla, G.; López, M.; Reinoso, M.
2016-03-01
White virgules, commas, and dot designs on tricolored ceramics are sporadically found in different archaeological sites located in Northwestern Argentina area, as Puna and Quebrada de Humahuaca. This decorating style has been reported in several articles, but few previous archaeometric studies have been carried out on the pigment composition. Fragments from Puna and Quebrada archaeological sites, belonging to Regional Development Period (900-1430 AD), were analyzed by X-ray diffraction and Raman spectroscopy in order to characterize the pigments employed. Red and black pigments are based on iron and manganese oxides, as it has been extensively reported for the NW Argentina area. White pigments from white virgules, comma, and dot designs have shown different composition. Hydroxyapatite was found in samples from Doncellas site (North Puna region), and calcium and calcium-magnesium containing compounds, as vaterite and dolomite, along with titanium containing compounds were detected on samples from Abralaite (Central Puna region) and Gasoducto (Quebrada de Humahuaca region). It has been concluded that pigment composition is not characteristic of a unique region.
Freire, E; Acevedo, V; Halac, E B; Polla, G; López, M; Reinoso, M
2016-03-15
White virgules, commas, and dot designs on tricolored ceramics are sporadically found in different archaeological sites located in Northwestern Argentina area, as Puna and Quebrada de Humahuaca. This decorating style has been reported in several articles, but few previous archaeometric studies have been carried out on the pigment composition. Fragments from Puna and Quebrada archaeological sites, belonging to Regional Development Period (900-1430 AD), were analyzed by X-ray diffraction and Raman spectroscopy in order to characterize the pigments employed. Red and black pigments are based on iron and manganese oxides, as it has been extensively reported for the NW Argentina area. White pigments from white virgules, comma, and dot designs have shown different composition. Hydroxyapatite was found in samples from Doncellas site (North Puna region), and calcium and calcium-magnesium containing compounds, as vaterite and dolomite, along with titanium containing compounds were detected on samples from Abralaite (Central Puna region) and Gasoducto (Quebrada de Humahuaca region). It has been concluded that pigment composition is not characteristic of a unique region. Copyright © 2015 Elsevier B.V. All rights reserved.
Commensurability effects in holographic homogeneous lattices
International Nuclear Information System (INIS)
Andrade, Tomas; Krikun, Alexander
2016-01-01
An interesting application of the gauge/gravity duality to condensed matter physics is the description of a lattice via breaking translational invariance on the gravity side. By making use of global symmetries, it is possible to do so without scarifying homogeneity of the pertinent bulk solutions, which we thus term as “homogeneous holographic lattices.' Due to their technical simplicity, these configurations have received a great deal of attention in the last few years and have been shown to correctly describe momentum relaxation and hence (finite) DC conductivities. However, it is not clear whether they are able to capture other lattice effects which are of interest in condensed matter. In this paper we investigate this question focusing our attention on the phenomenon of commensurability, which arises when the lattice scale is tuned to be equal to (an integer multiple of) another momentum scale in the system. We do so by studying the formation of spatially modulated phases in various models of homogeneous holographic lattices. Our results indicate that the onset of the instability is controlled by the near horizon geometry, which for insulating solutions does carry information about the lattice. However, we observe no sharp connection between the characteristic momentum of the broken phase and the lattice pitch, which calls into question the applicability of these models to the physics of commensurability.
On the overlap prescription for lattice regularization of chiral fermions
Energy Technology Data Exchange (ETDEWEB)
Randjbar-Daemi, S; Strathdee, J
1995-12-01
Feynman rules for the vacuum amplitude of fermions coupled to external gauge and Higgs fields in a domain wall lattice model are derived using time-dependent perturbation theory. They have a clear and simple structure corresponding to 1-loop vacuum graphs. Their continuum approximations are extracted by isolating the infrared singularities and it is shown that, in each order, they reduce to vacuum contributions for chiral fermions. In this sense the lattice model is seen to constitute a valid regularization of the continuum theory of chiral fermions coupled to weak and slowly varying gauge and Higgs fields. The overlap amplitude, while not gauge invariant, exhibits a well defined (module phase conventions) response to gauge transformations of the background fields. This response reduces in the continuum limit to the expected chiral anomaly, independently of the phase convention. (author). 20 refs.
On the overlap prescription for lattice regularization of chiral fermions
International Nuclear Information System (INIS)
Randjbar-Daemi, S.; Strathdee, J.
1995-12-01
Feynman rules for the vacuum amplitude of fermions coupled to external gauge and Higgs fields in a domain wall lattice model are derived using time-dependent perturbation theory. They have a clear and simple structure corresponding to 1-loop vacuum graphs. Their continuum approximations are extracted by isolating the infrared singularities and it is shown that, in each order, they reduce to vacuum contributions for chiral fermions. In this sense the lattice model is seen to constitute a valid regularization of the continuum theory of chiral fermions coupled to weak and slowly varying gauge and Higgs fields. The overlap amplitude, while not gauge invariant, exhibits a well defined (module phase conventions) response to gauge transformations of the background fields. This response reduces in the continuum limit to the expected chiral anomaly, independently of the phase convention. (author). 20 refs
Quantum and classical gauge symmetries
International Nuclear Information System (INIS)
Fujikawa, Kazuo; Terashima, Hiroaki
2001-01-01
The use of the mass term of the gauge field as a gauge fixing term, which was discussed by Zwanziger, Parrinello and Jona-Lasinio in a large mass limit, is related to the non-linear gauge by Dirac and Nambu. We have recently shown that this use of the mass term as a gauge fixing term is in fact identical to the conventional local Faddeev-Popov formula without taking a large mass limit, if one takes into account the variation of the gauge field along the entire gauge orbit. This suggests that the classical massive vector theory, for example, could be re-interpreted as a gauge invariant theory with a gauge fixing term added in suitably quantized theory. As for massive gauge particles, the Higgs mechanics, where the mass term is gauge invariant, has a more intrinsic meaning. We comment on several implications of this observation. (author)
Perturbative analysis for Kaplan's lattice chiral fermions
International Nuclear Information System (INIS)
Aoki, S.; Hirose, H.
1994-01-01
Perturbation theory for lattice fermions with domain wall mass terms is developed and is applied to investigate the chiral Schwinger model formulated on the lattice by Kaplan's method. We calculate the effective action for gauge fields to one loop, and find that it contains a longitudinal component even for anomaly-free cases. From the effective action we obtain gauge anomalies and Chern-Simons currents without ambiguity. We also show that the current corresponding to the fermion number has a nonzero divergence and it flows off the wall into the extra dimension. Similar results are obtained for a proposal by Shamir, who used a constant mass term with free boundaries instead of domain walls
International Nuclear Information System (INIS)
Wetzorke, I.; Karsch, F.
2002-08-01
We present our final results for the mass of the six quark flavor singlet state (J P =0 + , S=-2) called H dibaryon, which would be the lightest possible strangelet in the context of strange quark matter. The calculations are performed in quenched QCD on (8-24) 3 x 30 lattices with the (1,2) Symanzik improved gauge action and the clover fermion action. Furthermore the fuzzing technique for the fermion fields and smearing of the gauge fields is applied in order to enhance the overlap with the ground state. Depending on the lattice size we observe an H mass slightly above or comparable with the ΛΛ threshold for strong decay. Therefore a bound H dibaryon state seemed to be ruled out by our simulation. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Wetzorke, I. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Karsch, F. [Bielefeld Univ. (Germany). Fakultaet fuer Physik
2002-08-01
We present our final results for the mass of the six quark flavor singlet state (J{sup P}=0{sup +}, S=-2) called H dibaryon, which would be the lightest possible strangelet in the context of strange quark matter. The calculations are performed in quenched QCD on (8-24){sup 3} x 30 lattices with the (1,2) Symanzik improved gauge action and the clover fermion action. Furthermore the fuzzing technique for the fermion fields and smearing of the gauge fields is applied in order to enhance the overlap with the ground state. Depending on the lattice size we observe an H mass slightly above or comparable with the {lambda}{lambda} threshold for strong decay. Therefore a bound H dibaryon state seemed to be ruled out by our simulation. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Wetzorke, I.; Karsch, F
2003-05-01
We present our final results for the mass of the six quark flavor singlet state (J{sup P} = 0{sup +}, S = -2) called H dibaryon, which would be the lightest possible strangelet in the context of strange quark matter. The calculations are performed in quenched QCD on (8 - 24){sup 3} x 30 lattices with the (1,2) Symanzik improved gauge action and the clover fermion action. Furthermore the fuzzing technique for the fermion fields and smearing of the gauge fields is applied in order to enhance the overlap with the ground state. Depending on the lattice size we observe an H mass slightly above or comparable with the AA threshold for strong decay. Therefore a bound H dibaryon state seemed to be ruled out by our simulation.
International Nuclear Information System (INIS)
Wetzorke, I.; Karsch, F.
2003-01-01
We present our final results for the mass of the six quark flavor singlet state (J P = 0 + , S = -2) called H dibaryon, which would be the lightest possible strangelet in the context of strange quark matter. The calculations are performed in quenched QCD on (8 - 24) 3 x 30 lattices with the (1,2) Symanzik improved gauge action and the clover fermion action. Furthermore the fuzzing technique for the fermion fields and smearing of the gauge fields is applied in order to enhance the overlap with the ground state. Depending on the lattice size we observe an H mass slightly above or comparable with the AA threshold for strong decay. Therefore a bound H dibaryon state seemed to be ruled out by our simulation
Quantum Engineering of Dynamical Gauge Fields on Optical Lattices
2016-07-08
inline-formula" >< math xmlns="http://www.w3.org/1998/ Math /MathML" ><msub><mi>d</mi><mrow><mi>x</mi><mi>y</mi></mrow></msub></ math ></span>-density wave...density, the two entropies and the topology of the world lines as we increased the chemical potential to go across the superfluid phase between the first
Propagators and renormalization transformations for lattice gauge theories. Pt. 2
International Nuclear Information System (INIS)
Balaban, T.
1984-01-01
We continue the studies of the Paper I and extend the results of this paper to operators defined by restrictions on different scales, or by renormalization transformations of different orders. (orig.)
Experiencing Gribov copies in SU(3) lattice gauge theory
International Nuclear Information System (INIS)
Petrarca, S.
1993-01-01
Recent results obtained in collaboration with C. Parrinello, M.L. Paciello, B. Taglienti and A. Vladikas on the Gribov noise resulting from smeared correlators are presented. A brief discussion of the possible influence of this fluctuations on the measure of physical quantities like f B is reported. (orig.)
Finite density lattice gauge theories with positive fermion determinants
International Nuclear Information System (INIS)
Sinclair, D.K.; Kogut, J.B.; Toublan, D.
2004-01-01
We perform simulations of (3-colour) QCD with 2 quark flavours at a finite chemical potential μ I for isospin (I 3 ), and of 2-colour QCD at a finite chemical potential μ for quark number. At zero temperature, QCD at finite μ I has a mean-field phase transition at μ I = m π to a superfluid state with a charged pion condensate which spontaneously breaks I 3 . We study the finite temperature transition as a function of μ I . For μ I π , where this is closely related to the transition at finite μ, this appears to be a crossover independent of quark mass, with no sign of the proposed critical endpoint. For μ I > m π this becomes a true phase transition where the pion condensate evaporates. For μ I just above m π the transition seems to be second order, while for larger μ I it appears to become first order. At zero temperature, 2-colour QCD also possesses a superfluid state with a diquark condensate. We study its spectrum of Goldstone and pseudo-Goldstone bosons associated with chiral and quark-number symmetry breaking. (author)
Maldacena, Juan; Milekhin, Alexey
2018-04-01
The D0 brane, or BFSS, matrix model is a quantum mechanical theory with an interesting gravity dual. We consider a variant of this model where we treat the SU( N) symmetry as a global symmetry, rather than as a gauge symmetry. This variant contains new non-singlet states. We consider the impact of these new states on its gravity dual. We argue that the gravity dual is essentially the same as the one for the original matrix model. The non-singlet states have higher energy at strong coupling and are therefore dynamically suppressed.
Spin foam model for pure gauge theory coupled to quantum gravity
International Nuclear Information System (INIS)
Oriti, Daniele; Pfeiffer, Hendryk
2002-01-01
We propose a spin foam model for pure gauge fields coupled to Riemannian quantum gravity in four dimensions. The model is formulated for the triangulation of a four-manifold which is given merely combinatorially. The Riemannian Barrett-Crane model provides the gravity sector of our model and dynamically assigns geometric data to the given combinatorial triangulation. The gauge theory sector is a lattice gauge theory living on the same triangulation and obtains from the gravity sector the geometric information which is required to calculate the Yang-Mills action. The model is designed so that one obtains a continuum approximation of the gauge theory sector at an effective level, similarly to the continuum limit of lattice gauge theory, when the typical length scale of gravity is much smaller than the Yang-Mills scale
LATTICE: an interactive lattice computer code
International Nuclear Information System (INIS)
Staples, J.
1976-10-01
LATTICE is a computer code which enables an interactive user to calculate the functions of a synchrotron lattice. This program satisfies the requirements at LBL for a simple interactive lattice program by borrowing ideas from both TRANSPORT and SYNCH. A fitting routine is included
Analytic progress on exact lattice chiral symmetry
International Nuclear Information System (INIS)
Kikukawa, Y.
2002-01-01
Theoretical issues of exact chiral symmetry on the lattice are discussed and related recent works are reviewed. For chiral theories, the construction with exact gauge invariance is reconsidered from the point of view of domain wall fermion. The issue in the construction of electroweak theory is also discussed. For vector-like theories, we discuss unitarity (positivity), Hamiltonian approach, and several generalizations of the Ginsparg-Wilson relation (algebraic and odd-dimensional)
Lattice guage theories on a hypercube computer
International Nuclear Information System (INIS)
Otto, S.W.
1984-01-01
A report on the parallel computer effort underway at Caltech and the use of these machines for lattice gauge theories is given. The computational requirements of the Monte Carlos are, of course, enormous, so high Mflops (Million floating point operations per second) and large memories are required. Various calculations on the machines in regards to their programmability (a non-trivial issue on a parallel computer) and their efficiency in usage of the machine are discussed
Derivation of the gauge link in light cone gauge
International Nuclear Information System (INIS)
Gao Jianhua
2010-01-01
In light cone gauge, a gauge link at light cone infinity is necessary for transverse momentum-dependent parton distribution to restore the gauge invariance in some specific boundary conditions. We derive such transverse gauge link in a more regular and general method. We find the gauge link at light cone infinity naturally arises from the contribution of the pinched poles: one is from the quark propagator and the other is hidden in the gauge vector field in light cone gauge. Actually, in the amplitude level, we have obtained a more general gauge link over the hypersurface at light cone infinity which is beyond the transverse direction. The difference of such gauge link between semi-inclusive deep inelastic scattering and Drell-Yan processes can also be obtained directly and clearly in our derivation.
Z flux-line lattices and self-dual equations in the standard model
International Nuclear Information System (INIS)
Bimonte, G.; Lozano, G.
1994-04-01
We derive gauge covariant self-dual equations for the SU(2) x U(1) y theory of electroweak interactions and show that they admit solutions describing a periodic lattice of Z-strings. (author). 14 refs
Renormalizable Non-Covariant Gauges and Coulomb Gauge Limit
Baulieu, L
1999-01-01
To study ``physical'' gauges such as the Coulomb, light-cone, axial or temporal gauge, we consider ``interpolating'' gauges which interpolate linearly between a covariant gauge, such as the Feynman or Landau gauge, and a physical gauge. Lorentz breaking by the gauge-fixing term of interpolating gauges is controlled by extending the BRST method to include not only the local gauge group, but also the global Lorentz group. We enumerate the possible divergences of interpolating gauges, and show that they are renormalizable, and we show that the expectation value of physical observables is the same as in a covariant gauge. In the second part of the article we study the Coulomb-gauge as the singular limit of the Landau-Coulomb interpolating gauge. We find that unrenormalized and renormalized correlation functions are finite in this limit. We also find that there are finite two-loop diagrams of ``unphysical'' particles that are not present in formal canonical quantization in the Coulomb gauge. We verify that in the ...
Poincare gauge in electrodynamics
International Nuclear Information System (INIS)
Brittin, W.E.; Smythe, W.R.; Wyss, W.
1982-01-01
The gauge presented here, which we call the Poincare gauge, is a generalization of the well-known expressions phi = -rxE 0 and A = 1/2 B 0 x r for the scalar and vector potentials which describe static, uniform electric and magnetic fields. This gauge provides a direct method for calculating a vector potential for any given static or dynamic magnetic field. After we establish the validity and generality of this gauge, we use it to produce a simple and unambiguous method of computing the flux linking an arbitrary knotted and twisted closed circuit. The magnetic flux linking the curve bounding a Moebius band is computed as a simple example. Arguments are then presented that physics students should have the opportunity of learning early in their curriculum modern geometric approaches to physics. (The language of exterior calculus may be as important to future physics as vector calculus was to the past.) Finally, an appendix illustrates how the Poincare gauge (and others) may be derived from Poincare's lemma relating exact and closed exterior differential forms
A space-time lattice version of scalar electrodynamics
International Nuclear Information System (INIS)
Kijowski, J.; Thielmann, A.
1993-10-01
A Minkowski-lattice version of quantum scalar electrodynamics is constructed. Quantum field is consequently described in a gauge-independent way, i.e. the algebra of quantum observables of the theory is generated by gauge-invariant operators assigned to zero-, one-, and two-dimensional elements of the lattice. The operators satisfy canonical commutation relations. Field dynamics is formulated in terms of difference equations imposed on the field operators. The dynamics is obtained from a discrete version of the path-integral. (author). 19 refs
Kaplan-Narayanan-Neuberger lattice fermions pass a perturbative test
International Nuclear Information System (INIS)
Aoki, S.; Levien, R.B.
1995-01-01
We test perturbatively a recent scheme for implementing chiral fermions on the lattice, proposed by Kaplan and modified by Narayanan and Neuberger, using as our testing ground the chiral Schwinger model. The scheme is found to reproduce the desired form of the effective action, whose real part is gauge invariant and whose imaginary part gives the correct anomaly in the continuum limit, once technical problems relating to the necesary infinite extent of the extra dimension are properly addressed. The indications from this study are that the Kaplan-Narayanan-Neuberger scheme has a good chance at being a correct lattice regularization of chiral gauge theories
Henneaux, Marc; Vasiliev, Mikhail A
2017-01-01
Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...
DEFF Research Database (Denmark)
Mojaza, Matin; Pica, Claudio; Sannino, Francesco
2010-01-01
of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary of the conformal window for nonsupersymmetric gauge theories. The higher order results tend to predict a higher number of critical flavors. These are universal properties, i......We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged...... in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We...
Renormalization of gauge theories
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1975-04-01
Gauge theories are characterized by the Slavnov identities which express their invariance under a family of transformations of the supergauge type which involve the Faddeev Popov ghosts. These identities are proved to all orders of renormalized perturbation theory, within the BPHZ framework, when the underlying Lie algebra is semi-simple and the gauge function is chosen to be linear in the fields in such a way that all fields are massive. An example, the SU2 Higgs Kibble model is analyzed in detail: the asymptotic theory is formulated in the perturbative sense, and shown to be reasonable, namely, the physical S operator is unitary and independant from the parameters which define the gauge function [fr
International Nuclear Information System (INIS)
Stora, R.
1976-09-01
The mathematics of gauge fields and some related concepts are discussed: some corrections on the principal fiber bundles emphasize the idea that the present formulation of continuum theories is incomplete. The main ingredients used through the construction of the renormalized perturbation series are then described: the Faddeev Popov argument, and the Faddeev Popov Lagrangian; the Slavnov symmetry and the nature of the Faddeev Popov ghost fields; the Slavnov identity, with an obstruction: the Adler Bardeen anomaly, and its generalization to the local cohomology of the gauge Lie algebra. Some smooth classical configurations of gauge fields which ought to play a prominent role in the evaluation of the functional integral describing the theory are also reviewed
Generally covariant gauge theories
International Nuclear Information System (INIS)
Capovilla, R.
1992-01-01
A new class of generally covariant gauge theories in four space-time dimensions is investigated. The field variables are taken to be a Lie algebra valued connection 1-form and a scalar density. Modulo an important degeneracy, complex [euclidean] vacuum general relativity corresponds to a special case in this class. A canonical analysis of the generally covariant gauge theories with the same gauge group as general relativity shows that they describe two degrees of freedom per space point, qualifying therefore as a new set of neighbors of general relativity. The modification of the algebra of the constraints with respect to the general relativity case is computed; this is used in addressing the question of how general relativity stands out from its neighbors. (orig.)
Supersymmetric gauge field theories
International Nuclear Information System (INIS)
Slavnov, A.A.
1976-01-01
The paper is dealing with the role of supersymmetric gauge theories in the quantum field theory. Methods of manipulating the theories as well as possibilities of their application in elementary particle physics are presented. In particular, the necessity is explained of a theory in which there is symmetry between Fermi and Bose fields, in other words, of the supersymmetric gauge theory for construction of a scheme for the Higgs particle connecting parameters of scalar mesons with those of the rest fields. The mechanism of supersymmetry breaking is discussed which makes it possible to remain the symmetric procedure of renormalization intact. The above mechanism of spontaneous symmetry breaking is applied to demonstrate possibilities of constructing models of weak and electromagnetic interactions which would be acceptable from the point of view of experiments. It is noted that the supersymmetric gauge theories represent a natural technique for description of vector-like models
1994-01-01
This volume is a compilation of works which, taken together, give a complete and consistent presentation of instanton calculus in non-Abelian gauge theories, as it exists now. Some of the papers reproduced are instanton classics. Among other things, they show from a historical perspective how the instanton solution has been found, the motivation behind it and how the physical meaning of instantons has been revealed. Other papers are devoted to different aspects of instanton formalism including instantons in supersymmetric gauge theories. A few unsolved problems associated with instantons are d
Energy Technology Data Exchange (ETDEWEB)
Benini, Francesco; /Princeton U.; Dymarsky, Anatoly; /Stanford U., ITP; Franco, Sebastian; /Santa Barbara, KITP; Kachru, Shamit; Simic, Dusan; /Stanford U., ITP /SLAC; Verlinde, Herman; /Princeton, Inst. Advanced Study
2009-06-19
We discuss gravitational backgrounds where supersymmetry is broken at the end of a warped throat, and the SUSY-breaking is transmitted to the Standard Model via gauginos which live in (part of) the bulk of the throat geometry. We find that the leading effect arises from splittings of certain 'messenger mesons,' which are adjoint KK-modes of the D-branes supporting the Standard Model gauge group. This picture is a gravity dual of a strongly coupled field theory where SUSY is broken in a hidden sector and transmitted to the Standard Model via a relative of semi-direct gauge mediation.
Tricolor emission Ca3Si2O7:Ln (Ln=Ce, Tb, Eu) phosphors for near-UV white light-emitting-diode
International Nuclear Information System (INIS)
Mao, Zhi-yong; Zhu, Ying-chun; Gan, Lin; Zeng, Yi; Xu, Fang-fang; Wang, Yang; Tian, Hua; Li, Jian; Wang, Da-jian
2013-01-01
Tricolor emission in a same Ca 3 Si 2 O 7 host with independent Ln (Ln=Ce 3+ , Eu 2+ , Tb 3+ ) dopants is demonstrated to construct a near-UV white light emitting diode (LED). The luminescence properties and thermal quenching properties, as well as the applications in near-UV white LED are investigated. These phosphors show typical blue, red, and green, three-basal-color, luminescence in the CIE chromaticity diagram for Ce 3+ , Eu 2+ and Tb 3+ dopants, respectively. Thermal quenching properties show that the luminescence thermal stability strongly depends on the different dopant types; better thermal quenching property of Ce 3+ and Tb 3+ is recorded in comparison with that of Eu 2+ . The white LED prototype fabricated with near-UV chip and as-prepared tricolor phosphors exhibits acceptable CIE chromaticity coordinates (0.32, 0.30) with a CCT of 6000 K and a CRI of 87, indicating the potential application of Ca 3 Si 2 O 7 :Ln phosphors in near-UV white LED. - Highlights: ► Tricolor Ca 3 Si 2 O 7 : Ln phosphors were demonstrated to construct near-UV white LED. ► Eu 2+ doped Ca 3 Si 2 O 7 red-emitting phosphor was confirmed by this work once again. ► Thermal quenching properties for Ca 3 Si 2 O 7 :Ln phosphors were reported for the first time. ► Performances of fabricated white LED indicated the potential application of phosphors.
Diquark correlations in baryons on the lattice with overlap quarks
Energy Technology Data Exchange (ETDEWEB)
Babich, R.; Howard, J.; Rebbi, C. [Boston Univ., MA (United States). Dept. of Physics; Garron, N. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hoelbling, C. [Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik; Lellouch, L. [CNRS Luminy, Marseille (France). Centre de Physique Theorique]|[Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik
2007-01-15
We evaluate baryon wave functions in both the Coulomb and Landau gauge in lattice QCD. These are constructed from quark propagators calculated with the overlap Dirac operator on quenched gauge configurations at {beta}=6. By comparing baryon states that differ in their diquark content, we find evidence for enhanced correlation in the scalar diquark channel, as favored by quark models. We also summarize earlier results for diquark masses in the Landau gauge, casting them in a form more easily compared with subsequent studies. (orig.)
Diquark correlations in baryons on the lattice with overlap quarks
International Nuclear Information System (INIS)
Babich, R.; Howard, J.; Rebbi, C.; Hoelbling, C.; Lellouch, L.; Wuppertal Univ.
2007-01-01
We evaluate baryon wave functions in both the Coulomb and Landau gauge in lattice QCD. These are constructed from quark propagators calculated with the overlap Dirac operator on quenched gauge configurations at β=6. By comparing baryon states that differ in their diquark content, we find evidence for enhanced correlation in the scalar diquark channel, as favored by quark models. We also summarize earlier results for diquark masses in the Landau gauge, casting them in a form more easily compared with subsequent studies. (orig.)
Chemical potentials in gauge theories
International Nuclear Information System (INIS)
Actor, A.; Pennsylvania State Univ., Fogelsville
1985-01-01
One-loop calculations of the thermodynamic potential Ω are presented for temperature gauge and non-gauge theories. Prototypical formulae are derived which give Ω as a function of both (i) boson and/or fermion chemical potential, and in the case of gauge theories (ii) the thermal vacuum parameter Asub(O)=const (Asub(μ) is the euclidean gauge potential). From these basic abelian gauge theory formulae, the one-loop contribution to Ω can readily be constructed for Yang-Mills theories, and also for non-gauge theories. (orig.)
Fundamental problems of gauge field theory
International Nuclear Information System (INIS)
Velo, G.; Wightman, A.S.
1986-01-01
As a result of the experimental and theoretical developments of the last two decades, gauge field theory, in one form or another, now provides the standard language for the description of Nature; QCD and the standard model of the electroweak interactions illustrate this point. It is a basic task of mathematical physics to provide a solid foundation for these developments by putting the theory in a physically transparent and mathematically rigorous form. The lecture notes collected in this volume concentrate on the many unsolved problems which arise here, and on the general ideas and methods which have been proposed for their solution. In particular, the use of rigorous renormalization group methods to obtain control over the continuum limit of lattice gauge field theories, the exploration of the extraordinary enigmatic connections between Kac-Moody-Virasoro algebras and string theory, and the systematic use of the theory of local algebras and indefinite metric spaces to classify the charged C* states in gauge field theories are mentioned
Exceptional confinement in G(2) gauge theory
International Nuclear Information System (INIS)
Holland, K.; Minkowski, P.; Pepe, M.; Wiese, U.-J.
2003-01-01
We study theories with the exceptional gauge group G(2). The 14 adjoint 'gluons' of a G(2) gauge theory transform as {3}, {3-bar} and {8} under the subgroup SU(3), and hence have the color quantum numbers of ordinary quarks, anti-quarks and gluons in QCD. Since G(2) has a trivial center, a 'quark' in the {7} representation of G(2) can be screened by 'gluons'. As a result, in G(2) Yang-Mills theory the string between a pair of static 'quarks' can break. In G(2) QCD there is a hybrid consisting of one 'quark' and three 'gluons'. In supersymmetric G(2) Yang-Mills theory with a {14} Majorana 'gluino' the chiral symmetry is Z(4) χ . Chiral symmetry breaking gives rise to distinct confined phases separated by confined-confined domain walls. A scalar Higgs field in the {7} representation breaks G(2) to SU(3) and allows us to interpolate between theories with exceptional and ordinary confinement. We also present strong coupling lattice calculations that reveal basic features of G(2) confinement. Just as in QCD, where dynamical quarks break the Z(3) symmetry explicitly, G(2) gauge theories confine even without a center. However, there is not necessarily a deconfinement phase transition at finite temperature
Numerical studies of gauge field theories
International Nuclear Information System (INIS)
Creutz, M.
1981-06-01
Monte Carlo simulation of statistical systems is a well established technique of the condensed matter physicist. In the last few years, particle theorists have rediscovered this method and are having a marvelous time applying it to quantized gauge field theories. The main result has been strong numerical evidence that the standard SU(3) non-Abelian gauge theory of the strong interaction is capable of simultaneously confining quarks into the physical hadrons and exhibiting asymptotic freedom, the phenomenon of quark interactions being small at short distances. In four dimensions, confinement is a non-perturbative phenomenon. Essentially all models of confinement tie widely separated quarks together with strings of gauge field flux. This gives rise to a linear potential at long distances. A Monte Carlo program generates a sequence of field configuration by a series of random changes of the fields. The algorithm is so constructed that ultimately the probability density for finding any given configuration is proportional to the Boltzmann weighting. We bring our lattices into thermal equilibrium with a heat bath at a temperature specified by the coupling constant. Thus we do computer experiments with four-dimensional crystals stored in a computer memory. As the entire field configuration is stored, we have access to any correlation function desired. These lectures describe the kinds of experiments being done and the implications of these results for strong interaction physics
Superfluidity of bosons on a deformable lattice
International Nuclear Information System (INIS)
Jackeli, G.; Ranninger, J.
2001-01-01
We study the superfluid properties of a system of interacting bosons on a lattice, which, moreover, are coupled to the vibrational modes of this lattice, treated here in terms of Einstein phonon modes. The ground state corresponds to two correlated condensates: that of the bosons and that of the phonons. Two competing effects determine the common collective sound-wave-like mode with sound velocity v, arising from gauge symmetry breaking. (i) The sound velocity v 0 (corresponding to a weakly interacting Bose system on a rigid lattice) in the lowest-order approximation is reduced due to reduction of the repulsive boson-boson interaction, arising from the attractive part of the phonon-mediated interaction in the static limit. (ii) The second-order correction to the sound velocity is enhanced as compared to that of bosons on a rigid lattice when the boson-phonon interaction is switched on due to the retarded nature of the phonon-mediated interaction. The overall effect is that the sound velocity is essentially unaffected by the coupling with phonons, indicating the robustness of the superfluid state. The induction of a coherent state in the phonon system driven by the condensation of the bosons could be of experimental significance, permitting spectroscopic detection of superfluid properties of bosons. Our results are based on an extension of the Beliaev-Popov formalism for a weakly interacting Bose gas on a rigid lattice to one on a deformable lattice with which it interacts
Magnetic vortices in gauge/gravity duality
Energy Technology Data Exchange (ETDEWEB)
Strydom, Migael
2014-07-18
We study strongly-coupled phenomena using gauge/gravity duality, with a particular focus on vortex solutions produced by magnetic field and time-dependent problems in holographic models. The main result is the discovery of a counter-intuitive effect where a strong non-abelian magnetic field induces the formation of a triangular vortex lattice ground state in a simple holographic model. Gauge/gravity duality is a powerful theoretical tool that has been used to study strongly-coupled systems ranging from the quark-gluon plasma produced at particle colliders to condensed matter theories. The most important idea is that of duality: a strongly coupled quantum field theory can be studied by investigating the properties of a particular gravity background described by Einstein's equations. One gravity background we study in this dissertation is AdS-Schwarzschild with an SU(2) gauge field. We switch on the gauge field component that gives the field theory an external magnetic field. When the magnetic field is above a critical value, we find that the system is unstable, indicating a superconducting phase transition. We find the instability in two ways. Firstly, we do a quasinormal mode analysis, studying fluctuations about the background. Secondly, we rewrite the equations in Schroedinger form and numerically find that, as the magnetic field is increased, the potential deepens until it is capable of supporting a bound state. Next we show that the resulting superconducting ground state is a triangular vortex lattice. This is done by performing a perturbative expansion in a small parameter proportional to the condensate size. After solving the equations to third order, we use the holographic dictionary to calculate the total energy of different lattice solutions and identify the minimum energy state. In addition, we show that the result holds in an AdS-hard wall model as well, which is dual to a confining theory. Next we extend the simple gravity model to include a
Hermiticity and gauge invariance
International Nuclear Information System (INIS)
Treder, H.J.
1987-01-01
In the Theory of Hermitian Relativity (HRT) the postulates of hermiticity and gauge invariance are formulated in different ways, due to a different understanding of the idea of hermiticity. However all hermitian systems of equations have to satisfy Einstein's weak system of equations being equivalent to Einstein-Schroedinger equations. (author)
Gauge theory and renormalization
Hooft, G. 't
1996-01-01
Early developments leading to renormalizable non-Abelian gauge theories for the weak, electromagnetic and strong interactions, are discussed from a personal viewpoint. They drastically improved our view of the role of field theory, symmetry and topology, as well as other branches of mathematics, in
International Nuclear Information System (INIS)
Bennerstedt, T.
1986-01-01
A great number of industrial nuclear gauges are used in Sweden. The administrative routines for testing, approval and licensing are briefly described. Safety standards, including basic ICRP criteria, are summarized and a theoretical background to the various measuring techniques is given. Numerous practical examples are given. (author)
RIKEN BNL RESEARCH CENTER WORKSHOP ON GAUGE-INVARIANT VARIABLES IN GAUGE THEORIES, VOLUME 20
Energy Technology Data Exchange (ETDEWEB)
VAN BAAL,P.; ORLAND,P.; PISARSKI,R.
2000-06-01
This four-day workshop focused on the wide variety of approaches to the non-perturbative physics of QCD. The main topic was the formulation of non-Abelian gauge theory in orbit space, but some other ideas were discussed, in particular the possible extension of the Maldacena conjecture to nonsupersymmetric gauge theories. The idea was to involve most of the participants in general discussions on the problem. Panel discussions were organized to further encourage debate and understanding. Most of the talks roughly fell into three categories: (1) Variational methods in field theory; (2) Anti-de Sitter space ideas; (3) The fundamental domain, gauge fixing, Gribov copies and topological objects (both in the continuum and on a lattice). In particular some remarkable progress in three-dimensional gauge theories was presented, from the analytic side by V.P. Nair and mostly from the numerical side by O. Philipsen. This work may ultimately have important implications for RHIC experiments on the high-temperature quark-gluon plasma.