WorldWideScience

Sample records for trial investigating motor

  1. Trial-to-trial reoptimization of motor behavior due to changes in task demands is limited.

    Directory of Open Access Journals (Sweden)

    Orban de Xivry J-J

    Full Text Available Each task requires a specific motor behavior that is tuned to task demands. For instance, writing requires a lot of accuracy while clapping does not. It is known that the brain adjusts the motor behavior to different task demands as predicted by optimal control theory. In this study, the mechanism of this reoptimization process is investigated by varying the accuracy demands of a reaching task. In this task, the width of the reaching target (0.5 or 8 cm was varied either on a trial-to-trial basis (random schedule or in blocks (blocked schedule. On some trials, the hand of the subjects was clamped to a rectilinear trajectory that ended 2 cm on the left or right of the target center. The rejection of this perturbation largely varied with target width in the blocked schedule but not in the random schedule. That is, subjects exhibited different motor behavior in the different schedules despite identical accuracy demands. Therefore, while reoptimization has been considered immediate and automatic, the differences in motor behavior observed across schedules suggest that the reoptimization of the motor behavior is neither happening on a trial-by-trial basis nor obligatory. The absence of trial-to-trial mechanisms, the inability of the brain to adapt to two conflicting task demands and the existence of a switching cost are discussed as possible sources of the non-optimality of motor behavior during the random schedule.

  2. Motor outcome measures in Huntington disease clinical trials.

    Science.gov (United States)

    Reilmann, Ralf; Schubert, Robin

    2017-01-01

    Deficits in motor function are a hallmark of Huntington disease (HD). The Unified Huntington's Disease Rating Scale Total Motor Score (UHDRS-TMS) is a categoric clinical rating scale assessing multiple domains of motor disability in HD. The UHDRS-TMS or subsets of its items have served as primary or secondary endpoints in numerous clinical trials. In spite of a well-established video-based annual online certification system, intra- and interrater variability, subjective error, and rater-induced placebo effects remain a concern. In addition, the UHDRS-TMS was designed to primarily assess motor symptoms in manifest HD. Recently, advancement of technology resulted in the introduction of the objective Q-Motor (i.e., Quantitative-Motor) assessments in biomarker studies and clinical trials in HD. Q-Motor measures detected motor signs in blinded cross-sectional and longitudinal analyses of manifest, prodromal, and premanifest HD cohorts up to two decades before clinical diagnosis. In a multicenter clinical trial in HD, Q-Motor measures were more sensitive than the UHDRS-TMS and exhibited no placebo effects. Thus, Q-Motor measures are currently explored in several multicenter trials targeting both symptomatic and disease-modifying mechanisms. They may supplement the UHDRS-TMS, increase the sensitivity and reliability in proof-of-concept studies, and open the door for phenotype assessments in clinical trials in prodromal and premanifest HD. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. An investigation of motor learning during side-step cutting, design of a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Lemmink Koen APM

    2010-10-01

    Full Text Available Abstract Background Of all athletic knee injuries an anterior cruciate ligament (ACL rupture results in the longest time loss from sport. Regardless of the therapy chosen, conservative or reconstructive, athletes are often forced to reduce their level of physical activity and their involvement in sport. Moreover, a recent review reported prevalences of osteoarthritis ranging from 0% to 13% for patients with isolated ACL-deficient (ACL-D knees and respectively 21% to 48% in patients with combined injuries. The need for ACL injury prevention is clear. The identification of risk factors and the development of prevention strategies may therefore have widespread health and economic implications. The focus of this investigation is to assess the role of implicit and explicit motor learning in optimising the performance of a side-step-cutting task. Methods/design A randomized controlled laboratory study will be conducted. Healthy basketball players, females and males, 18 years and older, with no previous lower extremity injuries, playing at the highest recreational level will be included. Subjects will receive a dynamic feedback intervention. Kinematic and kinetic data of the hip, knee and ankle and EMG activity of the quadriceps, hamstrings and gastrocnemius will be recorded. Discussion Female athletes have a significantly higher risk of sustaining an ACL injury than male athletes. Poor biomechanical and neuromuscular control of the lower limb is suggested to be a primary risk factor of an ACL injury mechanism in females. This randomized controlled trial has been designed to investigate whether individual feedback on task performance appears to be an effective intervention method. Results and principles found in this study will be applied to future ACL injury prevention programs, which should maybe more focus on individual injury predisposition. Trial registration Trial registration number NTR2250.

  4. A randomised controlled trial investigating motor skill training as a function of attentional focus in old age

    Directory of Open Access Journals (Sweden)

    Swanenburg Jaap

    2009-05-01

    Full Text Available Abstract Background Motor learning research has had little impact on clinical applications and rarely extended to research about how older adults learn motor skills. There is consistent evidence that motor skill performance and learning can be enhanced by giving learners instructions that direct their attention. The aim of this study was to test whether elderly individuals that receive an external focus instruction during training of dynamic balance skills would learn in a different manner compared to individuals that received an internal focus instruction. Methods This randomised trial included 26 older persons (81 ± 6 years that were training functional balance twice a week for the duration of 5 weeks. Learning outcomes were recorded after every training session. Weight shifting score and dynamic balance parameters (Biodex Balance System, components of the Extended Timed-Get-Up-and-Go test, five chair rises, and falls efficacy (FES-I was assessed at baseline and post-intervention. Results Participation for training sessions was 94%. No differences between groups were found following 5 weeks of training for weight shifting score, dynamic balance index and dynamic balance time (p p = 0.16, p Sit-to-stand, p = .036; Gait initiation, p = .039; Slow down, stop, turnaround, and sit down, p = 0.011 and the Fes-I (p = 0.014 showed improvements for the total group, indicating that function improved compared to baseline. Conclusion A 5-week balance training improved weight shifting scores and dynamic balance parameters as well as functional abilities. The observed improvements were independent from the type of attentional focus instructions. The findings provide support for the proposition of different motor learning principles in older adults compared to younger adults. Trial Registration ISRCTN44627088

  5. Survival End Points for Huntington Disease Trials Prior to a Motor Diagnosis.

    Science.gov (United States)

    Long, Jeffrey D; Mills, James A; Leavitt, Blair R; Durr, Alexandra; Roos, Raymund A; Stout, Julie C; Reilmann, Ralf; Landwehrmeyer, Bernhard; Gregory, Sarah; Scahill, Rachael I; Langbehn, Douglas R; Tabrizi, Sarah J

    2017-11-01

    Predictive genetic testing in Huntington disease (HD) enables therapeutic trials in HTT gene expansion mutation carriers prior to a motor diagnosis. Progression-free survival (PFS) is the composite of a motor diagnosis or a progression event, whichever comes first. To determine if PFS provides feasible sample sizes for trials with mutation carriers who have not yet received a motor diagnosis. This study uses data from the 2-phase, longitudinal cohort studies called Track and from a longitudinal cohort study called the Cooperative Huntington Observational Research Trial (COHORT). Track had 167 prediagnosis mutation carriers and 156 noncarriers, whereas COHORT had 366 prediagnosis mutation carriers and noncarriers. Track studies were conducted at 4 sites in 4 countries (Canada, France, England, and the Netherlands) from which data were collected from January 17, 2008, through November 17, 2014. The COHORT was conducted at 38 sites in 3 countries (Australia, Canada, and the United States) from which data were collected from February 14, 2006, through December 31, 2009. Results from the Track data were externally validated with data from the COHORT. The required sample size was estimated for a 2-arm prediagnosis clinical trial. Data analysis took place from May 1, 2016, to June 10, 2017. The primary end point is PFS. Huntington disease progression events are defined for the Unified Huntington's Disease Rating Scale total motor score, total functional capacity, symbol digit modalities test, and Stroop word test. Of Track's 167 prediagnosis mutation carriers, 93 (55.6%) were women, and the mean (SD) age was 40.06 (8.92) years; of the 156 noncarriers, 87 (55.7%) were women, and the mean (SD) age was 45.58 (10.30) years. Of the 366 COHORT participants, 229 (62.5%) were women and the mean (SD) age was 42.21 (12.48) years. The PFS curves of the Track mutation carriers showed good external validity with the COHORT mutation carriers after adjusting for initial progression. For

  6. Can a single session of motor imagery promote motor learning of locomotion in older adults? A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Nicholson VP

    2018-04-01

    Full Text Available Vaughan P Nicholson,1 Justin WL Keogh,2–4 Nancy L Low Choy1 1School of Physiotherapy, Australian Catholic University, Brisbane, QLD, Australia; 2Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia; 3Human Potential Centre, AUT University, Auckland, New Zealand; 4Cluster for Health Improvement, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia Purpose: To investigate the influence of a single session of locomotor-based motor imagery training on motor learning and physical performance. Patients and methods: Thirty independent adults aged >65 years took part in the randomized controlled trial. The study was conducted within an exercise science laboratory. Participants were randomly divided into three groups following baseline locomotor testing: motor imagery training, physical training, and control groups. The motor imagery training group completed 20 imagined repetitions of a locomotor task, the physical training group completed 20 physical repetitions of a locomotor task, and the control group spent 25 minutes playing mentally stimulating games on an iPad. Imagined and physical performance times were measured for each training repetition. Gait speed (preferred and fast, timed-up-and-go, gait variability and the time to complete an obstacle course were completed before and after the single training session. Results: Motor learning occurred in both the motor imagery training and physical training groups. Motor imagery training led to refinements in motor planning resulting in imagined movements better matching the physically performed movement at the end of training. Motor imagery and physical training also promoted improvements in some locomotion outcomes as demonstrated by medium to large effect size improvements after training for fast gait speed and timed-up-and-go. There were no training effects on gait variability. Conclusion: A single session

  7. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial.

    Science.gov (United States)

    Chollet, François; Tardy, Jean; Albucher, Jean-François; Thalamas, Claire; Berard, Emilie; Lamy, Catherine; Bejot, Yannick; Deltour, Sandrine; Jaillard, Assia; Niclot, Philippe; Guillon, Benoit; Moulin, Thierry; Marque, Philippe; Pariente, Jérémie; Arnaud, Catherine; Loubinoux, Isabelle

    2011-02-01

    Hemiplegia and hemiparesis are the most common deficits caused by stroke. A few small clinical trials suggest that fluoxetine enhances motor recovery but its clinical efficacy is unknown. We therefore aimed to investigate whether fluoxetine would enhance motor recovery if given soon after an ischaemic stroke to patients who have motor deficits. In this double-blind, placebo-controlled trial, patients from nine stroke centres in France who had ischaemic stroke and hemiplegia or hemiparesis, had Fugl-Meyer motor scale (FMMS) scores of 55 or less, and were aged between 18 years and 85 years were eligible for inclusion. Patients were randomly assigned, using a computer random-number generator, in a 1:1 ratio to fluoxetine (20 mg once per day, orally) or placebo for 3 months starting 5-10 days after the onset of stroke. All patients had physiotherapy. The primary outcome measure was the change on the FMMS between day 0 and day 90 after the start of the study drug. Participants, carers, and physicians assessing the outcome were masked to group assignment. Analysis was of all patients for whom data were available (full analysis set). This trial is registered with ClinicalTrials.gov, number NCT00657163. 118 patients were randomly assigned to fluoxetine (n=59) or placebo (n=59), and 113 were included in the analysis (57 in the fluoxetine group and 56 in the placebo group). Two patients died before day 90 and three withdrew from the study. FMMS improvement at day 90 was significantly greater in the fluoxetine group (adjusted mean 34·0 points [95% CI 29·7-38·4]) than in the placebo group (24·3 points [19·9-28·7]; p=0·003). The main adverse events in the fluoxetine and placebo groups were hyponatraemia (two [4%] vs two [4%]), transient digestive disorders including nausea, diarrhoea, and abdominal pain (14 [25%] vs six [11%]), hepatic enzyme disorders (five [9%] vs ten [18%]), psychiatric disorders (three [5%] vs four [7%]), insomnia (19 [33%] vs 20 [36%]), and partial

  8. Separability of motor imagery of the self from interpretation of motor intentions of others at the single trial level: an EEG study.

    Science.gov (United States)

    Andrade, João; Cecílio, José; Simões, Marco; Sales, Francisco; Castelo-Branco, Miguel

    2017-06-26

    We aimed to investigate the separability of the neural correlates of 2 types of motor imagery, self and third person (actions owned by the participant himself vs. another individual). If possible this would allow for the development of BCI interfaces to train disorders of action and intention understanding beyond simple imitation, such as autism. We used EEG recordings from 20 healthy participants, as well as electrocorticography (ECoG) in one, based on a virtual reality setup. To test feasibility of discrimination between each type of imagery at the single trial level, time-frequency and source analysis were performed and further assessed by data-driven statistical classification using Support Vector Machines. The main observed differences between self-other imagery conditions in topographic maps were found in Frontal and Parieto-Occipital regions, in agreement with the presence of 2 independent non μ related contributions in the low alpha frequency range. ECOG corroborated such separability. Source analysis also showed differences near the temporo-parietal junction and single-trial average classification accuracy between both types of motor imagery was 67 ± 1%, and raised above 70% when 3 trials were used. The single-trial classification accuracy was significantly above chance level for all the participants of this study (p Person MI use distinct electrophysiological mechanisms detectable at the scalp (and ECOG) at the single trial level, with separable levels of involvement of the mirror neuron system in different regions. These observations provide a promising step to develop new BCI training/rehabilitation paradigms for patients with neurodevelopmental disorders of action understanding beyond simple imitation, such as autism, who would benefit from training and anticipation of the perceived intention of others as opposed to own intentions in social contexts.

  9. GAME (Goals - Activity - Motor Enrichment): protocol of a single blind randomised controlled trial of motor training, parent education and environmental enrichment for infants at high risk of cerebral palsy.

    Science.gov (United States)

    Morgan, Catherine; Novak, Iona; Dale, Russell C; Guzzetta, Andrea; Badawi, Nadia

    2014-10-07

    Cerebral palsy is the most common physical disability of childhood and early detection is possible using evidence based assessments. Systematic reviews indicate early intervention trials rarely demonstrate efficacy for improving motor outcomes but environmental enrichment interventions appear promising. This study is built on a previous pilot study and has been designed to assess the effectiveness of a goal - oriented motor training and enrichment intervention programme, "GAME", on the motor outcomes of infants at very high risk of cerebral palsy (CP) compared with standard community based care. A two group, single blind randomised controlled trial (n = 30) will be conducted. Eligible infants are those diagnosed with CP or designated "at high risk of CP" on the basis of the General Movements Assessment and/or abnormal neuroimaging. A physiotherapist and occupational therapist will deliver home-based GAME intervention at least fortnightly until the infant's first birthday. The intervention aims to optimize motor function and engage parents in developmental activities aimed at enriching the home learning environment. Primary endpoint measures will be taken 16 weeks after intervention commences with the secondary endpoint at 12 months and 24 months corrected age. The primary outcome measure will be the Peabody Developmental Motor Scale second edition. Secondary outcomes measures include the Gross Motor Function Measure, Bayley Scales of Infant and Toddler Development, Affordances in the Home Environment for Motor Development - Infant Scale, and the Canadian Occupational Performance Measure. Parent well-being will be monitored using the Depression Anxiety and Stress Scale. This paper presents the background, design and intervention protocol of a randomised trial of a goal driven, motor learning approach with customised environmental interventions and parental education for young infants at high risk of cerebral palsy. This trial is registered on the Australian

  10. Randomized controlled trial of surface peroneal nerve stimulation for motor relearning in lower limb hemiparesis

    NARCIS (Netherlands)

    Sheffler, L.R.; Taylor, P.N.; Gunzler, D.D.; Buurke, Jaap; IJzerman, Maarten Joost; Chae, J.

    2013-01-01

    Objective: To compare the motor relearning effect of a surface peroneal nerve stimulator (PNS) versus usual care on lower limb motor impairment, activity limitation, and quality of life among chronic stroke survivors. Design: Single-blinded randomized controlled trial. Setting: Teaching hospital of

  11. Self-Controlled Feedback for a Complex Motor Task

    Directory of Open Access Journals (Sweden)

    Wolf Peter

    2011-12-01

    Full Text Available Self-controlled augmented feedback enhances learning of simple motor tasks. Thereby, learners tend to request feedback after trials that were rated as good by themselves. Feedback after good trials promotes positive reinforcement, which enhances motor learning. The goal of this study was to investigate when naïve learners request terminal visual feedback in a complex motor task, as conclusions drawn on simple tasks can hardly be transferred to complex tasks. Indeed, seven of nine learners stated to have intended to request feedback predominantly after good trials, but in contrast to their intention, kinematic analysis showed that feedback was rather requested randomly (23% after good, 44% after intermediate, 33% after bad trials. Moreover, requesting feedback after good trials did not correlate with learning success. It seems that self-estimation of performance in complex tasks is challenging. As a consequence, learners might have focused on certain movement aspects rather than on the overall movement. Further studies should assess the current focus of the learner in detail to gain more insight in self-estimation capabilities during complex motor task learning.

  12. Can inhibitory and facilitatory kinesiotaping techniques affect motor neuron excitability? A randomized cross-over trial.

    Science.gov (United States)

    Yoosefinejad, Amin Kordi; Motealleh, Alireza; Abbasalipur, Shekoofeh; Shahroei, Mahan; Sobhani, Sobhan

    2017-04-01

    The aim of this study was to investigate the immediate effects of facilitatory and inhibitory kinesiotaping on motor neuron excitability. Randomized cross-over trial. Twenty healthy people received inhibitory and facilitatory kinesiotaping on two testing days. The H- and M-waves of the lateral gasterocnemius were recorded before and immediately after applying the two modes of taping. The Hmax/Mmax ratio (a measure of motor neuron excitability) was determined and analyzed. The mean Hmax/Mmax ratios were -0.013 (95% CI: -0.033 to 0.007) for inhibitory taping and 0.007 (95% CI: -0.013 to 0.027) for facilitatory taping. The mean difference between groups was -0.020 (95% CI: -0.048 to 0.008). The statistical model revealed no significant differences between the two interventions (P = 0.160). Furthermore, there were no within-group differences in Hmax/Mmax ratio for either group. Our findings did not disclose signs of immediate change in motor neuron excitability in the lateral gasterocnemius. Copyright © 2016. Published by Elsevier Ltd.

  13. Promoting gross motor skills and physical activity in childcare: A translational randomized controlled trial.

    Science.gov (United States)

    Jones, Rachel A; Okely, Anthony D; Hinkley, Trina; Batterham, Marijka; Burke, Claire

    2016-09-01

    Educator-led programs for physical activity and motor skill development show potential but few have been implemented and evaluated using a randomized controlled design. Furthermore, few educator-led programs have evaluated both gross motor skills and physical activity. Therefore, the aim of this study was to evaluate a gross motor skill and physical activity program for preschool children which was facilitated solely by childcare educators. A six-month 2-arm randomized controlled trial was implemented between April and September 2012 in four early childhood centers in Tasmania, Australia. Educators participated in ongoing professional development sessions and children participated in structured physical activity lessons and unstructured physical activity sessions. In total, 150 children were recruited from four centers which were randomized to intervention or wait-list control group. Six early childhood educators from the intervention centers were trained to deliver the intervention. Gross motor skills were assessed using the Test of Gross Motor Development (2nd edition) and physical activity was measured objectively using GT3X+ Actigraph accelerometers. No statistically significant differences were identified. However, small to medium effect sizes, in favor of the intervention group, were evident for four of the five gross motor skills and the total gross motor skill score and small to medium effect sizes were reported for all physical activity outcomes. This study highlights the potential of educator-led physical activity interventions and supports the need for further translational trials within the early childhood sector. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. The influence of catch trials on the consolidation of motor memory in force field adaptation tasks

    Directory of Open Access Journals (Sweden)

    Anne eFocke

    2013-07-01

    Full Text Available In computational neuroscience it is generally accepted that human motor memory contains neural representations of the physics of the musculoskeletal system and the objects in the environment. These representations are called internal models. Force field studies, in which subjects have to adapt to dynamic perturbations induced by a robotic manipulandum, are an established tool to analyze the characteristics of such internal models. The aim of the current study was to investigate whether catch trials during force field learning could influence the consolidation of motor memory in more complex tasks. Thereby, the force field was more than double the force field of previous studies (35 Ns/m. Moreover, the arm of the subjects was not supported. A total of forty-six subjects participated in this study and performed center-out movements at a robotic manipulandum in two different force fields. Two control groups learned force field A on day 1 and were retested in the same force field on day 3 (AA. Two test groups additionally learned an interfering force field B (=-A on day 2 (ABA. The difference between the two test and control groups, respectively, was the absence (0% or presence (19% of catch trials, in which the force field was turned off suddenly. The results showed consolidation of force field A on day 3 for both control groups. Test groups showed no consolidation of force field A (19% catch trials and even poorer performance on day 3 (0% catch trials. In conclusion, it can be stated that catch trials seem to have a positive effect on the performance on day 3 but do not trigger a consolidation process as shown in previous studies that used a lower force field viscosity with supported arm. These findings indicate that the results of previous studies in which less complex tasks were analyzed, cannot be fully transferred to more complex tasks. Moreover, the effects of catch trials in these situations are insufficiently understood and further research

  15. Effect of the Children's Health Activity Motor Program on Motor Skills and Self-Regulation in Head Start Preschoolers: An Efficacy Trial.

    Science.gov (United States)

    Robinson, Leah E; Palmer, Kara K; Bub, Kristen L

    2016-01-01

    Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children's Health Activity Motor Program, CHAMP) that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 ± 6.5 months; 49.5% males) were randomly assigned to a treatment (n = 68) or control (n = 45) program. CHAMP participants engaged in 15, 40-min sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development-2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time × treatment interaction (p motor skills, post hoc comparisons found that all children improved their motor skills (p skills associated with healthy development in children (i.e., motor skills and self-regulation). This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool age children and significantly improved motor skills while participating in outdoor recess was not effective. CHAMP could help contribute to children's learning-related skills and physical development and subsequently to their academic success.

  16. The Build-Up Course of Visuo-Motor and Audio-Motor Temporal Recalibration

    Directory of Open Access Journals (Sweden)

    Yoshimori Sugano

    2011-10-01

    Full Text Available The sensorimotor timing is recalibrated after a brief exposure to a delayed feedback of voluntary actions (temporal recalibration effect: TRE (Heron et al., 2009; Stetson et al., 2006; Sugano et al., 2010. We introduce a new paradigm, namely ‘synchronous tapping’ (ST which allows us to investigate how the TRE builds up during adaptation. In each experimental trial, participants were repeatedly exposed to a constant lag (∼150 ms between their voluntary action (pressing a mouse and a feedback stimulus (a visual flash / an auditory click 10 times. Immediately after that, they performed a ST task with the same stimulus as a pace signal (7 flashes / clicks. A subjective ‘no-delay condition’ (∼50 ms served as control. The TRE manifested itself as a change in the tap-stimulus asynchrony that compensated the exposed lag (eg, after lag adaptation, the tap preceded the stimulus more than in control and built up quickly (∼3–6 trials, ∼23–45 sec in both the visuo- and audio-motor domain. The audio-motor TRE was bigger and built-up faster than the visuo-motor one. To conclude, the TRE is comparable between visuo- and audio-motor domain, though they are slightly different in size and build-up rate.

  17. Effect of the Children’s Health Activity Motor Program on Motor Skills and Self-Regulation in Head Start Preschoolers: An Efficacy Trial

    Science.gov (United States)

    Robinson, Leah E.; Palmer, Kara K.; Bub, Kristen L.

    2016-01-01

    Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children’s Health Activity Motor Program, CHAMP) that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 ± 6.5 months; 49.5% males) were randomly assigned to a treatment (n = 68) or control (n = 45) program. CHAMP participants engaged in 15, 40-min sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development-2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time × treatment interaction (p motor skills, post hoc comparisons found that all children improved their motor skills (p skills associated with healthy development in children (i.e., motor skills and self-regulation). This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool age children and significantly improved motor skills while participating in outdoor recess was not effective. CHAMP could help contribute to children’s learning-related skills and physical development and subsequently to their academic success. PMID:27660751

  18. Investigation of mechanical field weakening of axial flux permanent magnet motor

    Science.gov (United States)

    Syaifuddin Mohd, M.; Aziz, A. Rashid A.; Syafiq Mohd, M.

    2015-12-01

    An investigation of axial flux permanent magnet motor (AFPM) characteristics was conducted with a proposed mechanical field weakening control mechanisms (by means of stator-rotor force manipulation) on the motor through modeling and experimentation. By varying the air gap between at least two bistable positions, the peak torque and top speed of the motor can be extended. The motor high efficiency region can also be extended to cover greater part of the motor operating points. An analytical model of the motor had been developed to study the correlation between the total attraction force (between the rotor and the stator) and the operating parameters of the motor. The test results shows that the motor output complies with the prediction of the research hypothesis and it is likely that a spring locking mechanism can be built to dynamically adjust the air gap of the motor to increase the operating range and could be applied in electric drivetrain applications to improve overall efficiency of electric and hybrid electric vehicles.

  19. Current and investigational non-dopaminergic agents for management of motor symptoms (including motor complications) in Parkinson's disease.

    Science.gov (United States)

    Müller, Thomas

    2017-10-01

    Parkinson's disease is characterized by a heterogeneous combination of motor and non motor symptoms. The nigrostriatal dopamine deficit is one of its essential pathophysiologic features. Areas covered: This invited narrative review provides an overlook over current available and future promising non dopaminergic therapeutics to modulate altered dopaminergic neurotransmission in Parkinson's disease. Current research strategies aim to proof clinical efficacy by amelioration of motor symptoms and preponderant levodopa related movement fluctuations. These so-called motor complications are characterized by involuntary movements as a result of an overstimulation of the nigrostriatal dopaminergic system or by temporary recurrence of motor symptoms, when beneficial effects of dopamine substituting drugs vane. Expert opinion: Non dopaminergic modulation of dopamine replacement is currently mostly investigated in well defined and selected patients with motor complications to get approval. However, the world of daily maintenance of patients with its individually adapted, so-called personalised, therapy will determine the real value of these therapeutics. Here the clinical experience of the treating neurologists and the courage to use unconventional drug combinations are essential preconditions for successful treatments of motor and associated non motor complications in cooperation with the patients and their care giving surroundings.

  20. Influence of motor skills training on children's development evaluated in the Motor skills in PreSchool (MiPS) study-DK: study protocol for a randomized controlled trial, nested in a cohort study.

    Science.gov (United States)

    Hestbaek, Lise; Andersen, Sarah Thurøe; Skovgaard, Thomas; Olesen, Line Groenholt; Elmose, Mette; Bleses, Dorthe; Andersen, Simon Calmar; Lauridsen, Henrik Hein

    2017-08-29

    Good motor skills are considered important for children's physical, social, and psychological development, but the relationship is still poorly understood. Preschool age seems to be decisive for the development of motor skills and probably the most promising time-window in relation to preventive strategies based on improved motor skills. This research program has four overall aims: (1) investigation of the effect of a structured program aimed at improving motor skills in 3-6-year-old children on current and future motor skills, health, cognition, and wellbeing; (2) establish reference data on motor skills in 3-6-year-olds; (3) description of early development of musculoskeletal problems; and (4) establishment of a population-based cohort of 3-6-year-olds. Over a four-year period, all preschools in a Danish municipality, Svendborg, will implement a new program aimed at optimizing children's motor skills. By introducing the program into a subset of the preschools at onset and comparing these children to another subset (control) that will not receive the intervention the first three years, it is possible to document a potential effect of the intervention. At the same time, a cohort will be established including all children attending preschools in the municipality with extensive baseline data collection: gross and fine motor skills; movement patterns; musculoskeletal complaints; physical activity; anthropometry; general wellbeing; cognitive abilities; language status; medical history; demographic background; and more. The children are aged 3-6 years at baseline. A total of 1461 children have been invited into the cohort, 368 to the intervention arm and 359 to the control arm. Follow-up time for the trial is 2.5 years. The cohort is planned to run at least until the children leave school at age 15-16 years. Longer follow-up will depend on future funding. If the results of the trial are positive, the intervention can be implemented in other similar settings with

  1. Motor control or graded activity exercises for chronic low back pain? A randomised controlled trial

    Science.gov (United States)

    Macedo, Luciana G; Latimer, Jane; Maher, Chris G; Hodges, Paul W; Nicholas, Michael; Tonkin, Lois; McAuley, James H; Stafford, Ryan

    2008-01-01

    Background Chronic low back pain remains a major health problem in Australia and around the world. Unfortunately the majority of treatments for this condition produce small effects because not all patients respond to each treatment. It appears that only 25–50% of patients respond to exercise. The two most popular types of exercise for low back pain are graded activity and motor control exercises. At present however, there are no guidelines to help clinicians select the best treatment for a patient. As a result, time and money are wasted on treatments which ultimately fail to help the patient. Methods This paper describes the protocol of a randomised clinical trial comparing the effects of motor control exercises with a graded activity program in the treatment of chronic non specific low back pain. Further analysis will identify clinical features that may predict a patient's response to each treatment. One hundred and seventy two participants will be randomly allocated to receive either a program of motor control exercises or graded activity. Measures of outcome will be obtained at 2, 6 and 12 months after randomisation. The primary outcomes are: pain (average pain intensity over the last week) and function (patient-specific functional scale) at 2 and 6 months. Potential treatment effect modifiers will be measured at baseline. Discussion This trial will not only evaluate which exercise approach is more effective in general for patients will chronic low back pain, but will also determine which exercise approach is best for an individual patient. Trial registration number ACTRN12607000432415 PMID:18454877

  2. Motor control or graded activity exercises for chronic low back pain? A randomised controlled trial

    Directory of Open Access Journals (Sweden)

    McAuley James H

    2008-05-01

    Full Text Available Abstract Background Chronic low back pain remains a major health problem in Australia and around the world. Unfortunately the majority of treatments for this condition produce small effects because not all patients respond to each treatment. It appears that only 25–50% of patients respond to exercise. The two most popular types of exercise for low back pain are graded activity and motor control exercises. At present however, there are no guidelines to help clinicians select the best treatment for a patient. As a result, time and money are wasted on treatments which ultimately fail to help the patient. Methods This paper describes the protocol of a randomised clinical trial comparing the effects of motor control exercises with a graded activity program in the treatment of chronic non specific low back pain. Further analysis will identify clinical features that may predict a patient's response to each treatment. One hundred and seventy two participants will be randomly allocated to receive either a program of motor control exercises or graded activity. Measures of outcome will be obtained at 2, 6 and 12 months after randomisation. The primary outcomes are: pain (average pain intensity over the last week and function (patient-specific functional scale at 2 and 6 months. Potential treatment effect modifiers will be measured at baseline. Discussion This trial will not only evaluate which exercise approach is more effective in general for patients will chronic low back pain, but will also determine which exercise approach is best for an individual patient. Trial registration number ACTRN12607000432415

  3. Interventions for motor apraxia following stroke.

    Science.gov (United States)

    West, C; Bowen, A; Hesketh, A; Vail, A

    2008-01-23

    Apraxia is a cognitive disorder that can occur after stroke. It prevents a person from carrying out a learned movement. Various interventions are used to treat apraxia but evidence of their benefit has been lacking. To determine which therapeutic interventions targeted at motor apraxia reduce disability. We searched the Cochrane Stroke Group Trials Register (last searched November 2006). In addition, we searched the following databases: the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library Issue 3, 2006), MEDLINE (1966 to November 2007), EMBASE (1980 to November 2006), CINAHL (1982 to November 2006), PsycINFO (1974 to November 2006), the Research Index of the Occupational Therapy Journal (searched November 2006), REHABDATA (1956 to November 2006), the National Research Register (searched November 2006) and Current Controlled Trials Register (searched November 2006). We reviewed the reference lists of all articles that we identified as relevant. We made efforts to find both published and unpublished trials by writing to key authors and journals. Randomised controlled trials of therapeutic intervention for motor apraxia in stroke. One review author searched the titles, abstracts and keywords. Four review authors extracted data and analysed trial quality. We contacted investigators for further details of trials if necessary. Three trials including a total of 132 participants were included in the review. There was evidence of a small and short-lived therapeutic effect in the two studies that reported change in activities of daily living (102 participants) but this was not considered clinically significant and did not persist at the longer-term follow up. There is insufficient evidence to support or refute the effectiveness of specific therapeutic interventions for motor apraxia after stroke. Further research of higher quality is required. As we did not review whether patients with apraxia benefit from rehabilitation input in general, they

  4. Deafness and motor abilities level

    Directory of Open Access Journals (Sweden)

    A Zwierzchowska

    2008-09-01

    Full Text Available The audition injury hinders some motor motions and the organised coordination at the higher level and may be a cause of disturbances and disorder in some motor abilities adoption. It was assumed that deafness including its aetiology and injury mechanism may significantly influence the motor development of human being. The study aimed in checking if the deafness, as a result of various unfavourable factors, determines the motor development of children and youngsters. Consequently the dependency between qualitative features i.e.: signed motor level and aetiology, audition injury mechanism and the deafness degree was examined. The mechanism and aetiology of hearing correlated with the motor abilities displayed statistically significant dependencies in few motor trials only. Revealed correlations regarded mostly the coordination trials excluding the flexibility one. Statistically significant dependencies between the audition diminution and the motor abilities level were not found.

  5. Effect of the Children’s Health Activity Motor Program on Motor Skills and Self-Regulation in Head Start Preschoolers: An Efficacy Trial

    Directory of Open Access Journals (Sweden)

    Leah Elizabeth Robinson

    2016-09-01

    Full Text Available Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children’s Health Activity Motor Program, CHAMP that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 + 6.5 months; 49.5% males were randomly assigned to a treatment (n = 68 or control (n = 45 program. CHAMP participants engaged in 15, 40-minute sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development - 2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time*treatment interaction (p < .001. In regards to motor skills, post hoc comparisons found that all children improved their motor skills (p < .05, but the CHAMP group improved significantly more than the control group (p < .001. Children in CHAMP maintained their self-regulation scores across time while children in the control group scored significantly lower than the CHAMP group at the posttest (p < .05. CHAMP is a mastery climate movement program that may be an approach to enhance skills associated with healthy development in children (i.e., motor skills and self-regulation. This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool age

  6. Combined Cognitive-Motor Rehabilitation in Virtual Reality Improves Motor Outcomes in Chronic Stroke – A Pilot Study

    Directory of Open Access Journals (Sweden)

    Ana L. Faria

    2018-05-01

    Full Text Available Stroke is one of the most common causes of acquired disability, leaving numerous adults with cognitive and motor impairments, and affecting patients’ capability to live independently. Virtual Reality (VR based methods for stroke rehabilitation have mainly focused on motor rehabilitation but there is increasing interest toward the integration of cognitive training for providing more effective solutions. Here we investigate the feasibility for stroke recovery of a virtual cognitive-motor task, the Reh@Task, which combines adapted arm reaching, and attention and memory training. 24 participants in the chronic stage of stroke, with cognitive and motor deficits, were allocated to one of two groups (VR, Control. Both groups were enrolled in conventional occupational therapy, which mostly involves motor training. Additionally, the VR group underwent training with the Reh@Task and the control group performed time-matched conventional occupational therapy. Motor and cognitive competences were assessed at baseline, end of treatment (1 month and at a 1-month follow-up through the Montreal Cognitive Assessment, Single Letter Cancelation, Digit Cancelation, Bells Test, Fugl-Meyer Assessment Test, Chedoke Arm and Hand Activity Inventory, Modified Ashworth Scale, and Barthel Index. Our results show that both groups improved in motor function over time, but the Reh@Task group displayed significantly higher between-group outcomes in the arm subpart of the Fugl-Meyer Assessment Test. Improvements in cognitive function were significant and similar in both groups. Overall, these results are supportive of the viability of VR tools that combine motor and cognitive training, such as the Reh@Task. Trial Registration: This trial was not registered because it is a small clinical study that addresses the feasibility of a prototype device.

  7. Interventions to improve gross motor performance in children with neurodevelopmental disorders: a meta-analysis.

    Science.gov (United States)

    Lucas, Barbara R; Elliott, Elizabeth J; Coggan, Sarah; Pinto, Rafael Z; Jirikowic, Tracy; McCoy, Sarah Westcott; Latimer, Jane

    2016-11-29

    Gross motor skills are fundamental to childhood development. The effectiveness of current physical therapy options for children with mild to moderate gross motor disorders is unknown. The aim of this study was to systematically review the literature to investigate the effectiveness of conservative interventions to improve gross motor performance in children with a range of neurodevelopmental disorders. A systematic review with meta-analysis was conducted. MEDLINE, EMBASE, AMED, CINAHL, PsycINFO, PEDro, Cochrane Collaboration, Google Scholar databases and clinical trial registries were searched. Published randomised controlled trials including children 3 to ≤18 years with (i) Developmental Coordination Disorder (DCD) or Cerebral Palsy (CP) (Gross Motor Function Classification System Level 1) or Developmental Delay or Minimal Acquired Brain Injury or Prematurity (gross motor outcomes obtained using a standardised assessment tool. Meta-analysis was performed to determine the pooled effect of intervention on gross motor function. Methodological quality and strength of meta-analysis recommendations were evaluated using PEDro and the GRADE approach respectively. Of 2513 papers, 9 met inclusion criteria including children with CP (n = 2) or DCD (n = 7) receiving 11 different interventions. Only two of 9 trials showed an effect for treatment. Using the least conservative trial outcomes a large beneficial effect of intervention was shown (SMD:-0.8; 95% CI:-1.1 to -0.5) with "very low quality" GRADE ratings. Using the most conservative trial outcomes there is no treatment effect (SMD:-0.1; 95% CI:-0.3 to 0.2) with "low quality" GRADE ratings. Study limitations included the small number and poor quality of the available trials. Although we found that some interventions with a task-orientated framework can improve gross motor outcomes in children with DCD or CP, these findings are limited by the very low quality of the available evidence. High quality intervention

  8. Effect of hippotherapy on gross motor function in children with cerebral palsy: a randomized controlled trial.

    Science.gov (United States)

    Kwon, Jeong-Yi; Chang, Hyun Jung; Yi, Sook-Hee; Lee, Ji Young; Shin, Hye-Yeon; Kim, Yun-Hee

    2015-01-01

    To examine whether hippotherapy has a clinically significant effect on gross motor function in children with cerebral palsy (CP). Randomized controlled trial. Outpatient therapy center. Ninety-two children with CP, aged 4-10 years, presenting variable function (Gross Motor Function Classification System [GMFCS] levels I-IV). Hippotherapy (30 minutes twice weekly for 8 consecutive weeks). Gross Motor Function Measure (GMFM)-88, GMFM-66, and Pediatric Balance Scale. Pre- and post-treatment measures were completed by 91 children (45 in the intervention group and 46 in the control group). Differences in improvement on all three measures significantly differed between groups after the 8-week study period. Dimensions of GMFM-88 improved significantly after hippotherapy varied by GMFCS level: dimension E in level I, dimensions D and E in level II, dimensions C and D in level III, and dimensions B and C in level IV. Hippotherapy positively affects gross motor function and balance in children with CP of various functional levels.

  9. Slip Torque Investigation and Magnetic Redesign of Motor Integrated Permanent Magnet Gear

    DEFF Research Database (Denmark)

    Frandsen, Tommy Vestergaard; Rasmussen, Peter Omand

    2015-01-01

    This paper presents an investigation of 20% difference between the measured and calculated slip torque of a Motor Integrated Permanent Magnet Gear (MIPMG) prototype. The High Speed (HS) side of the Magnetic Gear (MG) was fixed by loading the motor when conducting the slip torque measurement. Susp...

  10. Disclosure of investigators' recruitment performance in multicenter clinical trials

    DEFF Research Database (Denmark)

    Dal-Ré, Rafael; Moher, David; Gluud, Christian

    2011-01-01

    Rafael Dal-Ré and colleagues argue that the recruitment targets and performance of all site investigators in multi-centre clinical trials should be disclosed in trial registration sites before a trial starts, and when it ends.......Rafael Dal-Ré and colleagues argue that the recruitment targets and performance of all site investigators in multi-centre clinical trials should be disclosed in trial registration sites before a trial starts, and when it ends....

  11. Caregiver-Provided Physical Therapy Home Programs for Children with Motor Delay: A Scoping Review.

    Science.gov (United States)

    Gorgon, Edward James R

    2018-06-01

    Caregiver-provided physical therapy home programs (PTHP) play an important role in enhancing motor outcomes in pediatric patient populations. This scoping review systematically mapped clinical trials of caregiver-provided PTHP that were aimed at enhancing motor outcomes in children who have or who are at risk for motor delay, with the purpose of (1) describing trial characteristics; (2) assessing methodologic quality; and (3) examining the reporting of caregiver-related components. Physiotherapy Evidence Database (PEDro), Cochrane CENTRAL, PubMed, Scopus, ScienceDirect, ProQuest Central, CINAHL, LILACS, and OTseeker were searched up to July 31, 2017. Two reviewers independently assessed study eligibility. Randomized or quasi-randomized controlled trials on PTHP administered by parents, other family members, friends, or informal caregivers to children who had or who were at risk for motor delay were included. Two reviewers independently appraised trial quality on the PEDro scale and extracted data. Twenty-four articles representing 17 individual trials were identified. Populations and interventions investigated were heterogeneous. Most of the trials had important research design limitations and methodological issues that could limit usefulness in ascertaining the effectiveness of caregiver-provided PTHP. Few (4 of 17) trials indicated involvement of caregivers in the PTHP planning, assessed how the caregivers learned from the training or instructions provided, or carried out both. Included studies were heterogeneous, and unpublished data were excluded. Although caregiver-provided PTHP are important in addressing motor outcomes in this population, there is a lack of evidence at the level of clinical trials to guide practice. More research is urgently needed to determine the effectiveness of care-giver-provided PTHP. Future studies should address the many important issues identified in this scoping review to improve the usefulness of the trial results.

  12. Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial.

    Science.gov (United States)

    Frolov, Alexander A; Mokienko, Olesya; Lyukmanov, Roman; Biryukova, Elena; Kotov, Sergey; Turbina, Lydia; Nadareyshvily, Georgy; Bushkova, Yulia

    2017-01-01

    Repeated use of brain-computer interfaces (BCIs) providing contingent sensory feedback of brain activity was recently proposed as a rehabilitation approach to restore motor function after stroke or spinal cord lesions. However, there are only a few clinical studies that investigate feasibility and effectiveness of such an approach. Here we report on a placebo-controlled, multicenter clinical trial that investigated whether stroke survivors with severe upper limb (UL) paralysis benefit from 10 BCI training sessions each lasting up to 40 min. A total of 74 patients participated: median time since stroke is 8 months, 25 and 75% quartiles [3.0; 13.0]; median severity of UL paralysis is 4.5 points [0.0; 30.0] as measured by the Action Research Arm Test, ARAT, and 19.5 points [11.0; 40.0] as measured by the Fugl-Meyer Motor Assessment, FMMA. Patients in the BCI group ( n = 55) performed motor imagery of opening their affected hand. Motor imagery-related brain electroencephalographic activity was translated into contingent hand exoskeleton-driven opening movements of the affected hand. In a control group ( n = 19), hand exoskeleton-driven opening movements of the affected hand were independent of brain electroencephalographic activity. Evaluation of the UL clinical assessments indicated that both groups improved, but only the BCI group showed an improvement in the ARAT's grasp score from 0 [0.0; 14.0] to 3.0 [0.0; 15.0] points ( p exoskeleton-assisted physical therapy can improve post-stroke rehabilitation outcomes. Both maximum and mean values of the percentage of successfully decoded imagery-related EEG activity, were higher than chance level. A correlation between the classification accuracy and the improvement in the upper extremity function was found. An improvement of motor function was found for patients with different duration, severity and location of the stroke.

  13. Motor-sensory confluence in tactile perception.

    Science.gov (United States)

    Saig, Avraham; Gordon, Goren; Assa, Eldad; Arieli, Amos; Ahissar, Ehud

    2012-10-03

    Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.

  14. Robot training for hand motor recovery in subacute stroke patients: A randomized controlled trial.

    Science.gov (United States)

    Orihuela-Espina, Felipe; Roldán, Giovana Femat; Sánchez-Villavicencio, Israel; Palafox, Lorena; Leder, Ronald; Sucar, Luis Enrique; Hernández-Franco, Jorge

    2016-01-01

    Evidence of superiority of robot training for the hand over classical therapies in stroke patients remains controversial. During the subacute stage, hand training is likely to be the most useful. To establish whether robot active assisted therapies provides any additional motor recovery for the hand when administered during the subacute stage (robot based therapies for hand recovery will show significant differences at subacute stages. A randomized clinical trial. A between subjects randomized controlled trial was carried out on subacute stroke patients (n = 17) comparing robot active assisted therapy (RT) with a classical occupational therapy (OT). Both groups received 40 sessions ensuring at least 300 repetitions per session. Treatment duration was (mean ± std) 2.18 ± 1.25 months for the control group and 2.44 ± 0.88 months for the study group. The primary outcome was motor dexterity changes assessed with the Fugl-Meyer (FMA) and the Motricity Index (MI). Both groups (OT: n = 8; RT: n = 9) exhibited significant improvements over time (Non-parametric Cliff's delta-within effect sizes: dwOT-FMA = 0.5, dwOT-MI = 0.5, dwRT-FMA = 1, dwRT-MI = 1). Regarding differences between the therapies; the Fugl-Meyer score indicated a significant advantage for the hand training with the robot (FMA hand: WRS: W = 8, p hand prehension for RT with respect to OT but failed to reach significance (MI prehension: W = 17.5, p = 0.080). No harm occurred. Robotic therapies may be useful during the subacute stages of stroke - both endpoints (FM hand and MI prehension) showed the expected trend with bigger effect size for the robotic intervention. Additional benefit of the robotic therapy over the control therapy was only significant when the difference was measured with FM, demanding further investigation with larger samples. Implications of this study are important for decision making during therapy administration and resource allocation. Copyright © 2016 Hanley

  15. Validating the Rett Syndrome Gross Motor Scale.

    Science.gov (United States)

    Downs, Jenny; Stahlhut, Michelle; Wong, Kingsley; Syhler, Birgit; Bisgaard, Anne-Marie; Jacoby, Peter; Leonard, Helen

    2016-01-01

    Rett syndrome is a pervasive neurodevelopmental disorder associated with a pathogenic mutation on the MECP2 gene. Impaired movement is a fundamental component and the Rett Syndrome Gross Motor Scale was developed to measure gross motor abilities in this population. The current study investigated the validity and reliability of the Rett Syndrome Gross Motor Scale. Video data showing gross motor abilities supplemented with parent report data was collected for 255 girls and women registered with the Australian Rett Syndrome Database, and the factor structure and relationships between motor scores, age and genotype were investigated. Clinical assessment scores for 38 girls and women with Rett syndrome who attended the Danish Center for Rett Syndrome were used to assess consistency of measurement. Principal components analysis enabled the calculation of three factor scores: Sitting, Standing and Walking, and Challenge. Motor scores were poorer with increasing age and those with the p.Arg133Cys, p.Arg294* or p.Arg306Cys mutation achieved higher scores than those with a large deletion. The repeatability of clinical assessment was excellent (intraclass correlation coefficient for total score 0.99, 95% CI 0.93-0.98). The standard error of measurement for the total score was 2 points and we would be 95% confident that a change 4 points in the 45-point scale would be greater than within-subject measurement error. The Rett Syndrome Gross Motor Scale could be an appropriate measure of gross motor skills in clinical practice and clinical trials.

  16. Recovery of motor deficit accompanying sciatica--subgroup analysis of a randomized controlled trial.

    Science.gov (United States)

    Overdevest, Gijsbert M; Vleggeert-Lankamp, Carmen L A M; Jacobs, Wilco C H; Brand, Ronald; Koes, Bart W; Peul, Wilco C

    2014-09-01

    In patients with sciatica due to a lumbar disc herniation, it is generally recommended to reserve surgical treatment for those who suffer from intolerable pain or those who demonstrate persistent symptoms after conservative management. Controversy exists about the necessity of early surgical intervention for those patients that have an additional motor deficit. The aim of this study was to compare the recovery of motor deficit among patients receiving early surgery to those receiving prolonged conservative treatment. Subgroup analysis of a randomized controlled trial. This subgroup analysis focuses on 150 (53%) of 283 patients with sciatica due to a lumbar disc herniation and whose symptoms at baseline (before randomization) were accompanied by a motor deficit. Motor deficit was assessed through manual muscle testing and graded according to the Medical Research Council (MRC) scale. In total, 150 patients with 6 to 12 weeks of sciatica due to a lumbar disc herniation and whose symptoms were accompanied by a moderate (MRC Grade 4) or severe (MRC Grade 3) motor deficit were randomly allocated to early surgery or prolonged conservative treatment. Repeated standardized neurologic examinations were performed at baseline and at 8, 26, and 52 weeks after randomization. This study was supported by a grant from the Netherlands Organization for Health Research and Development (ZonMW) and the Hoelen Foundation The Hague. Sciatica recovered among seven (10%) of the 70 patients assigned to early surgery before surgery could be performed, and of the 80 patients assigned to conservative treatment, 32 patients (40%) were treated surgically because of intolerable pain. Baseline severity of motor deficit was graded moderate in 84% of patients and severe in 16% of patients. Motor deficit recovered significantly faster among patients allocated to early surgery (p=.01), but the difference was no longer significant at 26 (p=.21) or 52 weeks (p=.92). At 1 year, complete recovery of motor

  17. Active training paradigm for motor imagery BCI.

    Science.gov (United States)

    Li, Junhua; Zhang, Liqing

    2012-06-01

    Brain-computer interface (BCI) allows the use of brain activities for people to directly communicate with the external world or to control external devices without participation of any peripheral nerves and muscles. Motor imagery is one of the most popular modes in the research field of brain-computer interface. Although motor imagery BCI has some advantages compared with other modes of BCI, such as asynchronization, it is necessary to require training sessions before using it. The performance of trained BCI system depends on the quality of training samples or the subject engagement. In order to improve training effect and decrease training time, we proposed a new paradigm where subjects participated in training more actively than in the traditional paradigm. In the traditional paradigm, a cue (to indicate what kind of motor imagery should be imagined during the current trial) is given to the subject at the beginning of a trial or during a trial, and this cue is also used as a label for this trial. It is usually assumed that labels for trials are accurate in the traditional paradigm, although subjects may not have performed the required or correct kind of motor imagery, and trials may thus be mislabeled. And then those mislabeled trials give rise to interference during model training. In our proposed paradigm, the subject is required to reconfirm the label and can correct the label when necessary. This active training paradigm may generate better training samples with fewer inconsistent labels because it overcomes mistakes when subject's motor imagination does not match the given cues. The experiments confirm that our proposed paradigm achieves better performance; the improvement is significant according to statistical analysis.

  18. Progression of motor symptoms in Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Ruiping Xia; Zhi-Hong Mao

    2012-01-01

    Parkinson's disease (PD) is a chronic progressive neurodegenerative disease that is clinically manifested by a triad of cardinal motor symptoms - rigidity,bradykinesia and tremor - due to loss of dopaminergic neurons.The motor symptoms of PD become progressively worse as the disease advances.PD is also a heterogeneous disease since rigidity and bradykinesia are the major complaints in some patients whereas tremor is predominant in others.In recent years,many studies have investigated the progression of the hallmark symptoms over time,and the cardinal motor symptoms have different rates of progression,with the disease usually progressing faster in patients with rigidity and bradykinesia than in those with predominant tremor.The current treatment regime of dopamine-replacement therapy improves motor symptoms and alleviates disability.Increasing the dosage of dopaminergic medication is commonly used to combat the worsenirtg symptoms.However,the drug-induced involuntary body movements and motor comphcations can significantly contribute to overall disability.Further,none of the currently-available therapies can slow or halt the disease progression.Significant research efforts have been directed towards developing neuroprotective or disease-modifying agents that are intended to slow the progression.In this article,the most recent clinical studies investigating disease progression and current progress on the development of disease-modifying drug trials are reviewed.

  19. Numerical investigation of refrigeration machine compressor operation considering single-phase electric motor dynamic characteristics

    Science.gov (United States)

    Baidak, Y.; Smyk, V.

    2017-08-01

    Using as the base the differential equations system which was presented in relative units for generalized electric motor of hermetic refrigeration compressor, mathematical model of the software for dynamic performance calculation of refrigeration machine compressors drive low-power asynchronous motors was developed. Performed on its ground calculations of the basic model of two-phase electric motor drive of hermetic compressor and the proposed newly developed model of the motor with single-phase stator winding, which is an alternative to the industrial motor winding, have confirmed the benefits of the motor with innovative stator winding over the base engine. Given calculations of the dynamic characteristics of compressor drive motor have permitted to determine the value of electromagnetic torque swinging for coordinating compressor and motor mechanical characteristics, and for taking them into consideration in choosing compressor elements construction materials. Developed and used in the process of investigation of refrigeration compressor drive asynchronous single-phase motor mathematical and software can be considered as an element of computer-aided design system for design of the aggregate of refrigeration compression unit refrigerating machine.

  20. Validating the Rett Syndrome Gross Motor Scale.

    Directory of Open Access Journals (Sweden)

    Jenny Downs

    Full Text Available Rett syndrome is a pervasive neurodevelopmental disorder associated with a pathogenic mutation on the MECP2 gene. Impaired movement is a fundamental component and the Rett Syndrome Gross Motor Scale was developed to measure gross motor abilities in this population. The current study investigated the validity and reliability of the Rett Syndrome Gross Motor Scale. Video data showing gross motor abilities supplemented with parent report data was collected for 255 girls and women registered with the Australian Rett Syndrome Database, and the factor structure and relationships between motor scores, age and genotype were investigated. Clinical assessment scores for 38 girls and women with Rett syndrome who attended the Danish Center for Rett Syndrome were used to assess consistency of measurement. Principal components analysis enabled the calculation of three factor scores: Sitting, Standing and Walking, and Challenge. Motor scores were poorer with increasing age and those with the p.Arg133Cys, p.Arg294* or p.Arg306Cys mutation achieved higher scores than those with a large deletion. The repeatability of clinical assessment was excellent (intraclass correlation coefficient for total score 0.99, 95% CI 0.93-0.98. The standard error of measurement for the total score was 2 points and we would be 95% confident that a change 4 points in the 45-point scale would be greater than within-subject measurement error. The Rett Syndrome Gross Motor Scale could be an appropriate measure of gross motor skills in clinical practice and clinical trials.

  1. Rationale, design and methods for a randomised and controlled trial of the impact of virtual reality games on motor competence, physical activity, and mental health in children with developmental coordination disorder

    Directory of Open Access Journals (Sweden)

    Straker Leon M

    2011-08-01

    Full Text Available Abstract Background A healthy start to life requires adequate motor development and physical activity participation. Currently 5-15% of children have impaired motor development without any obvious disorder. These children are at greater risk of obesity, musculoskeletal disorders, low social confidence and poor mental health. Traditional electronic game use may impact on motor development and physical activity creating a vicious cycle. However new virtual reality (VR game interfaces may provide motor experiences that enhance motor development and lead to an increase in motor coordination and better physical activity and mental health outcomes. VR games are beginning to be used for rehabilitation, however there is no reported trial of the impact of these games on motor coordination in children with developmental coordination disorder. Methods This cross-over randomised and controlled trial will examine whether motor coordination is enhanced by access to active electronic games and whether daily activity, attitudes to physical activity and mental health are also enhanced. Thirty children aged 10-12 years with poor motor coordination (≤ 15th percentile will be recruited and randomised to a balanced ordering of 'no active electronic games' and 'active electronic games'. Each child will participate in both conditions for 16 weeks, and be assessed prior to participation and at the end of each condition. The primary outcome is motor coordination, assessed by kinematic and kinetic motion analysis laboratory measures. Physical activity and sedentary behaviour will be assessed by accelerometry, coordination in daily life by parent report questionnaire and attitudes to physical activity, self-confidence, anxiety and depressed mood will be assessed by self report questionnaire. A sample of 30 will provide a power of > 0.9 for detecting a 5 point difference in motor coordination on the MABC-2 TIS scale (mean 17, sd = 5. Discussion This is the first trial to

  2. Split-phase motor running as capacitor starts motor and as capacitor run motor

    Directory of Open Access Journals (Sweden)

    Yahaya Asizehi ENESI

    2016-07-01

    Full Text Available In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The magnitude of capacitor that will develop maximum torque in capacitor start motor and capacitor run motor are investigated and determined by simulation. Each of these capacitors is connected to the auxiliary winding of split-phase motor thereby transforming it into capacitor start or capacitor run motor. The starting current and starting torque of the split-phase motor (SPM, capacitor run motor (CRM and capacitor star motor (CSM are compared for their suitability in their operational performance and applications.

  3. Numerical and Experimental Investigation of Heat Flow in Permanent Magnet Brushless DC Hub Motor

    DEFF Research Database (Denmark)

    Fasil, Muhammed; Plesner, Daniel; Walther, Jens Honore

    2014-01-01

    This paper investigates the heat dissipation in the hub motor of an electric two-wheeler using lumped parameter (LP), finite element (FE) and computational fluid dynamic (CFD) models. The motor uses external rotor permanent magnet brushless DC topology and nearly all of its losses are generated...

  4. Impact of Vitamin D Supplementation on Gross Motor Development of Healthy Term Infants: A Randomized Dose-Response Trial.

    Science.gov (United States)

    Wicklow, Brandy; Gallo, Sina; Majnemer, Annette; Vanstone, Catherine; Comeau, Kathryn; Jones, Glenville; L'Abbe, Mary; Khamessan, Ali; Sharma, Atul; Weiler, Hope; Rodd, Celia

    2016-08-01

    In addition to benefits for bone health, vitamin D is implicated in muscle function in children and adults. To determine if vitamin D dosage positively correlated with gross motor development at 3 and 6 months of age. We hypothesized that higher doses would be associated with higher scores for gross motor skills. A consecutive sample of 55 healthy, term, and breastfed infants from Montreal, Canada were recruited from a randomized trial of vitamin D supplementation between 2009 and 2012. Infants were randomized to 400 International Units (IU) (n = 19), 800 IU (n = 18) or 1,200 IU (n = 18) vitamin D3/day. Motor performance at 3 and 6 months was quantified by the Alberta Infant Motor Scale (AIMS). Plasma vitamin D3 metabolites were measured by tandem mass spectrometry. AIMS scores did not differ at 3 months. However, total AIMS scores and sitting subscores were significantly higher at 6 months in infants receiving 400 IU/day compared to 800 IU/day and 1,200 IU/day groups (p gross motor achievements were significantly higher in infants receiving 400 IU/day vitamin D. Our findings also support longer infants being slightly delayed.

  5. Investigating impact of motor oil quality on vehicles engine induced noise level

    Directory of Open Access Journals (Sweden)

    I. Arefian

    2015-09-01

    Full Text Available Introduction: Vehicle engine id one of the main sources of noise which its level is influenced by various parameters. The aim of this study was to investigate the impact of motor oils quality before and after oil change on the variability of vehicle engine induced noise level. In this study it is tried to follow-up the efficacy of motor oil quality on engines sound level. Material and Method: First, engine noise of 94 vehicles were recorded for 30 seconds before and after oil change and all the vehicles technical information including mileage, type of motor oil, and type of vehicle were registered. Following, the recorded noises were calibrated in semi-anechoic chamber and the sound pressure levels were measured with A and C-weighting network and main octav bands, using a sound level meters. The obtained results analyzed using SPSS software version 17. Results: The effects of motor oil quality on different noise levels of engines were determined and a significant reduction in noise level of vehicles engine was observed. Investigation of the relationship between mileage and motor oil quality on various engines sound level manifested that vehicles with mileage ranged 100000-150000 miles had significant reduction in their sound pressure levels in comparison with other vehicles. Conclusion: The results revealed that engine oil is among factors reducing the vehicle engine induced noise level. Moreover, the engine oil type and the vehicle mileage are key variables which determine the impact of engine oil quality on reduction of the sound level of vehicles engine.

  6. Investigation of vibration characteristics of electric motors

    Science.gov (United States)

    Bakshis, A. K.; Tamoshyunas, Y. K.

    1973-01-01

    The vibration characteristics of electric motors were analyzed using mathematical statistics methods. The equipment used and the method of conducting the test are described. Curves are developed to show the visualization of the electric motor vibrations in the vertical direction. Additional curves are included to show the amplitude-phase frequency characteristic of dynamic rotor-housing vibrations at the first lug and the same data for the second lug of the electric motor. Mathematical models were created to show the transmission function of the dynamic rotor housing system.

  7. Motor imagery beyond the motor repertoire: Activity in the primary visual cortex during kinesthetic motor imagery of difficult whole body movements.

    Science.gov (United States)

    Mizuguchi, N; Nakata, H; Kanosue, K

    2016-02-19

    To elucidate the neural substrate associated with capabilities for kinesthetic motor imagery of difficult whole-body movements, we measured brain activity during a trial involving both kinesthetic motor imagery and action observation as well as during a trial with action observation alone. Brain activity was assessed with functional magnetic resonance imaging (fMRI). Nineteen participants imagined three types of whole-body movements with the horizontal bar: the giant swing, kip, and chin-up during action observation. No participant had previously tried to perform the giant swing. The vividness of kinesthetic motor imagery as assessed by questionnaire was highest for the chin-up, less for the kip and lowest for the giant swing. Activity in the primary visual cortex (V1) during kinesthetic motor imagery with action observation minus that during action observation alone was significantly greater in the giant swing condition than in the chin-up condition within participants. Across participants, V1 activity of kinesthetic motor imagery of the kip during action observation minus that during action observation alone was negatively correlated with vividness of the kip imagery. These results suggest that activity in V1 is dependent upon the capability of kinesthetic motor imagery for difficult whole-body movements. Since V1 activity is likely related to the creation of a visual image, we speculate that visual motor imagery is recruited unintentionally for the less vivid kinesthetic motor imagery of difficult whole-body movements. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Nutrition, hygiene, and stimulation education to improve growth, cognitive, language, and motor development among infants in Uganda: A cluster-randomized trial.

    Science.gov (United States)

    Muhoozi, Grace K M; Atukunda, Prudence; Diep, Lien M; Mwadime, Robert; Kaaya, Archileo N; Skaare, Anne B; Willumsen, Tiril; Westerberg, Ane C; Iversen, Per O

    2018-04-01

    Stunting is associated with impaired cognitive and motor function. The effect of an education intervention including nutrition, stimulation, sanitation, and hygiene on child growth and cognitive/language/motor development, delivered to impoverished mothers in Uganda, was assessed. In a community-based, open cluster-randomized trial, 511 mother/children dyads aged 6-8 months were enrolled to an intervention (n = 263) or control (n = 248) group. The primary outcome was change in length-for-age z-score at age 20-24 months. Secondary outcomes included anthropometry and scores on the 2 developmental scales: Bayley Scales of Infant and Toddler Development-III and the Ages and Stages Questionnaire. There was no evidence of a difference in mean length-for-age z-score at 20-24 months between the 2 study groups: 0.10, 95% CI [-0.17, 0.36], p = .49. The intervention group had higher mean composite development scores than the controls on Bayley Scales of Infant and Toddler Development-III, the mean difference being 15.6, 95% CI [10.9, 20.2], p = .0001; 9.9, 95% CI [6.4, 13.2], p = .0001; and 14.6, 95% CI [10.9, 18.2], p = .0001, for cognitive, language, and motor composite scores, respectively. The mean difference in scores from the Ages and Stages Questionnaire were 7.0, 95% CI [2.9, 11.3], p = .001; 5.9, 95% CI [1.2, 10.3], p = .01; 4.2, 95% CI [1.7, 6.7], p = .001; 8.9, 95% CI [5.3, 12.3], p = .0001; and 4.4, 95% CI [0.0, 8.8], p = .05, for communication, gross motor, fine motor, problem solving, and personal-social development, respectively. The intervention education delivered to mothers promoted early development domains in cognitive, language, and motor development but not linear growth of small children in impoverished rural communities in Uganda. Our study showed that child development may be improved with a relatively low cost intervention strategy. This trial was registered at ClinicalTrials.gov as NCT02098031. © 2017 John Wiley & Sons Ltd.

  9. Mobile access to virtual randomization for investigator-initiated trials.

    Science.gov (United States)

    Deserno, Thomas M; Keszei, András P

    2017-08-01

    Background/aims Randomization is indispensable in clinical trials in order to provide unbiased treatment allocation and a valid statistical inference. Improper handling of allocation lists can be avoided using central systems, for example, human-based services. However, central systems are unaffordable for investigator-initiated trials and might be inaccessible from some places, where study subjects need allocations. We propose mobile access to virtual randomization, where the randomization lists are non-existent and the appropriate allocation is computed on demand. Methods The core of the system architecture is an electronic data capture system or a clinical trial management system, which is extended by an R interface connecting the R server using the Java R Interface. Mobile devices communicate via the representational state transfer web services. Furthermore, a simple web-based setup allows configuring the appropriate statistics by non-statisticians. Our comprehensive R script supports simple randomization, restricted randomization using a random allocation rule, block randomization, and stratified randomization for un-blinded, single-blinded, and double-blinded trials. For each trial, the electronic data capture system or the clinical trial management system stores the randomization parameters and the subject assignments. Results Apps are provided for iOS and Android and subjects are randomized using smartphones. After logging onto the system, the user selects the trial and the subject, and the allocation number and treatment arm are displayed instantaneously and stored in the core system. So far, 156 subjects have been allocated from mobile devices serving five investigator-initiated trials. Conclusion Transforming pre-printed allocation lists into virtual ones ensures the correct conduct of trials and guarantees a strictly sequential processing in all trial sites. Covering 88% of all randomization models that are used in recent trials, virtual randomization

  10. Between-Trial Forgetting Due to Interference and Time in Motor Adaptation.

    Directory of Open Access Journals (Sweden)

    Sungshin Kim

    Full Text Available Learning a motor task with temporally spaced presentations or with other tasks intermixed between presentations reduces performance during training, but can enhance retention post training. These two effects are known as the spacing and contextual interference effect, respectively. Here, we aimed at testing a unifying hypothesis of the spacing and contextual interference effects in visuomotor adaptation, according to which forgetting between trials due to either spaced presentations or interference by another task will promote between-trial forgetting, which will depress performance during acquisition, but will promote retention. We first performed an experiment with three visuomotor adaptation conditions: a short inter-trial-interval (ITI condition (SHORT-ITI; a long ITI condition (LONG-ITI; and an alternating condition with two alternated opposite tasks (ALT, with the same single-task ITI as in LONG-ITI. In the SHORT-ITI condition, there was fastest increase in performance during training and largest immediate forgetting in the retention tests. In contrast, in the ALT condition, there was slowest increase in performance during training and little immediate forgetting in the retention tests. Compared to these two conditions, in the LONG-ITI, we found intermediate increase in performance during training and intermediate immediate forgetting. To account for these results, we fitted to the data six possible adaptation models with one or two time scales, and with interference in the fast, or in the slow, or in both time scales. Model comparison confirmed that two time scales and some degree of interferences in either time scale are needed to account for our experimental results. In summary, our results suggest that retention following adaptation is modulated by the degree of between-trial forgetting, which is due to time-based decay in single adaptation task and interferences in multiple adaptation tasks.

  11. Electrical stimulation and motor recovery.

    Science.gov (United States)

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical

  12. Effect of interactive cognitive motor training on gait and balance among older adults: A randomized controlled trial.

    Science.gov (United States)

    Kao, Ching-Chiu; Chiu, Huei-Ling; Liu, Doresses; Chan, Pi-Tuan; Tseng, Ing-Jy; Chen, Ruey; Niu, Shu-Fen; Chou, Kuei-Ru

    2018-06-01

    Aging is a normal degenerative process that results in a decline in the gait and balance performance of older adults. Interactive cognitive motor training is an intervention that integrates cognitive and motor tasks to promote individuals' physical and cognitive fall risk factors. However, the additive effects of the interactive cognitive motor training on objective quantitative data and comprehensive descriptions of gait and balance warrants further investigation. To investigate the effect of interactive cognitive motor training on older adults' gait and balance from immediate to long-term time points. A double-blind randomized control trial. Four senior service centers and community service centers in Taiwan. 62 older adults who met the inclusion criteria. The study participants were older adults without cognitive impairment, and they were randomly allocated to the experimental group or active control group. In both groups, older adults participated in three sessions of 30-min training per week for a total of 8 weeks, with the total number of training sessions being 24. The primary outcome was gait performance, which was measured using objective and subjective indicators. iWALK was used as an objective indicator to measure pace and dynamic stability; the Functional Gait Assessment was employed as a subjective indicator. The secondary outcome was balance performance, which was measured using iSWAY. A generalized estimating equation was used to identify whether the results of the two groups differ after receiving different intervention measures; the results were obtained from immediate to long-term posttests. Stride length in the pace category of the experimental group improved significantly in immediate posttest (p = 0.01), 3-month follow-up (p = 0.01), and 6-month follow-up (p = 0.04). The range of motion of the leg exhibited significant improvement in immediate posttest (p = 0.04) and 3-month follow-up (p = 0.04). The Functional Gait

  13. Intravenous immunoglobulin for maintenance treatment of multifocal motor neuropathy: A multi-center, open-label, 52-week phase 3 trial.

    Science.gov (United States)

    Kuwabara, Satoshi; Misawa, Sonoko; Mori, Masahiro; Iwai, Yuta; Ochi, Kazuhide; Suzuki, Hidekazu; Nodera, Hiroyuki; Tamaoka, Akira; Iijima, Masahiro; Toda, Tatsushi; Yoshikawa, Hiroo; Kanda, Takashi; Sakamoto, Ko; Kusunoki, Susumu; Sobue, Gen; Kaji, Ryuji

    2018-04-10

    Intravenous immunoglobulin (IVIg) therapy is currently the only established treatment in patients with multifocal motor neuropathy (MMN), and many patients have an IVIg-dependent fluctuation. We aimed to investigate the efficacy and safety of every 3 week IVIg (1.0 g/kg) for 52 weeks. This study was an open-label phase 3 clinical trial, enrolling 13 MMN patients. After an induction IVIg therapy (0.4 g/kg/d for 5 consecutive days), maintenance dose (1.0 g/kg) was given every 3 weeks for 52 weeks. The major outcome measures were the Medical Research Council (MRC) sum score and hand-grip strength at week 52. This trial is registered with ClinicalTrials.gov, number NCT01827072. At week 52, 11 of the 13 patients completed the study, and all 11 had a sustained improvement. The mean (SD) MRC sum score was 85.6 (8.7) at the baseline, and 90.6 (12.8) at week 52. The mean grip strength was 39.2 (30.0) kPa at the baseline and 45.2 (32.8) kPa at week 52. Two patients dropped out because of adverse event (dysphagia) and decision of an investigator, respectively. Three patients developed coronary spasm, dysphagia, or inguinal herniation, reported as the serious adverse events, but considered not related with the study drug. The other adverse effects were mild and resolved by the end of the study period. Our results show that maintenance treatment with 1.0 g/kg IVIg every 3 week is safe and efficacious for MMN patients up to 52 weeks. Further studies are required to investigate optimal dose and duration of maintenance IVIg for MMN. © 2018 The Authors. Journal of the Peripheral Nervous System published by Wiley Periodicals, Inc. on behalf of Peripheral Nerve Society.

  14. Trial manufacture of liquid nitrogen cooling High Temperature Superconductivity Motor

    International Nuclear Information System (INIS)

    Sugimoto, H; Nishikawa, T; Tsuda, T; Hondou, Y; Akita, Y; Takeda, T; Okazaki, T; Ohashi, S; Yoshida, Y

    2006-01-01

    We present a new high temperature superconductivity (HTS) synchronous motor using the liquid nitrogen as the refrigerant in this paper. This motor is designed to be used as the propulsion motor in ship. Because we use the liquid nitrogen as the refrigerant, it is possible to simplify the cooling equipments in the motor. And in our design, we apply the axial flux type of motor to simplify the cryostat of the HTS wires used to make the field coils. Here, the fields using the bismuth HTS wire for the HTS coils are fixed. Moreover, the cores used in the fields are separated from cryostat, and the armature applies the core-less structure. According to various the electromagnetic field analysis results, the new motor was designed and produced. The diameter of the motor is 650mm, and the width of the motor is 360mm. The motor's rated output is 8.8kW at 100rpm, while the overload output is 44kW, and the maximum efficiency is 97.7%. Also, in order to further miniaturize the motor, other magnetic field analysis have been done when the high-current-density type HTS wire was used and the permendur was used instead of magnetic steel plates. In this case, the motor's rated output is 12kW, and the overload output is 60kW

  15. Torque Ripple Minimization and Performance Investigation of an In-Wheel Permanent Magnet Motor

    Directory of Open Access Journals (Sweden)

    A. Mansouri

    2016-06-01

    Full Text Available Recently, electric vehicle motoring has become a topic of interest, due to the several problems caused by thermal engines such as pollution and high oil prices. Thus, electric motors are increasingly applied in vehicle’ applications and relevant research about these motors and their applications has been performed. Of particular interest are the improvements regarding torque production capability, the minimization of torque ripple and iron losses. The present work deals with the optimum design and the performance investigation of an outer rotor permanent magnet motor for in-wheel electric vehicle application. At first, and in order to find the optimum motor design, a new based particle-swarm multi-objective optimization procedure is applied. Three objective functions are used: efficiency maximization, weight and ripple torque minimization. Secondly, the effects of the permanent magnets segmentation, the stator slots opening, and the separation of adjacent magnets by air are outlined. The aim of the paper is the design of a topology with smooth output torque, low ripple torque, low iron losses and mechanical robustness.

  16. Musical motor feedback (MMF) in walking hemiparetic stroke patients: randomized trials of gait improvement.

    Science.gov (United States)

    Schauer, Michael; Mauritz, Karl-Heinz

    2003-11-01

    To demonstrate the effect of rhythmical auditory stimulation in a musical context for gait therapy in hemiparetic stroke patients, when the stimulation is played back measure by measure initiated by the patient's heel-strikes (musical motor feedback). Does this type of musical feedback improve walking more than a less specific gait therapy? The randomized controlled trial considered 23 registered stroke patients. Two groups were created by randomization: the control group received 15 sessions of conventional gait therapy and the test group received 15 therapy sessions with musical motor feedback. Inpatient rehabilitation hospital. Median post-stroke interval was 44 days and the patients were able to walk without technical aids with a speed of approximately 0.71 m/s. Gait velocity, step duration, gait symmetry, stride length and foot rollover path length (heel-on-toe-off distance). The test group showed more mean improvement than the control group: stride length increased by 18% versus 0%, symmetry deviation decreased by 58% versus 20%, walking speed increased by 27% versus 4% and rollover path length increased by 28% versus 11%. Musical motor feedback improves the stroke patient's walk in selected parameters more than conventional gait therapy. A fixed memory in the patient's mind about the song and its timing may stimulate the improvement of gait even without the presence of an external pacemaker.

  17. Rationale, design and methods for a randomised and controlled trial of the impact of virtual reality games on motor competence, physical activity, and mental health in children with developmental coordination disorder.

    Science.gov (United States)

    Straker, Leon M; Campbell, Amity C; Jensen, Lyn M; Metcalf, Deborah R; Smith, Anne J; Abbott, Rebecca A; Pollock, Clare M; Piek, Jan P

    2011-08-18

    A healthy start to life requires adequate motor development and physical activity participation. Currently 5-15% of children have impaired motor development without any obvious disorder. These children are at greater risk of obesity, musculoskeletal disorders, low social confidence and poor mental health. Traditional electronic game use may impact on motor development and physical activity creating a vicious cycle. However new virtual reality (VR) game interfaces may provide motor experiences that enhance motor development and lead to an increase in motor coordination and better physical activity and mental health outcomes. VR games are beginning to be used for rehabilitation, however there is no reported trial of the impact of these games on motor coordination in children with developmental coordination disorder. This cross-over randomised and controlled trial will examine whether motor coordination is enhanced by access to active electronic games and whether daily activity, attitudes to physical activity and mental health are also enhanced. Thirty children aged 10-12 years with poor motor coordination (≤ 15th percentile) will be recruited and randomised to a balanced ordering of 'no active electronic games' and 'active electronic games'. Each child will participate in both conditions for 16 weeks, and be assessed prior to participation and at the end of each condition. The primary outcome is motor coordination, assessed by kinematic and kinetic motion analysis laboratory measures. Physical activity and sedentary behaviour will be assessed by accelerometry, coordination in daily life by parent report questionnaire and attitudes to physical activity, self-confidence, anxiety and depressed mood will be assessed by self report questionnaire. A sample of 30 will provide a power of > 0.9 for detecting a 5 point difference in motor coordination on the MABC-2 TIS scale (mean 17, sd = 5). This is the first trial to examine the impact of new virtual reality games on

  18. How Do Movements to Produce Letters Become Automatic during Writing Acquisition? Investigating the Development of Motor Anticipation

    Science.gov (United States)

    Kandel, Sonia; Perret, Cyril

    2015-01-01

    Learning how to write involves the automation of grapho-motor skills. One of the factors that determine automaticity is "motor anticipation." This is the ability to write a letter while processing information on how to produce following letters. It is essential for writing fast and smoothly. We investigated how motor anticipation…

  19. Intervention modalities for targeting cognitive-motor interference in individuals with neurodegenerative disease: a systematic review.

    Science.gov (United States)

    Wajda, Douglas A; Mirelman, Anat; Hausdorff, Jeffrey M; Sosnoff, Jacob J

    2017-03-01

    Individuals with neurodegenerative disease (NDD) commonly have elevated cognitive-motor interference, change in either cognitive or motor performance (or both) when tasks are performed simultaneously, compared to healthy controls. Given that cognitive-motor interference is related to reduced community ambulation and elevated fall risk, it is a target of rehabilitation interventions. Areas covered: This review details the collective findings of previous dual task interventions in individuals with NDD. A total of 21 investigations focusing on 4 different neurodegenerative diseases and one NDD precursor (Parkinson's disease, multiple sclerosis, Alzheimer's disease (AD), dementia other than AD, and mild cognitive impairment) consisting of 721 participants were reviewed. Expert commentary: Preliminary evidence from interventions targeting cognitive-motor interference, both directly and indirectly, show promising results for improving CMI in individuals with neurodegenerative diseases. Methodological limitations, common to pilot investigations preclude firm conclusions. Well-designed randomized control trials targeting cognitive motor interference are warranted.

  20. Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial

    Directory of Open Access Journals (Sweden)

    Alexander A. Frolov

    2017-07-01

    Full Text Available Repeated use of brain-computer interfaces (BCIs providing contingent sensory feedback of brain activity was recently proposed as a rehabilitation approach to restore motor function after stroke or spinal cord lesions. However, there are only a few clinical studies that investigate feasibility and effectiveness of such an approach. Here we report on a placebo-controlled, multicenter clinical trial that investigated whether stroke survivors with severe upper limb (UL paralysis benefit from 10 BCI training sessions each lasting up to 40 min. A total of 74 patients participated: median time since stroke is 8 months, 25 and 75% quartiles [3.0; 13.0]; median severity of UL paralysis is 4.5 points [0.0; 30.0] as measured by the Action Research Arm Test, ARAT, and 19.5 points [11.0; 40.0] as measured by the Fugl-Meyer Motor Assessment, FMMA. Patients in the BCI group (n = 55 performed motor imagery of opening their affected hand. Motor imagery-related brain electroencephalographic activity was translated into contingent hand exoskeleton-driven opening movements of the affected hand. In a control group (n = 19, hand exoskeleton-driven opening movements of the affected hand were independent of brain electroencephalographic activity. Evaluation of the UL clinical assessments indicated that both groups improved, but only the BCI group showed an improvement in the ARAT's grasp score from 0 [0.0; 14.0] to 3.0 [0.0; 15.0] points (p < 0.01 and pinch scores from 0.0 [0.0; 7.0] to 1.0 [0.0; 12.0] points (p < 0.01. Upon training completion, 21.8% and 36.4% of the patients in the BCI group improved their ARAT and FMMA scores respectively. The corresponding numbers for the control group were 5.1% (ARAT and 15.8% (FMMA. These results suggests that adding BCI control to exoskeleton-assisted physical therapy can improve post-stroke rehabilitation outcomes. Both maximum and mean values of the percentage of successfully decoded imagery-related EEG activity, were higher

  1. Investigations of the migrating motor complex in domestic turkeys.

    Science.gov (United States)

    Mueller, L R; Duke, G E; Evanson, O A

    1990-09-01

    The motor correlate of the migrating myoelectric complex (MMC) was characterized in domestic turkeys, and feeding state, age, sex, and time of day were examined as possible factors influencing the motor activity observed. Strain gauge transducers, and in a few birds Ag-AgCl bipolar electrodes, were implanted on the caudoventral thin muscle of the muscular stomach, the duodenum, ileum, cecum, and colon. Contractility was recorded for 8-10 h per bird on alternating days for 2-3 wk, except in birds involved in four 24-h recording sessions during a 2-wk period. Intense motor activity characteristic of phase III of the MMC occurred only in the ileum; other phases could not be identified. The duration, propagation velocity, and percent of cyclic motor patterns propagating from one site to another were similar to those reported in other galliform species. The occurrence of cyclic motor activity appeared to be related to food consumption; the number of motor patterns occurring during an intense feeding session was less than the number observed 1.5-2 h after feeding. In addition, more motor patterns were recorded in fasted poults during the light period than in the dark; however, the reverse was observed in juveniles fed ad libitum. Cyclic motor activity recorded in fasted 18-wk-old birds was of longer duration than that in fasted 8-wk-old birds. No statistically significant differences were noted in the cyclic motor patterns of male vs. female poults.

  2. A randomised controlled trial of sensory awareness training and additional motor practice for learning scalpel skills in podiatry students.

    Science.gov (United States)

    Causby, Ryan S; McDonnell, Michelle N; Reed, Lloyd; Hillier, Susan L

    2016-12-05

    The process of using a scalpel, like all other motor activities, is dependent upon the successful integration of afferent (sensory), cognitive and efferent (motor) processes. During learning of these skills, even if motor practice is carefully monitored there is still an inherent risk involved. It is also possible that this strategy could reinforce high levels of anxiety experienced by the student and affect student self-efficacy, causing detrimental effects on motor learning. An alternative training strategy could be through targeting sensory rather than motor processes. Second year podiatry students who were about to commence learning scalpel skills were recruited. Participants were randomly allocated into sensory awareness training (Sensory), additional motor practice (Motor) or usual teaching only (Control) groups. Participants were then evaluated on psychological measures (Intrinsic Motivation Inventory) and dexterity measures (Purdue Pegboard, Grooved Pegboard Test and a grip-lift task). A total of 44 participants were included in the study. There were no baseline differences or significant differences between the three groups over time on the Perceived Competence, Effort/ Importance or Pressure/ Tension, psychological measures. All groups showed a significant increase in Perceived Competence over time (F 1,41  = 13.796, p = 0.001). Only one variable for the grip-lift task (Preload Duration for the non-dominant hand) showed a significant difference over time between the groups (F 2,41  = 3.280, p = 0.038), specifically, Motor and Control groups. The use of sensory awareness training, or additional motor practice did not provide a more effective alternative compared with usual teaching. Further research may be warranted using more engaged training, provision of supervision and greater participant numbers. Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12616001428459 . Registered 13 th October 2016. Registered Retrospectively.

  3. A randomised clinical trial of a comprehensive exercise program for chronic whiplash: trial protocol

    Directory of Open Access Journals (Sweden)

    Latimer Jane

    2009-12-01

    Full Text Available Abstract Background Whiplash is the most common injury following a motor vehicle accident. Approximately 60% of people suffer persistent pain and disability six months post injury. Two forms of exercise; specific motor relearning exercises and graded activity, have been found to be effective treatments for this condition. Although the effect sizes for these exercise programs, individually, are modest, pilot data suggest much larger effects on pain and disability are achieved when these two treatments are combined. The aim of this study is to investigate the effectiveness and cost-effectiveness of this comprehensive exercise approach for chronic whiplash. Methods/Design A multicentre randomised controlled trial will be conducted. One hundred and seventy-six participants with chronic grade I to II whiplash will be recruited in Sydney and Brisbane, Australia. All participants will receive an educational booklet on whiplash and in addition, those randomised to the comprehensive exercise group (specific motor relearning and graded activity exercises will receive 20 progressive and individually-tailored, 1 hour exercise sessions over a 12 week period (specific motor relearning exercises: 8 sessions over 4 weeks; graded activity: 12 sessions over 8 weeks. The primary outcome to be assessed is pain intensity. Other outcomes of interest include disability, health-related quality of life and health service utilisation. Outcomes will be measured at baseline, 14 weeks, 6 months and 12 months by an assessor who is blinded to the group allocation of the subjects. Recruitment is due to commence in late 2009. Discussion The successful completion of this trial will provide evidence on the effectiveness and cost-effectiveness of a simple treatment for the management of chronic whiplash. Trial registration ACTRN12609000825257

  4. Investigators' viewpoint of clinical trials in India: Past, present and future

    Directory of Open Access Journals (Sweden)

    Mohandas K Mallath

    2017-01-01

    Full Text Available India's success in producing food and milk for its population (Green Revolution and White Revolution happened because of scientific research and field trials. Likewise improving the health of Indians needs clinical research and clinical trials. A Large proportion of the sick Indians are poor, illiterate with no access to good health care. They are highly vulnerable to inducement and exploitation in clinical trials. The past two decades saw the rise and fall of clinical trials in India. The rise happened when our regulators created a favorable environment, and Indian investigators were invited to participate in global clinical trials. The gap between the demand and supply resulted in inadequate protection of the trial participants. Reports of abuses of the vulnerable trial participants followed by public interest litigations led to strengthening of regulations by the regulators. The stringent new regulations made the conduct of clinical trials more laborious and increased the cost of clinical trials in India. There was a loss of interest in sponsored clinical trials resulting in the fall in global clinical trials in India. Following repeated appeals by the investigators, the Indian regulators have recently relaxed some of the stringent regulations, while continuing to ensure the adequate patient protection. Clinical trials that are relevant to our population and conducted by well-trained investigators and monitored by trained and registered Ethics Committees will increase in the future. We must remain vigilant, avoid previous mistakes, and strive hard to protect the trial participants in the future trials.

  5. Constraint-Induced Movement Therapy Combined with Transcranial Direct Current Stimulation over Premotor Cortex Improves Motor Function in Severe Stroke: A Pilot Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Suellen M. Andrade

    2017-01-01

    Full Text Available Objective. We compared the effects of transcranial direct current stimulation at different cortical sites (premotor and motor primary cortex combined with constraint-induced movement therapy for treatment of stroke patients. Design. Sixty patients were randomly distributed into 3 groups: Group A, anodal stimulation on premotor cortex and constraint-induced movement therapy; Group B, anodal stimulation on primary motor cortex and constraint-induced movement therapy; Group C, sham stimulation and constraint-induced movement therapy. Evaluations involved analysis of functional independence, motor recovery, spasticity, gross motor function, and muscle strength. Results. A significant improvement in primary outcome (functional independence after treatment in the premotor group followed by primary motor group and sham group was observed. The same pattern of improvement was highlighted among all secondary outcome measures regarding the superior performance of the premotor group over primary motor and sham groups. Conclusions. Premotor cortex can contribute to motor function in patients with severe functional disabilities in early stages of stroke. This study was registered in ClinicalTrials.gov database (NCT 02628561.

  6. Multi-Sensory-Motor Research: Investigating Auditory, Visual, and Motor Interaction in Virtual Reality Environments

    Directory of Open Access Journals (Sweden)

    Thorsten Kluss

    2011-10-01

    Full Text Available Perception in natural environments is inseparably linked to motor action. In fact, we consider action an essential component of perceptual representation. But these representations are inherently difficult to investigate: Traditional experimental setups are limited by the lack of flexibility in manipulating spatial features. To overcome these problems, virtual reality (VR experiments seem to be a feasible alternative, but these setups typically lack ecological realism due to the use of “unnatural” interface-devices (joystick. Thus, we propose an experimental apparatus which combines multisensory perception and action in an ecologically realistic way. The basis is a 10-foot hollow sphere (VirtuSphere placed on a platform that allows free rotation. A subject inside can walk in any direction for any distance immersed into virtual environment. Both the rotation of the sphere and movement of the subject's head are tracked to process the subject's view within the VR-environment presented on a head-mounted display. Moreover, auditory features are dynamically processed taking greatest care of exact alignment of sound-sources and visual objects using ambisonic-encoded audio processed by a HRTF-filterbank. We present empirical data that confirm ecological realism of this setup and discuss its suitability for multi-sensory-motor research.

  7. Rasagiline as an adjunct to levodopa in patients with Parkinson's disease and motor fluctuations (LARGO, Lasting effect in Adjunct therapy with Rasagiline Given Once daily, study): a randomised, double-blind, parallel-group trial.

    OpenAIRE

    Rascol, O.; Brooks, D.J.; Melamed, E.; Oertel, W.; Poewe, W.; Stocchi, F.; Tolosa, E.; LARGO study group

    2005-01-01

    Lancet. 2005 Mar 12-18;365(9463):947-54. Rasagiline as an adjunct to levodopa in patients with Parkinson's disease and motor fluctuations (LARGO, Lasting effect in Adjunct therapy with Rasagiline Given Once daily, study): a randomised, double-blind, parallel-group trial. Rascol O, Brooks DJ, Melamed E, Oertel W, Poewe W, Stocchi F, Tolosa E; LARGO study group. Clinical Investigation Centre, Department of Clinical Pharmacology, University Hospital, Toulouse, France. ...

  8. Right on Post-trial Access to Investigational Treatment

    Directory of Open Access Journals (Sweden)

    Dmytro Lurye

    2018-03-01

    On this base, the author offered to provide in the legislation of Ukraine requirements to inform in advance subjects about the presence or absence of post-trial access and to evaluate these provisions by ethics committees before and at the end of all trials in order to determine its real need in each individual case. The scope of the right on post-trial access to investigational treatment must be reasonably weighed in order to avoid, on the one hand, becoming an excessive stimulus for the subjects, and, on the other hand, not leading to a situation where on such regulation conducting of clinical trials in the country will no longer be appropriate.

  9. Parietal operculum and motor cortex activities predict motor recovery in moderate to severe stroke

    Directory of Open Access Journals (Sweden)

    Firdaus Fabrice Hannanu

    2017-01-01

    In subacute stroke, fMRI brain activity related to passive movement measured in a sensorimotor network defined by activity during voluntary movement predicted motor recovery better than baseline motor-FMS alone. Furthermore, fMRI sensorimotor network activity measures considered alone allowed excellent clinical recovery prediction and may provide reliable biomarkers for assessing new therapies in clinical trial contexts. Our findings suggest that neural reorganization related to motor recovery from moderate to severe stroke results from balanced changes in ipsilesional MI (BA4a and a set of phylogenetically more archaic sensorimotor regions in the ventral sensorimotor trend, in which OP1 and OP4 processes may complement the ipsilesional dorsal motor cortex in achieving compensatory sensorimotor recovery.

  10. Experimental and Numerical Investigations of Air Cooling for a Large-Scale Motor

    Directory of Open Access Journals (Sweden)

    Chih-Chung Chang

    2009-01-01

    Full Text Available This article experimentally and numerically investigates the thermal performance of a 2350-kW completely enclosed motor, which is cooled through an air-to-air heat exchanger. The air in the heat exchanger includes external and internal flow paths. The external air driven by the rotation of the centrifugal fan goes through the heat exchanger mounted on the top of the frame. The internal air absorbs heat released from the stator and the rotor and then transfers the heat to the heat exchanger through the motion of two axial fans and the rotor. Several test rigs have been set up to measure the performance of the fan and the motor. The Fluent software package is adopted to analyze the complicated thermal-fluid interactions among the centrifugal fan, two axial fans, heat exchanger, stator, and rotor. The measured data, including the fan performance curves and the temperature profiles of the heat exchanger and the stator, show good agreement with the simulated results. The numerical calculations also show that the nonuniform external flow distribution through the heat exchanger and the air leakage between the axial fan and the rotor reduces the cooling ability of the motor. A detailed discussion is also included to improve the motor cooling performance.

  11. Motor Preparation Disrupts Proactive Control in the Stop Signal Task

    Directory of Open Access Journals (Sweden)

    Wuyi Wang

    2018-05-01

    Full Text Available In a study of the stop signal task (SST we employed Bayesian modeling to compute the estimated likelihood of stop signal or P(Stop trial by trial and identified regional processes of conflict anticipation and response slowing. A higher P(Stop is associated with prolonged go trial reaction time (goRT—a form of sequential effect—and reflects proactive control of motor response. However, some individuals do not demonstrate a sequential effect despite similar go and stop success (SS rates. We posited that motor preparation may disrupt proactive control more in certain individuals than others. Specifically, the time interval between trial and go signal onset—the fore-period (FP—varies across trials and a longer FP is associated with a higher level of motor preparation and shorter goRT. Greater motor preparatory activities may disrupt proactive control. To test this hypothesis, we compared brain activations and Granger causal connectivities of 81 adults who demonstrated a sequential effect (SEQ and 35 who did not (nSEQ. SEQ and nSEQ did not differ in regional activations to conflict anticipation, motor preparation, goRT slowing or goRT speeding. In contrast, SEQ and nSEQ demonstrated different patterns of Granger causal connectivities. P(Stop and FP activations shared reciprocal influence in SEQ but FP activities Granger caused P(Stop activities unidirectionally in nSEQ, and FP activities Granger caused goRT speeding activities in nSEQ but not SEQ. These findings support the hypothesis that motor preparation disrupts proactive control in nSEQ and provide direct neural evidence for interactive go and stop processes.

  12. Premotor and Motor Cortices Encode Reward.

    Directory of Open Access Journals (Sweden)

    Pavan Ramkumar

    Full Text Available Rewards associated with actions are critical for motivation and learning about the consequences of one's actions on the world. The motor cortices are involved in planning and executing movements, but it is unclear whether they encode reward over and above limb kinematics and dynamics. Here, we report a categorical reward signal in dorsal premotor (PMd and primary motor (M1 neurons that corresponds to an increase in firing rates when a trial was not rewarded regardless of whether or not a reward was expected. We show that this signal is unrelated to error magnitude, reward prediction error, or other task confounds such as reward consumption, return reach plan, or kinematic differences across rewarded and unrewarded trials. The availability of reward information in motor cortex is crucial for theories of reward-based learning and motivational influences on actions.

  13. The Impact of Methylphenidate on Motor Performance in Children with both Attention Deficit Hyperactivity Disorder and Developmental Coordination Disorder: A Randomized Double-Blind Crossover Clinical Trial

    Directory of Open Access Journals (Sweden)

    Robabeh Soleimani

    2017-07-01

    Full Text Available Background: Children with attention deficit hyperactivity disorder/developmental coordination disorder (ADHD/DCD suffer from problems associated with gross and fine motor skills. There is no effective pharmacological therapy for such patients. We aimed to assess the impact of methylphenidate (MPH on motor performance of children with ADHD/DCD. Methods: In this double-blind placebo-controlled, 17 children (12 boys with ADHD/DCD with a mean age of 7 years 6 months were recruited in Shafa Hospital, Rasht, Iran. The response was defined as ≥25% reduction in the total score of ADHD rating scale-IV from the baseline. Sixteen boys entered phase 2 of the study in which the impact of MPH on motor function was determined through a crossover randomized clinical trial. Eligible individuals were scheduled for baseline and two assessment visits after a one-week period of intervention. We used the short form of Bruininks-Oseretsky test (BOT-2 to identify the disability of motor function. Children were randomly assigned to receive MPH or inert ingredients (placebo. In the second period, medication (MPH/placebo was crossed over. The effects of MPH were analyzed using χ2 test for related samples to compare the performance during baseline, placebo, and MPH trials. The results were analyzed using the SPSS software version 16.0. Results: The mean minimal effective dose of MPH per day was 17.3 mg (0.85 mg/kg. Children with higher ADHD rating scale had a significantly lower standard score in BOT-2 (P=0.03. Following MPH intake, 26.6% of the children showed clinically significant improvement in motor function. However, the improvement was not statistically different between the MPH and placebo. Conclusion: Although MPH improved ADHD symptoms, problems with motor performance still remained. Further work is required to determine the probable effects of MPH in a higher dosage or in different subtypes of ADHD. Trial Registration Number: IRCT201107071483N2

  14. Effect of Aging on Motor Inhibition during Action Preparation under Sensory Conflict

    Science.gov (United States)

    Duque, Julie; Petitjean, Charlotte; Swinnen, Stephan P.

    2016-01-01

    Motor behaviors often require refraining from selecting options that may be part of the repertoire of natural response tendencies but that are in conflict with ongoing goals. The presence of sensory conflict has a behavioral cost but the latter can be attenuated in contexts where control processes are recruited because conflict is expected in advance, producing a behavioral gain compared to contexts where conflict occurs in a less predictable way. In the present study, we investigated the corticospinal correlates of these behavioral effects (both conflict-driven cost and context-related gain). To do so, we measured motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) of young and healthy older adults performing the Eriksen Flanker Task. Subjects performed button-presses according to a central arrow, flanked by irrelevant arrows pointing in the same (congruent trial) or opposite direction (incongruent trial). Conflict expectation was manipulated by changing the probability of congruent and incongruent trials in a given block. It was either high (mostly incongruent blocks, MIB, 80% incongruent trials) or low (mostly congruent blocks, MCB, 80% congruent). The MEP data indicate that the conflict-driven behavioral cost is associated with a strong increase in inappropriate motor activity regardless of the age of individuals, as revealed by larger MEPs in the non-responding muscle in incongruent than in congruent trials. However, this aberrant facilitation disappeared in both groups of subjects when conflict could be anticipated (i.e., in the MIBs) compared to when it occurred in a less predictably way (MCBs), probably allowing the behavioral gain observed in both the young and the older individuals. Hence, the ability to overcome and anticipate conflict was surprisingly preserved in the older adults. Nevertheless, some control processes are likely to evolve with age because the behavioral gain observed in

  15. One and done: Reasons principal investigators conduct only one FDA-regulated drug trial

    Directory of Open Access Journals (Sweden)

    Amy Corneli, PhD, MPH

    2017-06-01

    Full Text Available Concerns have been raised over the high turnover rate for clinical investigators. Using the U.S. Food and Drug Administration's (FDA Bioresearch Monitoring Information System database, we conducted an online survey to identify factors that affect principal investigators' (PIs decisions to conduct only a single FDA-regulated drug trial. Of the 201 PIs who responded, 54.2% were classified as “one-and-done.” Among these investigators, 28.9% decided for personal reasons to not conduct another trial, and 44.4% were interested in conducting another trial, but no opportunities were available. Three categories of broad barriers were identified as generally burdensome or challenging by the majority of investigators: 1 workload balance (balancing trial implementation with other work obligations and opportunities (63.8%; 2 time requirements (time to initiate and implement trial; investigator and staff time (63.4%; and 3 data and safety reporting (56.5%. Additionally, 46.0% of investigators reported being generally unsatisfied with finance-related issues. These same top three barriers also affected investigators' decisions to no longer conduct FDA-regulated trials. Our findings illuminate three key aspects of investigator turnover. First, they confirm that investigator turnover occurs, as more than half of respondents were truly “one-and-done.” Second, because a large proportion of respondents wanted to conduct more FDA-regulated trials but lacked opportunities to do so, mechanisms that match interested investigators with research sponsors are needed. Third, by focusing on the barriers we identified that affected investigators' decisions to no longer conduct FDA-regulated trials, future efforts to reduce investigator turnover can target issues that matter the most to investigators.

  16. Motor Learning: An Analysis of 100 Trials of a Ski Slalom Game in Children with and without Developmental Coordination Disorder.

    Science.gov (United States)

    Smits-Engelsman, Bouwien C M; Jelsma, Lemke Dorothee; Ferguson, Gillian D; Geuze, Reint H

    2015-01-01

    Although Developmental Coordination Disorder (DCD) is often characterized as a skill acquisition deficit disorder, few studies have addressed the process of motor learning. This study examined learning of a novel motor task; the Wii Fit ski slalom game. The main objectives were to determine: 1) whether learning occurs over 100 trial runs of the game, 2) if the learning curve is different between children with and without DCD, 3) if learning is different in an easier or harder version of the task, 4) if learning transfers to other balance tasks. 17 children with DCD (6-10 years) and a matched control group of 17 typically developing (TD) children engaged in 20 minutes of gaming, twice a week for five weeks. Each training session comprised of alternating trial runs, with five runs at an easy level and five runs at a difficult level. Wii scores, which combine speed and accuracy per run, were recorded. Standardized balance tasks were used to measure transfer. Significant differences in initial performance were found between groups on the Wii score and balance tasks. Both groups improved their Wii score over the five weeks. Improvement in the easy and in the hard task did not differ between groups. Retention in the time between training sessions was not different between TD and DCD groups either. The DCD group improved significantly on all balance tasks. The findings in this study give a fairly coherent picture of the learning process over a medium time scale (5 weeks) in children novice to active computer games; they learn, retain and there is evidence of transfer to other balance tasks. The rate of motor learning is similar for those with and without DCD. Our results raise a number of questions about motor learning that need to be addressed in future research.

  17. Interactive Cognitive-Motor Step Training Improves Cognitive Risk Factors of Falling in Older Adults - A Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Daniel Schoene

    Full Text Available Interactive cognitive-motor training (ICMT requires individuals to perform both gross motor movements and complex information processing. This study investigated the effectiveness of ICMT on cognitive functions associated with falls in older adults.A single-blinded randomized controlled trial was conducted in community-dwelling older adults (N = 90, mean age 81.5±7 without major cognitive impairment. Participants in the intervention group (IG played four stepping games that required them to divide attention, inhibit irrelevant stimuli, switch between tasks, rotate objects and make rapid decisions. The recommended minimum dose was three 20-minute sessions per week over a period of 16 weeks unsupervised at home. Participants in the control group (CG received an evidence-based brochure on fall prevention. Measures of processing speed, attention/executive function (EF, visuo-spatial ability, concerns about falling and depression were assessed before and after the intervention.Eighty-one participants (90% attended re-assessment. There were no improvements with respect to the Stroop Stepping Test (primary outcome in the intervention group. Compared to the CG, the IG improved significantly in measures of processing speed, visuo-spatial ability and concern about falling. Significant interactions were observed for measures of EF and divided attention, indicating group differences varied for different levels of the covariate with larger improvements in IG participants with poorer baseline performance. The interaction for depression showed no change for the IG but an increase in the CG for those with low depressive symptoms at baseline. Additionally, low and high-adherer groups differed in their baseline performance and responded differently to the intervention. Compared to high adherers, low adherers improved more in processing speed and visual scanning while high-adherers improved more in tasks related to EF.This study shows that unsupervised stepping

  18. Split-phase motor running as capacitor starts motor and as capacitor run motor

    OpenAIRE

    Yahaya Asizehi ENESI; Jacob TSADO; Mark NWOHU; Usman Abraham USMAN; Odu Ayo IMORU

    2016-01-01

    In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The ma...

  19. Bimanual coupling paradigm as an effective tool to investigate productive behaviors in motor and body awareness impairments.

    Science.gov (United States)

    Garbarini, Francesca; Pia, Lorenzo

    2013-11-05

    When humans move simultaneously both hands strong coupling effects arise and neither of the two hands is able to perform independent actions. It has been suggested that such motor constraints are tightly linked to action representation rather than to movement execution. Hence, bimanual tasks can represent an ideal experimental tool to investigate internal motor representations in those neurological conditions in which the movement of one hand is impaired. Indeed, any effect on the "moving" (healthy) hand would be caused by the constraints imposed by the ongoing motor program of the 'impaired' hand. Here, we review recent studies that successfully utilized the above-mentioned paradigms to investigate some types of productive motor behaviors in stroke patients. Specifically, bimanual tasks have been employed in left hemiplegic patients who report illusory movements of their contralesional limbs (anosognosia for hemiplegia). They have also been administered to patients affected by a specific monothematic delusion of body ownership, namely the belief that another person's arm and his/her voluntary action belong to them. In summary, the reviewed studies show that bimanual tasks are a simple and valuable experimental method apt to reveal information about the motor programs of a paralyzed limb. Therefore, it can be used to objectively examine the cognitive processes underpinning motor programming in patients with different delusions of motor behavior. Additionally, it also sheds light on the mechanisms subserving bimanual coordination in the intact brain suggesting that action representation might be sufficient to produce these effects.

  20. The change in perceived motor competence and motor task values during elementary school : Gender and motor performance differences

    NARCIS (Netherlands)

    Noordstar, J.J.; van der Net, J.; Jak, S.; Helders, P.J.M.; Jongmans, M.J.

    2016-01-01

    Participation in motor activities is essential for social interaction and life satisfaction in children. Self-perceptions and task values have a central position in why children do or do not participate in (motor) activities. Investigating developmental changes in motor self-perceptions and motor

  1. Experimental investigation of solid rocket motors for small sounding rockets

    Science.gov (United States)

    Suksila, Thada

    2018-01-01

    Experimentation and research of solid rocket motors are important subjects for aerospace engineering students. However, many institutes in Thailand rarely include experiments on solid rocket motors in research projects of aerospace engineering students, mainly because of the complexity of mixing the explosive propellants. This paper focuses on the design and construction of a solid rocket motor for total impulse in the class I-J that can be utilised as a small sounding rocket by researchers in the near future. Initially, the test stands intended for measuring the pressure in the combustion chamber and the thrust of the solid rocket motor were designed and constructed. The basic design of the propellant configuration was evaluated. Several formulas and ratios of solid propellants were compared for achieving the maximum thrust. The convenience of manufacturing and casting of the fabricated solid rocket motors were a critical consideration. The motor structural analysis such as the combustion chamber wall thickness was also discussed. Several types of nozzles were compared and evaluated for ensuring the maximum thrust of the solid rocket motors during the experiments. The theory of heat transfer analysis in the combustion chamber was discussed and compared with the experimental data.

  2. Investigation of Flux-Linkage Profile Measurement Methods for Switched-Reluctance Motors and Permanent-Magnet Motors

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2009-01-01

    Knowledge of actual flux linkage versus current profiles plays an important role in design verification and performance prediction for switched reluctance motors (SRM's) and permanent magnet motors (PMM's). Various measurement methods have been proposed and discussed so far but each method has its...

  3. Trial Protocol: Cognitive functional therapy compared with combined manual therapy and motor control exercise for people with non-specific chronic low back pain: protocol for a randomised, controlled trial.

    Science.gov (United States)

    Belache, Fabiana Terra Cunha; Souza, Cíntia Pereira de; Fernandez, Jessica; Castro, Julia; Ferreira, Paula Dos Santos; Rosa, Elizana Rodrigues de Sousa; Araújo, Nathalia Cristina Gimenez de; Reis, Felipe José Jandre; Almeida, Renato Santos de; Nogueira, Leandro Alberto Calazans; Correia, Luís Cláudio Lemos; Meziat-Filho, Ney

    2018-06-11

    Chronic low back pain is a public health problem, and there is strong evidence that it is associated with a complex interaction of biopsychosocial factors. Cognitive functional therapy is an intervention that deals with potentially modifiable multidimensional aspects of pain (eg, provocative cognitive, movement and lifestyle behaviours). There is evidence (from a single randomised, controlled trial) that cognitive functional therapy is better than combined manual therapy and motor control exercise. However, this study had significant methodological shortcomings including the failure to carry out an intention-to-treat analysis and a considerable loss of follow-up of participants. It is important to replicate this study in another domain through a randomised clinical trial with similar objectives but correcting these methodological shortcomings. To investigate the efficacy of cognitive functional therapy compared to combined manual therapy and exercise on pain and disability at 3 months in patients with chronic non-specific low back pain. Two-group, randomised, multicentre controlled trial with blinded assessors. One hundred and forty-eight participants with chronic low back pain that has persisted for >3months and no specific spinal pathology will be recruited from the school clinic of the Centro Universitário Augusto Motta and a private clinic in the city of Rio de Janeiro, Brazil. Four to 10 sessions of cognitive functional therapy. The physiotherapists who will treat the participants in the cognitive functional therapy group have previously attended 2 workshops with two different tutors of the method. Such physiotherapists have completed 106 hours of training, including workshops and patient examinations, as well as conducting a pilot study under the supervision of another physiotherapist with>3 years of clinical experience in cognitive functional therapy. Four to 10 sessions of combined manual therapy and motor control exercises. Participants in the combined

  4. Motor system contributions to verbal and non-verbal working memory

    Directory of Open Access Journals (Sweden)

    Diana A Liao

    2014-09-01

    Full Text Available Working memory (WM involves the ability to maintain and manipulate information held in mind. Neuroimaging studies have shown that secondary motor areas activate during WM for verbal content (e.g., words or letters, in the absence of primary motor area activation. This activation pattern may reflect an inner speech mechanism supporting online phonological rehearsal. Here, we examined the causal relationship between motor system activity and WM processing by using transcranial magnetic stimulation (TMS to manipulate motor system activity during WM rehearsal. We tested WM performance for verbalizable (words and pseudowords and non-verbalizable (Chinese characters visual information. We predicted that disruption of motor circuits would specifically affect WM processing of verbalizable information. We found that TMS targeting motor cortex slowed response times on verbal WM trials with high (pseudoword vs. low (real word phonological load. However, non-verbal WM trials were also significantly slowed with motor TMS. WM performance was unaffected by sham stimulation or TMS over visual cortex. Self-reported use of motor strategy predicted the degree of motor stimulation disruption on WM performance. These results provide evidence of the motor system’s contributions to verbal and non-verbal WM processing. We speculate that the motor system supports WM by creating motor traces consistent with the type of information being rehearsed during maintenance.

  5. Bimanual coupling paradigm as an effective tool to investigate productive behaviors in motor and body awareness impairments

    Directory of Open Access Journals (Sweden)

    Francesca eGarbarini

    2013-11-01

    Full Text Available When humans move simultaneously both hands strong coupling effects arise and neither of the two hands is able to perform independent actions. It has been suggested that such motor constraints are tightly linked to action representation rather than to movement execution. Hence, bimanual tasks can represent an ideal experimental tool to investigate internal motor representations in those neurological conditions in which the movement of one hand is impaired. Indeed, any effect on the ‘moving’ (healthy hand would be caused by the constraints imposed by the ongoing motor program of the ‘impaired’ hand. Here, we review recent studies that successfully utilized the above-mentioned paradigms to investigate some types of productive motor behaviors in stroke patients. Specifically, bimanual tasks have been employed in left hemiplegic patients who report illusory movements of their contralesional limbs (anosognosia for hemiplegia. They have also been administered to patients affected by a specific monothematic delusion of body ownership, namely the belief that another person’s arm and his/her voluntary action belong to them. In summary, the reviewed studies show that bimanual tasks are a simple and valuable experimental method apt to reveal information about the motor programs of a paralyzed limb. Therefore, it can be used to objectively examine the cognitive processes underpinning motor programming in patients with different delusions of motor behavior. Additionally, it also sheds light on the mechanisms subserving bimanual coordination in the intact brain suggesting that action representation might be sufficient to produce these effects.

  6. Long-latency TMS-evoked potentials during motor execution and inhibition

    Directory of Open Access Journals (Sweden)

    Kentaro eYamanaka

    2013-11-01

    Full Text Available Transcranial magnetic stimulation (TMS has often been used in conjunction with electroencephalography (EEG, which is effective for the direct demonstration of cortical reactivity and corticocortical connectivity during cognitive tasks through the spatio-temporal pattern of long-latency TMS-evoked potentials (TEPs. However, it remains unclear what pattern is associated with the inhibition of a planned motor response. Therefore, we performed TMS-EEG recording during a go/stop task, in which participants were instructed to click a computer mouse with a right index finger when an indicator that was moving with a constant velocity reached a target (go trial or to avoid the click when the indicator randomly stopped just before it reached the target (stop trial. Single-pulse TMS to the left (contralateral or right (ipsilateral motor cortex was applied 500 ms before or just at the target time. TEPs related to motor execution and inhibition were obtained by subtractions between averaged EEG waveforms with and without TMS. As a result, in TEPs induced by both contralateral and ipsilateral TMS, small oscillations were followed by a prominent negative deflection around the TMS site peaking at approximately 100 ms post-TMS (N100, and a less pronounced later positive component (LPC over the broad areas that was centered at the midline-central site in both go and stop trials. However, compared to the pattern in go and stop trials with TMS at 500 ms before the target time, N100 and LPC were differently modulated in the go and stop trials with TMS just at the target time. The amplitudes of both N100 and LPC decreased in go trials, while the amplitude of LPC decreased and the latency of LPC was delayed in both go and stop trials. These results suggested that TMS-induced neuronal reactions in the motor cortex and subsequent their propagation to surrounding cortical areas might change functionally according to task demand when executing and inhibiting a motor

  7. Obesity leads to declines in motor skills across childhood.

    Science.gov (United States)

    Cheng, J; East, P; Blanco, E; Sim, E Kang; Castillo, M; Lozoff, B; Gahagan, S

    2016-05-01

    Poor motor skills have been consistently linked with a higher body weight in childhood, but the causal direction of this association is not fully understood. This study investigated the temporal ordering between children's motor skills and weight status at 5 and 10 years. Participants were 668 children (54% male) who were studied from infancy as part of an iron deficiency anaemia preventive trial and follow-up study in Santiago, Chile. All were healthy, full-term and weighing 3 kg or more at birth. Cross-lagged panel modelling was conducted to understand the temporal precedence between children's weight status and motor proficiency. Analyses also examined differences in gross and fine motor skills among healthy weight, overweight, and obese children. A higher BMI at 5 years contributed to declines in motor proficiency from 5 to 10 years. There was no support for the reverse, that is, poor motor skills at 5 years did not predict increases in relative weight from 5 to 10 years. Obesity at 5 years also predicted declines in motor proficiency. When compared with normal weight children, obese children had significantly poorer total and gross motor skills at both 5 and 10 years. Overweight children had poorer total and gross motor skills at 10 years only. The differences in total and gross motor skills among normal weight, overweight and obese children appear to increase with age. There were small differences in fine motor skill between obese and non-obese children at 5 years only. Obesity preceded declines in motor skills and not the reverse. Study findings suggest that early childhood obesity intervention efforts might help prevent declines in motor proficiency that, in turn, may positively impact children's physical activity and overall fitness levels. © 2016 John Wiley & Sons Ltd.

  8. Does the StartReact Effect Apply to First-Trial Reactive Movements?

    Directory of Open Access Journals (Sweden)

    Katrin Sutter

    Full Text Available StartReact is the acceleration of reaction time by a startling acoustic stimulus (SAS. The SAS is thought to release a pre-prepared motor program. Here, we investigated whether the StartReact effect is applicable to the very first trial in a series of repeated unpractised single-joint movements.Twenty healthy young subjects were instructed to perform a rapid ankle dorsiflexion movement in response to an imperative stimulus. Participants were divided in two groups of ten. Both groups performed 17 trials. In one group a SAS (116 dB was given in the first trial, whereas the other group received a non-startling sound (70 dB as the first imperative stimulus. In the remaining 16 trials, the SAS was given as the imperative stimulus in 25% of the trials in both groups. The same measurement was repeated one week later, but with the first-trial stimuli counterbalanced between groups.When a SAS was given in the very first trial, participants had significantly shorter onset latencies compared to first-trial responses to a non-startling stimulus. Succeeding trials were significantly faster compared to the first trial, both for trials with and without a SAS. However, the difference between the first and succeeding trials was significantly larger for responses to a non-startling stimulus compared to responses triggered by a SAS. SAS-induced acceleration in the first trial of the second session was similar to that in succeeding trials of session 1.The present results confirm that the StartReact phenomenon also applies to movements that have not yet been practiced in the experimental context. The excessive SAS-induced acceleration in the very first trial may be due to the absence of integration of novel context-specific information with the existing motor memory for movement execution. Our findings demonstrate that StartReact enables a rapid release of motor programs in the very first trial also without previous practice, which might provide a behavioural

  9. Modulation of motor-meaning congruity effects for valenced words

    OpenAIRE

    Brookshire, Geoffrey; Ivry, Richard; Casasanto, Daniel

    2010-01-01

    We investigated the extent to which emotionally valenced words automatically cue spatio-motor representations. Participants made speeded button presses, moving their hand upward or downward while viewing words with positive or negative valence. Only the color of the words was relevant to the response; on target trials, there was no requirement to read the words or process their meaning. In Experiment 1, upward responses were faster for positive words, and downward for negative words. This eff...

  10. EEG datasets for motor imagery brain-computer interface.

    Science.gov (United States)

    Cho, Hohyun; Ahn, Minkyu; Ahn, Sangtae; Kwon, Moonyoung; Jun, Sung Chan

    2017-07-01

    Most investigators of brain-computer interface (BCI) research believe that BCI can be achieved through induced neuronal activity from the cortex, but not by evoked neuronal activity. Motor imagery (MI)-based BCI is one of the standard concepts of BCI, in that the user can generate induced activity by imagining motor movements. However, variations in performance over sessions and subjects are too severe to overcome easily; therefore, a basic understanding and investigation of BCI performance variation is necessary to find critical evidence of performance variation. Here we present not only EEG datasets for MI BCI from 52 subjects, but also the results of a psychological and physiological questionnaire, EMG datasets, the locations of 3D EEG electrodes, and EEGs for non-task-related states. We validated our EEG datasets by using the percentage of bad trials, event-related desynchronization/synchronization (ERD/ERS) analysis, and classification analysis. After conventional rejection of bad trials, we showed contralateral ERD and ipsilateral ERS in the somatosensory area, which are well-known patterns of MI. Finally, we showed that 73.08% of datasets (38 subjects) included reasonably discriminative information. Our EEG datasets included the information necessary to determine statistical significance; they consisted of well-discriminated datasets (38 subjects) and less-discriminative datasets. These may provide researchers with opportunities to investigate human factors related to MI BCI performance variation, and may also achieve subject-to-subject transfer by using metadata, including a questionnaire, EEG coordinates, and EEGs for non-task-related states. © The Authors 2017. Published by Oxford University Press.

  11. Development of a Portable Motor Learning Laboratory (PoMLab).

    Science.gov (United States)

    Takiyama, Ken; Shinya, Masahiro

    2016-01-01

    Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the learning curves

  12. Development of a Portable Motor Learning Laboratory (PoMLab.

    Directory of Open Access Journals (Sweden)

    Ken Takiyama

    Full Text Available Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the

  13. Motor Habits in Visuo-manual Tracking: Manifestation of an Unconscious Short-Term Motor Memory?

    Directory of Open Access Journals (Sweden)

    Andreas Hufschmidt

    1990-01-01

    Full Text Available Normal subjects were tested in short, repetitive trials of a tracking task, with an identical shape of target movement being used throughout one session. Analysis of the net error curves (pursuit minus target movement revealed that subjects regularly exhibit a remoteness effect: neighbouring trials were more similar than distant ones. The effect is demonstrated to be stronger in the absence of visual cues, and was found to be absent in a patient with complete loss of proprioception when he was performing without visual feedback as well. The results are discussed in terms of a short term memory store contributing to unconscious movement habits in tracking. This may represent part of the motor learning process working together with conscious visuo-motor control mechanisms. Its function is probably related to the acquisition of automatic movements.

  14. Learning-induced Dependence of Neuronal Activity in Primary Motor Cortex on Motor Task Condition.

    Science.gov (United States)

    Cai, X; Shimansky, Y; He, Jiping

    2005-01-01

    A brain-computer interface (BCI) system such as a cortically controlled robotic arm must have a capacity of adjusting its function to a specific environmental condition. We studied this capacity in non-human primates based on chronic multi-electrode recording from the primary motor cortex of a monkey during the animal's performance of a center-out 3D reaching task and adaptation to external force perturbations. The main condition-related feature of motor cortical activity observed before the onset of force perturbation was a phasic raise of activity immediately before the perturbation onset. This feature was observed during a series of perturbation trials, but were absent under no perturbations. After adaptation has been completed, it usually was taking the subject only one trial to recognize a change in the condition to switch the neuronal activity accordingly. These condition-dependent features of neuronal activity can be used by a BCI for recognizing a change in the environmental condition and making corresponding adjustments, which requires that the BCI-based control system possess such advanced properties of the neural motor control system as capacity to learn and adapt.

  15. Combined transcranial direct current stimulation and home-based occupational therapy for upper limb motor impairment following intracerebral hemorrhage: a double-blind randomized controlled trial.

    Science.gov (United States)

    Mortensen, Jesper; Figlewski, Krystian; Andersen, Henning

    2016-01-01

    To investigate the combined effect of transcranial direct current stimulation (tDCS) and home-based occupational therapy on activities of daily living (ADL) and grip strength, in patients with upper limb motor impairment following intracerebral hemorrhage (ICH). A double-blind randomized controlled trial with one-week follow-up. Patients received five consecutive days of occupational therapy at home, combined with either anodal (n = 8) or sham (n = 7) tDCS. The primary outcome was ADL performance, which was assessed with the Jebsen-Taylor test (JTT). Both groups improved JTT over time (p occupational therapy provided greater improvements in grip strength compared with occupational therapy alone. tDCS is a promising add-on intervention regarding training of upper limb motor impairment. It is well tolerated by patients and can easily be applied for home-based training. Larger studies with long-term follow-up are needed to further explore possible effects of tDCS in patients with ICH. Five consecutive days of tDCS combined with occupational therapy provided greater improvements in grip strength compared with occupational therapy alone. tDCS is well tolerated by patients and can easily be applied for home-based rehabilitation.

  16. Untrivial Pursuit: Measuring Motor Procedures Learning in Children with Autism.

    Science.gov (United States)

    Sparaci, Laura; Formica, Domenico; Lasorsa, Francesca Romana; Mazzone, Luigi; Valeri, Giovanni; Vicari, Stefano

    2015-08-01

    Numerous studies have underscored prevalence of motor impairments in children with autism spectrum disorders (ASD), but only few of them have analyzed motor strategies exploited by ASD children when learning a new motor procedure. To evaluate motor procedure learning and performance strategies in both ASD and typically developing (TD) children, we built a virtual pursuit rotor (VPR) task, requiring tracking a moving target on a computer screen using a digitalized pen and tablet. Procedural learning was measured as increased time on target (TT) across blocks of trials on the same day and consolidation was assessed after a 24-hour rest. The program and the experimental setting (evaluated in a first experiment considering two groups of TD children) allowed also measures of continuous time on target (CTT), distance from target (DT) and distance from path (DP), as well as 2D reconstructions of children's trajectories. Results showed that the VPR was harder for children with ASD than for TD controls matched for chronological age and intelligence quotient, but both groups displayed comparable motor procedure learning (i.e., similarly incremented their TT). However, closer analysis of CTT, DT, and DP as well as 2D trajectories, showed different motor performance strategies in ASD, highlighting difficulties in overall actions planning. Data underscore the need for deeper investigations of motor strategies exploited by children with ASD when learning a new motor procedure. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  17. Neuroplasticity Changes on Human Motor Cortex Induced by Acupuncture Therapy: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2017-01-01

    Full Text Available While neuroplasticity changes measured by transcranial magnetic stimulation have been proved to be highly correlated to motor recovery and have been tested in various forms of interventions, it has not been applied to investigate the neurophysiologic mechanism of acupuncture therapy. The aim of this study is to investigate neuroplasticity changes induced by a single session of acupuncture therapy in healthy adults, regarding the excitability change on bilateral primary motor cortex and interhemispheric inhibition. Ten subjects took a 30-minute acupuncture therapy and the same length relaxing phase in separate days. Transcranial magnetic stimulation measures, including resting motor threshold, amplitudes of motor-evoked potential, and interhemispheric inhibition, were assessed before and 10 minutes after intervention. Acupuncture treatment showed significant changes on potential amplitude from both ipsilateral and contralateral hemispheres to acupuncture compared to baseline. Also, interhemispheric inhibition from the contralateral motor cortex to the opposite showed a significant decline. The results indicated that corticomotoneuronal excitability and interhemispheric competition could be modulated by acupuncture therapy on healthy subjects. The following question about whether these changes will be observed in the same way on stroke patients and whether they correlate with the therapeutic effect on movement need to be answered by following studies. This trial is registered with ISRCTN13074245.

  18. Bilateral and unilateral arm training improve motor function through differing neuroplastic mechanisms: a single-blinded randomized controlled trial.

    Science.gov (United States)

    Whitall, Jill; Waller, Sandy McCombe; Sorkin, John D; Forrester, Larry W; Macko, Richard F; Hanley, Daniel F; Goldberg, Andrew P; Luft, Andreas

    2011-02-01

    This randomized controlled trial tests the efficacy of bilateral arm training with rhythmic auditory cueing (BATRAC) versus dose-matched therapeutic exercises (DMTEs) on upper-extremity (UE) function in stroke survivors and uses functional magnetic resonance imaging (fMRI) to examine effects on cortical reorganization. A total of 111 adults with chronic UE paresis were randomized to 6 weeks (3×/week) of BATRAC or DMTE. Primary end points of UE assessments of Fugl-Meyer UE Test (FM) and modified Wolf Motor Function Test Time (WT) were performed 6 weeks prior to and at baseline, after training, and 4 months later. Pretraining and posttraining, fMRI for UE movement was evaluated in 17 BATRAC and 21 DMTE participants. The improvements in UE function (BATRAC: FM Δ = 1.1 + 0.5, P = .03; WT Δ = -2.6 + 0.8, P frontal gyrus (P < .05). Activation change in the latter was correlated with improvement in the WMFT (P = .01). BATRAC is not superior to DMTE, but both rehabilitation programs durably improve motor function for individuals with chronic UE hemiparesis and with varied deficit severity. Adaptations in brain activation are greater after BATRAC than DMTE, suggesting that given similar benefits to motor function, these therapies operate through different mechanisms.

  19. A bimodal neurophysiological study of motor control in attention-deficit hyperactivity disorder: a step towards core mechanisms?

    Science.gov (United States)

    Heinrich, Hartmut; Hoegl, Thomas; Moll, Gunther H; Kratz, Oliver

    2014-04-01

    Knowledge about the core neural mechanisms of attention-deficit hyperactivity disorder, a pathophysiologically heterogeneous psychiatric disorder starting in childhood, is still limited. Progress may be achieved by combining different methods and levels of investigation. In the present study, we investigated neural mechanisms of motor control in 19 children with attention-deficit hyperactivity disorder (aged 9-14 years) and 21 age-matched typically developing children by relating neural markers of attention and response control (using event-related potentials) and measures of motor excitability/inhibition (evoked by transcranial magnetic stimulation). Thus, an interplay of processes at a subsecond scale could be studied. Using a monetary incentives-based cued Go/No-Go task, parameters that are well-known to be reduced in attention-deficit hyperactivity disorder were analysed: event-related potential components P3 (following cue stimuli; in Go and No-Go trials) and contingent negative variation as well as the transcranial magnetic stimulation-based short-interval intracortical inhibition measured at different latencies in Go and No-Go trials. For patient and control groups, different associations were obtained between performance, event-related potential and transcranial magnetic stimulation measures. In children with attention-deficit hyperactivity disorder, the P3 amplitude in Go trials was not correlated with reaction time measures but with short-interval intracortical inhibition at rest (r=0.56, P=0.01). In No-Go trials, P3 and short-interval intracortical inhibition after inhibiting the response (at 500 ms post-stimulus) were correlated in these children only (r=0.62; P=0.008). A classification rate of 90% was achieved when using short-interval intracortical inhibition (measured shortly before the occurrence of a Go or No-Go stimulus) and the amplitude of the P3 in cue trials as input features in a linear discriminant analysis. Findings indicate deviant neural

  20. Multi-Tasking and Choice of Training Data Influencing Parietal ERP Expression and Single-Trial Detection—Relevance for Neuroscience and Clinical Applications

    Science.gov (United States)

    Kirchner, Elsa A.; Kim, Su Kyoung

    2018-01-01

    Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent (targets), motor-task irrelevant infrequent (deviants), and motor-task irrelevant frequent (standards) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive

  1. Investigation of Electromagnetic, Thermal and Mechanical Characteristics of a Five-Phase Dual-Rotor Permanent-Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2015-09-01

    Full Text Available This paper investigates of a kind of five-phase dual-rotor permanent-magnet synchronous motor (DRPMSM, which contains dual rotors and a single stator. This kind of motor has the potential advantages of high power density, high reliability and high efficiency, which make it more appropriate for using in electric vehicles (EVs. In order to evaluate the most suitable power level for this kind of structure, the electromagnetic, the thermal and the mechanical characteristics are investigated in this paper. The length to diameter ratio of motors is researched to obtain the highest power density and then the optimum ratio is obtained. Based on the optimum ratio, the thermal characteristics are researched under natural condition and forced-air cooling condition with different wind speeds. In addition, the mechanical characteristics are analyzed under no-load and different loads conditions, respectively. All of the results are analyzed by two-dimension (2-D and three-dimension (3-D finite element method (FEM simulation, which provide a good reference to select suitable power level for this kind of motor structure. Finally, a DRPMSM prototype is manufactured and tested. The experimental results effectively verify the FEM results.

  2. Invited commentary on comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial.

    Science.gov (United States)

    Kwakkel, Gert; van Wegen, Erwin E; Meskers, Carel M

    2015-06-01

    In this issue of Archives of Physical Medicine and Rehabilitation, Jessica McCabe and colleagues report findings from their methodologically sound, dose-matched clinical trial in 39 patients beyond 6 months poststroke. In this phase II trial, the effects of 60 treatment sessions, each involving 3.5 hours of intensive practice plus either 1.5 hours of functional electrical stimulation (FES) or a shoulder-arm robotic therapy, were compared with 5 hours of intensive daily practice alone. Although no significant between-group differences were found on the primary outcome measure of Arm Motor Ability Test and the secondary outcome measure of Fugl-Meyer Arm motor score, 10% to 15% within-group therapeutic gains were on the Arm Motor Ability Test and Fugl-Meyer Arm. These gains are clinically meaningful for patients with stroke. However, the underlying mechanisms that drive these improvements remain poorly understood. The approximately $1000 cost reduction per patient calculated for the use of motor learning (ML) methods alone or combined with FES, compared with the combination of ML and shoulder-arm robotics, further emphasizes the need for cost considerations when making clinical decisions about selecting the most appropriate therapy for the upper paretic limb in patients with chronic stroke. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. A novel technique for phase synchrony measurement from the complex motor imaginary potential of combined body and limb action

    Science.gov (United States)

    Zhou, Zhong-xing; Wan, Bai-kun; Ming, Dong; Qi, Hong-zhi

    2010-08-01

    In this study, we proposed and evaluated the use of the empirical mode decomposition (EMD) technique combined with phase synchronization analysis to investigate the human brain synchrony of the supplementary motor area (SMA) and primary motor area (M1) during complex motor imagination of combined body and limb action. We separated the EEG data of the SMA and M1 into intrinsic mode functions (IMFs) using the EMD method and determined the characteristic IMFs by power spectral density (PSD) analysis. Thereafter, the instantaneous phases of the characteristic IMFs were obtained by the Hilbert transformation, and the single-trial phase-locking value (PLV) features for brain synchrony measurement between the SMA and M1 were investigated separately. The classification performance suggests that the proposed approach is effective for phase synchronization analysis and is promising for the application of a brain-computer interface in motor nerve reconstruction of the lower limbs.

  4. Development of a superconducting claw-pole motor

    International Nuclear Information System (INIS)

    Watanabe, E.; Kikukawa, K.; Satoh, Y.; Torii, S.

    2008-01-01

    We have developed and produced a superconducting claw-pole motor for a trial purpose as a method to make the best use of the characteristic of superconductivity without collector rings or rotating superconducting coils that need to be cryocooled, and made some examinations. The unique feature in this motor is to have the mechanism that supports the reaction magnetic force generated in the axial direction

  5. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    Science.gov (United States)

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.

  6. Sponsors’ and investigative staffs' perceptions of the current investigational new drug safety reporting process in oncology trials

    Science.gov (United States)

    Perez, Raymond; Archdeacon, Patrick; Roach, Nancy; Goodwin, Robert; Jarow, Jonathan; Stuccio, Nina; Forrest, Annemarie

    2017-01-01

    Background/aims: The Food and Drug Administration’s final rule on investigational new drug application safety reporting, effective from 28 March 2011, clarified the reporting requirements for serious and unexpected suspected adverse reactions occurring in clinical trials. The Clinical Trials Transformation Initiative released recommendations in 2013 to assist implementation of the final rule; however, anecdotal reports and data from a Food and Drug Administration audit indicated that a majority of reports being submitted were still uninformative and did not result in actionable changes. Clinical Trials Transformation Initiative investigated remaining barriers and potential solutions to full implementation of the final rule by polling and interviewing investigators, clinical research staff, and sponsors. Methods: In an opinion-gathering effort, two discrete online surveys designed to assess challenges and motivations related to management of expedited (7- to 15-day) investigational new drug safety reporting processes in oncology trials were developed and distributed to two populations: investigators/clinical research staff and sponsors. Data were collected for approximately 1 year. Twenty-hour-long interviews were also conducted with Clinical Trials Transformation Initiative–nominated interview participants who were considered as having extensive knowledge of and experience with the topic. Interviewees included 13 principal investigators/study managers/research team members and 7 directors/vice presidents of pharmacovigilance operations from 5 large global pharmaceutical companies. Results: The investigative site’s responses indicate that too many individual reports are still being submitted, which are time-consuming to process and provide little value for patient safety assessments or for informing actionable changes. Fewer but higher quality reports would be more useful, and the investigator and staff would benefit from sponsors’“filtering” of

  7. Sponsors' and investigative staffs' perceptions of the current investigational new drug safety reporting process in oncology trials.

    Science.gov (United States)

    Perez, Raymond; Archdeacon, Patrick; Roach, Nancy; Goodwin, Robert; Jarow, Jonathan; Stuccio, Nina; Forrest, Annemarie

    2017-06-01

    The Food and Drug Administration's final rule on investigational new drug application safety reporting, effective from 28 March 2011, clarified the reporting requirements for serious and unexpected suspected adverse reactions occurring in clinical trials. The Clinical Trials Transformation Initiative released recommendations in 2013 to assist implementation of the final rule; however, anecdotal reports and data from a Food and Drug Administration audit indicated that a majority of reports being submitted were still uninformative and did not result in actionable changes. Clinical Trials Transformation Initiative investigated remaining barriers and potential solutions to full implementation of the final rule by polling and interviewing investigators, clinical research staff, and sponsors. In an opinion-gathering effort, two discrete online surveys designed to assess challenges and motivations related to management of expedited (7- to 15-day) investigational new drug safety reporting processes in oncology trials were developed and distributed to two populations: investigators/clinical research staff and sponsors. Data were collected for approximately 1 year. Twenty-hour-long interviews were also conducted with Clinical Trials Transformation Initiative-nominated interview participants who were considered as having extensive knowledge of and experience with the topic. Interviewees included 13 principal investigators/study managers/research team members and 7 directors/vice presidents of pharmacovigilance operations from 5 large global pharmaceutical companies. The investigative site's responses indicate that too many individual reports are still being submitted, which are time-consuming to process and provide little value for patient safety assessments or for informing actionable changes. Fewer but higher quality reports would be more useful, and the investigator and staff would benefit from sponsors'"filtering" of reports and increased sponsor communication. Sponsors

  8. Investigation of Demagnetization Effect in an Interior V-Shaped Magnet Synchronous Motor at Dynamic and Static Conditions

    Directory of Open Access Journals (Sweden)

    F. Mahmouditabar

    2018-03-01

    Full Text Available Permanent magnet motors have been considered for a variety of applications due to their features such as high power density and high efficiency. One of the issues that should be investigated in the design of these motors is the demagnetization problem. Usually, the demagnetization analysis is carried out in a steady state, while demagnetization effect in dynamic condition is more considerable due to pulse shaped of armature field. Based on this fact, in this paper, dynamic demagnetization is investigated for an IPM V‑shaped magnet. This study has been done for two types of magnet, each one in static & dynamic conditions and the results are compared. Moreover, the effect of flux weakening regime on demagnetization is investigated.

  9. Effects of preparation time and trial type probability on performance of anti- and pro-saccades.

    Science.gov (United States)

    Pierce, Jordan E; McDowell, Jennifer E

    2016-02-01

    Cognitive control optimizes responses to relevant task conditions by balancing bottom-up stimulus processing with top-down goal pursuit. It can be investigated using the ocular motor system by contrasting basic prosaccades (look toward a stimulus) with complex antisaccades (look away from a stimulus). Furthermore, the amount of time allotted between trials, the need to switch task sets, and the time allowed to prepare for an upcoming saccade all impact performance. In this study the relative probabilities of anti- and pro-saccades were manipulated across five blocks of interleaved trials, while the inter-trial interval and trial type cue duration were varied across subjects. Results indicated that inter-trial interval had no significant effect on error rates or reaction times (RTs), while a shorter trial type cue led to more antisaccade errors and faster overall RTs. Responses following a shorter cue duration also showed a stronger effect of trial type probability, with more antisaccade errors in blocks with a low antisaccade probability and slower RTs for each saccade task when its trial type was unlikely. A longer cue duration yielded fewer errors and slower RTs, with a larger switch cost for errors compared to a short cue duration. Findings demonstrated that when the trial type cue duration was shorter, visual motor responsiveness was faster and subjects relied upon the implicit trial probability context to improve performance. When the cue duration was longer, increased fixation-related activity may have delayed saccade motor preparation and slowed responses, guiding subjects to respond in a controlled manner regardless of trial type probability. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Transcranial magnetic stimulation as an investigative tool for motor dysfunction and recovery in stroke: an overview for neurorehabilitation clinicians.

    Science.gov (United States)

    Cortes, Mar; Black-Schaffer, Randie M; Edwards, Dylan J

    2012-07-01

    An improved understanding of motor dysfunction and recovery after stroke has important clinical implications that may lead to the design of more effective rehabilitation strategies for patients with hemiparesis. Transcranial magnetic stimulation (TMS) is a safe and painless tool that has been used in conjunction with other existing diagnostic tools to investigate motor pathophysiology in stroke patients. Since TMS emerged more than two decades ago, its application in clinical and basic neuroscience has expanded worldwide. TMS can quantify the corticomotor excitability properties of clinically affected and unaffected muscles and can probe local cortical networks as well as remote but functionally related areas. This provides novel insight into the physiology of neural circuits underlying motor dysfunction and brain reorganization during the motor recovery process. This important tool needs to be used with caution by clinical investigators, its limitations need to be understood, and the results should to be interpreted along with clinical evaluation in this patient population. In this review, we provide an overview of the rationale, implementation, and limitations of TMS to study stroke motor physiology. This knowledge may be useful to guide future rehabilitation treatments by assessing and promoting functional plasticity. © 2012 International Neuromodulation Society.

  11. Inconsistency in Serial Choice Decision and Motor Reaction Times Dissociate in Younger and Older Adults

    Science.gov (United States)

    Bunce, D.; MacDonald, S.W.S.; Hultsch, D.F.

    2004-01-01

    Intraindividual variability (inconsistency) in reaction time (RT) latencies was investigated in a group of younger (M=25.46 years) and older (M=69.29 years) men. Both groups performed 300 trials in 2-, 4-, and 8-choice RT conditions where RTs for decision and motor components of the task were recorded separately. A dissociation was evident in that…

  12. Observation and execution of upper-limb movements as a tool for rehabilitation of motor deficits in paretic stroke patients: protocol of a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Ertelt Denis

    2012-06-01

    Full Text Available Abstract Background Evidence exist that motor observation activates the same cortical motor areas that are involved in the performance of the observed actions. The so called “mirror neuron system” has been proposed to be responsible for this phenomenon. We employ this neural system and its capability to re-enact stored motor representations as a tool for rehabilitating motor control. In our new neurorehabilitative schema (videotherapy we combine observation of daily actions with concomitant physical training of the observed actions focusing on the upper limbs. Following a pilot study in chronic patients in an ambulatory setting, we currently designed a new multicenter clinical study dedicated to patients in the sub-acute state after stroke using a home-based self-induced training. Within our protocol we assess 1 the capability of action observation to elicit rehabilitational effects in the motor system, and 2 the capacity of this schema to be performed by patients without assistance from a physiotherapist. The results of this study would be of high health and economical relevance. Methods/design A controlled, randomized, multicenter, paralleled, 6 month follow-up study will be conducted on three groups of patients: one group will be given the experimental treatment whereas the other two will participate in control treatments. All patients will undergo their usual rehabilitative treatment beside participation in the study. The experimental condition consists in the observation and immediate imitation of common daily hand and arm actions. The two parallel control groups are a placebo group and a group receiving usual rehabilitation without any trial-related treatment. Trial randomization is provided via external data management. The primary efficacy endpoint is the improvement of the experimental group in a standardized motor function test (Wolf Motor Function Test relative to control groups. Further assessments refer to subjective and

  13. Non-motor and motor features in LRRK2 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Zoë Bichler

    Full Text Available Non-motor symptoms are increasingly recognized as important features of Parkinson's disease (PD. LRRK2 mutations are common causes of familial and sporadic PD. Non-motor features have not been yet comprehensively evaluated in LRRK2 transgenic mouse models.Using a transgenic mouse model overexpressing the R1441G mutation of the human LRRK2 gene, we have investigated the longitudinal correlation between motor and non-motor symptoms and determined if specific non-motor phenotypes precede motor symptoms.We investigated the onset of motor and non-motor phenotypes on the LRRK2(R1441G BAC transgenic mice and their littermate controls from 4 to 21 month-old using a battery of behavioral tests. The transgenic mutant mice displayed mild hypokinesia in the open field from 16 months old, with gastrointestinal dysfunctions beginning at 6 months old. Non-motor features such as depression and anxiety-like behaviors, sensorial functions (pain sensitivity and olfaction, and learning and memory abilities in the passive avoidance test were similar in the transgenic animals compared to littermate controls.LRRK2(R1441G BAC transgenic mice displayed gastrointestinal dysfunction at an early stage but did not have abnormalities in fine behaviors, olfaction, pain sensitivity, mood disorders and learning and memory compared to non-transgenic littermate controls. The observations on olfaction and gastrointestinal dysfunction in this model validate findings in human carriers. These mice did recapitulate mild Parkinsonian motor features at late stages but compensatory mechanisms modulating the progression of PD in these models should be further evaluated.

  14. ''Playstation eyetoy games'' improve upper extremity-related motor functioning in subacute stroke: a randomized controlled clinical trial.

    Science.gov (United States)

    Yavuzer, G; Senel, A; Atay, M B; Stam, H J

    2008-09-01

    To evaluate the effects of ''Playstation EyeToy Games'' on upper extremity motor recovery and upper extremity-related motor functioning of patients with subacute stroke. The authors designed a randomized, controlled, assessor-blinded, 4-week trial, with follow-up at 3 months. A total of 20 hemiparetic inpatients (mean age 61.1 years), all within 12 months post-stroke, received 30 minutes of treatment with ''Playstation EyeToy Games'' per day, consisting of flexion and extension of the paretic shoulder, elbow and wrist as well as abduction of the paretic shoulder or placebo therapy (watching the games for the same duration without physical involvement into the games) in addition to conventional program, 5 days a week, 2-5 hours/day for 4 weeks. Brunnstrom's staging and self-care sub-items of the functional independence measure (FIM) were performed at 0 month (baseline), 4 weeks (post-treatment), and 3 months (follow-up) after the treatment. The mean change score (95% confidence interval) of the FIM self-care score (5.5 [2.9-8.0] vs 1.8 [0.1-3.7], P=0.018) showed significantly more improvement in the EyeToy group compared to the control group. No significant differences were found between the groups for the Brunnstrom stages for hand and upper extremity. ''Playstation EyeToy Games'' combined with a conventional stroke rehabilitation program have a potential to enhance upper extremity-related motor functioning in subacute stroke patients.

  15. Neuronal Substrates Underlying Performance Variability in Well-Trained Skillful Motor Task in Humans.

    Science.gov (United States)

    Mizuguchi, Nobuaki; Uehara, Shintaro; Hirose, Satoshi; Yamamoto, Shinji; Naito, Eiichi

    2016-01-01

    Motor performance fluctuates trial by trial even in a well-trained motor skill. Here we show neural substrates underlying such behavioral fluctuation in humans. We first scanned brain activity with functional magnetic resonance imaging while healthy participants repeatedly performed a 10 s skillful sequential finger-tapping task. Before starting the experiment, the participants had completed intensive training. We evaluated task performance per trial (number of correct sequences in 10 s) and depicted brain regions where the activity changes in association with the fluctuation of the task performance across trials. We found that the activity in a broader range of frontoparietocerebellar network, including the bilateral dorsolateral prefrontal cortex (DLPFC), anterior cingulate and anterior insular cortices, and left cerebellar hemisphere, was negatively correlated with the task performance. We further showed in another transcranial direct current stimulation (tDCS) experiment that task performance deteriorated, when we applied anodal tDCS to the right DLPFC. These results indicate that fluctuation of brain activity in the nonmotor frontoparietocerebellar network may underlie trial-by-trial performance variability even in a well-trained motor skill, and its neuromodulation with tDCS may affect the task performance.

  16. Emerging Executive Functioning and Motor Development in Infants at High and Low Risk for Autism Spectrum Disorder.

    Science.gov (United States)

    St John, Tanya; Estes, Annette M; Dager, Stephen R; Kostopoulos, Penelope; Wolff, Jason J; Pandey, Juhi; Elison, Jed T; Paterson, Sarah J; Schultz, Robert T; Botteron, Kelly; Hazlett, Heather; Piven, Joseph

    2016-01-01

    Existing evidence suggests executive functioning (EF) deficits may be present in children with autism spectrum disorder (ASD) by 3 years of age. It is less clear when, prior to 3 years, EF deficits may emerge and how EF unfold over time. The contribution of motor skill difficulties to poorer EF in children with ASD has not been systematically studied. We investigated the developmental trajectory of EF in infants at high and low familial risk for ASD (HR and LR) and the potential associations between motor skills, diagnostic group, and EF performance. Participants included 186 HR and 76 LR infants. EF (A-not-B), motor skills (Fine and Gross Motor), and cognitive ability were directly assessed at 12 months and 24 months of age. Participants were directly evaluated for ASD at 24 months using DSM-IV-TR criteria and categorized as HR-ASD, HR-Negative, and LR-Negative. HR-ASD and HR-Negative siblings demonstrated less improvement in EF over time compared to the LR-Negative group. Motor skills were associated with group and EF performance at 12 months. No group differences were found at 12 months, but at 24 months, the HR-ASD and HR-Negative groups performed worse than the LR-Negative group overall after controlling for visual reception and maternal education. On reversal trials, the HR-ASD group performed worse than the LR-Negative group. Motor skills were associated with group and EF performance on reversal trials at 24 months. Findings suggest that HR siblings demonstrate altered EF development and that motor skills may play an important role in this process.

  17. Human θ burst stimulation enhances subsequent motor learning and increases performance variability.

    Science.gov (United States)

    Teo, James T H; Swayne, Orlando B C; Cheeran, Binith; Greenwood, Richard J; Rothwell, John C

    2011-07-01

    Intermittent theta burst stimulation (iTBS) transiently increases motor cortex excitability in healthy humans by a process thought to involve synaptic long-term potentiation (LTP), and this is enhanced by nicotine. Acquisition of a ballistic motor task is likewise accompanied by increased excitability and presumed intracortical LTP. Here, we test how iTBS and nicotine influences subsequent motor learning. Ten healthy subjects participated in a double-blinded placebo-controlled trial testing the effects of iTBS and nicotine. iTBS alone increased the rate of learning but this increase was blocked by nicotine. We then investigated factors other than synaptic strengthening that may play a role. Behavioral analysis and modeling suggested that iTBS increased performance variability, which correlated with learning outcome. A control experiment confirmed the increase in motor output variability by showing that iTBS increased the dispersion of involuntary transcranial magnetic stimulation-evoked thumb movements. We suggest that in addition to the effect on synaptic plasticity, iTBS may have facilitated performance by increasing motor output variability; nicotine negated this effect on variability perhaps via increasing the signal-to-noise ratio in cerebral cortex.

  18. Normalized Index of Synergy for Evaluating the Coordination of Motor Commands

    Science.gov (United States)

    Togo, Shunta; Imamizu, Hiroshi

    2015-01-01

    Humans perform various motor tasks by coordinating the redundant motor elements in their bodies. The coordination of motor outputs is produced by motor commands, as well properties of the musculoskeletal system. The aim of this study was to dissociate the coordination of motor commands from motor outputs. First, we conducted simulation experiments where the total elbow torque was generated by a model of a simple human right and left elbow with redundant muscles. The results demonstrated that muscle tension with signal-dependent noise formed a coordinated structure of trial-to-trial variability of muscle tension. Therefore, the removal of signal-dependent noise effects was required to evaluate the coordination of motor commands. We proposed a method to evaluate the coordination of motor commands, which removed signal-dependent noise from the measured variability of muscle tension. We used uncontrolled manifold analysis to calculate a normalized index of synergy. Simulation experiments confirmed that the proposed method could appropriately represent the coordinated structure of the variability of motor commands. We also conducted experiments in which subjects performed the same task as in the simulation experiments. The normalized index of synergy revealed that the subjects coordinated their motor commands to achieve the task. Finally, the normalized index of synergy was applied to a motor learning task to determine the utility of the proposed method. We hypothesized that a large part of the change in the coordination of motor outputs through learning was because of changes in motor commands. In a motor learning task, subjects tracked a target trajectory of the total torque. The change in the coordination of muscle tension through learning was dominated by that of motor commands, which supported the hypothesis. We conclude that the normalized index of synergy can be used to evaluate the coordination of motor commands independently from the properties of the

  19. Influence of motor skills training on children’s development evaluated in the Motor skills in PreSchool (MiPS) study-DK: study protocol for a randomized controlled trial, nested in a cohort study

    DEFF Research Database (Denmark)

    Hestbaek, Lise; Andersen, Sara Thurøe; Skovgaard, Thomas

    2017-01-01

    BACKGROUND: Good motor skills are considered important for children's physical, social, and psychological development, but the relationship is still poorly understood. Preschool age seems to be decisive for the development of motor skills and probably the most promising time-window in relation...... to preventive strategies based on improved motor skills. This research program has four overall aims: (1) investigation of the effect of a structured program aimed at improving motor skills in 3-6-year-old children on current and future motor skills, health, cognition, and wellbeing; (2) establish reference...... data on motor skills in 3-6-year-olds; (3) description of early development of musculoskeletal problems; and (4) establishment of a population-based cohort of 3-6-year-olds. METHODS: Over a four-year period, all preschools in a Danish municipality, Svendborg, will implement a new program aimed...

  20. Motor cortical processing is causally involved in object recognition.

    Science.gov (United States)

    Decloe, Rebecca; Obhi, Sukhvinder S

    2013-12-14

    Motor activity during vicarious experience of actions is a widely reported and studied phenomenon, and motor system activity also accompanies observation of graspable objects in the absence of any actions. Such motor activity is thought to reflect simulation of the observed action, or preparation to interact with the object, respectively. Here, in an initial exploratory study, we ask whether motor activity during observation of object directed actions is involved in processes related to recognition of the object after initial exposure. Single pulse Transcranial Magnetic Stimulation (TMS) was applied over the thumb representation of the motor cortex, or over the vertex, during observation of a model thumb typing on a cell-phone, and performance on a phone recognition task at the end of the trial was assessed. Disrupting motor processing over the thumb representation 100 ms after the onset of the typing video impaired the ability to recognize the phone in the recognition test, whereas there was no such effect for TMS applied over the vertex and no TMS trials. Furthermore, this effect only manifested for videos observed from the first person perspective. In an additional control condition, there was no evidence for any effects of TMS to the thumb representation or vertex when observing and recognizing non-action related shape stimuli. Overall, these data provide evidence that motor cortical processing during observation of object-directed actions from a first person perspective is causally linked to the formation of enduring representations of objects-of-action.

  1. Enhancement Of Motor Recovery Through Left Dorsolateral Prefrontal Cortex Stimulation After Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Shahram Oveisgharan

    2017-02-01

    Full Text Available Background: Two previous studies, which investigated transcranial direct current stimulation (tDCS use in motor recovery after acute ischemic stroke, did not show tDCS to be effective in this regard. We speculated that additional left dorsolateral prefrontal cortex ‎(DLPFC ‎stimulation may enhance post stroke motor recovery.  ‎ Methods: In the present randomized clinical trial, 20 acute ischemic stroke patients were recruited. Patients received real motor cortex (M1 stimulation in both arms of the trial. The two arms differed in terms of real vs. sham stimulation over the left DLPFC‎. Motor component of the Fugl-Meyer upper extremity assessment (FM and Action Research Arm Test (ARAT scores were used to assess primary outcomes, and non-linear mixed effects models were used for data analyses. Results: Primary outcome measures improved more and faster among the real stimulation group. During the first days of stimulations, sham group’s FM scores increased 1.2 scores per day, while real group’s scores increased 1.7 scores per day (P = 0.003. In the following days, FM improvement decelerated in both groups. Based on the derived models, a hypothetical stroke patient with baseline FM score of 15 improves to 32 in the sham stimulation group and to 41 in the real stimulation group within the first month after stroke. Models with ARAT scores yielded nearly similar results. Conclusion: The current study results showed that left DLPFC‎ stimulation in conjunction with M1 stimulation resulted in better motor recovery than M1 stimulation alone.

  2. Factors of Influence on the Performance of a Short-Latency Non-Invasive Brain Switch: Evidence in Healthy Individuals and Implication for Motor Function Rehabilitation

    Directory of Open Access Journals (Sweden)

    Ren eXu

    2016-01-01

    Full Text Available Brain-computer interfacing (BCI has recently been applied as a rehabilitation approach for patients with motor disorders, such as stroke. In these closed-loop applications, a brain switch detects the motor intention from brain signals, e.g. scalp EEG, and triggers a neuroprosthetic device, either to deliver sensory feedback or to mimic real movements, thus re-establishing the compromised sensory-motor control loop and promoting neural plasticity. In this context, single trial detection of motor intention with short latency is a prerequisite. The performance of the event detection from EEG recordings is mainly determined by three factors: the type of motor imagery (e.g., repetitive, ballistic, the frequency band (or signal modality used for discrimination (e.g., alpha, beta, gamma, and MRCP, i.e. movement-related cortical potential, and the processing technique (e.g., time-series analysis, sub-band power estimation. In this study, we investigated single trial EEG traces during movement imagination on healthy individuals, and provided a comprehensive analysis of the performance of a short-latency brain switch when varying these three factors. The morphological investigation showed a cross-subject consistency of a prolonged negative phase in MRCP, and a delayed beta rebound in sensory-motor rhythms during repetitive tasks. The detection performance had the greatest accuracy when using ballistic MRCP with time-series analysis. In this case, the true positive rate was ~70% for a detection latency of ~200 ms. The results presented here are of practical relevance for designing BCI systems for motor function rehabilitation.

  3. Investigation Effects of Narrowing Rotor Pole Embrace to Efficiency and Cogging Torque at PM BLDC Motor

    Directory of Open Access Journals (Sweden)

    Cemil Ocak

    2016-02-01

    Full Text Available Engineers think that pole embrace size of a PM BLDC motor affects directly the efficiency and the torque. Dealing with theexperimental research, in the studywe have investigated the effects of narrowing rotor pole embrace step by step by changing sizes parametrically. By doing so, high efficiency and low cogging torque would have been obtained for a 20 W PM BLDC motor. In order to do this,pole arc to pole pitch ratio of magnets at the rotor poles has been changed parametrically (0.5 to 1 by genetic algorithm methodfirst. Then the electromagnetic field dispersions, output parameters of the motor, new rotor constructions have been obtained; and new pole embrace has been derived from the variation of pole arc to pole pitch ratio. We have also calculatedthe magnetic flux distribution, output power, torque, cogging torque and efficiency values analytically and the effects of new pole embrace to motor efficiency and torque have been simulated. The developed 18 slots, 6 poles, surface mounted inner runner configuration rotor machine is proposed as to be used insmall dentistry apparatus.

  4. Walking and talking: an investigation of cognitive-motor dual tasking in multiple sclerosis.

    Science.gov (United States)

    Hamilton, F; Rochester, L; Paul, L; Rafferty, D; O'Leary, C P; Evans, J J

    2009-10-01

    Deficits in motor functioning, including walking, and in cognitive functions, including attention, are known to be prevalent in multiple sclerosis (MS), though little attention has been paid to how impairments in these areas of functioning interact. This study investigated the effects of performing a concurrent cognitive task when walking in people with MS. Level of task demand was manipulated to investigate whether this affected level of dual-task decrement. Eighteen participants with MS and 18 healthy controls took part. Participants completed walking and cognitive tasks under single- and dual-task conditions. Compared to healthy controls, MS participants showed greater decrements in performance under dual-task conditions in cognitive task performance, walking speed and swing time variability. In the MS group, the degree of decrement under dual-task conditions was related to levels of fatigue, a measure of general cognitive functioning and self-reported everyday cognitive errors, but not to measures of disease severity or duration. Difficulty with walking and talking in MS may be a result of a divided attention deficit or of overloading of the working memory system, and further investigation is needed. We suggest that difficulty with walking and talking in MS may lead to practical problems in everyday life, including potentially increasing the risk of falls. Clinical tools to assess cognitive-motor dual-tasking ability are needed.

  5. Investigating the Electromechanical Coupling in Piezoelectric Actuator Drive Motor Under Heavy Load

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Andersen, Michael A. E.; Zhang, Zhe

    2014-01-01

    The Piezoelectric Actuator Drive (PAD) is an accurate, high-torque rotary piezoelectric motor that employs piezoelectric stack actuators and inverse hypocycloidal motion to generate rotation. Important factors that determine motor performance are the proper concentric alignment between the motor...

  6. Estimating resting motor thresholds in transcranial magnetic stimulation research and practice: a computer simulation evaluation of best methods.

    Science.gov (United States)

    Borckardt, Jeffrey J; Nahas, Ziad; Koola, Jejo; George, Mark S

    2006-09-01

    Resting motor threshold is the basic unit of dosing in transcranial magnetic stimulation (TMS) research and practice. There is little consensus on how best to estimate resting motor threshold with TMS, and only a few tools and resources are readily available to TMS researchers. The current study investigates the accuracy and efficiency of 5 different approaches to motor threshold assessment for TMS research and practice applications. Computer simulation models are used to test the efficiency and accuracy of 5 different adaptive parameter estimation by sequential testing (PEST) procedures. For each approach, data are presented with respect to the mean number of TMS trials necessary to reach the motor threshold estimate as well as the mean accuracy of the estimates. A simple nonparametric PEST procedure appears to provide the most accurate motor threshold estimates, but takes slightly longer (on average, 3.48 trials) to complete than a popular parametric alternative (maximum likelihood PEST). Recommendations are made for the best starting values for each of the approaches to maximize both efficiency and accuracy. In light of the computer simulation data provided in this article, the authors review and suggest which techniques might best fit different TMS research and clinical situations. Lastly, a free user-friendly software package is described and made available on the world wide web that allows users to run all of the motor threshold estimation procedures discussed in this article for clinical and research applications.

  7. Investigation of Perceptual-Motor Behavior Across the Expert Athlete to Disabled Patient Skill Continuum can Advance Theory and Practical Application.

    Science.gov (United States)

    Müller, Sean; Vallence, Ann-Maree; Winstein, Carolee

    2017-12-14

    A framework is presented of how theoretical predictions can be tested across the expert athlete to disabled patient skill continuum. Common-coding theory is used as the exemplar to discuss sensory and motor system contributions to perceptual-motor behavior. Behavioral and neural studies investigating expert athletes and patients recovering from cerebral stroke are reviewed. They provide evidence of bi-directional contributions of visual and motor systems to perceptual-motor behavior. Majority of this research is focused on perceptual-motor performance or learning, with less on transfer. The field is ripe for research designed to test theoretical predictions across the expert athlete to disabled patient skill continuum. Our view has implications for theory and practice in sports science, physical education, and rehabilitation.

  8. Current Nondopaminergic Therapeutic Options for Motor Symptoms of Parkinson's Disease

    Institute of Scientific and Technical Information of China (English)

    Juan-Juan Du; Sheng-Di Chen

    2017-01-01

    Objective:The aim of this study was to summarize recent studies on nondopaminergic options for the treatment of motor symptoms in Parkinson's disease (PD).Data Sources:Papers in English published in PubMed,Cochrane,and Ovid Nursing databases between January 1988 and November 2016 were searched using the following keywords:PD,nondopaminergic therapy,adenosine,glutamatergic,adrenergic,serotoninergic,histaminic,and iron chelator.We also reviewed the ongoing clinical trials in the website of clinicaltrials.gov.Study Selection:Articles related to the nondopaminergic treatment of motor symptoms in PD were selected for this review.Results:PD is conventionally treated with dopamine replacement strategies,which are effective in the early stages of PD.Long-term use oflevodopa could result in motor complications.Recent studies revealed that nondopaminergic systems such as adenosine,glutamatergic,adrenergic,serotoninergic,histaminic,and iron chelator pathways could include potential therapeutic targets for motor symptoms,including motor fluctuations,levodopa-induced dyskinesia,and gait disorders.Some nondopaminergic drugs,such as istradefylline and amantadine,are currently used clinically,while most such drugs are in preclinical testing stages.Transitioning of these agents into clinically beneficial strategies requires reliable evaluation since several agents have failed to show consistent results despite positive findings at the preclinical level.Conclusions:Targeting nondopaminergic transmission could improve some motor symptoms in PD,especially the discomfort ofdyskinesia.Although nondopaminergic treatments show great potential in PD treatment as an adjunct therapy to levodopa,further investigation is required to ensure their success.

  9. The effect of induction motor shaft diameter on motor performance

    Directory of Open Access Journals (Sweden)

    Asım Gökhan Yetgin

    2017-10-01

    Full Text Available Induction motors are used in many areas from the past to the present and in different fields with the development of technology has continued to be used. It is obvious that induction motors as an improvement to the efficiency in terms of energy saving would cause great benefit. In that context, induction motor manufacturers and designers are constantly trying out new methods to improve motor performance and efficiency. In this study, what would be the optimum diameter of the shaft in order to increase the efficiency of the induction motor were investigated. In the study, 5.5 kW, 7.5 kW and 11 kW motors analyzes were also performed. Obtained shaft diameter values were compared with the manufacturer values. In addition, critical points such as the magnetic flux values, weight values and performances of the motors were examined and optimal shaft diameter values for each motor have been determined.

  10. Dependence of the paired motor unit analysis on motor unit discharge characteristics in the human tibialis anterior muscle

    Science.gov (United States)

    Stephenson, Jennifer L.; Maluf, Katrina S.

    2011-01-01

    The paired motor unit analysis provides in vivo estimates of the magnitude of persistent inward currents (PIC) in human motoneurons by quantifying changes in the firing rate (ΔF) of an earlier recruited (reference) motor unit at the time of recruitment and derecruitment of a later recruited (test) motor unit. This study assessed the variability of ΔF estimates, and quantified the dependence of ΔF on the discharge characteristics of the motor units selected for analysis. ΔF was calculated for 158 pairs of motor units recorded from nine healthy individuals during repeated submaximal contractions of the tibialis anterior muscle. The mean (SD) ΔF was 3.7 (2.5) pps (range −4.2 to 8.9 pps). The median absolute difference in ΔF for the same motor unit pair across trials was 1.8 pps, and the minimal detectable change in ΔF required to exceed measurement error was 4.8 pps. ΔF was positively related to the amount of discharge rate modulation in the reference motor unit (r2=0.335; Precruitment of the reference and test motor units (r2=0.229, Pmotor unit activity (r2=0.110, Precruitment threshold of the test motor unit (r2=0.237, Pmotor unit analysis. PMID:21459110

  11. Motor fuel prices in Turkey

    International Nuclear Information System (INIS)

    Erdogdu, Erkan

    2014-01-01

    The world's most expensive motor fuel (gasoline, diesel and LPG) is sold most likely in the Republic of Turkey. This paper investigates the key issues related to the motor fuel prices in Turkey. First of all, the paper analyses the main reason behind high prices, namely motor fuel taxes in Turkey. Then, it estimates the elasticity of motor fuel demand in Turkey using an econometric analysis. The findings indicate that motor fuel demand in Turkey is quite inelastic and, therefore, not responsive to price increases caused by an increase in either pre-tax prices or taxes. Therefore, fuel market in Turkey is open to opportunistic behavior by firms (through excessive profits) and the government (through excessive taxes). Besides, the paper focuses on the impact of high motor fuel prices on road transport associated activities, including the pattern of passenger transportation, motorization rate, fuel use, total kilometers traveled and CO 2 emissions from road transportation. The impact of motor fuel prices on income distribution in Turkey and Turkish public opinion about high motor fuel prices are also among the subjects investigated in the course of the study. - Highlights: • The key issues (e.g. taxes) related to motor fuel prices in Turkey are explored. • Their impact on transport activities and income distribution is also investigated. • An econometric analysis is performed to estimate motor fuel demand in Turkey. • Motor fuel demand in Turkey is found to be quite inelastic. • Turkish fuel market is open to opportunistic behavior by firms and the government

  12. Early vibration assisted physiotherapy in toddlers with cerebral palsy - a randomized controlled pilot trial

    NARCIS (Netherlands)

    Stark, C.; Herkenrath, P.; Hollmann, H.; Waltz, S.; Becker, I.; Hoebing, L.; Semler, O.; Hoyer-Kuhn, H.; Duran, I.; Hero, B.; Hadders-Algra, M.; Schoenau, E.

    OBJECTIVES: to investigate feasibility, safety and efficacy of home-based side-alternating whole body vibration (sWBV) to improve motor function in toddlers with cerebral palsy (CP). METHODS: Randomized controlled trial including 24 toddlers with CP (mean age 19 months (SD±3.1); 13 boys).

  13. Computational Analysis of Pharyngeal Swallowing Mechanics in Patients with Motor Neuron Disease: A Pilot Investigation.

    Science.gov (United States)

    Garand, K L; Schwertner, Ryan; Chen, Amy; Pearson, William G

    2018-04-01

    Swallowing impairment (dysphagia) is a common sequela in patients with motor neuron disease (MND). The purpose of this retrospective, observational pilot investigation was to characterize how pharyngeal swallowing mechanics are impacted in patients with MND using a comparison with healthy, non-dysphagic control group. Computational analysis of swallowing mechanics (CASM) was used to determine covariate biomechanics of pharyngeal swallowing from videofluoroscopic assessment in 15 patients with MND and 15 age- and sex-matched healthy controls. Canonical variant analysis with post hoc discriminate function analysis (DFA) was performed on coordinate data mapping functional muscle groups underlying pharyngeal swallowing. Differences in swallowing mechanics associated with group (MND; control), motor neuron predominance (upper; lower), onset (bulbar; spinal), and swallow task (thin, pudding) were evaluated and visualized. Pharyngeal swallowing mechanics differed significantly in patients with MND compared with healthy controls (D = 2.01, p mechanics by motor neuron predominance (D = 5.03, p mechanics of patients with MND differ from and are more heterogeneous than healthy controls. These findings suggest patients with MND may compensate reductions in pharyngeal shortening and tongue base retraction by extending the head and neck and increasing hyolaryngeal excursion. This work and further CASM investigations will lead to further insights into development and evaluation of targeted clinical treatments designed to prolong safe and efficient swallowing function in patients with MND.

  14. Effects of cognitive-motor dual-task training combined with auditory motor synchronization training on cognitive functioning in individuals with chronic stroke: A pilot randomized controlled trial.

    Science.gov (United States)

    Park, Myoung-Ok; Lee, Sang-Heon

    2018-06-01

    Preservation and enhancement of cognitive function are essential for the restoration of functional abilities and independence following stroke. While cognitive-motor dual-task training (CMDT) has been utilized in rehabilitation settings, many patients with stroke experience impairments in cognitive function that can interfere with dual-task performance. In the present study, we investigated the effects of CMDT combined with auditory motor synchronization training (AMST) utilizing rhythmic cues on cognitive function in patients with stroke. The present randomized controlled trial was conducted at a single rehabilitation hospital. Thirty patients with chronic stroke were randomly divided an experimental group (n = 15) and a control group (n = 15). The experimental group received 3 CMDT + AMST sessions per week for 6 weeks, whereas the control group received CMDT only 3 times per week for 6 weeks. Changes in cognitive function were evaluated using the trail making test (TMT), digit span test (DST), and stroop test (ST). Significant differences in TMT-A and B (P = .001, P = .001), DST-forward (P = .001, P = .001), DST-backward (P = .000, P = .001), ST-word (P = .001, P = .001), and ST-color (P = .002, P = .001) scores were observed in both the control and experimental groups, respectively. Significant differences in TMT-A (P = .001), DST-forward (P = .027), DST-backward (P = .002), and ST-word (P = .025) scores were observed between the 2 groups. Performance speed on the TMT-A was faster in the CMDT + AMST group than in the CMDT group. Moreover, DST-forward and DST-backward scores were higher in the CMDT + AMST group than in the CDMT group. Although ST-color results were similar in the 2 groups, ST-word scores were higher in the CMDT + AMST group than in the CMDT group. This finding indicates that the combined therapy CMDT and AMST can be used to increase attention, memory, and executive

  15. Emerging Executive Functioning and Motor Development in Infants at High and Low Risk for Autism Spectrum Disorder

    Science.gov (United States)

    St. John, Tanya; Estes, Annette M.; Dager, Stephen R.; Kostopoulos, Penelope; Wolff, Jason J.; Pandey, Juhi; Elison, Jed T.; Paterson, Sarah J.; Schultz, Robert T.; Botteron, Kelly; Hazlett, Heather; Piven, Joseph

    2016-01-01

    Existing evidence suggests executive functioning (EF) deficits may be present in children with autism spectrum disorder (ASD) by 3 years of age. It is less clear when, prior to 3 years, EF deficits may emerge and how EF unfold over time. The contribution of motor skill difficulties to poorer EF in children with ASD has not been systematically studied. We investigated the developmental trajectory of EF in infants at high and low familial risk for ASD (HR and LR) and the potential associations between motor skills, diagnostic group, and EF performance. Participants included 186 HR and 76 LR infants. EF (A-not-B), motor skills (Fine and Gross Motor), and cognitive ability were directly assessed at 12 months and 24 months of age. Participants were directly evaluated for ASD at 24 months using DSM-IV-TR criteria and categorized as HR-ASD, HR-Negative, and LR-Negative. HR-ASD and HR-Negative siblings demonstrated less improvement in EF over time compared to the LR-Negative group. Motor skills were associated with group and EF performance at 12 months. No group differences were found at 12 months, but at 24 months, the HR-ASD and HR-Negative groups performed worse than the LR-Negative group overall after controlling for visual reception and maternal education. On reversal trials, the HR-ASD group performed worse than the LR-Negative group. Motor skills were associated with group and EF performance on reversal trials at 24 months. Findings suggest that HR siblings demonstrate altered EF development and that motor skills may play an important role in this process. PMID:27458411

  16. Implicit motor sequence learning and working memory performance changes across the adult life span

    Directory of Open Access Journals (Sweden)

    Sarah Nadine Meissner

    2016-04-01

    Full Text Available Although implicit motor sequence learning is rather well understood in young adults, effects of aging on this kind of learning are controversial. There is first evidence that working memory (WM might play a role in implicit motor sequence learning in young adults as well as in adults above the age of 65. However the knowledge about the development of these processes across the adult life span is rather limited. As the average age of our population continues to rise, a better understanding of age-related changes in motor sequence learning and potentially mediating cognitive processes takes on increasing significance. Therefore, we investigated aging effects on implicit motor sequence learning and WM. Sixty adults (18-71 years completed verbal and visuospatial n-back tasks and were trained on a serial reaction time task. Randomly varying trials served as control condition. To further assess consolidation indicated by off-line improvement and reduced susceptibility to interference, reaction times (RTs were determined 1 h after initial learning. Young and older but not middle-aged adults showed motor sequence learning. Nine out of 20 older adults (compared to one young/one middle-aged exhibited some evidence of sequence awareness. After 1 h, young and middle-aged adults showed off-line improvement. However, RT facilitation was not specific to sequence trials. Importantly, susceptibility to interference was reduced in young and older adults indicating the occurrence of consolidation. Although WM performance declined in older participants when load was high, it was not significantly related to sequence learning. The data reveal a decline in motor sequence learning in middle-aged but not in older adults. The use of explicit learning strategies in older adults might account for the latter result.

  17. Promoting motor skills in low-income, ethnic children: The Physical Activity in Linguistically Diverse Communities (PALDC) nonrandomized trial.

    Science.gov (United States)

    Okely, Anthony D; Hardy, Louise L; Batterham, Marijka; Pearson, Phillip; McKeen, Kim; Puglisi, Lauren

    2017-11-01

    This study reports the long-term effects of a professional learning program for classroom teachers on fundamental motor skill (FMS) proficiency of primary school students from ethnically diverse backgrounds. A cluster non-randomized trial using a nested cross-sectional design. The study was conducted in 8 primary schools located in disadvantaged and culturally diverse areas in Sydney, Australia. The intervention used an action learning framework, with each school developing and implementing an action plan for enhancing the teaching of FMS in their school. School teams comprised 4-5 teachers and were supported by a member of the research team. The primary outcome was total proficiency score for 7 FMS (run, jump, catch, throw, kick, leap, side gallop). Outcome data were analyzed using mixed effects models. Eight-hundred and sixty-two students (82% response rate) were assessed at baseline in 2006 and 830 (82%) at follow-up in 2010. Compared with students in the control schools, there was a significantly greater increase in total motor skill proficiency among children in the intervention schools at follow-up (adjusted difference=5.2 components, 95%CI [1.65, 8.75]; p=0.01) and in four of the seven motor skills. Training classroom teachers to develop and implement units of work based around individual FMS is a promising strategy for increasing FMS among ethnically diverse children over an extended period of time. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Motor cortical processing is causally involved in object recognition

    Science.gov (United States)

    2013-01-01

    Background Motor activity during vicarious experience of actions is a widely reported and studied phenomenon, and motor system activity also accompanies observation of graspable objects in the absence of any actions. Such motor activity is thought to reflect simulation of the observed action, or preparation to interact with the object, respectively. Results Here, in an initial exploratory study, we ask whether motor activity during observation of object directed actions is involved in processes related to recognition of the object after initial exposure. Single pulse Transcranial Magnetic Stimulation (TMS) was applied over the thumb representation of the motor cortex, or over the vertex, during observation of a model thumb typing on a cell-phone, and performance on a phone recognition task at the end of the trial was assessed. Disrupting motor processing over the thumb representation 100 ms after the onset of the typing video impaired the ability to recognize the phone in the recognition test, whereas there was no such effect for TMS applied over the vertex and no TMS trials. Furthermore, this effect only manifested for videos observed from the first person perspective. In an additional control condition, there was no evidence for any effects of TMS to the thumb representation or vertex when observing and recognizing non-action related shape stimuli. Conclusion Overall, these data provide evidence that motor cortical processing during observation of object-directed actions from a first person perspective is causally linked to the formation of enduring representations of objects-of-action. PMID:24330638

  19. Auditory-Motor Interactions in Pediatric Motor Speech Disorders: Neurocomputational Modeling of Disordered Development

    Science.gov (United States)

    Terband, H.; Maassen, B.; Guenther, F.H.; Brumberg, J.

    2014-01-01

    Background/Purpose Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. Method In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Results Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. Conclusions These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. PMID:24491630

  20. Cognitive and motor dual task gait training improve dual task gait performance after stroke - A randomized controlled pilot trial.

    Science.gov (United States)

    Liu, Yan-Ci; Yang, Yea-Ru; Tsai, Yun-An; Wang, Ray-Yau

    2017-06-22

    This study investigated effects of cognitive and motor dual task gait training on dual task gait performance in stroke. Participants (n = 28) were randomly assigned to cognitive dual task gait training (CDTT), motor dual task gait training (MDTT), or conventional physical therapy (CPT) group. Participants in CDTT or MDTT group practiced the cognitive or motor tasks respectively during walking. Participants in CPT group received strengthening, balance, and gait training. The intervention was 30 min/session, 3 sessions/week for 4 weeks. Three test conditions to evaluate the training effects were single walking, walking while performing cognitive task (serial subtraction), and walking while performing motor task (tray-carrying). Parameters included gait speed, dual task cost of gait speed (DTC-speed), cadence, stride time, and stride length. After CDTT, cognitive-motor dual task gait performance (stride length and DTC-speed) was improved (p = 0.021; p = 0.015). After MDTT, motor dual task gait performance (gait speed, stride length, and DTC-speed) was improved (p = 0.008; p = 0.008; p = 0.008 respectively). It seems that CDTT improved cognitive dual task gait performance and MDTT improved motor dual task gait performance although such improvements did not reach significant group difference. Therefore, different types of dual task gait training can be adopted to enhance different dual task gait performance in stroke.

  1. Guidelines for randomised controlled trials investigating Chinese herbal medicine.

    Science.gov (United States)

    Flower, Andrew; Witt, Claudia; Liu, Jian Ping; Ulrich-Merzenich, Gudrun; Yu, He; Lewith, George

    2012-04-10

    ETHNOGRAPHIC RELEVANCE: Clinical trials investigating Chinese herbal medicine (CHM) have been frequently criticised for their lack of scientific rigour. As part of the GP-TCM project a team of experienced clinical researchers and CHM practitioners have developed clinical trial guidelines for CHM that combine an appreciation for traditional methods of practice with detailed and practical advice on research methodology. This paper presents an executive summary of this work. It introduces the practice of CHM and the key considerations that need to be addressed whilst researching this traditional medical system. These guidelines emphasise the importance of identifying best practice, and then developing and applying appropriate and rigorous research methodologies to investigate CHM as a whole system. It is hoped that this will encourage a thoughtful and meticulous process of investigation that will clarify the contribution that CHM can make to our future healthcare. Innovative new approaches are considered including the application of the new "omic" technologies and systems biology as a way of enhancing our understanding of traditional practice. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Acute effects of whole-body vibration on the motor function of patients with stroke: a randomized clinical trial.

    Science.gov (United States)

    Silva, Adriana Teresa; Dias, Miqueline Pivoto Faria; Calixto, Ruanito; Carone, Antonio Luis; Martinez, Beatriz Bertolaccini; Silva, Andreia Maria; Honorato, Donizeti Cesar

    2014-04-01

    The aim of this study was to investigate the acute effects of whole-body vibration on the motor function of patients with stroke. The present investigation was a randomized clinical trial studying 43 individuals with hemiparesis after stroke, with 33 subjects allocated to the intervention group and 10 subjects allocated to the control group. The intervention group was subjected to one session of vibration therapy (frequency of 50 Hz and amplitude of 2 mm) comprising four 1-min series with 1-min rest intervals between series in three body positions: bipedal stances with the knees flexed to 30 degrees and 90 degrees and a unipedal stance on the paretic limb. The analytical tests were as follows: simultaneous electromyography of the affected and unaffected tibialis anterior and rectus femoris muscles bilaterally in voluntary isometric contraction; the Six-Minute Walk Test; the Stair-Climb Test; and the Timed Get-Up-and-Go Test. The data were analyzed by independent and paired t tests and by analysis of covariance. There was no evidence of effects on the group and time interaction relative to variables affected side rectus femoris, unaffected side rectus femoris, affected side tibialis anterior, unaffected side tibialis anterior, and the Stair-Climb Test (P > 0.05). There was evidence of effects on the group interaction relative to variables Six-Minute Walk Test and Timed Get-Up-and-Go Test (P < 0.05). Whole-body vibration contributed little to improve the functional levels of stroke patients.

  3. Commentary: considerations for using the 'Trials within Cohorts' design in a clinical trial of an investigational medicinal product.

    Science.gov (United States)

    Bibby, Anna C; Torgerson, David J; Leach, Samantha; Lewis-White, Helen; Maskell, Nick A

    2018-01-08

    The 'trials within cohorts' (TwiC) design is a pragmatic approach to randomised trials in which trial participants are randomly selected from an existing cohort. The design has multiple potential benefits, including the option of conducting multiple trials within the same cohort. To date, the TwiC design methodology been used in numerous clinical settings but has never been applied to a clinical trial of an investigational medicinal product (CTIMP). We have recently secured the necessary approvals to undertake the first CTIMP using the TwiC design. In this paper, we describe some of the considerations and modifications required to ensure such a trial is compliant with Good Clinical Practice and international clinical trials regulations. We advocate using a two-stage consent process and using the consent stages to explicitly differentiate between trial participants and cohort participants who are providing control data. This distinction ensured compliance but had consequences with respect to costings, recruitment and the trial assessment schedule. We have demonstrated that it is possible to secure ethical and regulatory approval for a CTIMP TwiC. By including certain considerations at the trial design stage, we believe this pragmatic and efficient methodology could be utilised in other CTIMPs in future.

  4. Investigation of a Five-Phase Dual-Rotor Permanent Magnet Synchronous Motor Used for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yumeng Li

    2014-06-01

    Full Text Available This paper presents a novel five-phase permanent magnet synchronous motor (PMSM, which contains dual rotors and a single stator, equivalent to two five-phase motors working together. Thus, this kind of motor has the potential of good fault tolerant capability and high torque density, which makes it appropriate for use in electric vehicles. In view of the different connection types, the inside and outside stator windings can be driven in series or parallel, which results in the different performances of the magnetomotive force (MMF and torque under open-circuit fault conditions. By decomposing the MMF, the reason that torque ripple increases after open-circuit faults is explained, and the relationship between MMF and torque is revealed. Then, the current control strategy is applied to adjust the open-circuit faults, and the electromagnetic analysis and MMF harmonics analysis are performed to interpret the phenomenon that the torque ripple is still larger than in the normal situation. The investigations are verified by finite element analysis results.

  5. A cognitive-motor intervention using a dance video game to enhance foot placement accuracy and gait under dual task conditions in older adults: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Pichierri Giuseppe

    2012-12-01

    Full Text Available Abstract Background Computer-based interventions have demonstrated consistent positive effects on various physical abilities in older adults. This study aims to compare two training groups that achieve similar amounts of strength and balance exercise where one group receives an intervention that includes additional dance video gaming. The aim is to investigate the different effects of the training programs on physical and psychological parameters in older adults. Methods Thirty-one participants (mean age ± SD: 86.2 ± 4.6 years, residents of two Swiss hostels for the aged, were randomly assigned to either the dance group (n = 15 or the control group (n = 16. The dance group absolved a twelve-week cognitive-motor exercise program twice weekly that comprised progressive strength and balance training supplemented with additional dance video gaming. The control group performed only the strength and balance exercises during this period. Outcome measures were foot placement accuracy, gait performance under single and dual task conditions, and falls efficacy. Results After the intervention between-group comparison revealed significant differences for gait velocity (U = 26, P = .041, r = .45 and for single support time (U = 24, P = .029, r = .48 during the fast walking dual task condition in favor of the dance group. No significant between-group differences were observed either in the foot placement accuracy test or in falls efficacy. Conclusions There was a significant interaction in favor of the dance video game group for improvements in step time. Significant improved fast walking performance under dual task conditions (velocity, double support time, step length was observed for the dance video game group only. These findings suggest that in older adults a cognitive-motor intervention may result in more improved gait under dual task conditions in comparison to a traditional strength and balance exercise program

  6. Concurrent word generation and motor performance: further evidence for language-motor interaction.

    Directory of Open Access Journals (Sweden)

    Amy D Rodriguez

    Full Text Available Embodied/modality-specific theories of semantic memory propose that sensorimotor representations play an important role in perception and action. A large body of evidence supports the notion that concepts involving human motor action (i.e., semantic-motor representations are processed in both language and motor regions of the brain. However, most studies have focused on perceptual tasks, leaving unanswered questions about language-motor interaction during production tasks. Thus, we investigated the effects of shared semantic-motor representations on concurrent language and motor production tasks in healthy young adults, manipulating the semantic task (motor-related vs. nonmotor-related words and the motor task (i.e., standing still and finger-tapping. In Experiment 1 (n = 20, we demonstrated that motor-related word generation was sufficient to affect postural control. In Experiment 2 (n = 40, we demonstrated that motor-related word generation was sufficient to facilitate word generation and finger tapping. We conclude that engaging semantic-motor representations can have a reciprocal influence on motor and language production. Our study provides additional support for functional language-motor interaction, as well as embodied/modality-specific theories.

  7. Motor Skill Learning and Corticospinal Excitability

    DEFF Research Database (Denmark)

    Christiansen, Lasse

    Background Motor skill learning (MSL) is the persistent increase in performance of a skill obtained through practice. This process is associated with changes throughout the central nervous system. One of these is a change in corticospinal excitability (CSE) assessable with Transcranial Magnetic...... a novel visuomotor skill. I hypothesized that changes in CSE accompanying long-term motor practice relate to the process of learning rather than repetitive practice on an acquired skill and investigated this by incrementally increasing task difficulty and thus postponing saturation of learning....... Furthermore, we aimed to investigate the feasibility of applying paired associative stimulation to the investigation of learning-dependent motor cortical plasticity by comparing the transient increase in CSE accompanying motor skill learning to the associative plasticity induced by pairing electrical motor...

  8. Does the Animal Fun program improve motor performance in children aged 4-6 years?

    Science.gov (United States)

    Piek, J P; McLaren, S; Kane, R; Jensen, L; Dender, A; Roberts, C; Rooney, R; Packer, T; Straker, L

    2013-10-01

    The Animal Fun program was designed to enhance the motor ability of young children by imitating the movements of animals in a fun, inclusive setting. The efficacy of this program was investigated through a randomized controlled trial using a multivariate nested cohort design. Pre-intervention scores were recorded for 511 children aged 4.83 years to 6.17 years (M=5.42 years, SD=3.58 months). Six control and six intervention schools were compared 6 months later following the intervention, and then again at 18 months after the initial testing when the children were in their first school year. Changes in motor performance were examined using the Bruininks-Oseretsky Test of Motor Proficiency short form. Data were analyzed using multi-level-mixed effects linear regression. A significant Condition×Time interaction was found, F(2,1219)=3.35, p=.035, demonstrating that only the intervention group showed an improvement in motor ability. A significant Sex×Time interaction was also found, F(2,1219)=3.84, p=.022, with boys improving over time, but not girls. These findings have important implications for the efficacy of early intervention of motor skills and understanding the differences in motor performance between boys and girls. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Motor Cortical Networks for Skilled Movements Have Dynamic Properties That Are Related to Accurate Reaching

    Directory of Open Access Journals (Sweden)

    David F. Putrino

    2011-01-01

    Full Text Available Neurons in the Primary Motor Cortex (MI are known to form functional ensembles with one another in order to produce voluntary movement. Neural network changes during skill learning are thought to be involved in improved fluency and accuracy of motor tasks. Unforced errors during skilled tasks provide an avenue to study network connections related to motor learning. In order to investigate network activity in MI, microwires were implanted in the MI of cats trained to perform a reaching task. Spike trains from eight groups of simultaneously recorded cells (95 neurons in total were acquired. A point process generalized linear model (GLM was developed to assess simultaneously recorded cells for functional connectivity during reaching attempts where unforced errors or no errors were made. Whilst the same groups of neurons were often functionally connected regardless of trial success, functional connectivity between neurons was significantly different at fine time scales when the outcome of task performance changed. Furthermore, connections were shown to be significantly more robust across multiple latencies during successful trials of task performance. The results of this study indicate that reach-related neurons in MI form dynamic spiking dependencies whose temporal features are highly sensitive to unforced movement errors.

  10. Steady State Dynamic Operating Behavior of Universal Motor

    Directory of Open Access Journals (Sweden)

    Muhammad Khan Burdi

    2015-01-01

    Full Text Available A detailed investigation of the universal motor is developed and used for various dynamic steady state and transient operating conditions of loads. In the investigation, output torque, motor speed, input current, input/output power and efficiency are computed, compared and analyzed for different loads. While this paper discusses the steady-state behavior of the universal motor, another companion paper, ?Transient dynamic behavior of universal motor?, will discuss its transient behavior in detail. A non-linear generalized electric machine model of the motor is considered for the analysis. This study was essential to investigate effect of output load on input current, power, speed and efficiency of the motor during operations. Previously such investigation is not known

  11. Contact analysis and experimental investigation of a linear ultrasonic motor.

    Science.gov (United States)

    Lv, Qibao; Yao, Zhiyuan; Li, Xiang

    2017-11-01

    The effects of surface roughness are not considered in the traditional motor model which fails to reflect the actual contact mechanism between the stator and slider. An analytical model for calculating the tangential force of linear ultrasonic motor is proposed in this article. The presented model differs from the previous spring contact model, the asperities in contact between stator and slider are considered. The influences of preload and exciting voltage on tangential force in moving direction are analyzed. An experiment is performed to verify the feasibility of this proposed model by comparing the simulation results with the measured data. Moreover, the proposed model and spring model are compared. The results reveal that the proposed model is more accurate than spring model. The discussion is helpful for designing and modeling of linear ultrasonic motors. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Differential activation of brain regions involved with error-feedback and imitation based motor simulation when observing self and an expert's actions in pilots and non-pilots on a complex glider landing task.

    Science.gov (United States)

    Callan, Daniel E; Terzibas, Cengiz; Cassel, Daniel B; Callan, Akiko; Kawato, Mitsuo; Sato, Masa-Aki

    2013-05-15

    In this fMRI study we investigate neural processes related to the action observation network using a complex perceptual-motor task in pilots and non-pilots. The task involved landing a glider (using aileron, elevator, rudder, and dive brake) as close to a target as possible, passively observing a replay of one's own previous trial, passively observing a replay of an expert's trial, and a baseline do nothing condition. The objective of this study is to investigate two types of motor simulation processes used during observation of action: imitation based motor simulation and error-feedback based motor simulation. It has been proposed that the computational neurocircuitry of the cortex is well suited for unsupervised imitation based learning, whereas, the cerebellum is well suited for error-feedback based learning. Consistent with predictions, pilots (to a greater extent than non-pilots) showed significant differential activity when observing an expert landing the glider in brain regions involved with imitation based motor simulation (including premotor cortex PMC, inferior frontal gyrus IFG, anterior insula, parietal cortex, superior temporal gyrus, and middle temporal MT area) than when observing one's own previous trial which showed significant differential activity in the cerebellum (only for pilots) thought to be concerned with error-feedback based motor simulation. While there was some differential brain activity for pilots in regions involved with both Execution and Observation of the flying task (potential Mirror System sites including IFG, PMC, superior parietal lobule) the majority was adjacent to these areas (Observation Only Sites) (predominantly in PMC, IFG, and inferior parietal loblule). These regions showing greater activity for observation than for action may be involved with processes related to motor-based representational transforms that are not necessary when actually carrying out the task. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Online Adaptation and Over-Trial Learning in Macaque Visuomotor Control

    Science.gov (United States)

    Braun, Daniel A.; Aertsen, Ad; Paz, Rony; Vaadia, Eilon; Rotter, Stefan; Mehring, Carsten

    2011-01-01

    When faced with unpredictable environments, the human motor system has been shown to develop optimized adaptation strategies that allow for online adaptation during the control process. Such online adaptation is to be contrasted to slower over-trial learning that corresponds to a trial-by-trial update of the movement plan. Here we investigate the interplay of both processes, i.e., online adaptation and over-trial learning, in a visuomotor experiment performed by macaques. We show that simple non-adaptive control schemes fail to perform in this task, but that a previously suggested adaptive optimal feedback control model can explain the observed behavior. We also show that over-trial learning as seen in learning and aftereffect curves can be explained by learning in a radial basis function network. Our results suggest that both the process of over-trial learning and the process of online adaptation are crucial to understand visuomotor learning. PMID:21720526

  14. iPad technology for home rehabilitation after stroke (iHOME): a proof-of-concept randomized trial.

    Science.gov (United States)

    Saposnik, Gustavo; Chow, Chi-Ming; Gladstone, David; Cheung, Donna; Brawer, Edward; Thorpe, Kevin E; Saldanha, Avon; Dang, Alice; Bayley, Mark; Schweizer, Tom A

    2014-10-01

    Tablets are a novel line of computers controlled by a multitouch screen. Fine motor movements are captured on the tablet computer through electrical fields and can be qualitatively and quantitatively assessed. Evidence is limited on tablet use for stroke rehabilitation. iHOME is an investigator-initiated randomized controlled pilot trial with a single-blinded outcome assessment. The intervention consists of iPad use (investigational group) vs. usual care (control group) among patients receiving conventional outpatient rehabilitation. Eligibility includes aged 18-85 years who experienced a mild ischemic or hemorrhagic stroke (as diagnosed on neuroimaging and determined by the Chedoke-McMaster score ≥3. The STROKE REHAB® software for the iPad was specifically designed for patients with fine motor weakness and/or neglect. Of the total 30 patients, 20 will be in iHOME Acute (enrolled within three-months of stroke onset) and 10 patients in iHOME Chronic (enrolled more than six-months from onset). The primary feasibility outcome is the proportion of the scheduled iPad time used (more than 70% (≥140 mins) of the total 'dose' of intervention intended will be considered successful). Efficacy in fine motor movements will be assessed using the nine-hole peg test; time to magnify and pop the balloons in the iPad software application, and improvement in Wolf Motor Function Test. iHOME is a randomized controlled trial assessing the feasibility, safety, and efficacy of tablet technology for home use in stroke rehabilitation. The results of this study will serve as the basis for a larger multicenter trial. © 2014 World Stroke Organization.

  15. The change in perceived motor competence and motor task values during elementary school : A longitudinal cohort study

    NARCIS (Netherlands)

    Noordstar, Johannes J; van der Net, Janjaap; Jak, Suzanne; Helders, Paul J M; Jongmans, Marian J

    Participation in motor activities is essential for social interaction and life satisfaction in children. Self-perceptions and task values have a central position in why children do or do not participate in (motor) activities. Investigating developmental changes in motor self-perceptions and motor

  16. Interacting adiabatic quantum motor

    Science.gov (United States)

    Bruch, Anton; Kusminskiy, Silvia Viola; Refael, Gil; von Oppen, Felix

    2018-05-01

    We present a field-theoretic treatment of an adiabatic quantum motor. We explicitly discuss a motor called the Thouless motor which is based on a Thouless pump operating in reverse. When a sliding periodic potential is considered to be the motor degree of freedom, a bias voltage applied to the electron channel sets the motor in motion. We investigate a Thouless motor whose electron channel is modeled as a Luttinger liquid. Interactions increase the gap opened by the periodic potential. For an infinite Luttinger liquid the coupling-induced friction is enhanced by electron-electron interactions. When the Luttinger liquid is ultimately coupled to Fermi liquid reservoirs, the dissipation reduces to its value for a noninteracting electron system for a constant motor velocity. Our results can also be applied to a motor based on a nanomagnet coupled to a quantum spin Hall edge.

  17. Changes of motor-cortical oscillations associated with motor learning.

    Science.gov (United States)

    Pollok, B; Latz, D; Krause, V; Butz, M; Schnitzler, A

    2014-09-05

    Motor learning results from practice but also between practice sessions. After skill acquisition early consolidation results in less interference with other motor tasks and even improved performance of the newly learned skill. A specific significance of the primary motor cortex (M1) for early consolidation has been suggested. Since synchronized oscillatory activity is assumed to facilitate neuronal plasticity, we here investigate alterations of motor-cortical oscillations by means of event-related desynchronization (ERD) at alpha (8-12 Hz) and beta (13-30 Hz) frequencies in healthy humans. Neuromagnetic activity was recorded using a 306-channel whole-head magnetoencephalography (MEG) system. ERD was investigated in 15 subjects during training on a serial reaction time task and 10 min after initial training. The data were compared with performance during a randomly varying sequence serving as control condition. The data reveal a stepwise decline of alpha-band ERD associated with faster reaction times replicating previous findings. The amount of beta-band suppression was significantly correlated with reduction of reaction times. While changes of alpha power have been related to lower cognitive control after initial skill acquisition, the present data suggest that the amount of beta suppression represents a neurophysiological marker of early cortical reorganization associated with motor learning. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Reconciling the influence of task-set switching and motor inhibition processes on stop signal after-effects.

    Science.gov (United States)

    Anguera, Joaquin A; Lyman, Kyle; Zanto, Theodore P; Bollinger, Jacob; Gazzaley, Adam

    2013-01-01

    Executive response functions can be affected by preceding events, even if they are no longer associated with the current task at hand. For example, studies utilizing the stop signal task have reported slower response times to "GO" stimuli when the preceding trial involved the presentation of a "STOP" signal. However, the neural mechanisms that underlie this behavioral after-effect are unclear. To address this, behavioral and electroencephalography (EEG) measures were examined in 18 young adults (18-30 years) on "GO" trials following a previously "Successful Inhibition" trial (pSI), a previously "Failed Inhibition" trial (pFI), and a previous "GO" trial (pGO). Like previous research, slower response times were observed during both pSI and pFI trials (i.e., "GO" trials that were preceded by a successful and unsuccessful inhibition trial, respectively) compared to pGO trials (i.e., "GO" trials that were preceded by another "GO" trial). Interestingly, response time slowing was greater during pSI trials compared to pFI trials, suggesting executive control is influenced by both task set switching and persisting motor inhibition processes. Follow-up behavioral analyses indicated that these effects resulted from between-trial control adjustments rather than repetition priming effects. Analyses of inter-electrode coherence (IEC) and inter-trial coherence (ITC) indicated that both pSI and pFI trials showed greater phase synchrony during the inter-trial interval compared to pGO trials. Unlike the IEC findings, differential ITC was present within the beta and alpha frequency bands in line with the observed behavior (pSI > pFI > pGO), suggestive of more consistent phase synchrony involving motor inhibition processes during the ITI at a regional level. These findings suggest that between-trial control adjustments involved with task-set switching and motor inhibition processes influence subsequent performance, providing new insights into the dynamic nature of executive control.

  19. Auditory-motor interactions in pediatric motor speech disorders: neurocomputational modeling of disordered development.

    Science.gov (United States)

    Terband, H; Maassen, B; Guenther, F H; Brumberg, J

    2014-01-01

    Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. The reader will be able to: (1) identify the difficulties in studying disordered speech motor development; (2) describe the differences in speech motor characteristics between SSD and subtype CAS; (3) describe the different types of learning that occur in the sensory-motor system during babbling and early speech acquisition; (4) identify the neural control subsystems involved in speech production; (5) describe the potential role of auditory self-monitoring in developmental speech disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Dissociable effects of practice variability on learning motor and timing skills.

    Science.gov (United States)

    Caramiaux, Baptiste; Bevilacqua, Frédéric; Wanderley, Marcelo M; Palmer, Caroline

    2018-01-01

    Motor skill acquisition inherently depends on the way one practices the motor task. The amount of motor task variability during practice has been shown to foster transfer of the learned skill to other similar motor tasks. In addition, variability in a learning schedule, in which a task and its variations are interweaved during practice, has been shown to help the transfer of learning in motor skill acquisition. However, there is little evidence on how motor task variations and variability schedules during practice act on the acquisition of complex motor skills such as music performance, in which a performer learns both the right movements (motor skill) and the right time to perform them (timing skill). This study investigated the impact of rate (tempo) variability and the schedule of tempo change during practice on timing and motor skill acquisition. Complete novices, with no musical training, practiced a simple musical sequence on a piano keyboard at different rates. Each novice was assigned to one of four learning conditions designed to manipulate the amount of tempo variability across trials (large or small tempo set) and the schedule of tempo change (randomized or non-randomized order) during practice. At test, the novices performed the same musical sequence at a familiar tempo and at novel tempi (testing tempo transfer), as well as two novel (but related) sequences at a familiar tempo (testing spatial transfer). We found that practice conditions had little effect on learning and transfer performance of timing skill. Interestingly, practice conditions influenced motor skill learning (reduction of movement variability): lower temporal variability during practice facilitated transfer to new tempi and new sequences; non-randomized learning schedule improved transfer to new tempi and new sequences. Tempo (rate) and the sequence difficulty (spatial manipulation) affected performance variability in both timing and movement. These findings suggest that there is a

  1. Association Between Gross-Motor and Executive Function Depends on Age and Motor Task Complexity

    DEFF Research Database (Denmark)

    Spedden, Meaghan E; Malling, Anne Sofie B; Andersen, Ken K

    2017-01-01

    The objective was to examine associations between motor and executive function across the adult lifespan and to investigate the role of motor complexity in these associations. Young, middle-aged and older adults (n = 82; 19-83y) performed two gross-motor tasks with different levels of complexity...... and a Stroop-like computer task. Performance was decreased in older adults. The association between motor and cognitive performance was significant for older adults in the complex motor task (p = 0.03, rs = -0.41), whereas no significant associations were found for young or middle-aged groups, suggesting...... that the link between gross-motor and executive function emerges with age and depends on motor complexity....

  2. SLIPPER PERFORMANCE INVESTIGATION IN AXIAL PISTON PUMPS AND MOTORS-FLOW AND VISCOUS POWER LOSSES

    Directory of Open Access Journals (Sweden)

    A. Osman KURBAN

    1997-01-01

    Full Text Available In this study, the slippers being the most effective on the performance of swash plate type axial piston pumps and motors, which is a good example of hydrodynamic-hydrostatic bearing applications, have been investigated. With respect to this, having derived the viscous moment loss, viscous flow leakage loss and power loss equations, the variations of these parameters under different operating conditions have been examined experimentally.

  3. A crossover randomised and controlled trial of the impact of active video games on motor coordination and perceptions of physical ability in children at risk of Developmental Coordination Disorder.

    Science.gov (United States)

    Straker, L; Howie, E; Smith, A; Jensen, L; Piek, J; Campbell, A

    2015-08-01

    Impaired motor development can significantly affect a child's life and may result in an increased risk of a range of physical and psychological disorders. Active video game (AVG) interventions have been demonstrated to enhance motor skills in children with Developmental Coordination Disorder (DCD); however a home-based intervention has not been assessed. The primary aim of this study was to compare the changes in motor coordination between a 16 week period of AVG use, with 16 weeks of normal activities (NAG). The secondary aim was to compare the child and parent perceptions of their physical performance between the AVG and NAG conditions. Twenty-one 9-12 year olds (10 males) were confirmed to be at risk of DCD (⩽ 16th percentile Movement Assessment Battery for Children-2nd edition (MABC-2) and ⩽ 15th percentile Developmental Coordination Disorder Questionnaire (DCDQ)) and participated in this crossover randomised and controlled trial. Data was collected at study entry, after the first 16 week condition and following the final 16 week condition, including; (1) the MABC-2, (2) three-dimensional motion analysis of single leg balance and finger-nose tasks, and (3) parent perception of physical skills. Participant perception of physical skills was collected only after the first and second conditions. There was no significant difference between AVG and NAG for any of the primary variables including the MABC-2, balance centre-of-mass path distance and finger-nose path distance. There was no significant intervention effect for secondary measures of motor coordination; however the children perceived their motor skills to be significantly enhanced as a result of the AVG intervention in comparison to the period of no intervention. A 16 week home based AVG intervention did not enhance motor skills in children with DCD, although they perceived their physical skills to be significantly improved. Australia and New Zealand Clinical trials Registry (ACTRN 12611000400965

  4. Assessment of Motor Units in Neuromuscular Disease.

    Science.gov (United States)

    Henderson, Robert D; McCombe, Pamela A

    2017-01-01

    The motor unit comprises the anterior horn cell, its axon, and the muscle fibers that it innervates. Although the true number of motor units is unknown, the number of motor units appears to vary greatly between different muscles and between different individuals. Assessment of the number and function of motor units is needed in diseases of the anterior horn cell and other motor nerve disorders. Amyotrophic lateral sclerosis is the most important disease of anterior horn cells. The need for an effective biomarker for assessing disease progression and for use in clinical trials in amyotrophic lateral sclerosis has stimulated the study of methods to measure the number of motor units. Since 1970 a number of different methods, including the incremental, F-wave, multipoint, and statistical methods, have been developed but none has achieved widespread applicability. Two methods (MUNIX and the multipoint incremental method) are in current use across multiple centres and are discussed in detail in this review, together with other recently published methods. Imaging with magnetic resonance and ultrasound is increasingly being applied to this area. Motor unit number estimates have also been applied to other neuromuscular diseases such as spinal muscular atrophy, compression neuropathies, and prior poliomyelitis. The need for an objective measure for the assessment of motor units remains tantalizingly close but unfulfilled in 2016.

  5. Investigation of New Morpholino Oligomers to Increase Survival Motor Neuron Protein Levels in Spinal Muscular Atrophy.

    Science.gov (United States)

    Ramirez, Agnese; Crisafulli, Sebastiano G; Rizzuti, Mafalda; Bresolin, Nereo; Comi, Giacomo P; Corti, Stefania; Nizzardo, Monica

    2018-01-06

    Spinal muscular atrophy (SMA) is an autosomal-recessive childhood motor neuron disease and the main genetic cause of infant mortality. SMA is caused by deletions or mutations in the survival motor neuron 1 ( SMN1 ) gene, which results in SMN protein deficiency. Only one approved drug has recently become available and allows for the correction of aberrant splicing of the paralogous SMN2 gene by antisense oligonucleotides (ASOs), leading to production of full-length SMN protein. We have already demonstrated that a sequence of an ASO variant, Morpholino (MO), is particularly suitable because of its safety and efficacy profile and is both able to increase SMN levels and rescue the murine SMA phenotype. Here, we optimized this strategy by testing the efficacy of four new MO sequences targeting SMN2 . Two out of the four new MO sequences showed better efficacy in terms of SMN protein production both in SMA induced pluripotent stem cells (iPSCs) and SMAΔ7 mice. Further, the effect was enhanced when different MO sequences were administered in combination. Our data provide an important insight for MO-based treatment for SMA. Optimization of the target sequence and validation of a treatment based on a combination of different MO sequences could support further pre-clinical studies and the progression toward future clinical trials.

  6. Maternal Fish Oil Supplementation in Pregnancy: A 12 Year Follow-Up of a Randomised Controlled Trial

    Directory of Open Access Journals (Sweden)

    Suzanne Meldrum

    2015-03-01

    Full Text Available A number of trials have been undertaken to assess whether the intake of omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA during pregnancy can influence the neurological development of the offspring, yet no consensus from these trials has been reached. We aimed to investigate the long-term effects (12 years of fish oil supplementation in pregnancy on neurodevelopment, including cognition, language and fine motor skills. In a follow up of a previously published randomised controlled trial of 98 pregnant women, their children were assessed at 12 years of age using a battery of neurodevelopmental assessments. Fifty participants were assessed at 12 years, with 25 participant’s mothers receiving fish oil supplementation, and 25 receiving control capsules. There were no significant differences for any of the assessment measures completed. Our data indicate that fish oil supplementation during pregnancy does not influence the cognition, language or fine motor skills of children in late primary school (12 years of age.

  7. Maternal fish oil supplementation in pregnancy: a 12 year follow-up of a randomised controlled trial.

    Science.gov (United States)

    Meldrum, Suzanne; Dunstan, Janet A; Foster, Jonathan K; Simmer, Karen; Prescott, Susan L

    2015-03-20

    A number of trials have been undertaken to assess whether the intake of omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) during pregnancy can influence the neurological development of the offspring, yet no consensus from these trials has been reached. We aimed to investigate the long-term effects (12 years) of fish oil supplementation in pregnancy on neurodevelopment, including cognition, language and fine motor skills. In a follow up of a previously published randomised controlled trial of 98 pregnant women, their children were assessed at 12 years of age using a battery of neurodevelopmental assessments. Fifty participants were assessed at 12 years, with 25 participant's mothers receiving fish oil supplementation, and 25 receiving control capsules. There were no significant differences for any of the assessment measures completed. Our data indicate that fish oil supplementation during pregnancy does not influence the cognition, language or fine motor skills of children in late primary school (12 years of age).

  8. Reduced NAA in motor and non-motor brain regions in amyotrophic lateral sclerosis: a cross-sectional and longitudinal study.

    Science.gov (United States)

    Rule, R R; Suhy, J; Schuff, N; Gelinas, D F; Miller, R G; Weiner, M W

    2004-09-01

    After replication of previous findings we aimed to: 1) determine if previously reported (1)H MRSI differences between ALS patients and control subjects are limited to the motor cortex; and 2) determine the longitudinal metabolic changes corresponding to varying levels of diagnostic certainty. Twenty-one patients with possible/suspected ALS, 24 patients with probable/definite ALS and 17 control subjects underwent multislice (1)H MRSI co-registered with tissue-segmented MRI to obtain concentrations of the brain metabolites N-acetylaspartate (NAA), creatine, and choline in the left and right motor cortex and in gray matter and white matter of non-motor regions in the brain. In the more affected hemisphere, reductions in the ratios, NAA/Cho and NAA/Cre+Cho were observed both within (12.6% and 9.5% respectively) and outside (9.2% and 7.3% respectively) the motor cortex in probable/definite ALS. However, these reductions were significantly greater within the motor cortex (PNAA/Cho and PNAA/Cre+Cho). Longitudinal changes in NAA were observed at three months within the motor cortex of both possible/suspected ALS patients (PNAA ratios are reduced in the motor cortex and outside the motor cortex in ALS, suggesting widespread neuronal injury. Longitudinal changes of NAA are not reliable, suggesting that NAA may not be a useful surrogate marker for treatment trials.

  9. Task-Based Mirror Therapy Augmenting Motor Recovery in Poststroke Hemiparesis: A Randomized Controlled Trial.

    Science.gov (United States)

    Arya, Kamal Narayan; Pandian, Shanta; Kumar, Dharmendra; Puri, Vinod

    2015-08-01

    To establish the effect of the task-based mirror therapy (TBMT) on the upper limb recovery in stroke. A pilot, randomized, controlled, assessor-blinded trial was conducted in a rehabilitation institute. A convenience sample of 33 poststroke (mean duration, 12.5 months) hemiparetic subjects was randomized into 2 groups (experimental, 17; control, 16). The subjects were allocated to receive either TBMT or standard motor rehabilitation-40 sessions (5/week) for a period of 8 weeks. The TBMT group received movements using various goal-directed tasks and a mirror box. The movements were performed by the less-affected side superimposed on the affected side. The main outcome measures were Brunnstrom recovery stage (BRS) and Fugl-Meyer assessment (FMA)-FMA of upper extremity (FMA-UE), including upper arm (FMA-UA) and wrist-hand (FMA-WH). The TBMT group exhibited highly significant improvement on mean scores of FMA-WH (P hemiparesis. MT using tasks may be used as an adjunct in stroke rehabilitation. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  10. Context-dependent memory decay is evidence of effort minimization in motor learning: a computational study

    OpenAIRE

    Takiyama, Ken

    2015-01-01

    Recent theoretical models suggest that motor learning includes at least two processes: error minimization and memory decay. While learning a novel movement, a motor memory of the movement is gradually formed to minimize the movement error between the desired and actual movements in each training trial, but the memory is slightly forgotten in each trial. The learning effects of error minimization trained with a certain movement are partially available in other non-trained movements, and this t...

  11. A cognitive-motor intervention using a dance video game to enhance foot placement accuracy and gait under dual task conditions in older adults: a randomized controlled trial.

    Science.gov (United States)

    Pichierri, Giuseppe; Murer, Kurt; de Bruin, Eling D

    2012-12-14

    Computer-based interventions have demonstrated consistent positive effects on various physical abilities in older adults. This study aims to compare two training groups that achieve similar amounts of strength and balance exercise where one group receives an intervention that includes additional dance video gaming. The aim is to investigate the different effects of the training programs on physical and psychological parameters in older adults. Thirty-one participants (mean age ± SD: 86.2 ± 4.6 years), residents of two Swiss hostels for the aged, were randomly assigned to either the dance group (n = 15) or the control group (n = 16). The dance group absolved a twelve-week cognitive-motor exercise program twice weekly that comprised progressive strength and balance training supplemented with additional dance video gaming. The control group performed only the strength and balance exercises during this period. Outcome measures were foot placement accuracy, gait performance under single and dual task conditions, and falls efficacy. After the intervention between-group comparison revealed significant differences for gait velocity (U = 26, P = .041, r = .45) and for single support time (U = 24, P = .029, r = .48) during the fast walking dual task condition in favor of the dance group. No significant between-group differences were observed either in the foot placement accuracy test or in falls efficacy. There was a significant interaction in favor of the dance video game group for improvements in step time. Significant improved fast walking performance under dual task conditions (velocity, double support time, step length) was observed for the dance video game group only. These findings suggest that in older adults a cognitive-motor intervention may result in more improved gait under dual task conditions in comparison to a traditional strength and balance exercise program. This trial has been registered under ISRCTN05350123 (www.controlled-trials.com)

  12. Clinical Trial Electronic Portals for Expedited Safety Reporting: Recommendations from the Clinical Trials Transformation Initiative Investigational New Drug Safety Advancement Project.

    Science.gov (United States)

    Perez, Raymond P; Finnigan, Shanda; Patel, Krupa; Whitney, Shanell; Forrest, Annemarie

    2016-12-15

    Use of electronic clinical trial portals has increased in recent years to assist with sponsor-investigator communication, safety reporting, and clinical trial management. Electronic portals can help reduce time and costs associated with processing paperwork and add security measures; however, there is a lack of information on clinical trial investigative staff's perceived challenges and benefits of using portals. The Clinical Trials Transformation Initiative (CTTI) sought to (1) identify challenges to investigator receipt and management of investigational new drug (IND) safety reports at oncologic investigative sites and coordinating centers and (2) facilitate adoption of best practices for communicating and managing IND safety reports using electronic portals. CTTI, a public-private partnership to improve the conduct of clinical trials, distributed surveys and conducted interviews in an opinion-gathering effort to record investigator and research staff views on electronic portals in the context of the new safety reporting requirements described in the US Food and Drug Administration's final rule (Code of Federal Regulations Title 21 Section 312). The project focused on receipt, management, and review of safety reports as opposed to the reporting of adverse events. The top challenge investigators and staff identified in using individual sponsor portals was remembering several complex individual passwords to access each site. Also, certain tasks are time-consuming (eg, downloading reports) due to slow sites or difficulties associated with particular operating systems or software. To improve user experiences, respondents suggested that portals function independently of browsers and operating systems, have intuitive interfaces with easy navigation, and incorporate additional features that would allow users to filter, search, and batch safety reports. Results indicate that an ideal system for sharing expedited IND safety information is through a central portal used by

  13. Effects of Physical Activity on Motor Skills and Cognitive Development in Early Childhood: A Systematic Review.

    Science.gov (United States)

    Zeng, Nan; Ayyub, Mohammad; Sun, Haichun; Wen, Xu; Xiang, Ping; Gao, Zan

    2017-01-01

    This study synthesized literature concerning casual evidence of effects of various physical activity programs on motor skills and cognitive development in typically developed preschool children. Electronic databases were searched through July 2017. Peer-reviewed randomized controlled trials (RCTs) examining the effectiveness of physical activity on motor skills and cognitive development in healthy young children (4-6 years) were screened. A total of 15 RCTs were included. Of the 10 studies assessing the effects of physical activity on motor skills, eight (80%) reported significant improvements in motor performance and one observed mixed findings, but one failed to promote any beneficial outcomes. Of the five studies investigating the influence of physical activity on cognitive development, four (80%) showed significant and positive changes in language learning, academic achievement, attention, and working memory. Notably, one indicated no significant improvements were observed after the intervention. Findings support causal evidence of effects of physical activity on both motor skills and cognitive development in preschool children. Given the shortage of available studies, future research with large representative samples is warranted to explore the relationships between physical activity and cognitive domains as well as strengthen and confirm the dose-response evidence in early childhood.

  14. SUPERVISED PHYSICAL TRAINING IMPROVES FINE MOTOR SKILLS OF 5-YEAR-OLD CHILDREN

    Directory of Open Access Journals (Sweden)

    Yugang Qi

    Full Text Available ABSTRACT Introduction: Fine motor skills are important for children not only in the activities of daily living, but also for learning activities. In the present study, the effects of supervised physical training were investigated in normal children. Objective: To evaluate the effects of supervised training by combining full-body exercise and the eye-hand coordination activities to improve fine motor skills in a group of five-year-old normal children. Methods: Fifty-two children were selected and randomized in exercise and control groups. The exercise group participated in three 30-minute training sessions per week for 24 weeks. Results: The fine motor skills and hand grip strength of the exercise group were significantly increased, while there was no significant change in the control group during the experimental period. Conclusion: The results indicate that the current exercise training program is effective and can be applied to 5-year-old normal children to improve their fine motor skills. In addition, this program has simple physical activities that are appropriate to the physical and mental level of child development. The 30-minute training session would be easily implemented in the kindergarten program. Level of Evidence I; High quality randomized trial with statistically significant difference or no statistically significant difference but narrow confidence intervals.

  15. Botulinum toxin for motor and phonic tics in Tourette's syndrome.

    Science.gov (United States)

    Pandey, Sanjay; Srivanitchapoom, Prachaya; Kirubakaran, Richard; Berman, Brian D

    2018-01-05

    Gilles de la Tourette syndrome, or Tourette's syndrome, is defined as the presence of both motor and vocal (phonic) tics for more than 12 months, that manifest before the age of 18 years, in the absence of secondary causes. Treatment of motor and phonic tics is difficult and challenging. To determine the safety and effectiveness of botulinum toxin in treating motor and phonic tics in people with Tourette's syndrome, and to analyse the effect of botulinum toxin on premonitory urge and sensory tics. We searched the Cochrane Movement Disorders Group Trials Register, CENTRAL, MEDLINE, and two trials registers to 25 October 2017. We reviewed reference lists of relevant articles for additional trials. We considered all randomised, controlled, double-blind studies comparing botulinum toxin to placebo or other medications for the treatment of motor and phonic tics in Tourette's syndrome for this review. We sought both parallel group and cross-over studies of children or adults, at any dose, and for any duration. We followed standard Cochrane methods to select studies, assess risk of bias, extract and analyse data. All authors independently abstracted data onto standardized forms; disagreements were resolved by mutual discussion. Only one randomised placebo-controlled, double-blind cross-over study met our selection criteria. In this study, 20 participants with motor tics were enrolled over a three-year recruitment period; 18 (14 of whom had a diagnosis of Tourette's syndrome) completed the study; in total, 21 focal motor tics were treated. Although we considered most bias domains to be at low risk of bias, the study recruited a small number of participants with relatively mild tics and provided limited data for our key outcomes. The effects of botulinum toxin injections on tic frequency, measured by videotape or rated subjectively, and on premonitory urge, are uncertain (very low-quality evidence). The quality of evidence for adverse events following botulinum toxin was

  16. Motor Importance of motor assessment in school children: analysis of the reliability of the motor development scale

    Directory of Open Access Journals (Sweden)

    Kassandra Nunes Amaro

    2010-09-01

    Full Text Available The objective of this study was to investigate the motor performance of school chil-dren aged 6 to 10 years without learning difficulties (n=101, and to analyze the reliability of the Motor Development Scale (MDS (Rosa Neto, 2002. Descriptive statistics with calculation of the mean, standard deviation, and range was used for data analysis. The internal consistency of the MDS was assessed using Cronbach’s alpha coefficient, and the correlation between variables was determined by Pearson’s linear correlation, with p<0.05. The results showed (1 that motor development was within normal limits in 96% of the children, and (2 a high correlation betwe-en chronological age and general motor age, indicating good internal consistency. These data demonstrate the logic and structured design of the MDS, confirming its reliability.

  17. Conscious motor processing and movement self-consciousness: two dimensions of personality that influence laparoscopic training.

    Science.gov (United States)

    Malhotra, Neha; Poolton, Jamie M; Wilson, Mark R; Fan, Joe K M; Masters, Rich S W

    2014-01-01

    Identifying personality factors that account for individual differences in surgical training and performance has practical implications for surgical education. Movement-specific reinvestment is a potentially relevant personality factor that has a moderating effect on laparoscopic performance under time pressure. Movement-specific reinvestment has 2 dimensions, which represent an individual's propensity to consciously control movements (conscious motor processing) or to consciously monitor their 'style' of movement (movement self-consciousness). This study aimed at investigating the moderating effects of the 2 dimensions of movement-specific reinvestment in the learning and updating (cross-handed technique) of laparoscopic skills. Medical students completed the Movement-Specific Reinvestment Scale, a psychometric assessment tool that evaluates the conscious motor processing and movement self-consciousness dimensions of movement-specific reinvestment. They were then trained to a criterion level of proficiency on a fundamental laparoscopic skills task and were tested on a novel cross-handed technique. Completion times were recorded for early-learning, late-learning, and cross-handed trials. Propensity for movement self-consciousness but not conscious motor processing was a significant predictor of task completion times both early (p = 0.036) and late (p = 0.002) in learning, but completion times during the cross-handed trials were predicted by the propensity for conscious motor processing (p = 0.04) rather than movement self-consciousness (p = 0.21). Higher propensity for movement self-consciousness is associated with slower performance times on novel and well-practiced laparoscopic tasks. For complex surgical techniques, however, conscious motor processing plays a more influential role in performance than movement self-consciousness. The findings imply that these 2 dimensions of movement-specific reinvestment have a differential influence in the learning and updating

  18. Functional imaging of the cerebellum and basal ganglia during predictive motor timing in early Parkinson's disease.

    Science.gov (United States)

    Husárová, Ivica; Lungu, Ovidiu V; Mareček, Radek; Mikl, Michal; Gescheidt, Tomáš; Krupa, Petr; Bareš, Martin

    2014-01-01

    The basal ganglia and the cerebellum have both emerged as important structures involved in the processing of temporal information. We examined the roles of the cerebellum and striatum in predictive motor timing during a target interception task in healthy individuals (HC group; n = 21) and in patients with early Parkinson's disease (early stage PD group; n = 20) using functional magnetic resonance imaging. Despite having similar hit ratios, the PD failed more often than the HC to postpone their actions until the right moment and to adapt their behavior from one trial to the next. We found more activation in the right cerebellar lobule VI in HC than in early stage PD during successful trials. Successful trial-by-trial adjustments were associated with higher activity in the right putamen and lobule VI of the cerebellum in HC. We conclude that both the cerebellum and striatum are involved in predictive motor timing tasks. The cerebellar activity is associated exclusively with the postponement of action until the right moment, whereas both the cerebellum and striatum are needed for successful adaptation of motor actions from one trial to the next. We found a general ''hypoactivation'' of basal ganglia and cerebellum in early stage PD relative to HC, indicating that even in early stages of the PD there could be functional perturbations in the motor system beyond striatum. Copyright © 2011 by the American Society of Neuroimaging.

  19. Numerical investigation on the regression rate of hybrid rocket motor with star swirl fuel grain

    Science.gov (United States)

    Zhang, Shuai; Hu, Fan; Zhang, Weihua

    2016-10-01

    Although hybrid rocket motor is prospected to have distinct advantages over liquid and solid rocket motor, low regression rate and insufficient efficiency are two major disadvantages which have prevented it from being commercially viable. In recent years, complex fuel grain configurations are attractive in overcoming the disadvantages with the help of Rapid Prototyping technology. In this work, an attempt has been made to numerically investigate the flow field characteristics and local regression rate distribution inside the hybrid rocket motor with complex star swirl grain. A propellant combination with GOX and HTPB has been chosen. The numerical model is established based on the three dimensional Navier-Stokes equations with turbulence, combustion, and coupled gas/solid phase formulations. The calculated fuel regression rate is compared with the experimental data to validate the accuracy of numerical model. The results indicate that, comparing the star swirl grain with the tube grain under the conditions of the same port area and the same grain length, the burning surface area rises about 200%, the spatially averaged regression rate rises as high as about 60%, and the oxidizer can combust sufficiently due to the big vortex around the axis in the aft-mixing chamber. The combustion efficiency of star swirl grain is better and more stable than that of tube grain.

  20. Reconciling the influence of task-set switching and motor inhibition processes on stop signal after-effects

    Directory of Open Access Journals (Sweden)

    Joaquin A. Anguera

    2013-09-01

    Full Text Available Executive response functions can be affected by preceding events, even if they are no longer associated with the current task at hand. For example, studies utilizing the stop signal task have reported slower response times to ‘GO’ stimuli when the preceding trial involved the presentation of a ‘STOP’ signal. However, the neural mechanisms that underlie this behavioral after-effect are unclear. To address this, behavioral and electroencephalography (EEG measures were examined in 18 young adults (18-30yrs on 'GO' trials following a previously ‘Successful Inhibition’ trial (pSI, a previously ‘Failed Inhibition’ trial (pFI, and a previous ‘GO’ trial (pGO. Like previous research, slower response times were observed during both pSI and pFI trials (i.e., ‘GO’ trials that were preceded by a successful and unsuccessful inhibition trial, respectively compared to pGO trials (i.e., ‘GO’ trials that were preceded by another ‘GO’ trial. Interestingly, response time slowing was greater during pSI trials compared to pFI trials, suggesting executive control is influenced by both task set switching and persisting motor inhibition processes. Follow-up behavioral analyses indicated that these effects resulted from between-trial control adjustments rather than repetition priming effects. Analyses of inter-electrode coherence (IEC and inter-trial coherence (ITC indicated that both pSI and pFI trials showed greater phase synchrony during the inter-trial interval compared to pGO trials. Unlike the IEC findings, differential ITC was present within the beta and alpha frequency bands in line with the observed behavior (pSI > pFI > pGO, suggestive of more consistent phase synchrony involving motor inhibition processes during the ITI at a regional level. These findings suggest that between-trial control adjustments involved with task-set switching and motor inhibition processes influence subsequent performance, providing new insights into the

  1. Motor consciousness during intention-based and stimulus-based actions: modulating attention resources through Mindfulness meditation

    Directory of Open Access Journals (Sweden)

    Yvonne Nathalie Delevoye-Turrell

    2012-09-01

    Full Text Available Mindfulness-Based Stress Reduction meditation (MBSR may offer optimal performance through heightened attention for increased body consciousness. To test this hypothesis, MBSR effects were assessed on the simple task of lifting an object. A dual task paradigm was included to assess the opposite effect of a limited amount of attention on motor consciousness. In a stimulus-based condition, the subjects’ task was to lift an object that was hefted with weights. In an intentional-based condition, subjects were required to lift a light object while imagining that the object was virtually heavier and thus, adjust their grip voluntarily. The degree of motor consciousness was evaluated by calculating correlation factors for each participant between the grip force level used during the lift trial (lift the object and that used during its associated reproduce trial (without lifting, indicate the force you think you used in the previous trial. Under dual task condition, motor consciousness decreased for intention- and stimulus-based actions, revealing the importance of top-down attention for building the motor representation that guides action planning. For MBSR-experts, heightened attention provided stronger levels of motor consciousness; this was true for both intention and stimulus-based actions. For controls, heightened attention decreased the capacity to reproduce force levels, suggesting that voluntary top-down attention interfered with the automatic bottom-up emergence of body sensations.Our results provide strong arguments for involvement of two types of attention for the emergence of motor consciousness. Bottom-up attention would serve as an amplifier of motor-sensory afferences; Top down attention would help transfer the motor-sensory content from a pre-conscious to a conscious state of processing. MBSR would be a specific state for which both types of attention are optimally combined to provide experts with total experiences of their body in

  2. Hybrid numerical-experimental optical investigation of the contact zone of ultrasonic motors

    Science.gov (United States)

    Ostasevicius, Vytautas; Palevicius, Arvydas; Ragulskis, Minvydas; Janusas, Giedrius; Pilkauskas, Kestutis

    2005-09-01

    Ultrasonic motors have seen application in areas needing compact, efficient, and intermittent motion. Such applications include: camera auto focus lenses, watch motors, compact paper handling, microrobots, medicine and etc.. They are characterized by high torque at low rotational speed, simple mechanical design and good controllability. Compared with electromagnetic actuators, there is no danger of interference due to electromagnetic induction because no magnetic field is used and ultrasonic motors are more quiet since speed-reduction gears are not required. A polarization vector of the piezoceramic element and location of excitation electrodes on its surface determine the resonance modes of the high frequency vibration exciter. In its turn the modes of vibration play a key role in the functionality of ultrasonic motor. There are analyzed two different regimes of operation--when the contact zone of the resonator performs elliptic and unidirectional motions. Though the mechanical characteristics of the ultrasonic motor in both cases are comparable, detailed analysis of the contact surface shows very different wears. Laser holography is used to identify and control the regimes of motion of actuator. Experimental results are compared with computer simulations. Contact surfaces are analyzed by atomic force microscope (AFM) before experiment, after 10 minutes and after 50 minutes of operation.

  3. Motor subtype changes in early Parkinson's disease.

    Science.gov (United States)

    Eisinger, Robert S; Hess, Christopher W; Martinez-Ramirez, Daniel; Almeida, Leonardo; Foote, Kelly D; Okun, Michael S; Gunduz, Aysegul

    2017-10-01

    Distinct motor subtypes of Parkinson's disease (PD) have been described through both clinical observation and through data-driven approaches. However, the extent to which motor subtypes change during disease progression remains unknown. Our objective was to determine motor subtypes of PD using an unsupervised clustering methodology and evaluate subtype changes with disease duration. The Parkinson's Progression Markers Initiative database of 423 newly diagnosed PD patients was utilized to retrospectively identify unique motor subtypes through a data-driven, hierarchical correlational clustering approach. For each patient, we assigned a subtype to each motor assessment at each follow-up visit (time points) and by using published criteria. We examined changes in PD subtype with disease duration using both qualitative and quantitative methods. Five distinct motor subtypes were identified based on the motor assessment items and these included: Tremor Dominant (TD), Axial Dominant, Appendicular Dominant, Rigidity Dominant, and Postural and Instability Gait Disorder Dominant. About half of the patients had consistent subtypes at all time points. Most patients met criteria for TD subtype soon after diagnosis. For patients with inconsistent subtypes, there was an overall trend to shift away from a TD phenotype with disease duration, as shown by chi-squared test, p motor subtypes in PD can shift with increasing disease duration. Shifting subtypes is a factor that should be accounted for in clinical practice or in clinical trials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Mental representation and mental practice: experimental investigation on the functional links between motor memory and motor imagery.

    Directory of Open Access Journals (Sweden)

    Cornelia Frank

    Full Text Available Recent research on mental representation of complex action has revealed distinct differences in the structure of representational frameworks between experts and novices. More recently, research on the development of mental representation structure has elicited functional changes in novices' representations as a result of practice. However, research investigating if and how mental practice adds to this adaptation process is lacking. In the present study, we examined the influence of mental practice (i.e., motor imagery rehearsal on both putting performance and the development of one's representation of the golf putt during early skill acquisition. Novice golfers (N = 52 practiced the task of golf putting under one of four different practice conditions: mental, physical, mental-physical combined, and no practice. Participants were tested prior to and after a practice phase, as well as after a three day retention interval. Mental representation structures of the putt were measured, using the structural dimensional analysis of mental representation. This method provides psychometric data on the distances and groupings of basic action concepts in long-term memory. Additionally, putting accuracy and putting consistency were measured using two-dimensional error scores of each putt. Findings revealed significant performance improvements over the course of practice together with functional adaptations in mental representation structure. Interestingly, after three days of practice, the mental representations of participants who incorporated mental practice into their practice regime displayed representation structures that were more similar to a functional structure than did participants who did not incorporate mental practice. The findings of the present study suggest that mental practice promotes the cognitive adaptation process during motor learning, leading to more elaborate representations than physical practice only.

  5. The Effect of Care Package on Motor Development among 12-Month-Old Infants in Saqqez-Iran: A Randomized Clinical Trial Study

    Directory of Open Access Journals (Sweden)

    Jamile Ahmadi

    2017-08-01

    Full Text Available Background The initial years of life particularly the first two years are regarded as the most important brain development period. This study attempted to determine the effect of care package on motor development in 12-month-old infants in Saqqez-Iran. Materials and Methods:This study was a clinical trial conducted in 2016 on 70 infants of 12 months of age selected randomly in intervention and control groups in Saqqez-Iran. The care package was taught to mothers of infants in intervention group by the researchers based on the book "Ages and Stages Learning Activities 0-5 years". These teachings for gross motor, included walking, pulling and pushing the toys, swinging, playing with ball, crawling, etc. and for fine motor skills included building towers, painting, filling a box with household items and emptying it, giving children books, stringing, etc. Motor skills (gross and fine were measured by Age and Stage Questionnaire (ASQ-2 screening tool before intervention, 4 and 8 weeks after the intervention. Data were analyzed using SPSS version 20.0 software. Results: In the intervention group, 56.2% and in the control group 51.4% were female, respectively. Results showed that 4 and 8 weeks after the intervention in gross movement, average scores in the intervention group were more than the control group (P = 0.02, and mean score in three times (before intervention, 4 and 8 weeks after the intervention was significant difference (P = 0.002. Also, for fine movement, results showed that in this area average scores in the intervention group were more than the control group (P=0.02; and the average score was a significant difference in that three times (P=0.01. Conclusion: Results revealed that the impact of care package in intervention group compared with control group in level of significance led to an improvement in motor skills domain (gross and fine movement in 12-month-old infants in this study.

  6. Pathogenesis of motor neuron disease

    Institute of Scientific and Technical Information of China (English)

    Xuefei Wang

    2006-01-01

    OBJECTIVE: To summarize and analyze the factors and theories related to the attack of motor neuron disease, and comprehensively investigate the pathogenesis of motor neuron disease.DATA SOURCES: A search of Pubmed database was undertaken to identify articles about motor neuron disease published in English from January 1994 to June 2006 by using the keywords of "neurodegenerative diseases". Other literatures were collected by retrieving specific journals and articles.STUDY SELECTION: The data were checked primarily, articles related to the pathogenesis of motor neuron disease were involved, and those obviously irrelated to the articles were excluded.DATA EXTRACTION: Totally 54 articles were collected, 30 of them were involved, and the other 24 were excluded.DATA SYNTHESIS: The pathogenesis of motor neuron disease has multiple factors, and the present related theories included free radical oxidation, excitotoxicity, genetic and immune factors, lack of neurotrophic factor,injury of neurofilament, etc. The studies mainly come from transgenic animal models, cell culture in vitro and patients with familial motor neuron disease, but there are still many restrictions and disadvantages.CONCLUSION: It is necessary to try to find whether there is internal association among different mechanisms,comprehensively investigate the pathogenesis of motor neuron diseases, in order to provide reliable evidence for the clinical treatment.

  7. The Specificity of Action Knowledge in Sensory and Motor Systems

    Directory of Open Access Journals (Sweden)

    Christine E Watson

    2014-05-01

    Full Text Available Neuroimaging studies have found that sensorimotor systems are engaged when participants observe actions or comprehend action language. However, most of these studies have asked the binary question of whether action concepts are embodied or not, rather than whether sensory and motor areas of the brain contain graded amounts of information during putative action simulations. To address this question, we used repetition suppression (RS functional magnetic resonance imaging to determine if functionally-localized motor movement and visual motion regions-of-interest (ROI and two anatomical ROIs (inferior frontal gyrus, IFG; left posterior middle temporal gyrus were sensitive to changes in the exemplar (e.g., two different people kicking or representational format (e.g., photograph or schematic drawing of someone kicking within pairs of action images. We also investigated whether concrete versus more symbolic depictions of actions (i.e., photographs versus schematic drawings yielded different patterns of activation throughout the brain. We found that during a conceptual task, sensory and motor systems represent actions at different levels of specificity. While the visual motion ROI did not exhibit RS to different exemplars of the same action or to the same action depicted by different formats, the motor movement ROI did. These effects are consistent with person-specific action simulations: if the motor system is recruited for action understanding, it does so by activating one’s own motor program for an action. We also observed significant repetition enhancement within the IFG ROI to different exemplars or formats of the same action, a result that may indicate additional cognitive processing on these trials. Finally, we found that the recruitment of posterior brain regions by action concepts depends on the format of the input: left lateral occipital cortex and right supramarginal gyrus responded more strongly to symbolic depictions of actions than

  8. Cannabis (medical marijuana) treatment for motor and non-motor symptoms of Parkinson disease: an open-label observational study.

    Science.gov (United States)

    Lotan, Itay; Treves, Therese A; Roditi, Yaniv; Djaldetti, Ruth

    2014-01-01

    The use of cannabis as a therapeutic agent for various medical conditions has been well documented. However, clinical trials in patients with Parkinson disease (PD) have yielded conflicting results. The aim of the present open-label observational study was to assess the clinical effect of cannabis on motor and non-motor symptoms of PD. Twenty-two patients with PD attending the motor disorder clinic of a tertiary medical center in 2011 to 2012 were evaluated at baseline and 30 minutes after smoking cannabis using the following battery: Unified Parkinson Disease Rating Scale, visual analog scale, present pain intensity scale, Short-Form McGill Pain Questionnaire, as well as Medical Cannabis Survey National Drug and Alcohol Research Center Questionnaire. Mean (SD) total score on the motor Unified Parkinson Disease Rating Scale score improved significantly from 33.1 (13.8) at baseline to 23.2 (10.5) after cannabis consumption (t = 5.9; P effects of the drug were observed. The study suggests that cannabis might have a place in the therapeutic armamentarium of PD. Larger, controlled studies are needed to verify the results.

  9. Gross motor skill development of kindergarten children in Japan.

    Science.gov (United States)

    Aye, Thanda; Kuramoto-Ahuja, Tsugumi; Sato, Tamae; Sadakiyo, Kaori; Watanabe, Miyoko; Maruyama, Hitoshi

    2018-05-01

    [Purpose] The purposes of this study were to assess and explore the gender-based differences in gross motor skill development of 5-year-old Japanese children. [Subjects and Methods] This cross-sectional study recruited 60 healthy 5-year-old (third-year kindergarten, i.e., nencho ) children (34 boys, 26 girls) from one local private kindergarten school in Otawara city, Tochigi Prefecture, Japan. Gross motor skills, including six locomotor and six object control skills, were assessed using the test of gross motor development, second edition (TGMD-2). All subjects performed two trials of each gross motor skill, and the performances were video-recorded and scored. Assessment procedures were performed according to the standardized guidelines of the TGMD-2. [Results] The majority of subjects had an average level of overall gross motor skills. Girls had significantly better locomotor skills. Boys had significantly better object control skills. [Conclusion] The gross motor skill development of 5-year-old Japanese children involves gender-based differences in locomotor and object control skills. This study provided valuable information that can be used to establish normative references for the gross motor skills of 5-year-old Japanese children.

  10. Experimental and Theoretical Investigations of a Mechanical Lever System Driven by a DC Motor

    Science.gov (United States)

    Nana, B.; Fautso Kuiate, G.; Yamgoué, S. B.

    This paper presents theoretical and experimental results on the investigation of the dynamics of a nonlinear electromechanical system made of a lever arm actuated by a DC motor and controlled through a repulsive magnetic force. We use the method of harmonic balance to derive oscillatory solutions. Theoretical tools such as, bifurcation diagrams, Lyapunov exponents, phase portraits, are used to unveil the rich nonlinear behavior of the system including chaos and hysteresis. The experimental results are in close accordance with the theoretical predictions.

  11. [Non-commercial clinical trials--who will be the legal sponsor? Sponsorship of investigator-initiated clinical trials according to the German Drug Law].

    Science.gov (United States)

    Benninger-Döring, G; Boos, J

    2006-07-01

    Non-commercial clinical trials may be of great benefit to the patients concerned. The 12th amendment to the German Drug Law (AMG) changed legal liability of the initiators of investigator-initiated clinical trials with extensive consequences for traditional project leaders. The central point under discussion is the sponsor's responsibility according to the AMG. Presently leading management divisions of university hospitals and universities are developing proceedings to assume sponsor responsibility by institutions (institutional sponsorship), which should enable investigator-initiated clinical trials to be conducted according to legal requirements in the future. Detailed problems and special questions can only be resolved in a single-minded fashion, and if necessary political processes should be catalyzed.

  12. Vitamin B12 and Folic Acid Improve Gross Motor and Problem-Solving Skills in Young North Indian Children: A Randomized Placebo-Controlled Trial.

    Science.gov (United States)

    Kvestad, Ingrid; Taneja, Sunita; Kumar, Tivendra; Hysing, Mari; Refsum, Helga; Yajnik, Chittaranjan S; Bhandari, Nita; Strand, Tor A

    2015-01-01

    Deficiencies of vitamin B12 and folate are associated with delayed development and neurological manifestations. The objective of this study was to measure the effect of daily supplementation of vitamin B12 and/or folic acid on development in young North Indian children. In a randomized, double blind trial, children aged six to 30 months, received supplement with placebo or vitamin B12 and/or folic acid for six months. Children were allocated in a 1:1:1:1 ratio in a factorial design and in blocks of 16. We measured development in 422 children by the Ages and Stages Questionnaire 3rd ed. at the end of the intervention. Compared to placebo, children who received both vitamin B12 and folic acid had 0.45 (95% CI 0.19, 0.73) and 0.28 (95% CI 0.02, 0.54) higher SD-units in the domains of gross motor and problem solving functioning, respectively. The effect was highest in susceptible subgroups consisting of stunted children, those with high plasma homocysteine (> 10 μmol/L) or in those who were younger than 24 at end study. With the exception of a significant improvement on gross motor scores by vitamin B12 alone, supplementation of either vitamin alone had no effect on any of the outcomes. Our findings suggest that supplementation of vitamin B12 and folic acid benefit development in North Indian Children. ClinicalTrials.gov NCT00717730.

  13. iPad applications that required a range of motor skills promoted motor coordination in children commencing primary school.

    Science.gov (United States)

    Axford, Caitlin; Joosten, Annette V; Harris, Courtenay

    2018-04-01

    Children are reported to spend less time engaged in outdoor activity and object-related play than in the past. The increased use and mobility of technology, and the ease of use of tablet devices are some of the factors that have contributed to these changes. Concern has been raised that the use of such screen and surface devices in very young children is reducing their fine motor skill development. We examined the effectiveness of iPad applications that required specific motor skills designed to improve fine motor skills. We conducted a two-group non-randomised controlled trial with two pre-primary classrooms (53 children; 5-6 years) in an Australian co-educational school, using a pre- and post-test design. The effectiveness of 30 minutes daily use of specific iPad applications for 9 weeks was compared with a control class. Children completed the Beery Developmental Test of Visual Motor Integration (VMI) and observation checklist, the Shore Handwriting Screen, and self-care items from the Hawaii Early Learning Profile. On post testing, the experimental group made a statistically and clinically significant improvement on the VMI motor coordination standard scores with a moderate clinical effect size (P motor skill-specific applications as an intervention in occupational therapy practice and as part of at home or school play. © 2018 Occupational Therapy Australia.

  14. Context-dependent memory decay is evidence of effort minimization in motor learning: a computational study.

    Science.gov (United States)

    Takiyama, Ken

    2015-01-01

    Recent theoretical models suggest that motor learning includes at least two processes: error minimization and memory decay. While learning a novel movement, a motor memory of the movement is gradually formed to minimize the movement error between the desired and actual movements in each training trial, but the memory is slightly forgotten in each trial. The learning effects of error minimization trained with a certain movement are partially available in other non-trained movements, and this transfer of the learning effect can be reproduced by certain theoretical frameworks. Although most theoretical frameworks have assumed that a motor memory trained with a certain movement decays at the same speed during performing the trained movement as non-trained movements, a recent study reported that the motor memory decays faster during performing the trained movement than non-trained movements, i.e., the decay rate of motor memory is movement or context dependent. Although motor learning has been successfully modeled based on an optimization framework, e.g., movement error minimization, the type of optimization that can lead to context-dependent memory decay is unclear. Thus, context-dependent memory decay raises the question of what is optimized in motor learning. To reproduce context-dependent memory decay, I extend a motor primitive framework. Specifically, I introduce motor effort optimization into the framework because some previous studies have reported the existence of effort optimization in motor learning processes and no conventional motor primitive model has yet considered the optimization. Here, I analytically and numerically revealed that context-dependent decay is a result of motor effort optimization. My analyses suggest that context-dependent decay is not merely memory decay but is evidence of motor effort optimization in motor learning.

  15. Context-dependent memory decay is evidence of effort minimization in motor learning: A computational study

    Directory of Open Access Journals (Sweden)

    Ken eTakiyama

    2015-02-01

    Full Text Available Recent theoretical models suggest that motor learning includes at least two processes: error minimization and memory decay. While learning a novel movement, a motor memory of the movement is gradually formed to minimize the movement error between the desired and actual movements in each training trial, but the memory is slightly forgotten in each trial. The learning effects of error minimization trained with a certain movement are partially available in other non-trained movements, and this transfer of the learning effect can be reproduced by certain theoretical frameworks. Although most theoretical frameworks have assumed that a motor memory trained with a certain movement decays at the same speed during performing the trained movement as non-trained movements, a recent study reported that the motor memory decays faster during performing the trained movement than non-trained movements, i.e., the decay rate of motor memory is movement or context dependent. Although motor learning has been successfully modeled based on an optimization framework, e.g., movement error minimization, the type of optimization that can lead to context-dependent memory decay is unclear. Thus, context-dependent memory decay raises the question of what is optimized in motor learning. To reproduce context-dependent memory decay, I extend a motor primitive framework. Specifically, I introduce motor effort optimization into the framework because some previous studies have reported the existence of effort optimization in motor learning processes and no conventional motor primitive model has yet considered the optimization. Here, I analytically and numerically revealed that context-dependent decay is a result of motor effort optimization. My analyses suggest that context-dependent decay is not merely memory decay but is evidence of motor effort optimization in motor learning.

  16. The effect of motor control exercise versus placebo in patients with chronic low back pain [ACTRN012605000262606

    Directory of Open Access Journals (Sweden)

    Herbert Robert D

    2005-11-01

    Full Text Available Abstract Background While one in ten Australians suffer from chronic low back pain this condition remains extremely difficult to treat. Many contemporary treatments are of unknown value. One potentially useful therapy is the use of motor control exercise. This therapy has a biologically plausible effect, is readily available in primary care and it is of modest cost. However, to date, the efficacy of motor control exercise has not been established. Methods This paper describes the protocol for a clinical trial comparing the effects of motor control exercise versus placebo in the treatment of chronic non-specific low back pain. One hundred and fifty-four participants will be randomly allocated to receive an 8-week program of motor control exercise or placebo (detuned short wave and detuned ultrasound. Measures of outcomes will be obtained at follow-up appointments at 2, 6 and 12 months after randomisation. The primary outcomes are: pain, global perceived effect and patient-generated measure of disability at 2 months and recurrence at 12 months. Discussion This trial will be the first placebo-controlled trial of motor control exercise. The results will inform best practice for treating chronic low back pain and prevent its occurrence.

  17. Acute motor, neurocognitive and neurophysiological change following concussion injury in Australian amateur football. A prospective multimodal investigation.

    Science.gov (United States)

    Pearce, Alan J; Hoy, Kate; Rogers, Mark A; Corp, Daniel T; Davies, Charlotte B; Maller, Jerome J; Fitzgerald, Paul B

    2015-09-01

    This multimodal study investigated the motor, neurocognitive and neurophysiological responses following a sports related concussion injury in the acute-phase (up to 10 days) in sub-elite Australian football players. Between-group, repeated measures. Over the course of one season (six months), 43 male players from one football club (25.1 ± 4.5 years) were assessed for fine motor dexterity, visuomotor reaction time, implicit learning and attention. Motor cortex excitability and inhibition were assessed using transcranial magnetic stimulation. Of the 43 players, eight suffered concussion injuries, and were compared to 15 non-concussed players (active control) who returned for follow up testing. Post-concussion assessments using the aforementioned tests were carried out at 48 and 96 h, and 10 days. Compared to the non-concussed players, those who suffered concussion showed slowed fine dexterity (P = 0.02), response (P = 0.02) and movement times (P = 0.01) 48 h post-concussion. Similarly, attentional performance was reduced in the concussed group at all time points (48 h: P football players show abnormalities in motor, cognitive and neurophysiological measures with variable rates of recovery. These findings suggest that measuring the recovery of concussed athletes should incorporate a range of testing modalities rather than relying on one area of measurement in determining return to play. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Investigation of a rotary ultrasonic motor using a longitudinal vibrator and spiral fin rotor.

    Science.gov (United States)

    Peng, Taijiang; Wu, Xiaoyu; Liang, Xiong; Shi, Hongyan; Luo, Feng

    2015-08-01

    A Langevin transducer can provide longitudinal vibration with larger amplitude while also possessing a greater fatigue life than other types of piezoelectric vibrators. A novel rotary Ultrasonic Motor (USM) was proposed based on the use of a longitudinal transducer (acting as the stator) and a spiral fin rotor: the front cover of the Langevin transducer was designed as a double-layer cup-shaped structure, with the rotor sustained by the inner-layer, and the bearing cover fixed to the outer-layer; the rotor consisted of a shaft and spiral fins which acted as the elastic coupler. It is different from a traditional traveling USM, because the stator provides longitudinal vibration and the rotor generates the elliptical motion. This paper analyzed the motion locus equation of the fin contact points. Additionally, a theoretical analysis was performed in regards to the mechanism and the motor's rotor motion characteristics, which demonstrates the relationships among the motor's driving force, the torque, the revolution speed, and the motor structure parameters. A motor prototype has been manufactured and surveyed to demonstrate the motor performance. The relationships between the amplitude and the preload on the rotor, the free revolution speed, and the torque of the motor have also been studied. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Inconsistency in serial choice decision and motor reaction times dissociate in younger and older adults

    OpenAIRE

    Bunce, D; MacDonald, SWS; Hultsch, DF

    2004-01-01

    Intraindividual variability (inconsistency) in reaction time (RT) latencies was investigated in a group of younger (M = 25.46 years) and older (M = 69.29 years) men. Both groups performed 300 trials in 2-, 4-, and 8-choice RT conditions where RTs for decision and motor components of the task were recorded separately. A dissociation was evident in that inconsistency was greater in older adults for decision RTs when task demands relating to the number of choices and fatigue arising from time-on...

  20. Neural correlates of learning in an electrocorticographic motor-imagery brain-computer interface

    Science.gov (United States)

    Blakely, Tim M.; Miller, Kai J.; Rao, Rajesh P. N.; Ojemann, Jeffrey G.

    2014-01-01

    Human subjects can learn to control a one-dimensional electrocorticographic (ECoG) brain-computer interface (BCI) using modulation of primary motor (M1) high-gamma activity (signal power in the 75–200 Hz range). However, the stability and dynamics of the signals over the course of new BCI skill acquisition have not been investigated. In this study, we report 3 characteristic periods in evolution of the high-gamma control signal during BCI training: initial, low task accuracy with corresponding low power modulation in the gamma spectrum, followed by a second period of improved task accuracy with increasing average power separation between activity and rest, and a final period of high task accuracy with stable (or decreasing) power separation and decreasing trial-to-trial variance. These findings may have implications in the design and implementation of BCI control algorithms. PMID:25599079

  1. Withholding a Reward-driven Action: Studies of the Rise and Fall of Motor Activation and the Effect of Cognitive Depletion.

    Science.gov (United States)

    Freeman, Scott M; Aron, Adam R

    2016-02-01

    Controlling an inappropriate response tendency in the face of a reward-predicting stimulus likely depends on the strength of the reward-driven activation, the strength of a putative top-down control process, and their relative timing. We developed a rewarded go/no-go paradigm to investigate such dynamics. Participants made rapid responses (on go trials) to high versus low reward-predicting stimuli and sometimes had to withhold responding (on no-go trials) in the face of the same stimuli. Behaviorally, for high versus low reward stimuli, responses were faster on go trials, and there were more errors of commission on no-go trials. We used single-pulse TMS to map out the corticospinal excitability dynamics, especially on no-go trials where control is needed. For successful no-go trials, there was an early rise in motor activation that was then sharply reduced beneath baseline. This activation-reduction pattern was more pronounced for high- versus low-reward trials and in individuals with greater motivational drive for reward. A follow-on experiment showed that, when participants were fatigued by an effortful task, they made more errors on no-go trials for high versus low reward stimuli. Together, these studies show that, when a response is inappropriate, reward-predicting stimuli induce early motor activation, followed by a top-down effortful control process (which we interpret as response suppression) that depends on the strength of the preceding activation. Our findings provide novel information about the activation-suppression dynamics during control over reward-driven actions, and they illustrate how fatigue or depletion leads to control failures in the face of reward.

  2. Practical Investigation of End Effect Losses in a Motor Integrated Permanent Magnet Gear

    DEFF Research Database (Denmark)

    Frandsen, Tommy Vestergaard; Rasmussen, Peter Omand

    2015-01-01

    to reduce 3D eddy currents in the machine. Material is removed and new parts are made in a non-conducting material. After the modifications of the prototype, the rotational losses have been measured and compared to the earlier measurements and the 2D based calculated losses. The rotational losses have been......This paper presents a practical investigation of the eddy current losses caused by 3D effects in a Motor Integrated Permanent Magnet Gear (MIPMG). Two prototypes of a MIPMG have been designed and build to be used as traction units for an electric vehicle. The measured efficiency of the prototype...

  3. Clinical trials using a radiopharmaceutical investigational drug: What legal environment and what authorizations required?

    International Nuclear Information System (INIS)

    El-Deeb, G.; Nguon, B.; Tibi, A.; Rizzo-Padoin, N.

    2009-01-01

    Recent revision of the legal environment for clinical research in France provided an opportunity to review what a hospital needs to carry out clinical trials using a radiopharmaceutical investigational drug. Legal measures concerning radiopharmaceutical investigational drugs are indeed more complex than those of classical clinical trials because of the additional legal provisions governing the use of ionizing radiation. Thus, requirements by the concerned staff (sponsor, pharmacist, person in charge of the nuclear activity) are described here. (authors) [fr

  4. The challenges and opportunities of conducting a clinical trial in a low resource setting: the case of the Cameroon mobile phone SMS (CAMPS) trial, an investigator initiated trial.

    Science.gov (United States)

    Mbuagbaw, Lawrence; Thabane, Lehana; Ongolo-Zogo, Pierre; Lang, Trudie

    2011-06-09

    Conducting clinical trials in developing countries often presents significant ethical, organisational, cultural and infrastructural challenges to researchers, pharmaceutical companies, sponsors and regulatory bodies. Globally, these regions are under-represented in research, yet this population stands to gain more from research in these settings as the burdens on health are greater than those in developed resourceful countries. However, developing countries also offer an attractive setting for clinical trials because they often have larger treatment naive populations with higher incidence rates of disease and more advanced stages. These factors can present a reduction in costs and time required to recruit patients. So, balance needs to be found where research can be encouraged and supported in order to bring maximum public health benefits to these communities. The difficulties with such trials arise from problems with obtaining valid informed consent, ethical compensation mechanisms for extremely poor populations, poor health infrastructure and considerable socio-economic and cultural divides. Ethical concerns with trials in developing countries have received attention, even though many other non-ethical issues may arise. Local investigator initiated trials also face a variety of difficulties that have not been adequately reported in literature. This paper uses the example of the Cameroon Mobile Phone SMS trial to describe in detail, the specific difficulties encountered in an investigator-initiated trial in a developing country. It highlights administrative, ethical, financial and staff related issues, proposes solutions and gives a list of additional documentation to ease the organisational process.

  5. The challenges and opportunities of conducting a clinical trial in a low resource setting: The case of the Cameroon mobile phone SMS (CAMPS trial, an investigator initiated trial

    Directory of Open Access Journals (Sweden)

    Ongolo-Zogo Pierre

    2011-06-01

    Full Text Available Abstract Conducting clinical trials in developing countries often presents significant ethical, organisational, cultural and infrastructural challenges to researchers, pharmaceutical companies, sponsors and regulatory bodies. Globally, these regions are under-represented in research, yet this population stands to gain more from research in these settings as the burdens on health are greater than those in developed resourceful countries. However, developing countries also offer an attractive setting for clinical trials because they often have larger treatment naive populations with higher incidence rates of disease and more advanced stages. These factors can present a reduction in costs and time required to recruit patients. So, balance needs to be found where research can be encouraged and supported in order to bring maximum public health benefits to these communities. The difficulties with such trials arise from problems with obtaining valid informed consent, ethical compensation mechanisms for extremely poor populations, poor health infrastructure and considerable socio-economic and cultural divides. Ethical concerns with trials in developing countries have received attention, even though many other non-ethical issues may arise. Local investigator initiated trials also face a variety of difficulties that have not been adequately reported in literature. This paper uses the example of the Cameroon Mobile Phone SMS trial to describe in detail, the specific difficulties encountered in an investigator-initiated trial in a developing country. It highlights administrative, ethical, financial and staff related issues, proposes solutions and gives a list of additional documentation to ease the organisational process.

  6. Investigating the effect of independent, blinded digital image assessment on the STOP GAP trial.

    Science.gov (United States)

    Patsko, Emily; Godolphin, Peter J; Thomas, Kim S; Hepburn, Trish; Mitchell, Eleanor J; Craig, Fiona E; Bath, Philip M; Montgomery, Alan A

    2017-02-02

    Blinding is the process of keeping treatment assignment hidden and is used to minimise the possibility of bias. Trials at high risk of bias have been shown to report larger treatment effects than low-risk studies. In dermatology, one popular method of blinding is to have independent outcome assessors who are unaware of treatment allocation assessing the endpoint using digital photographs. However, this can be complex, expensive and time-consuming. The objective of this study was to compare the effect of blinded and unblinded outcome assessment on the results of the STOP GAP trial. The STOP GAP trial compared prednisolone to ciclosporin in treating pyoderma gangrenosum. Participants' lesions were measured at baseline and at 6 weeks to calculate the primary outcome, speed of healing. Independent blinded assessors obtained measurements from digital photographs using specialist software. In addition, unblinded treating clinicians estimated lesion area by measuring length and width. The primary outcome was determined using blinded measurements where available, otherwise unblinded measurements were used (method referred to as trial measurements). In this study, agreement between the trial and unblinded measurements was determined using the intraclass correlation coefficient (ICC). The STOP GAP trial's primary analysis was repeated using unblinded measurements only. We introduced differential and nondifferential error in unblinded measurements and investigated the effect on the STOP GAP trial's primary analysis. Eighty-six (80%) of the 108 patients were assessed using digital images. Agreement between trial and unblinded measurements was excellent (ICC = 0.92 at baseline; 0.83 at 6 weeks). There was no evidence that the results of the trial primary analysis differed according to how the primary outcome was assessed (p value for homogeneity = 1.00). Blinded digital image assessment in the STOP GAP trial did not meaningfully alter trial conclusions compared with

  7. Uncertainty of feedback and state estimation determines the speed of motor adaptation

    Directory of Open Access Journals (Sweden)

    Kunlin Wei

    2010-05-01

    Full Text Available Humans can adapt their motor behaviors to deal with ongoing changes. To achieve this, the nervous system needs to estimate central variables for our movement based on past knowledge and new feedback, both of which are uncertain. In the Bayesian framework, rates of adaptation characterize how noisy feedback is in comparison to the uncertainty of the state estimate. The predictions of Bayesian models are intuitive: the nervous system should adapt slower when sensory feedback is more noisy and faster when its state estimate is more uncertain. Here we want to quantitatively understand how uncertainty in these two factors affects motor adaptation. In a hand reaching experiment we measured trial-by-trial adaptation to a randomly changing visual perturbation to characterize the way the nervous system handles uncertainty in state estimation and feedback. We found both qualitative predictions of Bayesian models confirmed. Our study provides evidence that the nervous system represents and uses uncertainty in state estimate and feedback during motor adaptation.

  8. Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults.

    Directory of Open Access Journals (Sweden)

    Marcus eMeinzer

    2014-09-01

    Full Text Available Language facilitation by transcranial direct current stimulation (tDCS in healthy individuals has generated hope that tDCS may also allow improving language impairment after stroke (aphasia. However, current stimulation protocols have yielded variable results and may require identification of residual language cortex using functional magnetic resonance imaging (fMRI, which complicates incorporation into clinical practice. Based on previous behavioral studies that demonstrated improved language processing by motor system pre-activation, the present study assessed whether tDCS administered to the primary motor cortex (M1 can enhance language functions.This proof-of-concept study employed a sham-tDCS controlled, cross-over, within-subject design and assessed the impact of unilateral excitatory (anodal and bihemispheric (dual tDCS in eighteen healthy older adults during semantic word-retrieval and motor speech tasks. Simultaneous fMRI scrutinized the neural mechanisms underlying tDCS effects.Both active tDCS conditions significantly improved word-retrieval compared to sham-tDCS. The direct comparison of activity elicited by word-retrieval vs. motor-speech trials revealed bilateral frontal activity increases during both anodal- and dual-tDCS compared to sham-tDCS. This effect was driven by more pronounced deactivation of frontal regions during the motor-speech task, while activity during word-retrieval trials was unaffected by the stimulation. No effects were found in M1 and secondary motor regions.Our results show that tDCS administered to M1 can improve word-retrieval in healthy individuals, thereby providing a rationale to explore whether M1-tDCS may offer a novel approach to improve language functions in aphasia. fMRI revealed neural facilitation specifically during motor speech trials, which may have reduced switching costs between the overlapping neural systems for lexical retrieval and speech processing, thereby resulting in improved

  9. Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults.

    Science.gov (United States)

    Meinzer, Marcus; Lindenberg, Robert; Sieg, Mira M; Nachtigall, Laura; Ulm, Lena; Flöel, Agnes

    2014-01-01

    Language facilitation by transcranial direct current stimulation (tDCS) in healthy individuals has generated hope that tDCS may also allow improving language impairment after stroke (aphasia). However, current stimulation protocols have yielded variable results and may require identification of residual language cortex using functional magnetic resonance imaging (fMRI), which complicates incorporation into clinical practice. Based on previous behavioral studies that demonstrated improved language processing by motor system pre-activation, the present study assessed whether tDCS administered to the primary motor cortex (M1) can enhance language functions. This proof-of-concept study employed a sham-tDCS controlled, cross-over, within-subject design and assessed the impact of unilateral excitatory (anodal) and bihemispheric (dual) tDCS in 18 healthy older adults during semantic word-retrieval and motor speech tasks. Simultaneous fMRI scrutinized the neural mechanisms underlying tDCS effects. Both active tDCS conditions significantly improved word-retrieval compared to sham-tDCS. The direct comparison of activity elicited by word-retrieval vs. motor-speech trials revealed bilateral frontal activity increases during both anodal- and dual-tDCS compared to sham-tDCS. This effect was driven by more pronounced deactivation of frontal regions during the motor-speech task, while activity during word-retrieval trials was unaffected by the stimulation. No effects were found in M1 and secondary motor regions. Our results show that tDCS administered to M1 can improve word-retrieval in healthy individuals, thereby providing a rationale to explore whether M1-tDCS may offer a novel approach to improve language functions in aphasia. Functional magnetic resonance imaging revealed neural facilitation specifically during motor speech trials, which may have reduced switching costs between the overlapping neural systems for lexical retrieval and speech processing, thereby resulting in

  10. Neuropharmacology of Poststroke Motor and Speech Recovery.

    Science.gov (United States)

    Keser, Zafer; Francisco, Gerard E

    2015-11-01

    Almost 7 million adult Americans have had a stroke. There is a growing need for more effective treatment options as add-ons to conventional therapies. This article summarizes the published literature for pharmacologic agents used for the enhancement of motor and speech recovery after stroke. Amphetamine, levodopa, selective serotonin reuptake inhibitors, and piracetam were the most commonly used drugs. Pharmacologic augmentation of stroke motor and speech recovery seems promising but systematic, adequately powered, randomized, and double-blind clinical trials are needed. At this point, the use of these pharmacologic agents is not supported by class I evidence. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Longitudinal development of gross motor function among Dutch children and young adults with cerebral palsy: an investigation of motor growth curves.

    Science.gov (United States)

    Smits, Dirk-Wouter; Gorter, Jan Willem; Hanna, Steven E; Dallmeijer, Annet J; van Eck, Mirjam; Roebroeck, Marij E; Vos, Rimke C; Ketelaar, Marjolijn

    2013-04-01

    The aim of this study was to describe patterns for gross motor development by level of severity in a Dutch population of individuals with cerebral palsy (CP). This longitudinal study included 423 individuals (260 males, 163 females) with CP. The mean age at baseline was 9 years 6 months (SD 6y 2mo, range 1-22y). The level of severity of CP among participants, according to the Gross Motor Function Classification System (GMFCS), was 50% level I, 13% level II, 14% level III, 13% level IV, and 10% level V. Participants had been assessed up to four times with the Gross Motor Function Measure (GMFM-66) at 1- or 2-year intervals between 2002 and 2009. Data were analysed using non-linear mixed effects modelling. For each GMFCS level, patterns were created by contrasting a stable limit model (SLM) with a peak and decline model (PDM), followed by estimating limits and rates of gross motor development. The SLM showed a better fit for all GMFCS levels than the PDM. Within the SLM, significant differences between GMFCS levels were found for both the limits (higher values for lower GMFCS levels) and the rates (higher values for GMFCS levels I-II vs level IV and for GMFCS levels I-IV vs level V) of gross motor development. The results validate the existence of five distinct patterns for gross motor development by level of severity of CP. ©The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press.

  12. Effects of Physical Activity on Motor Skills and Cognitive Development in Early Childhood: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Nan Zeng

    2017-01-01

    Full Text Available Objective. This study synthesized literature concerning casual evidence of effects of various physical activity programs on motor skills and cognitive development in typically developed preschool children. Methods. Electronic databases were searched through July 2017. Peer-reviewed randomized controlled trials (RCTs examining the effectiveness of physical activity on motor skills and cognitive development in healthy young children (4–6 years were screened. Results. A total of 15 RCTs were included. Of the 10 studies assessing the effects of physical activity on motor skills, eight (80% reported significant improvements in motor performance and one observed mixed findings, but one failed to promote any beneficial outcomes. Of the five studies investigating the influence of physical activity on cognitive development, four (80% showed significant and positive changes in language learning, academic achievement, attention, and working memory. Notably, one indicated no significant improvements were observed after the intervention. Conclusions. Findings support causal evidence of effects of physical activity on both motor skills and cognitive development in preschool children. Given the shortage of available studies, future research with large representative samples is warranted to explore the relationships between physical activity and cognitive domains as well as strengthen and confirm the dose-response evidence in early childhood.

  13. [Interactive dynamic scalp acupuncture combined with occupational therapy for upper limb motor impairment in stroke: a randomized controlled trial].

    Science.gov (United States)

    Wang, Jun; Pei, Jian; Cui, Xiao; Sun, Kexing; Ni, Huanhuan; Zhou, Cuixia; Wu, Ji; Huang, Mei; Ji, Li

    2015-10-01

    To compare the clinical efficacy on upper limb motor impairment in stroke between the interactive dynamic scalp acupuncture therapy and the traditional scalp acupuncture therapy. The randomized controlled trial and MINIMIZE layering randomization software were adopted. Seventy patients of upper limb with III to V grade in Brunnstrom scale after stroke were randomized into an interactive dynamic scalp acupuncture group and a traditional scalp acupuncture group, 35 cases in each one. In the interactive dynamic scalp acupuncture group, the middle 2/5 of Dingnieqianxiexian (anterior oblique line of vertex-temporal), the middle 2/5 of Dingniehouxiexian (posterior oblique line of vertex-temporal) and Dingpangerxian (lateral line 2 of vertex) on the affected side were selected as the stimulation areas. Additionally, the rehabilitation training was applied during scalp acupuncture treatment. In the traditional scalp acupuncture group, the scalp stimulation areas were same as the interactive dynamic scalp acupuncture group. But the rehabilitation training was applied separately. The rehabilitation training was applied in the morning and the scalp acupuncture was done in the afternoon. The results in Fugl-Meyer for the upper limb motor function (U-FMA), the Wolf motor function measure scale (WM- FT) and the modified Barthel index in the two groups were compared between the two groups before treatment and in 1 and 2 months of treatment, respectively. After treatment, the U-FMA score, WMFT score and the score of the modified Barthel index were all apparently improved as compared with those before treatment (all P acupuncture group was better than that in the traditional scalp acupuncture group (P acupuncture group were improved apparently as compared with those in the traditional scalp acupuncture group (P acupuncture group were not different significantly as compared with those in the traditional scalp acupuncture group (both P > 0.05). For the patients of IV to V grade in

  14. Protocol study for a randomised, controlled, double-blind, clinical trial involving virtual reality and anodal transcranial direct current stimulation for the improvement of upper limb motor function in children with Down syndrome.

    Science.gov (United States)

    Lopes, Jamile Benite Palma; Grecco, Luanda André Collange; Moura, Renata Calhes Franco de; Lazzari, Roberta Delasta; Duarte, Natalia de Almeida Carvalho; Miziara, Isabela; Melo, Gileno Edu Lameira de; Dumont, Arislander Jonathan Lopes; Galli, Manuela; Santos Oliveira, Claudia

    2017-08-11

    Down syndrome results in neuromotor impairment that affects selective motor control, compromising the acquisition of motor skills and functional independence. The aim of the proposed study is to evaluate and compare the effects of multiple-monopolar anodal transcranial direct current stimulation and sham stimulation over the primary motor cortex during upper limb motor training involving virtual reality on motor control, muscle activity, cerebral activity and functional independence. A randomised, controlled, double-blind, clinical trial is proposed. The calculation of the sample size will be defined based on the results of a pilot study involving the same methods. The participants will be randomly allocated to two groups. Evaluations will be conducted before and after the intervention as well as 1 month after the end of the intervention process. At each evaluation, three-dimensional analysis of upper limb movement muscle activity will be measured using electromyography, cerebral activity will be measured using an electroencephalogram system and intellectual capacity will be assessed using the Wechsler Intelligence Scale for Children. Virtual reality training will be performed three times a week (one 20 min session per day) for a total of 10 sessions. During the protocol, transcranial stimulation will be administered concomitantly to upper limb motor training. The results will be analysed statistically, with a p value≤0.05 considered indicative of statistical significance. The present study received approval from the Institutional Review Board of Universidade Nove de Julho (Sao Paulo,Brazil) under process number 1.540.113 and is registered with the Brazilian Registry of Clinical Trials (N° RBR3PHPXB). The participating institutions have presented a declaration of participation. The volunteers will be permitted to drop out of the study at any time with no negative repercussions. The results will be published and will contribute evidence regarding the use of

  15. Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks.

    Directory of Open Access Journals (Sweden)

    Alessio Paolo Buccino

    Full Text Available Non-invasive Brain-Computer Interfaces (BCI have demonstrated great promise for neuroprosthetics and assistive devices. Here we aim to investigate methods to combine Electroencephalography (EEG and functional Near-Infrared Spectroscopy (fNIRS in an asynchronous Sensory Motor rhythm (SMR-based BCI. We attempted to classify 4 different executed movements, namely, Right-Arm-Left-Arm-Right-Hand-Left-Hand tasks. Previous studies demonstrated the benefit of EEG-fNIRS combination. However, since normally fNIRS hemodynamic response shows a long delay, we investigated new features, involving slope indicators, in order to immediately detect changes in the signals. Moreover, Common Spatial Patterns (CSPs have been applied to both EEG and fNIRS signals. 15 healthy subjects took part in the experiments and since 25 trials per class were available, CSPs have been regularized with information from the entire population of participants and optimized using genetic algorithms. The different features have been compared in terms of performance and the dynamic accuracy over trials shows that the introduced methods diminish the fNIRS delay in the detection of changes.

  16. Systematic Review of the Research on Motor Fitness of 1st-Year Students Attending Polish Institutions of Higher Education

    Directory of Open Access Journals (Sweden)

    Robert Podstawski

    2013-10-01

    Full Text Available Aim of the study. To establish: 1 the amount of research on general motor fitness of 1st-year students, conducted at selected Polish institutions of higher education between 1953-2010; 2 the number and kind of motor tests applied in this kind of research as well as the frequency of these tests during the period under study. Material and methods: The material for this research was composed of the publications on motor fitness of the first-year students taking part in specific motor trials applied at Polish tertiary institutions between 1953 - 2010. A diagnostic poll method was used in the research. Results: Fifty-four original research cases conducted in the period under study were observed. Within this period the trials such as: “100m run”, “jump from the run-up”, “grenade throw” and “ shot put” were more popular during the earlier years, while the trials such us: “zig-zag run”, “standing long jump”, and “medicine ball throw” were characteristic of more recent studies. Some of the most popular motor trials were: “standing long jump” – 38 cases, “medicine ball throw” – 30 cases, “zig-zag run” – 28 cases, “shuttle runs” – 9 cases, "short distance runs” – 12 cases, “downward bend from standing position” – 10 cases, and "vertical jump” – 8 cases. Conclusions: 1. Little research concerning the level of physical fitness of first-year students attending Polish tertiary institutions was conducted in the years 1953-2010; 2. The amount of motor fitness research carried out during this period fails to provide constant systematic assessment of the state of the students’ physical condition, which is a result of too large dispersions in time and territory where the measurements were taken; 3. In the motor fitness tests conducted with 1st-year students the determining variable was mainly gender, and only few research cases were found in which general motor fitness was analyzed according to

  17. Increased gamma band power during movement planning coincides with motor memory retrieval.

    Science.gov (United States)

    Thürer, Benjamin; Stockinger, Christian; Focke, Anne; Putze, Felix; Schultz, Tanja; Stein, Thorsten

    2016-01-15

    The retrieval of motor memory requires a previous memory encoding and subsequent consolidation of the specific motor memory. Previous work showed that motor memory seems to rely on different memory components (e.g., implicit, explicit). However, it is still unknown if explicit components contribute to the retrieval of motor memories formed by dynamic adaptation tasks and which neural correlates are linked to memory retrieval. We investigated the lower and higher gamma bands of subjects' electroencephalography during encoding and retrieval of a dynamic adaptation task. A total of 24 subjects were randomly assigned to a treatment and control group. Both groups adapted to a force field A on day 1 and were re-exposed to the same force field A on day 3 of the experiment. On day 2, treatment group learned an interfering force field B whereas control group had a day rest. Kinematic analyses showed that control group improved their initial motor performance from day 1 to day 3 but treatment group did not. This behavioral result coincided with an increased higher gamma band power in the electrodes over prefrontal areas on the initial trials of day 3 for control but not treatment group. Intriguingly, this effect vanished with the subsequent re-adaptation on day 3. We suggest that improved re-test performance in a dynamic motor adaptation task is contributed by explicit memory and that gamma bands in the electrodes over the prefrontal cortex are linked to these explicit components. Furthermore, we suggest that the contribution of explicit memory vanishes with the subsequent re-adaptation while task automaticity increases. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Motor-operated gearbox efficiency

    International Nuclear Information System (INIS)

    DeWall, K.G.; Watkins, J.C.; Bramwell, D.; Weidenhamer, G.H.

    1996-01-01

    Researchers at the Idaho National Engineering Laboratory recently conducted tests investigating the operating efficiency of the power train (gearbox) in motor-operators typically used in nuclear power plants to power motor-operated valves. Actual efficiency ratios were determined from in-line measurements of electric motor torque (input to the operator gearbox) and valve stem torque (output from the gearbox) while the operators were subjected to gradually increasing loads until the electric motor stalled. The testing included parametric studies under reduced voltage and elevated temperature conditions. As part of the analysis of the results, the authors compared efficiency values determined from testing to the values published by the operator manufacturer and typically used by the industry in calculations for estimating motor-operator capabilities. The operators they tested under load ran at efficiencies lower than the running efficiency (typically 50%) published by the operator manufacturer

  19. Motor-operated gearbox efficiency

    Energy Technology Data Exchange (ETDEWEB)

    DeWall, K.G.; Watkins, J.C.; Bramwell, D. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Weidenhamer, G.H.

    1996-12-01

    Researchers at the Idaho National Engineering Laboratory recently conducted tests investigating the operating efficiency of the power train (gearbox) in motor-operators typically used in nuclear power plants to power motor-operated valves. Actual efficiency ratios were determined from in-line measurements of electric motor torque (input to the operator gearbox) and valve stem torque (output from the gearbox) while the operators were subjected to gradually increasing loads until the electric motor stalled. The testing included parametric studies under reduced voltage and elevated temperature conditions. As part of the analysis of the results, the authors compared efficiency values determined from testing to the values published by the operator manufacturer and typically used by the industry in calculations for estimating motor-operator capabilities. The operators they tested under load ran at efficiencies lower than the running efficiency (typically 50%) published by the operator manufacturer.

  20. Motor-operator gearbox efficiency

    International Nuclear Information System (INIS)

    DeWall, K.G.; Watkins, J.C.; Bramwell, D.

    1996-01-01

    Researchers at the Idaho National Engineering Laboratory recently conducted tests investigating the operating efficiency of the power train (gearbox) in motor-operators typically used in nuclear power plants to power motor-operated valves. Actual efficiency ratios were determined from in-line measurements of electric motor torque (input to the operator gearbox) and valve stem torque (output from the gearbox) while the operators were subjected to gradually increasing loads until the electric motor stalled. The testing included parametric studies under reduced voltage and elevated temperature conditions. As part of the analysis of the results, we compared efficiency values determined from testing to the values published by the operator manufacturer and typically used by the industry in calculations for estimating motor-operator capabilities. The operators we tested under load ran at efficiencies lower than the running efficiency (typically 50%) published by the operator manufacturer

  1. Effect of Early Physical Activity Programs on Motor Performance and Neuromuscular Development in Infants Born Preterm: A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Leila Valizadeh

    2017-03-01

    Full Text Available Introduction: Although the survival rate of infants born preterm has increased, the prevalence of developmental problems and motor disorders among this population of infants remains the same. This study investigated the effect of physical activity programs in and out of water on motor performance and neuromuscular development of infants born preterm and had induced immobility by mechanical ventilation.Methods: This study was carried out in Al-Zahra hospital, Tabriz. 76 premature infants were randomly assigned into four groups. One group received daily passive range of motion to all extremities based on the Moyer-Mileur protocol. Hydrotherapy group received exercises for shoulders and pelvic area in water every other day. A combination group received physical activity programs in and out of water on alternating days. Infants in a containment group were held in a fetal position. Duration of study was two weeks ‘from 32 through 33 weeks post menstrual age (PMA. Motor outcomes were measured by the Test of Infant Motor Performance. Neuromuscular developmental was assessed by New Ballard scale and leg recoil and Ankle dorsiflexion items from Dubowitz scale. Data were analyzed using SPSS version 13.Results: TIMP and neuromuscular scores improved in all groups. Motor performance did not differ between groups at 34 weeks PMA. Postural tone of leg recoil was significantly higher in physical activity groups post intervention.Conclusion: Physical activities and containment didn’t have different effects on motor performance in infants born preterm. Leg recoil of neuromuscular development items was affected by physical activity programs.

  2. An investigation of the impact of regular use of the Wii Fit to improve motor and psychosocial outcomes in children with movement difficulties: a pilot study.

    Science.gov (United States)

    Hammond, J; Jones, V; Hill, E L; Green, D; Male, I

    2014-03-01

    Children with Developmental Co-ordination Disorder (DCD) experience poor motor and psychosocial outcomes. Interventions are often limited within the healthcare system, and little is known about how technology might be used within schools or homes to promote the motor skills and/or psychosocial development of these children. This study aimed to evaluate whether short, regular school-based sessions of movement experience using a commercially available home video game console (Nintendo's Wii Fit) would lead to benefits in both motor and psychosocial domains in children with DCD. A randomized crossover controlled trial of children with movement difficulties/DCD was conducted. Children were randomly assigned to an intervention (n = 10) or comparison (n = 8) group. The intervention group spent 10 min thrice weekly for 1 month using Wii Fit during the lunch break, while the comparison group took part in their regular Jump Ahead programme. Pre- and post-intervention assessments considered motor proficiency, self-perceived ability and satisfaction and parental assessment of emotional and behavioural problems. Significant gains were seen in motor proficiency, the child's perception of his/her motor ability and reported emotional well-being for many, but not all children. This study provides preliminary evidence to support the use of the Wii Fit within therapeutic programmes for children with movement difficulties. This simple, popular intervention represents a plausible method to support children's motor and psychosocial development. It is not possible from our data to say which children are most likely to benefit from such a programme and particularly what the dose and duration should be. Further research is required to inform across these and other questions regarding the implementation of virtual reality technologies in therapeutic services for children with movement difficulties. © 2013 John Wiley & Sons Ltd.

  3. Medical management of motor manifestations of Huntington disease.

    Science.gov (United States)

    McCusker, Elizabeth A; Loy, Clement T

    2017-01-01

    The motor and movement disorders of Huntington disease (HD) are managed in the context of the other disease features. Chorea and dystonia are the most common HD-associated movement disorders, and they can be assessed on research rating scales. However other motor manifestations have a significant impact. In particular, dysphagia influences choice and tolerance of treatment for the movement disorder, as will comorbidities, patient awareness, and distress related to the motor feature or movement. Treatment for other disease features may aggravate the motor disorder, e.g., increased swallowing difficulty associated with antipsychotic agents. Basic principles in deciding to institute a treatment are outlined as well as treatment of specific motor manifestations and movements. There is a paucity of evidence to support the treatments available for the motor disorder, with only one agent with class 1 evidence, tetrabenazine, for chorea. There are, however, treatments informed by expert opinion which reflect the management of a wider HD phenotype than that represented in clinical trials. Some treatments are based on evidence from use in other conditions. Medical management is usually undertaken later in the disease with concurrent nonmedical interventions after multidisciplinary assessments. Medication review with HD progression is essential. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Sliding Mode Control of Induction Motor Phase Currents

    DEFF Research Database (Denmark)

    Hansen, R.B.; Hattel, T.; Bork, J

    1995-01-01

    Sliding mode control of induction motor phase currents are investigated through development of two control concepts.......Sliding mode control of induction motor phase currents are investigated through development of two control concepts....

  5. Motor unit recruitment in human genioglossus muscle in response to hypercapnia.

    Science.gov (United States)

    Nicholas, Christian L; Bei, Bei; Worsnop, Christopher; Malhotra, Atul; Jordan, Amy S; Saboisky, Julian P; Chan, Julia K M; Duckworth, Ella; White, David P; Trinder, John

    2010-11-01

    single motor unit recordings of the genioglossus (GG) muscle indicate that GG motor units have a variety of discharge patterns, including units that have higher discharge rates during inspiration (inspiratory phasic and inspiratory tonic), or expiration (expiratory phasic and expiratory tonic), or do not modify their rate with respiration (tonic). Previous studies have shown that an increase in GG muscle activity is a consequence of increased activity in inspiratory units. However, there are differences between studies as to whether this increase is primarily due to recruitment of new motor units (motor unit recruitment) or to increased discharge rate of already active units (rate coding). Sleep-wake state studies in humans have suggested the former, while hypercapnia experiments in rats have suggested the latter. In this study, we investigated the effect of hypercapnia on GG motor unit activity in humans during wakefulness. sleep research laboratory. sixteen healthy men. each participant was administered at least 6 trials with P(et)CO(2) being elevated 8.4 (SD = 1.96) mm Hg over 2 min following a 30-s baseline. Subjects were instrumented for GG EMG and respiratory measurements with 4 fine wire electrodes inserted subcutaneously into the muscle. One hundred forty-one motor units were identified during the baseline: 47% were inspiratory modulated, 29% expiratory modulated, and 24% showed no respiratory related modulation. Sixty-two new units were recruited during hypercapnia. The distribution of recruited units was significantly different from the baseline distribution, with 84% being inspiratory modulated (P units active during baseline, nor new units recruited during hypercapnia, increased their discharge rate as P(et)CO(2) increased (P > 0.05 for all comparisons). increased GG muscle activity in humans occurs because of recruitment of previously inactive inspiratory modulated units.

  6. Effectiveness of autogenic training in improving motor performances in Parkinson's disease.

    Science.gov (United States)

    Ajimsha, M S; Majeed, Nisar A; Chinnavan, Elanchezhian; Thulasyammal, Ramiah Pillai

    2014-06-01

    Relaxation training can be an important adjunct in reducing symptoms associated with Parkinson's disease (PD). Autogenic Training (AT) is a simple, easily administered and inexpensive technique for retraining the mind and the body to be able to relax. AT uses visual imagery and body awareness to promote a state of deep relaxation. To investigate whether AT when used as an adjunct to Physiotherapy (PT) improves motor performances in PD in comparison with a control group receiving PT alone. Randomized, controlled, single blinded trial. Movement Disorder Clinic and Department of Physiotherapy, Sree Chithira Thirunal Institute of Medical Sciences and Technology in Trivandrum, Kerala, India. Patients with PD of grade 2 or 3 of Hoehn & Yahr (H&Y) scale (N = 66). AT group or control group. The techniques were administered by Physiotherapists trained in AT and consisted of 40 sessions per patient over 8 weeks. Motor score subscale of Unified Parkinson's Disease Rating Scale (UPDRS) was used to measure the motor performances. The primary outcome measure was the difference in Motor score subscale of UPDRS scores between Week 1 (pretest score), Week 8 (posttest score), and follow-up at Week 12 after randomization. The simple main effects analysis showed that the AT group performed better than the control group in weeks 8 and 12 (P < .005). Patients in the AT and control groups reported a 51.78% and 35.24% improvement, respectively, in their motor performances in Week 8 compared with that in Week 1, which persisted, in the follow-up (Week 12) as 30.82% in the AT group and 21.42% in the control group. This study provides evidence that AT when used as an adjunct to PT is more effective than PT alone in improving motor performances in PD patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Experimental investigation on sandwich structure ring-type ultrasonic motor.

    Science.gov (United States)

    Peng, Taijiang; Shi, Hongyan; Liang, Xiong; Luo, Feng; Wu, Xiaoyu

    2015-02-01

    This paper presents a manufacture method for a sandwich structure Ultrasonic Motor (USM) and experiment. Two pieces of rotor clamped on a stator, and a stainless steel disk-spring is bonded on the hollow rotor disk to provide the press by a nut assembled on the shaft. The stator is made of a double-side Printed-Circuit Board (PCB) which is sawed out the ring in the center and connected on the board with three legs. On each side of the ring surface, there are electrodes connected at the same position via through hole. The three layer drive circuit for sine, cosine, and ground signal is connected on the board through each leg. There are many piezoelectric components (PZT) bonded between two electrodes and fill soldering tin on each electrode. Then PZT is welded on PCB by reflow soldering. Finally, rub the gibbous soldering tin down to the position of PZT surface makes sure the surface contacts with rotor evenly. The welding process can also be completed by Surface Mounted Technology (SMT). A prototype motor is manufactured by this method. Two B03 model shapes of the stator are obtained by the finite element analysis and the optimal frequency of the motor is 56.375 kHz measured by impedance instrument. The theoretical analysis is conducted for the relationship between the revolving speed of the USM and thickness of stator ring, number of the travelling waves, PZT amplitude, frequency and the other parameters. The experiment result shows that the maximum revolving speed is 116 RPM and the maximum torque is 25 N mm, when the actuate voltage is 200 VAC. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats.

    Science.gov (United States)

    Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto

    2014-03-01

    We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Motor performance in children with Noonan syndrome

    NARCIS (Netherlands)

    Croonen, E.A.; Essink, M.; Burgt, I. van der; Draaisma, J.M.; Noordam, C.; Nijhuis-Van der Sanden, M.W.G.

    2017-01-01

    Although problems with motor performance in daily life are frequently mentioned in Noonan syndrome, the motor performance profile has never been systematically investigated. The aim of this study was to examine whether a specific profile in motor performance in children with Noonan syndrome was seen

  10. An investigation on motor-driven power steering-based crosswind disturbance compensation for the reduction of driver steering effort

    Science.gov (United States)

    Kim, Kyuwon; Kim, Boemjun; Go, Youngil; Park, Jaeyong; Park, Joonhong; Suh, Insoo; Yi, Kyongsu

    2014-07-01

    This paper describes a lateral disturbance compensation algorithm for an application to a motor-driven power steering (MDPS)-based driver assistant system. The lateral disturbance including wind force and lateral load transfer by bank angle reduces the driver's steering refinement and at the same time increases the possibility of an accident. A lateral disturbance compensation algorithm is designed to determine the motor overlay torque of an MDPS system for reducing the manoeuvreing effort of a human driver under lateral disturbance. Motor overlay torque for the compensation of driver's steering torque induced by the lateral disturbance consists of human torque feedback and feedforward torque. Vehicle-driver system dynamics have been investigated using a combined dynamic model which consists of a vehicle dynamic model, driver steering dynamic model and lateral disturbance model. The human torque feedback input has been designed via the investigation of the vehicle-driver system dynamics. Feedforward input torque is calculated to compensate additional tyre self-aligning torque from an estimated lateral disturbance. The proposed compensation algorithm has been implemented on a developed driver model which represents the driver's manoeuvreing characteristics under the lateral disturbance. The developed driver model has been validated with test data via a driving simulator in a crosswind condition. Human-in-the-loop simulations with a full-scale driving simulator on a virtual test track have been conducted to investigate the real-time performance of the proposed lateral disturbance compensation algorithm. It has been shown from simulation studies and human-in-the-loop simulation results that the driver's manoeuvreing effort and a lateral deviation of the vehicle under the lateral disturbance can be significantly reduced via the lateral disturbance compensation algorithm.

  11. Individual differences in motor timing and its relation to cognitive and fine motor skills.

    Directory of Open Access Journals (Sweden)

    Håvard Lorås

    Full Text Available The present study investigated the relationship between individual differences in timing movements at the level of milliseconds and performance on selected cognitive and fine motor skills. For this purpose, young adult participants (N = 100 performed a repetitive movement task paced by an auditory metronome at different rates. Psychometric measures included the digit-span and symbol search subtasks from the Wechsler battery as well as the Raven SPM. Fine motor skills were assessed with the Purdue Pegboard test. Motor timing performance was significantly related (mean r = .3 to cognitive measures, and explained both unique and shared variance with information-processing speed of Raven's scores. No significant relations were found between motor timing measures and fine motor skills. These results show that individual differences in cognitive and motor timing performance is to some extent dependent upon shared processing not associated with individual differences in manual dexterity.

  12. Neuromusculoskeletal models based on the muscle synergy hypothesis for the investigation of adaptive motor control in locomotion via sensory-motor coordination.

    Science.gov (United States)

    Aoi, Shinya; Funato, Tetsuro

    2016-03-01

    Humans and animals walk adaptively in diverse situations by skillfully manipulating their complicated and redundant musculoskeletal systems. From an analysis of measured electromyographic (EMG) data, it appears that despite complicated spatiotemporal properties, muscle activation patterns can be explained by a low dimensional spatiotemporal structure. More specifically, they can be accounted for by the combination of a small number of basic activation patterns. The basic patterns and distribution weights indicate temporal and spatial structures, respectively, and the weights show the muscle sets that are activated synchronously. In addition, various locomotor behaviors have similar low dimensional structures and major differences appear in the basic patterns. These analysis results suggest that neural systems use muscle group combinations to solve motor control redundancy problems (muscle synergy hypothesis) and manipulate those basic patterns to create various locomotor functions. However, it remains unclear how the neural system controls such muscle groups and basic patterns through neuromechanical interactions in order to achieve adaptive locomotor behavior. This paper reviews simulation studies that explored adaptive motor control in locomotion via sensory-motor coordination using neuromusculoskeletal models based on the muscle synergy hypothesis. Herein, the neural mechanism in motor control related to the muscle synergy for adaptive locomotion and a potential muscle synergy analysis method including neuromusculoskeletal modeling for motor impairments and rehabilitation are discussed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. Cross-cultural analysis of the motor development of Brazilian, Greek and Canadian infants assessed with the Alberta Infant Motor Scale

    Directory of Open Access Journals (Sweden)

    Raquel Saccani

    2013-09-01

    Full Text Available OBJECTIVE: To compare the motor development of infants from three population samples (Brazil, Canada and Greece, to investigate differences in the percentile curves of motor development in these samples, and to investigate the prevalence of motor delays in Brazilian children. METHODS: Observational, descriptive and cross-sectional study with 795 Brazilian infants from zero to 18 months of age, assessed by the Alberta Infant Motor Scale (AIMS at day care centers, nurseries, basic health units and at home. The Brazilian infants' motor scores were compared to the results of two population samples from Greece (424 infants and Canada (2,400 infants. Descriptive statistics was used, with one-sample t-test and binomial tests, being significant p≤0.05. RESULTS: 65.4% of Brazilian children showed typical motor development, although with lower mean scores. In the beginning of the second year of life, the differences in the motor development among Brazilian, Canadian and Greek infants were milder; at 15 months of age, the motor development became similar in the three groups. A non-linear motor development trend was observed. CONCLUSIONS: The lowest motor percentiles of the Brazilian sample emphasized the need for national norms in order to correctly categorize the infant motor development. The different ways of motor development may be a consequence of cultural differences in infant care.

  14. Individualized tracking of self-directed motor learning in group-housed mice performing a skilled lever positioning task in the home cage.

    Science.gov (United States)

    Silasi, Gergely; Boyd, Jamie D; Bolanos, Federico; LeDue, Jeff M; Scott, Stephen H; Murphy, Timothy H

    2018-01-01

    Skilled forelimb function in mice is traditionally studied through behavioral paradigms that require extensive training by investigators and are limited by the number of trials individual animals are able to perform within a supervised session. We developed a skilled lever positioning task that mice can perform within their home cage. The task requires mice to use their forelimb to precisely hold a lever mounted on a rotary encoder within a rewarded position to dispense a water reward. A Raspberry Pi microcomputer is used to record lever position during trials and to control task parameters, thus making this low-footprint apparatus ideal for use within animal housing facilities. Custom Python software automatically increments task difficulty by requiring a longer hold duration, or a more accurate hold position, to dispense a reward. The performance of individual animals within group-housed mice is tracked through radio-frequency identification implants, and data stored on the microcomputer may be accessed remotely through an active internet connection. Mice continuously engage in the task for over 2.5 mo and perform ~500 trials/24 h. Mice required ~15,000 trials to learn to hold the lever within a 10° range for 1.5 s and were able to further refine movement accuracy by limiting their error to a 5° range within each trial. These results demonstrate the feasibility of autonomously training group-housed mice on a forelimb motor task. This paradigm may be used in the future to assess functional recovery after injury or cortical reorganization induced by self-directed motor learning. NEW & NOTEWORTHY We developed a low-cost system for fully autonomous training of group-housed mice on a forelimb motor task. We demonstrate the feasibility of tracking both end-point, as well as kinematic performance of individual mice, with each performing thousands of trials over 2.5 mo. The task is run and controlled by a Raspberry Pi microcomputer, which allows for cages to be

  15. Two-Phase Induction Motor Drives

    Directory of Open Access Journals (Sweden)

    Gholam Reza Arab Markadeh

    2010-10-01

    Full Text Available The lack of variable-speed drives for two (single induction motor is a reality. This article attempts mainly to investigate the reasons for this lack of variable – speed drives. This paper deals with literature survey of various existing converter topologies, which have been proposed for adjustable speed single phase induction motor drives. Various converter topologies have been compared in this paper. Among these converter topologies, the adjustable frequency PWM inverter is the best choice for single-phase induction motor drives. However, adjustable-frequency drives have not been widely used with single-phase Induction motors. The open-loop constant V/F control law cannot be used with the single-phase induction motor drives as it is used with three phase motors. The variation of the operating frequency at lower speed range with constant load torque causes variation in motor's slip. A constant V/F control is suitable only over the upper speed range.

  16. Reliability of the test of gross motor development second edition (TGMD-2) for Kindergarten children in Myanmar.

    Science.gov (United States)

    Aye, Thanda; Oo, Khin Saw; Khin, Myo Thuzar; Kuramoto-Ahuja, Tsugumi; Maruyama, Hitoshi

    2017-10-01

    [Purpose] The purpose of this study was to investigate reliability of the test of gross motor development second edition (TGMD-2) for Kindergarten children in Myanmar. [Subjects and Methods] Fifty healthy Kindergarten children (23 males, 27 females) whose parents/guardians had given written consent were participated. The subjects were explained and demonstrated all 12 gross motor skills of TGMD-2 before the assessment. Each subject individually performed two trials for each gross motor skill and the performance was video recorded. Three raters separately watched the video recordings and rated for inter-rater reliability. The second assessment was done one month later with 25 out of 50 subjects for test-rest reliability. The video recordings of 12 subjects were randomly selected from the first 50 recordings for intra-rater reliability six weeks after the first assessment. The agreement on the locomotor and object control raw scores and the gross motor quotient (GMQ) were calculated. [Results] The findings of all the reliability coefficients for the locomotor and object control raw scores and the GMQ were interpreted as good and excellent reliability. [Conclusion] The results represented that TGMD-2 is a highly reliable and appropriate assessment tool for assessing gross motor skill development of Kindergarten children in Myanmar.

  17. Motor development in individuals with congenital adrenal hyperplasia: strength, targeting, and fine motor skill.

    Science.gov (United States)

    Collaer, Marcia L; Brook, Charles G D; Conway, Gerard S; Hindmarsh, Peter C; Hines, Melissa

    2009-02-01

    This study investigated early androgen influence on the development of human motor and visuomotor characteristics. Participants, ages 12-45 years, were individuals with congenital adrenal hyperplasia (CAH), a disorder causing increased adrenal androgen production before birth (40 females, 29 males) and their unaffected relatives (29 females, 30 males). We investigated grip strength and visuomotor targeting tasks on which males generally outperform females, and fine motor pegboard tasks on which females generally outperform males. Physical characteristics (height and weight) were measured to explore whether body parameters could explain differences in motor skills. Females with CAH were stronger and showed better targeting than unaffected females and showed reduced fine visuomotor skill on one pegboard measure, with no difference on the other. Males with CAH were weaker than unaffected males in grip strength but did not differ on the targeting or pegboard measures. Correction for body size could not explain the findings for females, but suggests that the reduced strength of males with CAH may relate to their smaller stature. Further, the targeting advantage in females with CAH persisted following adjustment for their greater strength. Results in females support the hypothesis that androgen may masculinize, or promote, certain motor characteristics at which males excel, and contribute to defeminization of certain fine motor characteristics at which females excel. Thus, these data suggest that organizational effects of androgens on behavior during prenatal life may extend to motor characteristics and may contribute to general sex differences in motor-related behaviors; however, alternative explanations based on activational influences of androgen or altered experiential factors cannot be excluded without further study.

  18. Effects of home-based locomotor treadmill training on gross motor function in young children with cerebral palsy: a quasi-randomized controlled trial.

    Science.gov (United States)

    Mattern-Baxter, Katrin; McNeil, Stefani; Mansoor, Jim K

    2013-11-01

    To examine the effects of an intensive home-based program of treadmill training on motor skills related to walking in preambulatory children with cerebral palsy (CP). Quasi-randomized controlled trial. Homes of the participants. Children with CP (N=12) with Gross Motor Function Classification System levels I and II were assigned to the intervention group (n=6; mean age ± SD, 21.76±6.50mo) and control group (n=6; 21.25±6.07mo). All children were tested preintervention, postintervention, at a 1-month follow-up, and at a 4-month follow-up. All children received their weekly scheduled physical therapy sessions at their homes. In addition, children in the intervention group walked on a portable treadmill in their homes 6 times per week, twice daily for 10- to 20-minute sessions, for 6 weeks. The intervention was carried out by the children's parents with weekly supervision by a physical therapist. Gross Motor Function Measure-66 Dimensions D/E, Peabody Developmental Motor Scales-2 (PDMS-2), Pediatric Evaluation of Disability Inventory (PEDI), timed 10-m walk test (10MWT), and Functional Mobility Scale (FMS). The Friedman test and Mann-Whitney U test were conducted for within-group and between-group differences, respectively. There was a significant between-group treatment effect for the PDMS-2 at posttest (P=.01) and 1-month postintervention follow-up (P=.09), as well as for the PEDI at posttest (P=.01), the 1-month postintervention follow-up (P=.009), and the 4-month postintervention follow-up (P=.04). The FMS was significant at the posttest (P=.04). Home-based treadmill training accelerates the attainment of walking skills and decreases the amount of support used for walking in young children with CP. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. SMA CARNIVAL TRIAL PART II: a prospective, single-armed trial of L-carnitine and valproic acid in ambulatory children with spinal muscular atrophy.

    Directory of Open Access Journals (Sweden)

    John T Kissel

    Full Text Available BACKGROUND: Multiple lines of evidence have suggested that valproic acid (VPA might benefit patients with spinal muscular atrophy (SMA. The SMA CARNIVAL TRIAL was a two part prospective trial to evaluate oral VPA and L-carnitine in SMA children. Part 1 targeted non-ambulatory children ages 2-8 in a 12 month cross over design. We report here Part 2, a twelve month prospective, open-label trial of VPA and L-carnitine in ambulatory SMA children. METHODS: This study involved 33 genetically proven type 3 SMA subjects ages 3-17 years. Subjects underwent two baseline assessments over 4-6 weeks and then were placed on VPA and L-carnitine for 12 months. Assessments were performed at baseline, 3, 6 and 12 months. Primary outcomes included safety, adverse events and the change at 6 and 12 months in motor function assessed using the Modified Hammersmith Functional Motor Scale Extend (MHFMS-Extend, timed motor tests and fine motor modules. Secondary outcomes included changes in ulnar compound muscle action potential amplitudes (CMAP, handheld dynamometry, pulmonary function, and Pediatric Quality of Life Inventory scores. RESULTS: Twenty-eight subjects completed the study. VPA and carnitine were generally well tolerated. Although adverse events occurred in 85% of subjects, they were usually mild and transient. Weight gain of 20% above body weight occurred in 17% of subjects. There was no significant change in any primary outcome at six or 12 months. Some pulmonary function measures showed improvement at one year as expected with normal growth. CMAP significantly improved suggesting a modest biologic effect not clinically meaningful. CONCLUSIONS: This study, coupled with the CARNIVAL Part 1 study, indicate that VPA is not effective in improving strength or function in SMA children. The outcomes used in this study are feasible and reliable, and can be employed in future trials in SMA. TRIAL REGSITRATION: Clinicaltrials.gov NCT00227266.

  20. External data required timely response by the Trial Steering-Data Monitoring Committee for the NALoxone InVEstigation (N-ALIVE pilot trial

    Directory of Open Access Journals (Sweden)

    Sheila M. Bird

    2017-03-01

    Full Text Available The prison-based N-ALIVE pilot trial had undertaken to notify the Research Ethics Committee and participants if we had reason to believe that the N-ALIVE pilot trial would not proceed to the main trial. In this paper, we describe how external data for the third year of before/after evaluation from Scotland's National Naloxone Programme, a related public health policy, were anticipated by eliciting prior opinion about the Scottish results in the month prior to their release as official statistics. We summarise how deliberations by the N-ALIVE Trial Steering-Data Monitoring Committee (TS-DMC on N-ALIVE's own interim data, together with those on naloxone-on-release (NOR from Scotland, led to the decision to cease randomization in the N-ALIVE pilot trial and recommend to local Principal Investigators that NOR be offered to already-randomized prisoners who had not yet been released.

  1. Maximum power operation of interacting molecular motors

    DEFF Research Database (Denmark)

    Golubeva, Natalia; Imparato, Alberto

    2013-01-01

    , as compared to the non-interacting system, in a wide range of biologically compatible scenarios. We furthermore consider the case where the motor-motor interaction directly affects the internal chemical cycle and investigate the effect on the system dynamics and thermodynamics.......We study the mechanical and thermodynamic properties of different traffic models for kinesin which are relevant in biological and experimental contexts. We find that motor-motor interactions play a fundamental role by enhancing the thermodynamic efficiency at maximum power of the motors...

  2. Ganzfeld stimulation or sleep enhance long term motor memory consolidation compared to normal viewing in saccadic adaptation paradigm.

    Directory of Open Access Journals (Sweden)

    Caroline Voges

    Full Text Available Adaptation of saccade amplitude in response to intra-saccadic target displacement is a type of implicit motor learning which is required to compensate for physiological changes in saccade performance. Once established trials without intra-saccadic target displacement lead to de-adaptation or extinction, which has been attributed either to extra-retinal mechanisms of spatial constancy or to the influence of the stable visual surroundings. Therefore we investigated whether visual deprivation ("Ganzfeld"-stimulation or sleep can partially maintain this motor learning compared to free viewing of the natural surroundings. Thirty-five healthy volunteers performed two adaptation blocks of 100 inward adaptation trials - interspersed by an extinction block - which were followed by a two-hour break with or without visual deprivation (VD. Using additional adaptation and extinction blocks short and long (4 weeks term memory of this implicit motor learning were tested. In the short term, motor memory tested immediately after free viewing was superior to adaptation performance after VD. In the long run, however, effects were opposite: motor memory and relearning of adaptation was superior in the VD conditions. This could imply independent mechanisms that underlie the short-term ability of retrieving learned saccadic gain and its long term consolidation. We suggest that subjects mainly rely on visual cues (i.e., retinal error in the free viewing condition which makes them prone to changes of the visual stimulus in the extinction block. This indicates the role of a stable visual array for resetting adapted saccade amplitudes. In contrast, visual deprivation (GS and sleep, might train subjects to rely on extra-retinal cues, e.g., efference copy or prediction to remap their internal representations of saccade targets, thus leading to better consolidation of saccadic adaptation.

  3. Financial ties of principal investigators and randomized controlled trial outcomes: cross sectional study.

    Science.gov (United States)

    Ahn, Rosa; Woodbridge, Alexandra; Abraham, Ann; Saba, Susan; Korenstein, Deborah; Madden, Erin; Boscardin, W John; Keyhani, Salomeh

    2017-01-17

     To examine the association between the presence of individual principal investigators' financial ties to the manufacturer of the study drug and the trial's outcomes after accounting for source of research funding.  Cross sectional study of randomized controlled trials (RCTs).  Studies published in "core clinical" journals, as identified by Medline, between 1 January 2013 and 31 December 2013.  Random sample of RCTs focused on drug efficacy.  Association between financial ties of principal investigators and study outcome.  A total of 190 papers describing 195 studies met inclusion criteria. Financial ties between principal investigators and the pharmaceutical industry were present in 132 (67.7%) studies. Of 397 principal investigators, 231 (58%) had financial ties and 166 (42%) did not. Of all principal investigators, 156 (39%) reported advisor/consultancy payments, 81 (20%) reported speakers' fees, 81 (20%) reported unspecified financial ties, 52 (13%) reported honorariums, 52 (13%) reported employee relationships, 52 (13%) reported travel fees, 41 (10%) reported stock ownership, and 20 (5%) reported having a patent related to the study drug. The prevalence of financial ties of principal investigators was 76% (103/136) among positive studies and 49% (29/59) among negative studies. In unadjusted analyses, the presence of a financial tie was associated with a positive study outcome (odds ratio 3.23, 95% confidence interval 1.7 to 6.1). In the primary multivariate analysis, a financial tie was significantly associated with positive RCT outcome after adjustment for the study funding source (odds ratio 3.57 (1.7 to 7.7). The secondary analysis controlled for additional RCT characteristics such as study phase, sample size, country of first authors, specialty, trial registration, study design, type of analysis, comparator, and outcome measure. These characteristics did not appreciably affect the relation between financial ties and study outcomes (odds ratio 3.37, 1

  4. A single bout of exercise improves motor memory

    DEFF Research Database (Denmark)

    Roig, Marc; Skriver, Kasper Christen; Lundbye-Jensen, Jesper

    2012-01-01

    Regular physical activity has a positive impact on cognition and brain function. Here we investigated if a single bout of exercise can improve motor memory and motor skill learning. We also explored if the timing of the exercise bout in relation to the timing of practice has any impact on the acq...... exercise on long-term motor memory....... that exercised before practice, the subjects that exercised after practice showed a better retention of the motor skill 7 days after practice. These findings indicate that one bout of intense exercise performed immediately before or after practicing a motor task is sufficient to improve the long-term retention......Regular physical activity has a positive impact on cognition and brain function. Here we investigated if a single bout of exercise can improve motor memory and motor skill learning. We also explored if the timing of the exercise bout in relation to the timing of practice has any impact...

  5. Overview of Bearingless Induction Motors

    Directory of Open Access Journals (Sweden)

    Xiaodong Sun

    2014-01-01

    Full Text Available Bearingless induction motors combining functions of both torque generation and noncontact magnetic suspension together have attracted more and more attention in the past decades due to their definite advantages of compactness, simple structure, less maintenance, no wear particles, high rotational speed, and so forth. This paper overviews the key technologies of the bearingless induction motors, with emphasis on motor topologies, mathematical models, and control strategies. Particularly, in the control issues, the vector control, independent control, direct torque control, nonlinear decoupling control, sensorless control, and so forth are investigated. In addition, several possible development trends of the bearingless induction motors are also discussed.

  6. External Control of Knowledge of Results: Learner Involvement Enhances Motor Skill Transfer.

    Science.gov (United States)

    Figueiredo, L S; Ugrinowitsch, H; Freire, A B; Shea, J B; Benda, R N

    2018-04-01

    Providing the learner control over aspects of practice has improved the process of motor skill acquisition, and self-controlled knowledge of results (KR) schedules have shown specific advantages over externally controlled ones. A possible explanation is that self-controlled KR schedules lead learners to more active task involvement, permitting deeper information processing. This study tested this explanatory hypothesis. Thirty undergraduate volunteers of both sexes, aged 18 to 35, all novices in the task, practiced transporting a tennis ball in a specified sequence within a time goal. We compared a high-involvement group (involvement yoked, IY), notified in advance about upcoming KR trials, to self-controlled KR (SC) and yoked KR (YK) groups. The experiment consisted of three phases: acquisition, retention, and transfer. We found both IY and SC groups to be superior to YK for transfer of learning. Postexperiment participant questionnaires confirmed a preference for receiving KR after learner-perceived good trials, even though performance on those trials did not differ from performance on trials without KR. Equivalent IY and SC performances provide support for the benefits of task involvement and deeper information processing when KR is self-controlled in motor skill acquisition.

  7. Analysis of previous perceptual and motor experience in breaststroke kick learning

    Directory of Open Access Journals (Sweden)

    Ried Bettina

    2015-12-01

    Full Text Available One of the variables that influence motor learning is the learner’s previous experience, which may provide perceptual and motor elements to be transferred to a novel motor skill. For swimming skills, several motor experiences may prove effective. Purpose. The aim was to analyse the influence of previous experience in playing in water, swimming lessons, and music or dance lessons on learning the breaststroke kick. Methods. The study involved 39 Physical Education students possessing basic swimming skills, but not the breaststroke, who performed 400 acquisition trials followed by 50 retention and 50 transfer trials, during which stroke index as well as rhythmic and spatial configuration indices were mapped, and answered a yes/no questionnaire regarding previous experience. Data were analysed by ANOVA (p = 0.05 and the effect size (Cohen’s d ≥0.8 indicating large effect size. Results. The whole sample improved their stroke index and spatial configuration index, but not their rhythmic configuration index. Although differences between groups were not significant, two types of experience showed large practical effects on learning: childhood water playing experience only showed major practically relevant positive effects, and no experience in any of the three fields hampered the learning process. Conclusions. The results point towards diverse impact of previous experience regarding rhythmic activities, swimming lessons, and especially with playing in water during childhood, on learning the breaststroke kick.

  8. What autocorrelation tells us about motor variability: insights from dart throwing.

    Directory of Open Access Journals (Sweden)

    Robert J van Beers

    Full Text Available In sports such as golf and darts it is important that one can produce ballistic movements of an object towards a goal location with as little variability as possible. A factor that influences this variability is the extent to which motor planning is updated from movement to movement based on observed errors. Previous work has shown that for reaching movements, our motor system uses the learning rate (the proportion of an error that is corrected for in the planning of the next movement that is optimal for minimizing the endpoint variability. Here we examined whether the learning rate is hard-wired and therefore automatically optimal, or whether it is optimized through experience. We compared the performance of experienced dart players and beginners in a dart task. A hallmark of the optimal learning rate is that the lag-1 autocorrelation of movement endpoints is zero. We found that the lag-1 autocorrelation of experienced dart players was near zero, implying a near-optimal learning rate, whereas it was negative for beginners, suggesting a larger than optimal learning rate. We conclude that learning rates for trial-by-trial motor learning are optimized through experience. This study also highlights the usefulness of the lag-1 autocorrelation as an index of performance in studying motor-skill learning.

  9. Motor imagery and its effect on complex regional pain syndrome: an integrative review

    Directory of Open Access Journals (Sweden)

    Nélio Silva de Souza

    2015-12-01

    Full Text Available The motor imagery (MI has been proposed as a treatment in the complex regional pain syndrome type 1 (CRPS-1, since it seems to promote a brain reorganization effect on sensory- motor areas of pain perception. The aim of this paper is to investigate, through an integrative critical review, the influence of MI on the CRPS-1, correlating their evidence to clinical practice. Research in PEDro, Medline, Bireme and Google Scholar databases was conducted. Nine randomized controlled trials (level 2, 1 non-controlled clinical study (level 3, 1 case study (level 4, 1 systematic review (level 1, 2 review articles and 1 comment (level 5 were found. We can conclude that MI has shown effect in reducing pain and functionality that remains after 6 months of treatment. However, the difference between the MI strategies for CRPS-1 is unknown as well as the intensity of mental stress influences the painful response or effect of MI or other peripheral neuropathies.

  10. Temporal prediction abilities are mediated by motor effector and rhythmic expertise.

    Science.gov (United States)

    Manning, Fiona C; Harris, Jennifer; Schutz, Michael

    2017-03-01

    Motor synchronization is a critical part of musical performance and listening. Recently, motor control research has described how movements that contain more available degrees of freedom are more accurately timed. Previously, we demonstrated that stick tapping improves perception in a timing detection task, where percussionists greatly outperformed non-percussionists only when tapping along. Since most synchronization studies implement finger tapping to examine simple motor synchronization, here we completed a similar task where percussionists and non-percussionists synchronized using finger tapping; movement with fewer degrees of freedom than stick tapping. Percussionists and non-percussionists listened to an isochronous beat sequence and identified the timing of a probe tone. On half of the trials, they tapped along with their index finger, and on the other half of the trials, they listened without moving prior to making timing judgments. We found that both groups benefited from tapping overall. Interestingly, percussionists performed only marginally better than did non-percussionists when finger tapping and no different when listening alone, differing from past studies reporting highly superior timing abilities in percussionists. Additionally, we found that percussionist finger tapping was less variable and less asynchronous than was non-percussionist tapping. Moreover, in both groups finger tapping was more variable and more asynchronous than stick tapping in our previous study. This study demonstrates that the motor effector implemented in tapping studies affects not only synchronization abilities, but also subsequent prediction abilities. We discuss these findings in light of effector-specific training and degrees of freedom in motor timing, both of which impact timing abilities to different extents.

  11. Effects of emotional and perceptual-motor stress on a voice recognition system's accuracy: An applied investigation

    Science.gov (United States)

    Poock, G. K.; Martin, B. J.

    1984-02-01

    This was an applied investigation examining the ability of a speech recognition system to recognize speakers' inputs when the speakers were under different stress levels. Subjects were asked to speak to a voice recognition system under three conditions: (1) normal office environment, (2) emotional stress, and (3) perceptual-motor stress. Results indicate a definite relationship between voice recognition system performance and the type of low stress reference patterns used to achieve recognition.

  12. Summary of electric vehicle dc motor-controller tests

    Science.gov (United States)

    Mcbrien, E. F.; Tryon, H. B.

    1982-01-01

    The differences in the performance of dc motors are evaluated when operating with chopper type controllers, and when operating on direct current. The interactions between the motor and the controller which cause these differences are investigated. Motor-controlled tests provided some of the data the quantified motor efficiency variations for both ripple free and chopper modes of operation.

  13. Motor imagery based brain-computer interfaces: An emerging technology to rehabilitate motor deficits.

    Science.gov (United States)

    Alonso-Valerdi, Luz Maria; Salido-Ruiz, Ricardo Antonio; Ramirez-Mendoza, Ricardo A

    2015-12-01

    When the sensory-motor integration system is malfunctioning provokes a wide variety of neurological disorders, which in many cases cannot be treated with conventional medication, or via existing therapeutic technology. A brain-computer interface (BCI) is a tool that permits to reintegrate the sensory-motor loop, accessing directly to brain information. A potential, promising and quite investigated application of BCI has been in the motor rehabilitation field. It is well-known that motor deficits are the major disability wherewith the worldwide population lives. Therefore, this paper aims to specify the foundation of motor rehabilitation BCIs, as well as to review the recent research conducted so far (specifically, from 2007 to date), in order to evaluate the suitability and reliability of this technology. Although BCI for post-stroke rehabilitation is still in its infancy, the tendency is towards the development of implantable devices that encompass a BCI module plus a stimulation system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Quantification of the proportion of motor neurons recruited by transcranial electrical stimulation during intraoperative motor evoked potential monitoring.

    Science.gov (United States)

    Tsutsui, Shunji; Yamada, Hiroshi; Hashizume, Hiroshi; Minamide, Akihito; Nakagawa, Yukihiro; Iwasaki, Hiroshi; Yoshida, Munehito

    2013-12-01

    Transcranial motor evoked potentials (TcMEPs) are widely used to monitor motor function during spinal surgery. However, they are much smaller and more variable in amplitude than responses evoked by maximal peripheral nerve stimulation, suggesting that a limited number of spinal motor neurons to the target muscle are excited by transcranial stimulation. The aim of this study was to quantify the proportion of motor neurons recruited during TcMEP monitoring under general anesthesia. In twenty patients who underwent thoracic and/or lumbar spinal surgery with TcMEP monitoring, the triple stimulation technique (TST) was applied to the unilateral upper arm intraoperatively. Total intravenous anesthesia was employed. Trains of four stimuli were delivered with maximal intensity and an inter-pulse interval of 1.5 ms. TST responses were recorded from the abductor digiti minimi muscle, and the negative peak amplitude and area were measured and compared between the TST test (two collisions between transcranial and proximal and distal peripheral stimulation) and control response (two collisions between two proximal and one distal peripheral stimulation). The highest degree of superimposition of the TST test and control responses was chosen from several trials per patient. The average ratios (test:control) were 17.1 % (range 1.8-38 %) for the amplitudes and 21.6 % (range 2.9-40 %) for the areas. The activity of approximately 80 % of the motor units to the target muscle cannot be detected by TcMEP monitoring. Therefore, changes in evoked potentials must be interpreted cautiously when assessing segmental motor function with TcMEP monitoring.

  15. Effect of High-Intensity Treadmill Exercise on Motor Symptoms in Patients With De Novo Parkinson Disease: A Phase 2 Randomized Clinical Trial.

    Science.gov (United States)

    Schenkman, Margaret; Moore, Charity G; Kohrt, Wendy M; Hall, Deborah A; Delitto, Anthony; Comella, Cynthia L; Josbeno, Deborah A; Christiansen, Cory L; Berman, Brian D; Kluger, Benzi M; Melanson, Edward L; Jain, Samay; Robichaud, Julie A; Poon, Cynthia; Corcos, Daniel M

    2018-02-01

    Parkinson disease is a progressive neurologic disorder. Limited evidence suggests endurance exercise modifies disease severity, particularly high-intensity exercise. To examine the feasibility and safety of high-intensity treadmill exercise in patients with de novo Parkinson disease who are not taking medication and whether the effect on motor symptoms warrants a phase 3 trial. The Study in Parkinson Disease of Exercise (SPARX) was a phase 2, multicenter randomized clinical trial with 3 groups and masked assessors. Individuals from outpatient and community-based clinics were enrolled from May 1, 2012, through November 30, 2015, with the primary end point at 6 months. Individuals with idiopathic Parkinson disease (Hoehn and Yahr stages 1 or 2) aged 40 to 80 years within 5 years of diagnosis who were not exercising at moderate intensity greater than 3 times per week and not expected to need dopaminergic medication within 6 months participated in this study. A total of 384 volunteers were screened by telephone; 128 were randomly assigned to 1 of 3 groups (high-intensity exercise, moderate-intensity exercise, or control). High-intensity treadmill exercise (4 days per week, 80%-85% maximum heart rate [n = 43]), moderate-intensity treadmill exercise (4 days per week, 60%-65% maximum heart rate [n = 45]), or wait-list control (n = 40) for 6 months. Feasibility measures were adherence to prescribed heart rate and exercise frequency of 3 days per week and safety. The clinical outcome was 6-month change in Unified Parkinson's Disease Rating Scale motor score. A total of 128 patients were included in the study (mean [SD] age, 64 [9] years; age range, 40-80 years; 73 [57.0%] male; and 108 [84.4%] non-Hispanic white). Exercise rates were 2.8 (95% CI, 2.4-3.2) days per week at 80.2% (95% CI, 78.8%-81.7%) maximum heart rate in the high-intensity group and 3.2 (95% CI, 2.8-3.6; P = .13) days per week at 65.9% (95% CI, 64.2%-67.7%) maximum heart rate in the

  16. Using in-depth investigations to identify transportation safety issues for wheelchair-seated occupants of motor vehicles.

    Science.gov (United States)

    Schneider, Lawrence W; Klinich, Kathleen D; Moore, Jamie L; MacWilliams, Joel B

    2010-04-01

    In-depth investigations of motor-vehicle crashes involve detailed inspection, measurement, and photodocumentation of vehicle exterior and interior damage, evidence of belt-restraint use, and evidence of occupant contacts with the vehicle interior. Results of in-depth investigations thereby provide the most objective way to identify current and emerging injury problems and issues in occupant safety and crash protection, and provide important feedback on the real-world performance of the latest restraint-system and vehicle crashworthiness technologies. To provide an objective understanding of real-world transportation safety issues for wheelchair-seated travelers, the University of Michigan Transportation Research Institute (UMTRI) has been conducting and assembling data from in-depth investigations of motor-vehicle crashes and non-crash adverse moving-vehicle incidents, such as emergency vehicle braking, turning, and swerving, in which there was at least one vehicle occupant sitting in a wheelchair. The results of 39 investigations involving 42 wheelchair-seated occupants have been assembled and entered into a wheelchair-occupant crash/injury database. In addition, a biomechanical analysis of each case has been performed to identify key safety issues for wheelchair-seated travelers. The wheelchairs of 34 of the 42 occupants who were seated in wheelchairs while traveling in motor vehicles were effectively secured by either a four-point, strap-type tiedown system or a docking securement device, and all but one of these properly secured wheelchairs remained in place during the crash or non-collision event. However, 30 of the 42 occupants were improperly restrained, either because of non-use or incomplete use of available belt restraints, or because the belt restraints were improperly positioned on the occupant's body. Twenty-six of the 42 occupants sustained significant injuries and 10 of these occupants died as a direct result of injuries sustained, or from

  17. Efficacy of motor imagery in post-stroke rehabilitation: a systematic review

    Directory of Open Access Journals (Sweden)

    Puhan Milo A

    2008-03-01

    Full Text Available Abstract Background Evaluation of how Motor Imagery and conventional therapy (physiotherapy or occupational therapy compare to conventional therapy only in their effects on clinically relevant outcomes during rehabilitation of persons with stroke. Design Systematic review of the literature Methods We conducted an electronic database search in seven databases in August 2005 and also hand-searched the bibliographies of studies that we selected for the review. Two reviewers independently screened and selected all randomized controlled trials that compare the effects of conventional therapy plus Motor Imagery to those of only conventional therapy on stroke patients. The outcome measurements were: Fugl-Meyer Stroke Assessment upper extremity score (66 points and Action Research Arm Test upper extremity score (57 points. Due to the high variability in the outcomes, we could not pool the data statistically. Results We identified four randomized controlled trials from Asia and North America. The quality of the included studies was poor to moderate. Two different Motor imagery techniques were used (three studies used audiotapes and one study had occupational therapists apply the intervention. Two studies found significant effects of Motor Imagery in the Fugl-Meyer Stroke Assessment: Differences between groups amounted to 11.0 (1.0 to 21.0 and 3.2 (-4 to 10.3 respectively and in the Action Research Arm Test 6.1 (-6.2 to 18.4 and 15.8 (0.5 to 31.0 respectively. One study did not find a significant effect in the Fugl-Meyer Stroke Assessment and Color trail Test (p = 0.28 but in the task-related outcomes (p > 0.001. Conclusion Current evidence suggests that Motor imagery provides additional benefits to conventional physiotherapy or occupational therapy. However, larger and methodologically sounder studies should be conducted to assess the benefits of Motor imagery.

  18. Motor planning in children with cerebral palsy: A longitudinal perspective.

    Science.gov (United States)

    Lust, Jessica Mireille; Spruijt, Steffie; Wilson, Peter H; Steenbergen, Bert

    2018-08-01

    Motor planning is important for daily functioning. Deficits in motor planning can result in slow, inefficient, and clumsy motor behavior and are linked to disruptions in performance of activities of daily living in children with cerebral palsy (CP). However, the evidence in CP is primarily based on cross-sectional data. Data are presented on the development of motor planning in children with CP using a longitudinal design with three measurement occasions, each separated by 1 year. Twenty-two children with CP (9 boys, 13 girls; age in years;months, M = 7;1, SD = 1;2) and 22 age-matched controls (10 boys, 12 girls, M  = 7;1, SD = 1;3) participated. Children performed a bar transport task in which some conditions ("critical angles") required participants to sacrifice initial posture comfort in order to achieve end-state comfort. Performance on critical trials was analyzed using linear growth curve modeling. In general, children with CP showed poor end-state planning for critical angles. Importantly, unlike in controls, motor planning ability did not improve across the three measurement occasions in children with CP. These longitudinal results show that motor planning issues in CP do not resolve with development over childhood. Strategies to enhance motor planning are suggested for intervention.

  19. Effects of low-frequency repetitive transcranial magnetic stimulation on upper extremity motor recovery and functional outcomes in chronic stroke patients: A randomized controlled trial.

    Science.gov (United States)

    Aşkın, Ayhan; Tosun, Aliye; Demirdal, Ümit Seçil

    2017-06-01

    Repetitive transcranial magnetic stimulation (rTMS) was suggested as a preconditioning method that would increase brain plasticity and that it would be optimal to combine rTMS with intensive rehabilitation. To assess the efficacy of inhibitory rTMS on upper extremity motor recovery and functional outcomes in chronic ischemic stroke patients. In this randomized controlled trial, experimental group received low-frequency (LF) rTMS to the primary motor cortex of the unaffected side + physical therapy (PT), and control group received PT. No statistically significant difference was found in baseline demographical and clinical characteristics of the subjects including stroke severity or severity of paralysis prior to intervention. There were statistically significant improvements in all clinical outcome measures except for the Brunnstrom Recovery Stages. Fugl-Meyer Assessment, Box and Block test, motor and total scores of Functional Independence Measurement (FIM), and Functional Ambulation Scale (FAS) scores were significantly increased in both groups, however, these changes were significantly greater in the rTMS group except for FAS score. FIM cognitive scores and standardized mini-mental test scores were significantly increased and distal and hand Modified Ashworth Scale scores were significantly decreased only in the rTMS group (p functional, and cognitive deficits in chronic stroke. Further studies with a larger number of patients with longer follow-up periods are needed to establish its effectiveness in stroke rehabilitation.

  20. Cognitive motor intervention for gait and balance in Parkinson's disease: systematic review and meta-analysis.

    Science.gov (United States)

    Wang, Xue-Qiang; Pi, Yan-Ling; Chen, Bing-Lin; Wang, Ru; Li, Xin; Chen, Pei-Jie

    2016-02-01

    We performed a systematic review and meta-analysis to assess the effect of cognitive motor intervention (CMI) on gait and balance in Parkinson's disease. PubMed, Embase, Cochrane Library, CINAHL, Web of Science, PEDro, and China Biology Medicine disc. We included randomized controlled trials (RCTs) and non RCTs. Two reviewers independently evaluated articles for eligibility and quality and serially abstracted data. A standardized mean difference ± standard error and 95% confidence interval (CI) was calculated for each study using Hedge's g to quantify the treatment effect. Nine trials with 181 subjects, four randomized controlled trials, and five single group intervention studies were included. The pooling revealed that cognitive motor intervention can improve gait speed (Hedge's g = 0.643 ± 0.191; 95% CI: 0.269 to 1.017, P = 0.001), stride time (Hedge's g = -0.536 ± 0.167; 95% CI: -0.862 to -0.209, P = 0.001), Berg Balance Scale (Hedge's g = 0.783 ± 0.289; 95% CI: 0.218 to 1.349, P = 0.007), Unipedal Stance Test (Hedge's g = 0.440 ± 0.189; 95% CI: 0.07 to 0.81, P =0.02). The systematic review demonstrates that cognitive motor intervention is effective for gait and balance in Parkinson's disease. However, the paper is limited by the quality of the included trials. © The Author(s) 2015.

  1. [Challenges in the organization of investigator initiated trials: in transplantation medicine].

    Science.gov (United States)

    Schnitzbauer, A A; Lamby, P E; Mutzbauer, I; von Hassel, J; Geissler, E K; Schlitt, H J

    2011-03-01

    Transplantation medicine offers multiple translational questions which should preferably be transferred to clinical evidence. The current gold standard for testing such questions and hypotheses is by prospective randomized controlled trials (RCT). The trials should be performed independently from the medical industry to avoid conflicts of interests and to guarantee a strict scientific approach. A good model is an investigator initiated trial (IIT) in which academic institutions function as the sponsor and in which normally a scientific idea stands before marketing interests of a certain medical product. We present a model for an IIT which is sponsored and coordinated by Regensburg University Hospital at 45 sites in 13 nations (SiLVER study), highlight special pitfalls of this study and offer alternatives to this approach. Finances: financial support in clinical trials can be obtained from the medical industry. Alternatively in Germany the Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung) offers annual grants. The expansion of financial support through foundations is desirable. Infrastructure: sponsorship within the pharmaceutics act (Arzneimittelgesetz) demands excellent infrastructural conditions and a professional team to accomplish clinical, logistic, regulatory, legal and ethical challenges in a RCT. If a large trial has sufficient financial support certain tasks can be outsourced and delegated to contract research organizations, coordinating centers for clinical trials or partners in the medical industry. Clinical scientific advances to improve evidence are an enormous challenge when performed as an IIT. However, academic sponsors can perform (international) IITs when certain rules are followed and should be defined as the gold standard when scientific findings have to be established clinically.

  2. Long-term retention of a divided attention psycho-motor test combining choice reaction test and postural balance test: A preliminary study.

    Science.gov (United States)

    Rossi, R; Pascolo, P B

    2015-09-01

    Driving in degraded psychophysical conditions, such as under the influence of alcohol or drugs but also in a state of fatigue or drowsiness, is a growing problem. The current roadside tests used for detecting drugs from drivers suffer various limitations, while impairment is subjective and does not necessarily correlate with drug metabolite concentration found in body fluids. This work is a validation step towards the study of feasibility of a novel test conceived to assess psychophysical conditions of individuals performing at-risk activities. Motor gestures, long-term retention and learning phase related to the protocol are analysed in unimpaired subjects. The protocol is a divided attention test, which combines a critical tracking test achieved with postural movements and a visual choice reaction test. Ten healthy subjects participated in a first set of trials and in a second set after about six months. Each session required the carrying out of the test for ten times in order to investigate learning effect and performance over repetitions. In the first set the subjects showed a learning trend up to the third trial, whilst in the second set of trials they showed motor retention. Nevertheless, the overall performance did not significantly improve. Gestures are probably retained due to the type of tasks and the way in which the instructions are conveyed to the subjects. Moreover, motor retention after a short training suggests that the protocol is easy to learn and understand. Implications for roadside test usage and comparison with current tests are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Disassociation between primary motor cortical activity and movement kinematics during adaptation to reach perturbations.

    Science.gov (United States)

    Cai, X; Shimansky, Y P; Weber, D J; He, Jiping

    2004-01-01

    The relationship between movement kinematics and motor cortical activity was studied in monkeys performing a center-out reaching task during their adaptation to force perturbations applied to the wrist. The main feature of adaptive changes in movement kinematics was anticipatory deviation of hand paths in the direction opposite to that of the upcoming perturbation. We identified a group of neurons in the dorsal lateral portion of the primary motor cortex where a gradual buildup of spike activity immediately preceding the actual (in perturbation trials) or the "would-be" (in unperturbed/catch trials) perturbation onset was observed. These neurons were actively involved in the adaptation process, which was evident from the gradual increase in the amplitude of their movement-related modulation of spike activity from virtual zero and development of certain directional tuning pattern (DTP). However, the day-to-day dynamics of the kinematics adaptation was dramatically different from that of the neuronal activity. Hence, the adaptive modification of the motor cortical activity is more likely to reflect the development of the internal model of the perturbation dynamics, rather than motor instructions determining the adaptive behavior.

  4. Enhancing voluntary imitation through attention and motor imagery.

    Science.gov (United States)

    Bek, Judith; Poliakoff, Ellen; Marshall, Hannah; Trueman, Sophie; Gowen, Emma

    2016-07-01

    Action observation activates brain areas involved in performing the same action and has been shown to increase motor learning, with potential implications for neurorehabilitation. Recent work indicates that the effects of action observation on movement can be increased by motor imagery or by directing attention to observed actions. In voluntary imitation, activation of the motor system during action observation is already increased. We therefore explored whether imitation could be further enhanced by imagery or attention. Healthy participants observed and then immediately imitated videos of human hand movement sequences, while movement kinematics were recorded. Two blocks of trials were completed, and after the first block participants were instructed to imagine performing the observed movement (Imagery group, N = 18) or attend closely to the characteristics of the movement (Attention group, N = 15), or received no further instructions (Control group, N = 17). Kinematics of the imitated movements were modulated by instructions, with both Imagery and Attention groups being closer in duration, peak velocity and amplitude to the observed model compared with controls. These findings show that both attention and motor imagery can increase the accuracy of imitation and have implications for motor learning and rehabilitation. Future work is required to understand the mechanisms by which these two strategies influence imitation accuracy.

  5. Aging increases the susceptibility to motor memory interference and reduces off-line gains in motor skill learning

    DEFF Research Database (Denmark)

    Roig, Marc; Ritterband-Rosenbaum, Anina; Jensen, Jesper Lundbye

    2014-01-01

    Declines in the ability to learn motor skills in older adults are commonly attributed to deficits in the encoding of sensorimotor information during motor practice. We investigated whether aging also impairs motor memory consolidation by assessing the susceptibility to memory interference and off...... greater susceptibility to memory interference and no off-line gains in motor skill learning. Performing B produced memory interference and reduced off-line gains only in the older group. However, older adults also showed deficits in memory consolidation independent of the interfering effects of B. Age......-related declines in motor skill learning are not produced exclusively by deficits in the encoding of sensorimotor information during practice. Aging also increases the susceptibility to memory interference and reduces off-line gains in motor skill learning after practice....

  6. Quad-copter UAV BLDC Motor Control: Linear v/s non-linear control maps

    Directory of Open Access Journals (Sweden)

    Deep Parikh

    2015-08-01

    Full Text Available This paper presents some investigations and comparison of using linear versus non-linear static motor-control maps for the speed control of a BLDC (Brush Less Direct Current motors used in quad-copter UAV (Unmanned Aerial Vehicles. The motor-control map considered here is the inverse of the static map relating motor-speed output to motor-voltage input for a typical out-runner type Brushless DC Motors (BLDCM.  Traditionally, quad-copter BLDC motor speed control uses simple linear motor-control map defined by the motor-constant specification. However, practical BLDC motors show non-linear characteristic, particularly when operated across wide operating speed-range as is commonly required in quad-copter UAV flight operations. In this paper, our investigations to compare performance of linear versus non-linear motor-control maps are presented. The investigations cover simulation-based and experimental study of BLDC motor speed control systems for  quad-copter vehicle available. First the non-linear map relating rotor RPM to motor voltage for quad-copter BLDC motor is obtained experimentally using an optical speed encoder. The performance of the linear versus non-linear motor-control-maps for the speed control are studied. The investigations also cover study of time-responses for various standard test input-signals e.g. step, ramp and pulse inputs, applied as the reference speed-commands. Also, simple 2-degree of freedom test-bed is developed in our laboratory to help test the open-loop and closed-loop experimental investigations. The non-linear motor-control map is found to perform better in BLDC motor speed tracking control performance and thereby helping achieve better quad-copter roll-angle attitude control.

  7. Reducing Fall Risk with Combined Motor and Cognitive Training in Elderly Fallers

    Directory of Open Access Journals (Sweden)

    Francesco Barban

    2017-02-01

    Full Text Available Background. Falling is a major clinical problem in elderly people, demanding effective solutions. At present, the only effective intervention is motor training of balance and strength. Executive function-based training (EFt might be effective at preventing falls according to evidence showing a relationship between executive functions and gait abnormalities. The aim was to assess the effectiveness of a motor and a cognitive treatment developed within the EU co-funded project I-DONT-FALL. Methods. In a sample of 481 elderly people at risk of falls recruited in this multicenter randomised controlled trial, the effectiveness of a motor treatment (pure motor or mixed with EFt of 24 one-hour sessions delivered through an i-Walker with a non-motor treatment (pure EFt or control condition was evaluated. Similarly, a 24 one-hour session cognitive treatment (pure EFt or mixed with motor training, delivered through a touch-screen computer was compared with a non-cognitive treatment (pure motor or control condition. Results. Motor treatment, particularly when mixed with EFt, reduced significantly fear of falling (F(1,478 = 6.786, p = 0.009 although to a limited extent (ES −0.25 restricted to the period after intervention. Conclusions. This study suggests the effectiveness of motor treatment empowered by EFt in reducing fear of falling.

  8. Learning to breathe? Feedforward regulation of the inspiratory motor drive.

    Science.gov (United States)

    Zaman, Jonas; Van den Bergh, Omer; Fannes, Stien; Van Diest, Ilse

    2014-09-15

    Claims have been made that breathing is in part controlled by feedforward regulation. In a classical conditioning paradigm, we investigated anticipatory increases in the inspiratory motor drive as measured by inspiratory occlusion pressure (P100). In an acquisition phase, an experimental group (N=13) received a low-intensity resistive load (5 cmH2O/l/s) for three consecutive inspirations as Conditioned Stimulus (CS), preceding a load of a stronger intensity (20 cmH2O/l/s) for three subsequent inspirations as unconditioned stimulus (US). The control group (N=11) received the low-intensity load for six consecutive inspirations. In a post-acquisition phase both groups received the low-intensity load for six consecutive inspirations. Responses to the CS-load only differed between groups during the first acquisition trials and a strong increase in P100 during the US-loads was observed, which habituated across the experiment. Our results suggest that the disruption caused by adding low to moderate resistive loads to three consecutive inspirations results in a short-lasting anticipatory increase in inspiratory motor drive. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. PROMOTING GROSS MOTOR SKILLS IN TODDLERS: THE ACTIVE BEGINNINGS PILOT CLUSTER RANDOMIZED TRIAL.

    Science.gov (United States)

    Veldman, Sanne L C; Okely, Anthony D; Jones, Rachel A

    2015-12-01

    This study examined the feasibility, acceptability, and potential efficacy of a gross motor skill program for toddlers. An 8-wk. skills program in which children practiced three skills was implemented for 10 min. daily in two randomly designated childcare centers. Two other centers served as the control group. Recruitment and retention rates were collected for feasibility. Data on professional development, children's participation, program duration, and appropriateness of the lessons were collected for acceptability, and the Test of Gross Motor Development-2 and Get Skilled, Get Active (total of 28 points) were used to look at the potential efficacy. The participants were 60 toddlers (M age=2.5 yr., SD=0.4; n=29 boys), and the retention rate was 95%. Overall participation was 76%, and educators rated 98% of the lessons as appropriate. Compared with the control group, the intervention group showed significantly greater improvements in motor skills (pmotor skills among toddlers.

  10. Variation in motor output and motor performance in a centrally generated motor pattern

    Science.gov (United States)

    Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved. PMID:24717348

  11. Distinct roles of visual, parietal, and frontal motor cortices in memory-guided sensorimotor decisions.

    Science.gov (United States)

    Goard, Michael J; Pho, Gerald N; Woodson, Jonathan; Sur, Mriganka

    2016-08-04

    Mapping specific sensory features to future motor actions is a crucial capability of mammalian nervous systems. We investigated the role of visual (V1), posterior parietal (PPC), and frontal motor (fMC) cortices for sensorimotor mapping in mice during performance of a memory-guided visual discrimination task. Large-scale calcium imaging revealed that V1, PPC, and fMC neurons exhibited heterogeneous responses spanning all task epochs (stimulus, delay, response). Population analyses demonstrated unique encoding of stimulus identity and behavioral choice information across regions, with V1 encoding stimulus, fMC encoding choice even early in the trial, and PPC multiplexing the two variables. Optogenetic inhibition during behavior revealed that all regions were necessary during the stimulus epoch, but only fMC was required during the delay and response epochs. Stimulus identity can thus be rapidly transformed into behavioral choice, requiring V1, PPC, and fMC during the transformation period, but only fMC for maintaining the choice in memory prior to execution.

  12. Kinesthetic perception based on integration of motor imagery and afferent inputs from antagonistic muscles with tendon vibration.

    Science.gov (United States)

    Shibata, E; Kaneko, F

    2013-04-29

    The perceptual integration of afferent inputs from two antagonistic muscles, or the perceptual integration of afferent input and motor imagery are related to the generation of a kinesthetic sensation. However, it has not been clarified how, or indeed whether, a kinesthetic perception would be generated by motor imagery if afferent inputs from two antagonistic muscles were simultaneously induced by tendon vibration. The purpose of this study was to investigate how a kinesthetic perception would be generated by motor imagery during co-vibration of the two antagonistic muscles at the same frequency. Healthy subjects participated in this experiment. Illusory movement was evoked by tendon vibration. Next, the subjects imaged wrist flexion movement simultaneously with tendon vibration. Wrist flexor and extensor muscles were vibrated according to 4 patterns such that the difference between the two vibration frequencies was zero. After each trial, the perceived movement sensations were quantified on the basis of the velocity and direction of the ipsilateral hand-tracking movements. When the difference in frequency applied to the wrist flexor and the extensor was 0Hz, no subjects perceived movements without motor imagery. However, during motor imagery, the flexion velocity of the perceived movement was higher than the flexion velocity without motor imagery. This study clarified that the afferent inputs from the muscle spindle interact with motor imagery, to evoke a kinesthetic perception, even when the difference in frequency applied to the wrist flexor and extensor was 0Hz. Furthermore, the kinesthetic perception resulting from integrations of vibration and motor imagery increased depending on the vibration frequency to the two antagonistic muscles. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects

    Science.gov (United States)

    Mokienko, Olesya A.; Chervyakov, Alexander V.; Kulikova, Sofia N.; Bobrov, Pavel D.; Chernikova, Liudmila A.; Frolov, Alexander A.; Piradov, Mikhail A.

    2013-01-01

    Background: Motor imagery (MI) is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms. Purpose: To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface (BCI). Subjects and Methods: Eleven healthy volunteers without neurological impairments (mean age, 36 years; range: 24–68 years) were either trained with an MI-based BCI (BCI-trained, n = 5) or received no BCI training (n = 6, controls). Subjects imagined grasping in a blocked paradigm task with alternating rest and task periods. For evaluating the activity and excitability of cortical motor areas we used functional MRI and navigated transcranial magnetic stimulation (nTMS). Results: fMRI revealed activation in Brodmann areas 3 and 6, the cerebellum, and the thalamus during MI in all subjects. The primary motor cortex was activated only in BCI-trained subjects. The associative zones of activation were larger in non-trained subjects. During MI, motor evoked potentials recorded from two of the three targeted muscles were significantly higher only in BCI-trained subjects. The motor threshold decreased (median = 17%) during MI, which was also observed only in BCI-trained subjects. Conclusion: Previous BCI training increased motor cortex excitability during MI. These data may help to improve BCI applications, including rehabilitation of patients with cerebral palsy. PMID:24319425

  14. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects

    Directory of Open Access Journals (Sweden)

    Olesya eMokienko

    2013-11-01

    Full Text Available Background: Motor imagery (MI is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms.Purpose: To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface (BCI.Subjects and methods: Eleven healthy volunteers without neurological impairments (mean age, 36 years; range: 24–68 years were either trained with an MI-based BCI (BCI-trained, n = 5 or received no BCI training (n = 6, controls. Subjects imagined grasping in a blocked paradigm task with alternating rest and task periods. For evaluating the activity and excitability of cortical motor areas we used functional MRI and navigated transcranial magnetic stimulation (nTMS.Results: fMRI revealed activation in Brodmann areas 3 and 6, the cerebellum, and the thalamus during MI in all subjects. The primary motor cortex was activated only in BCI-trained subjects. The associative zones of activation were larger in non-trained subjects. During MI, motor evoked potentials recorded from two of the three targeted muscles were significantly higher only in BCI-trained subjects. The motor threshold decreased (median = 17% during MI, which was also observed only in BCI-trained subjects.Conclusion: Previous BCI training increased motor cortex excitability during MI. These data may help to improve BCI applications, including rehabilitation of patients with cerebral palsy.

  15. A trial of dextromethorphan in parkinsonian patients with motor response complications

    NARCIS (Netherlands)

    Verhagen Metman, L.; Blanchet, P. J.; van den Munckhof, P.; del Dotto, P.; Natté, R.; Chase, T. N.

    1998-01-01

    The effects of the NMDA antagonist dextromethorphan (DM) on levodopa-associated dyskinesias and motor fluctuations were studied in patients with advanced Parkinson's disease. During initial open-label dose escalation, 6 of 18 patients reported a beneficial effect at their individually determined

  16. Academic Performance, Motor Function, and Behavior 11 Years After Neonatal Caffeine Citrate Therapy for Apnea of Prematurity: An 11-Year Follow-up of the CAP Randomized Clinical Trial.

    Science.gov (United States)

    Schmidt, Barbara; Roberts, Robin S; Anderson, Peter J; Asztalos, Elizabeth V; Costantini, Lorrie; Davis, Peter G; Dewey, Deborah; D'Ilario, Judy; Doyle, Lex W; Grunau, Ruth E; Moddemann, Diane; Nelson, Harvey; Ohlsson, Arne; Solimano, Alfonso; Tin, Win

    2017-06-01

    Caffeine citrate therapy for apnea of prematurity reduces the rates of bronchopulmonary dysplasia, severe retinopathy, and neurodevelopmental disability at 18 months and may improve motor function at 5 years. To evaluate whether neonatal caffeine therapy is associated with improved functional outcomes 11 years later. A follow-up study was conducted at 14 academic hospitals in Canada, Australia, and the United Kingdom from May 7, 2011, to May 27, 2016, of English- or French-speaking children who had been enrolled in the randomized, placebo-controlled Caffeine for Apnea of Prematurity trial between October 11, 1999, and October 22, 2004. A total of 1202 children with birth weights of 500 to 1250 g were eligible for this study; 920 (76.5%) had adequate data for the main outcome. Caffeine citrate or placebo until drug therapy for apnea of prematurity was no longer needed. Functional impairment was a composite of poor academic performance (defined as at least 1 standard score greater than 2 SD below the mean on the Wide Range Achievement Test-4), motor impairment (defined as a percentile rank of ≤5 on the Movement Assessment Battery for Children-Second Edition), and behavior problems (defined as a Total Problem T score ≥2 SD above the mean on the Child Behavior Checklist). Among the 920 children (444 females and 476 males; median age, 11.4 years [interquartile range, 11.1-11.8 years]), the combined rates of functional impairment were not significantly different between the 457 children assigned to receive caffeine compared with the 463 children assigned to receive placebo (145 [31.7%] vs 174 [37.6%]; adjusted odds ratio, 0.78; 95% CI, 0.59-1.02; P = .07). With all available data, including those from up to 24 Swedish trial participants, the rates of poor academic performance on 1 or more of 4 subtests (66 of 458 [14.4%] vs 61 of 462 [13.2%]; adjusted odds ratio, 1.11; 95% CI, 0.77-1.61; P = .58) and behavior problems (52 of 476 [10.9%] vs 40 of 481 [8

  17. Linear induction motor

    International Nuclear Information System (INIS)

    Barkman, W.E.; Adams, W.Q.; Berrier, B.R.

    1978-01-01

    A linear induction motor has been operated on a test bed with a feedback pulse resolution of 5 nm (0.2 μin). Slewing tests with this slide drive have shown positioning errors less than or equal to 33 nm (1.3 μin) at feedrates between 0 and 25.4 mm/min (0-1 ipm). A 0.86-m (34-in)-stroke linear motor is being investigated, using the SPACO machine as a test bed. Initial results were encouraging, and work is continuing to optimize the servosystem compensation

  18. A randomized controlled clinical trial of a hypnosis-based treatment for patients with conversion disorder, motor type

    NARCIS (Netherlands)

    Moene, F.C.; Spinhoven, P.; Hoogduin, C.A.L.; Dyck, R. van

    2003-01-01

    This study tested whether a hypnosis-based intervention showed promise as a treatment for patients with conversion disorder, motor type. Forty-four outpatients with conversion disorder, motor type, or somatization disorder with motor conversion symptoms, were randomly assigned to a hypnosis or a

  19. Motor control for a brushless DC motor

    Science.gov (United States)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  20. Early rehabilitation in sepsis: a prospective randomised controlled trial investigating functional and physiological outcomes The i-PERFORM Trial (Protocol Article

    Directory of Open Access Journals (Sweden)

    Kayambu Geetha

    2011-10-01

    Full Text Available Abstract Background Patients with sepsis syndromes in comparison to general intensive care patients can have worse outcomes for physical function, quality of life and survival. Early intensive care rehabilitation can improve the outcome in general Intensive Care Unit (ICU patients, however no investigations have specifically looked at patients with sepsis syndromes. The 'i-PERFORM Trial' will investigate if early targeted rehabilitation is both safe and effective in patients with sepsis syndromes admitted to ICU. Methods/Design A single-centred blinded randomized controlled trial will be conducted in Brisbane, Australia. Participants (n = 252 will include those ≥ 18 years, mechanically ventilated for ≥ 48 hours and diagnosed with a sepsis syndrome. Participants will be randomised to an intervention arm which will undergo an early targeted rehabilitation program according to the level of arousal, strength and cardiovascular stability and a control group which will receive normal care. The primary outcome measures will be physical function tests on discharge from ICU (The Acute Care Index of Function and The Physical Function ICU Test. Health-related quality of life will be measured using the Short Form-36 and the psychological component will be tested using The Hospital Anxiety and Depression Scale. Secondary measures will include inflammatory biomarkers; Interleukin-6, Interleukin-10 and Tumour Necrosis Factor-α, peripheral blood mitochondrial DNA content and lactate, fat free muscle mass, tissue oxygenation and microcirculatory flow. Discussion The 'i-PERFORM Trial' will determine whether early rehabilitation for patients with sepsis is effective at improving patient outcomes with functional and physiological parameters reflecting long and short-term effects of early exercise and the safety in its application in critical illness. Trial Registration Australia and New Zealand Clinical Trials Register (ANZCTR: ACTRN12610000808044

  1. [An Investigation of the Role Responsibilities of Clinical Research Nurses in Conducting Clinical Trials].

    Science.gov (United States)

    Kao, Chi-Yin; Huang, Guey-Shiun; Dai, Yu-Tzu; Pai, Ya-Ying; Hu, Wen-Yu

    2015-06-01

    Clinical research nurses (CRNs) play an important role in improving the quality of clinical trials. In Taiwan, the increasing number of clinical trials has increased the number of practicing CRNs. Understanding the role responsibilities of CRNs is necessary to promote professionalism in this nursing category. This study investigates the role responsibilities of CRNs in conducting clinical trials / research. A questionnaire survey was conducted in a medical center in Taipei City, Taiwan. Eighty CRNs that were registered to facilitate and conduct clinical trials at this research site completed the survey. "Subject protection" was the CRN role responsibility most recognized by participants, followed by "research coordination and management", "subject clinical care", and "advanced professional nursing". Higher recognition scores were associated with higher importance scores and lower difficulty scores. Participants with trial training had significantly higher difficulty scores for "subject clinical care" and "research coordination and management" than their peers without this training (p research coordination and management" (p clinical practice.

  2. Respiratory chain deficiency in aged spinal motor neurons☆

    Science.gov (United States)

    Rygiel, Karolina A.; Grady, John P.; Turnbull, Doug M.

    2014-01-01

    Sarcopenia, muscle wasting, and strength decline with age, is an important cause of loss of mobility in the elderly individuals. The underlying mechanisms are uncertain but likely to involve defects of motor nerve, neuromuscular junction, and muscle. Loss of motor neurons with age and subsequent denervation of skeletal muscle has been recognized as one of the contributing factors. This study investigated aspects of mitochondrial biology in spinal motor neurons from elderly subjects. We found that protein components of complex I of mitochondrial respiratory chain were reduced or absent in a proportion of aged motor neurons–a phenomenon not observed in fetal tissue. Further investigation showed that complex I-deficient cells had reduced mitochondrial DNA content and smaller soma size. We propose that mitochondrial dysfunction in these motor neurons could lead to the cell loss and ultimately denervation of muscle fibers. PMID:24684792

  3. Segmentation of dance movement: Effects of expertise, visual familiarity, motor experience and music

    Directory of Open Access Journals (Sweden)

    Bettina E. Bläsing

    2015-01-01

    Full Text Available According to event segmentation theory, action perception depends on sensory cues and prior knowledge, and the segmentation of observed actions is crucial for understanding and memorizing these actions. While most activities in everyday life are characterized by external goals and interaction with objects or persons, this does not necessarily apply to dance-like actions. We investigated to what extent visual familiarity of the observed movement and accompanying music influence the segmentation of a dance phrase in dancers of different skill level and non-dancers. In Experiment 1, dancers and non-dancers repeatedly watched a video clip showing a dancer performing a choreographed dance phrase and indicated segment boundaries by key press. Dancers generally defined less segment boundaries than non-dancers, specifically in the first trials in which visual familiarity with the phrase was low. Music increased the number of segment boundaries in the non-dancers and decreased it in the dancers. The results suggest that dance expertise reduces the number of perceived segment boundaries in an observed dance phrase, and that the ways visual familiarity and music affect movement segmentation are modulated by dance expertise. In a second experiment, motor experience was added as factor, based on empirical evidence suggesting that action perception is modified by visual and motor expertise in different ways. In Experiment 2, the same task as in Experiment 1 was performed by dance amateurs, and was repeated by the same participants after they had learned to dance the presented dance phrase. Less segment boundaries were defined in the middle trials after participants had learned to dance the phrase, and music reduced the number of segment boundaries before learning. The results suggest that specific motor experience of the observed movement influences its perception and anticipation and makes segmentation broader, but not to the same degree as dance expertise

  4. Hemispheric Lateralization of Motor Thresholds in Relation to Stuttering

    Science.gov (United States)

    Alm, Per A.; Karlsson, Ragnhild; Sundberg, Madeleine; Axelson, Hans W.

    2013-01-01

    Stuttering is a complex speech disorder. Previous studies indicate a tendency towards elevated motor threshold for the left hemisphere, as measured using transcranial magnetic stimulation (TMS). This may reflect a monohemispheric motor system impairment. The purpose of the study was to investigate the relative side-to-side difference (asymmetry) and the absolute levels of motor threshold for the hand area, using TMS in adults who stutter (n = 15) and in controls (n = 15). In accordance with the hypothesis, the groups differed significantly regarding the relative side-to-side difference of finger motor threshold (p = 0.0026), with the stuttering group showing higher motor threshold of the left hemisphere in relation to the right. Also the absolute level of the finger motor threshold for the left hemisphere differed between the groups (p = 0.049). The obtained results, together with previous investigations, provide support for the hypothesis that stuttering tends to be related to left hemisphere motor impairment, and possibly to a dysfunctional state of bilateral speech motor control. PMID:24146930

  5. Hemispheric lateralization of motor thresholds in relation to stuttering.

    Directory of Open Access Journals (Sweden)

    Per A Alm

    Full Text Available Stuttering is a complex speech disorder. Previous studies indicate a tendency towards elevated motor threshold for the left hemisphere, as measured using transcranial magnetic stimulation (TMS. This may reflect a monohemispheric motor system impairment. The purpose of the study was to investigate the relative side-to-side difference (asymmetry and the absolute levels of motor threshold for the hand area, using TMS in adults who stutter (n = 15 and in controls (n = 15. In accordance with the hypothesis, the groups differed significantly regarding the relative side-to-side difference of finger motor threshold (p = 0.0026, with the stuttering group showing higher motor threshold of the left hemisphere in relation to the right. Also the absolute level of the finger motor threshold for the left hemisphere differed between the groups (p = 0.049. The obtained results, together with previous investigations, provide support for the hypothesis that stuttering tends to be related to left hemisphere motor impairment, and possibly to a dysfunctional state of bilateral speech motor control.

  6. Rasagiline as an adjunct to levodopa in patients with Parkinson's disease and motor fluctuations (LARGO, Lasting effect in Adjunct therapy with Rasagiline Given Once daily, study): a randomised, double-blind, parallel-group trial.

    Science.gov (United States)

    Rascol, O; Brooks, D J; Melamed, E; Oertel, W; Poewe, W; Stocchi, F; Tolosa, E

    Rasagiline mesylate is a novel drug for Parkinson's disease with selective, irreversible monoamine oxidase B (MAO-B) inhibitor activity, and is effective as monotherapy in early disease. This study investigated rasagiline efficacy and safety in levodopa-treated patients with Parkinson's disease and motor fluctuations. In an 18-week, double-blind, multicentre (74 hospitals and academic centres in Israel, Argentina, and Europe) trial, 687 outpatients were randomly assigned to oral rasagiline (231 individuals; 1 mg once daily), entacapone (227; 200 mg with every levodopa dose), or placebo (229). Primary outcome was change in total daily off-time (intention-to-treat population). Other measures included the clinical global improvement (CGI) score and unified Parkinson's disease rating scale (UPDRS) scores. Analysis was by intention to treat. 88 (13%) patients who were assigned treatment did not complete the study (23 rasagiline, 30 entacapone, 35 placebo), mainly because of withdrawal of consent (n=34) and adverse events (n=34). Both rasagiline and entacapone reduced mean daily off-time (-1.18 h rasagiline and -1.2 h entacapone vs placebo -0.4 h; p=0.0001, prasagiline and -0.72 entacapone vs -0.37 placebo; prasagiline reduces mean daily off-time and improves symptoms of Parkinson's disease in levodopa-treated patients with motor fluctuations, an effect similar to that of entacapone.

  7. Primary Lateral Sclerosis and Early Upper Motor Neuron Disease: Characteristics of a Cross-Sectional Population.

    Science.gov (United States)

    Fournier, Christina N; Murphy, Alyssa; Loci, Lorena; Mitsumoto, Hiroshi; Lomen-Hoerth, Catherine; Kisanuki, Yasushi; Simmons, Zachary; Maragakis, Nicholas J; McVey, April L; Al-Lahham, Tawfiq; Heiman-Patterson, Terry D; Andrews, Jinsy; McDonnell, Erin; Cudkowicz, Merit; Atassi, Nazem

    2016-03-01

    The goals of this study were to characterize clinical and electrophysiologic findings of subjects with upper motor neuron disease and to explore feasibility of clinical trials in this population. Twenty northeast amyotrophic lateral sclerosis consortium (northeast amyotrophic lateral sclerosis) sites performed chart reviews to identify active clinical pure upper motor neuron disease patients. Patients with hereditary spastic paraplegia or meeting revised El Escorial electrodiagnostic criteria for amyotrophic lateral sclerosis were excluded. Patients were classified into 2 groups according to the presence or absence of minor electromyography (EMG) abnormalities. Two hundred thirty-three subjects with upper motor neuron disease were identified; 217 had available EMG data. Normal EMGs were seen in 140 subjects, and 77 had minor denervation. Mean disease duration was 84 (±80) months for the entire cohort with no difference seen between the 2 groups. No difference was seen in clinical symptoms, disability, or outcome measures between the 2 groups after correcting for multiple comparisons. Minor EMG abnormalities were not associated with phenotypic differences in a clinical upper motor neuron disease population. These findings suggest that subtle EMG abnormalities can not necessarily be used as a prognostic tool in patients with clinical upper motor neuron disease. This study also demonstrates the availability of a large number of patients with upper motor neuron diseases within the northeast amyotrophic lateral sclerosis network and suggests feasibility for conducting clinical trials in this population.

  8. On the optimal degree of fluctuations in practice for motor learning.

    Science.gov (United States)

    Hossner, Ernst-Joachim; Käch, Boris; Enz, Jonas

    2016-06-01

    In human movement science, it is widely accepted that random practice generally enhances complex motor-skill learning compared to repetitive practice. In two experiments, a particular variability-related concept is put to empirical test, namely the concept of differencial learning (DL), which assumes (i) that learners should not be distracted from task-space exploration by corrections, and (ii) that learning is facilitated by large inter-trial fluctuations. In both experiments, the advantage of DL over repetitive learning was not statistically significant. Moreover, learning was more pronounced when participants either received corrections in addition to DL (Exp. 1) or practiced in an order in which differences between consecutive trials were relatively small (Exp. 2). These findings suggest that the positive DL effects reported in literature cannot be attributed to the reduction of feedback or to the increase of inter-trial fluctuations. These results are discussed in the light of the structural-learning approach and the two-state model of motor learning in which structure-related learning effects are distinguished from the capability to adapt to current changes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Definition and classification of negative motor signs in childhood.

    Science.gov (United States)

    Sanger, Terence D; Chen, Daofen; Delgado, Mauricio R; Gaebler-Spira, Deborah; Hallett, Mark; Mink, Jonathan W

    2006-11-01

    In this report we describe the outcome of a consensus meeting that occurred at the National Institutes of Health in Bethesda, Maryland, March 12 through 14, 2005. The meeting brought together 39 specialists from multiple clinical and research disciplines including developmental pediatrics, neurology, neurosurgery, orthopedic surgery, physical therapy, occupational therapy, physical medicine and rehabilitation, neurophysiology, muscle physiology, motor control, and biomechanics. The purpose of the meeting was to establish terminology and definitions for 4 aspects of motor disorders that occur in children: weakness, reduced selective motor control, ataxia, and deficits of praxis. The purpose of the definitions is to assist communication between clinicians, select homogeneous groups of children for clinical research trials, facilitate the development of rating scales to assess improvement or deterioration with time, and eventually to better match individual children with specific therapies. "Weakness" is defined as the inability to generate normal voluntary force in a muscle or normal voluntary torque about a joint. "Reduced selective motor control" is defined as the impaired ability to isolate the activation of muscles in a selected pattern in response to demands of a voluntary posture or movement. "Ataxia" is defined as an inability to generate a normal or expected voluntary movement trajectory that cannot be attributed to weakness or involuntary muscle activity about the affected joints. "Apraxia" is defined as an impairment in the ability to accomplish previously learned and performed complex motor actions that is not explained by ataxia, reduced selective motor control, weakness, or involuntary motor activity. "Developmental dyspraxia" is defined as a failure to have ever acquired the ability to perform age-appropriate complex motor actions that is not explained by the presence of inadequate demonstration or practice, ataxia, reduced selective motor control

  10. Edaravone, a Free Radical Scavenger, Delayed Symptomatic and Pathological Progression of Motor Neuron Disease in the Wobbler Mouse.

    Directory of Open Access Journals (Sweden)

    Ken Ikeda

    Full Text Available Edaravone, a free radical scavenger is used widely in Japanese patients with acute cerebral infarction. This antioxidant could have therapeutic potentials for other neurological diseases. Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease that affects the upper and the lower motor neuron, leading to death within 3-5 years after onset. A phase III clinical trial of edaravone suggested no significant effects in ALS patients. However, recent 2nd double-blind trial has demonstrated therapeutic benefits of edaravone in definite patients diagnosed by revised El Escorial diagnostic criteria of ALS. Two previous studies showed that edaravone attenuated motor symptoms or motor neuron degeneration in mutant superoxide dismutase 1-transgenic mice or rats, animal models of familial ALS. Herein we examined whether this radical scavenger can retard progression of motor dysfunction and neuropathological changes in wobbler mice, sporadic ALS-like model. After diagnosis of the disease onset at the postnatal age of 3-4 weeks, wobbler mice received edaravone (1 or 10 mg/kg, n = 10/group or vehicle (n = 10, daily for 4 weeks by intraperitoneal administration. Motor symptoms and neuropathological changes were compared among three groups. Higher dose (10 mg/kg of edaravone treatment significantly attenuated muscle weakness and contracture in the forelimbs, and suppressed denervation atrophy in the biceps muscle and degeneration in the cervical motor neurons compared to vehicle. Previous and the present studies indicated neuroprotective effects of edaravone in three rodent ALS-like models. This drug seems to be worth performing the clinical trial in ALS patients in the United States of American and Europe, in addition to Japan.

  11. Edaravone, a Free Radical Scavenger, Delayed Symptomatic and Pathological Progression of Motor Neuron Disease in the Wobbler Mouse.

    Science.gov (United States)

    Ikeda, Ken; Iwasaki, Yasuo

    2015-01-01

    Edaravone, a free radical scavenger is used widely in Japanese patients with acute cerebral infarction. This antioxidant could have therapeutic potentials for other neurological diseases. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects the upper and the lower motor neuron, leading to death within 3-5 years after onset. A phase III clinical trial of edaravone suggested no significant effects in ALS patients. However, recent 2nd double-blind trial has demonstrated therapeutic benefits of edaravone in definite patients diagnosed by revised El Escorial diagnostic criteria of ALS. Two previous studies showed that edaravone attenuated motor symptoms or motor neuron degeneration in mutant superoxide dismutase 1-transgenic mice or rats, animal models of familial ALS. Herein we examined whether this radical scavenger can retard progression of motor dysfunction and neuropathological changes in wobbler mice, sporadic ALS-like model. After diagnosis of the disease onset at the postnatal age of 3-4 weeks, wobbler mice received edaravone (1 or 10 mg/kg, n = 10/group) or vehicle (n = 10), daily for 4 weeks by intraperitoneal administration. Motor symptoms and neuropathological changes were compared among three groups. Higher dose (10 mg/kg) of edaravone treatment significantly attenuated muscle weakness and contracture in the forelimbs, and suppressed denervation atrophy in the biceps muscle and degeneration in the cervical motor neurons compared to vehicle. Previous and the present studies indicated neuroprotective effects of edaravone in three rodent ALS-like models. This drug seems to be worth performing the clinical trial in ALS patients in the United States of American and Europe, in addition to Japan.

  12. The effect of contextual cues on the encoding of motor memories.

    Science.gov (United States)

    Howard, Ian S; Wolpert, Daniel M; Franklin, David W

    2013-05-01

    Several studies have shown that sensory contextual cues can reduce the interference observed during learning of opposing force fields. However, because each study examined a small set of cues, often in a unique paradigm, the relative efficacy of different sensory contextual cues is unclear. In the present study we quantify how seven contextual cues, some investigated previously and some novel, affect the formation and recall of motor memories. Subjects made movements in a velocity-dependent curl field, with direction varying randomly from trial to trial but always associated with a unique contextual cue. Linking field direction to the cursor or background color, or to peripheral visual motion cues, did not reduce interference. In contrast, the orientation of a visual object attached to the hand cursor significantly reduced interference, albeit by a small amount. When the fields were associated with movement in different locations in the workspace, a substantial reduction in interference was observed. We tested whether this reduction in interference was due to the different locations of the visual feedback (targets and cursor) or the movements (proprioceptive). When the fields were associated only with changes in visual display location (movements always made centrally) or only with changes in the movement location (visual feedback always displayed centrally), a substantial reduction in interference was observed. These results show that although some visual cues can lead to the formation and recall of distinct representations in motor memory, changes in spatial visual and proprioceptive states of the movement are far more effective than changes in simple visual contextual cues.

  13. Psychosocial modulators of motor learning in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Petra eZemankova

    2016-02-01

    Full Text Available Using the remarkable overlap between brain circuits affected in Parkinson’s disease (PD and those underlying motor sequence learning, we may improve the effectiveness of motor rehabilitation interventions by identifying motor learning facilitators in PD. For instance, additional sensory stimulation and task cueing enhanced motor learning in people with PD, whereas exercising using musical rhythms or console computer games improved gait and balance, and reduced some motor symptoms, in addition to increasing task enjoyment. Yet, despite these advances, important knowledge gaps remain. Most studies investigating motor learning in PD used laboratory-specific tasks and equipment, with little resemblance to real life situations. Thus, it is unknown whether similar results could be achieved in more ecological setups and whether individual’s task engagement could further improve motor learning capacity. Moreover, the role of social interaction in motor skill learning process has not yet been investigated in PD and the role of mind-set and self-regulatory mechanisms have been sporadically examined. Here we review evidence suggesting that these psychosocial factors may be important modulators of motor learning in PD. We propose their incorporation in future research, given that it could lead to development of improved non-pharmacological interventions aimed to preserve or restore motor function in PD.

  14. The activity of the primary motor cortex ipsilateral to the exercising hand decreases during repetitive handgrip exercise

    International Nuclear Information System (INIS)

    Shibuya, Kenichi

    2011-01-01

    The brain function controlling muscle force production is not yet fully understood. The purpose of this study was to examine bilateral primary motor cortex (M1) oxygenation during static-handgrip exercises performed with the right hand (60% maximal voluntary contraction; 10 s exercise/75 s rest; five sets). Twelve healthy, right-handed male subjects participated in this study. Near-infrared spectroscopy probes were positioned over the bilateral M1 to measure cortical oxygenation during handgrip exercises. The maximum values of the changes in concentrations of oxyhemoglobin (HbO 2 ) and deoxyhemoglobin (Hb) across the trials (i) did not change significantly during the contralateral M1 activation (p > 0.05), whereas (ii) in the case of the ipsilateral M1 activation a significant (p < 0.05) decrease in HbO 2 and a significant (p < 0.01) decrease in Hb could be measured. The activation in ipsilateral M1 at the fifth trial was significantly decreased compared with that in the first trial (HbO 2 : p < 0.001; Hb: p < 0.001). The present results suggest that the ipsilateral M1 is recruited during the motor task in compensation for the contralateral M1 and the habituation to motor task might alter the efficiency for interaction of the ipsilateral M1 to the contralateral M1. The interhemispheric interaction might change due to habituation to motor task

  15. Motor areas of the frontal cortex in patients with motor eloquent brain lesions.

    Science.gov (United States)

    Bulubas, Lucia; Sabih, Jamil; Wohlschlaeger, Afra; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2016-12-01

    OBJECTIVE Because of its huge clinical potential, the importance of premotor areas for motor function itself and plastic reshaping due to tumors or ischemic brain lesions has received increased attention. Thus, in this study the authors used navigated transcranial magnetic stimulation (nTMS) to investigate whether tumorous brain lesions induce a change in motor cortex localization in the human brain. METHODS Between 2010 and 2013, nTMS motor mapping was performed in a prospective cohort of 100 patients with brain tumors in or adjacent to the rolandic cortex. Spatial data analysis was performed by normalization of the individual motor maps and creation of overlays according to tumor location. Analysis of motor evoked potential (MEP) latencies was performed regarding mean overall latencies and potentially polysynaptic latencies, defined as latencies longer than 1 SD above the mean value. Hemispheric dominance, lesion location, and motor-function deficits were also considered. RESULTS Graphical analysis showed that motor areas were not restricted to the precentral gyrus. Instead, they spread widely in the anterior-posterior direction. An analysis of MEP latency showed that mean MEP latencies were shortest in the precentral gyrus and longest in the superior and middle frontal gyri. The percentage of latencies longer than 1 SD differed widely across gyri. The dominant hemisphere showed a greater number of longer latencies than the nondominant hemisphere (p < 0.0001). Moreover, tumor location-dependent changes in distribution of polysynaptic latencies were observed (p = 0.0002). Motor-function deficit did not show any statistically significant effect. CONCLUSIONS The distribution of primary and polysynaptic motor areas changes in patients with brain tumors and highly depends on tumor location. Thus, these data should be considered for resection planning.

  16. The ability to mentally represent action is associated with low motor ability in children: a preliminary investigation.

    Science.gov (United States)

    Gabbard, Carl; Caçola, Priscila; Bobbio, Tatiana

    2012-05-01

    Theory and anatomical research suggest that the ability to mentally represent intended actions affect level of execution. This study presents preliminary data examining the association between children's ability to mentally represent action and general motor ability. Children aged 7- to 10 years were assessed for motor imagery ability using a simulation of reach task and motor ability via the Movement ABC-2. Motor ability values, based on percentile rank, ranged from 2 to 91, with a mean of 36. The overall correlation between mental representation and motor ability yielded a moderately positive relationship (r = .39). Interestingly, when looking at motor ability subcategories, only Balance was significant in the model, explaining 20% of the variance. These results provide preliminary evidence that children's motor ability and the ability to mentally represent action are associated in a positive direction. Furthermore, given the results for Balance, we speculate that there are clinical implications regarding work with potentially at-risk children. © 2011 Blackwell Publishing Ltd.

  17. Should Rehabilitation Specialists Use External Focus Instructions When Motor Learning Is Fostered? A Systematic Review

    Directory of Open Access Journals (Sweden)

    Tanja H. Kakebeeke

    2013-06-01

    Full Text Available According to the Constrained Action Hypothesis, motor learning is believed to be more efficient when an external focus (EF of motor control is given to the performer instead of an internal focus (IF of motor control. This systematic review investigated whether findings of studies focusing on the Constrained Action Hypothesis may be transferred to rehabilitation settings by assessing the methodological quality and risk of bias (ROB of available randomized controlled trials (RCTs. Of the 18 selected reports representing 20 RCTs, the methodological quality was rather low, and the majority of the reports appeared to have a high ROB. The 18 reports included 68 patients tested in a rehabilitation setting and 725 healthy participants. The time scale of the motor learning processes presented in the selected articles was heterogenic. The results of this systematic review indicate that the assumption that an external focus of control is to be preferred during motor learning processes is not sufficiently substantiated. The level of available evidence is not large enough to warrant transfer to patient populations (including children and the elderly and raises doubts about research with healthy individuals. This implies that based on the methodology used so far, there seems to be insufficient evidence for the superiority of an external focus of control, neither in healthy individuals nor in clinical populations. The relationship between EF instructions and motor learning research and its effect in both patient rehabilitation settings and healthy populations requires further exploration. Future adequately powered studies with low ROB and with rehabilitation populations that are followed over extended time periods should, therefore, be performed to substantiate or refute the assumption of the superiority of an EF in motor learning.

  18. Imaging Flow Cytometry Analysis to Identify Differences of Survival Motor Neuron Protein Expression in Patients With Spinal Muscular Atrophy.

    Science.gov (United States)

    Arakawa, Reiko; Arakawa, Masayuki; Kaneko, Kaori; Otsuki, Noriko; Aoki, Ryoko; Saito, Kayoko

    2016-08-01

    Spinal muscular atrophy is a neurodegenerative disorder caused by the deficient expression of survival motor neuron protein in motor neurons. A major goal of disease-modifying therapy is to increase survival motor neuron expression. Changes in survival motor neuron protein expression can be monitored via peripheral blood cells in patients; therefore we tested the sensitivity and utility of imaging flow cytometry for this purpose. After the immortalization of peripheral blood lymphocytes from a human healthy control subject and two patients with spinal muscular atrophy type 1 with two and three copies of SMN2 gene, respectively, we used imaging flow cytometry analysis to identify significant differences in survival motor neuron expression. A bright detail intensity analysis was used to investigate differences in the cellular localization of survival motor neuron protein. Survival motor neuron expression was significantly decreased in cells derived from patients with spinal muscular atrophy relative to those derived from a healthy control subject. Moreover, survival motor neuron expression correlated with the clinical severity of spinal muscular atrophy according to SMN2 copy number. The cellular accumulation of survival motor neuron protein was also significantly decreased in cells derived from patients with spinal muscular atrophy relative to those derived from a healthy control subject. The benefits of imaging flow cytometry for peripheral blood analysis include its capacities for analyzing heterogeneous cell populations; visualizing cell morphology; and evaluating the accumulation, localization, and expression of a target protein. Imaging flow cytometry analysis should be implemented in future studies to optimize its application as a tool for spinal muscular atrophy clinical trials. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery

    Directory of Open Access Journals (Sweden)

    Teresa eSollfrank

    2015-08-01

    Full Text Available A repetitive movement practice by motor imagery (MI can influence motor cortical excitability in the electroencephalogram (EEG. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007. This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during motor imagery. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronisation (ERD of the upper alpha band (10-12 Hz over the sensorimotor cortices thereby potentially improving MI based BCI protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb motor imagery present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (2D vs. 3D. The largest upper alpha band power decrease was obtained during motor imagery after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D visualization modality group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during MI. Realistic visual feedback, consistent with the participant’s motor imagery, might be helpful for accomplishing successful motor imagery and the use of such feedback may assist in making BCI a more natural interface for motor imagery based BCI rehabilitation.

  20. Rapid reorganization of adult rat motor cortex somatic representation patterns after motor nerve injury.

    OpenAIRE

    Sanes, J N; Suner, S; Lando, J F; Donoghue, J P

    1988-01-01

    The potential for peripheral nerve injury to reorganize motor cortical representations was investigated in adult rats. Maps reflecting functional connections between the motor cortex and somatic musculature were generated with intracortical electrical stimulation techniques. Comparison of cortical somatotopic maps obtained in normal rats with maps generated from rats with a facial nerve lesion indicated that the forelimb and eye/eyelid representations expanded into the normal vibrissa area. R...

  1. Dual-tDCS Enhances Online Motor Skill Learning and Long-Term Retention in Chronic Stroke Patients

    Science.gov (United States)

    Lefebvre, S.; Laloux, P.; Peeters, A.; Desfontaines, P.; Jamart, J.; Vandermeeren, Y.

    2013-01-01

    Background: Since motor learning is a key component for stroke recovery, enhancing motor skill learning is a crucial challenge for neurorehabilitation. Transcranial direct current stimulation (tDCS) is a promising approach for improving motor learning. The aim of this trial was to test the hypothesis that dual-tDCS applied bilaterally over the primary motor cortices (M1) improves online motor skill learning with the paretic hand and its long-term retention. Methods: Eighteen chronic stroke patients participated in a randomized, cross-over, placebo-controlled, double bind trial. During separate sessions, dual-tDCS or sham dual-tDCS was applied over 30 min while stroke patients learned a complex visuomotor skill with the paretic hand: using a computer mouse to move a pointer along a complex circuit as quickly and accurately as possible. A learning index involving the evolution of the speed/accuracy trade-off was calculated. Performance of the motor skill was measured at baseline, after intervention and 1 week later. Results: After sham dual-tDCS, eight patients showed performance worsening. In contrast, dual-tDCS enhanced the amount and speed of online motor skill learning compared to sham (p dual-tDCS (n = 10) than after sham (n = 3). More importantly, 1 week later, online enhancement under dual-tDCS had translated into superior long-term retention (+44%) compared to sham (+4%). The improvement generalized to a new untrained circuit and to digital dexterity. Conclusion: A single-session of dual-tDCS, applied while stroke patients trained with the paretic hand significantly enhanced online motor skill learning both quantitatively and qualitatively, leading to successful long-term retention and generalization. The combination of motor skill learning and dual-tDCS is promising for improving post-stroke neurorehabilitation. PMID:23316151

  2. Young Children’s Motor Interference is Influenced by Novel Group Membership

    Directory of Open Access Journals (Sweden)

    Johanna Elizabeth van Schaik

    2016-03-01

    Full Text Available From early childhood onwards, individuals use behavior copying to communicate liking and belonging. This nonverbal signal of affiliation is especially relevant in the context of social groups and indeed both children and adults copy in-group more than out-group members. Given the societal importance of inter-group interactions, it is imperative to understand the mechanistic level at which group modulations of copying occur early in development. The current study was designed to investigate the effect of novel group membership on young children’s motor behavior during a simultaneous movement-observation and -execution task. Four- to six-year-olds (n = 65 first gained membership to one of two novel groups based on their color preference and put on a vest in their chosen color. Subsequently, they were instructed to draw a straight line back-and-forth on a tablet computer that was concurrently displaying a stimulus video in which a model moved her arm congruently or incongruently to the child’s instructed direction. In half of the stimulus videos the model belonged to the in-group, while in the other half the model belonged to the out-group, as identified by the color of her dress. The deviations into the uninstructed direction of the children’s drawings were quantified as a measure of how much observing the models’ behaviors interfered with executing their own behaviors. The motor interference effect, namely higher deviations in the incongruent trials than in the congruent trials, was found only for the out-group condition. An additional manipulation of whether the models’ arms followed a biological or non-biological velocity profile had little effect on children’s motor interference. The results are interpreted in the context of the explicit coordinative nature of the task as an effect of heightened attention towards interacting with an out-group member. This study demonstrates that already during early childhood, novel group

  3. Development of kinesthetic-motor and auditory-motor representations in school-aged children.

    Science.gov (United States)

    Kagerer, Florian A; Clark, Jane E

    2015-07-01

    In two experiments using a center-out task, we investigated kinesthetic-motor and auditory-motor integrations in 5- to 12-year-old children and young adults. In experiment 1, participants moved a pen on a digitizing tablet from a starting position to one of three targets (visuo-motor condition), and then to one of four targets without visual feedback of the movement. In both conditions, we found that with increasing age, the children moved faster and straighter, and became less variable in their feedforward control. Higher control demands for movements toward the contralateral side were reflected in longer movement times and decreased spatial accuracy across all age groups. When feedforward control relies predominantly on kinesthesia, 7- to 10-year-old children were more variable, indicating difficulties in switching between feedforward and feedback control efficiently during that age. An inverse age progression was found for directional endpoint error; larger errors increasing with age likely reflect stronger functional lateralization for the dominant hand. In experiment 2, the same visuo-motor condition was followed by an auditory-motor condition in which participants had to move to acoustic targets (either white band or one-third octave noise). Since in the latter directional cues come exclusively from transcallosally mediated interaural time differences, we hypothesized that auditory-motor representations would show age effects. The results did not show a clear age effect, suggesting that corpus callosum functionality is sufficient in children to allow them to form accurate auditory-motor maps already at a young age.

  4. Behavioural and neural basis of anomalous motor learning in children with autism.

    Science.gov (United States)

    Marko, Mollie K; Crocetti, Deana; Hulst, Thomas; Donchin, Opher; Shadmehr, Reza; Mostofsky, Stewart H

    2015-03-01

    Autism spectrum disorder is a developmental disorder characterized by deficits in social and communication skills and repetitive and stereotyped interests and behaviours. Although not part of the diagnostic criteria, individuals with autism experience a host of motor impairments, potentially due to abnormalities in how they learn motor control throughout development. Here, we used behavioural techniques to quantify motor learning in autism spectrum disorder, and structural brain imaging to investigate the neural basis of that learning in the cerebellum. Twenty children with autism spectrum disorder and 20 typically developing control subjects, aged 8-12, made reaching movements while holding the handle of a robotic manipulandum. In random trials the reach was perturbed, resulting in errors that were sensed through vision and proprioception. The brain learned from these errors and altered the motor commands on the subsequent reach. We measured learning from error as a function of the sensory modality of that error, and found that children with autism spectrum disorder outperformed typically developing children when learning from errors that were sensed through proprioception, but underperformed typically developing children when learning from errors that were sensed through vision. Previous work had shown that this learning depends on the integrity of a region in the anterior cerebellum. Here we found that the anterior cerebellum, extending into lobule VI, and parts of lobule VIII were smaller than normal in children with autism spectrum disorder, with a volume that was predicted by the pattern of learning from visual and proprioceptive errors. We suggest that the abnormal patterns of motor learning in children with autism spectrum disorder, showing an increased sensitivity to proprioceptive error and a decreased sensitivity to visual error, may be associated with abnormalities in the cerebellum. © The Author (2015). Published by Oxford University Press on behalf

  5. Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Science.gov (United States)

    Kannape, Oliver Alan; Barré, Arnaud; Aminian, Kamiar; Blanke, Olaf

    2014-01-01

    The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation.

  6. Neonatal Stroke Causes Poor Midline Motor Behaviors and Poor Fine and Gross Motor Skills during Early Infancy

    Science.gov (United States)

    Chen, Chao-Ying; Lo, Warren D.; Heathcock, Jill C.

    2013-01-01

    Upper extremity movements, midline behaviors, fine, and gross motor skills are frequently impaired in hemiparesis and cerebral palsy. We investigated midline toy exploration and fine and gross motor skills in infants at risk for hemiplegic cerebral palsy. Eight infants with neonatal stroke (NS) and thirteen infants with typical development (TD)…

  7. Motor automaticity in Parkinson’s disease

    Science.gov (United States)

    Wu, Tao; Hallett, Mark; Chan, Piu

    2017-01-01

    Bradykinesia is the most important feature contributing to motor difficulties in Parkinson’s disease (PD). However, the pathophysiology underlying bradykinesia is not fully understood. One important aspect is that PD patients have difficulty in performing learned motor skills automatically, but this problem has been generally overlooked. Here we review motor automaticity associated motor deficits in PD, such as reduced arm swing, decreased stride length, freezing of gait, micrographia and reduced facial expression. Recent neuroimaging studies have revealed some neural mechanisms underlying impaired motor automaticity in PD, including less efficient neural coding of movement, failure to shift automated motor skills to the sensorimotor striatum, instability of the automatic mode within the striatum, and use of attentional control and/or compensatory efforts to execute movements usually performed automatically in healthy people. PD patients lose previously acquired automatic skills due to their impaired sensorimotor striatum, and have difficulty in acquiring new automatic skills or restoring lost motor skills. More investigations on the pathophysiology of motor automaticity, the effect of L-dopa or surgical treatments on automaticity, and the potential role of using measures of automaticity in early diagnosis of PD would be valuable. PMID:26102020

  8. Detection of Failure in Asynchronous Motor Using Soft Computing Method

    Science.gov (United States)

    Vinoth Kumar, K.; Sony, Kevin; Achenkunju John, Alan; Kuriakose, Anto; John, Ano P.

    2018-04-01

    This paper investigates the stator short winding failure of asynchronous motor also their effects on motor current spectrums. A fuzzy logic approach i.e., model based technique possibly will help to detect the asynchronous motor failure. Actually, fuzzy logic similar to humanoid intelligent methods besides expected linguistic empowering inferences through vague statistics. The dynamic model is technologically advanced for asynchronous motor by means of fuzzy logic classifier towards investigate the stator inter turn failure in addition open phase failure. A hardware implementation was carried out with LabVIEW for the online-monitoring of faults.

  9. Higher Efficiency HVAC Motors

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Charles Joseph [QM Power, Inc., Kansas City, MO (United States)

    2018-02-13

    The objective of this project was to design and build a cost competitive, more efficient heating, ventilation, and air conditioning (HVAC) motor than what is currently available on the market. Though different potential motor architectures among QMP’s primary technology platforms were investigated and evaluated, including through the building of numerous prototypes, the project ultimately focused on scaling up QM Power, Inc.’s (QMP) Q-Sync permanent magnet synchronous motors from available sub-fractional horsepower (HP) sizes for commercial refrigeration fan applications to larger fractional horsepower sizes appropriate for HVAC applications, and to add multi-speed functionality. The more specific goal became the research, design, development, and testing of a prototype 1/2 HP Q-Sync motor that has at least two operating speeds and 87% peak efficiency compared to incumbent electronically commutated motors (EC or ECM, also known as brushless direct current (DC) motors), the heretofore highest efficiency HVACR fan motor solution, at approximately 82% peak efficiency. The resulting motor prototype built achieved these goals, hitting 90% efficiency and .95 power factor at full load and speed, and 80% efficiency and .7 power factor at half speed. Q-Sync, developed in part through a DOE SBIR grant (Award # DE-SC0006311), is a novel, patented motor technology that improves on electronically commutated permanent magnet motors through an advanced electronic circuit technology. It allows a motor to “sync” with the alternating current (AC) power flow. It does so by eliminating the constant, wasteful power conversions from AC to DC and back to AC through the synthetic creation of a new AC wave on the primary circuit board (PCB) by a process called pulse width modulation (PWM; aka electronic commutation) that is incessantly required to sustain motor operation in an EC permanent magnet motor. The Q-Sync circuit improves the power factor of the motor by removing all

  10. Acoustic Characterization of a Stationary Field Synchronous Motor

    National Research Council Canada - National Science Library

    Woodward, E

    2001-01-01

    .... We investigate the gross acoustic signature of a notional stationary field synchronous motor utilized as a marine propulsion motor in a naval combatant using the following methodology: (1) model the forces...

  11. Neonatal stroke causes poor midline motor behaviors and poor fine and gross motor skills during early infancy.

    Science.gov (United States)

    Chen, Chao-Ying; Lo, Warren D; Heathcock, Jill C

    2013-03-01

    Upper extremity movements, midline behaviors, fine, and gross motor skills are frequently impaired in hemiparesis and cerebral palsy. We investigated midline toy exploration and fine and gross motor skills in infants at risk for hemiplegic cerebral palsy. Eight infants with neonatal stroke (NS) and thirteen infants with typical development (TD) were assessed from 2 to 7 months of age. The following variables were analyzed: percentage of time in midline and fine and gross motor scores on the Bayley Scales of Infant Development (BSID-III). Infants with neonatal stroke demonstrated poor performance in midline behaviors and fine and gross motor scores on the BSID-III. These results suggest that infants with NS have poor midline behaviors and motor skill development early in infancy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Combined transcranial direct current stimulation and home-based occupational therapy for upper limb motor impairment following intracerebral hemorrhage

    DEFF Research Database (Denmark)

    Mortensen, Jesper; Figlewski, Krystian; Andersen, Henning

    2016-01-01

    PURPOSE: To investigate the combined effect of transcranial direct current stimulation (tDCS) and home-based occupational therapy on activities of daily living (ADL) and grip strength, in patients with upper limb motor impairment following intracerebral hemorrhage (ICH). METHODS: A double......-blind randomized controlled trial with one-week follow-up. Patients received five consecutive days of occupational therapy at home, combined with either anodal (n = 8) or sham (n = 7) tDCS. The primary outcome was ADL performance, which was assessed with the Jebsen-Taylor test (JTT). RESULTS: Both groups improved...... with the sham group, from baseline to post-assessment (p = 0.158). CONCLUSIONS: Five consecutive days of tDCS combined with occupational therapy provided greater improvements in grip strength compared with occupational therapy alone. tDCS is a promising add-on intervention regarding training of upper limb motor...

  13. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1993-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  14. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1992-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  15. The Movement Disorder Society Evidence-Based Medicine Review Update: Treatments for the motor symptoms of Parkinson's disease.

    Science.gov (United States)

    Fox, Susan H; Katzenschlager, Regina; Lim, Shen-Yang; Ravina, Bernard; Seppi, Klaus; Coelho, Miguel; Poewe, Werner; Rascol, Olivier; Goetz, Christopher G; Sampaio, Cristina

    2011-10-01

    The objective was to update previous evidence-based medicine reviews of treatments for motor symptoms of Parkinson's disease published between 2002 and 2005. Level I (randomized, controlled trial) reports of pharmacological, surgical, and nonpharmacological interventions for the motor symptoms of Parkinson's disease between January 2004 (2001 for nonpharmacological) and December 2010 were reviewed. Criteria for inclusion, clinical indications, ranking, efficacy conclusions, safety, and implications for clinical practice followed the original program outline and adhered to evidence-based medicine methodology. Sixty-eight new studies qualified for review. Piribedil, pramipexole, pramipexole extended release, ropinirole, rotigotine, cabergoline, and pergolide were all efficacious as symptomatic monotherapy; ropinirole prolonged release was likely efficacious. All were efficacious as a symptomatic adjunct except pramipexole extended release, for which there is insufficient evidence. For prevention/delay of motor fluctuations, pramipexole and cabergoline were efficacious, and for prevention/delay of dyskinesia, pramipexole, ropinirole, ropinirole prolonged release, and cabergoline were all efficacious, whereas pergolide was likely efficacious. Duodenal infusion of levodopa was likely efficacious in the treatment of motor complications, but the practice implication is investigational. Entacapone was nonefficacious as a symptomatic adjunct to levodopa in nonfluctuating patients and nonefficacious in the prevention/delay of motor complications. Rasagiline conclusions were revised to efficacious as a symptomatic adjunct, and as treatment for motor fluctuations. Clozapine was efficacious in dyskinesia, but because of safety issues, the practice implication is possibly useful. Bilateral subthalamic nucleus deep brain stimulation, bilateral globus pallidus stimulation, and unilateral pallidotomy were updated to efficacious for motor complications. Physical therapy was revised

  16. Validating the Rett Syndrome Gross Motor Scale

    DEFF Research Database (Denmark)

    Downs, Jenny; Stahlhut, Michelle; Wong, Kingsley

    2016-01-01

    .93-0.98). The standard error of measurement for the total score was 2 points and we would be 95% confident that a change 4 points in the 45-point scale would be greater than within-subject measurement error. The Rett Syndrome Gross Motor Scale could be an appropriate measure of gross motor skills in clinical practice......Rett syndrome is a pervasive neurodevelopmental disorder associated with a pathogenic mutation on the MECP2 gene. Impaired movement is a fundamental component and the Rett Syndrome Gross Motor Scale was developed to measure gross motor abilities in this population. The current study investigated...... the validity and reliability of the Rett Syndrome Gross Motor Scale. Video data showing gross motor abilities supplemented with parent report data was collected for 255 girls and women registered with the Australian Rett Syndrome Database, and the factor structure and relationships between motor scores, age...

  17. How thoughts give rise to action - conscious motor intention increases the excitability of target-specific motor circuits.

    Directory of Open Access Journals (Sweden)

    Volker R Zschorlich

    Full Text Available The present study shows evidence for conscious motor intention in motor preparation prior to movement execution. We demonstrate that conscious motor intention of directed movement, combined with minimally supra-threshold transcranial magnetic stimulation (TMS of the motor cortex, determines the direction and the force of resulting movements, whilst a lack of intention results in weak and omni-directed muscle activation. We investigated changes of consciously intended goal directed movements by analyzing amplitudes of motor-evoked potentials of the forearm muscle, flexor carpi radialis (FCR, and extensor carpi radialis (ECR, induced by transcranial magnetic stimulation over the right motor cortex and their motor outcome. Right-handed subjects were asked to develop a strong intention to move their left wrist (flexion or extension, without any overt motor output at the wrist, prior to brain stimulation. Our analyses of hand acceleration and electromyography showed that during the strong motor intention of wrist flexion movement, it evoked motor potential responses that were significantly larger in the FCR muscle than in the ECR, whilst the opposite was true for an extension movement. The acceleration data on flexion/extension corresponded to this finding. Under no-intention conditions again, which served as a reference for motor evoked potentials, brain stimulation resulted in undirected and minimally simultaneous extension/flexion innervation and virtually no movement. These results indicate that conscious intentions govern motor function, which in turn shows that a neuronal activation representing an "intention network" in the human brain pre-exists, and that it functionally represents target specific motor circuits. Until today, it was unclear whether conscious motor intention exists prior to movement, or whether the brain constructs such an intention after movement initiation. Our study gives evidence that motor intentions become aware before

  18. How Thoughts Give Rise to Action - Conscious Motor Intention Increases the Excitability of Target-Specific Motor Circuits

    Science.gov (United States)

    Zschorlich, Volker R.; Köhling, Rüdiger

    2013-01-01

    The present study shows evidence for conscious motor intention in motor preparation prior to movement execution. We demonstrate that conscious motor intention of directed movement, combined with minimally supra-threshold transcranial magnetic stimulation (TMS) of the motor cortex, determines the direction and the force of resulting movements, whilst a lack of intention results in weak and omni-directed muscle activation. We investigated changes of consciously intended goal directed movements by analyzing amplitudes of motor-evoked potentials of the forearm muscle, flexor carpi radialis (FCR), and extensor carpi radialis (ECR), induced by transcranial magnetic stimulation over the right motor cortex and their motor outcome. Right-handed subjects were asked to develop a strong intention to move their left wrist (flexion or extension), without any overt motor output at the wrist, prior to brain stimulation. Our analyses of hand acceleration and electromyography showed that during the strong motor intention of wrist flexion movement, it evoked motor potential responses that were significantly larger in the FCR muscle than in the ECR, whilst the opposite was true for an extension movement. The acceleration data on flexion/extension corresponded to this finding. Under no-intention conditions again, which served as a reference for motor evoked potentials, brain stimulation resulted in undirected and minimally simultaneous extension/flexion innervation and virtually no movement. These results indicate that conscious intentions govern motor function, which in turn shows that a neuronal activation representing an “intention network” in the human brain pre-exists, and that it functionally represents target specific motor circuits. Until today, it was unclear whether conscious motor intention exists prior to movement, or whether the brain constructs such an intention after movement initiation. Our study gives evidence that motor intentions become aware before any motor

  19. A preliminary investigation of the relationship between language and gross motor skills in preschool children.

    Science.gov (United States)

    Merriman, W J; Barnett, B E

    1995-12-01

    This study was undertaken to explore the relationship between language skills and gross-motor skills of 28 preschool children from two private preschools in New York City. Pearson product-moment correlation coefficients were calculated for language (revised Preschool Language Scale) and gross motor (Test of Gross Motor Development) scores. Locomotor skills were significantly related to both auditory comprehension and verbal ability while object control scores did not correlate significantly with either language score. These results were discussed in terms of previous research and with reference to dynamical systems theory. Suggestions for research were made.

  20. Motor Testing at 1 Year Improves the Prediction of Motor and Mental Outcome at 2 Years after Perinatal Hypoxic-Ischaemic Encephalopathy

    Science.gov (United States)

    van Schie, Petra Em; Becher, Jules G.; Dallmeijer, Annet J.; Barkhof, Frederik; van Weissenbruch, Mirjam M.; Vermeulen, R. Jeroen

    2010-01-01

    Aim: To investigate the predictive value of motor testing at 1 year for motor and mental outcome at 2 years after perinatal hypoxic-ischaemic encephalopathy (HIE) in term neonates. Method: Motor and mental outcome at 2 years was assessed with the Bayley Scales of Infant Development, 2nd edition (BSID-II) in 32 surviving children (20 males, 12…

  1. Behavioural outcomes of subthalamic stimulation and medical therapy versus medical therapy alone for Parkinson's disease with early motor complications (EARLYSTIM trial): secondary analysis of an open-label randomised trial.

    Science.gov (United States)

    Lhommée, Eugénie; Wojtecki, Lars; Czernecki, Virginie; Witt, Karsten; Maier, Franziska; Tonder, Lisa; Timmermann, Lars; Hälbig, Thomas D; Pineau, Fanny; Durif, Franck; Witjas, Tatiana; Pinsker, Marcus; Mehdorn, Maximilian; Sixel-Döring, Friederike; Kupsch, Andreas; Krüger, Rejko; Elben, Saskia; Chabardès, Stephan; Thobois, Stéphane; Brefel-Courbon, Christine; Ory-Magne, Fabienne; Regis, Jean-Marie; Maltête, David; Sauvaget, Anne; Rau, Jörn; Schnitzler, Alfons; Schüpbach, Michael; Schade-Brittinger, Carmen; Deuschl, Gunther; Houeto, Jean-Luc; Krack, Paul

    2018-03-01

    Although subthalamic stimulation is a recognised treatment for motor complications in Parkinson's disease, reports on behavioural outcomes are controversial, which represents a major challenge when counselling candidates for subthalamic stimulation. We aimed to assess changes in behaviour in patients with Parkinson's disease receiving combined treatment with subthalamic stimulation and medical therapy over a 2-year follow-up period as compared with the behavioural evolution under medical therapy alone. We did a parallel, open-label study (EARLYSTIM) at 17 surgical centres in France (n=8) and Germany (n=9). We recruited patients with Parkinson's disease who were disabled by early motor complications. Participants were randomly allocated (1:1) to either medical therapy alone or bilateral subthalamic stimulation plus medical therapy. The primary outcome was mean change in quality of life from baseline to 2 years. A secondary analysis was also done to assess behavioural outcomes. We used the Ardouin Scale of Behavior in Parkinson's Disease to assess changes in behaviour between baseline and 2-year follow-up. Apathy was also measured using the Starkstein Apathy Scale, and depression was assessed with the Beck Depression Inventory. The secondary analysis was done in all patients recruited. We used a generalised estimating equations (GEE) regression model for individual items and mixed model regression for subscores of the Ardouin scale and the apathy and depression scales. This trial is registered with ClinicalTrials.gov, number NCT00354133. The primary analysis has been reported elsewhere; this report presents the secondary analysis only. Between July, 2006, and November, 2009, 251 participants were recruited, of whom 127 were allocated medical therapy alone and 124 were assigned bilateral subthalamic stimulation plus medical therapy. At 2-year follow-up, the levodopa-equivalent dose was reduced by 39% (-363·3 mg/day [SE 41·8]) in individuals allocated bilateral

  2. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis.

    Science.gov (United States)

    Vourvopoulos, Athanasios; Bermúdez I Badia, Sergi

    2016-08-09

    The use of Brain-Computer Interface (BCI) technology in neurorehabilitation provides new strategies to overcome stroke-related motor limitations. Recent studies demonstrated the brain's capacity for functional and structural plasticity through BCI. However, it is not fully clear how we can take full advantage of the neurobiological mechanisms underlying recovery and how to maximize restoration through BCI. In this study we investigate the role of multimodal virtual reality (VR) simulations and motor priming (MP) in an upper limb motor-imagery BCI task in order to maximize the engagement of sensory-motor networks in a broad range of patients who can benefit from virtual rehabilitation training. In order to investigate how different BCI paradigms impact brain activation, we designed 3 experimental conditions in a within-subject design, including an immersive Multimodal Virtual Reality with Motor Priming (VRMP) condition where users had to perform motor-execution before BCI training, an immersive Multimodal VR condition, and a control condition with standard 2D feedback. Further, these were also compared to overt motor-execution. Finally, a set of questionnaires were used to gather subjective data on Workload, Kinesthetic Imagery and Presence. Our findings show increased capacity to modulate and enhance brain activity patterns in all extracted EEG rhythms matching more closely those present during motor-execution and also a strong relationship between electrophysiological data and subjective experience. Our data suggest that both VR and particularly MP can enhance the activation of brain patterns present during overt motor-execution. Further, we show changes in the interhemispheric EEG balance, which might play an important role in the promotion of neural activation and neuroplastic changes in stroke patients in a motor-imagery neurofeedback paradigm. In addition, electrophysiological correlates of psychophysiological responses provide us with valuable information

  3. Neurofeedback using real-time near-infrared spectroscopy enhances motor imagery related cortical activation.

    Directory of Open Access Journals (Sweden)

    Masahito Mihara

    Full Text Available Accumulating evidence indicates that motor imagery and motor execution share common neural networks. Accordingly, mental practices in the form of motor imagery have been implemented in rehabilitation regimes of stroke patients with favorable results. Because direct monitoring of motor imagery is difficult, feedback of cortical activities related to motor imagery (neurofeedback could help to enhance efficacy of mental practice with motor imagery. To determine the feasibility and efficacy of a real-time neurofeedback system mediated by near-infrared spectroscopy (NIRS, two separate experiments were performed. Experiment 1 was used in five subjects to evaluate whether real-time cortical oxygenated hemoglobin signal feedback during a motor execution task correlated with reference hemoglobin signals computed off-line. Results demonstrated that the NIRS-mediated neurofeedback system reliably detected oxygenated hemoglobin signal changes in real-time. In Experiment 2, 21 subjects performed motor imagery of finger movements with feedback from relevant cortical signals and irrelevant sham signals. Real neurofeedback induced significantly greater activation of the contralateral premotor cortex and greater self-assessment scores for kinesthetic motor imagery compared with sham feedback. These findings suggested the feasibility and potential effectiveness of a NIRS-mediated real-time neurofeedback system on performance of kinesthetic motor imagery. However, these results warrant further clinical trials to determine whether this system could enhance the effects of mental practice in stroke patients.

  4. Does Narrative Feedback Enhance Children's Motor Learning in a Virtual Environment?

    Science.gov (United States)

    Levac, Danielle E; Lu, Amy S

    2018-04-30

    Augmented feedback has motivational and informational functions in motor learning, and is a key feature of practice in a virtual environment (VE). This study evaluated the impact of narrative (story-based) feedback as compared to standard feedback during practice of a novel task in a VE on typically developing children's motor learning, motivation and engagement. Thirty-eight children practiced navigating through a virtual path, receiving narrative or non-narrative feedback following each trial. All participants improved their performance on retention but not transfer, with no significant differences between groups. Self-reported engagement was associated with acquisition, retention and transfer for both groups. A narrative approach to feedback delivery did not offer an additive benefit; additional affective advantages of augmented feedback for motor learning in VEs should be explored.

  5. Predictors and brain connectivity changes associated with arm motor function improvement from intensive practice in chronic stroke [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    George F. Wittenberg

    2017-02-01

    Full Text Available Background and Purpose: The brain changes that underlie therapy-induced improvement in motor function after stroke remain obscure. This study sought to demonstrate the feasibility and utility of measuring motor system physiology in a clinical trial of intensive upper extremity rehabilitation in chronic stroke-related hemiparesis. Methods: This was a substudy of two multi-center clinical trials of intensive robotic and intensive conventional therapy arm therapy in chronic, significantly hemiparetic, stroke patients. Transcranial magnetic stimulation was used to measure motor cortical output to the biceps and extensor digitorum communus muscles. Magnetic resonance imaging (MRI was used to determine the cortical anatomy, as well as to measure fractional anisotropy, and blood oxygenation (BOLD during an eyes-closed rest state. Region-of-interest time-series correlation analysis was performed on the BOLD signal to determine interregional connectivity. Functional status was measured with the upper extremity Fugl-Meyer and Wolf Motor Function Test. Results: Motor evoked potential (MEP presence was associated with better functional outcomes, but the effect was not significant when considering baseline impairment. Affected side internal capsule fractional anisotropy was associated with better function at baseline. Affected side primary motor cortex (M1 activity became more correlated with other frontal motor regions after treatment. Resting state connectivity between affected hemisphere M1 and dorsal premotor area (PMAd predicted recovery. Conclusions: Presence of motor evoked potentials in the affected motor cortex and its functional connectivity with PMAd may be useful in predicting recovery. Functional connectivity in the motor network shows a trends towards increasing after intensive robotic or non-robotic arm therapy. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifiers: NCT00372411 \\& NCT00333983.

  6. The motor way: Clinical implications of understanding and shaping actions with the motor system in autism and drug addiction.

    Science.gov (United States)

    Casartelli, Luca; Chiamulera, Cristiano

    2016-04-01

    To understand others' minds is crucial for survival; however, it is quite puzzling how access to others' minds can be--to some extent--direct and not necessarily mediated by conceptual reasoning. Recent advances in neuroscience have led to hypothesize a role for motor circuits not only in controlling the elementary physical features of movement (e.g., force, direction, and amplitude), but also in understanding and shaping human behavior. The concept of "motor cognition" refers to these aspects, and neurophysiological, neuroimaging, and behavioral studies in human and nonhuman primates support this view. From a clinical perspective, motor cognition represents a challenge in several domains. A thorough investigation of the neural mechanisms mediating motor action/intention understanding and automatized/compulsive behaviors seems to be a promising way to tackle a range of neurodevelopmental and drug-related disorders. On the one hand, anomalies in motor cognition may have cascade effects on social functioning in individuals with autism spectrum disorder (ASD); on the other, motor cognition may help explain the pathophysiology of drug-seeking and drug-taking behaviors in the most severe phase of drug addiction (i.e., see drug dependence, motor low-order cue reactivity). This may represent a promising approach that could improve the efficacy of rehabilitative interventions. The only way to shed light on multifactorial disorders such as ASD and drug addiction is through the investigation of their multiple factors. This motor way can promote new theoretical and experimental perspectives that would help bridge the gap between the basic neuroscience approach and clinical practice.

  7. Assessment of the upper motor neuron in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Huynh, William; Simon, Neil G; Grosskreutz, Julian; Turner, Martin R; Vucic, Steve; Kiernan, Matthew C

    2016-07-01

    Clinical signs of upper motor neuron (UMN) involvement are an important component in supporting the diagnosis of amyotrophic lateral sclerosis (ALS), but are often not easily appreciated in a limb that is concurrently affected by muscle wasting and lower motor neuron degeneration, particularly in the early symptomatic stages of ALS. Whilst recent criteria have been proposed to facilitate improved detection of lower motor neuron impairment through electrophysiological features that have improved diagnostic sensitivity, assessment of upper motor neuron involvement remains essentially clinical. As a result, there is often a significant diagnostic delay that in turn may impact institution of disease-modifying therapy and access to other optimal patient management. Biomarkers of pathological UMN involvement are also required to ensure patients with suspected ALS have timely access to appropriate therapeutic trials. The present review provides an analysis of current and recently developed assessment techniques, including novel imaging and electrophysiological approaches used to study corticomotoneuronal pathology in ALS. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task

    Science.gov (United States)

    Laubach, Mark; Wessberg, Johan; Nicolelis, Miguel A. L.

    2000-06-01

    When an animal learns to make movements in response to different stimuli, changes in activity in the motor cortex seem to accompany and underlie this learning. The precise nature of modifications in cortical motor areas during the initial stages of motor learning, however, is largely unknown. Here we address this issue by chronically recording from neuronal ensembles located in the rat motor cortex, throughout the period required for rats to learn a reaction-time task. Motor learning was demonstrated by a decrease in the variance of the rats' reaction times and an increase in the time the animals were able to wait for a trigger stimulus. These behavioural changes were correlated with a significant increase in our ability to predict the correct or incorrect outcome of single trials based on three measures of neuronal ensemble activity: average firing rate, temporal patterns of firing, and correlated firing. This increase in prediction indicates that an association between sensory cues and movement emerged in the motor cortex as the task was learned. Such modifications in cortical ensemble activity may be critical for the initial learning of motor tasks.

  9. Energy-efficient electric motors study

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-23

    The study identifies the industrial decision makers, investigated the information they needed to know, how they can best be reached, and the motivating factors for purchasing energy-efficient electric motors. A survey was conducted of purchasers of integral horsepower polyphase motors. The survey measured current knowledge of and awareness of energy-efficient motors, decision-making criteria, information sources, purchase and usage patterns, and related factors. The survey data were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. A description of study findings, conclusions, and recommendations is presented. Sample questionnaires and copies of letters to respondents are presented in 3 appendices. Appendices D and E contain descriptions of the methods used. (MCW)

  10. Altered resting-state effective connectivity of fronto-parietal motor control systems on the primary motor network following stroke

    Science.gov (United States)

    Inman, Cory S.; James, G. Andrew; Hamann, Stephan; Rajendra, Justin K.; Pagnoni, Giuseppe; Butler, Andrew J.

    2011-01-01

    Previous brain imaging work suggests that stroke alters the effective connectivity (the influence neural regions exert upon each other) of motor execution networks. The present study examines the intrinsic effective connectivity of top-down motor control in stroke survivors (n=13) relative to healthy participants (n=12). Stroke survivors exhibited significant deficits in motor function, as assessed by the Fugl-Meyer Motor Assessment. We used structural equation modeling (SEM) of resting-state fMRI data to investigate the relationship between motor deficits and the intrinsic effective connectivity between brain regions involved in motor control and motor execution. An exploratory adaptation of SEM determined the optimal model of motor execution effective connectivity in healthy participants, and confirmatory SEM assessed stroke survivors’ fit to that model. We observed alterations in spontaneous resting-state effective connectivity from fronto-parietal guidance systems to the motor network in stroke survivors. More specifically, diminished connectivity was found in connections from the superior parietal cortex to primary motor cortex and supplementary motor cortex. Furthermore, the paths demonstrated large individual variance in stroke survivors but less variance in healthy participants. These findings suggest that characterizing the deficits in resting-state connectivity of top-down processes in stroke survivors may help optimize cognitive and physical rehabilitation therapies by individually targeting specific neural pathway. PMID:21839174

  11. Reliability in the location of hindlimb motor representations in Fischer-344 rats: laboratory investigation.

    Science.gov (United States)

    Frost, Shawn B; Iliakova, Maria; Dunham, Caleb; Barbay, Scott; Arnold, Paul; Nudo, Randolph J

    2013-08-01

    The purpose of the present study was to determine the feasibility of using a common laboratory rat strain for reliably locating cortical motor representations of the hindlimb. Intracortical microstimulation techniques were used to derive detailed maps of the hindlimb motor representations in 6 adult Fischer-344 rats. The organization of the hindlimb movement representation, while variable across individual rats in topographic detail, displayed several commonalities. The hindlimb representation was positioned posterior to the forelimb motor representation and posterolateral to the motor trunk representation. The areal extent of the hindlimb representation across the cortical surface averaged 2.00 ± 0.50 mm(2). Superimposing individual maps revealed an overlapping area measuring 0.35 mm(2), indicating that the location of the hindlimb representation can be predicted reliably based on stereotactic coordinates. Across the sample of rats, the hindlimb representation was found 1.25-3.75 mm posterior to the bregma, with an average center location approximately 2.6 mm posterior to the bregma. Likewise, the hindlimb representation was found 1-3.25 mm lateral to the midline, with an average center location approximately 2 mm lateral to the midline. The location of the cortical hindlimb motor representation in Fischer-344 rats can be reliably located based on its stereotactic position posterior to the bregma and lateral to the longitudinal skull suture at midline. The ability to accurately predict the cortical localization of functional hindlimb territories in a rodent model is important, as such animal models are being increasingly used in the development of brain-computer interfaces for restoration of function after spinal cord injury.

  12. Non-invasive brain stimulation for fine motor improvement after stroke: a meta-analysis.

    Science.gov (United States)

    O'Brien, A T; Bertolucci, F; Torrealba-Acosta, G; Huerta, R; Fregni, F; Thibaut, A

    2018-05-09

    The aim of this study was to determine whether non-invasive brain stimulation (NIBS) techniques improve fine motor performance in stroke. We searched PubMed, EMBASE, Web of Science, SciELO and OpenGrey for randomized clinical trials on NIBS for fine motor performance in stroke patients and healthy participants. We computed Hedges' g for active and sham groups, pooled data as random-effects models and performed sensitivity analysis on chronicity, montage, frequency of stimulation and risk of bias. Twenty-nine studies (351 patients and 152 healthy subjects) were reviewed. Effect sizes in stroke populations for transcranial direct current stimulation and repeated transcranial magnetic stimulation were 0.31 [95% confidence interval (CI), 0.08-0.55; P = 0.010; Tau 2 , 0.09; I 2 , 34%; Q, 18.23; P = 0.110] and 0.46 (95% CI, 0.00-0.92; P = 0.05; Tau 2 , 0.38; I 2 , 67%; Q, 30.45; P = 0.007). The effect size of non-dominant healthy hemisphere transcranial direct current stimulation on non-dominant hand function was 1.25 (95% CI, 0.09-2.41; P = 0.04; Tau 2 , 1.26; I 2 , 93%; Q, 40.27; P < 0.001). Our results show that NIBS is associated with gains in fine motor performance in chronic stroke patients and healthy subjects. This supports the effects of NIBS on motor learning and encourages investigation to optimize their effects in clinical and research settings. © 2018 EAN.

  13. Investigation of a vibration-damping unit for reduction in low-frequency vibrations of electric motors

    Science.gov (United States)

    Grigoryey, N. V.; Fedorovich, M. A.

    1973-01-01

    The vibroacoustical characteristics of different types of electric motors are discussed. It is shown that the basic source of low frequency vibrations is rotor unbalance. A flexible damping support, with an antivibrator, is used to obtain the vibroacoustical effect of reduction in the basic harmonic of the electric motor. A model of the electric motor and the damping apparatus is presented. Mathematical models are developed to show the relationships of the parameters. The basic purpose in using a calculation model id the simultaneous replacement of the exciting force created by the rotor unbalance and its inertial rigidity characteristics by a limiting kinematic disturbance.

  14. Facilitators and barriers to the successful implementation of pediatric antibacterial drug trials: Findings from CTTI's survey of investigators

    Directory of Open Access Journals (Sweden)

    Amy Corneli

    2018-03-01

    Full Text Available An urgent need exists to develop new antibacterial drugs for children. We conducted research with investigators of pediatric antibacterial drug trials to identify facilitators and barriers in the conduct of these trials. Seventy-three investigators completed an online survey assessing the importance of 15 facilitators (grouped in 5 topical categories and the severity of 36 barriers (grouped in 6 topical categories to implementing pediatric antibacterial drug trials. Analysis focused on the identification of key factors that facilitate the successful implementation of pediatric antibacterial drug trials and the key barriers to implementation. Almost all investigators identified two factors as very important facilitators: having site personnel for enrollment and having adequate funding. Other top factors were related to staffing. Among the barriers, factors related to parent concerns and consent were prominent, particularly obtaining parental consent when there was disagreement between parents, concerns about the number of blood draws, and concerns about the number of invasive procedures. Having overly narrow eligibility criteria was also identified as a major barrier. The survey findings suggest three areas in which to focus efforts to help facilitate ongoing drug development: (1 improving engagement with parents of children who may be eligible to enroll in a pediatric antibacterial drug trial, (2 broadening inclusion criteria to allow more participants to enroll, and (3 ensuring adequate staffing and establishing sustainable financial strategies, such as funding pediatric trial networks. The pediatric antibacterial drug trials enterprise is likely to benefit from focused efforts by all stakeholders to remove barriers and enhance facilitation.

  15. Increased GABA-A receptor binding and reduced connectivity at the motor cortex in children with hemiplegic cerebral palsy: a multimodal investigation using 18F-fluoroflumazenil PET, immunohistochemistry, and MR imaging.

    Science.gov (United States)

    Park, Hae-Jeong; Kim, Chul Hoon; Park, Eun Sook; Park, Bumhee; Oh, So Ra; Oh, Maeng-Keun; Park, Chang Il; Lee, Jong Doo

    2013-08-01

    γ-aminobutyric acid (GABA)-A receptor-mediated neural transmission is important to promote practice-dependent plasticity after brain injury. This study investigated alterations in GABA-A receptor binding and functional and anatomic connectivity within the motor cortex in children with cerebral palsy (CP). We conducted (18)F-fluoroflumazenil PET on children with hemiplegic CP to investigate whether in vivo GABA-A receptor binding is altered in the ipsilateral or contralateral hemisphere of the lesion site. To evaluate changes in the GABA-A receptor subunit after prenatal brain injury, we performed GABA-A receptor immunohistochemistry using rat pups with a diffuse hypoxic ischemic insult. We also performed diffusion tensor MR imaging and resting-state functional MR imaging on the same children with hemiplegic CP to investigate alterations in anatomic and functional connectivity at the motor cortex with increased GABA-A receptor binding. In children with hemiplegic CP, the (18)F-fluoroflumazenil binding potential was increased within the ipsilateral motor cortex. GABA-A receptors with the α1 subunit were highly expressed exclusively within cortical layers III, IV, and VI of the motor cortex in rat pups. The motor cortex with increased GABA-A receptor binding in children with hemiplegic CP had reduced thalamocortical and corticocortical connectivity, which might be linked to increased GABA-A receptor distribution in cortical layers in rats. Increased expression of the GABA-A receptor α1 subunit within the ipsilateral motor cortex may be an important adaptive mechanism after prenatal brain injury in children with CP but may be associated with improper functional connectivity after birth and have adverse effects on the development of motor plasticity.

  16. Effectiveness of mirror therapy, motor imagery, and virtual feedback on phantom limb pain following amputation: A systematic review.

    Science.gov (United States)

    Herrador Colmenero, Laura; Perez Marmol, Jose Manuel; Martí-García, Celia; Querol Zaldivar, María de Los Ángeles; Tapia Haro, Rosa María; Castro Sánchez, Adelaida María; Aguilar-Ferrándiz, María Encarnación

    2017-11-01

    Phantom limb pain is reported in 50%-85% of people with amputation. Clinical interventions in treating central pain, such as mirror therapy, motor imagery, or virtual visual feedback, could redound in benefits to amputee patients with phantom limb pain. To provide an overview of the effectiveness of different techniques for treating phantom limb pain in amputee patients. Systematic review. A computerized literature search up to April 2017 was performed using the following databases: PubMed, Scopus, CINAHL, MEDLINE, ProQuest, PEDro, EBSCOhost, and Cochrane Plus. Methodological quality and internal validity score of each study were assessed using PEDro scale. For data synthesis, qualitative methods from the Cochrane Back Review Group were applied. In all, 12 studies met our inclusion criteria, where 9 were rated as low methodological quality and 3 rated moderate quality. All studies showed a significant reduction in pain, but there was heterogeneity among subjects and methodologies and any high-quality clinical trial (PEDro score ≤8; internal validity score ≤5) was not found. Mirror therapy, motor imaginary, and virtual visual feedback reduce phantom limb pain; however, there is limited scientific evidence supporting their effectiveness. Future studies should include designs with more solid research methods, exploring short- and long-term benefits of these therapies. Clinical relevance This systematic review investigates the effectiveness of mirror therapy, motor imagery, and virtual visual feedback on phantom limb pain, summarizing the currently published trials and evaluating the research quality. Although these interventions have positive benefits in phantom limb pain, there is still a lack of evidence for supporting their effectiveness.

  17. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  18. Investigation and Calculation of Magnetic Field in Tubular Linear Reluctance Motor Using FEM

    Directory of Open Access Journals (Sweden)

    MOSALLANEJAD, A.

    2010-11-01

    Full Text Available In this paper the magnetic flux density of tubular linear reluctance motor (TLRM in open type magnetic circuit is studied. Also, all magnetic flux density calculation methods in winding of tubular linear reluctance motor are described. The effect of structure parameters on magnetic flux density is also discussed. Electromagnetic finite-element analysis is used for simulation of magnetic field, and simulation results of the magnetic field analysis with DC voltage excitation are compared with results obtained from calculation methods. The comparison yields a good agreement.

  19. Language and motor speech skills in children with cerebral palsy

    NARCIS (Netherlands)

    Pirila, Sija; van der Meere, Jaap; Pentikainen, Taina; Ruusu-Niemi, Pirjo; Korpela, Raija; Kilpinen, Jenni; Nieminen, Pirkko; Ruusu-Niemin, P; Kilpinen, R

    2007-01-01

    The aim of the study was to investigate associations between the severity of motor limitations, cognitive difficulties, language and motor speech problems in children with cerebral palsy. Also, the predictive power of neonatal cranial ultrasound findings on later outcome was investigated. For this

  20. To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?

    NARCIS (Netherlands)

    Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Prekoracka-Krawczyk, Anna; Jaskowski, Wojciech; van der Lubbe, Robert Henricus Johannes

    2016-01-01

    Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and

  1. Long-term administration of fluoxetine to improve motor recovery after stroke

    NARCIS (Netherlands)

    Berends, Hanneke I.; IJzerman, Maarten Joost; Movig, Kris L.L.; van Putten, Michel Johannes Antonius Maria

    2011-01-01

    Evaluation of: Chollet F. Tardy J., Albucher J.F. et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol. 10(2), 123–130 (2011). In this study, the authors examined the effects of administration of fluoxetine for 90 days on the

  2. Effects of Barbell Deadlift Training on Submaximal Motor Unit Firing Rates for the Vastus Lateralis and Rectus Femoris

    Science.gov (United States)

    Stock, Matt S.; Thompson, Brennan J.

    2014-01-01

    Previous investigations that have studied motor unit firing rates following strength training have been limited to small muscles, isometric training, or interventions involving exercise machines. We examined the effects of ten weeks of supervised barbell deadlift training on motor unit firing rates for the vastus lateralis and rectus femoris during a 50% maximum voluntary contraction (MVC) assessment. Twenty-four previously untrained men (mean age  = 24 years) were randomly assigned to training (n = 15) or control (n = 9) groups. Before and following the intervention, the subjects performed isometric testing of the right knee extensors while bipolar surface electromyographic signals were detected from the two muscles. The signals were decomposed into their constituent motor unit action potential trains, and motor units that demonstrated accuracy levels less than 92.0% were not considered for analysis. One thousand eight hundred ninety-two and 2,013 motor units were examined for the vastus lateralis and rectus femoris, respectively. Regression analyses were used to determine the linear slope coefficients (pulses per second [pps]/% MVC) and y-intercepts (pps) of the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. Deadlift training significantly improved knee extensor MVC force (Cohen's d = .70), but did not influence force steadiness. Training had no influence on the slopes and y-intercepts for the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. In agreement with previous cross-sectional comparisons and randomized control trials, our findings do not support the notion that strength training affects the submaximal control of motor units. PMID:25531294

  3. Effects of barbell deadlift training on submaximal motor unit firing rates for the vastus lateralis and rectus femoris.

    Directory of Open Access Journals (Sweden)

    Matt S Stock

    Full Text Available Previous investigations that have studied motor unit firing rates following strength training have been limited to small muscles, isometric training, or interventions involving exercise machines. We examined the effects of ten weeks of supervised barbell deadlift training on motor unit firing rates for the vastus lateralis and rectus femoris during a 50% maximum voluntary contraction (MVC assessment. Twenty-four previously untrained men (mean age  = 24 years were randomly assigned to training (n = 15 or control (n = 9 groups. Before and following the intervention, the subjects performed isometric testing of the right knee extensors while bipolar surface electromyographic signals were detected from the two muscles. The signals were decomposed into their constituent motor unit action potential trains, and motor units that demonstrated accuracy levels less than 92.0% were not considered for analysis. One thousand eight hundred ninety-two and 2,013 motor units were examined for the vastus lateralis and rectus femoris, respectively. Regression analyses were used to determine the linear slope coefficients (pulses per second [pps]/% MVC and y-intercepts (pps of the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. Deadlift training significantly improved knee extensor MVC force (Cohen's d = .70, but did not influence force steadiness. Training had no influence on the slopes and y-intercepts for the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. In agreement with previous cross-sectional comparisons and randomized control trials, our findings do not support the notion that strength training affects the submaximal control of motor units.

  4. Effects of barbell deadlift training on submaximal motor unit firing rates for the vastus lateralis and rectus femoris.

    Science.gov (United States)

    Stock, Matt S; Thompson, Brennan J

    2014-01-01

    Previous investigations that have studied motor unit firing rates following strength training have been limited to small muscles, isometric training, or interventions involving exercise machines. We examined the effects of ten weeks of supervised barbell deadlift training on motor unit firing rates for the vastus lateralis and rectus femoris during a 50% maximum voluntary contraction (MVC) assessment. Twenty-four previously untrained men (mean age  = 24 years) were randomly assigned to training (n = 15) or control (n = 9) groups. Before and following the intervention, the subjects performed isometric testing of the right knee extensors while bipolar surface electromyographic signals were detected from the two muscles. The signals were decomposed into their constituent motor unit action potential trains, and motor units that demonstrated accuracy levels less than 92.0% were not considered for analysis. One thousand eight hundred ninety-two and 2,013 motor units were examined for the vastus lateralis and rectus femoris, respectively. Regression analyses were used to determine the linear slope coefficients (pulses per second [pps]/% MVC) and y-intercepts (pps) of the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. Deadlift training significantly improved knee extensor MVC force (Cohen's d = .70), but did not influence force steadiness. Training had no influence on the slopes and y-intercepts for the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. In agreement with previous cross-sectional comparisons and randomized control trials, our findings do not support the notion that strength training affects the submaximal control of motor units.

  5. Early vibration assisted physiotherapy in toddlers with cerebral palsy ? a randomized controlled pilot trial

    OpenAIRE

    Stark, C.; Herkenrath, P.; Hollmann, H.; Waltz, S.; Becker, I.; Hoebing, L.; Semler, O.; Hoyer-Kuhn, H.; Duran, I.; Hero, B.; Hadders-Algra, M.; Schoenau, E.

    2016-01-01

    Objectives: to investigate feasibility, safety and efficacy of home-based side-alternating whole body vibration (sWBV) to improve motor function in toddlers with cerebral palsy (CP). Methods: Randomized controlled trial including 24 toddlers with CP (mean age 19 months (SD?3.1); 13 boys). Intervention: 14 weeks sWBV with ten 9-minute sessions weekly (non-individualized). Group A started with sWBV, followed by 14 weeks without; in group B this order was reversed. Feasibility (?70% adherence) a...

  6. Spinal Metaplasticity in Respiratory Motor Control

    Directory of Open Access Journals (Sweden)

    Gordon S Mitchell

    2015-02-01

    Full Text Available A hallmark feature of the neural system controlling breathing is its ability to exhibit plasticity. Less appreciated is the ability to exhibit metaplasticity, a change in the capacity to express plasticity (ie. plastic plasticity. Recent advances in our understanding of cellular mechanisms giving rise to respiratory motor plasticity lay the groundwork for (ongoing investigations of metaplasticity. This detailed understanding of respiratory metaplasticity will be essential as we harness metaplasticity to restore breathing capacity in clinical disorders that compromise breathing, such as cervical spinal injury, motor neuron disease and other neuromuscular diseases. In this brief review, we discuss key examples of metaplasticity in respiratory motor control, and our current understanding of mechanisms giving rise to spinal plasticity and metaplasticity in phrenic motor output; particularly after pre-conditioning with intermittent hypoxia. Progress in this area has led to the realization that similar mechanisms are operative in other spinal motor networks, including those governing limb movement. Further, these mechanisms can be harnessed to restore respiratory and non-respiratory motor function after spinal injury.

  7. Relationship between muscle strength and motor function in Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Milene F. Nunes

    2016-07-01

    Full Text Available ABSTRACT Measuring muscle strength and motor function is part of Duchenne muscular dystrophy (DMD assessment. However, the relationship between these variables is controversial. Objective To investigate the relationship between muscle strength and motor function and between these variables and age. Method Muscle strength was measured by Medical Research Council (MRC scale and motor function, by Motor Function Measure (MFM, in 40 non-ambulatory patients. Spearman tests investigated the relationships between muscle strength, motor function and age. Results Total MRC and MFM scores were strongly related to each other (r = 0.94; p 0.05. Strong and moderate relationships between partial muscle strength and motor function scores were found. Higher correlation coefficients were found between total scores and Dimensions 2 (axial/ proximal control and 3 (distal control of MFM. Conclusion Muscle strength and motor function are strongly correlated and seem to decrease proportionally in DMD.

  8. Modulating Brain Connectivity by Simultaneous Dual-Mode Stimulation over Bilateral Primary Motor Cortices in Subacute Stroke Patients

    Directory of Open Access Journals (Sweden)

    Jungsoo Lee

    2018-01-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS or transcranial direct current stimulation (tDCS has been used for the modulation of stroke patients’ motor function. Recently, more challenging approaches have been studied. In this study, simultaneous stimulation using both rTMS and tDCS (dual-mode stimulation over bilateral primary motor cortices (M1s was investigated to compare its modulatory effects with single rTMS stimulation over the ipsilesional M1 in subacute stroke patients. Twenty-four patients participated; 12 participants were assigned to the dual-mode stimulation group while the other 12 participants were assigned to the rTMS-only group. We assessed each patient’s motor function using the Fugl-Meyer assessment score and acquired their resting-state fMRI data at two times: prior to stimulation and 2 months after stimulation. Twelve healthy subjects were also recruited as the control group. The interhemispheric connectivity of the contralesional M1, interhemispheric connectivity between bilateral hemispheres, and global efficiency of the motor network noticeably increased in the dual-mode stimulation group compared to the rTMS-only group. Contrary to the dual-mode stimulation group, there was no significant change in the rTMS-only group. These data suggested that simultaneous dual-mode stimulation contributed to the recovery of interhemispheric interaction than rTMS only in subacute stroke patients. This trial is registered with NCT03279640.

  9. Stimulation over primary motor cortex during action observation impairs effector recognition.

    Science.gov (United States)

    Naish, Katherine R; Barnes, Brittany; Obhi, Sukhvinder S

    2016-04-01

    Recent work suggests that motor cortical processing during action observation plays a role in later recognition of the object involved in the action. Here, we investigated whether recognition of the effector making an action is also impaired when transcranial magnetic stimulation (TMS) - thought to interfere with normal cortical activity - is applied over the primary motor cortex (M1) during action observation. In two experiments, single-pulse TMS was delivered over the hand area of M1 while participants watched short clips of hand actions. Participants were then asked whether an image (experiment 1) or a video (experiment 2) of a hand presented later in the trial was the same or different to the hand in the preceding video. In Experiment 1, we found that participants' ability to recognise static images of hands was significantly impaired when TMS was delivered over M1 during action observation, compared to when no TMS was delivered, or when stimulation was applied over the vertex. Conversely, stimulation over M1 did not affect recognition of dot configurations, or recognition of hands that were previously presented as static images (rather than action movie clips) with no object. In Experiment 2, we found that effector recognition was impaired when stimulation was applied part way through (300ms) and at the end (500ms) of the action observation period, indicating that 200ms of action-viewing following stimulation was not long enough to form a new representation that could be used for later recognition. The findings of both experiments suggest that interfering with cortical motor activity during action observation impairs subsequent recognition of the effector involved in the action, which complements previous findings of motor system involvement in object memory. This work provides some of the first evidence that motor processing during action observation is involved in forming representations of the effector that are useful beyond the action observation period

  10. Electric Motors for Non-Cryogenic Hybrid Electric and Turboelectric Propulsion

    Science.gov (United States)

    Duffy, Kirsten P.

    2015-01-01

    NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. However, advances in motor component materials such as soft magnetic materials, hard magnetic materials, conductors, thermal insulation, and structural materials are expected in the coming years, and should improve motor performance. This study investigates several motor types for a one megawatt application, and projects the motor performance benefits of new component materials that might be available in the coming decades.

  11. Reprint of "Learning to breathe? Feedforward regulation of the inspiratory motor drive".

    Science.gov (United States)

    Zaman, Jonas; Van den Bergh, Omer; Fannes, Stien; Van Diest, Ilse

    2014-12-01

    Claims have been made that breathing is in part controlled by feedforward regulation. In a classical conditioning paradigm, we investigated anticipatory increases in the inspiratory motor drive as measured by inspiratory occlusion pressure (P100). In an acquisition phase, an experimental group (N = 13) received a low-intensity resistive load (5 cmH2O/l/s) for three consecutive inspirations as Conditioned Stimulus (CS), preceding a load of a stronger intensity (20 cmH2O/l/s) for three subsequent inspirations as unconditioned stimulus (US). The control group (N = 11) received the low-intensity load for six consecutive inspirations. In a post-acquisition phase both groups received the low-intensity load for six consecutive inspirations. Responses to the CS-load only differed between groups during the first acquisition trials and a strong increase in P100 during the US-loads was observed, which habituated across the experiment. Our results suggest that the disruption caused by adding low to moderate resistive loads to three consecutive inspirations results in a short-lasting anticipatory increase in inspiratory motor drive. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Effects of WR1065 on 6-hydroxydopamine-induced motor imbalance: Possible involvement of oxidative stress and inflammatory cytokines.

    Science.gov (United States)

    Kheradmand, Afshin; Nayebi, Alireza M; Jorjani, Masoumeh; Khalifeh, Solmaz; Haddadi, Rasool

    2016-08-03

    Over production of reactive oxygen species (ROS) is postulated to be the main contributor in degeneration of nigrostriatal dopaminergic neurons. In this study we investigated the effects of WR1065, a free radical scavenger, on motor imbalance, oxidative stress parameters and inflammatory cytokines in CSF and brain of hemi-parkinsonian rats. Lesion of dopaminergic neurons was done by unilateral infusion of 6-hydroxydopamine into the central region of the substentia nigra pars compacta (SNc) to induce hemi-parkinsonism and motor imbalance in rats. WR1065 (20, 40 and 80μg/2μl/rat) was administered three days before 6-OHDA administration. After three weeks behavioral study was performed and then brain and CSF samples were collected to assess tumor necrosis factor (TNFα), interlukin (IL-1β), reduced glutathione (GSH), and malondialdehyde (MDA). WR1065 pre-treatment in rats before receiving 6-OHDA, improved significantly motor impairment and caused reduction of MDA and inflammatory cytokines TNFα and IL-1β levels, while GSH level significantly increased when compared with lesioned rats. Our study indicated that WR1065 could improve 6-OHDA-induced motor imbalance. Furthermore, it decreased lipid peroxidation and inflammatory cytokines and restored the level of GSH up to normal range. We suggest that WR1065 can be proposed as a potential neuroprotective agent in motor impairments of PD. However to prove this hypothesis more clinical trial studies should be done. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Motor network efficiency and disability in multiple sclerosis

    Science.gov (United States)

    Yaldizli, Özgür; Sethi, Varun; Muhlert, Nils; Liu, Zheng; Samson, Rebecca S.; Altmann, Daniel R.; Ron, Maria A.; Wheeler-Kingshott, Claudia A.M.; Miller, David H.; Chard, Declan T.

    2015-01-01

    Objective: To develop a composite MRI-based measure of motor network integrity, and determine if it explains disability better than conventional MRI measures in patients with multiple sclerosis (MS). Methods: Tract density imaging and constrained spherical deconvolution tractography were used to identify motor network connections in 22 controls. Fractional anisotropy (FA), magnetization transfer ratio (MTR), and normalized volume were computed in each tract in 71 people with relapse onset MS. Principal component analysis was used to distill the FA, MTR, and tract volume data into a single metric for each tract, which in turn was used to compute a composite measure of motor network efficiency (composite NE) using graph theory. Associations were investigated between the Expanded Disability Status Scale (EDSS) and the following MRI measures: composite motor NE, NE calculated using FA alone, FA averaged in the combined motor network tracts, brain T2 lesion volume, brain parenchymal fraction, normal-appearing white matter MTR, and cervical cord cross-sectional area. Results: In univariable analysis, composite motor NE explained 58% of the variation in EDSS in the whole MS group, more than twice that of the other MRI measures investigated. In a multivariable regression model, only composite NE and disease duration were independently associated with EDSS. Conclusions: A composite MRI measure of motor NE was able to predict disability substantially better than conventional non-network-based MRI measures. PMID:26320199

  14. Research Paper: Investigation of Acoustic Characteristics of Speech Motor Control in Children Who Stutter and Children Who Do Not Stutter

    Directory of Open Access Journals (Sweden)

    Fatemeh Fakar Gharamaleki

    2016-11-01

    Full Text Available Objective Stuttering is a developmental disorder of speech fluency with unknown causes. One of the proposed theories in this field is deficits in speech motor control that is associated with damaged control, timing, and coordination of the speech muscles. Fundamental frequency, fundamental frequency range, intensity, intensity range, and voice onset time are the most important acoustic components that are often used for indirect evaluation of physiological functions underlying the mechanisms of speech motor control. The purpose of this investigation was to compare some of the acoustic characteristics of speech motor control in children who stutter and children who do not stutter. Materials & Methods This research is a descriptive-analytic and cross-sectional comparative study. A total of 25 Azari-Persian bilingual boys who stutter (stutters group and 23 Azari-Persian bilinguals and 21 Persian monolingual boys who do not stutter (non-stutters group in the age range of 6 to 10 years participated in this study. Children participated in /a/ and /i/ vowels prolongation and carrier phrase repetition tasks for the analysis of some of their acoustic characteristics including fundamental frequency, fundamental frequency range, intensity, intensity range, and voice onset time. The PRAAT software was used for acoustic analysis. SPSS software (version 17, one-way ANOVA, and Kruskal-Wallis test were used for analyzing the data. Results The results indicated that there were no significant differences between the stutters and non-stutters groups (P>0.05 with respect to the acoustic features of speech motor control . Conclusion No significant group differences were observed in all of the dependent variables reported in this study. Thus, the results of this research do not support the notion of aberrant speech motor control in children who stutter.

  15. Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Directory of Open Access Journals (Sweden)

    Oliver Alan Kannape

    Full Text Available The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants. We measured walking kinematics (joint-angles, velocity profiles and motor performance (end-point-compensation, trajectory-deviations. Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation.

  16. From Children to Adults: Motor Performance across the Life-Span

    Science.gov (United States)

    Leversen, Jonas S. R.; Haga, Monika; Sigmundsson, Hermundur

    2012-01-01

    The life-span approach to development provides a theoretical framework to examine the general principles of life-long development. This study aims to investigate motor performance across the life span. It also aims to investigate if the correlations between motor tasks increase with aging. A cross-sectional design was used to describe the effects of aging on motor performance across age groups representing individuals from childhood to young adult to old age. Five different motor tasks were used to study changes in motor performance within 338 participants (7–79 yrs). Results showed that motor performance increases from childhood (7–9) to young adulthood (19–25) and decreases from young adulthood (19–25) to old age (66–80). These results are mirroring results from cognitive research. Correlation increased with increasing age between two fine motor tasks and two gross motor tasks. We suggest that the findings might be explained, in part, by the structural changes that have been reported to occur in the developing and aging brain and that the theory of Neural Darwinism can be used as a framework to explain why these changes occur. PMID:22719958

  17. Rehabilitation plus OnabotulinumtoxinA Improves Motor Function over OnabotulinumtoxinA Alone in Post-Stroke Upper Limb Spasticity: A Single-Blind, Randomized Trial.

    Science.gov (United States)

    Devier, Deidre; Harnar, JoAnn; Lopez, Leandro; Brashear, Allison; Graham, Glenn

    2017-07-11

    OnabotulinumtoxinA (BoNT-A) can temporarily decrease spasticity following stroke, but whether there is an associated improvement in upper limb function is less clear. This study measured the benefit of adding weekly rehabilitation to a background of BoNT-A treatments for chronic upper limb spasticity following stroke. This was a multi-center clinical trial. Thirty-one patients with post-stroke upper limb spasticity were treated with BoNT-A. They were then randomly assigned to 24 weeks of weekly upper limb rehabilitation or no rehabilitation. They were injected up to two times, and followed for 24 weeks. The primary outcome was change in the Fugl-Meyer upper extremity score, which measures motor function, sensation, range of motion, coordination, and speed. The 'rehab' group significantly improved on the Fugl-Meyer upper extremity score (Visit 1 = 60, Visit 5 = 67) while the 'no rehab' group did not improve (Visit 1 = 59, Visit 5 = 59; p = 0.006). This improvement was largely driven by the upper extremity "movement" subscale, which showed that the 'rehab' group was improving (Visit 1 = 33, Visit 5 = 37) while the 'no rehab' group remained virtually unchanged (Visit 1 = 34, Visit 5 = 33; p = 0.034). Following injection of BoNT-A, adding a program of rehabilitation improved motor recovery compared to an injected group with no rehabilitation.

  18. Differential recruitment of the sensorimotor putamen and frontoparietal cortex during motor chunking in humans.

    Science.gov (United States)

    Wymbs, Nicholas F; Bassett, Danielle S; Mucha, Peter J; Porter, Mason A; Grafton, Scott T

    2012-06-07

    Motor chunking facilitates movement production by combining motor elements into integrated units of behavior. Previous research suggests that chunking involves two processes: concatenation, aimed at the formation of motor-motor associations between elements or sets of elements, and segmentation, aimed at the parsing of multiple contiguous elements into shorter action sets. We used fMRI to measure the trial-wise recruitment of brain regions associated with these chunking processes as healthy subjects performed a cued-sequence production task. A dynamic network analysis identified chunking structure for a set of motor sequences acquired during fMRI and collected over 3 days of training. Activity in the bilateral sensorimotor putamen positively correlated with chunk concatenation, whereas a left-hemisphere frontoparietal network was correlated with chunk segmentation. Across subjects, there was an aggregate increase in chunk strength (concatenation) with training, suggesting that subcortical circuits play a direct role in the creation of fluid transitions across chunks. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Can physiotherapy after stroke based on the Bobath concept result in improved quality of movement compared to the motor relearning programme.

    Science.gov (United States)

    Langhammer, Birgitta; Stanghelle, Johan K

    2011-06-01

    The primary aim of the present study was to investigate, based on data from our study in 2000, whether the Bobath approach enhanced quality of movement better than the Motor Relearning Programme (MRP) during rehabilitation of stroke patients. A randomized controlled stratified trial of acute stroke patients. The patients were treated according to Motor Relearning Programme and Bobath approach and assessed with Motor Assessment Scale, Sødring Motor Evaluation Scale, Nottingham Health Profile and the Barthel Index. A triangulation of the test scores was made in reference to the Movement Quality Model and biomechanical, physiological, psycho-socio-cultural, and existential themes. The items arm (p = 0.02-0.04) sitting (p = 0.04) and hand (p = 0.01-0.03) were significantly better in the Motor Relearning Programme group than in the Bobath group, in both Sødring Motor Evaluation Scale and Motor Assessment Scale. Leg function, balance, transfer, walking and stair climbing did not differ between the groups. The Movement Quality Model and the movement qualities biomechanical, physiological and psycho-socio-cultural showed higher scoring in the Motor Relearning Programme group, indicating better quality of movement in all items. Regression models established the relationship with significant models of motor performance and self reported physical mobility (adjusted R(2) 0.30-0.68, p < 0.0001), energy (adjusted R(2) 0.13-0.14, p = 0.03-0.04, emotion (adjusted R(2) 0.30-0.38, p < 0.0001) and social interaction (arm function, adjusted R(2) 0.25, p = 0.0001). These analyses confirm that task oriented exercises of the Motor Relearning Programme type are preferable regarding quality of movement in the acute rehabilitation of patients with stroke. Copyright © 2010 John Wiley & Sons, Ltd.

  20. Predictive coding of visual-auditory and motor-auditory events: An electrophysiological study.

    Science.gov (United States)

    Stekelenburg, Jeroen J; Vroomen, Jean

    2015-11-11

    The amplitude of auditory components of the event-related potential (ERP) is attenuated when sounds are self-generated compared to externally generated sounds. This effect has been ascribed to internal forward modals predicting the sensory consequences of one's own motor actions. Auditory potentials are also attenuated when a sound is accompanied by a video of anticipatory visual motion that reliably predicts the sound. Here, we investigated whether the neural underpinnings of prediction of upcoming auditory stimuli are similar for motor-auditory (MA) and visual-auditory (VA) events using a stimulus omission paradigm. In the MA condition, a finger tap triggered the sound of a handclap whereas in the VA condition the same sound was accompanied by a video showing the handclap. In both conditions, the auditory stimulus was omitted in either 50% or 12% of the trials. These auditory omissions induced early and mid-latency ERP components (oN1 and oN2, presumably reflecting prediction and prediction error), and subsequent higher-order error evaluation processes. The oN1 and oN2 of MA and VA were alike in amplitude, topography, and neural sources despite that the origin of the prediction stems from different brain areas (motor versus visual cortex). This suggests that MA and VA predictions activate a sensory template of the sound in auditory cortex. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Postoperative impairment of motor function at train-of-four ratio ≥0.9 cannot be improved by sugammadex (1 mg kg-1).

    Science.gov (United States)

    Baumüller, E; Schaller, S J; Chiquito Lama, Y; Frick, C G; Bauhofer, T; Eikermann, M; Fink, H; Blobner, M

    2015-05-01

    A train-of-four ratio (TOFR) ≥0.9 measured by quantitative neuromuscular monitoring is accepted as an indication of sufficient neuromuscular recovery for extubation, even though many postsynaptic acetylcholine receptors may still be inhibited. We investigated whether antagonism with sugammadex after spontaneous recovery to TOFR≥0.9 further improves muscle function or subjective well-being. Following recovery to TOFR≥0.9 and emergence from anaesthesia, 300 patients randomly received either sugammadex 1.0 mg kg(-1) or placebo. Fine motor function (Purdue Pegboard Test) and maximal voluntary grip strength were measured before and after surgery (before and after test drug administration). At discharge from the postanaesthesia care unit, well-being was assessed with numerical analogue scales and the Quality-of-Recovery Score 40 (QoR-40). Patients' fine motor function [6 (sd 4) vs 15 (3) pegs (30 s)(-1), Psugammadex or placebo, motor function was significantly improved in both groups but did not reach the preoperative level. There was no difference between groups at any time. Global well-being was unaffected (QoR-40: placebo, 174 vs 185; sugammadex, 175 vs 186, P>0.05). Antagonizing rocuronium at TOF≥0.9 with sugammadex 1.0 mg kg(-) (1) did not improve patients' motor function or well-being when compared with placebo. Our data support the view that TOFR≥0.9 measured by electromyography signifies sufficient recovery of neuromuscular function. The trial is registered at ClinicalTrials.gov (NCT01101139). © The Author 2014. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Investigation of left and right lateral fluid percussion injury in C57BL6/J mice: In vivo functional consequences.

    Science.gov (United States)

    Schurman, Lesley D; Smith, Terry L; Morales, Anthony J; Lee, Nancy N; Reeves, Thomas M; Phillips, Linda L; Lichtman, Aron H

    2017-07-13

    Although rodent models of traumatic brain injury (TBI) reliably produce cognitive and motor disturbances, behavioral characterization resulting from left and right hemisphere injuries remains unexplored. Here we examined the functional consequences of targeting the left versus right parietal cortex in lateral fluid percussion injury, on Morris water maze (MWM) spatial memory tasks (fixed platform and reversal) and neurological motor deficits (neurological severity score and rotarod). In the MWM fixed platform task, right lateral injury produced a small delay in acquisition rate compared to left. However, injury to either hemisphere resulted in probe trial deficits. In the MWM reversal task, left-right performance deficits were not evident, though left lateral injury produced mild acquisition and probe trial deficits compared to sham controls. Additionally, left and right injury produced similar neurological motor task deficits, impaired righting times, and lesion volumes. Injury to either hemisphere also produced robust ipsilateral, and modest contralateral, morphological changes in reactive microglia and astrocytes. In conclusion, left and right lateral TBI impaired MWM performance, with mild fixed platform acquisition rate differences, despite similar motor deficits, histological damage, and glial cell reactivity. Thus, while both left and right lateral TBI produce cognitive deficits, laterality in mouse MWM learning and memory merits consideration in the investigation of TBI-induced cognitive consequences. Copyright © 2017. Published by Elsevier B.V.

  3. Motor unit recruitment strategies are altered during deep-tissue pain.

    Science.gov (United States)

    Tucker, Kylie; Butler, Jane; Graven-Nielsen, Thomas; Riek, Stephan; Hodges, Paul

    2009-09-02

    Muscle pain is associated with decreased motor unit discharge rate during constant force contractions. As discharge rate is a determinant of force, other adaptations in strategy must explain force maintenance during pain. Our aim was to determine whether motor unit recruitment strategies are altered during pain to maintain force despite reduced discharge rate. Motor unit discharge behavior was recorded in two muscles, one with (quadriceps) and one without [flexor pollicis longus (FPL)] synergists. Motor units were recruited during matched low-force contractions with and without experimentally induced pain, and at higher force without pain. A total of 52 and 34 units were recorded in quadriceps and FPL, respectively, during low-force contractions with and without pain. Of these, 20 quadriceps and 9 FPL units were identified during both trials. The discharge rate of these units reduced during pain in both muscles [quadriceps: 8.7 (1.5) to 7.5 (1.3) Hz, p units discharged only with or without pain, but not in both conditions. Only one-third of the additional units recruited during pain (quadriceps n = 7/19, FPL n = 3/15) were those expected given orderly recruitment of the motor unit pool as determined during higher-force contractions. We conclude that reduced motor unit discharge rate with pain is accompanied by changes in the population of units used to maintain force. The recruitment of new units is partly inconsistent with generalized inhibition of the motoneuron pool predicted by the "pain adaptation" theory, and provides the basis for a new mechanism of motor adaptation with pain.

  4. PEMBUATAN SISTEM PENGATURAN PUTARAN MOTOR DC MENGGUNAKAN KONTROL PROPORTIONAL-INTEGRAL-DERIVATIVE (PID DENGAN MEMANFAATKAN SENSOR KMZ51

    Directory of Open Access Journals (Sweden)

    L Khakim

    2013-07-01

    Full Text Available Penelitian ini adalah penelitian pengembangan desain rancang bangun sistem pengendalian otomatis yang digerakkan dengan dua motor DC sehingga mampu mempertahankan kelembaman pada arahnya. Sistem otomatis ini terdiri dari sensor KMZ51 sebagai komponen feedback dan dua motor DC sebagai komponen plant. Pengujian dari sistem otomatis dibagi menjadi tiga yaitu pengujian sensor KMZ51, pengujian PWM sebagai penggerak motor DC dan pengujian performansi kontrol PID. Hasil pengujian menunjukkan nilai ketelitian sensor 99.17%. Pada pengujian PWM diperoleh error pengukuran 1.07% dan pengujian performansi sistem didapatkan bahwa penerapan kontrol PID dapat mengatur putaran motor DC sehingga model sistem mampu mempertahankan arahnya pada set point yang telah ditentukan dengan nilai overshoot maximum kurang dari 10%, rise time 2 detik dan settling time kurang dari 5% yang diperoleh pada Kp= 27, Ki= 6, dan Kd= 40 menggunakan metode trial and error. This research is design of automatic control system which driven by two DC motors that can keep the inertia of direction. The system is composed of sensor KMZ51 as feedback component and two DC motors as plant component. Testing of the automated system divided into three, KMZ51 sensor testing, PWM testing as drive DC motors, and performance testing of PID control system. The results show that the sensor accuracy values 99.17%, on testing the PWM measurement error obtained 1.07%, and testing of performance system obtained that the application of PID control can adjust DC motors rotation so that the model system is able to maintain direction the set point specified with maximum overshoot less than 10%, rise time of 2 seconds and settling time less than 5% were obtained at Kp= 27, Ki= 6, and Kd= 40 using trial and error method

  5. Electric motor predictive and preventive maintenance guide

    International Nuclear Information System (INIS)

    Oliver, J.A.

    1992-07-01

    Electric motor performance is vital to the reliable and efficient operation of power plants. The failure of one or more critical motors could cause lost capacity and excessive repair and maintenance cost. However, existing maintenance recommendations proposed by vendors for electric motors have sometimes encouraged many overly conservative maintenance practices. These practices have lead to excessive maintenance activities and costs which have provided no extra margin of operability. EPRI has sponsored RP2814-35 to develop a guide which provides power plants with information and guidance for establishing an effective maintenance program which will aid in preventing unexpected motor failures and assist in planning motor maintenance efforts. The guide includes a technical description which summarizes technical data relative to the four basic types of motors and their components in general use in power plants. The significant causes of motor failures are investigated and described in detail and methods to optimize service life and minimize maintenance cost through appropriate preventive maintenance and conditioning program are presented. This guide provides a foundation for an effective electric motor maintenance program and simplifies the selection of predictive and preventive maintenance tasks. Its use will enable maintenance personnel in nuclear and fossil plants to plan motor repairs during scheduled outages and avoid costly unexpected failures

  6. Individual Differences Influencing Immediate Effects of Internal and External Focus Instructions on Children's Motor Performance.

    Science.gov (United States)

    van Abswoude, Femke; Nuijen, Nienke B; van der Kamp, John; Steenbergen, Bert

    2018-06-01

    A large pool of evidence supports the beneficial effect of an external focus of attention on motor skill performance in adults. In children, this effect has been studied less and results are inconclusive. Importantly, individual differences are often not taken into account. We investigated the role of working memory, conscious motor control, and task-specific focus preferences on performance with an internal and external focus of attention in children. Twenty-five children practiced a golf putting task in both an internal focus condition and external focus condition. Performance was defined as the average distance toward the hole in 3 blocks of 10 trials. Task-specific focus preference was determined by asking how much effort it took to apply the instruction in each condition. In addition, working memory capacity and conscious motor control were assessed. Children improved performance in both the internal focus condition and external focus condition (ŋ p 2  = .47), with no difference between conditions (ŋ p 2  = .01). Task-specific focus preference was the only factor moderately related to the difference between performance with an internal focus and performance with an external focus (r = .56), indicating better performance for the preferred instruction in Block 3. Children can benefit from instruction with both an internal and external focus of attention to improve short-term motor performance. Individual, task-specific focus preference influenced the effect of the instructions, with children performing better with their preferred focus. The results highlight that individual differences are a key factor in the effectiveness in children's motor performance. The precise mechanisms underpinning this effect warrant further research.

  7. Differences in Investigator-Initiated Trials between Japan and Other Countries: Analyses of Clinical Trials Sponsored by Academia and Government in the ClinicalTrials.gov Registry and in the Three Japanese Registries.

    Directory of Open Access Journals (Sweden)

    Tatsuya Ito

    Full Text Available Following the amendment of the Pharmaceutical Affairs Law in Japan in 2003 researchers were permitted to begin investigator-initiated trials (IITs. In subsequent years, however, the number of IITs remained low. In other countries in Asia as well as in Europe, North America, and South Africa, the number of IITs has increased over the past decade. The differences in the characteristics of IITs between Japan and other countries are unknown. Some studies have analyzed the characteristics of all clinical trials according to registry databases, but there has been less research focusing on IITs.The purpose of this study is to analyze the characteristics of IITs in the ClinicalTrials.gov registry and in the three Japanese registries, to identify differences in IITs between Japan and other countries.Using Thomson Reuters Pharma™, trials sponsored by academia and government as IITs in 2010 and registered in ClinicalTrials.gov were identified. IITs from 2004 to 2012 in Japan were identified in the three Japanese registries: the University Hospital Medical Information Network Clinical Trials Registry, the Japan Pharmaceutical Information Center Clinical Trials Information, and the Japan Medical Association Center for Clinical Trials, Clinical Trials Registry. Characterization was made of the trial purposes, phases, participants, masking, arms, design, controls, and other data.New and revised IITs registered in ClinicalTrials.gov during 2010 averaged about 40% of all sponsor-identified trials. IITs were nearly all early-phase studies with small numbers of participants. A total of 56 Japanese IITs were found over a period of 8 years, and these were also almost nearly all early-phase studies with small numbers of participants.There appear to be no great differences between Japan and other countries in terms of characteristics of IITs. These results should prompt a new review of the IIT environment in Japan.

  8. Music-supported therapy in the rehabilitation of subacute stroke patients: a randomized controlled trial.

    Science.gov (United States)

    Grau-Sánchez, Jennifer; Duarte, Esther; Ramos-Escobar, Neus; Sierpowska, Joanna; Rueda, Nohora; Redón, Susana; Veciana de Las Heras, Misericordia; Pedro, Jordi; Särkämö, Teppo; Rodríguez-Fornells, Antoni

    2018-04-01

    The effect of music-supported therapy (MST) as a tool to restore hemiparesis of the upper extremity after a stroke has not been appropriately contrasted with conventional therapy. The aim of this trial was to test the effectiveness of adding MST to a standard rehabilitation program in subacute stroke patients. A randomized controlled trial was conducted in which patients were randomized to MST or conventional therapy in addition to the rehabilitation program. The intensity and duration of the interventions were equated in both groups. Before and after 4 weeks of treatment, motor and cognitive functions, mood, and quality of life (QoL) of participants were evaluated. A follow-up at 3 months was conducted to examine the retention of motor gains. Both groups significantly improved their motor function, and no differences between groups were found. The only difference between groups was observed in the language domain for QoL. Importantly, an association was encountered between the capacity to experience pleasure from music activities and the motor improvement in the MST group. MST as an add-on treatment showed no superiority to conventional therapies for motor recovery. Importantly, patient's intrinsic motivation to engage in musical activities was associated with better motor improvement. © 2018 New York Academy of Sciences.

  9. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  10. A Randomized Controlled Trial Comparing the McKenzie Method to Motor Control Exercises in People With Chronic Low Back Pain and a Directional Preference.

    Science.gov (United States)

    Halliday, Mark H; Pappas, Evangelos; Hancock, Mark J; Clare, Helen A; Pinto, Rafael Z; Robertson, Gavin; Ferreira, Paulo H

    2016-07-01

    Study Design Randomized clinical trial. Background Motor control exercises are believed to improve coordination of the trunk muscles. It is unclear whether increases in trunk muscle thickness can be facilitated by approaches such as the McKenzie method. Furthermore, it is unclear which approach may have superior clinical outcomes. Objectives The primary aim was to compare the effects of the McKenzie method and motor control exercises on trunk muscle recruitment in people with chronic low back pain classified with a directional preference. The secondary aim was to conduct a between-group comparison of outcomes for pain, function, and global perceived effect. Methods Seventy people with chronic low back pain who demonstrated a directional preference using the McKenzie assessment were randomized to receive 12 treatments over 8 weeks with the McKenzie method or with motor control approaches. All outcomes were collected at baseline and at 8-week follow-up by blinded assessors. Results No significant between-group difference was found for trunk muscle thickness of the transversus abdominis (-5.8%; 95% confidence interval [CI]: -15.2%, 3.7%), obliquus internus (-0.7%; 95% CI: -6.6%, 5.2%), and obliquus externus (1.2%; 95% CI: -4.3%, 6.8%). Perceived recovery was slightly superior in the McKenzie group (-0.8; 95% CI: -1.5, -0.1) on a -5 to +5 scale. No significant between-group differences were found for pain or function (P = .99 and P = .26, respectively). Conclusion We found no significant effect of treatment group for trunk muscle thickness. Participants reported a slightly greater sense of perceived recovery with the McKenzie method than with the motor control approach. Level of Evidence Therapy, level 1b-. Registered September 7, 2011 at www.anzctr.org.au (ACTRN12611000971932). J Orthop Sports Phys Ther 2016;46(7):514-522. Epub 12 May 2016. doi:10.2519/jospt.2016.6379.

  11. Dissociation between unconscious motor response facilitation and conflict in medial frontal areas.

    Science.gov (United States)

    D'Ostilio, Kevin; Garraux, Gaëtan

    2012-01-01

    Masked prime tasks have shown that sensory information that has not been consciously perceived can nevertheless modulate behavior. The neuronal correlates of behavioral manifestations of visuomotor priming remain debated, particularly with respect to the distribution and direction (i.e. increase or decrease) of activity changes in medial frontal areas. Here, we predicted that these discrepant results could be accounted for by two automatic and unconscious processes embedded in this task: response conflict and facilitation. We used event-related functional magnetic resonance imaging (fMRI), as 24 healthy participants had to respond, as fast as possible, to a target arrow presented immediately after a subliminal masked prime arrow. There were three experimental conditions defined by the prime-target relationship: compatible, incompatible, and neutral. The classical visuomotor priming effect was reproduced, with relatively longer reaction times (RTs) in incompatible trials. Longer RTs in incompatible than in neutral trials were specifically associated with stronger blood oxygen level-dependent (BOLD) activity in a conflict-related network comprising the anterior cingulate cortex and right frontal associative areas. Motor response facilitation as shown by shorter RTs in compatible than in neutral trials was associated with reduced activation in a motor preparation network including the medial and lateral premotor cortices, as a result of the repetition suppression of the fMRI BOLD signal. The present results provide new insights into automatic and unconscious visuomotor priming processes, suggesting an involvement of either a cognitive or motor network, depending on the prime-target relationship. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  12. Surgical outcome of motor deficits and neurological status in brainstem cavernous malformations based on preoperative diffusion tensor imaging: a prospective randomized clinical trial.

    Science.gov (United States)

    Li, Da; Jiao, Yu-Ming; Wang, Liang; Lin, Fu-Xin; Wu, Jun; Tong, Xian-Zeng; Wang, Shuo; Cao, Yong

    2018-03-16

    OBJECTIVE Surgical management of brainstem lesions is challenging due to the highly compact, eloquent anatomy of the brainstem. This study aimed to evaluate the safety and efficacy of preoperative diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) in brainstem cavernous malformations (CMs). METHODS A prospective randomized controlled clinical trial was performed by using stratified blocked randomization. The primary eligibility criterion of the study was being a surgical candidate for brainstem CMs (with informed consent). The study enrolled 23 patients who underwent preoperative DTI/DTT and 24 patients who did not (the control group). The pre- and postoperative muscle strength of both limbs and modified Rankin Scale (mRS) scores were evaluated. Muscle strength of any limb at 12 months after surgery at the clinic visit was the primary outcome; worsened muscle strength was considered to be a poor outcome. Outcome assessors were blinded to patient management. This study reports the preliminary results of the interim analysis. RESULTS The cohort included 47 patients (22 women) with a mean age of 35.7 years. The clinical baselines between these 2 groups were not significantly different. In the DTI/DTT group, the corticospinal tract was affected in 17 patients (73.9%): it was displaced, deformed/partially interrupted, or completely interrupted in 6, 7, and 4 patients, respectively. The surgical approach and brainstem entry point were adjusted in 3 patients (13.0%) based on DTI/DTT data. The surgical morbidity of the DTI/DTT group (7/23, 30.4%) was significantly lower than that of the control group (19/24, 79.2%, p = 0.001). At 12 months, the mean mRS score (1.1, p = 0.034) and percentage of patients with worsened motor deficits (4.3%, p = 0.006) were significantly lower in the DTI/DTT group than in the control group (1.7% and 37.5%). Multivariate logistic regression identified the absence of preoperative DTI/DTT (OR 0.06, 95% CI 0.01-0.73, p = 0

  13. Spatially dynamic recurrent information flow across long-range dorsal motor network encodes selective motor goals.

    Science.gov (United States)

    Yoo, Peter E; Hagan, Maureen A; John, Sam E; Opie, Nicholas L; Ordidge, Roger J; O'Brien, Terence J; Oxley, Thomas J; Moffat, Bradford A; Wong, Yan T

    2018-03-08

    Performing voluntary movements involves many regions of the brain, but it is unknown how they work together to plan and execute specific movements. We recorded high-resolution ultra-high-field blood-oxygen-level-dependent signal during a cued ankle-dorsiflexion task. The spatiotemporal dynamics and the patterns of task-relevant information flow across the dorsal motor network were investigated. We show that task-relevant information appears and decays earlier in the higher order areas of the dorsal motor network then in the primary motor cortex. Furthermore, the results show that task-relevant information is encoded in general initially, and then selective goals are subsequently encoded in specifics subregions across the network. Importantly, the patterns of recurrent information flow across the network vary across different subregions depending on the goal. Recurrent information flow was observed across all higher order areas of the dorsal motor network in the subregions encoding for the current goal. In contrast, only the top-down information flow from the supplementary motor cortex to the frontoparietal regions, with weakened recurrent information flow between the frontoparietal regions and bottom-up information flow from the frontoparietal regions to the supplementary cortex were observed in the subregions encoding for the opposing goal. We conclude that selective motor goal encoding and execution rely on goal-dependent differences in subregional recurrent information flow patterns across the long-range dorsal motor network areas that exhibit graded functional specialization. © 2018 Wiley Periodicals, Inc.

  14. Gross motor skill development of 5-year-old Kindergarten children in Myanmar.

    Science.gov (United States)

    Aye, Thanda; Oo, Khin Saw; Khin, Myo Thuzar; Kuramoto-Ahuja, Tsugumi; Maruyama, Hitoshi

    2017-10-01

    [Purpose] The purpose of this study was to examine the gross motor skill development of 5-year-old Kindergarten children in Myanmar. [Subjects and Methods] Total 472 healthy Kindergarten children (237 males, 235 females) of 2016-2017 academic year from four schools in urban area and four schools in rural area of Myanmar were recruited. The gross motor skill development of all subjects was assessed with the test of gross motor development second edition (TGMD-2). All subjects performed two trials for each gross motor skill and the performance was video recorded and scored. The assessment procedures were done according to the standardized guidelines of TGMD-2. [Results] The majority of subjects had average level of gross motor skill rank. The significant differences were found on the run and gallop of locomotor skills and the most of object control skills except the catch between males and females. The significant differences were also found between subjects from urban and rural areas. [Conclusion] Gross motor skill development of 5-year-old Kindergarten children in Myanmar had gender-based and region-based differences on both locomotor and object control skills. This study added a valuable information to the establishment of a normative reference of Kindergarten aged children for future studies.

  15. The Effect of Visual and Auditory Enhancements on Excitability of the Primary Motor Cortex during Motor Imagery: A Pilot Study

    Science.gov (United States)

    Ikeda, Kohei; Higashi, Toshio; Sugawara, Kenichi; Tomori, Kounosuke; Kinoshita, Hiroshi; Kasai, Tatsuya

    2012-01-01

    The effect of visual and auditory enhancements of finger movement on corticospinal excitability during motor imagery (MI) was investigated using the transcranial magnetic stimulation technique. Motor-evoked potentials were elicited from the abductor digit minimi muscle during MI with auditory, visual and, auditory and visual information, and no…

  16. stepping motor - hydraulic motor servo drives for an nc milling machine

    African Journals Online (AJOL)

    Dr Obe

    stepping motor Drive Assembly especially Designed for CNC systems". 13th Machine Tool Design and. Research. (MTDR) conference,. University of Birmingham, 1972. 2 Ertongur, N.A. "Investigation into the instability in an electro hydraulic control system for machine tools" Ph.D. Thesis, University of. Birmingham, UK. 1966 ...

  17. MOTORIC STIMULATION RELATED TO FINE MOTORIC DEVELOPMENT ON CHILD

    Directory of Open Access Journals (Sweden)

    Mira Triharini

    2017-07-01

    Full Text Available Introduction: Motor developmental stimulation is an activity undertaken to stimulate the children basic skills and so they can grow and develop optimally. Children who obtain a direct stimulus will grow faster than who get less stimulus. Mother’s behavior of stimulation is very important for children, it is considering as the basic needs of children and it must be fulfilled. Providing good stimulation could optimize fine motor development in children. The purpose of this study was to analyze mother’s behavior about motor stimulation with fine motor development in toddler age 4-5 years old. Method: Design have been  used in this study was cross sectional. Population were mothers and their toddler in Group A of Dharma Wanita Persatuan Driyorejo Gresik Preschool. Sample were 51 respondents recruited by using purposive sampling technique according to inclusion and exclusion criteria. The independent variable was mother’s behavior about motor stimulation whereas dependent variable was fine motor development in toddler. The data were collected using questionnaire and conducting observation on fine motor development based on Denver Development Screening Test (DDST. Data then analyzed using Spearman Rho (r test to find relation between mother’s behaviors about stimulation motor on their toddler fine motor development. Result: Results  of this study showed that there were correlations between mother’s knowledge and fine motor development in toddler (p=0.000, between mother’s attitude and fine motor development in toddler (p=0.000, and between mother’s actions and fine motor development in toddler (p=0.000. Analysis: In sort study found that there were relation between fine motor development and mother’s behavior. Discussion: Therefore mother’s behavior needed to be improved. Further research about stimulation motor and fine motor development aspects in toddler is required.

  18. How Can a Ketogenic Diet Improve Motor Function?

    Directory of Open Access Journals (Sweden)

    Charlotte Veyrat-Durebex

    2018-01-01

    Full Text Available A ketogenic diet (KD is a normocaloric diet composed by high fat (80–90%, low carbohydrate, and low protein consumption that induces fasting-like effects. KD increases ketone body (KBs production and its concentration in the blood, providing the brain an alternative energy supply that enhances oxidative mitochondrial metabolism. In addition to its profound impact on neuro-metabolism and bioenergetics, the neuroprotective effect of specific polyunsaturated fatty acids and KBs involves pleiotropic mechanisms, such as the modulation of neuronal membrane excitability, inflammation, or reactive oxygen species production. KD is a therapy that has been used for almost a century to treat medically intractable epilepsy and has been increasingly explored in a number of neurological diseases. Motor function has also been shown to be improved by KD and/or medium-chain triglyceride diets in rodent models of Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and spinal cord injury. These studies have proposed that KD may induce a modification in synaptic morphology and function, involving ionic channels, glutamatergic transmission, or synaptic vesicular cycling machinery. However, little is understood about the molecular mechanisms underlying the impact of KD on motor function and the perspectives of its use to acquire the neuromuscular effects. The aim of this review is to explore the conditions through which KD might improve motor function. First, we will describe the main consequences of KD exposure in tissues involved in motor function. Second, we will report and discuss the relevance of KD in pre-clinical and clinical trials in the major diseases presenting motor dysfunction.

  19. Impairments of Motor Function While Multitasking in HIV.

    Science.gov (United States)

    Kronemer, Sharif I; Mandel, Jordan A; Sacktor, Ned C; Marvel, Cherie L

    2017-01-01

    Human immunodeficiency virus (HIV) became a treatable illness with the introduction of combination antiretroviral therapy (CART). As a result, patients with regular access to CART are expected to live decades with HIV. Long-term HIV infection presents unique challenges, including neurocognitive impairments defined by three major stages of HIV-associated neurocognitive disorders (HAND). The current investigation aimed to study cognitive and motor impairments in HIV using a novel multitasking paradigm. Unlike current standard measures of cognitive and motor performance in HIV, multitasking increases real-world validity by mimicking the dual motor and cognitive demands that are part of daily professional and personal settings (e.g., driving, typing and writing). Moreover, multitask assessments can unmask compensatory mechanisms, normally used under single task conditions, to maintain performance. This investigation revealed that HIV+ participants were impaired on the motor component of the multitask, while cognitive performance was spared. A patient-specific positive interaction between motor performance and working memory recall was driven by poor HIV+ multitaskers. Surprisingly, HAND stage did not correspond with multitask performance and a variety of commonly used assessments indicated normal motor function among HIV+ participants with poor motor performance during the experimental task. These results support the use of multitasks to reveal otherwise hidden impairment in chronic HIV by expanding the sensitivity of clinical assessments used to determine HAND stage. Future studies should examine the capability of multitasks to predict performance in personal, professional and health-related behaviors and prognosis of patients living with chronic HIV.

  20. Motor Experts Care about Consistency and Are Reluctant to Change Motor Outcome.

    Directory of Open Access Journals (Sweden)

    Volker Kast

    Full Text Available Thousands of hours of physical practice substantially change the way movements are performed. The mechanisms underlying altered behavior in highly-trained individuals are so far little understood. We studied experts (handballers and untrained individuals (novices in visuomotor adaptation of free throws, where subjects had to adapt their throwing direction to a visual displacement induced by prismatic glasses. Before visual displacement, experts expressed lower variability of motor errors than novices. Experts adapted and de-adapted slower, and also forgot the adaptation slower than novices. The variability during baseline was correlated with the learning rate during adaptation. Subjects adapted faster when variability was higher. Our results indicate that experts produced higher consistency of motor outcome. They were still susceptible to the sensory feedback informing about motor error, but made smaller adjustments than novices. The findings of our study relate to previous investigations emphasizing the importance of action exploration, expressed in terms of outcome variability, to facilitate learning.

  1. Motor Experts Care about Consistency and Are Reluctant to Change Motor Outcome.

    Science.gov (United States)

    Kast, Volker; Leukel, Christian

    2016-01-01

    Thousands of hours of physical practice substantially change the way movements are performed. The mechanisms underlying altered behavior in highly-trained individuals are so far little understood. We studied experts (handballers) and untrained individuals (novices) in visuomotor adaptation of free throws, where subjects had to adapt their throwing direction to a visual displacement induced by prismatic glasses. Before visual displacement, experts expressed lower variability of motor errors than novices. Experts adapted and de-adapted slower, and also forgot the adaptation slower than novices. The variability during baseline was correlated with the learning rate during adaptation. Subjects adapted faster when variability was higher. Our results indicate that experts produced higher consistency of motor outcome. They were still susceptible to the sensory feedback informing about motor error, but made smaller adjustments than novices. The findings of our study relate to previous investigations emphasizing the importance of action exploration, expressed in terms of outcome variability, to facilitate learning.

  2. Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children

    Science.gov (United States)

    Beck, Mikkel M.; Lind, Rune R.; Geertsen, Svend S.; Ritz, Christian; Lundbye-Jensen, Jesper; Wienecke, Jacob

    2016-01-01

    Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning activities. Thus, the aim of this study was to investigate whether fine or gross motor activity integrated into math lessons (i.e., motor-enrichment) could improve children's mathematical performance. Methods: A 6-week within school cluster-randomized intervention study investigated the effects of motor-enriched mathematical teaching in Danish preadolescent children (n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical teaching enriched with fine and gross motor activity, respectively. The children were tested before (T0), immediately after (T1) and 8 weeks after the intervention (T2). A standardized mathematical test (50 tasks) was used to evaluate mathematical performance. Furthermore, it was investigated whether motor-enriched math was accompanied by different effects in low and normal math performers. Additionally, the study investigated the potential contribution of cognitive functions and motor skills on mathematical performance. Results: All groups improved their mathematical performance from T0 to T1. However, from T0 to T1, the improvement was significantly greater in GMM compared to FMM (1.87 ± 0.71 correct answers) (p = 0.02). At T2 no significant differences in mathematical performance were observed. A subgroup analysis revealed that normal math-performers benefitted from GMM compared to both CON 1.78 ± 0.73 correct answers (p = 0.04) and FMM 2.14 ± 0.72 correct answers (p = 0.008). These effects were not observed in low math-performers. The effects were partly

  3. The electric motor handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.W.; Feltham, P. (eds.)

    2004-05-01

    This handbook outlines the important role that electric motors play in modern society. It covers the field of motor applications from various motor types to their use and repair. It also presents practical applications of electric motors and methods on motor efficiency. More than half of all electricity generated, and 75 per cent of all industrial electricity consumption is consumed by electric motors. Electrical personnel must be aware of all factors involved in electric motors in order to choose and apply the appropriate size of electric motor. These factors include efficiency, sizing and proper application. The efficient use and maximum life expectancy of electric motors depends on proper motor protection, control and maintenance. This handbook includes articles from leading experts on electric motors in modern electrical systems. The content includes: design considerations; proper electric motor sizing techniques; optimal electric motor application; electric motor protection technology; electric motor control principles; electric motor maintenance and troubleshooting; induction electric motors; electric motor bearing currents; electric motor bearing lubrication; electromagnetism; electric motor enclosures; electric motor testing; electric motor repair; DC electric motor; electric motor starters; electric motor brushes; industrial electric motors; electric motor diagrams; AC electric motors; electric motor wiring; electric motor service; electric motor rewinding; electric motor winding; diagram of electric motor wiring; electric motor kit; and, troubleshooting electric motors. A directory of motor manufacturers and suppliers was also included. refs., tabs., figs.

  4. Systematic review of physiotherapy interventions to improve gross motor capacity and performance in children and adolescents with an acquired brain injury.

    Science.gov (United States)

    Baque, Emmah; Sakzewski, Leanne; Barber, Lee; Boyd, Roslyn N

    2016-01-01

    To systematically review the efficacy of physiotherapy interventions to improve gross motor capacity, performance and societal participation in children aged 5-17 years with an acquired brain injury (ABI). Randomized and non-randomized controlled trials, cohort, case series, case-control and case studies were included and classified according to grades of evidence. Methodological quality of studies was assessed using the Downs and Black (D&B) scale and quantitative data was analysed using effect sizes. Two home-based studies investigated functional strength training (one randomized controlled trial, n = 20, level 2b, D&B = 16/32 and one non-randomized self-control study, n = 19, level 4, D&B = 15/32). Four studies evaluated virtual reality including: one pilot study, n = 50, level 4, D&B = 22/32; one single-subject, non-concurrent, randomized multiple baseline study, n = 3, level 4, D&B = 15/32; one case series study, n = 2, level 4, D&B = 15/32; one case study, n = 1, level 4, D&B = 15/32. Effect sizes for the randomized controlled trial ranged between 0.30-1.29 for the Functional Reach and Timed Up and Go outcome measures. There is preliminary evidence to support the efficacy of physiotherapy interventions to improve gross motor outcomes in children with an ABI. Both functional strength training and virtual-reality based therapy are potential treatment options for clinicians to prescribe in either home or clinical settings.

  5. Multiple systems for motor skill learning.

    Science.gov (United States)

    Clark, Dav; Ivry, Richard B

    2010-07-01

    Motor learning is a ubiquitous feature of human competence. This review focuses on two particular classes of model tasks for studying skill acquisition. The serial reaction time (SRT) task is used to probe how people learn sequences of actions, while adaptation in the context of visuomotor or force field perturbations serves to illustrate how preexisting movements are recalibrated in novel environments. These tasks highlight important issues regarding the representational changes that occur during the course of motor learning. One important theme is that distinct mechanisms vary in their information processing costs during learning and performance. Fast learning processes may require few trials to produce large changes in performance but impose demands on cognitive resources. Slower processes are limited in their ability to integrate complex information but minimally demanding in terms of attention or processing resources. The representations derived from fast systems may be accessible to conscious processing and provide a relatively greater measure of flexibility, while the representations derived from slower systems are more inflexible and automatic in their behavior. In exploring these issues, we focus on how multiple neural systems may interact and compete during the acquisition and consolidation of new behaviors. Copyright © 2010 John Wiley & Sons, Ltd. This article is categorized under: Psychology > Motor Skill and Performance. Copyright © 2010 John Wiley & Sons, Ltd.

  6. Reprogramming movements: Extraction of motor intentions from cortical ensemble activity when movement goals change

    Directory of Open Access Journals (Sweden)

    Peter James Ifft

    2012-07-01

    Full Text Available The ability to inhibit unwanted movements and change motor plans is essential for behaviors of advanced organisms. The neural mechanisms by which the primate motor system rejects undesired actions have received much attention during the last decade, but it is not well understood how this neural function could be utilized to improve the efficiency of brain-machine interfaces (BMIs. Here we employed linear discriminant analysis (LDA and a Wiener filter to extract motor plan transitions from the activity of ensembles of sensorimotor cortex neurons. Two rhesus monkeys, chronically implanted with multielectrode arrays in primary motor (M1 and primary sensory (S1 cortices, were overtrained to produce reaching movements with a joystick towards visual targets upon their presentation. Then, the behavioral task was modified to include a distracting target that flashed for 50, 150 or 250 ms (25% of trials each followed by the true target that appeared at a different screen location. In the remaining 25% of trials, the initial target stayed on the screen and was the target to be approached. M1 and S1 neuronal activity represented both the true and distracting targets, even for the shortest duration of the distracting event. This dual representation persisted both when the monkey initiated movements towards the distracting target and then made corrections and when they moved directly towards the second, true target. The Wiener filter effectively decoded the location of the true target, whereas the LDA classifier extracted the location of both targets from ensembles of 50-250 neurons. Based on these results, we suggest developing real-time BMIs that inhibit unwanted movements represented by brain activity while enacting the desired motor outcome concomitantly.

  7. Segmented motor drive - with multi-phase induction motor

    DEFF Research Database (Denmark)

    Bendixen, Flemming Buus

    of the induction motor is set up. The model is able to calculate dynamical electric, magnetic and mechanic state variables, but initially it is used to calculate static characteristics in motors with different number of phases and different voltage supply shapes. This analysis show i.e. that the efficiency....... The multi-phase motor is selected for further analysis. The project is limited to examine if increasing the number of phases can improve the characteristics for induction motor drives. In the literature it is demonstrated that torque production in a six-phase motor can be increased, if a 3rd harmonic......This PhD project commences in modulation of motor drives, i.e. having the advantage of reducing the number of variants and improves the system reliability at error situations. Four different motor drive topologies with modular construction as common denominator are compared on a general level...

  8. The roles of the olivocerebellar pathway in motor learning and motor control. A consensus paper

    Science.gov (United States)

    Lang, Eric J.; Apps, Richard; Bengtsson, Fredrik; Cerminara, Nadia L.; De Zeeuw, Chris I.; Ebner, Timothy J.; Heck, Detlef H.; Jaeger, Dieter; Jörntell, Henrik; Kawato, Mitsuo; Otis, Thomas S.; Ozyildirim, Ozgecan; Popa, Laurentiu S.; Reeves, Alexander M.B.; Schweighofer, Nicolas; Sugihara, Izumi; Xiao, Jianqiang

    2016-01-01

    For many decades the predominant view in the cerebellar field has been that the olivocerebellar system's primary function is to induce plasticity in the cerebellar cortex, specifically, at the parallel fiber-Purkinje cell synapse. However, it has also long been proposed that the olivocerebellar system participates directly in motor control by helping to shape ongoing motor commands being issued by the cerebellum. Evidence consistent with both hypotheses exists; however, they are often investigated as mutually exclusive alternatives. In contrast, here we take the perspective that the olivocerebellar system can contribute to both the motor learning and motor control functions of the cerebellum, and might also play a role in development. We then consider the potential problems and benefits of its having multiple functions. Moreover, we discuss how its distinctive characteristics (e.g., low firing rates, synchronization, variable complex spike waveform) make it more or less suitable for one or the other of these functions, and why its having a dual role makes sense from an evolutionary perspective. We did not attempt to reach a consensus on the specific role(s) the olivocerebellar system plays in different types of movements, as that will ultimately be determined experimentally; however, collectively, the various contributions highlight the flexibility of the olivocerebellar system, and thereby suggest it has the potential to act in both the motor learning and motor control functions of the cerebellum. PMID:27193702

  9. Auditory-Motor Interactions in Pediatric Motor Speech Disorders: Neurocomputational Modeling of Disordered Development

    NARCIS (Netherlands)

    Terband, H.R.; Maassen, B.A.M.; Guenther, F.H.; Brumberg, J.

    2014-01-01

    Background/Purpose: Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between

  10. Auditory-motor interactions in pediatric motor speech disorders: Neurocomputational modeling of disordered development

    NARCIS (Netherlands)

    Terband, H.; Maassen, B.; Guenther, F. H.; Brumberg, J.

    2014-01-01

    BACKGROUND/PURPOSE: Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between

  11. Motor Importance of motor assessment in school children: analysis of the reliability of the motor development scale doi: 10.5007/1980-0037.2010v12n6p422

    Directory of Open Access Journals (Sweden)

    Francisco Rosa Neto

    2010-09-01

    Full Text Available The objective of this study was to investigate the motor performance of school chil-dren aged 6 to 10 years without learning difficulties (n=101, and to analyze the reliability of the Motor Development Scale (MDS (Rosa Neto, 2002. Descriptive statistics with calculation of the mean, standard deviation, and range was used for data analysis. The internal consistency of the MDS was assessed using Cronbach’s alpha coefficient, and the correlation between variables was determined by Pearson’s linear correlation, with p<0.05. The results showed (1 that motor development was within normal limits in 96% of the children, and (2 a high correlation betwe-en chronological age and general motor age, indicating good internal consistency. These data demonstrate the logic and structured design of the MDS, confirming its reliability.

  12. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or motor-control...

  13. Motor skills in kindergarten: Internal structure, cognitive correlates and relationships to background variables.

    Science.gov (United States)

    Oberer, Nicole; Gashaj, Venera; Roebers, Claudia M

    2017-04-01

    The present study aimed to contribute to the discussion about the relation between motor coordination and executive functions in preschool children. Specifically, the relation between gross and fine motor skills and executive functions as well as the relation to possible background variables (SES, physical activity) were investigated. Based on the data of N=156 kindergarten children the internal structure of motor skills was investigated and confirmed the theoretically assumed subdivision of gross and fine motor skills. Both, gross and fine motor skills correlated significantly with executive functions, whereas the background variables seemed to have no significant impact on the executive functions and motor skills. Higher order control processes are discussed as an explanation of the relation between executive functions and motor skills. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Electric Motor Considerations for Non-Cryogenic Hybrid Electric and Turboelectric Propulsion

    Science.gov (United States)

    Duffy, Kirsten P.

    2015-01-01

    NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. However, advances in motor component materials such as soft magnetic materials, hard magnetic materials, conductors, thermal insulation, and structural materials are expected in the coming years, and should improve motor performance. This study investigates several motor types for a one megawatt application, and projects the motor performance benefits of new component materials that might be available in the coming decades.

  15. Psychiatric Symptoms in Children with Gross Motor Problems

    Science.gov (United States)

    Emck, Claudia; Bosscher, Ruud J.; van Wieringen, Piet C. W.; Doreleijers, Theo; Beek, Peter J.

    2012-01-01

    Children with psychiatric disorders often demonstrate gross motor problems. This study investigates if the reverse also holds true by assessing psychiatric symptoms present in children with gross motor problems. Emotional, behavioral, and autism spectrum disorders (ASD), as well as psychosocial problems, were assessed in a sample of 40 children…

  16. Functional imaging in pre-motor Parkinson’s disease

    International Nuclear Information System (INIS)

    Arnaldi, D.; Picco, A.; Ferrara, M.; Nobili, F.; Famà, F.; Buschiazzo, A.; Morbelli, S.; De Carli, F.

    2014-01-01

    Several non motor symptoms (NMS) can precede the onset of the classical motor Parkinson’s disease (PD) syndrome. The existence of pre-motor and even pre-clinical PD stages has been proposed but the best target population to be screened to disclose PD patients in a pre-clinical, thus asymptomatic, stage is still matter of debate. The REM sleep behavior disorder (RBD) often affects PD patients at different stages of the disease and could precede the onset of motor symptoms by several years. However, RBD could also precede other synucleinopathies (namely, dementia with Lewy bodies and multisystem atrophy), and less frequently could be related to other neurological conditions or remain idiopathic. Moreover, not all PD patients exhibit RBD. Despite these caveats, RBD probably represents the best feature to disclose pre-motor PD patients given its high-risk of developing a full motor syndrome. Other clinical clues in the premotor stages of PD undergoing active investigation include hyposmia, depression, and autonomic dysfunction. Effective biomarkers are needed in order to improve the diagnostic accuracy in the pre-motor stage of PD, to monitor disease progression and to plan both pharmacological and non-pharmacological intervention. Functional imaging, in particular radionuclide methodologies, has been often used to investigate dopaminergic and non-dopaminergic features as well as cortical functioning in patients with RBD in its idiopathic form (iRBD) and/or associated with PD. Recently, new tracers to image α-synuclein pathologies are under development. Functional imaging in pre-motor PD, and in particular in iRBD, could improve our knowledge about the underlying mechanisms and the neurodegenerative progress of PD

  17. Physiologic Responses to Motorized and Non-Motorized Locomotion Utilizing the International Space Station Treadmill

    Science.gov (United States)

    Smith, Cassie; Lee, Stuart MC; Laughlin, Mitzi; Loehr, James; Norcross, Jason; DeWitt, John; Hagan, R. D.

    2006-01-01

    Treadmill locomotion is used onboard the International Space Station (ISS) as a countermeasure to the effects of prolonged weightlessness. The treadmill operates in two modes: motorized (T-M) and non-motorized (T-NM). Little is known about the potential physiologic differences between modes which may affect countermeasure exercise prescription. PURPOSE: To quantify heart rate (HR), oxygen consumption (VO2), perceived exertion (RPE), and blood lactate (BLa) during T-M and T-NM locomotion at 2 and 4 mph in normal ambulatory subjects. METHODS: Twenty subjects (10 men, 10 women; 31+/-5 yr, 172+/-10 cm, 68+/-13 kg, mean SD) with a treadmill peakVO2 of 45.5+/-5.4 ml/kg/min (mean+/-SD) exercised on the ground-based ISS treadmill. Following a familiarization session in each mode, subjects completed two data collection sessions, T-M and T-NM in random order, at 2 and 4 mph. Subjects attempted to complete 5 min of exercise at each speed; if they could not maintain the speed, the trial was discontinued. At least 5 minutes of rest separated each speed trial, and at least 48 hrs separated each session. VO2 was measured continuously (metabolic gas analysis), while HR (HR monitor) and RPE (Borg Chart, 6-20 scale) were recorded each min. Not all subjects completed 5 min during each condition, therefore the mean of the min 3 and 4 was taken as representative of steady-state. BLa was measured (finger stick) within 2 min post-exercise. Paired t-tests were used to test for differences (p<0.05) between treadmill modes within the same speed. RESULTS: All twenty subjects completed at least 4 min of exercise during all conditions, except T-NM 4 mph when only 11 subjects completed the minimum exercise duration. VO2, HR, RPE and BLa were significantly higher during T-NM locomotion at both speeds.

  18. Applying torque to the Escherichia coli flagellar motor using magnetic tweezers

    NARCIS (Netherlands)

    van Oene, M.M.; Dickinson, L.E.; Cross, B.; Pedaci, F.; Lipfert, J.; Dekker, N.H.

    2017-01-01

    The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in

  19. The Gross Motor Skills of Children with Mild Learning Disabilities

    Science.gov (United States)

    Nonis, Karen P.; Jernice, Tan Sing Yee

    2014-01-01

    Many international studies have examined the gross motor skills of children studying in special schools while local studies of such nature are limited. This study investigated the gross motor skills of children with Mild Learning Disabilities (MLD; n = 14, M age = 8.93 years, SD = 0.33) with the Test of Gross Motor Development-2 (TGMD-2, Ulrich,…

  20. Neurons other than motor neurons in motor neuron disease.

    Science.gov (United States)

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  1. Wavelet-fuzzy speed indirect field oriented controller for three-phase AC motor drive – Investigation and implementation

    Directory of Open Access Journals (Sweden)

    Sanjeevikumar Padmanaban

    2016-09-01

    Full Text Available Three-phase voltage source inverter driven induction motor is used in many medium- and high-power applications. Precision in speed of the motor play vital role, i.e. popular methods of direct/indirect field-oriented control (FOC are applied. FOC is employed with proportional–integral (P-I or proportional–integral–derivative (P-I-D controllers and they are not adaptive, since gains are fixed at all operating conditions. Therefore, it needs a robust speed controlling in precision for induction motor drive application. This research paper articulates a novel speed control for FOC induction motor drive based on wavelet-fuzzy logic interface system. In specific, the P-I-D controller of IFOC which is actually replaced by the wavelet-fuzzy controller. The speed feedback (error signal is composed of multiple low and high frequency components. Further, these components are decomposed by the discrete wavelet transform and the fuzzy logic controller to generate the scaled gains for the indirect FOC induction motor. Complete model of the proposed ac motor drive is developed with numerical simulation Matlab/Simulink software and tested under different working conditions. For experimental verification, a hardware prototype was implemented and the control algorithm is framed using TMS320F2812 digital signal processor (dsp. Both simulation and hardware results presented in this paper are shown in close agreement and conformity about the suitability for industrial applications.

  2. MAGNETIC TWEEZERS FOR THE STUDY OF DNA TRACKING MOTORS

    Science.gov (United States)

    Manosas, Maria; Meglio, Adrien; Spiering, Michelle M.; Ding, Fangyuan; Benkovic, Stephen J.; Barre, François-Xavier; Saleh, Omar A.; Allemand, Jean François; Bensimon, David; Croquette, Vincent

    2011-01-01

    Single-molecule manipulation methods have opened a new vista on the study of molecular motors. Here we describe the use of magnetic traps for the investigation of the mechanism of DNA based motors, in particular helicases and translocases. PMID:20627163

  3. A randomized placebo-controlled trial of rasagiline in levodopa-treated patients with Parkinson disease and motor fluctuations: the PRESTO study.

    Science.gov (United States)

    2005-02-01

    Rasagiline (n-propargyl-1[R]-aminoindan) mesylate is a novel irreversible selective monoamine oxidase type B inhibitor, previously demonstrated to improve symptoms in early Parkinson disease (PD). To determine the safety, tolerability, and efficacy of rasagiline in levodopa-treated patients with PD and motor fluctuations. Multicenter, randomized, placebo-controlled, double-blind, parallel-group study. Parkinson disease patients (N = 472) with at least 21/2 hours of daily "off" (poor motor function) time, despite optimized treatment with other anti-PD medications. Rasagiline, 1.0 or 0.5 mg/d, or matching placebo. Change from baseline in total daily off time measured by patients' home diaries during 26 weeks of treatment, percentage of patients completing 26 weeks of treatment, and adverse event frequency. During the treatment period, the mean adjusted total daily off time decreased from baseline by 1.85 hours (29%) in patients treated with 1.0 mg/d of rasagiline, 1.41 hours (23%) with 0.5 mg/d rasagiline, and 0.91 hour (15%) with placebo. Compared with placebo, patients treated with 1.0 mg/d rasagiline had 0.94 hour less off time per day, and patients treated with 0.5 mg/d rasagiline had 0.49 hour less off time per day. Prespecified secondary end points also improved during rasagiline treatment, including scores on an investigator-rated clinical global impression scale and the Unified Parkinson's Disease Rating Scale (activities of daily living in the off state and motor performance in the "on" state). Rasagiline was well tolerated. Rasagiline improves motor fluctuations and PD symptoms in levodopa-treated PD patients. In light of recently reported benefits in patients with early illness, rasagiline is a promising new treatment for PD.

  4. Best practice for motor imagery: a systematic literature review on motor imagery training elements in five different disciplines

    Directory of Open Access Journals (Sweden)

    Scheidhauer Anne

    2011-06-01

    Full Text Available Abstract Background The literature suggests a beneficial effect of motor imagery (MI if combined with physical practice, but detailed descriptions of MI training session (MITS elements and temporal parameters are lacking. The aim of this review was to identify the characteristics of a successful MITS and compare these for different disciplines, MI session types, task focus, age, gender and MI modification during intervention. Methods An extended systematic literature search using 24 databases was performed for five disciplines: Education, Medicine, Music, Psychology and Sports. References that described an MI intervention that focused on motor skills, performance or strength improvement were included. Information describing 17 MITS elements was extracted based on the PETTLEP (physical, environment, timing, task, learning, emotion, perspective approach. Seven elements describing the MITS temporal parameters were calculated: study duration, intervention duration, MITS duration, total MITS count, MITS per week, MI trials per MITS and total MI training time. Results Both independent reviewers found 96% congruity, which was tested on a random sample of 20% of all references. After selection, 133 studies reporting 141 MI interventions were included. The locations of the MITS and position of the participants during MI were task-specific. Participants received acoustic detailed MI instructions, which were mostly standardised and live. During MI practice, participants kept their eyes closed. MI training was performed from an internal perspective with a kinaesthetic mode. Changes in MI content, duration and dosage were reported in 31 MI interventions. Familiarisation sessions before the start of the MI intervention were mentioned in 17 reports. MI interventions focused with decreasing relevance on motor-, cognitive- and strength-focused tasks. Average study intervention lasted 34 days, with participants practicing MI on average three times per week for 17

  5. Relations between Playing Activities and Fine Motor Development

    Science.gov (United States)

    Suggate, Sebastian; Stoeger, Heidrun; Pufke, Eva

    2017-01-01

    Children's fine motor skills (FMS) are being increasingly recognized as an important aspect of preschool development; yet, we know very little about the experiences that foster their development. We utilized a parent-administered children's fine and gross motor activities questionnaire (MAQ) to investigate links with FMS. We recruited a sample of…

  6. Rehabilitation plus OnabotulinumtoxinA Improves Motor Function over OnabotulinumtoxinA Alone in Post-Stroke Upper Limb Spasticity: A Single-Blind, Randomized Trial

    Directory of Open Access Journals (Sweden)

    Deidre Devier

    2017-07-01

    Full Text Available Background: OnabotulinumtoxinA (BoNT-A can temporarily decrease spasticity following stroke, but whether there is an associated improvement in upper limb function is less clear. This study measured the benefit of adding weekly rehabilitation to a background of BoNT-A treatments for chronic upper limb spasticity following stroke. Methods: This was a multi-center clinical trial. Thirty-one patients with post-stroke upper limb spasticity were treated with BoNT-A. They were then randomly assigned to 24 weeks of weekly upper limb rehabilitation or no rehabilitation. They were injected up to two times, and followed for 24 weeks. The primary outcome was change in the Fugl–Meyer upper extremity score, which measures motor function, sensation, range of motion, coordination, and speed. Results: The ‘rehab’ group significantly improved on the Fugl–Meyer upper extremity score (Visit 1 = 60, Visit 5 = 67 while the ‘no rehab’ group did not improve (Visit 1 = 59, Visit 5 = 59; p = 0.006. This improvement was largely driven by the upper extremity “movement” subscale, which showed that the ‘rehab’ group was improving (Visit 1 = 33, Visit 5 = 37 while the ‘no rehab’ group remained virtually unchanged (Visit 1 = 34, Visit 5 = 33; p = 0.034. Conclusions: Following injection of BoNT-A, adding a program of rehabilitation improved motor recovery compared to an injected group with no rehabilitation.

  7. Impairments of Motor Function While Multitasking in HIV

    Directory of Open Access Journals (Sweden)

    Cherie L. Marvel

    2017-04-01

    Full Text Available Human immunodeficiency virus (HIV became a treatable illness with the introduction of combination antiretroviral therapy (CART. As a result, patients with regular access to CART are expected to live decades with HIV. Long-term HIV infection presents unique challenges, including neurocognitive impairments defined by three major stages of HIV-associated neurocognitive disorders (HAND. The current investigation aimed to study cognitive and motor impairments in HIV using a novel multitasking paradigm. Unlike current standard measures of cognitive and motor performance in HIV, multitasking increases real-world validity by mimicking the dual motor and cognitive demands that are part of daily professional and personal settings (e.g., driving, typing and writing. Moreover, multitask assessments can unmask compensatory mechanisms, normally used under single task conditions, to maintain performance. This investigation revealed that HIV+ participants were impaired on the motor component of the multitask, while cognitive performance was spared. A patient-specific positive interaction between motor performance and working memory recall was driven by poor HIV+ multitaskers. Surprisingly, HAND stage did not correspond with multitask performance and a variety of commonly used assessments indicated normal motor function among HIV+ participants with poor motor performance during the experimental task. These results support the use of multitasks to reveal otherwise hidden impairment in chronic HIV by expanding the sensitivity of clinical assessments used to determine HAND stage. Future studies should examine the capability of multitasks to predict performance in personal, professional and health-related behaviors and prognosis of patients living with chronic HIV.

  8. Assessing Motor Fluctuations in Parkinson's Disease Patients Based on a Single Inertial Sensor.

    Science.gov (United States)

    Pérez-López, Carlos; Samà, Albert; Rodríguez-Martín, Daniel; Català, Andreu; Cabestany, Joan; Moreno-Arostegui, Juan Manuel; de Mingo, Eva; Rodríguez-Molinero, Alejandro

    2016-12-15

    Altered movement control is typically the first noticeable symptom manifested by Parkinson's disease (PD) patients. Once under treatment, the effect of the medication is very patent and patients often recover correct movement control over several hours. Nonetheless, as the disease advances, patients present motor complications. Obtaining precise information on the long-term evolution of these motor complications and their short-term fluctuations is crucial to provide optimal therapy to PD patients and to properly measure the outcome of clinical trials. This paper presents an algorithm based on the accelerometer signals provided by a waist sensor that has been validated in the automatic assessment of patient's motor fluctuations (ON and OFF motor states) during their activities of daily living. A total of 15 patients have participated in the experiments in ambulatory conditions during 1 to 3 days. The state recognised by the algorithm and the motor state annotated by patients in standard diaries are contrasted. Results show that the average specificity and sensitivity are higher than 90%, while their values are higher than 80% of all patients, thereby showing that PD motor status is able to be monitored through a single sensor during daily life of patients in a precise and objective way.

  9. BDNF genotype interacts with motor-function to influence rehabilitation responsiveness post-stroke

    Directory of Open Access Journals (Sweden)

    Christine T Shiner

    2016-05-01

    Full Text Available Background. Persistent motor impairment is common but highly heterogeneous post-stroke. Genetic polymorphisms, including those identified on the brain derived neurotrophic factor (BDNF and apolipoprotein E (APOE genes, may contribute to this variability by limiting the capacity for use-dependent neuroplasticity, and hence rehabilitation responsiveness.Objective. To determine whether BDNF and APOE genotypes influence motor improvement facilitated by post-stroke upper-limb rehabilitation. Methods. BDNF Val66Met and APOE isoform genotypes were determined using leukocyte DNA for 55 community-dwelling patients 2-123 months post-stroke. All patients completed a dose-matched upper-limb rehabilitation program of either Wii-based Movement Therapy or Constraint-induced Movement Therapy. Upper-limb motor-function was assessed pre- and post-therapy using a suite of functional measures. Results. Motor-function improved for all patients post-therapy, with no difference between therapy groups. In the pooled data, there was no significant effect of BDNF or APOE genotype on motor-function at baseline, or following the intervention. However, a significant interaction between the level of residual motor-function and BDNF genotype was identified (p=0.029, whereby post-therapy improvement was significantly less for Met allele carriers with moderate and high, but not low motor-function. There was no significant association between APOE genotype and therapy outcomes. Conclusions. This study identified a novel interaction between the BDNF Val66Met polymorphism, motor-function status and the magnitude of improvement with rehabilitation in chronic stroke. This polymorphism does not preclude, but may reduce, the magnitude of motor improvement with therapy, particularly for patients with higher but not lower residual motor-function. BDNF genotype should be considered in the design and interpretation of clinical trials.

  10. Mapping cortical hand motor representation using TMS: A method to assess brain plasticity and a surrogate marker for recovery of function after stroke?

    Science.gov (United States)

    Lüdemann-Podubecká, Jitka; Nowak, Dennis Alexander

    2016-10-01

    Stroke is associated with reorganization within motor areas of both hemispheres. Mapping the cortical hand motor representation using transcranial magnetic stimulation may help to understand the relationship between motor cortex reorganization and motor recovery of the affected hand after stroke. A standardized review of the pertinent literature was performed. We identified 20 trials, which analyzed the relationship between the extent and/or location of cortical hand motor representation using transcranial magnetic stimulation and motor function and recovery of the affected hand. Several correlations were found between cortical reorganization and measures of hand motor impairment and recovery. A better understanding of the relationships between the extent and location of cortical hand motor representation and the motor impairment and motor recovery of the affected hand after stroke may contribute to a targeted use of non-invasive brain stimulation protocols. In the future motor mapping may help to guide brain stimulation techniques to the most effective motor area in an affected individual. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A CFD study of Screw Compressor Motor Cooling Analysis

    Science.gov (United States)

    Branch, S.

    2017-08-01

    Screw compressors use electric motors to drive the male screw rotor. They are cooled by the suction refrigerant vapor that flows around the motor. The thermal conditions of the motor can dramatically influence the performance and reliability of the compressor. The more optimized this flow path is, the better the motor performance. For that reason it is important to understand the flow characteristics around the motor and the motor temperatures. Computational fluid dynamics (CFD) can be used to provide a detailed analysis of the refrigerant’s flow behavior and motor temperatures to identify the undesirable hot spots in the motor. CFD analysis can be used further to optimize the flow path and determine the reduction of hot spots and cooling effect. This study compares the CFD solutions of a motor cooling model to a motor installed with thermocouples measured in the lab. The compressor considered for this study is an R134a screw compressor. The CFD simulation of the motor consists of a detailed breakdown of the stator and rotor components. Orthotropic thermal conductivity material properties are used to represent the simplified motor geometry. In addition, the analysis includes the motor casings of the compressor to draw heat away from the motor by conduction. The study will look at different operating conditions and motor speeds. Finally, the CFD study will investigate the predicted motor temperature change by varying the vapor mass flow rates and motor speed. Recommendations for CFD modeling of such intricate heat transfer phenomenon have thus been proposed.

  12. Motor activation in SPG4-linked hereditary spastic paraplegia

    DEFF Research Database (Denmark)

    Scheuer, KH; Nielsen, JE; Krabbe, Katja

    2006-01-01

    OBJECTIVE: The aim of this study was to investigate the extent of motor cortical functional reorganisation in patients with SPG4-linked hereditary spastic paraplegia by exploring cortical motor activation related to movements of clinically affected (lower) and unaffected (upper) limbs. METHODS: T...

  13. Feature Selection Strategy for Classification of Single-Trial EEG Elicited by Motor Imagery

    DEFF Research Database (Denmark)

    Prasad, Swati; Tan, Zheng-Hua; Prasad, Ramjee

    2011-01-01

    Brain-Computer Interface (BCI) provides new means of communication for people with motor disabilities by utilizing electroencephalographic activity. Selection of features from Electroencephalogram (EEG) signals for classification plays a key part in the development of BCI systems. In this paper, we...

  14. Clinical Trials

    Medline Plus

    Full Text Available ... and treatments that work best. How Clinical Trials Work If you take part in a clinical trial, ... kol). This plan explains how the trial will work. The trial is led by a principal investigator ( ...

  15. AC Application of HTS Conductors in Highly Dynamic Electric Motors

    International Nuclear Information System (INIS)

    Oswald, B; Best, K-J; Setzer, M; Duffner, E; Soell, M; Gawalek, W; Kovalev, L K

    2006-01-01

    Based on recent investigations we design highly dynamic electric motors up to 400 kW and linear motors up to 120 kN linear force using HTS bulk material and HTS tapes. The introduction of HTS tapes into AC applications in electric motors needs fundamental studies on double pancake coils under transversal magnetic fields. First theoretical and experimental results on AC field distributions in double-pancake-coils and corresponding AC losses will be presented. Based on these results the simulation of the motor performance confirms extremely high power density and efficiency of both types of electric motors. Improved characteristics of rare earth permanent magnets used in our motors at low temperatures give an additional technological benefit

  16. Reorganization of Motor Cortex by Vagus Nerve Stimulation Requires Cholinergic Innervation.

    Science.gov (United States)

    Hulsey, Daniel R; Hays, Seth A; Khodaparast, Navid; Ruiz, Andrea; Das, Priyanka; Rennaker, Robert L; Kilgard, Michael P

    2016-01-01

    Vagus nerve stimulation (VNS) paired with forelimb training drives robust, specific reorganization of movement representations in the motor cortex. The mechanisms that underlie VNS-dependent enhancement of map plasticity are largely unknown. The cholinergic nucleus basalis (NB) is a critical substrate in cortical plasticity, and several studies suggest that VNS activates cholinergic circuitry. We examined whether the NB is required for VNS-dependent enhancement of map plasticity in the motor cortex. Rats were trained to perform a lever pressing task and then received injections of the immunotoxin 192-IgG-saporin to selectively lesion cholinergic neurons of the NB. After lesion, rats underwent five days of motor training during which VNS was paired with successful trials. At the conclusion of behavioral training, intracortical microstimulation was used to document movement representations in motor cortex. VNS paired with forelimb training resulted in a substantial increase in the representation of proximal forelimb in rats with an intact NB compared to untrained controls. NB lesions prevent this VNS-dependent increase in proximal forelimb area and result in representations similar to untrained controls. Motor performance was similar between groups, suggesting that differences in forelimb function cannot account for the difference in proximal forelimb representation. Together, these findings indicate that the NB is required for VNS-dependent enhancement of plasticity in the motor cortex and may provide insight into the mechanisms that underlie the benefits of VNS therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Home-based nerve stimulation to enhance effects of motor training in patients in the chronic phase after stroke: a proof-of-principle study.

    Science.gov (United States)

    Dos Santos-Fontes, Renata Laurenti; Ferreiro de Andrade, Karina Nocelo; Sterr, Annette; Conforto, Adriana Bastos

    2013-01-01

    Somatosensory stimulation in the form of repetitive peripheral nerve stimulation (RPSS) is a promising strategy to improve motor function of the upper limb in chronic stroke. Home-based RPSS may be an alternative to hospital-based RPSS. To investigate the feasibility and safety of an innovative program of home-based RPSS combined with motor training and to collect preliminary data on the efficacy of this program to enhance hand motor function in patients in the chronic phase after stroke. Twenty patients were randomized to either active or sham RPSS associated with daily motor training performed at home over 4 consecutive weeks. All the patients were able to perform tasks of the Jebsen-Taylor Test (JTT). The primary outcome measures were feasibility, evaluated by self-reported compliance with the intervention, and safety (adverse events). Secondary outcomes comprised improvements in hand function in the JTT after end of treatment and after a 4-month follow-up period. There were no relevant adverse events. Compliance with RPSS and motor training was significantly greater in the active group than in the sham group. Upper extremity performance improved significantly more in the active group compared with the sham group at the end of treatment. This difference remained significant 4 months later, even when differences in compliance with motor training were considered. Home-based active RPSS associated with motor training was feasible, was safe, and led to long-lasting enhancement of paretic arm performance in the chronic phase after stroke for those who can perform the JTT. These results point to the need for an efficacy trial.

  18. Broken-Rotor-Bar Diagnosis for Induction Motors

    International Nuclear Information System (INIS)

    Wang Jinjiang; Gao, Robert X; Yan Ruqiang

    2011-01-01

    Broken rotor bar is one of the commonly encountered induction motor faults that may cause serious motor damage to the motor if not detected timely. Past efforts on broken rotor bar diagnosis have been focused on current signature analysis using spectral analysis and wavelet transform. These methods require accurate slip estimation to localize fault-related frequency. This paper presents a new approach to broken rotor bar diagnosis without slip estimation, based on the ensemble empirical mode decomposition (EEMD) and the Hilbert transform. Specifically, the Hilbert transform first extracts the envelope of the motor current signal, which contains broken rotor fault-related frequency information. Subsequently, the envelope signal is adaptively decomposed into a number of intrinsic mode functions (IMFs) by the EEMD algorithm. Two criteria based on the energy and correlation analyses have been investigated to automate the IMF selection. Numerical and experimental studies have confirmed that the proposed approach is effective in diagnosing broken rotor bar faults for improved induction motor condition monitoring and damage assessment.

  19. Temporal course of gene expression during motor memory formation in primary motor cortex of rats.

    Science.gov (United States)

    Hertler, B; Buitrago, M M; Luft, A R; Hosp, J A

    2016-12-01

    Motor learning is associated with plastic reorganization of neural networks in primary motor cortex (M1) that depends on changes in gene expression. Here, we investigate the temporal profile of these changes during motor memory formation in response to a skilled reaching task in rats. mRNA-levels were measured 1h, 7h and 24h after the end of a training session using microarray technique. To assure learning specificity, trained animals were compared to a control group. In response to motor learning, genes are sequentially regulated with high time-point specificity and a shift from initial suppression to later activation. The majority of regulated genes can be linked to learning-related plasticity. In the gene-expression cascade following motor learning, three different steps can be defined: (1) an initial suppression of genes influencing gene transcription. (2) Expression of genes that support translation of mRNA in defined compartments. (3) Expression of genes that immediately mediates plastic changes. Gene expression peaks after 24h - this is a much slower time-course when compared to hippocampus-dependent learning, where peaks of gene-expression can be observed 6-12h after training ended. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder.

    Science.gov (United States)

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark

    2011-11-01

    Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation. Copyright © 2011 Movement Disorder Society.

  1. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder

    Science.gov (United States)

    Voon, V; Brezing, C; Gallea, C; Hallett, M

    2014-01-01

    Background Conversion disorder is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that conversion disorder with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amgydala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Methods Subjects performed either an internally or externally generated two-button action selection task in a functional MRI study. Results Eleven conversion disorder patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. Conclusion We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system which is both hypoactive and functionally disconnected from prefrontal top-down regulation. PMID:21935985

  2. Action-effect binding is decreased in motor conversion disorder: implications for sense of agency.

    Science.gov (United States)

    Kranick, Sarah M; Moore, James W; Yusuf, Nadia; Martinez, Valeria T; LaFaver, Kathrin; Edwards, Mark J; Mehta, Arpan R; Collins, Phoebe; Harrison, Neil A; Haggard, Patrick; Hallett, Mark; Voon, Valerie

    2013-07-01

    The abnormal movements seen in motor conversion disorder are affected by distraction and entrainment, similar to voluntary movement. Unlike voluntary movement, however, patients lack a sense of control for the abnormal movements, a failure of "self-agency." The action-effect binding paradigm has been used to quantify the sense of self-agency, because subjective contraction of time between an action and its effect only occurs if the patient feels that they are the agent responsible for the action. We used this paradigm, coupled with emotional stimuli, to investigate the sense of agency with voluntary movements in patients with motor conversion disorder. Twenty patients with motor conversion disorder and 20 age-matched and sex-matched healthy volunteers used a rotating clock to judge the time of their own voluntary key presses (action) and a subsequent auditory tone (effect) after they completed conditioning blocks in which high, medium, and low tones were coupled to images of happy, fearful, and neutral faces. The results replicated those produced previously: it was reported that an effect after a voluntary action occurred earlier, and the preceding action occurred later, compared with trials that used only key presses or tones. Patients had reduced overall binding scores relative to healthy volunteers, suggesting a reduced sense of agency. There was no effect of the emotional stimuli (faces) or other interaction effects. Healthy volunteers with subclinical depressive symptoms had higher overall binding scores. We demonstrate that patients with motor conversion disorder have decreased action-effect binding for normal voluntary movements compared with healthy volunteers, consistent with the greater experience of lack of control. Copyright © 2013 Movement Disorder Society.

  3. Computer simulation of a 3-phase induction motor

    International Nuclear Information System (INIS)

    Memon, N.A.; Unsworth, P.J.

    2004-01-01

    Computer Simulation of a 3-phase squirrel-cage induction motor is presented in Microsoft QBASIC for understanding trends and various operational modes of an induction motor. Thyristor fed, phase controlled induction motor (three-wire) model has been simulated. In which voltage is applied to the motor stator winding through back-to-back connected thyristors as controlled switches in series with the stator. The simulated induction motor system opens up towards a wide range of investigation/analysis options for research and development work in the field. Key features of the simulation performed are highlighted for development of better understanding of the work done. Complete study of an Induction Motor, starting modes in terms the voltage/current, torque/speed characteristics and their graphical representation produced is presented. Ideal agreement of the simulation results with the notional outcome encourages users to go ahead for various hardware development projects based on the study through the simulation. (author)

  4. Core stability exercise is as effective as task-oriented motor training in improving motor proficiency in children with developmental coordination disorder: a randomized controlled pilot study.

    Science.gov (United States)

    Au, Mei K; Chan, Wai M; Lee, Lin; Chen, Tracy Mk; Chau, Rosanna Mw; Pang, Marco Yc

    2014-10-01

    To compare the effectiveness of a core stability program with a task-oriented motor training program in improving motor proficiency in children with developmental coordination disorder (DCD). Randomized controlled pilot trial. Outpatient unit in a hospital. Twenty-two children diagnosed with DCD aged 6-9 years were randomly allocated to the core stability program or the task-oriented motor program. Both groups underwent their respective face-to-face training session once per week for eight consecutive weeks. They were also instructed to carry out home exercises on a daily basis during the intervention period. Short Form of the Bruininks-Oseretsky Test of Motor Proficiency (Second Edition) and Sensory Organization Test at pre- and post-intervention. Intention-to-treat analysis revealed no significant between-group difference in the change of motor proficiency standard score (P=0.717), and composite equilibrium score derived from the Sensory Organization Test (P=0.100). Further analysis showed significant improvement in motor proficiency in both the core stability (mean change (SD)=6.3(5.4); p=0.008) and task-oriented training groups (mean change(SD)=5.1(4.0); P=0.007). The composite equilibrium score was significantly increased in the task-oriented training group (mean change (SD)=6.0(5.5); P=0.009), but not in the core stability group (mean change(SD) =0.0(9.6); P=0.812). In the task-oriented training group, compliance with the home program was positively correlated with change in motor proficiency (ρ=0.680, P=0.030) and composite equilibrium score (ρ=0.638, P=0.047). The core stability exercise program is as effective as task-oriented training in improving motor proficiency among children with DCD. © The Author(s) 2014.

  5. Online Business Strategy: Mazda Motor Europe GmbH

    OpenAIRE

    Peltokangas, Merja

    2009-01-01

    Mazda Motors is a japanese car manufacturer, founded in 1920. The headquarter is located in Hiroshima, Japan and the European headquarter is located in Leverkusen, Germany. The aim of this thesis is to investigate how Mazda Motor Europe GmbH could improve its accessory sales in the future and reach more young customers. Based on the research results Mazda Motor Europe GmbH can see how the main competitors are positioned in the market and consider its own strategy. In the theory part o...

  6. Two is better than one: Physical interactions improve motor performance in humans

    OpenAIRE

    G. Ganesh; A. Takagi; R. Osu; T. Yoshioka; M. Kawato; E. Burdet

    2014-01-01

    How do physical interactions with others change our own motor behavior? Utilizing a novel motor learning paradigm in which the hands of two - individuals are physically connected without their conscious awareness, we investigated how the interaction forces from a partner adapt the motor behavior in physically interacting humans. We observed the motor adaptations during physical interactions to be mutually beneficial such that both the worse and better of the interacting partners improve motor...

  7. Motor/generator

    Science.gov (United States)

    Hickam, Christopher Dale [Glasford, IL

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  8. Application of stepping motor

    International Nuclear Information System (INIS)

    1980-10-01

    This book is divided into three parts, which is about practical using of stepping motor. The first part has six chapters. The contents of the first part are about stepping motor, classification of stepping motor, basic theory og stepping motor, characteristic and basic words, types and characteristic of stepping motor in hybrid type and basic control of stepping motor. The second part deals with application of stepping motor with hardware of stepping motor control, stepping motor control by microcomputer and software of stepping motor control. The last part mentions choice of stepping motor system, examples of stepping motor, measurement of stepping motor and practical cases of application of stepping motor.

  9. Asynchronous slip-ring motor synchronized with permanent magnets

    Directory of Open Access Journals (Sweden)

    Glinka Tadeusz

    2017-03-01

    Full Text Available The electric LSPMSM motor presented in the paper differs from standard induction motor by rotor design. The insulated start-up winding is located in slots along the rotor circumference. The winding ends are connected to the slip-rings. The rotor core contains permanent magnets. The electromechanical characteristics for synchronous operation were calculated, as were the start-up characteristics for operation with a short-circuited rotor winding. Two model motors were used for the calculations, the V-shaped Permanent Magnet (VPM – Fig. 3, and the Linear Permanent Magnet (IPM – Fig. 4, both rated at 14.5 kW. The advantages of the investigated motor are demonstrated in the conclusions.

  10. The effect of a multi-component camp-based weight-loss program on children's motor skills and physical fitness

    DEFF Research Database (Denmark)

    Larsen, Kristian Traberg; Huang, Tao; Larsen, Lisbeth Runge

    2016-01-01

    BACKGROUND: Many weight-loss programs in children are performed without specific foci on training both physical fitness and motor skills. The aim of this study was to describe the effect of a one-year weight-loss program on children's motor skills and physical fitness. METHODS: Participants......-respiratory fitness test. Motor skills were assessed by the Movement Assessment Battery for Children - second edition (M-ABC-2), age band 3. RESULTS: Loss to follow-up after 52 weeks was 19 % and 32 % in the DCIA and SIA, respectively. Balance skills were improved post-camp, but not after 52 weeks in children from....... CONCLUSION: In conclusion, the day-camp intervention led to improvements in physical fitness but not in motor skills compared to the standard intervention. Including both motor skills and physical fitness could advantageously be considered in future immersive intervention programmes. TRIAL REGISTRATION...

  11. The Neural Feedback Response to Error As a Teaching Signal for the Motor Learning System

    Science.gov (United States)

    Shadmehr, Reza

    2016-01-01

    When we experience an error during a movement, we update our motor commands to partially correct for this error on the next trial. How does experience of error produce the improvement in the subsequent motor commands? During the course of an erroneous reaching movement, proprioceptive and visual sensory pathways not only sense the error, but also engage feedback mechanisms, resulting in corrective motor responses that continue until the hand arrives at its goal. One possibility is that this feedback response is co-opted by the learning system and used as a template to improve performance on the next attempt. Here we used electromyography (EMG) to compare neural correlates of learning and feedback to test the hypothesis that the feedback response to error acts as a template for learning. We designed a task in which mixtures of error-clamp and force-field perturbation trials were used to deconstruct EMG time courses into error-feedback and learning components. We observed that the error-feedback response was composed of excitation of some muscles, and inhibition of others, producing a complex activation/deactivation pattern during the reach. Despite this complexity, across muscles the learning response was consistently a scaled version of the error-feedback response, but shifted 125 ms earlier in time. Across people, individuals who produced a greater feedback response to error, also learned more from error. This suggests that the feedback response to error serves as a teaching signal for the brain. Individuals who learn faster have a better teacher in their feedback control system. SIGNIFICANCE STATEMENT Our sensory organs transduce errors in behavior. To improve performance, we must generate better motor commands. How does the nervous system transform an error in sensory coordinates into better motor commands in muscle coordinates? Here we show that when an error occurs during a movement, the reflexes transform the sensory representation of error into motor

  12. Optimum driving of magnetostrictive amorphous wire micro-motor

    International Nuclear Information System (INIS)

    Takezawa, Masaaki; Ishizaki, Yuichi; Honda, Takashi; Yamasaki, Jiro

    2004-01-01

    Characteristics of a magnetostrictive vibration micro-motor were investigated in relation to a supporting position of a magnetostrictive amorphous wire for optimization of the motor. It was found that a vibration of the wire resembled a vibration mode of both ends free and a maximum rotational speed was obtained by supporting the nodes of vibration

  13. Slotless brushless permanent magnet motor and winding topologies

    International Nuclear Information System (INIS)

    Chen, Y.S.; Zhu, Z.Q.; Howe, D.; Hu, G.F.

    1998-01-01

    In the paper, the merits of alternative slotless brushless permanent magnet motor and winding topologies are investigated, using 2-D analytical models embodied with CAD design software. The design optimisation of both internal and external rotor motors, with and without stator back-iron, and with either overlapping or non-overlapping winding, is considered. (orig.)

  14. Cognitive ability predicts motor learning on a virtual reality game in patients with TBI.

    Science.gov (United States)

    O'Neil, Rochelle L; Skeel, Reid L; Ustinova, Ksenia I

    2013-01-01

    Virtual reality games and simulations have been utilized successfully for motor rehabilitation of individuals with traumatic brain injury (TBI). Little is known, however, how TBI-related cognitive decline affects learning of motor tasks in virtual environments. To fill this gap, we examined learning within a virtual reality game involving various reaching motions in 14 patients with TBI and 15 healthy individuals with different cognitive abilities. All participants practiced ten 90-second gaming trials to assess various aspects of motor learning. Cognitive abilities were assessed with a battery of tests including measures of memory, executive functioning, and visuospatial ability. Overall, participants with TBI showed both reduced performance and a slower learning rate in the virtual reality game compared to healthy individuals. Numerous correlations between overall performance and several of the cognitive ability domains were revealed for both the patient and control groups, with the best predictor being overall cognitive ability. The results may provide a starting point for rehabilitation programs regarding which cognitive domains interact with motor learning.

  15. Masseter motor unit recruitment is altered in experimental jaw muscle pain.

    Science.gov (United States)

    Minami, I; Akhter, R; Albersen, I; Burger, C; Whittle, T; Lobbezoo, F; Peck, C C; Murray, G M

    2013-02-01

    Some management strategies for chronic orofacial pain are influenced by models (e.g., Vicious Cycle Theory, Pain Adaptation Model) proposing either excitation or inhibition within a painful muscle. The aim of this study was to determine if experimental painful stimulation of the masseter muscle resulted in only increases or only decreases in masseter activity. Recordings of single-motor-unit (SMU, basic functional unit of muscle) activity were made from the right masseters of 10 asymptomatic participants during biting trials at the same force level and direction under infusion into the masseter of isotonic saline (no-pain condition), and in another block of biting trials on the same day, with 5% hypertonic saline (pain condition). Of the 36 SMUs studied, 2 SMUs exhibited a significant (p units were present only during the no-pain block and 10 units during the pain block only. The findings suggest that, rather than only excitation or only inhibition within a painful muscle, a re-organization of activity occurs, with increases and decreases occurring within the painful muscle. This suggests the need to re-assess management strategies based on models that propose uniform effects of pain on motor activity.

  16. Unifying practice schedules in the timescales of motor learning and performance.

    Science.gov (United States)

    Verhoeven, F Martijn; Newell, Karl M

    2018-06-01

    In this article, we elaborate from a multiple time scales model of motor learning to examine the independent and integrated effects of massed and distributed practice schedules within- and between-sessions on the persistent (learning) and transient (warm-up, fatigue) processes of performance change. The timescales framework reveals the influence of practice distribution on four learning-related processes: the persistent processes of learning and forgetting, and the transient processes of warm-up decrement and fatigue. The superposition of the different processes of practice leads to a unified set of effects for massed and distributed practice within- and between-sessions in learning motor tasks. This analysis of the interaction between the duration of the interval of practice trials or sessions and parameters of the introduced time scale model captures the unified influence of the between trial and session scheduling of practice on learning and performance. It provides a starting point for new theoretically based hypotheses, and the scheduling of practice that minimizes the negative effects of warm-up decrement, fatigue and forgetting while exploiting the positive effects of learning and retention. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. The Effect of Proprioceptive Neuromuscular Facilitation on Learning Fine Motor Skills: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Shahabi Kaseb

    2016-09-01

    Full Text Available Introduction: Preparation of neuromuscular system prior to performing motor skills affects the learning of motor skills. The present study was conducted to investigate the effects of Proprioceptive Neuromuscular Facilitation (PNF on limb coordination and accuracy in dart throwing skill. Methods: Thirty two male students were randomly selected as study sample. Based on the pretest scores, the participants were divided into three groups: experimental (proprioceptive neuromuscular facilitation, first control (without warm-up, and second control (specific warm-up. During the acquisition phase, the participants first performed the preparation training related to their own group, then all groups performed the exercise program of dart throwing consisting of 6 blocks of 9 trials in 4 training sessions. Finally, 20 days following the last exercise session, the subjects took the retention and transfer tests. Results: The results of one-way ANOVA test for coordination variable in acquisition test showed no significant difference between the groups, while there was a statistically significant difference between groups regarding coordination variable in retention and transfer tests. Furthermore, the results of one-way ANOVA for the accuracy variable in acquisition and retention tests showed no statistically significant difference between the three groups, while there was a statistically significant difference between groups for accuracy variable in transfer test. Conclusion: It seems that proprioceptive neuromuscular facilitation, as a preparation method before performance, can enhance the efficacy of training to better learn the coordination pattern of fine motor skills.

  18. Experimental investigation of the direct torque neuro-fuzzy controller for induction motor drive

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, P.Z.; Kazmierkowski, M.P. [Warsaw Univ. of Technology (Poland)

    2000-08-01

    In this paper, the concept and implementation of a new simple Direct Torque Neuro-Fuzzy Control (DTNFC) scheme for PWM inverter-fed induction motor drive are presented. An Adaptive Neuro-Fuzzy Inference System (ANFIS) is applied to achieve high performance decoupled flux and torque control. The theoretical principle and tuning procedure of this method are discussed. A 3 kW induction motor experimental system with digital signal processor (DSP type) TMS 320C31 based controller has been built to verify this approach. The simulation and laboratory experimental results, which illustrate the performance of the proposed scheme, are presented. Also, nomograms for controller design are given. It has been shown that the simple DTNFC is characterised by very fast torque and flux response, very low speed operation and simple tuning capability. (orig.)

  19. Motor imagery learning modulates functional connectivity of multiple brain systems in resting state.

    Science.gov (United States)

    Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

    2014-01-01

    Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning.

  20. Abnormal Gray Matter Shape, Thickness, and Volume in the Motor Cortico-Subcortical Loop in Idiopathic Rapid Eye Movement Sleep Behavior Disorder: Association with Clinical and Motor Features.

    Science.gov (United States)

    Rahayel, Shady; Postuma, Ronald B; Montplaisir, Jacques; Bedetti, Christophe; Brambati, Simona; Carrier, Julie; Monchi, Oury; Bourgouin, Pierre-Alexandre; Gaubert, Malo; Gagnon, Jean-François

    2018-02-01

    Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a major risk factor for Parkinson's disease and dementia with Lewy bodies. Anatomical gray matter abnormalities in the motor cortico-subcortical loop areas remain under studied in iRBD patients. We acquired T1-weighted images and administrated quantitative motor tasks in 41 patients with polysomnography-confirmed iRBD and 41 healthy subjects. Cortical thickness and voxel-based morphometry (VBM) analyses were performed to investigate local cortical thickness and gray matter volume changes, vertex-based shape analysis to investigate shape of subcortical structures, and structure-based volumetric analyses to investigate volumes of subcortical and brainstem structures. Cortical thickness analysis revealed thinning in iRBD patients in bilateral medial superior frontal, orbitofrontal, anterior cingulate cortices, and the right dorsolateral primary motor cortex. VBM results showed lower gray matter volume in iRBD patients in the frontal lobes, anterior cingulate gyri, and caudate nucleus. Shape analysis revealed extensive surface contraction in the external and internal segments of the left pallidum. Clinical and motor impaired features in iRBD were associated with anomalies of the motor cortico-subcortical loop. In summary, iRBD patients showed numerous gray matter structural abnormalities in the motor cortico-subcortical loop, which are associated with lower motor performance and clinical manifestations of iRBD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Performance Comparison between a Permanent Magnet Synchronous Motor and an Induction Motor as a Traction Motor for High Speed Train

    Science.gov (United States)

    Kondo, Minoru; Kawamura, Junya; Terauchi, Nobuo

    Performance tests are carried out to demonstrate the superiority of a permanent magnet synchronous motor to an induction motor as a traction motor for high-speed train. A prototype motor was manufactured by replacing the rotor of a conventional induction motor. The test results show that the permanent magnet motor is lighter, efficient and more silent than the induction motor because of the different rotor structure.

  2. The relationship between motor function, cognition, independence and quality of life in myelomeningocele patients.

    Science.gov (United States)

    Luz, Carolina Lundberg; Moura, Maria Clara Drummond Soares de; Becker, Karine Kyomi; Teixeira, Rosani Aparecida Antunes; Voos, Mariana Callil; Hasue, Renata Hydee

    2017-08-01

    Motor function, cognition, functional independence and quality of life have been described in myelomeningocele patients, but no study has investigated their relationships. We aimed to investigate the relationships between motor function, cognition, functional independence, quality of life, age, and lesion level in myelomeningocele patients, and investigate the influence of hydrocephalus on these variables. We assessed 47 patients with the Gross Motor Function Measure (motor function), Raven's Colored Progressive Matrices (cognition), Pediatric Evaluation of Disability Inventory (functional independence) and the Autoquestionnaire Qualité de vie Enfant Imagé (quality of life). Spearman's correlation tests determined relationships between the variables. The Friedman ANOVAs determined the influence of hydrocephalus. Motor function was strongly related to mobility and lesion level, and moderately related to cognition, self-care and social function. Cognition and quality of life were moderately related to functional independence. Age correlated moderately with functional independence and quality of life. Hydrocephalus resulted in poorer motor/cognitive outcomes and lower functional independence.

  3. Examination of motor skill competency in students: evidence-based physical education curriculum

    Directory of Open Access Journals (Sweden)

    Weiyun Chen

    2017-02-01

    Full Text Available Abstract Background Researchers found that children with a competent level of motor skill performance are more likely to be physically active. This study examined how well K-1 students demonstrated motor skill competency in relation to Physical Education Content Standard 1. Methods Participants were K-1 grade students (N = 1,223-1,588; boys = 568–857; girls = 526–695; Mean age = 5.5 yrs old who were enrolled in nine elementary schools. The K-1 students’ motor skill competency in running, weight transferring, hand dribbling, and underhand catching skills was assessed using four PE Metrics skill assessment rubrics in the intervention year 1 and year 2, respectively. Data were analyzed by means of descriptive statistics and independent sample t-tests. Results The students in the intervention year 1 and year 2 cohorts performed at the Competent Level or higher in the four skill assessments. The prevalence of the students’ demonstration of skill competency across the four skills was high in the two intervention years. The intervention year 2 cohort scored significantly higher than the intervention year 1 cohort in the four skill assessments. The boys significantly outperformed than the girls in the two manipulative skills in the intervention year 1 and in the two manipulative skills and the weight transferring skill in the intervention year 2. No gender differences in the running skill in either year were found. Conclusions The evidence-based CATCH PE play a critical role in developing and building K-1 students’ ability to demonstrate motor skill competency in four fundamental skills. Trial registration ClinicalTrials.gov ID: NCT03015337 , registered date: 1/09/2017, as "retrospectively registered".

  4. Parallel Alterations of Functional Connectivity during Execution and Imagination after Motor Imagery Learning

    Science.gov (United States)

    Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li

    2012-01-01

    Background Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. Methodology/Principal Findings Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. Conclusions/Significance These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that

  5. Optimization of a piezoelectric linear motor in terms of the contact parameters

    International Nuclear Information System (INIS)

    Ko, Hyun-Phill; Kim, Sangsig; Kang, Chong-Yun; Kim, Hyun-Jai; Yoon, Seok-Jin

    2005-01-01

    The contact kinetics of piezoelectric linear motors determines the operational characteristics like speed and torque or transmitted mechanical power and efficiency. Piezoelectric linear motors are driven by tangential stress in the interface between tip of shaking beam and slider. A good contact between the tip and slider is necessary for a reliable analysis of the motor, which is needed for the optimization of its performance. The piezoelectric linear motor was fabricated and the characteristics of the motor were investigated by external conditions such as tip shape with different curvatures and contact force between the tip and the slider. It was found in this investigation that the optimal curvature of the tip and the contact force are curvature of 1 and 10, respectively, for the high actuating speed, and curvature of 1 and 40 N, respectively, for the high actuating force. Finally, tip shape has an influence on the characteristics of linear motor

  6. Motor equivalence and structure of variance: multi-muscle postural synergies in Parkinson's disease.

    Science.gov (United States)

    Falaki, Ali; Huang, Xuemei; Lewis, Mechelle M; Latash, Mark L

    2017-07-01

    We explored posture-stabilizing multi-muscle synergies with two methods of analysis of multi-element, abundant systems: (1) Analysis of inter-cycle variance; and (2) Analysis of motor equivalence, both quantified within the framework of the uncontrolled manifold (UCM) hypothesis. Data collected in two earlier studies of patients with Parkinson's disease (PD) were re-analyzed. One study compared synergies in the space of muscle modes (muscle groups with parallel scaling of activation) during tasks performed by early-stage PD patients and controls. The other study explored the effects of dopaminergic medication on multi-muscle-mode synergies. Inter-cycle variance and absolute magnitude of the center of pressure displacement across consecutive cycles were quantified during voluntary whole-body sway within the UCM and orthogonal to the UCM space. The patients showed smaller indices of variance within the UCM and motor equivalence compared to controls. The indices were also smaller in the off-drug compared to on-drug condition. There were strong across-subject correlations between the inter-cycle variance within/orthogonal to the UCM and motor equivalent/non-motor equivalent displacements. This study has shown that, at least for cyclical tasks, analysis of variance and analysis of motor equivalence lead to metrics of stability that correlate with each other and show similar effects of disease and medication. These results show, for the first time, intimate links between indices of variance and motor equivalence. They suggest that analysis of motor equivalence, which requires only a handful of trials, could be used broadly in the field of motor disorders to analyze problems with action stability.

  7. Motor function domains in alternating hemiplegia of childhood.

    Science.gov (United States)

    Masoud, Melanie; Gordon, Kelly; Hall, Amanda; Jasien, Joan; Lardinois, Kara; Uchitel, Julie; Mclean, Melissa; Prange, Lyndsey; Wuchich, Jeffrey; Mikati, Mohamad A

    2017-08-01

    To characterize motor function profiles in alternating hemiplegia of childhood, and to investigate interrelationships between these domains and with age. We studied a cohort of 23 patients (9 males, 14 females; mean age 9y 4mo, range 4mo-43y) who underwent standardized tests to assess gross motor, upper extremity motor control, motor speech, and dysphagia functions. Gross Motor Function Classification System (GMFCS), Gross Motor Function Measure-88 (GMFM-88), Manual Ability Classification System (MACS), and Revised Melbourne Assessment (MA2) scales manifested predominantly mild impairments; motor speech, moderate to severe; Modified Dysphagia Outcome and Severity Scale (M-DOSS), mild-to moderate deficits. GMFCS correlated with GMFM-88 scores (Pearson's correlation, p=0.002), MACS (p=0.038), and MA2 fluency (p=0.005) and accuracy (p=0.038) scores. GMFCS did not correlate with motor speech (p=0.399), MA2 dexterity (p=0.247), range of motion (p=0.063), or M-DOSS (p=0.856). Motor speech was more severely impaired than the GMFCS (p<0.013). There was no correlation between any of the assessment tools and age (p=0.210-0.798). Our data establish a detailed profile of motor function in alternating hemiplegia of childhood, argue against the presence of worse motor function in older patients, identify tools helpful in evaluating this population, and identify oropharyngeal function as the more severely affected domain, suggesting that brain areas controlling this function are more affected than others. © 2017 Mac Keith Press.

  8. Older adults learn less, but still reduce metabolic cost, during motor adaptation

    Science.gov (United States)

    Huang, Helen J.

    2013-01-01

    The ability to learn new movements and dynamics is important for maintaining independence with advancing age. Age-related sensorimotor changes and increased muscle coactivation likely alter the trial-and-error-based process of adapting to new movement demands (motor adaptation). Here, we asked, to what extent is motor adaptation to novel dynamics maintained in older adults (≥65 yr)? We hypothesized that older adults would adapt to the novel dynamics less well than young adults. Because older adults often use muscle coactivation, we expected older adults to use greater muscle coactivation during motor adaptation than young adults. Nevertheless, we predicted that older adults would reduce muscle activity and metabolic cost with motor adaptation, similar to young adults. Seated older (n = 11, 73.8 ± 5.6 yr) and young (n = 15, 23.8 ± 4.7 yr) adults made targeted reaching movements while grasping a robotic arm. We measured their metabolic rate continuously via expired gas analysis. A force field was used to add novel dynamics. Older adults had greater movement deviations and compensated for just 65% of the novel dynamics compared with 84% in young adults. As expected, older adults used greater muscle coactivation than young adults. Last, older adults reduced muscle activity with motor adaptation and had consistent reductions in metabolic cost later during motor adaptation, similar to young adults. These results suggest that despite increased muscle coactivation, older adults can adapt to the novel dynamics, albeit less accurately. These results also suggest that reductions in metabolic cost may be a fundamental feature of motor adaptation. PMID:24133222

  9. Nanoconfined catalytic Ångström-size motors

    Energy Technology Data Exchange (ETDEWEB)

    Colberg, Peter H., E-mail: pcolberg@chem.utoronto.ca; Kapral, Raymond, E-mail: rkapral@chem.utoronto.ca [Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 (Canada)

    2015-11-14

    Self-propelled chemically powered synthetic micron and nano-scale motors are being intensively studied because of the wide range of potential applications that exploit their directed motion. This paper considers even smaller Ångström-size synthetic motors. Such very small motors in bulk solution display effects arising from their self-propulsion. Recent experiments have shown that small-molecule catalysts and single enzyme molecules exhibit properties that have been attributed to their chemical activity. Molecular dynamics is used to investigate the properties of very small Ångström-size synthetic chemically powered sphere-dimer motors in a simple atomic-like solvent confined between walls separated by distances of tens of nanometers. Evidence for strong structural ordering of the motors between the walls, which reflects the finite size of solvent molecules and depends on solvent depletion forces, is provided. Dynamical properties, such as average motor velocity, orientational relaxation, and mean square displacement, are anisotropic and depend on the distance from the walls. This research provides information needed for potential applications that use molecular-scale motors in the complex confined geometries encountered in biology and the laboratory.

  10. Nanoconfined catalytic Ångström-size motors

    International Nuclear Information System (INIS)

    Colberg, Peter H.; Kapral, Raymond

    2015-01-01

    Self-propelled chemically powered synthetic micron and nano-scale motors are being intensively studied because of the wide range of potential applications that exploit their directed motion. This paper considers even smaller Ångström-size synthetic motors. Such very small motors in bulk solution display effects arising from their self-propulsion. Recent experiments have shown that small-molecule catalysts and single enzyme molecules exhibit properties that have been attributed to their chemical activity. Molecular dynamics is used to investigate the properties of very small Ångström-size synthetic chemically powered sphere-dimer motors in a simple atomic-like solvent confined between walls separated by distances of tens of nanometers. Evidence for strong structural ordering of the motors between the walls, which reflects the finite size of solvent molecules and depends on solvent depletion forces, is provided. Dynamical properties, such as average motor velocity, orientational relaxation, and mean square displacement, are anisotropic and depend on the distance from the walls. This research provides information needed for potential applications that use molecular-scale motors in the complex confined geometries encountered in biology and the laboratory

  11. Improvement of motor inertia influence of electric power steering; Dendoshiki power steering no motor kansei no eikyo to hosho

    Energy Technology Data Exchange (ETDEWEB)

    Takehara, S; Sakamoto, K; Hanamoto, Y [Mazda Motor Corp., Hiroshima (Japan); Noritsugu, T [Okayama University, Okayama (Japan)

    1997-10-01

    Motor inertia of electric power steering affects not only steering characteristics but vehicle dynamics. We have investigated the influence of motor inertia and proposed a feedback strategy to compensate it. Weight of the test vehicle is 1100Kg and the steering system is pinion type electric power steering. By using simulation model and vehicle test, we have realized natural steering maneuvering and stable vehicle dynamics. 4 refs., 11 figs.

  12. Increased reward in ankle robotics training enhances motor control and cortical efficiency in stroke.

    Science.gov (United States)

    Goodman, Ronald N; Rietschel, Jeremy C; Roy, Anindo; Jung, Brian C; Diaz, Jason; Macko, Richard F; Forrester, Larry W

    2014-01-01

    Robotics is rapidly emerging as a viable approach to enhance motor recovery after disabling stroke. Current principles of cognitive motor learning recognize a positive relationship between reward and motor learning. Yet no prior studies have established explicitly whether reward improves the rate or efficacy of robotics-assisted rehabilitation or produces neurophysiologic adaptations associated with motor learning. We conducted a 3 wk, 9-session clinical pilot with 10 people with chronic hemiparetic stroke, randomly assigned to train with an impedance-controlled ankle robot (anklebot) under either high reward (HR) or low reward conditions. The 1 h training sessions entailed playing a seated video game by moving the paretic ankle to hit moving onscreen targets with the anklebot only providing assistance as needed. Assessments included paretic ankle motor control, learning curves, electroencephalograpy (EEG) coherence and spectral power during unassisted trials, and gait function. While both groups exhibited changes in EEG, the HR group had faster learning curves (p = 0.05), smoother movements (p motor learning for restoring mobility.

  13. Parameters Affecting the Erosive Burning of Solid Rocket Motor

    Directory of Open Access Journals (Sweden)

    Abdelaziz Almostafa

    2018-01-01

    Full Text Available Increasing the velocity of gases inside solid rocket motors with low port-to-throat area ratios, leading to increased occurrence and severity of burning rate augmentation due to flow of propellant products across burning propellant surfaces (erosive burning, erosive burning of high energy composite propellant was investigated to supply rocket motor design criteria and to supplement knowledge of combustion phenomena, pressure, burning rate and high velocity of gases all of these are parameters affect on erosive burning. Investigate the phenomena of the erosive burning by using the 2’inch rocket motor and modified one. Different tests applied to fulfil all the parameters that calculated out from the experiments and by studying the pressure time curve and erosive burning phenomena.

  14. Acute exercise improves motor memory consolidation in preadolescent children

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Skriver, Kasper Christen; Nielsen, Jens Bo

    2017-01-01

    protocols following motor skill practice in a school setting can also improve long-term retention of motor memory in preadolescent children. Methods: Seventy-seven pre-adolescent children (age 10.5 ± 0.75 (SD)) participated in the study. Prior to the main experiment age, BMI, fitness status and general...... immediately after motor skill acquisition facilitates long-term motor memory in pre-adolescent children, presumably by promoting memory consolidation. The results also demonstrate that the effects can be accomplished in a school setting. The positive effect of both a team game (i.e., FLB) and running......Objective: The ability to acquire new motor skills is essential both during childhood and later in life. Recent studies have demonstrated that an acute bout of exercise can improve motor memory consolidation in adults. The objective of the present study was to investigate whether acute exercise...

  15. The Effect of Acute Exercise on Consolidation and Retention of Motor Memory

    DEFF Research Database (Denmark)

    Skriver, Kasper Christen

    with the perspective of exploring the arguments for applying exercise systematically in the educational system. In addition, since a team sport could be more motivating to school children compared to e.g. running, we investigated the effects of both hockey and running on motor memory. Seventy-seven pre......There is substantial evidence that a single bout of exercise can improve cognitive functions and retention of certain types of declarative memory. However, it is unclear if a similar effect can be demonstrated when coupling physical activity with the acquisition and retention of a motor skill....... Hence, the overall aim of the present thesis was to investigate the relationship between acute exercise and motor memory, with special interest in investigating if exercise performed after motor skill learning could improve skill retention. Study I was designed to assess if a single bout of exercise...

  16. Motor experience with a sport-specific implement affects motor imagery

    Science.gov (United States)

    Zhu, Hua; Shen, Cheng; Zhang, Jian

    2018-01-01

    The present study tested whether sport-specific implements facilitate motor imagery, whereas nonspecific implements disrupt motor imagery. We asked a group of basketball players (experts) and a group of healthy controls (novices) to physically perform (motor execution) and mentally simulate (motor imagery) basketball throws. Subjects produced motor imagery when they were holding a basketball, a volleyball, or nothing. Motor imagery performance was measured by temporal congruence, which is the correspondence between imagery and execution times estimated as (imagery time minus execution time) divided by (imagery time plus execution time), as well as the vividness of motor imagery. Results showed that experts produced greater temporal congruence and vividness of kinesthetic imagery while holding a basketball compared to when they were holding nothing, suggesting a facilitation effect from sport-specific implements. In contrast, experts produced lower temporal congruence and vividness of kinesthetic imagery while holding a volleyball compared to when they were holding nothing, suggesting the interference effect of nonspecific implements. Furthermore, we found a negative correlation between temporal congruence and the vividness of kinesthetic imagery in experts while holding a basketball. On the contrary, the implement manipulation did not modulate the temporal congruence of novices. Our findings suggest that motor representation in experts is built on motor experience associated with specific-implement use and thus was subjected to modulation of the implement held. We conclude that sport-specific implements facilitate motor imagery, whereas nonspecific implements could disrupt motor representation in experts. PMID:29719738

  17. Similar effects of two modified constraint-induced therapy protocols on motor impairment, motor function and quality of life in patients with chronic stroke

    Directory of Open Access Journals (Sweden)

    Wilma Costa Souza

    2015-03-01

    Full Text Available Modified constraint-induced movement therapy (CIMT protocols show motor function and real-world arm use improvement. Meanwhile it usually requires constant supervision by physiotherapists and is therefore more expensive than customary care. This study compared the preliminary efficacy of two modified CIMT protocols. A two-group randomized controlled trial with pre and post treatment measures and six months follow-up was conducted. Nineteen patients with chronic stroke received 10 treatment sessions distributed three to four times a week over 22 days. CIMT3h_direct group received 3 hours of CIMT supervised by a therapist (n=10 while CIMT1.5h_direct group had 1.5 hours of supervised CIMT+1.5 hours home exercises supervised by a caregiver (n=9. Outcome measures were the Fugl-Meyer Assessment, the Motor Activity Log, and the Stroke Specific Quality of Life Scale. The modified CIMT protocols were feasible and well tolerated. Improvements in motor function, real-world arm use and quality of life did not differ significantly between treated groups receiving either 3 or 1.5 hours mCIMT supervised by a therapist.

  18. [What role for paraclinical investigations within clinical trials conducted in psychiatric patients?

    Science.gov (United States)

    Kaladjian, A; Adida, M; Simon, N; Belzeaux, R; Blin, O; Fakra, E; Azorin, J-M

    2016-12-01

    As in the usual care of patients, paraclinical investigations have today only a very modest role in clinical trials in psychiatry, mainly to complete the pre-therapeutical assessments prior to inclusion of subjects or to monitor treatment tolerance. Yet, the accumulation of data in neurosciences suggests the next emergence of biomarkers, whose interest is that they are closely associated to the biological disturbances underlying psychiatric illnesses, and that they are accessible by means of technological tools such as imaging devices. These tools allow to explore the effects on brain of psychotropic medications, such as antidepressants, antipsychotics, or mood stabilizers, in relation to their therapeutic action. The obtained results allow to consider the use of such biomarkers in clinical trials in addition to more conventional approaches. In particular, they could be used as targets to measure brain response to treatment in association with clinical response, to predict a therapeutic response from the neurofunctional characteristics of patients, or to establish the safety profile of drugs on the nervous system. The use of such biomarkers in clinical trials would help to better define the explored populations and their characteristics, as well as the variables to assess, and to better measure the impact of the treatments and their potential harmful effects on the nervous system. © L’Encéphale, Paris, 2016.

  19. Evaluating the importance of sham controlled trials in the investigation of medical devices in interventional cardiology.

    Science.gov (United States)

    Byrne, Robert A; Capodanno, Davide; Mahfoud, Felix; Fajadet, Jean; Windecker, Stephan; Jüni, Peter; Baumbach, Andreas; Wijns, William; Haude, Michael

    2018-05-22

    Cardiovascular medicine is one of the specialties that has relied most heavily on evidence from randomized clinical trials in determining best practice for the management of common disease conditions. When comparing treatment approaches, trials incorporating random allocation are the most appropriate method for protecting against treatment allocation bias. In order to protect against performance and ascertainment bias, trial designs including placebo control are preferable where feasible. In contrast to testing of medicines, treatments based on procedures or use of medical devices are more challenging to assess, as sham procedures are necessary to facilitate blinding of participants. However, in many cases, ethical concerns exist, as individual patients allocated to sham procedure are exposed only to risk without potential for benefit. Accordingly, the potential benefits to the general patient population must be carefully weighed against the risks of the exposed individuals. For this reason, trial design and study conduct are critically important to ensure that the investigation has the best chance of answering the study question at hand. In the current manuscript, we aim to review issues relating to the conduct of sham-controlled trials and discuss a number of recent examples in the field of interventional cardiology.

  20. Motor responses and weight gaining in neonates through use of two methods of earmuff and receiving silence in NICU.

    Science.gov (United States)

    Abdeyazdan, Z; Ghasemi, S; Marofi, M; Berjis, N

    2014-01-01

    With technological advances in NICUs the survival rate of preterm infants has been increased. Because NICU environment is a potent source of stress for infants, its modification is an essential measure to decrease infants' morbidity. The purposes of this study were to compare the effects of wearing earmuff and provision silence for infants on their motor responses and gaining weight. In a randomized clinical trial 96 preterm infants were enrolled. Their motor responses were evaluated for two consecutive days in the morning and afternoon shifts, in the groups of earmuff and silence, and at similar time points in the control group. Also their weight was measured at days 1 and 10. In the two intervention groups, means of motor responses in infants were significantly less than in the control group, and weight gain of infants was more than the control group. However weight gain was more pronounced in the earmuff group. Both interventions led to decreasing number of motor responses and improvement of weight gain pattern, but these effects were more pronounced in earmuff group; thus because implementation of silence in NICUs has many barriers, it is suggested to use earmuff for preterm infants in these units. This trial obtained IRCT registration number IRCT2012092010812N2.

  1. Changes in visual and sensory-motor resting-state functional connectivity support motor learning by observing

    Science.gov (United States)

    McGregor, Heather R.

    2015-01-01

    Motor learning occurs not only through direct first-hand experience but also through observation (Mattar AA, Gribble PL. Neuron 46: 153–160, 2005). When observing the actions of others, we activate many of the same brain regions involved in performing those actions ourselves (Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. J Cogn Neurosci 22: 1493–1503, 2010). Links between neural systems for vision and action have been reported in neurophysiological (Strafella AP, Paus T. Neuroreport 11: 2289–2292, 2000; Watkins KE, Strafella AP, Paus T. Neuropsychologia 41: 989–994, 2003), brain imaging (Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Eur J Neurosci 13: 400–404, 2001; Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Science 286: 2526–2528, 1999), and eye tracking (Flanagan JR, Johansson RS. Nature 424: 769–771, 2003) studies. Here we used a force field learning paradigm coupled with resting-state fMRI to investigate the brain areas involved in motor learning by observing. We examined changes in resting-state functional connectivity (FC) after an observational learning task and found a network consisting of V5/MT, cerebellum, and primary motor and somatosensory cortices in which changes in FC were correlated with the amount of motor learning achieved through observation, as assessed behaviorally after resting-state fMRI scans. The observed FC changes in this network are not due to visual attention to motion or observation of movement errors but rather are specifically linked to motor learning. These results support the idea that brain networks linking action observation and motor control also facilitate motor learning. PMID:25995349

  2. Changes in visual and sensory-motor resting-state functional connectivity support motor learning by observing.

    Science.gov (United States)

    McGregor, Heather R; Gribble, Paul L

    2015-07-01

    Motor learning occurs not only through direct first-hand experience but also through observation (Mattar AA, Gribble PL. Neuron 46: 153-160, 2005). When observing the actions of others, we activate many of the same brain regions involved in performing those actions ourselves (Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. J Cogn Neurosci 22: 1493-1503, 2010). Links between neural systems for vision and action have been reported in neurophysiological (Strafella AP, Paus T. Neuroreport 11: 2289-2292, 2000; Watkins KE, Strafella AP, Paus T. Neuropsychologia 41: 989-994, 2003), brain imaging (Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Eur J Neurosci 13: 400-404, 2001; Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Science 286: 2526-2528, 1999), and eye tracking (Flanagan JR, Johansson RS. Nature 424: 769-771, 2003) studies. Here we used a force field learning paradigm coupled with resting-state fMRI to investigate the brain areas involved in motor learning by observing. We examined changes in resting-state functional connectivity (FC) after an observational learning task and found a network consisting of V5/MT, cerebellum, and primary motor and somatosensory cortices in which changes in FC were correlated with the amount of motor learning achieved through observation, as assessed behaviorally after resting-state fMRI scans. The observed FC changes in this network are not due to visual attention to motion or observation of movement errors but rather are specifically linked to motor learning. These results support the idea that brain networks linking action observation and motor control also facilitate motor learning. Copyright © 2015 the American Physiological Society.

  3. Cognitive and Developmental Influences in Visual-Motor Integration Skills in Young Children

    Science.gov (United States)

    Decker, Scott L.; Englund, Julia A.; Carboni, Jessica A.; Brooks, Janell H.

    2011-01-01

    Measures of visual-motor integration skills continue to be widely used in psychological assessments with children. However, the construct validity of many visual-motor integration measures remains unclear. In this study, we investigated the relative contributions of maturation and cognitive skills to the development of visual-motor integration…

  4. Motor assessment in patients with Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Gabriela Palhares Campolina Diniz

    2012-06-01

    Full Text Available OBJECTIVE: Evaluate muscle force and motor function in patients with Duchenne muscular dystrophy (DMD in a period of six months. METHOD: Twenty children and adolescents with diagnosis of DMD were evaluated trough: measurement of the strength of the flexors and extensors of the shoulder, elbow, wrist, knee and ankle through the Medical Research Council (MRC, and application of the Motor Function Measure (MFM. The patients were evaluated twice within a six-month interval. RESULTS: Loss of muscle strength was identified in the MRC score for upper proximal members (t=-2.17, p=0.04. In the MFM, it was noted significant loss in the dimension 1 (t=-3.06, p=0.006. Moderate and strong correlations were found between the scores for muscular strength and the MFM dimensions. CONCLUSION: The MFM scale was a useful instrument in the follow up of patients with DMD. Moreover, it is a more comprehensive scale to assess patients and very good for conducting trials to evaluate treatment.

  5. Improving motor reliability in nuclear power plants: Volume 3, Failure analysis and diagnostic tests on a naturally aged large electric motor

    International Nuclear Information System (INIS)

    Subudhi, M.; Taylor, J.H.; Sheets, M.W.

    1987-11-01

    Stator coils of a naturally failed 400 hp motor from the Brookhaven National Laboratory test reactor facility were tested for their dielectric integrities. The motor was used to drive the primary reactor coolant pump for the last 20 years. Maintenance activities on this motor during its entire service life were minimal, with the exception of meggering it periodically. The stator consisted of ninety individual coils which were separated for testing. Seven different dielectric tests were performed on the coils. Each set of data from the tested coils indicated a spectrum of variation depending on their aging conditions and characteristics. By comparing the test data to baseline data, the test methods were assessed for application to motor maintenance programs in nuclear power plants. Also included in this study are results of an investigation to determine the cause of this motor failure. Recommendations are provided on the aged condition of a second identical primary pump motor which is the same age and presently in operation. Recommendations are also presented relating to each of the dielectric test methods applicability to motor maintenance programs. 6 refs., 11 figs., 5 tabs

  6. A study of the effect of training pregnant women about attachment skills on infants’ motor development indices at birth to four months

    Directory of Open Access Journals (Sweden)

    Akram Dokuhaki

    2017-06-01

    Full Text Available Background. During pregnancy fetus-maternal attachment can improve maternal-fetal attachment, and have positive effects on the infant’s growth and development. Objectives. This study aimed to investigate the effect of training pregnant mothers about attachment skills on infants’ motor development indices at birth to four months. Material and methods. This study is a clinical trial with convenient sampling on 190 pregnant women in Hafez hospital. They were randomly divided into two groups: intervention and control. There were 94 and 96 patients in the control and intervention groups, respectively. In the intervention group, 6 sessions of 90-minute educational classes were held. After birth, the infants were compared, in both groups, in terms of motor status using the Denver questionnaire at birth to the age of 4 months. Results . In the intervention group, educating the women on fetal-maternal attachment skills was associated with infants’ earlier achievement age in terms of some gross motor, all fields of speech-language, and one item of fine-adaptive motor realms. In addition, the infants’ age was significantly reduced in achieving some personal-social items, as well as gross-fine scope at one and three months. Conclusions . Training the mothers in attachment skills increased fetal-maternal attachment and improved the motor development indicators in infants aged up to four months. Therefore, training in attachment skills is recommended to be given as a component of routine pregnancy care.

  7. The investigation of brain-computer interface for motor imagery and execution using functional near-infrared spectroscopy

    Science.gov (United States)

    Zhang, Zhen; Jiao, Xuejun; Xu, Fengang; Jiang, Jin; Yang, Hanjun; Cao, Yong; Fu, Jiahao

    2017-01-01

    Functional near-infrared spectroscopy (fNIRS), which can measure cortex hemoglobin activity, has been widely adopted in brain-computer interface (BCI). To explore the feasibility of recognizing motor imagery (MI) and motor execution (ME) in the same motion. We measured changes of oxygenated hemoglobin (HBO) and deoxygenated hemoglobin (HBR) on PFC and Motor Cortex (MC) when 15 subjects performing hand extension and finger tapping tasks. The mean, slope, quadratic coefficient and approximate entropy features were extracted from HBO as the input of support vector machine (SVM). For the four-class fNIRS-BCI classifiers, we realized 87.65% and 87.58% classification accuracy corresponding to hand extension and finger tapping tasks. In conclusion, it is effective for fNIRS-BCI to recognize MI and ME in the same motion.

  8. Fine motor deficiencies in children diagnosed as DCD based on poor grapho-motor ability

    NARCIS (Netherlands)

    Smits-Engelsman, BCM; Niemeijer, AS; van Galen, GP

    A sample of 125 children from grades 4 and 5 of two normal Dutch primary schools were investigated regarding the incidence of handwriting problems and other fine motor disabilities. Handwriting quality was assessed with the concise assessment method for children's handwriting (BHK) and the school

  9. Motor-operated valve (MOV) actuator motor and gearbox testing

    International Nuclear Information System (INIS)

    DeWall, K.; Watkins, J.C.; Bramwell, D.

    1997-07-01

    Researchers at the Idaho National Engineering and Environmental Laboratory tested the performance of electric motors and actuator gearboxes typical of the equipment installed on motor-operated valves used in nuclear power plants. Using a test stand that simulates valve closure loads against flow and pressure, the authors tested five electric motors (four ac and one dc) and three gearboxes at conditions a motor might experience in a power plant, including such off-normal conditions as operation at high temperature and reduced voltage. They also monitored the efficiency of the actuator gearbox. All five motors operated at or above their rated starting torque during tests at normal voltages and temperatures. For all five motors, actual torque losses due to voltage degradation were greater than the losses calculated by methods typically used for predicting motor torque at degraded voltage conditions. For the dc motor the actual torque losses due to elevated operating temperatures were greater than the losses calculated by the typical predictive method. The actual efficiencies of the actuator gearboxes were generally lower than the running efficiencies published by the manufacturer and were generally nearer the published pull-out efficiencies. Operation of the gearbox at elevated temperature did not affect the operating efficiency

  10. Motor activation in SPG4-linked hereditary spastic paraplegia

    DEFF Research Database (Denmark)

    Scheuer, KH; Nielsen, JE; Krabbe, Katja

    2006-01-01

    OBJECTIVE: The aim of this study was to investigate the extent of motor cortical functional reorganisation in patients with SPG4-linked hereditary spastic paraplegia by exploring cortical motor activation related to movements of clinically affected (lower) and unaffected (upper) limbs. METHODS......: Thirteen patients and 13 normal controls matched for age, gender and handedness underwent O15-labelled water positron emission tomography during (1) right ankle flexion-extension, (2) right shoulder flexion-extension and (3) rest. Within-group comparisons of movement vs. rest (simple main effects......, the supplementary motor areas and the right premotor cortex compared to controls. CONCLUSIONS: Motor cortical reorganisation may explain this result, but as no significant differences were recognised in the motor response of the unaffected limb, differences in functional demands should also be considered...

  11. Electric motor handbook

    CERN Document Server

    Chalmers, B J

    2013-01-01

    Electric Motor Handbook aims to give practical knowledge in a wide range of capacities such as plant design, equipment specification, commissioning, operation and maintenance. The book covers topics such as the modeling of steady-state motor performance; polyphase induction, synchronous, and a.c. commutator motors; ambient conditions, enclosures, cooling and loss dissipation; and electrical supply systems and motor drives. Also covered are topics such as variable-speed drives and motor control; materials and motor components; insulation types, systems, and techniques; and the installation, sit

  12. Coupling with concentric contact around motor shaft for line start synchronous motor

    Science.gov (United States)

    Melfi, Michael J.; Burdeshaw, Galen E.

    2017-10-03

    A method comprises providing a line-start synchronous motor. The motor has a stator, a rotor core disposed within the stator, and a motor shaft. In accordance with a step of the method, a coupling for coupling a load to the motor is provided. The coupling has a motor shaft attachment portion configured to provide substantially concentric contact around the shaft at the end of the motor shaft. The coupling has a load attachment portion configured to operatively connect to a load. In accordance with a step of the method, a load is coupled to the motor with the coupling, and driven from start to at least near synchronous speed during steady state operation of the motor with a load coupled thereto. The motor shaft attachment portion may comprise a bushing assembly with matching and opposed tapered surfaces that cooperate to secure the motor shaft attachment portion around the motor shaft.

  13. A new potential AED, carisbamate, substantially reduces spontaneous motor seizures in rats with kainate-induced epilepsy

    Science.gov (United States)

    Grabenstatter, Heidi L.; Dudek, F. Edward

    2010-01-01

    Purpose Animal models with spontaneous epileptic seizures may be useful in the discovery of new antiepileptic drugs (AEDs). The purpose of the present study was to evaluate the efficacy of carisbamate on spontaneous motor seizures in rats with kainate-induced epilepsy. Methods Repeated, low-dose (5 mg/kg), intraperitoneal injections of kainate were administered every hour until each male Sprague-Dawley rat had experienced convulsive status epilepticus for at least 3 h. Five 1-month trials (n= 8–10 rats) assessed the effects of 0.3, 1, 3, 10 and 30 mg/kg carisbamate on spontaneous seizures. Each trial involved six AED-versus-vehicle tests comprised of carisbamate or 10% solutol-HS-15 treatments administered as intraperitoneal injections on alternate days with a recovery day between each treatment day. Results Carisbamate significantly reduced motor seizure frequency at doses of 10 and 30 mg/kg, and caused complete seizure cessation during the 6-h post-drug epoch in 7 of 8 animals at 30 mg/kg. The effects of carisbamate (0.3–30 mg/kg) on spontaneous motor seizures appeared dose dependent. Conclusions These data support the hypothesis that a repeated-measures, cross-over protocol in animal models with spontaneous seizures is an effective method for testing AEDs. Carisbamate reduced the frequency of spontaneous motor seizures in a dose-dependent manner, and was more effective than topiramate at reducing seizures in rats with kainate-induced epilepsy. PMID:18494790

  14. Continuous theta-burst stimulation of the primary motor cortex in essential tremor

    DEFF Research Database (Denmark)

    Hellriegel, Helge; Schulz, Eva M; Siebner, Hartwig R

    2012-01-01

    We investigated whether essential tremor (ET) can be altered by suppressing the corticospinal excitability in the primary motor cortex (M1) with transcranial magnetic stimulation.......We investigated whether essential tremor (ET) can be altered by suppressing the corticospinal excitability in the primary motor cortex (M1) with transcranial magnetic stimulation....

  15. Motor Imagery Learning Modulates Functional Connectivity of Multiple Brain Systems in Resting State

    Science.gov (United States)

    Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

    2014-01-01

    Background Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. Methodology/Principal Findings We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. Conclusions/Significance These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning. PMID:24465577

  16. Design of Phase I Combination Trials: Recommendations of the Clinical Trial Design Task Force of the NCI Investigational Drug Steering Committee

    Science.gov (United States)

    Paller, Channing J.; Bradbury, Penelope A.; Ivy, S. Percy; Seymour, Lesley; LoRusso, Patricia M.; Baker, Laurence; Rubinstein, Larry; Huang, Erich; Collyar, Deborah; Groshen, Susan; Reeves, Steven; Ellis, Lee M.; Sargent, Daniel J.; Rosner, Gary L.; LeBlanc, Michael L.; Ratain, Mark J.

    2014-01-01

    Anticancer drugs are combined in an effort to treat a heterogeneous tumor or to maximize the pharmacodynamic effect. The development of combination regimens, while desirable, poses unique challenges. These include the selection of agents for combination therapy that may lead to improved efficacy while maintaining acceptable toxicity, the design of clinical trials that provide informative results for individual agents and combinations, and logistical and regulatory challenges. The phase 1 trial is often the initial step in the clinical evaluation of a combination regimen. In view of the importance of combination regimens and the challenges associated with developing them, the Clinical Trial Design (CTD) Task Force of the National Cancer Institute (NCI) Investigational Drug Steering Committee developed a set of recommendations for the phase 1 development of a combination regimen. The first two recommendations focus on the scientific rationale and development plans for the combination regimen; subsequent recommendations encompass clinical design aspects. The CTD Task Force recommends that selection of the proposed regimens be based on a biological or pharmacological rationale supported by clinical and/or robust and validated preclinical evidence, and accompanied by a plan for subsequent development of the combination. The design of the phase 1 clinical trial should take into consideration the potential pharmacokinetic and pharmacodynamic interactions as well as overlapping toxicity. Depending on the specific hypothesized interaction, the primary endpoint may be dose optimization, pharmacokinetics, and/or pharmacodynamic (i.e., biomarker). PMID:25125258

  17. Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb pain.

    Science.gov (United States)

    Ortiz-Catalan, Max; Guðmundsdóttir, Rannveig A; Kristoffersen, Morten B; Zepeda-Echavarria, Alejandra; Caine-Winterberger, Kerstin; Kulbacka-Ortiz, Katarzyna; Widehammar, Cathrine; Eriksson, Karin; Stockselius, Anita; Ragnö, Christina; Pihlar, Zdenka; Burger, Helena; Hermansson, Liselotte

    2016-12-10

    Phantom limb pain is a debilitating condition for which no effective treatment has been found. We hypothesised that re-engagement of central and peripheral circuitry involved in motor execution could reduce phantom limb pain via competitive plasticity and reversal of cortical reorganisation. Patients with upper limb amputation and known chronic intractable phantom limb pain were recruited at three clinics in Sweden and one in Slovenia. Patients received 12 sessions of phantom motor execution using machine learning, augmented and virtual reality, and serious gaming. Changes in intensity, frequency, duration, quality, and intrusion of phantom limb pain were assessed by the use of the numeric rating scale, the pain rating index, the weighted pain distribution scale, and a study-specific frequency scale before each session and at follow-up interviews 1, 3, and 6 months after the last session. Changes in medication and prostheses were also monitored. Results are reported using descriptive statistics and analysed by non-parametric tests. The trial is registered at ClinicalTrials.gov, number NCT02281539. Between Sept 15, 2014, and April 10, 2015, 14 patients with intractable chronic phantom limb pain, for whom conventional treatments failed, were enrolled. After 12 sessions, patients showed statistically and clinically significant improvements in all metrics of phantom limb pain. Phantom limb pain decreased from pre-treatment to the last treatment session by 47% (SD 39; absolute mean change 1·0 [0·8]; p=0·001) for weighted pain distribution, 32% (38; absolute mean change 1·6 [1·8]; p=0·007) for the numeric rating scale, and 51% (33; absolute mean change 9·6 [8·1]; p=0·0001) for the pain rating index. The numeric rating scale score for intrusion of phantom limb pain in activities of daily living and sleep was reduced by 43% (SD 37; absolute mean change 2·4 [2·3]; p=0·004) and 61% (39; absolute mean change 2·3 [1·8]; p=0·001), respectively. Two of four

  18. Children show limited movement repertoire when learning a novel motor skill.

    Science.gov (United States)

    Lee, Mei-Hua; Farshchiansadegh, Ali; Ranganathan, Rajiv

    2017-09-27

    Examining age differences in motor learning using real-world tasks is often problematic due to task novelty and biomechanical confounds. Here, we investigated how children and adults acquire a novel motor skill in a virtual environment. Participants of three different age groups (9-year-olds, 12-year-olds, and adults) learned to use their upper body movements to control a cursor on a computer screen. Results showed that 9-year-old and 12-year-old children showed poorer ability to control the cursor at the end of practice. Critically, when we investigated the movement coordination, we found that the lower task performance of children was associated with limited exploration of their movement repertoire. These results reveal the critical role of motor exploration in understanding developmental differences in motor learning. © 2017 John Wiley & Sons Ltd.

  19. High-order motor cortex in rats receives somatosensory inputs from the primary motor cortex via cortico-cortical pathways.

    Science.gov (United States)

    Kunori, Nobuo; Takashima, Ichiro

    2016-12-01

    The motor cortex of rats contains two forelimb motor areas; the caudal forelimb area (CFA) and the rostral forelimb area (RFA). Although the RFA is thought to correspond to the premotor and/or supplementary motor cortices of primates, which are higher-order motor areas that receive somatosensory inputs, it is unknown whether the RFA of rats receives somatosensory inputs in the same manner. To investigate this issue, voltage-sensitive dye (VSD) imaging was used to assess the motor cortex in rats following a brief electrical stimulation of the forelimb. This procedure was followed by intracortical microstimulation (ICMS) mapping to identify the motor representations in the imaged cortex. The combined use of VSD imaging and ICMS revealed that both the CFA and RFA received excitatory synaptic inputs after forelimb stimulation. Further evaluation of the sensory input pathway to the RFA revealed that the forelimb-evoked RFA response was abolished either by the pharmacological inactivation of the CFA or a cortical transection between the CFA and RFA. These results suggest that forelimb-related sensory inputs would be transmitted to the RFA from the CFA via the cortico-cortical pathway. Thus, the present findings imply that sensory information processed in the RFA may be used for the generation of coordinated forelimb movements, which would be similar to the function of the higher-order motor cortex in primates. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. New trial evaluates investigational drug for endometrial and breast cancers | Center for Cancer Research

    Science.gov (United States)

    A new clinical trial is testing ONC201, an investigational drug that in laboratory studies has been shown to kill breast and endometrial cancer cells most likely by destroying mitochondria within the tumor cells. Mitochondria are the “powerhouse” of the cell, and blocking its activity may kill tumor cells and shrink tumors in human patients.

  1. Correlates of Gross Motor Competence in Children and Adolescents: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Barnett, Lisa M; Lai, Samuel K; Veldman, Sanne L C; Hardy, Louise L; Cliff, Dylan P; Morgan, Philip J; Zask, Avigdor; Lubans, David R; Shultz, Sarah P; Ridgers, Nicola D; Rush, Elaine; Brown, Helen L; Okely, Anthony D

    2016-11-01

    Gross motor competence confers health benefits, but levels in children and adolescents are low. While interventions can improve gross motor competence, it remains unclear which correlates should be targeted to ensure interventions are most effective, and for whom targeted and tailored interventions should be developed. The aim of this systematic review was to identify the potential correlates of gross motor competence in typically developing children and adolescents (aged 3-18 years) using an ecological approach. Motor competence was defined as gross motor skill competency, encompassing fundamental movement skills and motor coordination, but excluding motor fitness. Studies needed to assess a summary score of at least one aspect of motor competence (i.e., object control, locomotor, stability, or motor coordination). A structured electronic literature search was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Six electronic databases (CINAHL Complete, ERIC, MEDLINE Complete, PsycINFO ® , Scopus and SPORTDiscus with Full Text) were searched from 1994 to 5 August 2014. Meta-analyses were conducted to determine the relationship between potential correlates and motor competency if at least three individual studies investigated the same correlate and also reported standardized regression coefficients. A total of 59 studies were identified from 22 different countries, published between 1995 and 2014. Studies reflected the full range of age groups. The most examined correlates were biological and demographic factors. Age (increasing) was a correlate of children's motor competence. Weight status (healthy), sex (male) and socioeconomic background (higher) were consistent correlates for certain aspects of motor competence only. Physical activity and sport participation constituted the majority of investigations in the behavioral attributes and skills category. Whilst we found physical activity to be a positive

  2. Motor cortex is required for learning but not executing a motor skill

    Science.gov (United States)

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu; Dhawale, Ashesh; Kampff, Adam R.; Ölveczky, Bence P.

    2018-01-01

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, yet its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex’s established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in ‘tutoring’ these circuits during learning. PMID:25892304

  3. Effects of Ai Chi on balance, quality of life, functional mobility, and motor impairment in patients with Parkinson's disease.

    Science.gov (United States)

    Kurt, Emine Eda; Büyükturan, Buket; Büyükturan, Öznur; Erdem, Hatice Rana; Tuncay, Figen

    2018-04-01

    In this study, we aimed to investigate effects of Ai Chi on balance, functional mobility, health-related quality of life, and motor impairment in patients with Parkinson's disease. This study was conducted as an open-label randomized controlled trial (ISRCTN26292510) with repeated measures. Forty patients with Parkinson's disease stages 2 to 3 according to the Hoehn and Yahr Scale were randomly allocated to either an Ai Chi exercise group or a land-based exercise control group for 5 weeks. Balance was measured using the Biodex-3,1 and the Berg Balance Scale. Functional mobility was evaluated using the Timed Up and Go Test. Additionally, health-related quality of life and motor activity were assessed with the Parkinson's Disease Questionnaire-39 and the Unified Parkinson's Disease Rating Scale-III. Although patients in both groups showed significant improvement in all outcome variables, improvement of dynamic balance was significantly greater in the Ai Chi group (p Balance Scale (p balance, mobility, motor ability, and quality of life. In addition, Ai Chi exercise was more effective as an intervention than land-based exercise in patients with mild to moderate Parkinson's disease. Implications for rehabilitation Ai Chi exercises (aquatic exercises) may help improve balance, functional mobility, health-related quality of life, and motor ability in patients with mild to moderate Parkinson's disease more efficiently than similar land-based exercises. Ai Chi exercises should be considered as a rehabilitation option for treatment of patients with mild or moderate Parkinson's disease.

  4. Conceptual design of stepper motor replacing servo motor for control rod controller

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman Aslan; Mohd Idris Taib; Izhar Abu Hussin; Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat

    2010-01-01

    In PUSPATI TRIGA Reactor, current control rod controller are using servo motor to control the movement. Control rod is a very important safety element and measure in every nuclear reactor. So, precision is very important in measurement of security in the nuclear reactor. In this case, there are a few disadvantages when using the servo motor is measurement of the motor is not precise. One solution to overcome this is by shifting servo motor with stepper motor. A stepper motor (or step motor) is a brush less, synchronous electric motor that can divide a full rotation into a large number of steps. (author)

  5. A versatile stepping motor controller for systems with many motors

    International Nuclear Information System (INIS)

    Feng, S.K.; Siddons, D.P.

    1989-01-01

    A versatile system for controlling beamlines or complex experimental setups is described. The system as currently configured can control up to 32 motors, with all motors capable of full speed operation concurrently. There are 2 limit switch inputs for each motor, and a further input to accept a reference position marker. The motors can be controlled via a front panel keyboard with display, or by a host computer over an IEEE-488 interface. Both methods can be used together if required. There is an ''emergency stop'' key on the front panel keyboard to stop the motion of all motors without losing track of the motors' position. 3 refs., 4 figs., 1 tab

  6. Corticospinal tract integrity and lesion volume play different roles in chronic hemiparesis and its improvement through motor practice.

    Science.gov (United States)

    Sterr, Annette; Dean, Phil J A; Szameitat, Andre J; Conforto, Adriana Bastos; Shen, Shan

    2014-05-01

    Initial evidence suggests that the integrity of the ipsilesional corticospinal tract (CST) after stroke is strongly related to motor function in the chronic state but not the treatment gain induced by motor rehabilitation. We examined the association of motor status and treatment benefit by testing patients with a wide range of severity of hemiparesis of the left and right upper extremity. Diffusion tensor imaging was performed in 22 patients beyond 12 months after onset of stroke with severe to moderate hemiparesis. Motor function was tested before and after 2 weeks of modified constraint-induced movement therapy. CST integrity, but not lesion volume, correlated with the motor ability measures of the Wolf Motor Function Test and the Motor Activity Log. No differences were found between left and right hemiparesis. Motor performance improved significantly with the treatment regime, and did so equally for patients with left and right arm paresis. However, treatment benefit was not associated with either CST integrity or lesion volume. CST integrity correlated best in this small trial with chronic long-term status but not treatment-induced improvements. The CST may play a different role in the mechanisms mediating long-term outcome compared to those underlying practice-induced gains after a chronic plateau in motor function.

  7. Neutralization of Nogo-A Enhances Synaptic Plasticity in the Rodent Motor Cortex and Improves Motor Learning in Vivo

    Science.gov (United States)

    Weinmann, Oliver; Kellner, Yves; Yu, Xinzhu; Vicente, Raul; Gullo, Miriam; Kasper, Hansjörg; Lussi, Karin; Ristic, Zorica; Luft, Andreas R.; Rioult-Pedotti, Mengia; Zuo, Yi; Zagrebelsky, Marta; Schwab, Martin E.

    2014-01-01

    The membrane protein Nogo-A is known as an inhibitor of axonal outgrowth and regeneration in the CNS. However, its physiological functions in the normal adult CNS remain incompletely understood. Here, we investigated the role of Nogo-A in cortical synaptic plasticity and motor learning in the uninjured adult rodent motor cortex. Nogo-A and its receptor NgR1 are present at cortical synapses. Acute treatment of slices with function-blocking antibodies (Abs) against Nogo-A or against NgR1 increased long-term potentiation (LTP) induced by stimulation of layer 2/3 horizontal fibers. Furthermore, anti-Nogo-A Ab treatment increased LTP saturation levels, whereas long-term depression remained unchanged, thus leading to an enlarged synaptic modification range. In vivo, intrathecal application of Nogo-A-blocking Abs resulted in a higher dendritic spine density at cortical pyramidal neurons due to an increase in spine formation as revealed by in vivo two-photon microscopy. To investigate whether these changes in synaptic plasticity correlate with motor learning, we trained rats to learn a skilled forelimb-reaching task while receiving anti-Nogo-A Abs. Learning of this cortically controlled precision movement was improved upon anti-Nogo-A Ab treatment. Our results identify Nogo-A as an influential molecular modulator of synaptic plasticity and as a regulator for learning of skilled movements in the motor cortex. PMID:24966370

  8. HTSL massive motor. Project: Motor field calculation. Final report

    International Nuclear Information System (INIS)

    Gutt, H.J.; Gruener, A.

    2003-01-01

    HTS motors up to 300 kW were to be developed and optimized. For this, specific calculation methods were enhanced to include superconducting rotor types (hysteresis, reluctance and permanent magnet HTS rotors). The experiments were carried out in a SHM70-45 hysteresis motor. It was shown how static and dynamic trapped field magnetisation of the rotor with YBCO rings will increase flux in the air gap motor, increasing the motor capacity to twice its original level. (orig.) [de

  9. Transcranial magnetic stimulation techniques in clinical investigation.

    Science.gov (United States)

    Currà, A; Modugno, N; Inghilleri, M; Manfredi, M; Hallett, M; Berardelli, A

    2002-12-24

    Transcranial magnetic stimulation (TMS) is a technique that can activate cortical motor areas and the corticospinal tract without causing the subject discomfort. Since TMS was introduced, numerous applications of the technique have been developed for the evaluation of neurologic diseases. Standard TMS applications (central motor conduction time, threshold and amplitude of motor evoked potentials) allow the evaluation of motor conduction in the CNS. Conduction studies provide specific information in neurologic conditions characterized by clinical and subclinical upper motor neuron involvement. In addition, they have proved useful in monitoring motor abnormalities and the recovery of motor function. TMS also gives information on the pathophysiology of the processes underlying the various clinical conditions. More complex TMS applications (paired-pulse stimulation, silent period, ipsilateral silent period, input-output curve, and evaluation of central fatigue) allow investigation into the mechanisms of diseases causing changes in the excitability of cortical motor areas. These techniques are also useful in monitoring the effects of neurotrophic drugs on cortical activity. TMS applications have an important place among the investigative tools to study patients with motor disorders.

  10. Error-enhancing robot therapy to induce motor control improvement in childhood onset primary dystonia

    Directory of Open Access Journals (Sweden)

    Casellato Claudia

    2012-07-01

    Full Text Available Abstract Background Robot-generated deviating forces during multijoint reaching movements have been applied to investigate motor control and to tune neuromotor adaptation. Can the application of force to limbs improve motor learning? In this framework, the response to altered dynamic environments of children affected by primary dystonia has never been studied. Methods As preliminary pilot study, eleven children with primary dystonia and eleven age-matched healthy control subjects were asked to perform upper limb movements, triangle-reaching (three directions and circle-writing, using a haptic robot interacting with ad-hoc developed task-specific visual interfaces. Three dynamic conditions were provided, null additive external force (A, constant disturbing force (B and deactivation of the additive external force again (C. The path length for each trial was computed, from the recorded position data and interaction events. Results The results show that the disturbing force affects significantly the movement outcomes in healthy but not in dystonic subjects, already compromised in the reference condition: the external alteration uncalibrates the healthy sensorimotor system, while the dystonic one is already strongly uncalibrated. The lack of systematic compensation for perturbation effects during B condition is reflected into the absence of after-effects in C condition, which would be the evidence that CNS generates a prediction of the perturbing forces using an internal model of the environment. The most promising finding is that in dystonic population the altered dynamic exposure seems to induce a subsequent improvement, i.e. a beneficial after-effect in terms of optimal path control, compared with the correspondent reference movement outcome. Conclusions The short-time error-enhancing training in dystonia could represent an effective approach for motor performance improvement, since the exposure to controlled dynamic alterations induces a refining

  11. Task-irrelevant auditory feedback facilitates motor performance in musicians

    Directory of Open Access Journals (Sweden)

    Virginia eConde

    2012-05-01

    Full Text Available An efficient and fast auditory–motor network is a basic resource for trained musicians due to the importance of motor anticipation of sound production in musical performance. When playing an instrument, motor performance always goes along with the production of sounds and the integration between both modalities plays an essential role in the course of musical training. The aim of the present study was to investigate the role of task-irrelevant auditory feedback during motor performance in musicians using a serial reaction time task (SRTT. Our hypothesis was that musicians, due to their extensive auditory–motor practice routine during musical training, have a superior performance and learning capabilities when receiving auditory feedback during SRTT relative to musicians performing the SRTT without any auditory feedback. Here we provide novel evidence that task-irrelevant auditory feedback is capable to reinforce SRTT performance but not learning, a finding that might provide further insight into auditory-motor integration in musicians on a behavioral level.

  12. Neuroimaging in pre-motor Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Thomas R. Barber

    2017-01-01

    Full Text Available The process of neurodegeneration in Parkinson's disease begins long before the onset of clinical motor symptoms, resulting in substantial cell loss by the time a diagnosis can be made. The period between the onset of neurodegeneration and the development of motoric disease would be the ideal time to intervene with disease modifying therapies. This pre-motor phase can last many years, but the lack of a specific clinical phenotype means that objective biomarkers are needed to reliably detect prodromal disease. In recent years, recognition that patients with REM sleep behaviour disorder (RBD are at particularly high risk of future parkinsonism has enabled the development of large prodromal cohorts in which to investigate novel biomarkers, and neuroimaging has generated some of the most promising results to date. Here we review investigations undertaken in RBD and other pre-clinical cohorts, including modalities that are well established in clinical Parkinson's as well as novel imaging methods. Techniques such as high resolution MRI of the substantia nigra and functional imaging of Parkinsonian brain networks have great potential to facilitate early diagnosis. Further longitudinal studies will establish their true value in quantifying prodromal neurodegeneration and predicting future Parkinson's.

  13. Comparison of independent screens on differentially vulnerable motor neurons reveals alpha-synuclein as a common modifier in motor neuron diseases.

    Science.gov (United States)

    Kline, Rachel A; Kaifer, Kevin A; Osman, Erkan Y; Carella, Francesco; Tiberi, Ariana; Ross, Jolill; Pennetta, Giuseppa; Lorson, Christian L; Murray, Lyndsay M

    2017-03-01

    The term "motor neuron disease" encompasses a spectrum of disorders in which motor neurons are the primary pathological target. However, in both patients and animal models of these diseases, not all motor neurons are equally vulnerable, in that while some motor neurons are lost very early in disease, others remain comparatively intact, even at late stages. This creates a valuable system to investigate the factors that regulate motor neuron vulnerability. In this study, we aim to use this experimental paradigm to identify potential transcriptional modifiers. We have compared the transcriptome of motor neurons from healthy wild-type mice, which are differentially vulnerable in the childhood motor neuron disease Spinal Muscular Atrophy (SMA), and have identified 910 transcriptional changes. We have compared this data set with published microarray data sets on other differentially vulnerable motor neurons. These neurons were differentially vulnerable in the adult onset motor neuron disease Amyotrophic Lateral Sclerosis (ALS), but the screen was performed on the equivalent population of neurons from neurologically normal human, rat and mouse. This cross species comparison has generated a refined list of differentially expressed genes, including CELF5, Col5a2, PGEMN1, SNCA, Stmn1 and HOXa5, alongside a further enrichment for synaptic and axonal transcripts. As an in vivo validation, we demonstrate that the manipulation of a significant number of these transcripts can modify the neurodegenerative phenotype observed in a Drosophila line carrying an ALS causing mutation. Finally, we demonstrate that vector-mediated expression of alpha-synuclein (SNCA), a transcript decreased in selectively vulnerable motor neurons in all four screens, can extend life span, increase weight and decrease neuromuscular junction pathology in a mouse model of SMA. In summary, we have combined multiple data sets to identify transcripts, which are strong candidates for being phenotypic modifiers

  14. Handbook on linear motor application

    International Nuclear Information System (INIS)

    1988-10-01

    This book guides the application for Linear motor. It lists classification and speciality of Linear Motor, terms of linear-induction motor, principle of the Motor, types on one-side linear-induction motor, bilateral linear-induction motor, linear-DC Motor on basic of the motor, linear-DC Motor for moving-coil type, linear-DC motor for permanent-magnet moving type, linear-DC motor for electricity non-utility type, linear-pulse motor for variable motor, linear-pulse motor for permanent magneto type, linear-vibration actuator, linear-vibration actuator for moving-coil type, linear synchronous motor, linear electromagnetic motor, linear electromagnetic solenoid, technical organization and magnetic levitation and linear motor and sensor.

  15. Increased cortico-striatal connectivity during motor practice contributes to the consolidation of motor memory in writer's cramp patients

    Directory of Open Access Journals (Sweden)

    C. Gallea

    2015-01-01

    Full Text Available Sensorimotor representations of movements are created in the sensorimotor network through repeated practice to support successful and effortless performance. Writer's cramp (WC is a disorder acquired through extensive practice of finger movements, and it is likely associated with the abnormal acquisition of sensorimotor representations. We investigated (i the activation and connectivity changes in the brain network supporting the acquisition of sensorimotor representations of finger sequences in patients with WC and (ii the link between these changes and consolidation of motor performance 24 h after the initial practice. Twenty-two patients with WC and 22 age-matched healthy volunteers practiced a complex sequence with the right (pathological hand during functional MRI recording. Speed and accuracy were measured immediately before and after practice (day 1 and 24 h after practice (day 2. The two groups reached equivalent motor performance on day 1 and day 2. During motor practice, patients with WC had (i reduced hippocampal activation and hippocampal–striatal functional connectivity; and (ii overactivation of premotor–striatal areas, whose connectivity correlated with motor performance after consolidation. These results suggest that patients with WC use alternative networks to reach equiperformance in the acquisition of new motor memories.

  16. The Investigation of the Relationship between Children's 50m Freestyle Swimming Performances and Motor Performances

    Science.gov (United States)

    Aktug, Zait Burak; Iri, Ruckan; Top, Elif

    2018-01-01

    The aim of the study is to examine the relationship between children's 50 m freestyle swimming performances and motor performances. There were 32 swimmers (male = 21, female = 11), who had been swimming for at least one and a half year, participated in the study. The motor performances of the participating swimmers were determined through the…

  17. DEVELOPMENT OF FINE MOTOR COORDINATION AND VISUAL-MOTOR INTEGRATION IN PRESCHOOL CHILDREN

    Directory of Open Access Journals (Sweden)

    Haris MEMISEVIC

    2013-03-01

    Full Text Available Fine motor skills are prerequisite for many everyday activities and they are a good predictor of a child's later academic outcome. The goal of the present study was to assess the effects of age on the development of fine motor coordination and visual-motor integration in preschool children. The sample for this study consisted of 276 preschool children from Canton Sara­jevo, Bosnia and Herzegovina. We assessed children's motor skills with Beery Visual Motor Integration Test and Lafayette Pegboard Test. Data were analyzed with one-way ANOVA, followed by planned com­parisons between the age groups. We also performed a regression analysis to assess the influence of age and motor coordination on visual-motor integration. The results showed that age has a great effect on the development of fine motor skills. Furthermore, the results indicated that there are possible sensitive periods at preschool age in which the development of fine motor skills is accelerated. Early intervention specialists should make a thorough evaluations of fine motor skills in preschool children and make motor (rehabilitation programs for children at risk of fine motor delays.

  18. Peripheral nerve injury in developing rats reorganizes representation pattern in motor cortex.

    OpenAIRE

    Donoghue, J P; Sanes, J N

    1987-01-01

    We investigated the effect of neonatal nerve lesions on cerebral motor cortex organization by comparing the cortical motor representation of normal adult rats with adult rats that had one forelimb removed on the day of birth. Mapping of cerebral neocortex with electrical stimulation revealed an altered relationship between the motor cortex and the remaining muscles. Whereas distal forelimb movements are normally elicited at the lowest threshold in the motor cortex forelimb area, the same stim...

  19. Synthesis and Investigation of Algorithm for Estimation of Active Stator Resistance of Asynchronous Motor with Fixed Rotor

    Directory of Open Access Journals (Sweden)

    D. S. Odnolko

    2012-01-01

    Full Text Available The paper proposes an algorithm for online identification of active stator resistance. Algorithm synthesis has been developed on the basis of a recursive least squares method. The problem has been solved for induction motor model defined in the stationary stator frame α–β-coordinating system. An analysis of negative factors deteriorating the identifier operation has been made in the paper. The analysis has revealed the following: measured signals are noisy due to quantization and differentiation; dynamic model of an induction motor provides only approximate presentation about actual processes in the electromagnetic system of the machine. The paper presents results of  a system simulation while applying the proposed algorithm that confirm the fact that the estimated value of the active stator resistance tends to a true value with high accuracy. The identification test assumes a fixed rotor and nominal parameters uncertainty, but the flexible structure of the algorithm allows to use it as  for single-phase excitation so for full-phase control of the induction motor with freely rotating motor.

  20. Working Memory Capacity Limits Motor Learning When Implementing Multiple Instructions

    Directory of Open Access Journals (Sweden)

    Tim Buszard

    2017-08-01

    Full Text Available Although it is generally accepted that certain practice conditions can place large demands on working memory (WM when performing and learning a motor skill, the influence that WM capacity has on the acquisition of motor skills remains unsubstantiated. This study examined the role of WM capacity in a motor skill practice context that promoted WM involvement through the provision of explicit instructions. A cohort of 90 children aged 8 to 10 years were assessed on measures of WM capacity and attention. Children who scored in the lowest and highest thirds on the WM tasks were allocated to lower WM capacity (n = 24 and higher WM capacity (n = 24 groups, respectively. The remaining 42 participants did not participate in the motor task. The motor task required children to practice basketball shooting for 240 trials in blocks of 20 shots, with pre- and post-tests occurring before and after the intervention. A retention test was administered 1 week after the post-test. Prior to every practice block, children were provided with five explicit instructions that were specific to the technique of shooting a basketball. Results revealed that the higher WM capacity group displayed consistent improvements from pre- to post-test and through to the retention test, while the opposite effect occurred in the lower WM capacity group. This implies that the explicit instructions had a negative influence on learning by the lower WM capacity children. Results are discussed in relation to strategy selection for dealing with instructions and the role of attention control.